xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 6bcb07ad7152237597f2bd1cde4d6a3075e8ac0c)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CGCall.h"
18 #include "CGObjCRuntime.h"
19 #include "Mangle.h"
20 #include "TargetInfo.h"
21 #include "clang/Frontend/CodeGenOptions.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/CharUnits.h"
24 #include "clang/AST/DeclObjC.h"
25 #include "clang/AST/DeclCXX.h"
26 #include "clang/AST/DeclTemplate.h"
27 #include "clang/AST/RecordLayout.h"
28 #include "clang/Basic/Builtins.h"
29 #include "clang/Basic/Diagnostic.h"
30 #include "clang/Basic/SourceManager.h"
31 #include "clang/Basic/TargetInfo.h"
32 #include "clang/Basic/ConvertUTF.h"
33 #include "llvm/CallingConv.h"
34 #include "llvm/Module.h"
35 #include "llvm/Intrinsics.h"
36 #include "llvm/LLVMContext.h"
37 #include "llvm/ADT/Triple.h"
38 #include "llvm/Target/TargetData.h"
39 #include "llvm/Support/CallSite.h"
40 #include "llvm/Support/ErrorHandling.h"
41 using namespace clang;
42 using namespace CodeGen;
43 
44 
45 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
46                              llvm::Module &M, const llvm::TargetData &TD,
47                              Diagnostic &diags)
48   : BlockModule(C, M, TD, Types, *this), Context(C),
49     Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M),
50     TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags),
51     Types(C, M, TD, getTargetCodeGenInfo().getABIInfo()),
52     VTables(*this), Runtime(0), ABI(0),
53     CFConstantStringClassRef(0), NSConstantStringClassRef(0),
54     VMContext(M.getContext()),
55     NSConcreteGlobalBlockDecl(0), NSConcreteStackBlockDecl(0),
56     NSConcreteGlobalBlock(0), NSConcreteStackBlock(0),
57     BlockObjectAssignDecl(0), BlockObjectDisposeDecl(0),
58     BlockObjectAssign(0), BlockObjectDispose(0){
59 
60   if (!Features.ObjC1)
61     Runtime = 0;
62   else if (!Features.NeXTRuntime)
63     Runtime = CreateGNUObjCRuntime(*this);
64   else if (Features.ObjCNonFragileABI)
65     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
66   else
67     Runtime = CreateMacObjCRuntime(*this);
68 
69   if (!Features.CPlusPlus)
70     ABI = 0;
71   else createCXXABI();
72 
73   // If debug info generation is enabled, create the CGDebugInfo object.
74   DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(*this) : 0;
75 }
76 
77 CodeGenModule::~CodeGenModule() {
78   delete Runtime;
79   delete ABI;
80   delete DebugInfo;
81 }
82 
83 void CodeGenModule::createObjCRuntime() {
84   if (!Features.NeXTRuntime)
85     Runtime = CreateGNUObjCRuntime(*this);
86   else if (Features.ObjCNonFragileABI)
87     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
88   else
89     Runtime = CreateMacObjCRuntime(*this);
90 }
91 
92 void CodeGenModule::createCXXABI() {
93   switch (Context.Target.getCXXABI()) {
94   default:
95     ABI = CreateItaniumCXXABI(*this);
96     break;
97   case CXXABI_Microsoft:
98     ABI = CreateMicrosoftCXXABI(*this);
99   }
100 }
101 
102 void CodeGenModule::Release() {
103   EmitDeferred();
104   EmitCXXGlobalInitFunc();
105   EmitCXXGlobalDtorFunc();
106   if (Runtime)
107     if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
108       AddGlobalCtor(ObjCInitFunction);
109   EmitCtorList(GlobalCtors, "llvm.global_ctors");
110   EmitCtorList(GlobalDtors, "llvm.global_dtors");
111   EmitAnnotations();
112   EmitLLVMUsed();
113 
114   if (getCodeGenOpts().EmitDeclMetadata)
115     EmitDeclMetadata();
116 }
117 
118 bool CodeGenModule::isTargetDarwin() const {
119   return getContext().Target.getTriple().getOS() == llvm::Triple::Darwin;
120 }
121 
122 /// ErrorUnsupported - Print out an error that codegen doesn't support the
123 /// specified stmt yet.
124 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
125                                      bool OmitOnError) {
126   if (OmitOnError && getDiags().hasErrorOccurred())
127     return;
128   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
129                                                "cannot compile this %0 yet");
130   std::string Msg = Type;
131   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
132     << Msg << S->getSourceRange();
133 }
134 
135 /// ErrorUnsupported - Print out an error that codegen doesn't support the
136 /// specified decl yet.
137 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
138                                      bool OmitOnError) {
139   if (OmitOnError && getDiags().hasErrorOccurred())
140     return;
141   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
142                                                "cannot compile this %0 yet");
143   std::string Msg = Type;
144   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
145 }
146 
147 LangOptions::VisibilityMode
148 CodeGenModule::getDeclVisibilityMode(const Decl *D) const {
149   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
150     if (VD->getStorageClass() == VarDecl::PrivateExtern)
151       return LangOptions::Hidden;
152 
153   if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) {
154     switch (attr->getVisibility()) {
155     default: assert(0 && "Unknown visibility!");
156     case VisibilityAttr::Default:
157       return LangOptions::Default;
158     case VisibilityAttr::Hidden:
159       return LangOptions::Hidden;
160     case VisibilityAttr::Protected:
161       return LangOptions::Protected;
162     }
163   }
164 
165   if (getLangOptions().CPlusPlus) {
166     // Entities subject to an explicit instantiation declaration get default
167     // visibility.
168     if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
169       if (Function->getTemplateSpecializationKind()
170                                         == TSK_ExplicitInstantiationDeclaration)
171         return LangOptions::Default;
172     } else if (const ClassTemplateSpecializationDecl *ClassSpec
173                               = dyn_cast<ClassTemplateSpecializationDecl>(D)) {
174       if (ClassSpec->getSpecializationKind()
175                                         == TSK_ExplicitInstantiationDeclaration)
176         return LangOptions::Default;
177     } else if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
178       if (Record->getTemplateSpecializationKind()
179                                         == TSK_ExplicitInstantiationDeclaration)
180         return LangOptions::Default;
181     } else if (const VarDecl *Var = dyn_cast<VarDecl>(D)) {
182       if (Var->isStaticDataMember() &&
183           (Var->getTemplateSpecializationKind()
184                                       == TSK_ExplicitInstantiationDeclaration))
185         return LangOptions::Default;
186     }
187 
188     // If -fvisibility-inlines-hidden was provided, then inline C++ member
189     // functions get "hidden" visibility by default.
190     if (getLangOptions().InlineVisibilityHidden)
191       if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
192         if (Method->isInlined())
193           return LangOptions::Hidden;
194   }
195 
196   // If this decl is contained in a class, it should have the same visibility
197   // as the parent class.
198   if (const DeclContext *DC = D->getDeclContext())
199     if (DC->isRecord())
200       return getDeclVisibilityMode(cast<Decl>(DC));
201 
202   return getLangOptions().getVisibilityMode();
203 }
204 
205 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
206                                         const Decl *D) const {
207   // Internal definitions always have default visibility.
208   if (GV->hasLocalLinkage()) {
209     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
210     return;
211   }
212 
213   switch (getDeclVisibilityMode(D)) {
214   default: assert(0 && "Unknown visibility!");
215   case LangOptions::Default:
216     return GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
217   case LangOptions::Hidden:
218     return GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
219   case LangOptions::Protected:
220     return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
221   }
222 }
223 
224 /// Set the symbol visibility of type information (vtable and RTTI)
225 /// associated with the given type.
226 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV,
227                                       const CXXRecordDecl *RD,
228                                       bool IsForRTTI) const {
229   setGlobalVisibility(GV, RD);
230 
231   if (!CodeGenOpts.HiddenWeakVTables)
232     return;
233 
234   // We want to drop the visibility to hidden for weak type symbols.
235   // This isn't possible if there might be unresolved references
236   // elsewhere that rely on this symbol being visible.
237 
238   // This should be kept roughly in sync with setThunkVisibility
239   // in CGVTables.cpp.
240 
241   // Preconditions.
242   if (GV->getLinkage() != llvm::GlobalVariable::WeakODRLinkage ||
243       GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility)
244     return;
245 
246   // Don't override an explicit visibility attribute.
247   if (RD->hasAttr<VisibilityAttr>())
248     return;
249 
250   switch (RD->getTemplateSpecializationKind()) {
251   // We have to disable the optimization if this is an EI definition
252   // because there might be EI declarations in other shared objects.
253   case TSK_ExplicitInstantiationDefinition:
254   case TSK_ExplicitInstantiationDeclaration:
255     return;
256 
257   // Every use of a non-template class's type information has to emit it.
258   case TSK_Undeclared:
259     break;
260 
261   // In theory, implicit instantiations can ignore the possibility of
262   // an explicit instantiation declaration because there necessarily
263   // must be an EI definition somewhere with default visibility.  In
264   // practice, it's possible to have an explicit instantiation for
265   // an arbitrary template class, and linkers aren't necessarily able
266   // to deal with mixed-visibility symbols.
267   case TSK_ExplicitSpecialization:
268   case TSK_ImplicitInstantiation:
269     if (!CodeGenOpts.HiddenWeakTemplateVTables)
270       return;
271     break;
272   }
273 
274   // If there's a key function, there may be translation units
275   // that don't have the key function's definition.  But ignore
276   // this if we're emitting RTTI under -fno-rtti.
277   if (!IsForRTTI || Features.RTTI)
278     if (Context.getKeyFunction(RD))
279       return;
280 
281   // Otherwise, drop the visibility to hidden.
282   GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
283 }
284 
285 llvm::StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
286   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
287 
288   llvm::StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
289   if (!Str.empty())
290     return Str;
291 
292   if (!getMangleContext().shouldMangleDeclName(ND)) {
293     IdentifierInfo *II = ND->getIdentifier();
294     assert(II && "Attempt to mangle unnamed decl.");
295 
296     Str = II->getName();
297     return Str;
298   }
299 
300   llvm::SmallString<256> Buffer;
301   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
302     getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Buffer);
303   else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
304     getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Buffer);
305   else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND))
306     getMangleContext().mangleBlock(GD, BD, Buffer);
307   else
308     getMangleContext().mangleName(ND, Buffer);
309 
310   // Allocate space for the mangled name.
311   size_t Length = Buffer.size();
312   char *Name = MangledNamesAllocator.Allocate<char>(Length);
313   std::copy(Buffer.begin(), Buffer.end(), Name);
314 
315   Str = llvm::StringRef(Name, Length);
316 
317   return Str;
318 }
319 
320 void CodeGenModule::getMangledName(GlobalDecl GD, MangleBuffer &Buffer,
321                                    const BlockDecl *BD) {
322   getMangleContext().mangleBlock(GD, BD, Buffer.getBuffer());
323 }
324 
325 llvm::GlobalValue *CodeGenModule::GetGlobalValue(llvm::StringRef Name) {
326   return getModule().getNamedValue(Name);
327 }
328 
329 /// AddGlobalCtor - Add a function to the list that will be called before
330 /// main() runs.
331 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
332   // FIXME: Type coercion of void()* types.
333   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
334 }
335 
336 /// AddGlobalDtor - Add a function to the list that will be called
337 /// when the module is unloaded.
338 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
339   // FIXME: Type coercion of void()* types.
340   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
341 }
342 
343 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
344   // Ctor function type is void()*.
345   llvm::FunctionType* CtorFTy =
346     llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
347                             std::vector<const llvm::Type*>(),
348                             false);
349   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
350 
351   // Get the type of a ctor entry, { i32, void ()* }.
352   llvm::StructType* CtorStructTy =
353     llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext),
354                           llvm::PointerType::getUnqual(CtorFTy), NULL);
355 
356   // Construct the constructor and destructor arrays.
357   std::vector<llvm::Constant*> Ctors;
358   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
359     std::vector<llvm::Constant*> S;
360     S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
361                 I->second, false));
362     S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
363     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
364   }
365 
366   if (!Ctors.empty()) {
367     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
368     new llvm::GlobalVariable(TheModule, AT, false,
369                              llvm::GlobalValue::AppendingLinkage,
370                              llvm::ConstantArray::get(AT, Ctors),
371                              GlobalName);
372   }
373 }
374 
375 void CodeGenModule::EmitAnnotations() {
376   if (Annotations.empty())
377     return;
378 
379   // Create a new global variable for the ConstantStruct in the Module.
380   llvm::Constant *Array =
381   llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
382                                                 Annotations.size()),
383                            Annotations);
384   llvm::GlobalValue *gv =
385   new llvm::GlobalVariable(TheModule, Array->getType(), false,
386                            llvm::GlobalValue::AppendingLinkage, Array,
387                            "llvm.global.annotations");
388   gv->setSection("llvm.metadata");
389 }
390 
391 llvm::GlobalValue::LinkageTypes
392 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) {
393   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
394 
395   if (Linkage == GVA_Internal)
396     return llvm::Function::InternalLinkage;
397 
398   if (D->hasAttr<DLLExportAttr>())
399     return llvm::Function::DLLExportLinkage;
400 
401   if (D->hasAttr<WeakAttr>())
402     return llvm::Function::WeakAnyLinkage;
403 
404   // In C99 mode, 'inline' functions are guaranteed to have a strong
405   // definition somewhere else, so we can use available_externally linkage.
406   if (Linkage == GVA_C99Inline)
407     return llvm::Function::AvailableExternallyLinkage;
408 
409   // In C++, the compiler has to emit a definition in every translation unit
410   // that references the function.  We should use linkonce_odr because
411   // a) if all references in this translation unit are optimized away, we
412   // don't need to codegen it.  b) if the function persists, it needs to be
413   // merged with other definitions. c) C++ has the ODR, so we know the
414   // definition is dependable.
415   if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
416     return llvm::Function::LinkOnceODRLinkage;
417 
418   // An explicit instantiation of a template has weak linkage, since
419   // explicit instantiations can occur in multiple translation units
420   // and must all be equivalent. However, we are not allowed to
421   // throw away these explicit instantiations.
422   if (Linkage == GVA_ExplicitTemplateInstantiation)
423     return llvm::Function::WeakODRLinkage;
424 
425   // Otherwise, we have strong external linkage.
426   assert(Linkage == GVA_StrongExternal);
427   return llvm::Function::ExternalLinkage;
428 }
429 
430 
431 /// SetFunctionDefinitionAttributes - Set attributes for a global.
432 ///
433 /// FIXME: This is currently only done for aliases and functions, but not for
434 /// variables (these details are set in EmitGlobalVarDefinition for variables).
435 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
436                                                     llvm::GlobalValue *GV) {
437   SetCommonAttributes(D, GV);
438 }
439 
440 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
441                                               const CGFunctionInfo &Info,
442                                               llvm::Function *F) {
443   unsigned CallingConv;
444   AttributeListType AttributeList;
445   ConstructAttributeList(Info, D, AttributeList, CallingConv);
446   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
447                                           AttributeList.size()));
448   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
449 }
450 
451 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
452                                                            llvm::Function *F) {
453   if (!Features.Exceptions && !Features.ObjCNonFragileABI)
454     F->addFnAttr(llvm::Attribute::NoUnwind);
455 
456   if (D->hasAttr<AlwaysInlineAttr>())
457     F->addFnAttr(llvm::Attribute::AlwaysInline);
458 
459   if (D->hasAttr<NoInlineAttr>())
460     F->addFnAttr(llvm::Attribute::NoInline);
461 
462   if (Features.getStackProtectorMode() == LangOptions::SSPOn)
463     F->addFnAttr(llvm::Attribute::StackProtect);
464   else if (Features.getStackProtectorMode() == LangOptions::SSPReq)
465     F->addFnAttr(llvm::Attribute::StackProtectReq);
466 
467   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
468   if (alignment)
469     F->setAlignment(alignment);
470 
471   // C++ ABI requires 2-byte alignment for member functions.
472   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
473     F->setAlignment(2);
474 }
475 
476 void CodeGenModule::SetCommonAttributes(const Decl *D,
477                                         llvm::GlobalValue *GV) {
478   setGlobalVisibility(GV, D);
479 
480   if (D->hasAttr<UsedAttr>())
481     AddUsedGlobal(GV);
482 
483   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
484     GV->setSection(SA->getName());
485 
486   getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
487 }
488 
489 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
490                                                   llvm::Function *F,
491                                                   const CGFunctionInfo &FI) {
492   SetLLVMFunctionAttributes(D, FI, F);
493   SetLLVMFunctionAttributesForDefinition(D, F);
494 
495   F->setLinkage(llvm::Function::InternalLinkage);
496 
497   SetCommonAttributes(D, F);
498 }
499 
500 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
501                                           llvm::Function *F,
502                                           bool IsIncompleteFunction) {
503   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
504 
505   if (!IsIncompleteFunction)
506     SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F);
507 
508   // Only a few attributes are set on declarations; these may later be
509   // overridden by a definition.
510 
511   if (FD->hasAttr<DLLImportAttr>()) {
512     F->setLinkage(llvm::Function::DLLImportLinkage);
513   } else if (FD->hasAttr<WeakAttr>() ||
514              FD->hasAttr<WeakImportAttr>()) {
515     // "extern_weak" is overloaded in LLVM; we probably should have
516     // separate linkage types for this.
517     F->setLinkage(llvm::Function::ExternalWeakLinkage);
518   } else {
519     F->setLinkage(llvm::Function::ExternalLinkage);
520   }
521 
522   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
523     F->setSection(SA->getName());
524 }
525 
526 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
527   assert(!GV->isDeclaration() &&
528          "Only globals with definition can force usage.");
529   LLVMUsed.push_back(GV);
530 }
531 
532 void CodeGenModule::EmitLLVMUsed() {
533   // Don't create llvm.used if there is no need.
534   if (LLVMUsed.empty())
535     return;
536 
537   const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext);
538 
539   // Convert LLVMUsed to what ConstantArray needs.
540   std::vector<llvm::Constant*> UsedArray;
541   UsedArray.resize(LLVMUsed.size());
542   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
543     UsedArray[i] =
544      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
545                                       i8PTy);
546   }
547 
548   if (UsedArray.empty())
549     return;
550   llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size());
551 
552   llvm::GlobalVariable *GV =
553     new llvm::GlobalVariable(getModule(), ATy, false,
554                              llvm::GlobalValue::AppendingLinkage,
555                              llvm::ConstantArray::get(ATy, UsedArray),
556                              "llvm.used");
557 
558   GV->setSection("llvm.metadata");
559 }
560 
561 void CodeGenModule::EmitDeferred() {
562   // Emit code for any potentially referenced deferred decls.  Since a
563   // previously unused static decl may become used during the generation of code
564   // for a static function, iterate until no  changes are made.
565 
566   while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) {
567     if (!DeferredVTables.empty()) {
568       const CXXRecordDecl *RD = DeferredVTables.back();
569       DeferredVTables.pop_back();
570       getVTables().GenerateClassData(getVTableLinkage(RD), RD);
571       continue;
572     }
573 
574     GlobalDecl D = DeferredDeclsToEmit.back();
575     DeferredDeclsToEmit.pop_back();
576 
577     // Check to see if we've already emitted this.  This is necessary
578     // for a couple of reasons: first, decls can end up in the
579     // deferred-decls queue multiple times, and second, decls can end
580     // up with definitions in unusual ways (e.g. by an extern inline
581     // function acquiring a strong function redefinition).  Just
582     // ignore these cases.
583     //
584     // TODO: That said, looking this up multiple times is very wasteful.
585     llvm::StringRef Name = getMangledName(D);
586     llvm::GlobalValue *CGRef = GetGlobalValue(Name);
587     assert(CGRef && "Deferred decl wasn't referenced?");
588 
589     if (!CGRef->isDeclaration())
590       continue;
591 
592     // GlobalAlias::isDeclaration() defers to the aliasee, but for our
593     // purposes an alias counts as a definition.
594     if (isa<llvm::GlobalAlias>(CGRef))
595       continue;
596 
597     // Otherwise, emit the definition and move on to the next one.
598     EmitGlobalDefinition(D);
599   }
600 }
601 
602 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
603 /// annotation information for a given GlobalValue.  The annotation struct is
604 /// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
605 /// GlobalValue being annotated.  The second field is the constant string
606 /// created from the AnnotateAttr's annotation.  The third field is a constant
607 /// string containing the name of the translation unit.  The fourth field is
608 /// the line number in the file of the annotated value declaration.
609 ///
610 /// FIXME: this does not unique the annotation string constants, as llvm-gcc
611 ///        appears to.
612 ///
613 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
614                                                 const AnnotateAttr *AA,
615                                                 unsigned LineNo) {
616   llvm::Module *M = &getModule();
617 
618   // get [N x i8] constants for the annotation string, and the filename string
619   // which are the 2nd and 3rd elements of the global annotation structure.
620   const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext);
621   llvm::Constant *anno = llvm::ConstantArray::get(VMContext,
622                                                   AA->getAnnotation(), true);
623   llvm::Constant *unit = llvm::ConstantArray::get(VMContext,
624                                                   M->getModuleIdentifier(),
625                                                   true);
626 
627   // Get the two global values corresponding to the ConstantArrays we just
628   // created to hold the bytes of the strings.
629   llvm::GlobalValue *annoGV =
630     new llvm::GlobalVariable(*M, anno->getType(), false,
631                              llvm::GlobalValue::PrivateLinkage, anno,
632                              GV->getName());
633   // translation unit name string, emitted into the llvm.metadata section.
634   llvm::GlobalValue *unitGV =
635     new llvm::GlobalVariable(*M, unit->getType(), false,
636                              llvm::GlobalValue::PrivateLinkage, unit,
637                              ".str");
638 
639   // Create the ConstantStruct for the global annotation.
640   llvm::Constant *Fields[4] = {
641     llvm::ConstantExpr::getBitCast(GV, SBP),
642     llvm::ConstantExpr::getBitCast(annoGV, SBP),
643     llvm::ConstantExpr::getBitCast(unitGV, SBP),
644     llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo)
645   };
646   return llvm::ConstantStruct::get(VMContext, Fields, 4, false);
647 }
648 
649 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
650   // Never defer when EmitAllDecls is specified.
651   if (Features.EmitAllDecls)
652     return false;
653 
654   return !getContext().DeclMustBeEmitted(Global);
655 }
656 
657 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
658   const AliasAttr *AA = VD->getAttr<AliasAttr>();
659   assert(AA && "No alias?");
660 
661   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
662 
663   // See if there is already something with the target's name in the module.
664   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
665 
666   llvm::Constant *Aliasee;
667   if (isa<llvm::FunctionType>(DeclTy))
668     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl());
669   else
670     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
671                                     llvm::PointerType::getUnqual(DeclTy), 0);
672   if (!Entry) {
673     llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
674     F->setLinkage(llvm::Function::ExternalWeakLinkage);
675     WeakRefReferences.insert(F);
676   }
677 
678   return Aliasee;
679 }
680 
681 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
682   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
683 
684   // Weak references don't produce any output by themselves.
685   if (Global->hasAttr<WeakRefAttr>())
686     return;
687 
688   // If this is an alias definition (which otherwise looks like a declaration)
689   // emit it now.
690   if (Global->hasAttr<AliasAttr>())
691     return EmitAliasDefinition(GD);
692 
693   // Ignore declarations, they will be emitted on their first use.
694   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
695     if (FD->getIdentifier()) {
696       llvm::StringRef Name = FD->getName();
697       if (Name == "_Block_object_assign") {
698         BlockObjectAssignDecl = FD;
699       } else if (Name == "_Block_object_dispose") {
700         BlockObjectDisposeDecl = FD;
701       }
702     }
703 
704     // Forward declarations are emitted lazily on first use.
705     if (!FD->isThisDeclarationADefinition())
706       return;
707   } else {
708     const VarDecl *VD = cast<VarDecl>(Global);
709     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
710 
711     if (VD->getIdentifier()) {
712       llvm::StringRef Name = VD->getName();
713       if (Name == "_NSConcreteGlobalBlock") {
714         NSConcreteGlobalBlockDecl = VD;
715       } else if (Name == "_NSConcreteStackBlock") {
716         NSConcreteStackBlockDecl = VD;
717       }
718     }
719 
720 
721     if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
722       return;
723   }
724 
725   // Defer code generation when possible if this is a static definition, inline
726   // function etc.  These we only want to emit if they are used.
727   if (!MayDeferGeneration(Global)) {
728     // Emit the definition if it can't be deferred.
729     EmitGlobalDefinition(GD);
730     return;
731   }
732 
733   // If we're deferring emission of a C++ variable with an
734   // initializer, remember the order in which it appeared in the file.
735   if (getLangOptions().CPlusPlus && isa<VarDecl>(Global) &&
736       cast<VarDecl>(Global)->hasInit()) {
737     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
738     CXXGlobalInits.push_back(0);
739   }
740 
741   // If the value has already been used, add it directly to the
742   // DeferredDeclsToEmit list.
743   llvm::StringRef MangledName = getMangledName(GD);
744   if (GetGlobalValue(MangledName))
745     DeferredDeclsToEmit.push_back(GD);
746   else {
747     // Otherwise, remember that we saw a deferred decl with this name.  The
748     // first use of the mangled name will cause it to move into
749     // DeferredDeclsToEmit.
750     DeferredDecls[MangledName] = GD;
751   }
752 }
753 
754 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
755   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
756 
757   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
758                                  Context.getSourceManager(),
759                                  "Generating code for declaration");
760 
761   if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
762     // At -O0, don't generate IR for functions with available_externally
763     // linkage.
764     if (CodeGenOpts.OptimizationLevel == 0 &&
765         !Function->hasAttr<AlwaysInlineAttr>() &&
766         getFunctionLinkage(Function)
767                                   == llvm::Function::AvailableExternallyLinkage)
768       return;
769 
770     if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
771       if (Method->isVirtual())
772         getVTables().EmitThunks(GD);
773 
774       if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
775         return EmitCXXConstructor(CD, GD.getCtorType());
776 
777       if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(Method))
778         return EmitCXXDestructor(DD, GD.getDtorType());
779     }
780 
781     return EmitGlobalFunctionDefinition(GD);
782   }
783 
784   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
785     return EmitGlobalVarDefinition(VD);
786 
787   assert(0 && "Invalid argument to EmitGlobalDefinition()");
788 }
789 
790 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
791 /// module, create and return an llvm Function with the specified type. If there
792 /// is something in the module with the specified name, return it potentially
793 /// bitcasted to the right type.
794 ///
795 /// If D is non-null, it specifies a decl that correspond to this.  This is used
796 /// to set the attributes on the function when it is first created.
797 llvm::Constant *
798 CodeGenModule::GetOrCreateLLVMFunction(llvm::StringRef MangledName,
799                                        const llvm::Type *Ty,
800                                        GlobalDecl D) {
801   // Lookup the entry, lazily creating it if necessary.
802   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
803   if (Entry) {
804     if (WeakRefReferences.count(Entry)) {
805       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl());
806       if (FD && !FD->hasAttr<WeakAttr>())
807         Entry->setLinkage(llvm::Function::ExternalLinkage);
808 
809       WeakRefReferences.erase(Entry);
810     }
811 
812     if (Entry->getType()->getElementType() == Ty)
813       return Entry;
814 
815     // Make sure the result is of the correct type.
816     const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
817     return llvm::ConstantExpr::getBitCast(Entry, PTy);
818   }
819 
820   // This function doesn't have a complete type (for example, the return
821   // type is an incomplete struct). Use a fake type instead, and make
822   // sure not to try to set attributes.
823   bool IsIncompleteFunction = false;
824 
825   const llvm::FunctionType *FTy;
826   if (isa<llvm::FunctionType>(Ty)) {
827     FTy = cast<llvm::FunctionType>(Ty);
828   } else {
829     FTy = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
830                                   std::vector<const llvm::Type*>(), false);
831     IsIncompleteFunction = true;
832   }
833 
834   llvm::Function *F = llvm::Function::Create(FTy,
835                                              llvm::Function::ExternalLinkage,
836                                              MangledName, &getModule());
837   assert(F->getName() == MangledName && "name was uniqued!");
838   if (D.getDecl())
839     SetFunctionAttributes(D, F, IsIncompleteFunction);
840 
841   // This is the first use or definition of a mangled name.  If there is a
842   // deferred decl with this name, remember that we need to emit it at the end
843   // of the file.
844   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
845   if (DDI != DeferredDecls.end()) {
846     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
847     // list, and remove it from DeferredDecls (since we don't need it anymore).
848     DeferredDeclsToEmit.push_back(DDI->second);
849     DeferredDecls.erase(DDI);
850   } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) {
851     // If this the first reference to a C++ inline function in a class, queue up
852     // the deferred function body for emission.  These are not seen as
853     // top-level declarations.
854     if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD))
855       DeferredDeclsToEmit.push_back(D);
856     // A called constructor which has no definition or declaration need be
857     // synthesized.
858     else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
859       if (CD->isImplicit()) {
860         assert(CD->isUsed() && "Sema doesn't consider constructor as used.");
861         DeferredDeclsToEmit.push_back(D);
862       }
863     } else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) {
864       if (DD->isImplicit()) {
865         assert(DD->isUsed() && "Sema doesn't consider destructor as used.");
866         DeferredDeclsToEmit.push_back(D);
867       }
868     } else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
869       if (MD->isCopyAssignment() && MD->isImplicit()) {
870         assert(MD->isUsed() && "Sema doesn't consider CopyAssignment as used.");
871         DeferredDeclsToEmit.push_back(D);
872       }
873     }
874   }
875 
876   // Make sure the result is of the requested type.
877   if (!IsIncompleteFunction) {
878     assert(F->getType()->getElementType() == Ty);
879     return F;
880   }
881 
882   const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
883   return llvm::ConstantExpr::getBitCast(F, PTy);
884 }
885 
886 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
887 /// non-null, then this function will use the specified type if it has to
888 /// create it (this occurs when we see a definition of the function).
889 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
890                                                  const llvm::Type *Ty) {
891   // If there was no specific requested type, just convert it now.
892   if (!Ty)
893     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
894 
895   llvm::StringRef MangledName = getMangledName(GD);
896   return GetOrCreateLLVMFunction(MangledName, Ty, GD);
897 }
898 
899 /// CreateRuntimeFunction - Create a new runtime function with the specified
900 /// type and name.
901 llvm::Constant *
902 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
903                                      llvm::StringRef Name) {
904   return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl());
905 }
906 
907 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D) {
908   if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType())
909     return false;
910   if (Context.getLangOptions().CPlusPlus &&
911       Context.getBaseElementType(D->getType())->getAs<RecordType>()) {
912     // FIXME: We should do something fancier here!
913     return false;
914   }
915   return true;
916 }
917 
918 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
919 /// create and return an llvm GlobalVariable with the specified type.  If there
920 /// is something in the module with the specified name, return it potentially
921 /// bitcasted to the right type.
922 ///
923 /// If D is non-null, it specifies a decl that correspond to this.  This is used
924 /// to set the attributes on the global when it is first created.
925 llvm::Constant *
926 CodeGenModule::GetOrCreateLLVMGlobal(llvm::StringRef MangledName,
927                                      const llvm::PointerType *Ty,
928                                      const VarDecl *D) {
929   // Lookup the entry, lazily creating it if necessary.
930   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
931   if (Entry) {
932     if (WeakRefReferences.count(Entry)) {
933       if (D && !D->hasAttr<WeakAttr>())
934         Entry->setLinkage(llvm::Function::ExternalLinkage);
935 
936       WeakRefReferences.erase(Entry);
937     }
938 
939     if (Entry->getType() == Ty)
940       return Entry;
941 
942     // Make sure the result is of the correct type.
943     return llvm::ConstantExpr::getBitCast(Entry, Ty);
944   }
945 
946   // This is the first use or definition of a mangled name.  If there is a
947   // deferred decl with this name, remember that we need to emit it at the end
948   // of the file.
949   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
950   if (DDI != DeferredDecls.end()) {
951     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
952     // list, and remove it from DeferredDecls (since we don't need it anymore).
953     DeferredDeclsToEmit.push_back(DDI->second);
954     DeferredDecls.erase(DDI);
955   }
956 
957   llvm::GlobalVariable *GV =
958     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
959                              llvm::GlobalValue::ExternalLinkage,
960                              0, MangledName, 0,
961                              false, Ty->getAddressSpace());
962 
963   // Handle things which are present even on external declarations.
964   if (D) {
965     // FIXME: This code is overly simple and should be merged with other global
966     // handling.
967     GV->setConstant(DeclIsConstantGlobal(Context, D));
968 
969     // FIXME: Merge with other attribute handling code.
970     if (D->getStorageClass() == VarDecl::PrivateExtern)
971       GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
972 
973     if (D->hasAttr<WeakAttr>() ||
974         D->hasAttr<WeakImportAttr>())
975       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
976 
977     GV->setThreadLocal(D->isThreadSpecified());
978   }
979 
980   return GV;
981 }
982 
983 
984 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
985 /// given global variable.  If Ty is non-null and if the global doesn't exist,
986 /// then it will be greated with the specified type instead of whatever the
987 /// normal requested type would be.
988 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
989                                                   const llvm::Type *Ty) {
990   assert(D->hasGlobalStorage() && "Not a global variable");
991   QualType ASTTy = D->getType();
992   if (Ty == 0)
993     Ty = getTypes().ConvertTypeForMem(ASTTy);
994 
995   const llvm::PointerType *PTy =
996     llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
997 
998   llvm::StringRef MangledName = getMangledName(D);
999   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1000 }
1001 
1002 /// CreateRuntimeVariable - Create a new runtime global variable with the
1003 /// specified type and name.
1004 llvm::Constant *
1005 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
1006                                      llvm::StringRef Name) {
1007   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0);
1008 }
1009 
1010 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1011   assert(!D->getInit() && "Cannot emit definite definitions here!");
1012 
1013   if (MayDeferGeneration(D)) {
1014     // If we have not seen a reference to this variable yet, place it
1015     // into the deferred declarations table to be emitted if needed
1016     // later.
1017     llvm::StringRef MangledName = getMangledName(D);
1018     if (!GetGlobalValue(MangledName)) {
1019       DeferredDecls[MangledName] = D;
1020       return;
1021     }
1022   }
1023 
1024   // The tentative definition is the only definition.
1025   EmitGlobalVarDefinition(D);
1026 }
1027 
1028 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) {
1029   if (DefinitionRequired)
1030     getVTables().GenerateClassData(getVTableLinkage(Class), Class);
1031 }
1032 
1033 llvm::GlobalVariable::LinkageTypes
1034 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) {
1035   if (RD->isInAnonymousNamespace() || !RD->hasLinkage())
1036     return llvm::GlobalVariable::InternalLinkage;
1037 
1038   if (const CXXMethodDecl *KeyFunction
1039                                     = RD->getASTContext().getKeyFunction(RD)) {
1040     // If this class has a key function, use that to determine the linkage of
1041     // the vtable.
1042     const FunctionDecl *Def = 0;
1043     if (KeyFunction->hasBody(Def))
1044       KeyFunction = cast<CXXMethodDecl>(Def);
1045 
1046     switch (KeyFunction->getTemplateSpecializationKind()) {
1047       case TSK_Undeclared:
1048       case TSK_ExplicitSpecialization:
1049         if (KeyFunction->isInlined())
1050           return llvm::GlobalVariable::WeakODRLinkage;
1051 
1052         return llvm::GlobalVariable::ExternalLinkage;
1053 
1054       case TSK_ImplicitInstantiation:
1055       case TSK_ExplicitInstantiationDefinition:
1056         return llvm::GlobalVariable::WeakODRLinkage;
1057 
1058       case TSK_ExplicitInstantiationDeclaration:
1059         // FIXME: Use available_externally linkage. However, this currently
1060         // breaks LLVM's build due to undefined symbols.
1061         //      return llvm::GlobalVariable::AvailableExternallyLinkage;
1062         return llvm::GlobalVariable::WeakODRLinkage;
1063     }
1064   }
1065 
1066   switch (RD->getTemplateSpecializationKind()) {
1067   case TSK_Undeclared:
1068   case TSK_ExplicitSpecialization:
1069   case TSK_ImplicitInstantiation:
1070   case TSK_ExplicitInstantiationDefinition:
1071     return llvm::GlobalVariable::WeakODRLinkage;
1072 
1073   case TSK_ExplicitInstantiationDeclaration:
1074     // FIXME: Use available_externally linkage. However, this currently
1075     // breaks LLVM's build due to undefined symbols.
1076     //   return llvm::GlobalVariable::AvailableExternallyLinkage;
1077     return llvm::GlobalVariable::WeakODRLinkage;
1078   }
1079 
1080   // Silence GCC warning.
1081   return llvm::GlobalVariable::WeakODRLinkage;
1082 }
1083 
1084 CharUnits CodeGenModule::GetTargetTypeStoreSize(const llvm::Type *Ty) const {
1085     return CharUnits::fromQuantity(
1086       TheTargetData.getTypeStoreSizeInBits(Ty) / Context.getCharWidth());
1087 }
1088 
1089 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1090   llvm::Constant *Init = 0;
1091   QualType ASTTy = D->getType();
1092   bool NonConstInit = false;
1093 
1094   const Expr *InitExpr = D->getAnyInitializer();
1095 
1096   if (!InitExpr) {
1097     // This is a tentative definition; tentative definitions are
1098     // implicitly initialized with { 0 }.
1099     //
1100     // Note that tentative definitions are only emitted at the end of
1101     // a translation unit, so they should never have incomplete
1102     // type. In addition, EmitTentativeDefinition makes sure that we
1103     // never attempt to emit a tentative definition if a real one
1104     // exists. A use may still exists, however, so we still may need
1105     // to do a RAUW.
1106     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1107     Init = EmitNullConstant(D->getType());
1108   } else {
1109     Init = EmitConstantExpr(InitExpr, D->getType());
1110     if (!Init) {
1111       QualType T = InitExpr->getType();
1112       if (D->getType()->isReferenceType())
1113         T = D->getType();
1114 
1115       if (getLangOptions().CPlusPlus) {
1116         EmitCXXGlobalVarDeclInitFunc(D);
1117         Init = EmitNullConstant(T);
1118         NonConstInit = true;
1119       } else {
1120         ErrorUnsupported(D, "static initializer");
1121         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1122       }
1123     } else {
1124       // We don't need an initializer, so remove the entry for the delayed
1125       // initializer position (just in case this entry was delayed).
1126       if (getLangOptions().CPlusPlus)
1127         DelayedCXXInitPosition.erase(D);
1128     }
1129   }
1130 
1131   const llvm::Type* InitType = Init->getType();
1132   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1133 
1134   // Strip off a bitcast if we got one back.
1135   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1136     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1137            // all zero index gep.
1138            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1139     Entry = CE->getOperand(0);
1140   }
1141 
1142   // Entry is now either a Function or GlobalVariable.
1143   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1144 
1145   // We have a definition after a declaration with the wrong type.
1146   // We must make a new GlobalVariable* and update everything that used OldGV
1147   // (a declaration or tentative definition) with the new GlobalVariable*
1148   // (which will be a definition).
1149   //
1150   // This happens if there is a prototype for a global (e.g.
1151   // "extern int x[];") and then a definition of a different type (e.g.
1152   // "int x[10];"). This also happens when an initializer has a different type
1153   // from the type of the global (this happens with unions).
1154   if (GV == 0 ||
1155       GV->getType()->getElementType() != InitType ||
1156       GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) {
1157 
1158     // Move the old entry aside so that we'll create a new one.
1159     Entry->setName(llvm::StringRef());
1160 
1161     // Make a new global with the correct type, this is now guaranteed to work.
1162     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1163 
1164     // Replace all uses of the old global with the new global
1165     llvm::Constant *NewPtrForOldDecl =
1166         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1167     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1168 
1169     // Erase the old global, since it is no longer used.
1170     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1171   }
1172 
1173   if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
1174     SourceManager &SM = Context.getSourceManager();
1175     AddAnnotation(EmitAnnotateAttr(GV, AA,
1176                               SM.getInstantiationLineNumber(D->getLocation())));
1177   }
1178 
1179   GV->setInitializer(Init);
1180 
1181   // If it is safe to mark the global 'constant', do so now.
1182   GV->setConstant(false);
1183   if (!NonConstInit && DeclIsConstantGlobal(Context, D))
1184     GV->setConstant(true);
1185 
1186   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1187 
1188   // Set the llvm linkage type as appropriate.
1189   GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
1190   if (Linkage == GVA_Internal)
1191     GV->setLinkage(llvm::Function::InternalLinkage);
1192   else if (D->hasAttr<DLLImportAttr>())
1193     GV->setLinkage(llvm::Function::DLLImportLinkage);
1194   else if (D->hasAttr<DLLExportAttr>())
1195     GV->setLinkage(llvm::Function::DLLExportLinkage);
1196   else if (D->hasAttr<WeakAttr>()) {
1197     if (GV->isConstant())
1198       GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage);
1199     else
1200       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
1201   } else if (Linkage == GVA_TemplateInstantiation ||
1202              Linkage == GVA_ExplicitTemplateInstantiation)
1203     // FIXME: It seems like we can provide more specific linkage here
1204     // (LinkOnceODR, WeakODR).
1205     GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
1206   else if (!getLangOptions().CPlusPlus && !CodeGenOpts.NoCommon &&
1207            !D->hasExternalStorage() && !D->getInit() &&
1208            !D->getAttr<SectionAttr>() && !D->isThreadSpecified()) {
1209     // Thread local vars aren't considered common linkage.
1210     GV->setLinkage(llvm::GlobalVariable::CommonLinkage);
1211     // common vars aren't constant even if declared const.
1212     GV->setConstant(false);
1213   } else
1214     GV->setLinkage(llvm::GlobalVariable::ExternalLinkage);
1215 
1216   SetCommonAttributes(D, GV);
1217 
1218   // Emit global variable debug information.
1219   if (CGDebugInfo *DI = getDebugInfo()) {
1220     DI->setLocation(D->getLocation());
1221     DI->EmitGlobalVariable(GV, D);
1222   }
1223 }
1224 
1225 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1226 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
1227 /// existing call uses of the old function in the module, this adjusts them to
1228 /// call the new function directly.
1229 ///
1230 /// This is not just a cleanup: the always_inline pass requires direct calls to
1231 /// functions to be able to inline them.  If there is a bitcast in the way, it
1232 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
1233 /// run at -O0.
1234 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1235                                                       llvm::Function *NewFn) {
1236   // If we're redefining a global as a function, don't transform it.
1237   llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1238   if (OldFn == 0) return;
1239 
1240   const llvm::Type *NewRetTy = NewFn->getReturnType();
1241   llvm::SmallVector<llvm::Value*, 4> ArgList;
1242 
1243   for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1244        UI != E; ) {
1245     // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1246     llvm::Value::use_iterator I = UI++; // Increment before the CI is erased.
1247     llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I);
1248     if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I)
1249     llvm::CallSite CS(CI);
1250     if (!CI || !CS.isCallee(I)) continue;
1251 
1252     // If the return types don't match exactly, and if the call isn't dead, then
1253     // we can't transform this call.
1254     if (CI->getType() != NewRetTy && !CI->use_empty())
1255       continue;
1256 
1257     // If the function was passed too few arguments, don't transform.  If extra
1258     // arguments were passed, we silently drop them.  If any of the types
1259     // mismatch, we don't transform.
1260     unsigned ArgNo = 0;
1261     bool DontTransform = false;
1262     for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1263          E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1264       if (CS.arg_size() == ArgNo ||
1265           CS.getArgument(ArgNo)->getType() != AI->getType()) {
1266         DontTransform = true;
1267         break;
1268       }
1269     }
1270     if (DontTransform)
1271       continue;
1272 
1273     // Okay, we can transform this.  Create the new call instruction and copy
1274     // over the required information.
1275     ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo);
1276     llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
1277                                                      ArgList.end(), "", CI);
1278     ArgList.clear();
1279     if (!NewCall->getType()->isVoidTy())
1280       NewCall->takeName(CI);
1281     NewCall->setAttributes(CI->getAttributes());
1282     NewCall->setCallingConv(CI->getCallingConv());
1283 
1284     // Finally, remove the old call, replacing any uses with the new one.
1285     if (!CI->use_empty())
1286       CI->replaceAllUsesWith(NewCall);
1287 
1288     // Copy debug location attached to CI.
1289     if (!CI->getDebugLoc().isUnknown())
1290       NewCall->setDebugLoc(CI->getDebugLoc());
1291     CI->eraseFromParent();
1292   }
1293 }
1294 
1295 
1296 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1297   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1298   const llvm::FunctionType *Ty = getTypes().GetFunctionType(GD);
1299   getMangleContext().mangleInitDiscriminator();
1300   // Get or create the prototype for the function.
1301   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1302 
1303   // Strip off a bitcast if we got one back.
1304   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1305     assert(CE->getOpcode() == llvm::Instruction::BitCast);
1306     Entry = CE->getOperand(0);
1307   }
1308 
1309 
1310   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1311     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1312 
1313     // If the types mismatch then we have to rewrite the definition.
1314     assert(OldFn->isDeclaration() &&
1315            "Shouldn't replace non-declaration");
1316 
1317     // F is the Function* for the one with the wrong type, we must make a new
1318     // Function* and update everything that used F (a declaration) with the new
1319     // Function* (which will be a definition).
1320     //
1321     // This happens if there is a prototype for a function
1322     // (e.g. "int f()") and then a definition of a different type
1323     // (e.g. "int f(int x)").  Move the old function aside so that it
1324     // doesn't interfere with GetAddrOfFunction.
1325     OldFn->setName(llvm::StringRef());
1326     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1327 
1328     // If this is an implementation of a function without a prototype, try to
1329     // replace any existing uses of the function (which may be calls) with uses
1330     // of the new function
1331     if (D->getType()->isFunctionNoProtoType()) {
1332       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1333       OldFn->removeDeadConstantUsers();
1334     }
1335 
1336     // Replace uses of F with the Function we will endow with a body.
1337     if (!Entry->use_empty()) {
1338       llvm::Constant *NewPtrForOldDecl =
1339         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1340       Entry->replaceAllUsesWith(NewPtrForOldDecl);
1341     }
1342 
1343     // Ok, delete the old function now, which is dead.
1344     OldFn->eraseFromParent();
1345 
1346     Entry = NewFn;
1347   }
1348 
1349   llvm::Function *Fn = cast<llvm::Function>(Entry);
1350   setFunctionLinkage(D, Fn);
1351 
1352   CodeGenFunction(*this).GenerateCode(D, Fn);
1353 
1354   SetFunctionDefinitionAttributes(D, Fn);
1355   SetLLVMFunctionAttributesForDefinition(D, Fn);
1356 
1357   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1358     AddGlobalCtor(Fn, CA->getPriority());
1359   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1360     AddGlobalDtor(Fn, DA->getPriority());
1361 }
1362 
1363 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
1364   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1365   const AliasAttr *AA = D->getAttr<AliasAttr>();
1366   assert(AA && "Not an alias?");
1367 
1368   llvm::StringRef MangledName = getMangledName(GD);
1369 
1370   // If there is a definition in the module, then it wins over the alias.
1371   // This is dubious, but allow it to be safe.  Just ignore the alias.
1372   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1373   if (Entry && !Entry->isDeclaration())
1374     return;
1375 
1376   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1377 
1378   // Create a reference to the named value.  This ensures that it is emitted
1379   // if a deferred decl.
1380   llvm::Constant *Aliasee;
1381   if (isa<llvm::FunctionType>(DeclTy))
1382     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl());
1383   else
1384     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1385                                     llvm::PointerType::getUnqual(DeclTy), 0);
1386 
1387   // Create the new alias itself, but don't set a name yet.
1388   llvm::GlobalValue *GA =
1389     new llvm::GlobalAlias(Aliasee->getType(),
1390                           llvm::Function::ExternalLinkage,
1391                           "", Aliasee, &getModule());
1392 
1393   if (Entry) {
1394     assert(Entry->isDeclaration());
1395 
1396     // If there is a declaration in the module, then we had an extern followed
1397     // by the alias, as in:
1398     //   extern int test6();
1399     //   ...
1400     //   int test6() __attribute__((alias("test7")));
1401     //
1402     // Remove it and replace uses of it with the alias.
1403     GA->takeName(Entry);
1404 
1405     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1406                                                           Entry->getType()));
1407     Entry->eraseFromParent();
1408   } else {
1409     GA->setName(MangledName);
1410   }
1411 
1412   // Set attributes which are particular to an alias; this is a
1413   // specialization of the attributes which may be set on a global
1414   // variable/function.
1415   if (D->hasAttr<DLLExportAttr>()) {
1416     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1417       // The dllexport attribute is ignored for undefined symbols.
1418       if (FD->hasBody())
1419         GA->setLinkage(llvm::Function::DLLExportLinkage);
1420     } else {
1421       GA->setLinkage(llvm::Function::DLLExportLinkage);
1422     }
1423   } else if (D->hasAttr<WeakAttr>() ||
1424              D->hasAttr<WeakRefAttr>() ||
1425              D->hasAttr<WeakImportAttr>()) {
1426     GA->setLinkage(llvm::Function::WeakAnyLinkage);
1427   }
1428 
1429   SetCommonAttributes(D, GA);
1430 }
1431 
1432 /// getBuiltinLibFunction - Given a builtin id for a function like
1433 /// "__builtin_fabsf", return a Function* for "fabsf".
1434 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
1435                                                   unsigned BuiltinID) {
1436   assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
1437           Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
1438          "isn't a lib fn");
1439 
1440   // Get the name, skip over the __builtin_ prefix (if necessary).
1441   const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
1442   if (Context.BuiltinInfo.isLibFunction(BuiltinID))
1443     Name += 10;
1444 
1445   const llvm::FunctionType *Ty =
1446     cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
1447 
1448   return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD));
1449 }
1450 
1451 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
1452                                             unsigned NumTys) {
1453   return llvm::Intrinsic::getDeclaration(&getModule(),
1454                                          (llvm::Intrinsic::ID)IID, Tys, NumTys);
1455 }
1456 
1457 
1458 llvm::Function *CodeGenModule::getMemCpyFn(const llvm::Type *DestType,
1459                                            const llvm::Type *SrcType,
1460                                            const llvm::Type *SizeType) {
1461   const llvm::Type *ArgTypes[3] = {DestType, SrcType, SizeType };
1462   return getIntrinsic(llvm::Intrinsic::memcpy, ArgTypes, 3);
1463 }
1464 
1465 llvm::Function *CodeGenModule::getMemMoveFn(const llvm::Type *DestType,
1466                                             const llvm::Type *SrcType,
1467                                             const llvm::Type *SizeType) {
1468   const llvm::Type *ArgTypes[3] = {DestType, SrcType, SizeType };
1469   return getIntrinsic(llvm::Intrinsic::memmove, ArgTypes, 3);
1470 }
1471 
1472 llvm::Function *CodeGenModule::getMemSetFn(const llvm::Type *DestType,
1473                                            const llvm::Type *SizeType) {
1474   const llvm::Type *ArgTypes[2] = { DestType, SizeType };
1475   return getIntrinsic(llvm::Intrinsic::memset, ArgTypes, 2);
1476 }
1477 
1478 static llvm::StringMapEntry<llvm::Constant*> &
1479 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1480                          const StringLiteral *Literal,
1481                          bool TargetIsLSB,
1482                          bool &IsUTF16,
1483                          unsigned &StringLength) {
1484   llvm::StringRef String = Literal->getString();
1485   unsigned NumBytes = String.size();
1486 
1487   // Check for simple case.
1488   if (!Literal->containsNonAsciiOrNull()) {
1489     StringLength = NumBytes;
1490     return Map.GetOrCreateValue(String);
1491   }
1492 
1493   // Otherwise, convert the UTF8 literals into a byte string.
1494   llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
1495   const UTF8 *FromPtr = (UTF8 *)String.data();
1496   UTF16 *ToPtr = &ToBuf[0];
1497 
1498   ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1499                                                &ToPtr, ToPtr + NumBytes,
1500                                                strictConversion);
1501 
1502   // Check for conversion failure.
1503   if (Result != conversionOK) {
1504     // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove
1505     // this duplicate code.
1506     assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed");
1507     StringLength = NumBytes;
1508     return Map.GetOrCreateValue(String);
1509   }
1510 
1511   // ConvertUTF8toUTF16 returns the length in ToPtr.
1512   StringLength = ToPtr - &ToBuf[0];
1513 
1514   // Render the UTF-16 string into a byte array and convert to the target byte
1515   // order.
1516   //
1517   // FIXME: This isn't something we should need to do here.
1518   llvm::SmallString<128> AsBytes;
1519   AsBytes.reserve(StringLength * 2);
1520   for (unsigned i = 0; i != StringLength; ++i) {
1521     unsigned short Val = ToBuf[i];
1522     if (TargetIsLSB) {
1523       AsBytes.push_back(Val & 0xFF);
1524       AsBytes.push_back(Val >> 8);
1525     } else {
1526       AsBytes.push_back(Val >> 8);
1527       AsBytes.push_back(Val & 0xFF);
1528     }
1529   }
1530   // Append one extra null character, the second is automatically added by our
1531   // caller.
1532   AsBytes.push_back(0);
1533 
1534   IsUTF16 = true;
1535   return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size()));
1536 }
1537 
1538 llvm::Constant *
1539 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1540   unsigned StringLength = 0;
1541   bool isUTF16 = false;
1542   llvm::StringMapEntry<llvm::Constant*> &Entry =
1543     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1544                              getTargetData().isLittleEndian(),
1545                              isUTF16, StringLength);
1546 
1547   if (llvm::Constant *C = Entry.getValue())
1548     return C;
1549 
1550   llvm::Constant *Zero =
1551       llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1552   llvm::Constant *Zeros[] = { Zero, Zero };
1553 
1554   // If we don't already have it, get __CFConstantStringClassReference.
1555   if (!CFConstantStringClassRef) {
1556     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1557     Ty = llvm::ArrayType::get(Ty, 0);
1558     llvm::Constant *GV = CreateRuntimeVariable(Ty,
1559                                            "__CFConstantStringClassReference");
1560     // Decay array -> ptr
1561     CFConstantStringClassRef =
1562       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1563   }
1564 
1565   QualType CFTy = getContext().getCFConstantStringType();
1566 
1567   const llvm::StructType *STy =
1568     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1569 
1570   std::vector<llvm::Constant*> Fields(4);
1571 
1572   // Class pointer.
1573   Fields[0] = CFConstantStringClassRef;
1574 
1575   // Flags.
1576   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1577   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
1578     llvm::ConstantInt::get(Ty, 0x07C8);
1579 
1580   // String pointer.
1581   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1582 
1583   llvm::GlobalValue::LinkageTypes Linkage;
1584   bool isConstant;
1585   if (isUTF16) {
1586     // FIXME: why do utf strings get "_" labels instead of "L" labels?
1587     Linkage = llvm::GlobalValue::InternalLinkage;
1588     // Note: -fwritable-strings doesn't make unicode CFStrings writable, but
1589     // does make plain ascii ones writable.
1590     isConstant = true;
1591   } else {
1592     Linkage = llvm::GlobalValue::PrivateLinkage;
1593     isConstant = !Features.WritableStrings;
1594   }
1595 
1596   llvm::GlobalVariable *GV =
1597     new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1598                              ".str");
1599   if (isUTF16) {
1600     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
1601     GV->setAlignment(Align.getQuantity());
1602   }
1603   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1604 
1605   // String length.
1606   Ty = getTypes().ConvertType(getContext().LongTy);
1607   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
1608 
1609   // The struct.
1610   C = llvm::ConstantStruct::get(STy, Fields);
1611   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1612                                 llvm::GlobalVariable::PrivateLinkage, C,
1613                                 "_unnamed_cfstring_");
1614   if (const char *Sect = getContext().Target.getCFStringSection())
1615     GV->setSection(Sect);
1616   Entry.setValue(GV);
1617 
1618   return GV;
1619 }
1620 
1621 llvm::Constant *
1622 CodeGenModule::GetAddrOfConstantNSString(const StringLiteral *Literal) {
1623   unsigned StringLength = 0;
1624   bool isUTF16 = false;
1625   llvm::StringMapEntry<llvm::Constant*> &Entry =
1626     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1627                              getTargetData().isLittleEndian(),
1628                              isUTF16, StringLength);
1629 
1630   if (llvm::Constant *C = Entry.getValue())
1631     return C;
1632 
1633   llvm::Constant *Zero =
1634   llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1635   llvm::Constant *Zeros[] = { Zero, Zero };
1636 
1637   // If we don't already have it, get _NSConstantStringClassReference.
1638   if (!NSConstantStringClassRef) {
1639     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1640     Ty = llvm::ArrayType::get(Ty, 0);
1641     llvm::Constant *GV = CreateRuntimeVariable(Ty,
1642                                         Features.ObjCNonFragileABI ?
1643                                         "OBJC_CLASS_$_NSConstantString" :
1644                                         "_NSConstantStringClassReference");
1645     // Decay array -> ptr
1646     NSConstantStringClassRef =
1647       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1648   }
1649 
1650   QualType NSTy = getContext().getNSConstantStringType();
1651 
1652   const llvm::StructType *STy =
1653   cast<llvm::StructType>(getTypes().ConvertType(NSTy));
1654 
1655   std::vector<llvm::Constant*> Fields(3);
1656 
1657   // Class pointer.
1658   Fields[0] = NSConstantStringClassRef;
1659 
1660   // String pointer.
1661   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1662 
1663   llvm::GlobalValue::LinkageTypes Linkage;
1664   bool isConstant;
1665   if (isUTF16) {
1666     // FIXME: why do utf strings get "_" labels instead of "L" labels?
1667     Linkage = llvm::GlobalValue::InternalLinkage;
1668     // Note: -fwritable-strings doesn't make unicode NSStrings writable, but
1669     // does make plain ascii ones writable.
1670     isConstant = true;
1671   } else {
1672     Linkage = llvm::GlobalValue::PrivateLinkage;
1673     isConstant = !Features.WritableStrings;
1674   }
1675 
1676   llvm::GlobalVariable *GV =
1677   new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1678                            ".str");
1679   if (isUTF16) {
1680     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
1681     GV->setAlignment(Align.getQuantity());
1682   }
1683   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1684 
1685   // String length.
1686   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1687   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
1688 
1689   // The struct.
1690   C = llvm::ConstantStruct::get(STy, Fields);
1691   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1692                                 llvm::GlobalVariable::PrivateLinkage, C,
1693                                 "_unnamed_nsstring_");
1694   // FIXME. Fix section.
1695   if (const char *Sect =
1696         Features.ObjCNonFragileABI
1697           ? getContext().Target.getNSStringNonFragileABISection()
1698           : getContext().Target.getNSStringSection())
1699     GV->setSection(Sect);
1700   Entry.setValue(GV);
1701 
1702   return GV;
1703 }
1704 
1705 /// GetStringForStringLiteral - Return the appropriate bytes for a
1706 /// string literal, properly padded to match the literal type.
1707 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1708   const ConstantArrayType *CAT =
1709     getContext().getAsConstantArrayType(E->getType());
1710   assert(CAT && "String isn't pointer or array!");
1711 
1712   // Resize the string to the right size.
1713   uint64_t RealLen = CAT->getSize().getZExtValue();
1714 
1715   if (E->isWide())
1716     RealLen *= getContext().Target.getWCharWidth()/8;
1717 
1718   std::string Str = E->getString().str();
1719   Str.resize(RealLen, '\0');
1720 
1721   return Str;
1722 }
1723 
1724 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1725 /// constant array for the given string literal.
1726 llvm::Constant *
1727 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1728   // FIXME: This can be more efficient.
1729   // FIXME: We shouldn't need to bitcast the constant in the wide string case.
1730   llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S));
1731   if (S->isWide()) {
1732     llvm::Type *DestTy =
1733         llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType()));
1734     C = llvm::ConstantExpr::getBitCast(C, DestTy);
1735   }
1736   return C;
1737 }
1738 
1739 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1740 /// array for the given ObjCEncodeExpr node.
1741 llvm::Constant *
1742 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1743   std::string Str;
1744   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1745 
1746   return GetAddrOfConstantCString(Str);
1747 }
1748 
1749 
1750 /// GenerateWritableString -- Creates storage for a string literal.
1751 static llvm::Constant *GenerateStringLiteral(const std::string &str,
1752                                              bool constant,
1753                                              CodeGenModule &CGM,
1754                                              const char *GlobalName) {
1755   // Create Constant for this string literal. Don't add a '\0'.
1756   llvm::Constant *C =
1757       llvm::ConstantArray::get(CGM.getLLVMContext(), str, false);
1758 
1759   // Create a global variable for this string
1760   return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
1761                                   llvm::GlobalValue::PrivateLinkage,
1762                                   C, GlobalName);
1763 }
1764 
1765 /// GetAddrOfConstantString - Returns a pointer to a character array
1766 /// containing the literal. This contents are exactly that of the
1767 /// given string, i.e. it will not be null terminated automatically;
1768 /// see GetAddrOfConstantCString. Note that whether the result is
1769 /// actually a pointer to an LLVM constant depends on
1770 /// Feature.WriteableStrings.
1771 ///
1772 /// The result has pointer to array type.
1773 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str,
1774                                                        const char *GlobalName) {
1775   bool IsConstant = !Features.WritableStrings;
1776 
1777   // Get the default prefix if a name wasn't specified.
1778   if (!GlobalName)
1779     GlobalName = ".str";
1780 
1781   // Don't share any string literals if strings aren't constant.
1782   if (!IsConstant)
1783     return GenerateStringLiteral(str, false, *this, GlobalName);
1784 
1785   llvm::StringMapEntry<llvm::Constant *> &Entry =
1786     ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1787 
1788   if (Entry.getValue())
1789     return Entry.getValue();
1790 
1791   // Create a global variable for this.
1792   llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName);
1793   Entry.setValue(C);
1794   return C;
1795 }
1796 
1797 /// GetAddrOfConstantCString - Returns a pointer to a character
1798 /// array containing the literal and a terminating '\-'
1799 /// character. The result has pointer to array type.
1800 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str,
1801                                                         const char *GlobalName){
1802   return GetAddrOfConstantString(str + '\0', GlobalName);
1803 }
1804 
1805 /// EmitObjCPropertyImplementations - Emit information for synthesized
1806 /// properties for an implementation.
1807 void CodeGenModule::EmitObjCPropertyImplementations(const
1808                                                     ObjCImplementationDecl *D) {
1809   for (ObjCImplementationDecl::propimpl_iterator
1810          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
1811     ObjCPropertyImplDecl *PID = *i;
1812 
1813     // Dynamic is just for type-checking.
1814     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1815       ObjCPropertyDecl *PD = PID->getPropertyDecl();
1816 
1817       // Determine which methods need to be implemented, some may have
1818       // been overridden. Note that ::isSynthesized is not the method
1819       // we want, that just indicates if the decl came from a
1820       // property. What we want to know is if the method is defined in
1821       // this implementation.
1822       if (!D->getInstanceMethod(PD->getGetterName()))
1823         CodeGenFunction(*this).GenerateObjCGetter(
1824                                  const_cast<ObjCImplementationDecl *>(D), PID);
1825       if (!PD->isReadOnly() &&
1826           !D->getInstanceMethod(PD->getSetterName()))
1827         CodeGenFunction(*this).GenerateObjCSetter(
1828                                  const_cast<ObjCImplementationDecl *>(D), PID);
1829     }
1830   }
1831 }
1832 
1833 /// EmitObjCIvarInitializations - Emit information for ivar initialization
1834 /// for an implementation.
1835 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
1836   if (!Features.NeXTRuntime || D->getNumIvarInitializers() == 0)
1837     return;
1838   DeclContext* DC = const_cast<DeclContext*>(dyn_cast<DeclContext>(D));
1839   assert(DC && "EmitObjCIvarInitializations - null DeclContext");
1840   IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
1841   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
1842   ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(getContext(),
1843                                                   D->getLocation(),
1844                                                   D->getLocation(), cxxSelector,
1845                                                   getContext().VoidTy, 0,
1846                                                   DC, true, false, true, false,
1847                                                   ObjCMethodDecl::Required);
1848   D->addInstanceMethod(DTORMethod);
1849   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
1850 
1851   II = &getContext().Idents.get(".cxx_construct");
1852   cxxSelector = getContext().Selectors.getSelector(0, &II);
1853   // The constructor returns 'self'.
1854   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
1855                                                 D->getLocation(),
1856                                                 D->getLocation(), cxxSelector,
1857                                                 getContext().getObjCIdType(), 0,
1858                                                 DC, true, false, true, false,
1859                                                 ObjCMethodDecl::Required);
1860   D->addInstanceMethod(CTORMethod);
1861   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
1862 
1863 
1864 }
1865 
1866 /// EmitNamespace - Emit all declarations in a namespace.
1867 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
1868   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
1869        I != E; ++I)
1870     EmitTopLevelDecl(*I);
1871 }
1872 
1873 // EmitLinkageSpec - Emit all declarations in a linkage spec.
1874 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
1875   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
1876       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
1877     ErrorUnsupported(LSD, "linkage spec");
1878     return;
1879   }
1880 
1881   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
1882        I != E; ++I)
1883     EmitTopLevelDecl(*I);
1884 }
1885 
1886 /// EmitTopLevelDecl - Emit code for a single top level declaration.
1887 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
1888   // If an error has occurred, stop code generation, but continue
1889   // parsing and semantic analysis (to ensure all warnings and errors
1890   // are emitted).
1891   if (Diags.hasErrorOccurred())
1892     return;
1893 
1894   // Ignore dependent declarations.
1895   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
1896     return;
1897 
1898   switch (D->getKind()) {
1899   case Decl::CXXConversion:
1900   case Decl::CXXMethod:
1901   case Decl::Function:
1902     // Skip function templates
1903     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1904       return;
1905 
1906     EmitGlobal(cast<FunctionDecl>(D));
1907     break;
1908 
1909   case Decl::Var:
1910     EmitGlobal(cast<VarDecl>(D));
1911     break;
1912 
1913   // C++ Decls
1914   case Decl::Namespace:
1915     EmitNamespace(cast<NamespaceDecl>(D));
1916     break;
1917     // No code generation needed.
1918   case Decl::UsingShadow:
1919   case Decl::Using:
1920   case Decl::UsingDirective:
1921   case Decl::ClassTemplate:
1922   case Decl::FunctionTemplate:
1923   case Decl::NamespaceAlias:
1924     break;
1925   case Decl::CXXConstructor:
1926     // Skip function templates
1927     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1928       return;
1929 
1930     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
1931     break;
1932   case Decl::CXXDestructor:
1933     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
1934     break;
1935 
1936   case Decl::StaticAssert:
1937     // Nothing to do.
1938     break;
1939 
1940   // Objective-C Decls
1941 
1942   // Forward declarations, no (immediate) code generation.
1943   case Decl::ObjCClass:
1944   case Decl::ObjCForwardProtocol:
1945   case Decl::ObjCCategory:
1946   case Decl::ObjCInterface:
1947     break;
1948 
1949   case Decl::ObjCProtocol:
1950     Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
1951     break;
1952 
1953   case Decl::ObjCCategoryImpl:
1954     // Categories have properties but don't support synthesize so we
1955     // can ignore them here.
1956     Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
1957     break;
1958 
1959   case Decl::ObjCImplementation: {
1960     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
1961     EmitObjCPropertyImplementations(OMD);
1962     EmitObjCIvarInitializations(OMD);
1963     Runtime->GenerateClass(OMD);
1964     break;
1965   }
1966   case Decl::ObjCMethod: {
1967     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
1968     // If this is not a prototype, emit the body.
1969     if (OMD->getBody())
1970       CodeGenFunction(*this).GenerateObjCMethod(OMD);
1971     break;
1972   }
1973   case Decl::ObjCCompatibleAlias:
1974     // compatibility-alias is a directive and has no code gen.
1975     break;
1976 
1977   case Decl::LinkageSpec:
1978     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
1979     break;
1980 
1981   case Decl::FileScopeAsm: {
1982     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
1983     llvm::StringRef AsmString = AD->getAsmString()->getString();
1984 
1985     const std::string &S = getModule().getModuleInlineAsm();
1986     if (S.empty())
1987       getModule().setModuleInlineAsm(AsmString);
1988     else
1989       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
1990     break;
1991   }
1992 
1993   default:
1994     // Make sure we handled everything we should, every other kind is a
1995     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
1996     // function. Need to recode Decl::Kind to do that easily.
1997     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
1998   }
1999 }
2000 
2001 /// Turns the given pointer into a constant.
2002 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
2003                                           const void *Ptr) {
2004   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
2005   const llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
2006   return llvm::ConstantInt::get(i64, PtrInt);
2007 }
2008 
2009 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
2010                                    llvm::NamedMDNode *&GlobalMetadata,
2011                                    GlobalDecl D,
2012                                    llvm::GlobalValue *Addr) {
2013   if (!GlobalMetadata)
2014     GlobalMetadata =
2015       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
2016 
2017   // TODO: should we report variant information for ctors/dtors?
2018   llvm::Value *Ops[] = {
2019     Addr,
2020     GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
2021   };
2022   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops, 2));
2023 }
2024 
2025 /// Emits metadata nodes associating all the global values in the
2026 /// current module with the Decls they came from.  This is useful for
2027 /// projects using IR gen as a subroutine.
2028 ///
2029 /// Since there's currently no way to associate an MDNode directly
2030 /// with an llvm::GlobalValue, we create a global named metadata
2031 /// with the name 'clang.global.decl.ptrs'.
2032 void CodeGenModule::EmitDeclMetadata() {
2033   llvm::NamedMDNode *GlobalMetadata = 0;
2034 
2035   // StaticLocalDeclMap
2036   for (llvm::DenseMap<GlobalDecl,llvm::StringRef>::iterator
2037          I = MangledDeclNames.begin(), E = MangledDeclNames.end();
2038        I != E; ++I) {
2039     llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
2040     EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
2041   }
2042 }
2043 
2044 /// Emits metadata nodes for all the local variables in the current
2045 /// function.
2046 void CodeGenFunction::EmitDeclMetadata() {
2047   if (LocalDeclMap.empty()) return;
2048 
2049   llvm::LLVMContext &Context = getLLVMContext();
2050 
2051   // Find the unique metadata ID for this name.
2052   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
2053 
2054   llvm::NamedMDNode *GlobalMetadata = 0;
2055 
2056   for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
2057          I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
2058     const Decl *D = I->first;
2059     llvm::Value *Addr = I->second;
2060 
2061     if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
2062       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
2063       Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, &DAddr, 1));
2064     } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
2065       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
2066       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
2067     }
2068   }
2069 }
2070 
2071 ///@name Custom Runtime Function Interfaces
2072 ///@{
2073 //
2074 // FIXME: These can be eliminated once we can have clients just get the required
2075 // AST nodes from the builtin tables.
2076 
2077 llvm::Constant *CodeGenModule::getBlockObjectDispose() {
2078   if (BlockObjectDispose)
2079     return BlockObjectDispose;
2080 
2081   // If we saw an explicit decl, use that.
2082   if (BlockObjectDisposeDecl) {
2083     return BlockObjectDispose = GetAddrOfFunction(
2084       BlockObjectDisposeDecl,
2085       getTypes().GetFunctionType(BlockObjectDisposeDecl));
2086   }
2087 
2088   // Otherwise construct the function by hand.
2089   const llvm::FunctionType *FTy;
2090   std::vector<const llvm::Type*> ArgTys;
2091   const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext);
2092   ArgTys.push_back(PtrToInt8Ty);
2093   ArgTys.push_back(llvm::Type::getInt32Ty(VMContext));
2094   FTy = llvm::FunctionType::get(ResultType, ArgTys, false);
2095   return BlockObjectDispose =
2096     CreateRuntimeFunction(FTy, "_Block_object_dispose");
2097 }
2098 
2099 llvm::Constant *CodeGenModule::getBlockObjectAssign() {
2100   if (BlockObjectAssign)
2101     return BlockObjectAssign;
2102 
2103   // If we saw an explicit decl, use that.
2104   if (BlockObjectAssignDecl) {
2105     return BlockObjectAssign = GetAddrOfFunction(
2106       BlockObjectAssignDecl,
2107       getTypes().GetFunctionType(BlockObjectAssignDecl));
2108   }
2109 
2110   // Otherwise construct the function by hand.
2111   const llvm::FunctionType *FTy;
2112   std::vector<const llvm::Type*> ArgTys;
2113   const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext);
2114   ArgTys.push_back(PtrToInt8Ty);
2115   ArgTys.push_back(PtrToInt8Ty);
2116   ArgTys.push_back(llvm::Type::getInt32Ty(VMContext));
2117   FTy = llvm::FunctionType::get(ResultType, ArgTys, false);
2118   return BlockObjectAssign =
2119     CreateRuntimeFunction(FTy, "_Block_object_assign");
2120 }
2121 
2122 llvm::Constant *CodeGenModule::getNSConcreteGlobalBlock() {
2123   if (NSConcreteGlobalBlock)
2124     return NSConcreteGlobalBlock;
2125 
2126   // If we saw an explicit decl, use that.
2127   if (NSConcreteGlobalBlockDecl) {
2128     return NSConcreteGlobalBlock = GetAddrOfGlobalVar(
2129       NSConcreteGlobalBlockDecl,
2130       getTypes().ConvertType(NSConcreteGlobalBlockDecl->getType()));
2131   }
2132 
2133   // Otherwise construct the variable by hand.
2134   return NSConcreteGlobalBlock = CreateRuntimeVariable(
2135     PtrToInt8Ty, "_NSConcreteGlobalBlock");
2136 }
2137 
2138 llvm::Constant *CodeGenModule::getNSConcreteStackBlock() {
2139   if (NSConcreteStackBlock)
2140     return NSConcreteStackBlock;
2141 
2142   // If we saw an explicit decl, use that.
2143   if (NSConcreteStackBlockDecl) {
2144     return NSConcreteStackBlock = GetAddrOfGlobalVar(
2145       NSConcreteStackBlockDecl,
2146       getTypes().ConvertType(NSConcreteStackBlockDecl->getType()));
2147   }
2148 
2149   // Otherwise construct the variable by hand.
2150   return NSConcreteStackBlock = CreateRuntimeVariable(
2151     PtrToInt8Ty, "_NSConcreteStackBlock");
2152 }
2153 
2154 ///@}
2155