1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CGCall.h" 18 #include "CGObjCRuntime.h" 19 #include "Mangle.h" 20 #include "TargetInfo.h" 21 #include "clang/CodeGen/CodeGenOptions.h" 22 #include "clang/AST/ASTContext.h" 23 #include "clang/AST/CharUnits.h" 24 #include "clang/AST/DeclObjC.h" 25 #include "clang/AST/DeclCXX.h" 26 #include "clang/AST/RecordLayout.h" 27 #include "clang/Basic/Builtins.h" 28 #include "clang/Basic/Diagnostic.h" 29 #include "clang/Basic/SourceManager.h" 30 #include "clang/Basic/TargetInfo.h" 31 #include "clang/Basic/ConvertUTF.h" 32 #include "llvm/CallingConv.h" 33 #include "llvm/Module.h" 34 #include "llvm/Intrinsics.h" 35 #include "llvm/LLVMContext.h" 36 #include "llvm/ADT/Triple.h" 37 #include "llvm/Target/TargetData.h" 38 #include "llvm/Support/CallSite.h" 39 #include "llvm/Support/ErrorHandling.h" 40 using namespace clang; 41 using namespace CodeGen; 42 43 44 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 45 llvm::Module &M, const llvm::TargetData &TD, 46 Diagnostic &diags) 47 : BlockModule(C, M, TD, Types, *this), Context(C), 48 Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M), 49 TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags), 50 Types(C, M, TD, getTargetCodeGenInfo().getABIInfo()), 51 MangleCtx(C, diags), VTables(*this), Runtime(0), 52 CFConstantStringClassRef(0), 53 VMContext(M.getContext()) { 54 55 if (!Features.ObjC1) 56 Runtime = 0; 57 else if (!Features.NeXTRuntime) 58 Runtime = CreateGNUObjCRuntime(*this); 59 else if (Features.ObjCNonFragileABI) 60 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 61 else 62 Runtime = CreateMacObjCRuntime(*this); 63 64 // If debug info generation is enabled, create the CGDebugInfo object. 65 DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(*this) : 0; 66 } 67 68 CodeGenModule::~CodeGenModule() { 69 delete Runtime; 70 delete DebugInfo; 71 } 72 73 void CodeGenModule::createObjCRuntime() { 74 if (!Features.NeXTRuntime) 75 Runtime = CreateGNUObjCRuntime(*this); 76 else if (Features.ObjCNonFragileABI) 77 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 78 else 79 Runtime = CreateMacObjCRuntime(*this); 80 } 81 82 void CodeGenModule::Release() { 83 EmitDeferred(); 84 EmitCXXGlobalInitFunc(); 85 EmitCXXGlobalDtorFunc(); 86 if (Runtime) 87 if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction()) 88 AddGlobalCtor(ObjCInitFunction); 89 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 90 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 91 EmitAnnotations(); 92 EmitLLVMUsed(); 93 } 94 95 bool CodeGenModule::isTargetDarwin() const { 96 return getContext().Target.getTriple().getOS() == llvm::Triple::Darwin; 97 } 98 99 /// ErrorUnsupported - Print out an error that codegen doesn't support the 100 /// specified stmt yet. 101 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 102 bool OmitOnError) { 103 if (OmitOnError && getDiags().hasErrorOccurred()) 104 return; 105 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 106 "cannot compile this %0 yet"); 107 std::string Msg = Type; 108 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 109 << Msg << S->getSourceRange(); 110 } 111 112 /// ErrorUnsupported - Print out an error that codegen doesn't support the 113 /// specified decl yet. 114 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 115 bool OmitOnError) { 116 if (OmitOnError && getDiags().hasErrorOccurred()) 117 return; 118 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 119 "cannot compile this %0 yet"); 120 std::string Msg = Type; 121 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 122 } 123 124 LangOptions::VisibilityMode 125 CodeGenModule::getDeclVisibilityMode(const Decl *D) const { 126 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 127 if (VD->getStorageClass() == VarDecl::PrivateExtern) 128 return LangOptions::Hidden; 129 130 if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) { 131 switch (attr->getVisibility()) { 132 default: assert(0 && "Unknown visibility!"); 133 case VisibilityAttr::DefaultVisibility: 134 return LangOptions::Default; 135 case VisibilityAttr::HiddenVisibility: 136 return LangOptions::Hidden; 137 case VisibilityAttr::ProtectedVisibility: 138 return LangOptions::Protected; 139 } 140 } 141 142 // This decl should have the same visibility as its parent. 143 if (const DeclContext *DC = D->getDeclContext()) 144 return getDeclVisibilityMode(cast<Decl>(DC)); 145 146 return getLangOptions().getVisibilityMode(); 147 } 148 149 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 150 const Decl *D) const { 151 // Internal definitions always have default visibility. 152 if (GV->hasLocalLinkage()) { 153 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 154 return; 155 } 156 157 switch (getDeclVisibilityMode(D)) { 158 default: assert(0 && "Unknown visibility!"); 159 case LangOptions::Default: 160 return GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 161 case LangOptions::Hidden: 162 return GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 163 case LangOptions::Protected: 164 return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 165 } 166 } 167 168 void CodeGenModule::getMangledName(MangleBuffer &Buffer, GlobalDecl GD) { 169 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 170 171 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 172 return getMangledCXXCtorName(Buffer, D, GD.getCtorType()); 173 if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 174 return getMangledCXXDtorName(Buffer, D, GD.getDtorType()); 175 176 return getMangledName(Buffer, ND); 177 } 178 179 /// \brief Retrieves the mangled name for the given declaration. 180 /// 181 /// If the given declaration requires a mangled name, returns an 182 /// const char* containing the mangled name. Otherwise, returns 183 /// the unmangled name. 184 /// 185 void CodeGenModule::getMangledName(MangleBuffer &Buffer, 186 const NamedDecl *ND) { 187 if (!getMangleContext().shouldMangleDeclName(ND)) { 188 assert(ND->getIdentifier() && "Attempt to mangle unnamed decl."); 189 Buffer.setString(ND->getNameAsCString()); 190 return; 191 } 192 193 getMangleContext().mangleName(ND, Buffer.getBuffer()); 194 } 195 196 llvm::GlobalValue *CodeGenModule::GetGlobalValue(llvm::StringRef Name) { 197 return getModule().getNamedValue(Name); 198 } 199 200 /// AddGlobalCtor - Add a function to the list that will be called before 201 /// main() runs. 202 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 203 // FIXME: Type coercion of void()* types. 204 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 205 } 206 207 /// AddGlobalDtor - Add a function to the list that will be called 208 /// when the module is unloaded. 209 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 210 // FIXME: Type coercion of void()* types. 211 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 212 } 213 214 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 215 // Ctor function type is void()*. 216 llvm::FunctionType* CtorFTy = 217 llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), 218 std::vector<const llvm::Type*>(), 219 false); 220 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 221 222 // Get the type of a ctor entry, { i32, void ()* }. 223 llvm::StructType* CtorStructTy = 224 llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext), 225 llvm::PointerType::getUnqual(CtorFTy), NULL); 226 227 // Construct the constructor and destructor arrays. 228 std::vector<llvm::Constant*> Ctors; 229 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 230 std::vector<llvm::Constant*> S; 231 S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 232 I->second, false)); 233 S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)); 234 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 235 } 236 237 if (!Ctors.empty()) { 238 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 239 new llvm::GlobalVariable(TheModule, AT, false, 240 llvm::GlobalValue::AppendingLinkage, 241 llvm::ConstantArray::get(AT, Ctors), 242 GlobalName); 243 } 244 } 245 246 void CodeGenModule::EmitAnnotations() { 247 if (Annotations.empty()) 248 return; 249 250 // Create a new global variable for the ConstantStruct in the Module. 251 llvm::Constant *Array = 252 llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(), 253 Annotations.size()), 254 Annotations); 255 llvm::GlobalValue *gv = 256 new llvm::GlobalVariable(TheModule, Array->getType(), false, 257 llvm::GlobalValue::AppendingLinkage, Array, 258 "llvm.global.annotations"); 259 gv->setSection("llvm.metadata"); 260 } 261 262 static CodeGenModule::GVALinkage 263 GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD, 264 const LangOptions &Features) { 265 CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal; 266 267 Linkage L = FD->getLinkage(); 268 if (L == ExternalLinkage && Context.getLangOptions().CPlusPlus && 269 FD->getType()->getLinkage() == UniqueExternalLinkage) 270 L = UniqueExternalLinkage; 271 272 switch (L) { 273 case NoLinkage: 274 case InternalLinkage: 275 case UniqueExternalLinkage: 276 return CodeGenModule::GVA_Internal; 277 278 case ExternalLinkage: 279 switch (FD->getTemplateSpecializationKind()) { 280 case TSK_Undeclared: 281 case TSK_ExplicitSpecialization: 282 External = CodeGenModule::GVA_StrongExternal; 283 break; 284 285 case TSK_ExplicitInstantiationDefinition: 286 return CodeGenModule::GVA_ExplicitTemplateInstantiation; 287 288 case TSK_ExplicitInstantiationDeclaration: 289 case TSK_ImplicitInstantiation: 290 External = CodeGenModule::GVA_TemplateInstantiation; 291 break; 292 } 293 } 294 295 if (!FD->isInlined()) 296 return External; 297 298 if (!Features.CPlusPlus || FD->hasAttr<GNUInlineAttr>()) { 299 // GNU or C99 inline semantics. Determine whether this symbol should be 300 // externally visible. 301 if (FD->isInlineDefinitionExternallyVisible()) 302 return External; 303 304 // C99 inline semantics, where the symbol is not externally visible. 305 return CodeGenModule::GVA_C99Inline; 306 } 307 308 // C++0x [temp.explicit]p9: 309 // [ Note: The intent is that an inline function that is the subject of 310 // an explicit instantiation declaration will still be implicitly 311 // instantiated when used so that the body can be considered for 312 // inlining, but that no out-of-line copy of the inline function would be 313 // generated in the translation unit. -- end note ] 314 if (FD->getTemplateSpecializationKind() 315 == TSK_ExplicitInstantiationDeclaration) 316 return CodeGenModule::GVA_C99Inline; 317 318 // If this is a virtual method and its class has a key method in another 319 // translation unit, we know that this method will be present in that 320 // translation unit. In this translation unit we will use this method 321 // only for inlining and analysis. This is the semantics of c99 inline. 322 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 323 const CXXRecordDecl *RD = MD->getParent(); 324 if (MD->isVirtual() && 325 CodeGenVTables::isKeyFunctionInAnotherTU(Context, RD)) 326 return CodeGenModule::GVA_C99Inline; 327 } 328 329 return CodeGenModule::GVA_CXXInline; 330 } 331 332 llvm::GlobalValue::LinkageTypes 333 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) { 334 GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features); 335 336 if (Linkage == GVA_Internal) { 337 return llvm::Function::InternalLinkage; 338 } else if (D->hasAttr<DLLExportAttr>()) { 339 return llvm::Function::DLLExportLinkage; 340 } else if (D->hasAttr<WeakAttr>()) { 341 return llvm::Function::WeakAnyLinkage; 342 } else if (Linkage == GVA_C99Inline) { 343 // In C99 mode, 'inline' functions are guaranteed to have a strong 344 // definition somewhere else, so we can use available_externally linkage. 345 return llvm::Function::AvailableExternallyLinkage; 346 } else if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) { 347 // In C++, the compiler has to emit a definition in every translation unit 348 // that references the function. We should use linkonce_odr because 349 // a) if all references in this translation unit are optimized away, we 350 // don't need to codegen it. b) if the function persists, it needs to be 351 // merged with other definitions. c) C++ has the ODR, so we know the 352 // definition is dependable. 353 return llvm::Function::LinkOnceODRLinkage; 354 } else if (Linkage == GVA_ExplicitTemplateInstantiation) { 355 // An explicit instantiation of a template has weak linkage, since 356 // explicit instantiations can occur in multiple translation units 357 // and must all be equivalent. However, we are not allowed to 358 // throw away these explicit instantiations. 359 return llvm::Function::WeakODRLinkage; 360 } else { 361 assert(Linkage == GVA_StrongExternal); 362 // Otherwise, we have strong external linkage. 363 return llvm::Function::ExternalLinkage; 364 } 365 } 366 367 368 /// SetFunctionDefinitionAttributes - Set attributes for a global. 369 /// 370 /// FIXME: This is currently only done for aliases and functions, but not for 371 /// variables (these details are set in EmitGlobalVarDefinition for variables). 372 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 373 llvm::GlobalValue *GV) { 374 GV->setLinkage(getFunctionLinkage(D)); 375 SetCommonAttributes(D, GV); 376 } 377 378 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 379 const CGFunctionInfo &Info, 380 llvm::Function *F) { 381 unsigned CallingConv; 382 AttributeListType AttributeList; 383 ConstructAttributeList(Info, D, AttributeList, CallingConv); 384 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), 385 AttributeList.size())); 386 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 387 } 388 389 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 390 llvm::Function *F) { 391 if (!Features.Exceptions && !Features.ObjCNonFragileABI) 392 F->addFnAttr(llvm::Attribute::NoUnwind); 393 394 if (D->hasAttr<AlwaysInlineAttr>()) 395 F->addFnAttr(llvm::Attribute::AlwaysInline); 396 397 if (D->hasAttr<NoInlineAttr>()) 398 F->addFnAttr(llvm::Attribute::NoInline); 399 400 if (Features.getStackProtectorMode() == LangOptions::SSPOn) 401 F->addFnAttr(llvm::Attribute::StackProtect); 402 else if (Features.getStackProtectorMode() == LangOptions::SSPReq) 403 F->addFnAttr(llvm::Attribute::StackProtectReq); 404 405 if (const AlignedAttr *AA = D->getAttr<AlignedAttr>()) { 406 unsigned width = Context.Target.getCharWidth(); 407 F->setAlignment(AA->getAlignment() / width); 408 while ((AA = AA->getNext<AlignedAttr>())) 409 F->setAlignment(std::max(F->getAlignment(), AA->getAlignment() / width)); 410 } 411 // C++ ABI requires 2-byte alignment for member functions. 412 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 413 F->setAlignment(2); 414 } 415 416 void CodeGenModule::SetCommonAttributes(const Decl *D, 417 llvm::GlobalValue *GV) { 418 setGlobalVisibility(GV, D); 419 420 if (D->hasAttr<UsedAttr>()) 421 AddUsedGlobal(GV); 422 423 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 424 GV->setSection(SA->getName()); 425 426 getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this); 427 } 428 429 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 430 llvm::Function *F, 431 const CGFunctionInfo &FI) { 432 SetLLVMFunctionAttributes(D, FI, F); 433 SetLLVMFunctionAttributesForDefinition(D, F); 434 435 F->setLinkage(llvm::Function::InternalLinkage); 436 437 SetCommonAttributes(D, F); 438 } 439 440 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, 441 llvm::Function *F, 442 bool IsIncompleteFunction) { 443 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 444 445 if (!IsIncompleteFunction) 446 SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F); 447 448 // Only a few attributes are set on declarations; these may later be 449 // overridden by a definition. 450 451 if (FD->hasAttr<DLLImportAttr>()) { 452 F->setLinkage(llvm::Function::DLLImportLinkage); 453 } else if (FD->hasAttr<WeakAttr>() || 454 FD->hasAttr<WeakImportAttr>()) { 455 // "extern_weak" is overloaded in LLVM; we probably should have 456 // separate linkage types for this. 457 F->setLinkage(llvm::Function::ExternalWeakLinkage); 458 } else { 459 F->setLinkage(llvm::Function::ExternalLinkage); 460 } 461 462 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 463 F->setSection(SA->getName()); 464 } 465 466 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 467 assert(!GV->isDeclaration() && 468 "Only globals with definition can force usage."); 469 LLVMUsed.push_back(GV); 470 } 471 472 void CodeGenModule::EmitLLVMUsed() { 473 // Don't create llvm.used if there is no need. 474 if (LLVMUsed.empty()) 475 return; 476 477 const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext); 478 479 // Convert LLVMUsed to what ConstantArray needs. 480 std::vector<llvm::Constant*> UsedArray; 481 UsedArray.resize(LLVMUsed.size()); 482 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 483 UsedArray[i] = 484 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), 485 i8PTy); 486 } 487 488 if (UsedArray.empty()) 489 return; 490 llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size()); 491 492 llvm::GlobalVariable *GV = 493 new llvm::GlobalVariable(getModule(), ATy, false, 494 llvm::GlobalValue::AppendingLinkage, 495 llvm::ConstantArray::get(ATy, UsedArray), 496 "llvm.used"); 497 498 GV->setSection("llvm.metadata"); 499 } 500 501 void CodeGenModule::EmitDeferred() { 502 // Emit code for any potentially referenced deferred decls. Since a 503 // previously unused static decl may become used during the generation of code 504 // for a static function, iterate until no changes are made. 505 506 while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) { 507 if (!DeferredVTables.empty()) { 508 const CXXRecordDecl *RD = DeferredVTables.back(); 509 DeferredVTables.pop_back(); 510 getVTables().GenerateClassData(getVTableLinkage(RD), RD); 511 continue; 512 } 513 514 GlobalDecl D = DeferredDeclsToEmit.back(); 515 DeferredDeclsToEmit.pop_back(); 516 517 // Look it up to see if it was defined with a stronger definition (e.g. an 518 // extern inline function with a strong function redefinition). If so, 519 // just ignore the deferred decl. 520 MangleBuffer Name; 521 getMangledName(Name, D); 522 llvm::GlobalValue *CGRef = GetGlobalValue(Name); 523 assert(CGRef && "Deferred decl wasn't referenced?"); 524 525 if (!CGRef->isDeclaration()) 526 continue; 527 528 // Otherwise, emit the definition and move on to the next one. 529 EmitGlobalDefinition(D); 530 } 531 } 532 533 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the 534 /// annotation information for a given GlobalValue. The annotation struct is 535 /// {i8 *, i8 *, i8 *, i32}. The first field is a constant expression, the 536 /// GlobalValue being annotated. The second field is the constant string 537 /// created from the AnnotateAttr's annotation. The third field is a constant 538 /// string containing the name of the translation unit. The fourth field is 539 /// the line number in the file of the annotated value declaration. 540 /// 541 /// FIXME: this does not unique the annotation string constants, as llvm-gcc 542 /// appears to. 543 /// 544 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 545 const AnnotateAttr *AA, 546 unsigned LineNo) { 547 llvm::Module *M = &getModule(); 548 549 // get [N x i8] constants for the annotation string, and the filename string 550 // which are the 2nd and 3rd elements of the global annotation structure. 551 const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext); 552 llvm::Constant *anno = llvm::ConstantArray::get(VMContext, 553 AA->getAnnotation(), true); 554 llvm::Constant *unit = llvm::ConstantArray::get(VMContext, 555 M->getModuleIdentifier(), 556 true); 557 558 // Get the two global values corresponding to the ConstantArrays we just 559 // created to hold the bytes of the strings. 560 llvm::GlobalValue *annoGV = 561 new llvm::GlobalVariable(*M, anno->getType(), false, 562 llvm::GlobalValue::PrivateLinkage, anno, 563 GV->getName()); 564 // translation unit name string, emitted into the llvm.metadata section. 565 llvm::GlobalValue *unitGV = 566 new llvm::GlobalVariable(*M, unit->getType(), false, 567 llvm::GlobalValue::PrivateLinkage, unit, 568 ".str"); 569 570 // Create the ConstantStruct for the global annotation. 571 llvm::Constant *Fields[4] = { 572 llvm::ConstantExpr::getBitCast(GV, SBP), 573 llvm::ConstantExpr::getBitCast(annoGV, SBP), 574 llvm::ConstantExpr::getBitCast(unitGV, SBP), 575 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo) 576 }; 577 return llvm::ConstantStruct::get(VMContext, Fields, 4, false); 578 } 579 580 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 581 // Never defer when EmitAllDecls is specified or the decl has 582 // attribute used. 583 if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>()) 584 return false; 585 586 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 587 // Constructors and destructors should never be deferred. 588 if (FD->hasAttr<ConstructorAttr>() || 589 FD->hasAttr<DestructorAttr>()) 590 return false; 591 592 // The key function for a class must never be deferred. 593 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Global)) { 594 const CXXRecordDecl *RD = MD->getParent(); 595 if (MD->isOutOfLine() && RD->isDynamicClass()) { 596 const CXXMethodDecl *KeyFunction = getContext().getKeyFunction(RD); 597 if (KeyFunction && 598 KeyFunction->getCanonicalDecl() == MD->getCanonicalDecl()) 599 return false; 600 } 601 } 602 603 GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features); 604 605 // static, static inline, always_inline, and extern inline functions can 606 // always be deferred. Normal inline functions can be deferred in C99/C++. 607 // Implicit template instantiations can also be deferred in C++. 608 if (Linkage == GVA_Internal || Linkage == GVA_C99Inline || 609 Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) 610 return true; 611 return false; 612 } 613 614 const VarDecl *VD = cast<VarDecl>(Global); 615 assert(VD->isFileVarDecl() && "Invalid decl"); 616 617 // We never want to defer structs that have non-trivial constructors or 618 // destructors. 619 620 // FIXME: Handle references. 621 if (const RecordType *RT = VD->getType()->getAs<RecordType>()) { 622 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 623 if (!RD->hasTrivialConstructor() || !RD->hasTrivialDestructor()) 624 return false; 625 } 626 } 627 628 // Static data may be deferred, but out-of-line static data members 629 // cannot be. 630 Linkage L = VD->getLinkage(); 631 if (L == ExternalLinkage && getContext().getLangOptions().CPlusPlus && 632 VD->getType()->getLinkage() == UniqueExternalLinkage) 633 L = UniqueExternalLinkage; 634 635 switch (L) { 636 case NoLinkage: 637 case InternalLinkage: 638 case UniqueExternalLinkage: 639 // Initializer has side effects? 640 if (VD->getInit() && VD->getInit()->HasSideEffects(Context)) 641 return false; 642 return !(VD->isStaticDataMember() && VD->isOutOfLine()); 643 644 case ExternalLinkage: 645 break; 646 } 647 648 return false; 649 } 650 651 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 652 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 653 assert(AA && "No alias?"); 654 655 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 656 657 // See if there is already something with the target's name in the module. 658 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 659 660 llvm::Constant *Aliasee; 661 if (isa<llvm::FunctionType>(DeclTy)) 662 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl()); 663 else 664 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 665 llvm::PointerType::getUnqual(DeclTy), 0); 666 if (!Entry) { 667 llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee); 668 F->setLinkage(llvm::Function::ExternalWeakLinkage); 669 WeakRefReferences.insert(F); 670 } 671 672 return Aliasee; 673 } 674 675 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 676 const ValueDecl *Global = cast<ValueDecl>(GD.getDecl()); 677 678 // Weak references don't produce any output by themselves. 679 if (Global->hasAttr<WeakRefAttr>()) 680 return; 681 682 // If this is an alias definition (which otherwise looks like a declaration) 683 // emit it now. 684 if (Global->hasAttr<AliasAttr>()) 685 return EmitAliasDefinition(GD); 686 687 // Ignore declarations, they will be emitted on their first use. 688 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 689 // Forward declarations are emitted lazily on first use. 690 if (!FD->isThisDeclarationADefinition()) 691 return; 692 } else { 693 const VarDecl *VD = cast<VarDecl>(Global); 694 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 695 696 if (VD->isThisDeclarationADefinition() != VarDecl::Definition) 697 return; 698 } 699 700 // Defer code generation when possible if this is a static definition, inline 701 // function etc. These we only want to emit if they are used. 702 if (!MayDeferGeneration(Global)) { 703 // Emit the definition if it can't be deferred. 704 EmitGlobalDefinition(GD); 705 return; 706 } 707 708 // If the value has already been used, add it directly to the 709 // DeferredDeclsToEmit list. 710 MangleBuffer MangledName; 711 getMangledName(MangledName, GD); 712 if (GetGlobalValue(MangledName)) 713 DeferredDeclsToEmit.push_back(GD); 714 else { 715 // Otherwise, remember that we saw a deferred decl with this name. The 716 // first use of the mangled name will cause it to move into 717 // DeferredDeclsToEmit. 718 DeferredDecls[MangledName] = GD; 719 } 720 } 721 722 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { 723 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 724 725 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 726 Context.getSourceManager(), 727 "Generating code for declaration"); 728 729 if (isa<CXXMethodDecl>(D)) 730 getVTables().EmitVTableRelatedData(GD); 731 732 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) 733 return EmitCXXConstructor(CD, GD.getCtorType()); 734 735 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) 736 return EmitCXXDestructor(DD, GD.getDtorType()); 737 738 if (isa<FunctionDecl>(D)) 739 return EmitGlobalFunctionDefinition(GD); 740 741 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 742 return EmitGlobalVarDefinition(VD); 743 744 assert(0 && "Invalid argument to EmitGlobalDefinition()"); 745 } 746 747 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 748 /// module, create and return an llvm Function with the specified type. If there 749 /// is something in the module with the specified name, return it potentially 750 /// bitcasted to the right type. 751 /// 752 /// If D is non-null, it specifies a decl that correspond to this. This is used 753 /// to set the attributes on the function when it is first created. 754 llvm::Constant * 755 CodeGenModule::GetOrCreateLLVMFunction(llvm::StringRef MangledName, 756 const llvm::Type *Ty, 757 GlobalDecl D) { 758 // Lookup the entry, lazily creating it if necessary. 759 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 760 if (Entry) { 761 if (WeakRefReferences.count(Entry)) { 762 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl()); 763 if (FD && !FD->hasAttr<WeakAttr>()) 764 Entry->setLinkage(llvm::Function::ExternalLinkage); 765 766 WeakRefReferences.erase(Entry); 767 } 768 769 if (Entry->getType()->getElementType() == Ty) 770 return Entry; 771 772 // Make sure the result is of the correct type. 773 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 774 return llvm::ConstantExpr::getBitCast(Entry, PTy); 775 } 776 777 // This function doesn't have a complete type (for example, the return 778 // type is an incomplete struct). Use a fake type instead, and make 779 // sure not to try to set attributes. 780 bool IsIncompleteFunction = false; 781 if (!isa<llvm::FunctionType>(Ty)) { 782 Ty = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), 783 std::vector<const llvm::Type*>(), false); 784 IsIncompleteFunction = true; 785 } 786 llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty), 787 llvm::Function::ExternalLinkage, 788 MangledName, &getModule()); 789 assert(F->getName() == MangledName && "name was uniqued!"); 790 if (D.getDecl()) 791 SetFunctionAttributes(D, F, IsIncompleteFunction); 792 793 // This is the first use or definition of a mangled name. If there is a 794 // deferred decl with this name, remember that we need to emit it at the end 795 // of the file. 796 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 797 if (DDI != DeferredDecls.end()) { 798 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 799 // list, and remove it from DeferredDecls (since we don't need it anymore). 800 DeferredDeclsToEmit.push_back(DDI->second); 801 DeferredDecls.erase(DDI); 802 } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) { 803 // If this the first reference to a C++ inline function in a class, queue up 804 // the deferred function body for emission. These are not seen as 805 // top-level declarations. 806 if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD)) 807 DeferredDeclsToEmit.push_back(D); 808 // A called constructor which has no definition or declaration need be 809 // synthesized. 810 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) { 811 if (CD->isImplicit()) { 812 assert(CD->isUsed() && "Sema doesn't consider constructor as used."); 813 DeferredDeclsToEmit.push_back(D); 814 } 815 } else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) { 816 if (DD->isImplicit()) { 817 assert(DD->isUsed() && "Sema doesn't consider destructor as used."); 818 DeferredDeclsToEmit.push_back(D); 819 } 820 } else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 821 if (MD->isCopyAssignment() && MD->isImplicit()) { 822 assert(MD->isUsed() && "Sema doesn't consider CopyAssignment as used."); 823 DeferredDeclsToEmit.push_back(D); 824 } 825 } 826 } 827 828 return F; 829 } 830 831 /// GetAddrOfFunction - Return the address of the given function. If Ty is 832 /// non-null, then this function will use the specified type if it has to 833 /// create it (this occurs when we see a definition of the function). 834 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 835 const llvm::Type *Ty) { 836 // If there was no specific requested type, just convert it now. 837 if (!Ty) 838 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 839 MangleBuffer MangledName; 840 getMangledName(MangledName, GD); 841 return GetOrCreateLLVMFunction(MangledName, Ty, GD); 842 } 843 844 /// CreateRuntimeFunction - Create a new runtime function with the specified 845 /// type and name. 846 llvm::Constant * 847 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy, 848 llvm::StringRef Name) { 849 return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl()); 850 } 851 852 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D) { 853 if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType()) 854 return false; 855 if (Context.getLangOptions().CPlusPlus && 856 Context.getBaseElementType(D->getType())->getAs<RecordType>()) { 857 // FIXME: We should do something fancier here! 858 return false; 859 } 860 return true; 861 } 862 863 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 864 /// create and return an llvm GlobalVariable with the specified type. If there 865 /// is something in the module with the specified name, return it potentially 866 /// bitcasted to the right type. 867 /// 868 /// If D is non-null, it specifies a decl that correspond to this. This is used 869 /// to set the attributes on the global when it is first created. 870 llvm::Constant * 871 CodeGenModule::GetOrCreateLLVMGlobal(llvm::StringRef MangledName, 872 const llvm::PointerType *Ty, 873 const VarDecl *D) { 874 // Lookup the entry, lazily creating it if necessary. 875 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 876 if (Entry) { 877 if (WeakRefReferences.count(Entry)) { 878 if (D && !D->hasAttr<WeakAttr>()) 879 Entry->setLinkage(llvm::Function::ExternalLinkage); 880 881 WeakRefReferences.erase(Entry); 882 } 883 884 if (Entry->getType() == Ty) 885 return Entry; 886 887 // Make sure the result is of the correct type. 888 return llvm::ConstantExpr::getBitCast(Entry, Ty); 889 } 890 891 // This is the first use or definition of a mangled name. If there is a 892 // deferred decl with this name, remember that we need to emit it at the end 893 // of the file. 894 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 895 if (DDI != DeferredDecls.end()) { 896 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 897 // list, and remove it from DeferredDecls (since we don't need it anymore). 898 DeferredDeclsToEmit.push_back(DDI->second); 899 DeferredDecls.erase(DDI); 900 } 901 902 llvm::GlobalVariable *GV = 903 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 904 llvm::GlobalValue::ExternalLinkage, 905 0, MangledName, 0, 906 false, Ty->getAddressSpace()); 907 908 // Handle things which are present even on external declarations. 909 if (D) { 910 // FIXME: This code is overly simple and should be merged with other global 911 // handling. 912 GV->setConstant(DeclIsConstantGlobal(Context, D)); 913 914 // FIXME: Merge with other attribute handling code. 915 if (D->getStorageClass() == VarDecl::PrivateExtern) 916 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 917 918 if (D->hasAttr<WeakAttr>() || 919 D->hasAttr<WeakImportAttr>()) 920 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 921 922 GV->setThreadLocal(D->isThreadSpecified()); 923 } 924 925 return GV; 926 } 927 928 929 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 930 /// given global variable. If Ty is non-null and if the global doesn't exist, 931 /// then it will be greated with the specified type instead of whatever the 932 /// normal requested type would be. 933 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 934 const llvm::Type *Ty) { 935 assert(D->hasGlobalStorage() && "Not a global variable"); 936 QualType ASTTy = D->getType(); 937 if (Ty == 0) 938 Ty = getTypes().ConvertTypeForMem(ASTTy); 939 940 const llvm::PointerType *PTy = 941 llvm::PointerType::get(Ty, ASTTy.getAddressSpace()); 942 943 MangleBuffer MangledName; 944 getMangledName(MangledName, D); 945 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 946 } 947 948 /// CreateRuntimeVariable - Create a new runtime global variable with the 949 /// specified type and name. 950 llvm::Constant * 951 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty, 952 llvm::StringRef Name) { 953 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0); 954 } 955 956 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 957 assert(!D->getInit() && "Cannot emit definite definitions here!"); 958 959 if (MayDeferGeneration(D)) { 960 // If we have not seen a reference to this variable yet, place it 961 // into the deferred declarations table to be emitted if needed 962 // later. 963 MangleBuffer MangledName; 964 getMangledName(MangledName, D); 965 if (!GetGlobalValue(MangledName)) { 966 DeferredDecls[MangledName] = D; 967 return; 968 } 969 } 970 971 // The tentative definition is the only definition. 972 EmitGlobalVarDefinition(D); 973 } 974 975 llvm::GlobalVariable::LinkageTypes 976 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) { 977 if (RD->isInAnonymousNamespace() || !RD->hasLinkage()) 978 return llvm::GlobalVariable::InternalLinkage; 979 980 if (const CXXMethodDecl *KeyFunction 981 = RD->getASTContext().getKeyFunction(RD)) { 982 // If this class has a key function, use that to determine the linkage of 983 // the vtable. 984 const FunctionDecl *Def = 0; 985 if (KeyFunction->getBody(Def)) 986 KeyFunction = cast<CXXMethodDecl>(Def); 987 988 switch (KeyFunction->getTemplateSpecializationKind()) { 989 case TSK_Undeclared: 990 case TSK_ExplicitSpecialization: 991 if (KeyFunction->isInlined()) 992 return llvm::GlobalVariable::WeakODRLinkage; 993 994 return llvm::GlobalVariable::ExternalLinkage; 995 996 case TSK_ImplicitInstantiation: 997 case TSK_ExplicitInstantiationDefinition: 998 return llvm::GlobalVariable::WeakODRLinkage; 999 1000 case TSK_ExplicitInstantiationDeclaration: 1001 // FIXME: Use available_externally linkage. However, this currently 1002 // breaks LLVM's build due to undefined symbols. 1003 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1004 return llvm::GlobalVariable::WeakODRLinkage; 1005 } 1006 } 1007 1008 switch (RD->getTemplateSpecializationKind()) { 1009 case TSK_Undeclared: 1010 case TSK_ExplicitSpecialization: 1011 case TSK_ImplicitInstantiation: 1012 case TSK_ExplicitInstantiationDefinition: 1013 return llvm::GlobalVariable::WeakODRLinkage; 1014 1015 case TSK_ExplicitInstantiationDeclaration: 1016 // FIXME: Use available_externally linkage. However, this currently 1017 // breaks LLVM's build due to undefined symbols. 1018 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1019 return llvm::GlobalVariable::WeakODRLinkage; 1020 } 1021 1022 // Silence GCC warning. 1023 return llvm::GlobalVariable::WeakODRLinkage; 1024 } 1025 1026 static CodeGenModule::GVALinkage 1027 GetLinkageForVariable(ASTContext &Context, const VarDecl *VD) { 1028 // If this is a static data member, compute the kind of template 1029 // specialization. Otherwise, this variable is not part of a 1030 // template. 1031 TemplateSpecializationKind TSK = TSK_Undeclared; 1032 if (VD->isStaticDataMember()) 1033 TSK = VD->getTemplateSpecializationKind(); 1034 1035 Linkage L = VD->getLinkage(); 1036 if (L == ExternalLinkage && Context.getLangOptions().CPlusPlus && 1037 VD->getType()->getLinkage() == UniqueExternalLinkage) 1038 L = UniqueExternalLinkage; 1039 1040 switch (L) { 1041 case NoLinkage: 1042 case InternalLinkage: 1043 case UniqueExternalLinkage: 1044 return CodeGenModule::GVA_Internal; 1045 1046 case ExternalLinkage: 1047 switch (TSK) { 1048 case TSK_Undeclared: 1049 case TSK_ExplicitSpecialization: 1050 return CodeGenModule::GVA_StrongExternal; 1051 1052 case TSK_ExplicitInstantiationDeclaration: 1053 llvm_unreachable("Variable should not be instantiated"); 1054 // Fall through to treat this like any other instantiation. 1055 1056 case TSK_ExplicitInstantiationDefinition: 1057 return CodeGenModule::GVA_ExplicitTemplateInstantiation; 1058 1059 case TSK_ImplicitInstantiation: 1060 return CodeGenModule::GVA_TemplateInstantiation; 1061 } 1062 } 1063 1064 return CodeGenModule::GVA_StrongExternal; 1065 } 1066 1067 CharUnits CodeGenModule::GetTargetTypeStoreSize(const llvm::Type *Ty) const { 1068 return CharUnits::fromQuantity( 1069 TheTargetData.getTypeStoreSizeInBits(Ty) / Context.getCharWidth()); 1070 } 1071 1072 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 1073 llvm::Constant *Init = 0; 1074 QualType ASTTy = D->getType(); 1075 bool NonConstInit = false; 1076 1077 const Expr *InitExpr = D->getAnyInitializer(); 1078 1079 if (!InitExpr) { 1080 // This is a tentative definition; tentative definitions are 1081 // implicitly initialized with { 0 }. 1082 // 1083 // Note that tentative definitions are only emitted at the end of 1084 // a translation unit, so they should never have incomplete 1085 // type. In addition, EmitTentativeDefinition makes sure that we 1086 // never attempt to emit a tentative definition if a real one 1087 // exists. A use may still exists, however, so we still may need 1088 // to do a RAUW. 1089 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 1090 Init = EmitNullConstant(D->getType()); 1091 } else { 1092 Init = EmitConstantExpr(InitExpr, D->getType()); 1093 1094 if (!Init) { 1095 QualType T = InitExpr->getType(); 1096 if (getLangOptions().CPlusPlus) { 1097 EmitCXXGlobalVarDeclInitFunc(D); 1098 Init = EmitNullConstant(T); 1099 NonConstInit = true; 1100 } else { 1101 ErrorUnsupported(D, "static initializer"); 1102 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 1103 } 1104 } 1105 } 1106 1107 const llvm::Type* InitType = Init->getType(); 1108 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 1109 1110 // Strip off a bitcast if we got one back. 1111 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1112 assert(CE->getOpcode() == llvm::Instruction::BitCast || 1113 // all zero index gep. 1114 CE->getOpcode() == llvm::Instruction::GetElementPtr); 1115 Entry = CE->getOperand(0); 1116 } 1117 1118 // Entry is now either a Function or GlobalVariable. 1119 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 1120 1121 // We have a definition after a declaration with the wrong type. 1122 // We must make a new GlobalVariable* and update everything that used OldGV 1123 // (a declaration or tentative definition) with the new GlobalVariable* 1124 // (which will be a definition). 1125 // 1126 // This happens if there is a prototype for a global (e.g. 1127 // "extern int x[];") and then a definition of a different type (e.g. 1128 // "int x[10];"). This also happens when an initializer has a different type 1129 // from the type of the global (this happens with unions). 1130 if (GV == 0 || 1131 GV->getType()->getElementType() != InitType || 1132 GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) { 1133 1134 // Move the old entry aside so that we'll create a new one. 1135 Entry->setName(llvm::StringRef()); 1136 1137 // Make a new global with the correct type, this is now guaranteed to work. 1138 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 1139 1140 // Replace all uses of the old global with the new global 1141 llvm::Constant *NewPtrForOldDecl = 1142 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 1143 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1144 1145 // Erase the old global, since it is no longer used. 1146 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 1147 } 1148 1149 if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) { 1150 SourceManager &SM = Context.getSourceManager(); 1151 AddAnnotation(EmitAnnotateAttr(GV, AA, 1152 SM.getInstantiationLineNumber(D->getLocation()))); 1153 } 1154 1155 GV->setInitializer(Init); 1156 1157 // If it is safe to mark the global 'constant', do so now. 1158 GV->setConstant(false); 1159 if (!NonConstInit && DeclIsConstantGlobal(Context, D)) 1160 GV->setConstant(true); 1161 1162 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 1163 1164 // Set the llvm linkage type as appropriate. 1165 GVALinkage Linkage = GetLinkageForVariable(getContext(), D); 1166 if (Linkage == GVA_Internal) 1167 GV->setLinkage(llvm::Function::InternalLinkage); 1168 else if (D->hasAttr<DLLImportAttr>()) 1169 GV->setLinkage(llvm::Function::DLLImportLinkage); 1170 else if (D->hasAttr<DLLExportAttr>()) 1171 GV->setLinkage(llvm::Function::DLLExportLinkage); 1172 else if (D->hasAttr<WeakAttr>()) { 1173 if (GV->isConstant()) 1174 GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage); 1175 else 1176 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 1177 } else if (Linkage == GVA_TemplateInstantiation || 1178 Linkage == GVA_ExplicitTemplateInstantiation) 1179 // FIXME: It seems like we can provide more specific linkage here 1180 // (LinkOnceODR, WeakODR). 1181 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 1182 else if (!getLangOptions().CPlusPlus && !CodeGenOpts.NoCommon && 1183 !D->hasExternalStorage() && !D->getInit() && 1184 !D->getAttr<SectionAttr>()) { 1185 GV->setLinkage(llvm::GlobalVariable::CommonLinkage); 1186 // common vars aren't constant even if declared const. 1187 GV->setConstant(false); 1188 } else 1189 GV->setLinkage(llvm::GlobalVariable::ExternalLinkage); 1190 1191 SetCommonAttributes(D, GV); 1192 1193 // Emit global variable debug information. 1194 if (CGDebugInfo *DI = getDebugInfo()) { 1195 DI->setLocation(D->getLocation()); 1196 DI->EmitGlobalVariable(GV, D); 1197 } 1198 } 1199 1200 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 1201 /// implement a function with no prototype, e.g. "int foo() {}". If there are 1202 /// existing call uses of the old function in the module, this adjusts them to 1203 /// call the new function directly. 1204 /// 1205 /// This is not just a cleanup: the always_inline pass requires direct calls to 1206 /// functions to be able to inline them. If there is a bitcast in the way, it 1207 /// won't inline them. Instcombine normally deletes these calls, but it isn't 1208 /// run at -O0. 1209 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1210 llvm::Function *NewFn) { 1211 // If we're redefining a global as a function, don't transform it. 1212 llvm::Function *OldFn = dyn_cast<llvm::Function>(Old); 1213 if (OldFn == 0) return; 1214 1215 const llvm::Type *NewRetTy = NewFn->getReturnType(); 1216 llvm::SmallVector<llvm::Value*, 4> ArgList; 1217 1218 for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end(); 1219 UI != E; ) { 1220 // TODO: Do invokes ever occur in C code? If so, we should handle them too. 1221 llvm::Value::use_iterator I = UI++; // Increment before the CI is erased. 1222 llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I); 1223 llvm::CallSite CS(CI); 1224 if (!CI || !CS.isCallee(I)) continue; 1225 1226 // If the return types don't match exactly, and if the call isn't dead, then 1227 // we can't transform this call. 1228 if (CI->getType() != NewRetTy && !CI->use_empty()) 1229 continue; 1230 1231 // If the function was passed too few arguments, don't transform. If extra 1232 // arguments were passed, we silently drop them. If any of the types 1233 // mismatch, we don't transform. 1234 unsigned ArgNo = 0; 1235 bool DontTransform = false; 1236 for (llvm::Function::arg_iterator AI = NewFn->arg_begin(), 1237 E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) { 1238 if (CS.arg_size() == ArgNo || 1239 CS.getArgument(ArgNo)->getType() != AI->getType()) { 1240 DontTransform = true; 1241 break; 1242 } 1243 } 1244 if (DontTransform) 1245 continue; 1246 1247 // Okay, we can transform this. Create the new call instruction and copy 1248 // over the required information. 1249 ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo); 1250 llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(), 1251 ArgList.end(), "", CI); 1252 ArgList.clear(); 1253 if (!NewCall->getType()->isVoidTy()) 1254 NewCall->takeName(CI); 1255 NewCall->setAttributes(CI->getAttributes()); 1256 NewCall->setCallingConv(CI->getCallingConv()); 1257 1258 // Finally, remove the old call, replacing any uses with the new one. 1259 if (!CI->use_empty()) 1260 CI->replaceAllUsesWith(NewCall); 1261 1262 // Copy debug location attached to CI. 1263 if (!CI->getDebugLoc().isUnknown()) 1264 NewCall->setDebugLoc(CI->getDebugLoc()); 1265 CI->eraseFromParent(); 1266 } 1267 } 1268 1269 1270 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { 1271 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 1272 const llvm::FunctionType *Ty = getTypes().GetFunctionType(GD); 1273 getMangleContext().mangleInitDiscriminator(); 1274 // Get or create the prototype for the function. 1275 llvm::Constant *Entry = GetAddrOfFunction(GD, Ty); 1276 1277 // Strip off a bitcast if we got one back. 1278 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1279 assert(CE->getOpcode() == llvm::Instruction::BitCast); 1280 Entry = CE->getOperand(0); 1281 } 1282 1283 1284 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 1285 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 1286 1287 // If the types mismatch then we have to rewrite the definition. 1288 assert(OldFn->isDeclaration() && 1289 "Shouldn't replace non-declaration"); 1290 1291 // F is the Function* for the one with the wrong type, we must make a new 1292 // Function* and update everything that used F (a declaration) with the new 1293 // Function* (which will be a definition). 1294 // 1295 // This happens if there is a prototype for a function 1296 // (e.g. "int f()") and then a definition of a different type 1297 // (e.g. "int f(int x)"). Move the old function aside so that it 1298 // doesn't interfere with GetAddrOfFunction. 1299 OldFn->setName(llvm::StringRef()); 1300 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 1301 1302 // If this is an implementation of a function without a prototype, try to 1303 // replace any existing uses of the function (which may be calls) with uses 1304 // of the new function 1305 if (D->getType()->isFunctionNoProtoType()) { 1306 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 1307 OldFn->removeDeadConstantUsers(); 1308 } 1309 1310 // Replace uses of F with the Function we will endow with a body. 1311 if (!Entry->use_empty()) { 1312 llvm::Constant *NewPtrForOldDecl = 1313 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 1314 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1315 } 1316 1317 // Ok, delete the old function now, which is dead. 1318 OldFn->eraseFromParent(); 1319 1320 Entry = NewFn; 1321 } 1322 1323 llvm::Function *Fn = cast<llvm::Function>(Entry); 1324 1325 CodeGenFunction(*this).GenerateCode(D, Fn); 1326 1327 SetFunctionDefinitionAttributes(D, Fn); 1328 SetLLVMFunctionAttributesForDefinition(D, Fn); 1329 1330 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 1331 AddGlobalCtor(Fn, CA->getPriority()); 1332 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 1333 AddGlobalDtor(Fn, DA->getPriority()); 1334 } 1335 1336 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 1337 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 1338 const AliasAttr *AA = D->getAttr<AliasAttr>(); 1339 assert(AA && "Not an alias?"); 1340 1341 MangleBuffer MangledName; 1342 getMangledName(MangledName, GD); 1343 1344 // If there is a definition in the module, then it wins over the alias. 1345 // This is dubious, but allow it to be safe. Just ignore the alias. 1346 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1347 if (Entry && !Entry->isDeclaration()) 1348 return; 1349 1350 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 1351 1352 // Create a reference to the named value. This ensures that it is emitted 1353 // if a deferred decl. 1354 llvm::Constant *Aliasee; 1355 if (isa<llvm::FunctionType>(DeclTy)) 1356 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl()); 1357 else 1358 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1359 llvm::PointerType::getUnqual(DeclTy), 0); 1360 1361 // Create the new alias itself, but don't set a name yet. 1362 llvm::GlobalValue *GA = 1363 new llvm::GlobalAlias(Aliasee->getType(), 1364 llvm::Function::ExternalLinkage, 1365 "", Aliasee, &getModule()); 1366 1367 if (Entry) { 1368 assert(Entry->isDeclaration()); 1369 1370 // If there is a declaration in the module, then we had an extern followed 1371 // by the alias, as in: 1372 // extern int test6(); 1373 // ... 1374 // int test6() __attribute__((alias("test7"))); 1375 // 1376 // Remove it and replace uses of it with the alias. 1377 GA->takeName(Entry); 1378 1379 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 1380 Entry->getType())); 1381 Entry->eraseFromParent(); 1382 } else { 1383 GA->setName(MangledName.getString()); 1384 } 1385 1386 // Set attributes which are particular to an alias; this is a 1387 // specialization of the attributes which may be set on a global 1388 // variable/function. 1389 if (D->hasAttr<DLLExportAttr>()) { 1390 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1391 // The dllexport attribute is ignored for undefined symbols. 1392 if (FD->getBody()) 1393 GA->setLinkage(llvm::Function::DLLExportLinkage); 1394 } else { 1395 GA->setLinkage(llvm::Function::DLLExportLinkage); 1396 } 1397 } else if (D->hasAttr<WeakAttr>() || 1398 D->hasAttr<WeakRefAttr>() || 1399 D->hasAttr<WeakImportAttr>()) { 1400 GA->setLinkage(llvm::Function::WeakAnyLinkage); 1401 } 1402 1403 SetCommonAttributes(D, GA); 1404 } 1405 1406 /// getBuiltinLibFunction - Given a builtin id for a function like 1407 /// "__builtin_fabsf", return a Function* for "fabsf". 1408 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD, 1409 unsigned BuiltinID) { 1410 assert((Context.BuiltinInfo.isLibFunction(BuiltinID) || 1411 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) && 1412 "isn't a lib fn"); 1413 1414 // Get the name, skip over the __builtin_ prefix (if necessary). 1415 const char *Name = Context.BuiltinInfo.GetName(BuiltinID); 1416 if (Context.BuiltinInfo.isLibFunction(BuiltinID)) 1417 Name += 10; 1418 1419 const llvm::FunctionType *Ty = 1420 cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType())); 1421 1422 return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD)); 1423 } 1424 1425 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys, 1426 unsigned NumTys) { 1427 return llvm::Intrinsic::getDeclaration(&getModule(), 1428 (llvm::Intrinsic::ID)IID, Tys, NumTys); 1429 } 1430 1431 1432 llvm::Function *CodeGenModule::getMemCpyFn(const llvm::Type *DestType, 1433 const llvm::Type *SrcType, 1434 const llvm::Type *SizeType) { 1435 const llvm::Type *ArgTypes[3] = {DestType, SrcType, SizeType }; 1436 return getIntrinsic(llvm::Intrinsic::memcpy, ArgTypes, 3); 1437 } 1438 1439 llvm::Function *CodeGenModule::getMemMoveFn(const llvm::Type *DestType, 1440 const llvm::Type *SrcType, 1441 const llvm::Type *SizeType) { 1442 const llvm::Type *ArgTypes[3] = {DestType, SrcType, SizeType }; 1443 return getIntrinsic(llvm::Intrinsic::memmove, ArgTypes, 3); 1444 } 1445 1446 llvm::Function *CodeGenModule::getMemSetFn(const llvm::Type *DestType, 1447 const llvm::Type *SizeType) { 1448 const llvm::Type *ArgTypes[2] = { DestType, SizeType }; 1449 return getIntrinsic(llvm::Intrinsic::memset, ArgTypes, 2); 1450 } 1451 1452 static llvm::StringMapEntry<llvm::Constant*> & 1453 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1454 const StringLiteral *Literal, 1455 bool TargetIsLSB, 1456 bool &IsUTF16, 1457 unsigned &StringLength) { 1458 unsigned NumBytes = Literal->getByteLength(); 1459 1460 // Check for simple case. 1461 if (!Literal->containsNonAsciiOrNull()) { 1462 StringLength = NumBytes; 1463 return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(), 1464 StringLength)); 1465 } 1466 1467 // Otherwise, convert the UTF8 literals into a byte string. 1468 llvm::SmallVector<UTF16, 128> ToBuf(NumBytes); 1469 const UTF8 *FromPtr = (UTF8 *)Literal->getStrData(); 1470 UTF16 *ToPtr = &ToBuf[0]; 1471 1472 ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 1473 &ToPtr, ToPtr + NumBytes, 1474 strictConversion); 1475 1476 // Check for conversion failure. 1477 if (Result != conversionOK) { 1478 // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove 1479 // this duplicate code. 1480 assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed"); 1481 StringLength = NumBytes; 1482 return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(), 1483 StringLength)); 1484 } 1485 1486 // ConvertUTF8toUTF16 returns the length in ToPtr. 1487 StringLength = ToPtr - &ToBuf[0]; 1488 1489 // Render the UTF-16 string into a byte array and convert to the target byte 1490 // order. 1491 // 1492 // FIXME: This isn't something we should need to do here. 1493 llvm::SmallString<128> AsBytes; 1494 AsBytes.reserve(StringLength * 2); 1495 for (unsigned i = 0; i != StringLength; ++i) { 1496 unsigned short Val = ToBuf[i]; 1497 if (TargetIsLSB) { 1498 AsBytes.push_back(Val & 0xFF); 1499 AsBytes.push_back(Val >> 8); 1500 } else { 1501 AsBytes.push_back(Val >> 8); 1502 AsBytes.push_back(Val & 0xFF); 1503 } 1504 } 1505 // Append one extra null character, the second is automatically added by our 1506 // caller. 1507 AsBytes.push_back(0); 1508 1509 IsUTF16 = true; 1510 return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size())); 1511 } 1512 1513 llvm::Constant * 1514 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 1515 unsigned StringLength = 0; 1516 bool isUTF16 = false; 1517 llvm::StringMapEntry<llvm::Constant*> &Entry = 1518 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1519 getTargetData().isLittleEndian(), 1520 isUTF16, StringLength); 1521 1522 if (llvm::Constant *C = Entry.getValue()) 1523 return C; 1524 1525 llvm::Constant *Zero = 1526 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1527 llvm::Constant *Zeros[] = { Zero, Zero }; 1528 1529 // If we don't already have it, get __CFConstantStringClassReference. 1530 if (!CFConstantStringClassRef) { 1531 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1532 Ty = llvm::ArrayType::get(Ty, 0); 1533 llvm::Constant *GV = CreateRuntimeVariable(Ty, 1534 "__CFConstantStringClassReference"); 1535 // Decay array -> ptr 1536 CFConstantStringClassRef = 1537 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1538 } 1539 1540 QualType CFTy = getContext().getCFConstantStringType(); 1541 1542 const llvm::StructType *STy = 1543 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 1544 1545 std::vector<llvm::Constant*> Fields(4); 1546 1547 // Class pointer. 1548 Fields[0] = CFConstantStringClassRef; 1549 1550 // Flags. 1551 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1552 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 1553 llvm::ConstantInt::get(Ty, 0x07C8); 1554 1555 // String pointer. 1556 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1557 1558 llvm::GlobalValue::LinkageTypes Linkage; 1559 bool isConstant; 1560 if (isUTF16) { 1561 // FIXME: why do utf strings get "_" labels instead of "L" labels? 1562 Linkage = llvm::GlobalValue::InternalLinkage; 1563 // Note: -fwritable-strings doesn't make unicode CFStrings writable, but 1564 // does make plain ascii ones writable. 1565 isConstant = true; 1566 } else { 1567 Linkage = llvm::GlobalValue::PrivateLinkage; 1568 isConstant = !Features.WritableStrings; 1569 } 1570 1571 llvm::GlobalVariable *GV = 1572 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 1573 ".str"); 1574 if (isUTF16) { 1575 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 1576 GV->setAlignment(Align.getQuantity()); 1577 } 1578 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1579 1580 // String length. 1581 Ty = getTypes().ConvertType(getContext().LongTy); 1582 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 1583 1584 // The struct. 1585 C = llvm::ConstantStruct::get(STy, Fields); 1586 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1587 llvm::GlobalVariable::PrivateLinkage, C, 1588 "_unnamed_cfstring_"); 1589 if (const char *Sect = getContext().Target.getCFStringSection()) 1590 GV->setSection(Sect); 1591 Entry.setValue(GV); 1592 1593 return GV; 1594 } 1595 1596 llvm::Constant * 1597 CodeGenModule::GetAddrOfConstantNSString(const StringLiteral *Literal) { 1598 // FIXME. This is temporary so -fno-constant-cfstrings same as old. 1599 return GetAddrOfConstantCFString(Literal); 1600 } 1601 1602 /// GetStringForStringLiteral - Return the appropriate bytes for a 1603 /// string literal, properly padded to match the literal type. 1604 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) { 1605 const char *StrData = E->getStrData(); 1606 unsigned Len = E->getByteLength(); 1607 1608 const ConstantArrayType *CAT = 1609 getContext().getAsConstantArrayType(E->getType()); 1610 assert(CAT && "String isn't pointer or array!"); 1611 1612 // Resize the string to the right size. 1613 std::string Str(StrData, StrData+Len); 1614 uint64_t RealLen = CAT->getSize().getZExtValue(); 1615 1616 if (E->isWide()) 1617 RealLen *= getContext().Target.getWCharWidth()/8; 1618 1619 Str.resize(RealLen, '\0'); 1620 1621 return Str; 1622 } 1623 1624 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 1625 /// constant array for the given string literal. 1626 llvm::Constant * 1627 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 1628 // FIXME: This can be more efficient. 1629 // FIXME: We shouldn't need to bitcast the constant in the wide string case. 1630 llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S)); 1631 if (S->isWide()) { 1632 llvm::Type *DestTy = 1633 llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType())); 1634 C = llvm::ConstantExpr::getBitCast(C, DestTy); 1635 } 1636 return C; 1637 } 1638 1639 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 1640 /// array for the given ObjCEncodeExpr node. 1641 llvm::Constant * 1642 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 1643 std::string Str; 1644 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 1645 1646 return GetAddrOfConstantCString(Str); 1647 } 1648 1649 1650 /// GenerateWritableString -- Creates storage for a string literal. 1651 static llvm::Constant *GenerateStringLiteral(const std::string &str, 1652 bool constant, 1653 CodeGenModule &CGM, 1654 const char *GlobalName) { 1655 // Create Constant for this string literal. Don't add a '\0'. 1656 llvm::Constant *C = 1657 llvm::ConstantArray::get(CGM.getLLVMContext(), str, false); 1658 1659 // Create a global variable for this string 1660 return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant, 1661 llvm::GlobalValue::PrivateLinkage, 1662 C, GlobalName); 1663 } 1664 1665 /// GetAddrOfConstantString - Returns a pointer to a character array 1666 /// containing the literal. This contents are exactly that of the 1667 /// given string, i.e. it will not be null terminated automatically; 1668 /// see GetAddrOfConstantCString. Note that whether the result is 1669 /// actually a pointer to an LLVM constant depends on 1670 /// Feature.WriteableStrings. 1671 /// 1672 /// The result has pointer to array type. 1673 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str, 1674 const char *GlobalName) { 1675 bool IsConstant = !Features.WritableStrings; 1676 1677 // Get the default prefix if a name wasn't specified. 1678 if (!GlobalName) 1679 GlobalName = ".str"; 1680 1681 // Don't share any string literals if strings aren't constant. 1682 if (!IsConstant) 1683 return GenerateStringLiteral(str, false, *this, GlobalName); 1684 1685 llvm::StringMapEntry<llvm::Constant *> &Entry = 1686 ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 1687 1688 if (Entry.getValue()) 1689 return Entry.getValue(); 1690 1691 // Create a global variable for this. 1692 llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName); 1693 Entry.setValue(C); 1694 return C; 1695 } 1696 1697 /// GetAddrOfConstantCString - Returns a pointer to a character 1698 /// array containing the literal and a terminating '\-' 1699 /// character. The result has pointer to array type. 1700 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str, 1701 const char *GlobalName){ 1702 return GetAddrOfConstantString(str + '\0', GlobalName); 1703 } 1704 1705 /// EmitObjCPropertyImplementations - Emit information for synthesized 1706 /// properties for an implementation. 1707 void CodeGenModule::EmitObjCPropertyImplementations(const 1708 ObjCImplementationDecl *D) { 1709 for (ObjCImplementationDecl::propimpl_iterator 1710 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { 1711 ObjCPropertyImplDecl *PID = *i; 1712 1713 // Dynamic is just for type-checking. 1714 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 1715 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1716 1717 // Determine which methods need to be implemented, some may have 1718 // been overridden. Note that ::isSynthesized is not the method 1719 // we want, that just indicates if the decl came from a 1720 // property. What we want to know is if the method is defined in 1721 // this implementation. 1722 if (!D->getInstanceMethod(PD->getGetterName())) 1723 CodeGenFunction(*this).GenerateObjCGetter( 1724 const_cast<ObjCImplementationDecl *>(D), PID); 1725 if (!PD->isReadOnly() && 1726 !D->getInstanceMethod(PD->getSetterName())) 1727 CodeGenFunction(*this).GenerateObjCSetter( 1728 const_cast<ObjCImplementationDecl *>(D), PID); 1729 } 1730 } 1731 } 1732 1733 /// EmitNamespace - Emit all declarations in a namespace. 1734 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 1735 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); 1736 I != E; ++I) 1737 EmitTopLevelDecl(*I); 1738 } 1739 1740 // EmitLinkageSpec - Emit all declarations in a linkage spec. 1741 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 1742 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 1743 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 1744 ErrorUnsupported(LSD, "linkage spec"); 1745 return; 1746 } 1747 1748 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); 1749 I != E; ++I) 1750 EmitTopLevelDecl(*I); 1751 } 1752 1753 /// EmitTopLevelDecl - Emit code for a single top level declaration. 1754 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 1755 // If an error has occurred, stop code generation, but continue 1756 // parsing and semantic analysis (to ensure all warnings and errors 1757 // are emitted). 1758 if (Diags.hasErrorOccurred()) 1759 return; 1760 1761 // Ignore dependent declarations. 1762 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 1763 return; 1764 1765 switch (D->getKind()) { 1766 case Decl::CXXConversion: 1767 case Decl::CXXMethod: 1768 case Decl::Function: 1769 // Skip function templates 1770 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 1771 return; 1772 1773 EmitGlobal(cast<FunctionDecl>(D)); 1774 break; 1775 1776 case Decl::Var: 1777 EmitGlobal(cast<VarDecl>(D)); 1778 break; 1779 1780 // C++ Decls 1781 case Decl::Namespace: 1782 EmitNamespace(cast<NamespaceDecl>(D)); 1783 break; 1784 // No code generation needed. 1785 case Decl::UsingShadow: 1786 case Decl::Using: 1787 case Decl::UsingDirective: 1788 case Decl::ClassTemplate: 1789 case Decl::FunctionTemplate: 1790 case Decl::NamespaceAlias: 1791 break; 1792 case Decl::CXXConstructor: 1793 // Skip function templates 1794 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 1795 return; 1796 1797 EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 1798 break; 1799 case Decl::CXXDestructor: 1800 EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 1801 break; 1802 1803 case Decl::StaticAssert: 1804 // Nothing to do. 1805 break; 1806 1807 // Objective-C Decls 1808 1809 // Forward declarations, no (immediate) code generation. 1810 case Decl::ObjCClass: 1811 case Decl::ObjCForwardProtocol: 1812 case Decl::ObjCCategory: 1813 case Decl::ObjCInterface: 1814 break; 1815 1816 case Decl::ObjCProtocol: 1817 Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D)); 1818 break; 1819 1820 case Decl::ObjCCategoryImpl: 1821 // Categories have properties but don't support synthesize so we 1822 // can ignore them here. 1823 Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 1824 break; 1825 1826 case Decl::ObjCImplementation: { 1827 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 1828 EmitObjCPropertyImplementations(OMD); 1829 Runtime->GenerateClass(OMD); 1830 break; 1831 } 1832 case Decl::ObjCMethod: { 1833 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 1834 // If this is not a prototype, emit the body. 1835 if (OMD->getBody()) 1836 CodeGenFunction(*this).GenerateObjCMethod(OMD); 1837 break; 1838 } 1839 case Decl::ObjCCompatibleAlias: 1840 // compatibility-alias is a directive and has no code gen. 1841 break; 1842 1843 case Decl::LinkageSpec: 1844 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 1845 break; 1846 1847 case Decl::FileScopeAsm: { 1848 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 1849 llvm::StringRef AsmString = AD->getAsmString()->getString(); 1850 1851 const std::string &S = getModule().getModuleInlineAsm(); 1852 if (S.empty()) 1853 getModule().setModuleInlineAsm(AsmString); 1854 else 1855 getModule().setModuleInlineAsm(S + '\n' + AsmString.str()); 1856 break; 1857 } 1858 1859 default: 1860 // Make sure we handled everything we should, every other kind is a 1861 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 1862 // function. Need to recode Decl::Kind to do that easily. 1863 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 1864 } 1865 } 1866