1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CGCall.h" 18 #include "CGObjCRuntime.h" 19 #include "Mangle.h" 20 #include "TargetInfo.h" 21 #include "clang/Frontend/CodeGenOptions.h" 22 #include "clang/AST/ASTContext.h" 23 #include "clang/AST/CharUnits.h" 24 #include "clang/AST/DeclObjC.h" 25 #include "clang/AST/DeclCXX.h" 26 #include "clang/AST/DeclTemplate.h" 27 #include "clang/AST/RecordLayout.h" 28 #include "clang/Basic/Builtins.h" 29 #include "clang/Basic/Diagnostic.h" 30 #include "clang/Basic/SourceManager.h" 31 #include "clang/Basic/TargetInfo.h" 32 #include "clang/Basic/ConvertUTF.h" 33 #include "llvm/CallingConv.h" 34 #include "llvm/Module.h" 35 #include "llvm/Intrinsics.h" 36 #include "llvm/LLVMContext.h" 37 #include "llvm/ADT/Triple.h" 38 #include "llvm/Target/TargetData.h" 39 #include "llvm/Support/CallSite.h" 40 #include "llvm/Support/ErrorHandling.h" 41 using namespace clang; 42 using namespace CodeGen; 43 44 45 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 46 llvm::Module &M, const llvm::TargetData &TD, 47 Diagnostic &diags) 48 : BlockModule(C, M, TD, Types, *this), Context(C), 49 Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M), 50 TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags), 51 Types(C, M, TD, getTargetCodeGenInfo().getABIInfo()), 52 VTables(*this), Runtime(0), ABI(0), 53 CFConstantStringClassRef(0), NSConstantStringClassRef(0), 54 VMContext(M.getContext()), 55 NSConcreteGlobalBlockDecl(0), NSConcreteStackBlockDecl(0), 56 NSConcreteGlobalBlock(0), NSConcreteStackBlock(0), 57 BlockObjectAssignDecl(0), BlockObjectDisposeDecl(0), 58 BlockObjectAssign(0), BlockObjectDispose(0){ 59 60 if (!Features.ObjC1) 61 Runtime = 0; 62 else if (!Features.NeXTRuntime) 63 Runtime = CreateGNUObjCRuntime(*this); 64 else if (Features.ObjCNonFragileABI) 65 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 66 else 67 Runtime = CreateMacObjCRuntime(*this); 68 69 if (!Features.CPlusPlus) 70 ABI = 0; 71 else createCXXABI(); 72 73 // If debug info generation is enabled, create the CGDebugInfo object. 74 DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(*this) : 0; 75 } 76 77 CodeGenModule::~CodeGenModule() { 78 delete Runtime; 79 delete ABI; 80 delete DebugInfo; 81 } 82 83 void CodeGenModule::createObjCRuntime() { 84 if (!Features.NeXTRuntime) 85 Runtime = CreateGNUObjCRuntime(*this); 86 else if (Features.ObjCNonFragileABI) 87 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 88 else 89 Runtime = CreateMacObjCRuntime(*this); 90 } 91 92 void CodeGenModule::createCXXABI() { 93 switch (Context.Target.getCXXABI()) { 94 default: 95 ABI = CreateItaniumCXXABI(*this); 96 break; 97 case CXXABI_Microsoft: 98 ABI = CreateMicrosoftCXXABI(*this); 99 } 100 } 101 102 void CodeGenModule::Release() { 103 EmitDeferred(); 104 EmitCXXGlobalInitFunc(); 105 EmitCXXGlobalDtorFunc(); 106 if (Runtime) 107 if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction()) 108 AddGlobalCtor(ObjCInitFunction); 109 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 110 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 111 EmitAnnotations(); 112 EmitLLVMUsed(); 113 114 if (getCodeGenOpts().EmitDeclMetadata) 115 EmitDeclMetadata(); 116 } 117 118 bool CodeGenModule::isTargetDarwin() const { 119 return getContext().Target.getTriple().getOS() == llvm::Triple::Darwin; 120 } 121 122 /// ErrorUnsupported - Print out an error that codegen doesn't support the 123 /// specified stmt yet. 124 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 125 bool OmitOnError) { 126 if (OmitOnError && getDiags().hasErrorOccurred()) 127 return; 128 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 129 "cannot compile this %0 yet"); 130 std::string Msg = Type; 131 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 132 << Msg << S->getSourceRange(); 133 } 134 135 /// ErrorUnsupported - Print out an error that codegen doesn't support the 136 /// specified decl yet. 137 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 138 bool OmitOnError) { 139 if (OmitOnError && getDiags().hasErrorOccurred()) 140 return; 141 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 142 "cannot compile this %0 yet"); 143 std::string Msg = Type; 144 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 145 } 146 147 LangOptions::VisibilityMode 148 CodeGenModule::getDeclVisibilityMode(const Decl *D) const { 149 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 150 if (VD->getStorageClass() == VarDecl::PrivateExtern) 151 return LangOptions::Hidden; 152 153 if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) { 154 switch (attr->getVisibility()) { 155 default: assert(0 && "Unknown visibility!"); 156 case VisibilityAttr::Default: 157 return LangOptions::Default; 158 case VisibilityAttr::Hidden: 159 return LangOptions::Hidden; 160 case VisibilityAttr::Protected: 161 return LangOptions::Protected; 162 } 163 } 164 165 if (getLangOptions().CPlusPlus) { 166 // Entities subject to an explicit instantiation declaration get default 167 // visibility. 168 if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) { 169 if (Function->getTemplateSpecializationKind() 170 == TSK_ExplicitInstantiationDeclaration) 171 return LangOptions::Default; 172 } else if (const ClassTemplateSpecializationDecl *ClassSpec 173 = dyn_cast<ClassTemplateSpecializationDecl>(D)) { 174 if (ClassSpec->getSpecializationKind() 175 == TSK_ExplicitInstantiationDeclaration) 176 return LangOptions::Default; 177 } else if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) { 178 if (Record->getTemplateSpecializationKind() 179 == TSK_ExplicitInstantiationDeclaration) 180 return LangOptions::Default; 181 } else if (const VarDecl *Var = dyn_cast<VarDecl>(D)) { 182 if (Var->isStaticDataMember() && 183 (Var->getTemplateSpecializationKind() 184 == TSK_ExplicitInstantiationDeclaration)) 185 return LangOptions::Default; 186 } 187 188 // If -fvisibility-inlines-hidden was provided, then inline C++ member 189 // functions get "hidden" visibility by default. 190 if (getLangOptions().InlineVisibilityHidden) 191 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) 192 if (Method->isInlined()) 193 return LangOptions::Hidden; 194 } 195 196 // If this decl is contained in a class, it should have the same visibility 197 // as the parent class. 198 if (const DeclContext *DC = D->getDeclContext()) 199 if (DC->isRecord()) 200 return getDeclVisibilityMode(cast<Decl>(DC)); 201 202 return getLangOptions().getVisibilityMode(); 203 } 204 205 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 206 const Decl *D) const { 207 // Internal definitions always have default visibility. 208 if (GV->hasLocalLinkage()) { 209 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 210 return; 211 } 212 213 switch (getDeclVisibilityMode(D)) { 214 default: assert(0 && "Unknown visibility!"); 215 case LangOptions::Default: 216 return GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 217 case LangOptions::Hidden: 218 return GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 219 case LangOptions::Protected: 220 return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 221 } 222 } 223 224 /// Set the symbol visibility of type information (vtable and RTTI) 225 /// associated with the given type. 226 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV, 227 const CXXRecordDecl *RD, 228 bool IsForRTTI) const { 229 setGlobalVisibility(GV, RD); 230 231 if (!CodeGenOpts.HiddenWeakVTables) 232 return; 233 234 // We want to drop the visibility to hidden for weak type symbols. 235 // This isn't possible if there might be unresolved references 236 // elsewhere that rely on this symbol being visible. 237 238 // This should be kept roughly in sync with setThunkVisibility 239 // in CGVTables.cpp. 240 241 // Preconditions. 242 if (GV->getLinkage() != llvm::GlobalVariable::WeakODRLinkage || 243 GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility) 244 return; 245 246 // Don't override an explicit visibility attribute. 247 if (RD->hasAttr<VisibilityAttr>()) 248 return; 249 250 switch (RD->getTemplateSpecializationKind()) { 251 // We have to disable the optimization if this is an EI definition 252 // because there might be EI declarations in other shared objects. 253 case TSK_ExplicitInstantiationDefinition: 254 case TSK_ExplicitInstantiationDeclaration: 255 return; 256 257 // Every use of a non-template class's type information has to emit it. 258 case TSK_Undeclared: 259 break; 260 261 // In theory, implicit instantiations can ignore the possibility of 262 // an explicit instantiation declaration because there necessarily 263 // must be an EI definition somewhere with default visibility. In 264 // practice, it's possible to have an explicit instantiation for 265 // an arbitrary template class, and linkers aren't necessarily able 266 // to deal with mixed-visibility symbols. 267 case TSK_ExplicitSpecialization: 268 case TSK_ImplicitInstantiation: 269 if (!CodeGenOpts.HiddenWeakTemplateVTables) 270 return; 271 break; 272 } 273 274 // If there's a key function, there may be translation units 275 // that don't have the key function's definition. But ignore 276 // this if we're emitting RTTI under -fno-rtti. 277 if (!IsForRTTI || Features.RTTI) 278 if (Context.getKeyFunction(RD)) 279 return; 280 281 // Otherwise, drop the visibility to hidden. 282 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 283 } 284 285 llvm::StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 286 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 287 288 llvm::StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()]; 289 if (!Str.empty()) 290 return Str; 291 292 if (!getMangleContext().shouldMangleDeclName(ND)) { 293 IdentifierInfo *II = ND->getIdentifier(); 294 assert(II && "Attempt to mangle unnamed decl."); 295 296 Str = II->getName(); 297 return Str; 298 } 299 300 llvm::SmallString<256> Buffer; 301 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 302 getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Buffer); 303 else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 304 getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Buffer); 305 else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND)) 306 getMangleContext().mangleBlock(GD, BD, Buffer); 307 else 308 getMangleContext().mangleName(ND, Buffer); 309 310 // Allocate space for the mangled name. 311 size_t Length = Buffer.size(); 312 char *Name = MangledNamesAllocator.Allocate<char>(Length); 313 std::copy(Buffer.begin(), Buffer.end(), Name); 314 315 Str = llvm::StringRef(Name, Length); 316 317 return Str; 318 } 319 320 void CodeGenModule::getMangledName(GlobalDecl GD, MangleBuffer &Buffer, 321 const BlockDecl *BD) { 322 getMangleContext().mangleBlock(GD, BD, Buffer.getBuffer()); 323 } 324 325 llvm::GlobalValue *CodeGenModule::GetGlobalValue(llvm::StringRef Name) { 326 return getModule().getNamedValue(Name); 327 } 328 329 /// AddGlobalCtor - Add a function to the list that will be called before 330 /// main() runs. 331 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 332 // FIXME: Type coercion of void()* types. 333 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 334 } 335 336 /// AddGlobalDtor - Add a function to the list that will be called 337 /// when the module is unloaded. 338 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 339 // FIXME: Type coercion of void()* types. 340 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 341 } 342 343 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 344 // Ctor function type is void()*. 345 llvm::FunctionType* CtorFTy = 346 llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), 347 std::vector<const llvm::Type*>(), 348 false); 349 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 350 351 // Get the type of a ctor entry, { i32, void ()* }. 352 llvm::StructType* CtorStructTy = 353 llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext), 354 llvm::PointerType::getUnqual(CtorFTy), NULL); 355 356 // Construct the constructor and destructor arrays. 357 std::vector<llvm::Constant*> Ctors; 358 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 359 std::vector<llvm::Constant*> S; 360 S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 361 I->second, false)); 362 S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)); 363 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 364 } 365 366 if (!Ctors.empty()) { 367 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 368 new llvm::GlobalVariable(TheModule, AT, false, 369 llvm::GlobalValue::AppendingLinkage, 370 llvm::ConstantArray::get(AT, Ctors), 371 GlobalName); 372 } 373 } 374 375 void CodeGenModule::EmitAnnotations() { 376 if (Annotations.empty()) 377 return; 378 379 // Create a new global variable for the ConstantStruct in the Module. 380 llvm::Constant *Array = 381 llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(), 382 Annotations.size()), 383 Annotations); 384 llvm::GlobalValue *gv = 385 new llvm::GlobalVariable(TheModule, Array->getType(), false, 386 llvm::GlobalValue::AppendingLinkage, Array, 387 "llvm.global.annotations"); 388 gv->setSection("llvm.metadata"); 389 } 390 391 llvm::GlobalValue::LinkageTypes 392 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) { 393 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 394 395 if (Linkage == GVA_Internal) 396 return llvm::Function::InternalLinkage; 397 398 if (D->hasAttr<DLLExportAttr>()) 399 return llvm::Function::DLLExportLinkage; 400 401 if (D->hasAttr<WeakAttr>()) 402 return llvm::Function::WeakAnyLinkage; 403 404 // In C99 mode, 'inline' functions are guaranteed to have a strong 405 // definition somewhere else, so we can use available_externally linkage. 406 if (Linkage == GVA_C99Inline) 407 return llvm::Function::AvailableExternallyLinkage; 408 409 // In C++, the compiler has to emit a definition in every translation unit 410 // that references the function. We should use linkonce_odr because 411 // a) if all references in this translation unit are optimized away, we 412 // don't need to codegen it. b) if the function persists, it needs to be 413 // merged with other definitions. c) C++ has the ODR, so we know the 414 // definition is dependable. 415 if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) 416 return llvm::Function::LinkOnceODRLinkage; 417 418 // An explicit instantiation of a template has weak linkage, since 419 // explicit instantiations can occur in multiple translation units 420 // and must all be equivalent. However, we are not allowed to 421 // throw away these explicit instantiations. 422 if (Linkage == GVA_ExplicitTemplateInstantiation) 423 return llvm::Function::WeakODRLinkage; 424 425 // Otherwise, we have strong external linkage. 426 assert(Linkage == GVA_StrongExternal); 427 return llvm::Function::ExternalLinkage; 428 } 429 430 431 /// SetFunctionDefinitionAttributes - Set attributes for a global. 432 /// 433 /// FIXME: This is currently only done for aliases and functions, but not for 434 /// variables (these details are set in EmitGlobalVarDefinition for variables). 435 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 436 llvm::GlobalValue *GV) { 437 SetCommonAttributes(D, GV); 438 } 439 440 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 441 const CGFunctionInfo &Info, 442 llvm::Function *F) { 443 unsigned CallingConv; 444 AttributeListType AttributeList; 445 ConstructAttributeList(Info, D, AttributeList, CallingConv); 446 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), 447 AttributeList.size())); 448 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 449 } 450 451 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 452 llvm::Function *F) { 453 if (!Features.Exceptions && !Features.ObjCNonFragileABI) 454 F->addFnAttr(llvm::Attribute::NoUnwind); 455 456 if (D->hasAttr<AlwaysInlineAttr>()) 457 F->addFnAttr(llvm::Attribute::AlwaysInline); 458 459 if (D->hasAttr<NoInlineAttr>()) 460 F->addFnAttr(llvm::Attribute::NoInline); 461 462 if (Features.getStackProtectorMode() == LangOptions::SSPOn) 463 F->addFnAttr(llvm::Attribute::StackProtect); 464 else if (Features.getStackProtectorMode() == LangOptions::SSPReq) 465 F->addFnAttr(llvm::Attribute::StackProtectReq); 466 467 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 468 if (alignment) 469 F->setAlignment(alignment); 470 471 // C++ ABI requires 2-byte alignment for member functions. 472 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 473 F->setAlignment(2); 474 } 475 476 void CodeGenModule::SetCommonAttributes(const Decl *D, 477 llvm::GlobalValue *GV) { 478 setGlobalVisibility(GV, D); 479 480 if (D->hasAttr<UsedAttr>()) 481 AddUsedGlobal(GV); 482 483 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 484 GV->setSection(SA->getName()); 485 486 getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this); 487 } 488 489 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 490 llvm::Function *F, 491 const CGFunctionInfo &FI) { 492 SetLLVMFunctionAttributes(D, FI, F); 493 SetLLVMFunctionAttributesForDefinition(D, F); 494 495 F->setLinkage(llvm::Function::InternalLinkage); 496 497 SetCommonAttributes(D, F); 498 } 499 500 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, 501 llvm::Function *F, 502 bool IsIncompleteFunction) { 503 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 504 505 if (!IsIncompleteFunction) 506 SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F); 507 508 // Only a few attributes are set on declarations; these may later be 509 // overridden by a definition. 510 511 if (FD->hasAttr<DLLImportAttr>()) { 512 F->setLinkage(llvm::Function::DLLImportLinkage); 513 } else if (FD->hasAttr<WeakAttr>() || 514 FD->hasAttr<WeakImportAttr>()) { 515 // "extern_weak" is overloaded in LLVM; we probably should have 516 // separate linkage types for this. 517 F->setLinkage(llvm::Function::ExternalWeakLinkage); 518 } else { 519 F->setLinkage(llvm::Function::ExternalLinkage); 520 } 521 522 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 523 F->setSection(SA->getName()); 524 } 525 526 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 527 assert(!GV->isDeclaration() && 528 "Only globals with definition can force usage."); 529 LLVMUsed.push_back(GV); 530 } 531 532 void CodeGenModule::EmitLLVMUsed() { 533 // Don't create llvm.used if there is no need. 534 if (LLVMUsed.empty()) 535 return; 536 537 const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext); 538 539 // Convert LLVMUsed to what ConstantArray needs. 540 std::vector<llvm::Constant*> UsedArray; 541 UsedArray.resize(LLVMUsed.size()); 542 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 543 UsedArray[i] = 544 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), 545 i8PTy); 546 } 547 548 if (UsedArray.empty()) 549 return; 550 llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size()); 551 552 llvm::GlobalVariable *GV = 553 new llvm::GlobalVariable(getModule(), ATy, false, 554 llvm::GlobalValue::AppendingLinkage, 555 llvm::ConstantArray::get(ATy, UsedArray), 556 "llvm.used"); 557 558 GV->setSection("llvm.metadata"); 559 } 560 561 void CodeGenModule::EmitDeferred() { 562 // Emit code for any potentially referenced deferred decls. Since a 563 // previously unused static decl may become used during the generation of code 564 // for a static function, iterate until no changes are made. 565 566 while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) { 567 if (!DeferredVTables.empty()) { 568 const CXXRecordDecl *RD = DeferredVTables.back(); 569 DeferredVTables.pop_back(); 570 getVTables().GenerateClassData(getVTableLinkage(RD), RD); 571 continue; 572 } 573 574 GlobalDecl D = DeferredDeclsToEmit.back(); 575 DeferredDeclsToEmit.pop_back(); 576 577 // Check to see if we've already emitted this. This is necessary 578 // for a couple of reasons: first, decls can end up in the 579 // deferred-decls queue multiple times, and second, decls can end 580 // up with definitions in unusual ways (e.g. by an extern inline 581 // function acquiring a strong function redefinition). Just 582 // ignore these cases. 583 // 584 // TODO: That said, looking this up multiple times is very wasteful. 585 llvm::StringRef Name = getMangledName(D); 586 llvm::GlobalValue *CGRef = GetGlobalValue(Name); 587 assert(CGRef && "Deferred decl wasn't referenced?"); 588 589 if (!CGRef->isDeclaration()) 590 continue; 591 592 // GlobalAlias::isDeclaration() defers to the aliasee, but for our 593 // purposes an alias counts as a definition. 594 if (isa<llvm::GlobalAlias>(CGRef)) 595 continue; 596 597 // Otherwise, emit the definition and move on to the next one. 598 EmitGlobalDefinition(D); 599 } 600 } 601 602 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the 603 /// annotation information for a given GlobalValue. The annotation struct is 604 /// {i8 *, i8 *, i8 *, i32}. The first field is a constant expression, the 605 /// GlobalValue being annotated. The second field is the constant string 606 /// created from the AnnotateAttr's annotation. The third field is a constant 607 /// string containing the name of the translation unit. The fourth field is 608 /// the line number in the file of the annotated value declaration. 609 /// 610 /// FIXME: this does not unique the annotation string constants, as llvm-gcc 611 /// appears to. 612 /// 613 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 614 const AnnotateAttr *AA, 615 unsigned LineNo) { 616 llvm::Module *M = &getModule(); 617 618 // get [N x i8] constants for the annotation string, and the filename string 619 // which are the 2nd and 3rd elements of the global annotation structure. 620 const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext); 621 llvm::Constant *anno = llvm::ConstantArray::get(VMContext, 622 AA->getAnnotation(), true); 623 llvm::Constant *unit = llvm::ConstantArray::get(VMContext, 624 M->getModuleIdentifier(), 625 true); 626 627 // Get the two global values corresponding to the ConstantArrays we just 628 // created to hold the bytes of the strings. 629 llvm::GlobalValue *annoGV = 630 new llvm::GlobalVariable(*M, anno->getType(), false, 631 llvm::GlobalValue::PrivateLinkage, anno, 632 GV->getName()); 633 // translation unit name string, emitted into the llvm.metadata section. 634 llvm::GlobalValue *unitGV = 635 new llvm::GlobalVariable(*M, unit->getType(), false, 636 llvm::GlobalValue::PrivateLinkage, unit, 637 ".str"); 638 639 // Create the ConstantStruct for the global annotation. 640 llvm::Constant *Fields[4] = { 641 llvm::ConstantExpr::getBitCast(GV, SBP), 642 llvm::ConstantExpr::getBitCast(annoGV, SBP), 643 llvm::ConstantExpr::getBitCast(unitGV, SBP), 644 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo) 645 }; 646 return llvm::ConstantStruct::get(VMContext, Fields, 4, false); 647 } 648 649 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 650 // Never defer when EmitAllDecls is specified. 651 if (Features.EmitAllDecls) 652 return false; 653 654 return !getContext().DeclMustBeEmitted(Global); 655 } 656 657 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 658 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 659 assert(AA && "No alias?"); 660 661 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 662 663 // See if there is already something with the target's name in the module. 664 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 665 666 llvm::Constant *Aliasee; 667 if (isa<llvm::FunctionType>(DeclTy)) 668 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl()); 669 else 670 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 671 llvm::PointerType::getUnqual(DeclTy), 0); 672 if (!Entry) { 673 llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee); 674 F->setLinkage(llvm::Function::ExternalWeakLinkage); 675 WeakRefReferences.insert(F); 676 } 677 678 return Aliasee; 679 } 680 681 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 682 const ValueDecl *Global = cast<ValueDecl>(GD.getDecl()); 683 684 // Weak references don't produce any output by themselves. 685 if (Global->hasAttr<WeakRefAttr>()) 686 return; 687 688 // If this is an alias definition (which otherwise looks like a declaration) 689 // emit it now. 690 if (Global->hasAttr<AliasAttr>()) 691 return EmitAliasDefinition(GD); 692 693 // Ignore declarations, they will be emitted on their first use. 694 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 695 if (FD->getIdentifier()) { 696 llvm::StringRef Name = FD->getName(); 697 if (Name == "_Block_object_assign") { 698 BlockObjectAssignDecl = FD; 699 } else if (Name == "_Block_object_dispose") { 700 BlockObjectDisposeDecl = FD; 701 } 702 } 703 704 // Forward declarations are emitted lazily on first use. 705 if (!FD->isThisDeclarationADefinition()) 706 return; 707 } else { 708 const VarDecl *VD = cast<VarDecl>(Global); 709 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 710 711 if (VD->getIdentifier()) { 712 llvm::StringRef Name = VD->getName(); 713 if (Name == "_NSConcreteGlobalBlock") { 714 NSConcreteGlobalBlockDecl = VD; 715 } else if (Name == "_NSConcreteStackBlock") { 716 NSConcreteStackBlockDecl = VD; 717 } 718 } 719 720 721 if (VD->isThisDeclarationADefinition() != VarDecl::Definition) 722 return; 723 } 724 725 // Defer code generation when possible if this is a static definition, inline 726 // function etc. These we only want to emit if they are used. 727 if (!MayDeferGeneration(Global)) { 728 // Emit the definition if it can't be deferred. 729 EmitGlobalDefinition(GD); 730 return; 731 } 732 733 // If we're deferring emission of a C++ variable with an 734 // initializer, remember the order in which it appeared in the file. 735 if (getLangOptions().CPlusPlus && isa<VarDecl>(Global) && 736 cast<VarDecl>(Global)->hasInit()) { 737 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 738 CXXGlobalInits.push_back(0); 739 } 740 741 // If the value has already been used, add it directly to the 742 // DeferredDeclsToEmit list. 743 llvm::StringRef MangledName = getMangledName(GD); 744 if (GetGlobalValue(MangledName)) 745 DeferredDeclsToEmit.push_back(GD); 746 else { 747 // Otherwise, remember that we saw a deferred decl with this name. The 748 // first use of the mangled name will cause it to move into 749 // DeferredDeclsToEmit. 750 DeferredDecls[MangledName] = GD; 751 } 752 } 753 754 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { 755 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 756 757 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 758 Context.getSourceManager(), 759 "Generating code for declaration"); 760 761 if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) { 762 // At -O0, don't generate IR for functions with available_externally 763 // linkage. 764 if (CodeGenOpts.OptimizationLevel == 0 && 765 !Function->hasAttr<AlwaysInlineAttr>() && 766 getFunctionLinkage(Function) 767 == llvm::Function::AvailableExternallyLinkage) 768 return; 769 770 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 771 if (Method->isVirtual()) 772 getVTables().EmitThunks(GD); 773 774 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method)) 775 return EmitCXXConstructor(CD, GD.getCtorType()); 776 777 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(Method)) 778 return EmitCXXDestructor(DD, GD.getDtorType()); 779 } 780 781 return EmitGlobalFunctionDefinition(GD); 782 } 783 784 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 785 return EmitGlobalVarDefinition(VD); 786 787 assert(0 && "Invalid argument to EmitGlobalDefinition()"); 788 } 789 790 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 791 /// module, create and return an llvm Function with the specified type. If there 792 /// is something in the module with the specified name, return it potentially 793 /// bitcasted to the right type. 794 /// 795 /// If D is non-null, it specifies a decl that correspond to this. This is used 796 /// to set the attributes on the function when it is first created. 797 llvm::Constant * 798 CodeGenModule::GetOrCreateLLVMFunction(llvm::StringRef MangledName, 799 const llvm::Type *Ty, 800 GlobalDecl D) { 801 // Lookup the entry, lazily creating it if necessary. 802 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 803 if (Entry) { 804 if (WeakRefReferences.count(Entry)) { 805 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl()); 806 if (FD && !FD->hasAttr<WeakAttr>()) 807 Entry->setLinkage(llvm::Function::ExternalLinkage); 808 809 WeakRefReferences.erase(Entry); 810 } 811 812 if (Entry->getType()->getElementType() == Ty) 813 return Entry; 814 815 // Make sure the result is of the correct type. 816 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 817 return llvm::ConstantExpr::getBitCast(Entry, PTy); 818 } 819 820 // This function doesn't have a complete type (for example, the return 821 // type is an incomplete struct). Use a fake type instead, and make 822 // sure not to try to set attributes. 823 bool IsIncompleteFunction = false; 824 825 const llvm::FunctionType *FTy; 826 if (isa<llvm::FunctionType>(Ty)) { 827 FTy = cast<llvm::FunctionType>(Ty); 828 } else { 829 FTy = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), 830 std::vector<const llvm::Type*>(), false); 831 IsIncompleteFunction = true; 832 } 833 834 llvm::Function *F = llvm::Function::Create(FTy, 835 llvm::Function::ExternalLinkage, 836 MangledName, &getModule()); 837 assert(F->getName() == MangledName && "name was uniqued!"); 838 if (D.getDecl()) 839 SetFunctionAttributes(D, F, IsIncompleteFunction); 840 841 // This is the first use or definition of a mangled name. If there is a 842 // deferred decl with this name, remember that we need to emit it at the end 843 // of the file. 844 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 845 if (DDI != DeferredDecls.end()) { 846 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 847 // list, and remove it from DeferredDecls (since we don't need it anymore). 848 DeferredDeclsToEmit.push_back(DDI->second); 849 DeferredDecls.erase(DDI); 850 } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) { 851 // If this the first reference to a C++ inline function in a class, queue up 852 // the deferred function body for emission. These are not seen as 853 // top-level declarations. 854 if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD)) 855 DeferredDeclsToEmit.push_back(D); 856 // A called constructor which has no definition or declaration need be 857 // synthesized. 858 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) { 859 if (CD->isImplicit()) { 860 assert(CD->isUsed() && "Sema doesn't consider constructor as used."); 861 DeferredDeclsToEmit.push_back(D); 862 } 863 } else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) { 864 if (DD->isImplicit()) { 865 assert(DD->isUsed() && "Sema doesn't consider destructor as used."); 866 DeferredDeclsToEmit.push_back(D); 867 } 868 } else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 869 if (MD->isCopyAssignment() && MD->isImplicit()) { 870 assert(MD->isUsed() && "Sema doesn't consider CopyAssignment as used."); 871 DeferredDeclsToEmit.push_back(D); 872 } 873 } 874 } 875 876 // Make sure the result is of the requested type. 877 if (!IsIncompleteFunction) { 878 assert(F->getType()->getElementType() == Ty); 879 return F; 880 } 881 882 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 883 return llvm::ConstantExpr::getBitCast(F, PTy); 884 } 885 886 /// GetAddrOfFunction - Return the address of the given function. If Ty is 887 /// non-null, then this function will use the specified type if it has to 888 /// create it (this occurs when we see a definition of the function). 889 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 890 const llvm::Type *Ty) { 891 // If there was no specific requested type, just convert it now. 892 if (!Ty) 893 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 894 895 llvm::StringRef MangledName = getMangledName(GD); 896 return GetOrCreateLLVMFunction(MangledName, Ty, GD); 897 } 898 899 /// CreateRuntimeFunction - Create a new runtime function with the specified 900 /// type and name. 901 llvm::Constant * 902 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy, 903 llvm::StringRef Name) { 904 return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl()); 905 } 906 907 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D) { 908 if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType()) 909 return false; 910 if (Context.getLangOptions().CPlusPlus && 911 Context.getBaseElementType(D->getType())->getAs<RecordType>()) { 912 // FIXME: We should do something fancier here! 913 return false; 914 } 915 return true; 916 } 917 918 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 919 /// create and return an llvm GlobalVariable with the specified type. If there 920 /// is something in the module with the specified name, return it potentially 921 /// bitcasted to the right type. 922 /// 923 /// If D is non-null, it specifies a decl that correspond to this. This is used 924 /// to set the attributes on the global when it is first created. 925 llvm::Constant * 926 CodeGenModule::GetOrCreateLLVMGlobal(llvm::StringRef MangledName, 927 const llvm::PointerType *Ty, 928 const VarDecl *D) { 929 // Lookup the entry, lazily creating it if necessary. 930 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 931 if (Entry) { 932 if (WeakRefReferences.count(Entry)) { 933 if (D && !D->hasAttr<WeakAttr>()) 934 Entry->setLinkage(llvm::Function::ExternalLinkage); 935 936 WeakRefReferences.erase(Entry); 937 } 938 939 if (Entry->getType() == Ty) 940 return Entry; 941 942 // Make sure the result is of the correct type. 943 return llvm::ConstantExpr::getBitCast(Entry, Ty); 944 } 945 946 // This is the first use or definition of a mangled name. If there is a 947 // deferred decl with this name, remember that we need to emit it at the end 948 // of the file. 949 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 950 if (DDI != DeferredDecls.end()) { 951 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 952 // list, and remove it from DeferredDecls (since we don't need it anymore). 953 DeferredDeclsToEmit.push_back(DDI->second); 954 DeferredDecls.erase(DDI); 955 } 956 957 llvm::GlobalVariable *GV = 958 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 959 llvm::GlobalValue::ExternalLinkage, 960 0, MangledName, 0, 961 false, Ty->getAddressSpace()); 962 963 // Handle things which are present even on external declarations. 964 if (D) { 965 // FIXME: This code is overly simple and should be merged with other global 966 // handling. 967 GV->setConstant(DeclIsConstantGlobal(Context, D)); 968 969 // FIXME: Merge with other attribute handling code. 970 if (D->getStorageClass() == VarDecl::PrivateExtern) 971 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 972 973 if (D->hasAttr<WeakAttr>() || 974 D->hasAttr<WeakImportAttr>()) 975 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 976 977 GV->setThreadLocal(D->isThreadSpecified()); 978 } 979 980 return GV; 981 } 982 983 984 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 985 /// given global variable. If Ty is non-null and if the global doesn't exist, 986 /// then it will be greated with the specified type instead of whatever the 987 /// normal requested type would be. 988 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 989 const llvm::Type *Ty) { 990 assert(D->hasGlobalStorage() && "Not a global variable"); 991 QualType ASTTy = D->getType(); 992 if (Ty == 0) 993 Ty = getTypes().ConvertTypeForMem(ASTTy); 994 995 const llvm::PointerType *PTy = 996 llvm::PointerType::get(Ty, ASTTy.getAddressSpace()); 997 998 llvm::StringRef MangledName = getMangledName(D); 999 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 1000 } 1001 1002 /// CreateRuntimeVariable - Create a new runtime global variable with the 1003 /// specified type and name. 1004 llvm::Constant * 1005 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty, 1006 llvm::StringRef Name) { 1007 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0); 1008 } 1009 1010 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 1011 assert(!D->getInit() && "Cannot emit definite definitions here!"); 1012 1013 if (MayDeferGeneration(D)) { 1014 // If we have not seen a reference to this variable yet, place it 1015 // into the deferred declarations table to be emitted if needed 1016 // later. 1017 llvm::StringRef MangledName = getMangledName(D); 1018 if (!GetGlobalValue(MangledName)) { 1019 DeferredDecls[MangledName] = D; 1020 return; 1021 } 1022 } 1023 1024 // The tentative definition is the only definition. 1025 EmitGlobalVarDefinition(D); 1026 } 1027 1028 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) { 1029 if (DefinitionRequired) 1030 getVTables().GenerateClassData(getVTableLinkage(Class), Class); 1031 } 1032 1033 llvm::GlobalVariable::LinkageTypes 1034 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) { 1035 if (RD->isInAnonymousNamespace() || !RD->hasLinkage()) 1036 return llvm::GlobalVariable::InternalLinkage; 1037 1038 if (const CXXMethodDecl *KeyFunction 1039 = RD->getASTContext().getKeyFunction(RD)) { 1040 // If this class has a key function, use that to determine the linkage of 1041 // the vtable. 1042 const FunctionDecl *Def = 0; 1043 if (KeyFunction->hasBody(Def)) 1044 KeyFunction = cast<CXXMethodDecl>(Def); 1045 1046 switch (KeyFunction->getTemplateSpecializationKind()) { 1047 case TSK_Undeclared: 1048 case TSK_ExplicitSpecialization: 1049 if (KeyFunction->isInlined()) 1050 return llvm::GlobalVariable::WeakODRLinkage; 1051 1052 return llvm::GlobalVariable::ExternalLinkage; 1053 1054 case TSK_ImplicitInstantiation: 1055 case TSK_ExplicitInstantiationDefinition: 1056 return llvm::GlobalVariable::WeakODRLinkage; 1057 1058 case TSK_ExplicitInstantiationDeclaration: 1059 // FIXME: Use available_externally linkage. However, this currently 1060 // breaks LLVM's build due to undefined symbols. 1061 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1062 return llvm::GlobalVariable::WeakODRLinkage; 1063 } 1064 } 1065 1066 switch (RD->getTemplateSpecializationKind()) { 1067 case TSK_Undeclared: 1068 case TSK_ExplicitSpecialization: 1069 case TSK_ImplicitInstantiation: 1070 case TSK_ExplicitInstantiationDefinition: 1071 return llvm::GlobalVariable::WeakODRLinkage; 1072 1073 case TSK_ExplicitInstantiationDeclaration: 1074 // FIXME: Use available_externally linkage. However, this currently 1075 // breaks LLVM's build due to undefined symbols. 1076 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1077 return llvm::GlobalVariable::WeakODRLinkage; 1078 } 1079 1080 // Silence GCC warning. 1081 return llvm::GlobalVariable::WeakODRLinkage; 1082 } 1083 1084 CharUnits CodeGenModule::GetTargetTypeStoreSize(const llvm::Type *Ty) const { 1085 return CharUnits::fromQuantity( 1086 TheTargetData.getTypeStoreSizeInBits(Ty) / Context.getCharWidth()); 1087 } 1088 1089 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 1090 llvm::Constant *Init = 0; 1091 QualType ASTTy = D->getType(); 1092 bool NonConstInit = false; 1093 1094 const Expr *InitExpr = D->getAnyInitializer(); 1095 1096 if (!InitExpr) { 1097 // This is a tentative definition; tentative definitions are 1098 // implicitly initialized with { 0 }. 1099 // 1100 // Note that tentative definitions are only emitted at the end of 1101 // a translation unit, so they should never have incomplete 1102 // type. In addition, EmitTentativeDefinition makes sure that we 1103 // never attempt to emit a tentative definition if a real one 1104 // exists. A use may still exists, however, so we still may need 1105 // to do a RAUW. 1106 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 1107 Init = EmitNullConstant(D->getType()); 1108 } else { 1109 Init = EmitConstantExpr(InitExpr, D->getType()); 1110 if (!Init) { 1111 QualType T = InitExpr->getType(); 1112 if (D->getType()->isReferenceType()) 1113 T = D->getType(); 1114 1115 if (getLangOptions().CPlusPlus) { 1116 EmitCXXGlobalVarDeclInitFunc(D); 1117 Init = EmitNullConstant(T); 1118 NonConstInit = true; 1119 } else { 1120 ErrorUnsupported(D, "static initializer"); 1121 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 1122 } 1123 } else { 1124 // We don't need an initializer, so remove the entry for the delayed 1125 // initializer position (just in case this entry was delayed). 1126 if (getLangOptions().CPlusPlus) 1127 DelayedCXXInitPosition.erase(D); 1128 } 1129 } 1130 1131 const llvm::Type* InitType = Init->getType(); 1132 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 1133 1134 // Strip off a bitcast if we got one back. 1135 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1136 assert(CE->getOpcode() == llvm::Instruction::BitCast || 1137 // all zero index gep. 1138 CE->getOpcode() == llvm::Instruction::GetElementPtr); 1139 Entry = CE->getOperand(0); 1140 } 1141 1142 // Entry is now either a Function or GlobalVariable. 1143 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 1144 1145 // We have a definition after a declaration with the wrong type. 1146 // We must make a new GlobalVariable* and update everything that used OldGV 1147 // (a declaration or tentative definition) with the new GlobalVariable* 1148 // (which will be a definition). 1149 // 1150 // This happens if there is a prototype for a global (e.g. 1151 // "extern int x[];") and then a definition of a different type (e.g. 1152 // "int x[10];"). This also happens when an initializer has a different type 1153 // from the type of the global (this happens with unions). 1154 if (GV == 0 || 1155 GV->getType()->getElementType() != InitType || 1156 GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) { 1157 1158 // Move the old entry aside so that we'll create a new one. 1159 Entry->setName(llvm::StringRef()); 1160 1161 // Make a new global with the correct type, this is now guaranteed to work. 1162 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 1163 1164 // Replace all uses of the old global with the new global 1165 llvm::Constant *NewPtrForOldDecl = 1166 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 1167 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1168 1169 // Erase the old global, since it is no longer used. 1170 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 1171 } 1172 1173 if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) { 1174 SourceManager &SM = Context.getSourceManager(); 1175 AddAnnotation(EmitAnnotateAttr(GV, AA, 1176 SM.getInstantiationLineNumber(D->getLocation()))); 1177 } 1178 1179 GV->setInitializer(Init); 1180 1181 // If it is safe to mark the global 'constant', do so now. 1182 GV->setConstant(false); 1183 if (!NonConstInit && DeclIsConstantGlobal(Context, D)) 1184 GV->setConstant(true); 1185 1186 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 1187 1188 // Set the llvm linkage type as appropriate. 1189 GVALinkage Linkage = getContext().GetGVALinkageForVariable(D); 1190 if (Linkage == GVA_Internal) 1191 GV->setLinkage(llvm::Function::InternalLinkage); 1192 else if (D->hasAttr<DLLImportAttr>()) 1193 GV->setLinkage(llvm::Function::DLLImportLinkage); 1194 else if (D->hasAttr<DLLExportAttr>()) 1195 GV->setLinkage(llvm::Function::DLLExportLinkage); 1196 else if (D->hasAttr<WeakAttr>()) { 1197 if (GV->isConstant()) 1198 GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage); 1199 else 1200 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 1201 } else if (Linkage == GVA_TemplateInstantiation || 1202 Linkage == GVA_ExplicitTemplateInstantiation) 1203 // FIXME: It seems like we can provide more specific linkage here 1204 // (LinkOnceODR, WeakODR). 1205 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 1206 else if (!getLangOptions().CPlusPlus && !CodeGenOpts.NoCommon && 1207 !D->hasExternalStorage() && !D->getInit() && 1208 !D->getAttr<SectionAttr>() && !D->isThreadSpecified()) { 1209 // Thread local vars aren't considered common linkage. 1210 GV->setLinkage(llvm::GlobalVariable::CommonLinkage); 1211 // common vars aren't constant even if declared const. 1212 GV->setConstant(false); 1213 } else 1214 GV->setLinkage(llvm::GlobalVariable::ExternalLinkage); 1215 1216 SetCommonAttributes(D, GV); 1217 1218 // Emit global variable debug information. 1219 if (CGDebugInfo *DI = getDebugInfo()) { 1220 DI->setLocation(D->getLocation()); 1221 DI->EmitGlobalVariable(GV, D); 1222 } 1223 } 1224 1225 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 1226 /// implement a function with no prototype, e.g. "int foo() {}". If there are 1227 /// existing call uses of the old function in the module, this adjusts them to 1228 /// call the new function directly. 1229 /// 1230 /// This is not just a cleanup: the always_inline pass requires direct calls to 1231 /// functions to be able to inline them. If there is a bitcast in the way, it 1232 /// won't inline them. Instcombine normally deletes these calls, but it isn't 1233 /// run at -O0. 1234 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1235 llvm::Function *NewFn) { 1236 // If we're redefining a global as a function, don't transform it. 1237 llvm::Function *OldFn = dyn_cast<llvm::Function>(Old); 1238 if (OldFn == 0) return; 1239 1240 const llvm::Type *NewRetTy = NewFn->getReturnType(); 1241 llvm::SmallVector<llvm::Value*, 4> ArgList; 1242 1243 for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end(); 1244 UI != E; ) { 1245 // TODO: Do invokes ever occur in C code? If so, we should handle them too. 1246 llvm::Value::use_iterator I = UI++; // Increment before the CI is erased. 1247 llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I); 1248 if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I) 1249 llvm::CallSite CS(CI); 1250 if (!CI || !CS.isCallee(I)) continue; 1251 1252 // If the return types don't match exactly, and if the call isn't dead, then 1253 // we can't transform this call. 1254 if (CI->getType() != NewRetTy && !CI->use_empty()) 1255 continue; 1256 1257 // If the function was passed too few arguments, don't transform. If extra 1258 // arguments were passed, we silently drop them. If any of the types 1259 // mismatch, we don't transform. 1260 unsigned ArgNo = 0; 1261 bool DontTransform = false; 1262 for (llvm::Function::arg_iterator AI = NewFn->arg_begin(), 1263 E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) { 1264 if (CS.arg_size() == ArgNo || 1265 CS.getArgument(ArgNo)->getType() != AI->getType()) { 1266 DontTransform = true; 1267 break; 1268 } 1269 } 1270 if (DontTransform) 1271 continue; 1272 1273 // Okay, we can transform this. Create the new call instruction and copy 1274 // over the required information. 1275 ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo); 1276 llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(), 1277 ArgList.end(), "", CI); 1278 ArgList.clear(); 1279 if (!NewCall->getType()->isVoidTy()) 1280 NewCall->takeName(CI); 1281 NewCall->setAttributes(CI->getAttributes()); 1282 NewCall->setCallingConv(CI->getCallingConv()); 1283 1284 // Finally, remove the old call, replacing any uses with the new one. 1285 if (!CI->use_empty()) 1286 CI->replaceAllUsesWith(NewCall); 1287 1288 // Copy debug location attached to CI. 1289 if (!CI->getDebugLoc().isUnknown()) 1290 NewCall->setDebugLoc(CI->getDebugLoc()); 1291 CI->eraseFromParent(); 1292 } 1293 } 1294 1295 1296 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { 1297 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 1298 const llvm::FunctionType *Ty = getTypes().GetFunctionType(GD); 1299 getMangleContext().mangleInitDiscriminator(); 1300 // Get or create the prototype for the function. 1301 llvm::Constant *Entry = GetAddrOfFunction(GD, Ty); 1302 1303 // Strip off a bitcast if we got one back. 1304 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1305 assert(CE->getOpcode() == llvm::Instruction::BitCast); 1306 Entry = CE->getOperand(0); 1307 } 1308 1309 1310 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 1311 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 1312 1313 // If the types mismatch then we have to rewrite the definition. 1314 assert(OldFn->isDeclaration() && 1315 "Shouldn't replace non-declaration"); 1316 1317 // F is the Function* for the one with the wrong type, we must make a new 1318 // Function* and update everything that used F (a declaration) with the new 1319 // Function* (which will be a definition). 1320 // 1321 // This happens if there is a prototype for a function 1322 // (e.g. "int f()") and then a definition of a different type 1323 // (e.g. "int f(int x)"). Move the old function aside so that it 1324 // doesn't interfere with GetAddrOfFunction. 1325 OldFn->setName(llvm::StringRef()); 1326 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 1327 1328 // If this is an implementation of a function without a prototype, try to 1329 // replace any existing uses of the function (which may be calls) with uses 1330 // of the new function 1331 if (D->getType()->isFunctionNoProtoType()) { 1332 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 1333 OldFn->removeDeadConstantUsers(); 1334 } 1335 1336 // Replace uses of F with the Function we will endow with a body. 1337 if (!Entry->use_empty()) { 1338 llvm::Constant *NewPtrForOldDecl = 1339 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 1340 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1341 } 1342 1343 // Ok, delete the old function now, which is dead. 1344 OldFn->eraseFromParent(); 1345 1346 Entry = NewFn; 1347 } 1348 1349 llvm::Function *Fn = cast<llvm::Function>(Entry); 1350 setFunctionLinkage(D, Fn); 1351 1352 CodeGenFunction(*this).GenerateCode(D, Fn); 1353 1354 SetFunctionDefinitionAttributes(D, Fn); 1355 SetLLVMFunctionAttributesForDefinition(D, Fn); 1356 1357 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 1358 AddGlobalCtor(Fn, CA->getPriority()); 1359 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 1360 AddGlobalDtor(Fn, DA->getPriority()); 1361 } 1362 1363 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 1364 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 1365 const AliasAttr *AA = D->getAttr<AliasAttr>(); 1366 assert(AA && "Not an alias?"); 1367 1368 llvm::StringRef MangledName = getMangledName(GD); 1369 1370 // If there is a definition in the module, then it wins over the alias. 1371 // This is dubious, but allow it to be safe. Just ignore the alias. 1372 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1373 if (Entry && !Entry->isDeclaration()) 1374 return; 1375 1376 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 1377 1378 // Create a reference to the named value. This ensures that it is emitted 1379 // if a deferred decl. 1380 llvm::Constant *Aliasee; 1381 if (isa<llvm::FunctionType>(DeclTy)) 1382 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl()); 1383 else 1384 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1385 llvm::PointerType::getUnqual(DeclTy), 0); 1386 1387 // Create the new alias itself, but don't set a name yet. 1388 llvm::GlobalValue *GA = 1389 new llvm::GlobalAlias(Aliasee->getType(), 1390 llvm::Function::ExternalLinkage, 1391 "", Aliasee, &getModule()); 1392 1393 if (Entry) { 1394 assert(Entry->isDeclaration()); 1395 1396 // If there is a declaration in the module, then we had an extern followed 1397 // by the alias, as in: 1398 // extern int test6(); 1399 // ... 1400 // int test6() __attribute__((alias("test7"))); 1401 // 1402 // Remove it and replace uses of it with the alias. 1403 GA->takeName(Entry); 1404 1405 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 1406 Entry->getType())); 1407 Entry->eraseFromParent(); 1408 } else { 1409 GA->setName(MangledName); 1410 } 1411 1412 // Set attributes which are particular to an alias; this is a 1413 // specialization of the attributes which may be set on a global 1414 // variable/function. 1415 if (D->hasAttr<DLLExportAttr>()) { 1416 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1417 // The dllexport attribute is ignored for undefined symbols. 1418 if (FD->hasBody()) 1419 GA->setLinkage(llvm::Function::DLLExportLinkage); 1420 } else { 1421 GA->setLinkage(llvm::Function::DLLExportLinkage); 1422 } 1423 } else if (D->hasAttr<WeakAttr>() || 1424 D->hasAttr<WeakRefAttr>() || 1425 D->hasAttr<WeakImportAttr>()) { 1426 GA->setLinkage(llvm::Function::WeakAnyLinkage); 1427 } 1428 1429 SetCommonAttributes(D, GA); 1430 } 1431 1432 /// getBuiltinLibFunction - Given a builtin id for a function like 1433 /// "__builtin_fabsf", return a Function* for "fabsf". 1434 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD, 1435 unsigned BuiltinID) { 1436 assert((Context.BuiltinInfo.isLibFunction(BuiltinID) || 1437 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) && 1438 "isn't a lib fn"); 1439 1440 // Get the name, skip over the __builtin_ prefix (if necessary). 1441 const char *Name = Context.BuiltinInfo.GetName(BuiltinID); 1442 if (Context.BuiltinInfo.isLibFunction(BuiltinID)) 1443 Name += 10; 1444 1445 const llvm::FunctionType *Ty = 1446 cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType())); 1447 1448 return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD)); 1449 } 1450 1451 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys, 1452 unsigned NumTys) { 1453 return llvm::Intrinsic::getDeclaration(&getModule(), 1454 (llvm::Intrinsic::ID)IID, Tys, NumTys); 1455 } 1456 1457 1458 llvm::Function *CodeGenModule::getMemCpyFn(const llvm::Type *DestType, 1459 const llvm::Type *SrcType, 1460 const llvm::Type *SizeType) { 1461 const llvm::Type *ArgTypes[3] = {DestType, SrcType, SizeType }; 1462 return getIntrinsic(llvm::Intrinsic::memcpy, ArgTypes, 3); 1463 } 1464 1465 llvm::Function *CodeGenModule::getMemMoveFn(const llvm::Type *DestType, 1466 const llvm::Type *SrcType, 1467 const llvm::Type *SizeType) { 1468 const llvm::Type *ArgTypes[3] = {DestType, SrcType, SizeType }; 1469 return getIntrinsic(llvm::Intrinsic::memmove, ArgTypes, 3); 1470 } 1471 1472 llvm::Function *CodeGenModule::getMemSetFn(const llvm::Type *DestType, 1473 const llvm::Type *SizeType) { 1474 const llvm::Type *ArgTypes[2] = { DestType, SizeType }; 1475 return getIntrinsic(llvm::Intrinsic::memset, ArgTypes, 2); 1476 } 1477 1478 static llvm::StringMapEntry<llvm::Constant*> & 1479 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1480 const StringLiteral *Literal, 1481 bool TargetIsLSB, 1482 bool &IsUTF16, 1483 unsigned &StringLength) { 1484 llvm::StringRef String = Literal->getString(); 1485 unsigned NumBytes = String.size(); 1486 1487 // Check for simple case. 1488 if (!Literal->containsNonAsciiOrNull()) { 1489 StringLength = NumBytes; 1490 return Map.GetOrCreateValue(String); 1491 } 1492 1493 // Otherwise, convert the UTF8 literals into a byte string. 1494 llvm::SmallVector<UTF16, 128> ToBuf(NumBytes); 1495 const UTF8 *FromPtr = (UTF8 *)String.data(); 1496 UTF16 *ToPtr = &ToBuf[0]; 1497 1498 ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 1499 &ToPtr, ToPtr + NumBytes, 1500 strictConversion); 1501 1502 // Check for conversion failure. 1503 if (Result != conversionOK) { 1504 // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove 1505 // this duplicate code. 1506 assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed"); 1507 StringLength = NumBytes; 1508 return Map.GetOrCreateValue(String); 1509 } 1510 1511 // ConvertUTF8toUTF16 returns the length in ToPtr. 1512 StringLength = ToPtr - &ToBuf[0]; 1513 1514 // Render the UTF-16 string into a byte array and convert to the target byte 1515 // order. 1516 // 1517 // FIXME: This isn't something we should need to do here. 1518 llvm::SmallString<128> AsBytes; 1519 AsBytes.reserve(StringLength * 2); 1520 for (unsigned i = 0; i != StringLength; ++i) { 1521 unsigned short Val = ToBuf[i]; 1522 if (TargetIsLSB) { 1523 AsBytes.push_back(Val & 0xFF); 1524 AsBytes.push_back(Val >> 8); 1525 } else { 1526 AsBytes.push_back(Val >> 8); 1527 AsBytes.push_back(Val & 0xFF); 1528 } 1529 } 1530 // Append one extra null character, the second is automatically added by our 1531 // caller. 1532 AsBytes.push_back(0); 1533 1534 IsUTF16 = true; 1535 return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size())); 1536 } 1537 1538 llvm::Constant * 1539 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 1540 unsigned StringLength = 0; 1541 bool isUTF16 = false; 1542 llvm::StringMapEntry<llvm::Constant*> &Entry = 1543 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1544 getTargetData().isLittleEndian(), 1545 isUTF16, StringLength); 1546 1547 if (llvm::Constant *C = Entry.getValue()) 1548 return C; 1549 1550 llvm::Constant *Zero = 1551 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1552 llvm::Constant *Zeros[] = { Zero, Zero }; 1553 1554 // If we don't already have it, get __CFConstantStringClassReference. 1555 if (!CFConstantStringClassRef) { 1556 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1557 Ty = llvm::ArrayType::get(Ty, 0); 1558 llvm::Constant *GV = CreateRuntimeVariable(Ty, 1559 "__CFConstantStringClassReference"); 1560 // Decay array -> ptr 1561 CFConstantStringClassRef = 1562 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1563 } 1564 1565 QualType CFTy = getContext().getCFConstantStringType(); 1566 1567 const llvm::StructType *STy = 1568 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 1569 1570 std::vector<llvm::Constant*> Fields(4); 1571 1572 // Class pointer. 1573 Fields[0] = CFConstantStringClassRef; 1574 1575 // Flags. 1576 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1577 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 1578 llvm::ConstantInt::get(Ty, 0x07C8); 1579 1580 // String pointer. 1581 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1582 1583 llvm::GlobalValue::LinkageTypes Linkage; 1584 bool isConstant; 1585 if (isUTF16) { 1586 // FIXME: why do utf strings get "_" labels instead of "L" labels? 1587 Linkage = llvm::GlobalValue::InternalLinkage; 1588 // Note: -fwritable-strings doesn't make unicode CFStrings writable, but 1589 // does make plain ascii ones writable. 1590 isConstant = true; 1591 } else { 1592 Linkage = llvm::GlobalValue::PrivateLinkage; 1593 isConstant = !Features.WritableStrings; 1594 } 1595 1596 llvm::GlobalVariable *GV = 1597 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 1598 ".str"); 1599 if (isUTF16) { 1600 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 1601 GV->setAlignment(Align.getQuantity()); 1602 } 1603 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1604 1605 // String length. 1606 Ty = getTypes().ConvertType(getContext().LongTy); 1607 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 1608 1609 // The struct. 1610 C = llvm::ConstantStruct::get(STy, Fields); 1611 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1612 llvm::GlobalVariable::PrivateLinkage, C, 1613 "_unnamed_cfstring_"); 1614 if (const char *Sect = getContext().Target.getCFStringSection()) 1615 GV->setSection(Sect); 1616 Entry.setValue(GV); 1617 1618 return GV; 1619 } 1620 1621 llvm::Constant * 1622 CodeGenModule::GetAddrOfConstantNSString(const StringLiteral *Literal) { 1623 unsigned StringLength = 0; 1624 bool isUTF16 = false; 1625 llvm::StringMapEntry<llvm::Constant*> &Entry = 1626 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1627 getTargetData().isLittleEndian(), 1628 isUTF16, StringLength); 1629 1630 if (llvm::Constant *C = Entry.getValue()) 1631 return C; 1632 1633 llvm::Constant *Zero = 1634 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1635 llvm::Constant *Zeros[] = { Zero, Zero }; 1636 1637 // If we don't already have it, get _NSConstantStringClassReference. 1638 if (!NSConstantStringClassRef) { 1639 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1640 Ty = llvm::ArrayType::get(Ty, 0); 1641 llvm::Constant *GV = CreateRuntimeVariable(Ty, 1642 Features.ObjCNonFragileABI ? 1643 "OBJC_CLASS_$_NSConstantString" : 1644 "_NSConstantStringClassReference"); 1645 // Decay array -> ptr 1646 NSConstantStringClassRef = 1647 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1648 } 1649 1650 QualType NSTy = getContext().getNSConstantStringType(); 1651 1652 const llvm::StructType *STy = 1653 cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 1654 1655 std::vector<llvm::Constant*> Fields(3); 1656 1657 // Class pointer. 1658 Fields[0] = NSConstantStringClassRef; 1659 1660 // String pointer. 1661 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1662 1663 llvm::GlobalValue::LinkageTypes Linkage; 1664 bool isConstant; 1665 if (isUTF16) { 1666 // FIXME: why do utf strings get "_" labels instead of "L" labels? 1667 Linkage = llvm::GlobalValue::InternalLinkage; 1668 // Note: -fwritable-strings doesn't make unicode NSStrings writable, but 1669 // does make plain ascii ones writable. 1670 isConstant = true; 1671 } else { 1672 Linkage = llvm::GlobalValue::PrivateLinkage; 1673 isConstant = !Features.WritableStrings; 1674 } 1675 1676 llvm::GlobalVariable *GV = 1677 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 1678 ".str"); 1679 if (isUTF16) { 1680 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 1681 GV->setAlignment(Align.getQuantity()); 1682 } 1683 Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1684 1685 // String length. 1686 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1687 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 1688 1689 // The struct. 1690 C = llvm::ConstantStruct::get(STy, Fields); 1691 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1692 llvm::GlobalVariable::PrivateLinkage, C, 1693 "_unnamed_nsstring_"); 1694 // FIXME. Fix section. 1695 if (const char *Sect = 1696 Features.ObjCNonFragileABI 1697 ? getContext().Target.getNSStringNonFragileABISection() 1698 : getContext().Target.getNSStringSection()) 1699 GV->setSection(Sect); 1700 Entry.setValue(GV); 1701 1702 return GV; 1703 } 1704 1705 /// GetStringForStringLiteral - Return the appropriate bytes for a 1706 /// string literal, properly padded to match the literal type. 1707 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) { 1708 const ConstantArrayType *CAT = 1709 getContext().getAsConstantArrayType(E->getType()); 1710 assert(CAT && "String isn't pointer or array!"); 1711 1712 // Resize the string to the right size. 1713 uint64_t RealLen = CAT->getSize().getZExtValue(); 1714 1715 if (E->isWide()) 1716 RealLen *= getContext().Target.getWCharWidth()/8; 1717 1718 std::string Str = E->getString().str(); 1719 Str.resize(RealLen, '\0'); 1720 1721 return Str; 1722 } 1723 1724 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 1725 /// constant array for the given string literal. 1726 llvm::Constant * 1727 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 1728 // FIXME: This can be more efficient. 1729 // FIXME: We shouldn't need to bitcast the constant in the wide string case. 1730 llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S)); 1731 if (S->isWide()) { 1732 llvm::Type *DestTy = 1733 llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType())); 1734 C = llvm::ConstantExpr::getBitCast(C, DestTy); 1735 } 1736 return C; 1737 } 1738 1739 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 1740 /// array for the given ObjCEncodeExpr node. 1741 llvm::Constant * 1742 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 1743 std::string Str; 1744 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 1745 1746 return GetAddrOfConstantCString(Str); 1747 } 1748 1749 1750 /// GenerateWritableString -- Creates storage for a string literal. 1751 static llvm::Constant *GenerateStringLiteral(const std::string &str, 1752 bool constant, 1753 CodeGenModule &CGM, 1754 const char *GlobalName) { 1755 // Create Constant for this string literal. Don't add a '\0'. 1756 llvm::Constant *C = 1757 llvm::ConstantArray::get(CGM.getLLVMContext(), str, false); 1758 1759 // Create a global variable for this string 1760 return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant, 1761 llvm::GlobalValue::PrivateLinkage, 1762 C, GlobalName); 1763 } 1764 1765 /// GetAddrOfConstantString - Returns a pointer to a character array 1766 /// containing the literal. This contents are exactly that of the 1767 /// given string, i.e. it will not be null terminated automatically; 1768 /// see GetAddrOfConstantCString. Note that whether the result is 1769 /// actually a pointer to an LLVM constant depends on 1770 /// Feature.WriteableStrings. 1771 /// 1772 /// The result has pointer to array type. 1773 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str, 1774 const char *GlobalName) { 1775 bool IsConstant = !Features.WritableStrings; 1776 1777 // Get the default prefix if a name wasn't specified. 1778 if (!GlobalName) 1779 GlobalName = ".str"; 1780 1781 // Don't share any string literals if strings aren't constant. 1782 if (!IsConstant) 1783 return GenerateStringLiteral(str, false, *this, GlobalName); 1784 1785 llvm::StringMapEntry<llvm::Constant *> &Entry = 1786 ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 1787 1788 if (Entry.getValue()) 1789 return Entry.getValue(); 1790 1791 // Create a global variable for this. 1792 llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName); 1793 Entry.setValue(C); 1794 return C; 1795 } 1796 1797 /// GetAddrOfConstantCString - Returns a pointer to a character 1798 /// array containing the literal and a terminating '\-' 1799 /// character. The result has pointer to array type. 1800 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str, 1801 const char *GlobalName){ 1802 return GetAddrOfConstantString(str + '\0', GlobalName); 1803 } 1804 1805 /// EmitObjCPropertyImplementations - Emit information for synthesized 1806 /// properties for an implementation. 1807 void CodeGenModule::EmitObjCPropertyImplementations(const 1808 ObjCImplementationDecl *D) { 1809 for (ObjCImplementationDecl::propimpl_iterator 1810 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { 1811 ObjCPropertyImplDecl *PID = *i; 1812 1813 // Dynamic is just for type-checking. 1814 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 1815 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1816 1817 // Determine which methods need to be implemented, some may have 1818 // been overridden. Note that ::isSynthesized is not the method 1819 // we want, that just indicates if the decl came from a 1820 // property. What we want to know is if the method is defined in 1821 // this implementation. 1822 if (!D->getInstanceMethod(PD->getGetterName())) 1823 CodeGenFunction(*this).GenerateObjCGetter( 1824 const_cast<ObjCImplementationDecl *>(D), PID); 1825 if (!PD->isReadOnly() && 1826 !D->getInstanceMethod(PD->getSetterName())) 1827 CodeGenFunction(*this).GenerateObjCSetter( 1828 const_cast<ObjCImplementationDecl *>(D), PID); 1829 } 1830 } 1831 } 1832 1833 /// EmitObjCIvarInitializations - Emit information for ivar initialization 1834 /// for an implementation. 1835 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 1836 if (!Features.NeXTRuntime || D->getNumIvarInitializers() == 0) 1837 return; 1838 DeclContext* DC = const_cast<DeclContext*>(dyn_cast<DeclContext>(D)); 1839 assert(DC && "EmitObjCIvarInitializations - null DeclContext"); 1840 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 1841 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 1842 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(getContext(), 1843 D->getLocation(), 1844 D->getLocation(), cxxSelector, 1845 getContext().VoidTy, 0, 1846 DC, true, false, true, false, 1847 ObjCMethodDecl::Required); 1848 D->addInstanceMethod(DTORMethod); 1849 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 1850 1851 II = &getContext().Idents.get(".cxx_construct"); 1852 cxxSelector = getContext().Selectors.getSelector(0, &II); 1853 // The constructor returns 'self'. 1854 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 1855 D->getLocation(), 1856 D->getLocation(), cxxSelector, 1857 getContext().getObjCIdType(), 0, 1858 DC, true, false, true, false, 1859 ObjCMethodDecl::Required); 1860 D->addInstanceMethod(CTORMethod); 1861 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 1862 1863 1864 } 1865 1866 /// EmitNamespace - Emit all declarations in a namespace. 1867 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 1868 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); 1869 I != E; ++I) 1870 EmitTopLevelDecl(*I); 1871 } 1872 1873 // EmitLinkageSpec - Emit all declarations in a linkage spec. 1874 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 1875 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 1876 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 1877 ErrorUnsupported(LSD, "linkage spec"); 1878 return; 1879 } 1880 1881 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); 1882 I != E; ++I) 1883 EmitTopLevelDecl(*I); 1884 } 1885 1886 /// EmitTopLevelDecl - Emit code for a single top level declaration. 1887 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 1888 // If an error has occurred, stop code generation, but continue 1889 // parsing and semantic analysis (to ensure all warnings and errors 1890 // are emitted). 1891 if (Diags.hasErrorOccurred()) 1892 return; 1893 1894 // Ignore dependent declarations. 1895 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 1896 return; 1897 1898 switch (D->getKind()) { 1899 case Decl::CXXConversion: 1900 case Decl::CXXMethod: 1901 case Decl::Function: 1902 // Skip function templates 1903 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 1904 return; 1905 1906 EmitGlobal(cast<FunctionDecl>(D)); 1907 break; 1908 1909 case Decl::Var: 1910 EmitGlobal(cast<VarDecl>(D)); 1911 break; 1912 1913 // C++ Decls 1914 case Decl::Namespace: 1915 EmitNamespace(cast<NamespaceDecl>(D)); 1916 break; 1917 // No code generation needed. 1918 case Decl::UsingShadow: 1919 case Decl::Using: 1920 case Decl::UsingDirective: 1921 case Decl::ClassTemplate: 1922 case Decl::FunctionTemplate: 1923 case Decl::NamespaceAlias: 1924 break; 1925 case Decl::CXXConstructor: 1926 // Skip function templates 1927 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 1928 return; 1929 1930 EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 1931 break; 1932 case Decl::CXXDestructor: 1933 EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 1934 break; 1935 1936 case Decl::StaticAssert: 1937 // Nothing to do. 1938 break; 1939 1940 // Objective-C Decls 1941 1942 // Forward declarations, no (immediate) code generation. 1943 case Decl::ObjCClass: 1944 case Decl::ObjCForwardProtocol: 1945 case Decl::ObjCCategory: 1946 case Decl::ObjCInterface: 1947 break; 1948 1949 case Decl::ObjCProtocol: 1950 Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D)); 1951 break; 1952 1953 case Decl::ObjCCategoryImpl: 1954 // Categories have properties but don't support synthesize so we 1955 // can ignore them here. 1956 Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 1957 break; 1958 1959 case Decl::ObjCImplementation: { 1960 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 1961 EmitObjCPropertyImplementations(OMD); 1962 EmitObjCIvarInitializations(OMD); 1963 Runtime->GenerateClass(OMD); 1964 break; 1965 } 1966 case Decl::ObjCMethod: { 1967 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 1968 // If this is not a prototype, emit the body. 1969 if (OMD->getBody()) 1970 CodeGenFunction(*this).GenerateObjCMethod(OMD); 1971 break; 1972 } 1973 case Decl::ObjCCompatibleAlias: 1974 // compatibility-alias is a directive and has no code gen. 1975 break; 1976 1977 case Decl::LinkageSpec: 1978 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 1979 break; 1980 1981 case Decl::FileScopeAsm: { 1982 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 1983 llvm::StringRef AsmString = AD->getAsmString()->getString(); 1984 1985 const std::string &S = getModule().getModuleInlineAsm(); 1986 if (S.empty()) 1987 getModule().setModuleInlineAsm(AsmString); 1988 else 1989 getModule().setModuleInlineAsm(S + '\n' + AsmString.str()); 1990 break; 1991 } 1992 1993 default: 1994 // Make sure we handled everything we should, every other kind is a 1995 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 1996 // function. Need to recode Decl::Kind to do that easily. 1997 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 1998 } 1999 } 2000 2001 /// Turns the given pointer into a constant. 2002 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 2003 const void *Ptr) { 2004 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 2005 const llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 2006 return llvm::ConstantInt::get(i64, PtrInt); 2007 } 2008 2009 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 2010 llvm::NamedMDNode *&GlobalMetadata, 2011 GlobalDecl D, 2012 llvm::GlobalValue *Addr) { 2013 if (!GlobalMetadata) 2014 GlobalMetadata = 2015 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 2016 2017 // TODO: should we report variant information for ctors/dtors? 2018 llvm::Value *Ops[] = { 2019 Addr, 2020 GetPointerConstant(CGM.getLLVMContext(), D.getDecl()) 2021 }; 2022 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops, 2)); 2023 } 2024 2025 /// Emits metadata nodes associating all the global values in the 2026 /// current module with the Decls they came from. This is useful for 2027 /// projects using IR gen as a subroutine. 2028 /// 2029 /// Since there's currently no way to associate an MDNode directly 2030 /// with an llvm::GlobalValue, we create a global named metadata 2031 /// with the name 'clang.global.decl.ptrs'. 2032 void CodeGenModule::EmitDeclMetadata() { 2033 llvm::NamedMDNode *GlobalMetadata = 0; 2034 2035 // StaticLocalDeclMap 2036 for (llvm::DenseMap<GlobalDecl,llvm::StringRef>::iterator 2037 I = MangledDeclNames.begin(), E = MangledDeclNames.end(); 2038 I != E; ++I) { 2039 llvm::GlobalValue *Addr = getModule().getNamedValue(I->second); 2040 EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr); 2041 } 2042 } 2043 2044 /// Emits metadata nodes for all the local variables in the current 2045 /// function. 2046 void CodeGenFunction::EmitDeclMetadata() { 2047 if (LocalDeclMap.empty()) return; 2048 2049 llvm::LLVMContext &Context = getLLVMContext(); 2050 2051 // Find the unique metadata ID for this name. 2052 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 2053 2054 llvm::NamedMDNode *GlobalMetadata = 0; 2055 2056 for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator 2057 I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) { 2058 const Decl *D = I->first; 2059 llvm::Value *Addr = I->second; 2060 2061 if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 2062 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 2063 Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, &DAddr, 1)); 2064 } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 2065 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 2066 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 2067 } 2068 } 2069 } 2070 2071 ///@name Custom Runtime Function Interfaces 2072 ///@{ 2073 // 2074 // FIXME: These can be eliminated once we can have clients just get the required 2075 // AST nodes from the builtin tables. 2076 2077 llvm::Constant *CodeGenModule::getBlockObjectDispose() { 2078 if (BlockObjectDispose) 2079 return BlockObjectDispose; 2080 2081 // If we saw an explicit decl, use that. 2082 if (BlockObjectDisposeDecl) { 2083 return BlockObjectDispose = GetAddrOfFunction( 2084 BlockObjectDisposeDecl, 2085 getTypes().GetFunctionType(BlockObjectDisposeDecl)); 2086 } 2087 2088 // Otherwise construct the function by hand. 2089 const llvm::FunctionType *FTy; 2090 std::vector<const llvm::Type*> ArgTys; 2091 const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext); 2092 ArgTys.push_back(PtrToInt8Ty); 2093 ArgTys.push_back(llvm::Type::getInt32Ty(VMContext)); 2094 FTy = llvm::FunctionType::get(ResultType, ArgTys, false); 2095 return BlockObjectDispose = 2096 CreateRuntimeFunction(FTy, "_Block_object_dispose"); 2097 } 2098 2099 llvm::Constant *CodeGenModule::getBlockObjectAssign() { 2100 if (BlockObjectAssign) 2101 return BlockObjectAssign; 2102 2103 // If we saw an explicit decl, use that. 2104 if (BlockObjectAssignDecl) { 2105 return BlockObjectAssign = GetAddrOfFunction( 2106 BlockObjectAssignDecl, 2107 getTypes().GetFunctionType(BlockObjectAssignDecl)); 2108 } 2109 2110 // Otherwise construct the function by hand. 2111 const llvm::FunctionType *FTy; 2112 std::vector<const llvm::Type*> ArgTys; 2113 const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext); 2114 ArgTys.push_back(PtrToInt8Ty); 2115 ArgTys.push_back(PtrToInt8Ty); 2116 ArgTys.push_back(llvm::Type::getInt32Ty(VMContext)); 2117 FTy = llvm::FunctionType::get(ResultType, ArgTys, false); 2118 return BlockObjectAssign = 2119 CreateRuntimeFunction(FTy, "_Block_object_assign"); 2120 } 2121 2122 llvm::Constant *CodeGenModule::getNSConcreteGlobalBlock() { 2123 if (NSConcreteGlobalBlock) 2124 return NSConcreteGlobalBlock; 2125 2126 // If we saw an explicit decl, use that. 2127 if (NSConcreteGlobalBlockDecl) { 2128 return NSConcreteGlobalBlock = GetAddrOfGlobalVar( 2129 NSConcreteGlobalBlockDecl, 2130 getTypes().ConvertType(NSConcreteGlobalBlockDecl->getType())); 2131 } 2132 2133 // Otherwise construct the variable by hand. 2134 return NSConcreteGlobalBlock = CreateRuntimeVariable( 2135 PtrToInt8Ty, "_NSConcreteGlobalBlock"); 2136 } 2137 2138 llvm::Constant *CodeGenModule::getNSConcreteStackBlock() { 2139 if (NSConcreteStackBlock) 2140 return NSConcreteStackBlock; 2141 2142 // If we saw an explicit decl, use that. 2143 if (NSConcreteStackBlockDecl) { 2144 return NSConcreteStackBlock = GetAddrOfGlobalVar( 2145 NSConcreteStackBlockDecl, 2146 getTypes().ConvertType(NSConcreteStackBlockDecl->getType())); 2147 } 2148 2149 // Otherwise construct the variable by hand. 2150 return NSConcreteStackBlock = CreateRuntimeVariable( 2151 PtrToInt8Ty, "_NSConcreteStackBlock"); 2152 } 2153 2154 ///@} 2155