1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CGCall.h" 18 #include "CGObjCRuntime.h" 19 #include "Mangle.h" 20 #include "clang/Frontend/CompileOptions.h" 21 #include "clang/AST/ASTContext.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/AST/DeclCXX.h" 24 #include "clang/Basic/Builtins.h" 25 #include "clang/Basic/Diagnostic.h" 26 #include "clang/Basic/SourceManager.h" 27 #include "clang/Basic/TargetInfo.h" 28 #include "clang/Basic/ConvertUTF.h" 29 #include "llvm/CallingConv.h" 30 #include "llvm/Module.h" 31 #include "llvm/Intrinsics.h" 32 #include "llvm/Target/TargetData.h" 33 using namespace clang; 34 using namespace CodeGen; 35 36 37 CodeGenModule::CodeGenModule(ASTContext &C, const CompileOptions &compileOpts, 38 llvm::Module &M, const llvm::TargetData &TD, 39 Diagnostic &diags) 40 : BlockModule(C, M, TD, Types, *this), Context(C), 41 Features(C.getLangOptions()), CompileOpts(compileOpts), TheModule(M), 42 TheTargetData(TD), Diags(diags), Types(C, M, TD), Runtime(0), 43 MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0), 44 VMContext(M.getContext()) { 45 46 if (!Features.ObjC1) 47 Runtime = 0; 48 else if (!Features.NeXTRuntime) 49 Runtime = CreateGNUObjCRuntime(*this); 50 else if (Features.ObjCNonFragileABI) 51 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 52 else 53 Runtime = CreateMacObjCRuntime(*this); 54 55 // If debug info generation is enabled, create the CGDebugInfo object. 56 DebugInfo = CompileOpts.DebugInfo ? new CGDebugInfo(this) : 0; 57 } 58 59 CodeGenModule::~CodeGenModule() { 60 delete Runtime; 61 delete DebugInfo; 62 } 63 64 void CodeGenModule::Release() { 65 EmitDeferred(); 66 if (Runtime) 67 if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction()) 68 AddGlobalCtor(ObjCInitFunction); 69 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 70 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 71 EmitAnnotations(); 72 EmitLLVMUsed(); 73 } 74 75 /// ErrorUnsupported - Print out an error that codegen doesn't support the 76 /// specified stmt yet. 77 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 78 bool OmitOnError) { 79 if (OmitOnError && getDiags().hasErrorOccurred()) 80 return; 81 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 82 "cannot compile this %0 yet"); 83 std::string Msg = Type; 84 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 85 << Msg << S->getSourceRange(); 86 } 87 88 /// ErrorUnsupported - Print out an error that codegen doesn't support the 89 /// specified decl yet. 90 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 91 bool OmitOnError) { 92 if (OmitOnError && getDiags().hasErrorOccurred()) 93 return; 94 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 95 "cannot compile this %0 yet"); 96 std::string Msg = Type; 97 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 98 } 99 100 LangOptions::VisibilityMode 101 CodeGenModule::getDeclVisibilityMode(const Decl *D) const { 102 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 103 if (VD->getStorageClass() == VarDecl::PrivateExtern) 104 return LangOptions::Hidden; 105 106 if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) { 107 switch (attr->getVisibility()) { 108 default: assert(0 && "Unknown visibility!"); 109 case VisibilityAttr::DefaultVisibility: 110 return LangOptions::Default; 111 case VisibilityAttr::HiddenVisibility: 112 return LangOptions::Hidden; 113 case VisibilityAttr::ProtectedVisibility: 114 return LangOptions::Protected; 115 } 116 } 117 118 return getLangOptions().getVisibilityMode(); 119 } 120 121 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 122 const Decl *D) const { 123 // Internal definitions always have default visibility. 124 if (GV->hasLocalLinkage()) { 125 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 126 return; 127 } 128 129 switch (getDeclVisibilityMode(D)) { 130 default: assert(0 && "Unknown visibility!"); 131 case LangOptions::Default: 132 return GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 133 case LangOptions::Hidden: 134 return GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 135 case LangOptions::Protected: 136 return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 137 } 138 } 139 140 const char *CodeGenModule::getMangledName(const GlobalDecl &GD) { 141 const NamedDecl *ND = GD.getDecl(); 142 143 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 144 return getMangledCXXCtorName(D, GD.getCtorType()); 145 if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 146 return getMangledCXXDtorName(D, GD.getDtorType()); 147 148 return getMangledName(ND); 149 } 150 151 /// \brief Retrieves the mangled name for the given declaration. 152 /// 153 /// If the given declaration requires a mangled name, returns an 154 /// const char* containing the mangled name. Otherwise, returns 155 /// the unmangled name. 156 /// 157 const char *CodeGenModule::getMangledName(const NamedDecl *ND) { 158 // In C, functions with no attributes never need to be mangled. Fastpath them. 159 if (!getLangOptions().CPlusPlus && !ND->hasAttrs()) { 160 assert(ND->getIdentifier() && "Attempt to mangle unnamed decl."); 161 return ND->getNameAsCString(); 162 } 163 164 llvm::SmallString<256> Name; 165 llvm::raw_svector_ostream Out(Name); 166 if (!mangleName(ND, Context, Out)) { 167 assert(ND->getIdentifier() && "Attempt to mangle unnamed decl."); 168 return ND->getNameAsCString(); 169 } 170 171 Name += '\0'; 172 return UniqueMangledName(Name.begin(), Name.end()); 173 } 174 175 const char *CodeGenModule::UniqueMangledName(const char *NameStart, 176 const char *NameEnd) { 177 assert(*(NameEnd - 1) == '\0' && "Mangled name must be null terminated!"); 178 179 return MangledNames.GetOrCreateValue(NameStart, NameEnd).getKeyData(); 180 } 181 182 /// AddGlobalCtor - Add a function to the list that will be called before 183 /// main() runs. 184 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 185 // FIXME: Type coercion of void()* types. 186 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 187 } 188 189 /// AddGlobalDtor - Add a function to the list that will be called 190 /// when the module is unloaded. 191 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 192 // FIXME: Type coercion of void()* types. 193 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 194 } 195 196 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 197 // Ctor function type is void()*. 198 llvm::FunctionType* CtorFTy = 199 llvm::FunctionType::get(llvm::Type::VoidTy, 200 std::vector<const llvm::Type*>(), 201 false); 202 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 203 204 // Get the type of a ctor entry, { i32, void ()* }. 205 llvm::StructType* CtorStructTy = 206 llvm::StructType::get(llvm::Type::Int32Ty, 207 llvm::PointerType::getUnqual(CtorFTy), NULL); 208 209 // Construct the constructor and destructor arrays. 210 std::vector<llvm::Constant*> Ctors; 211 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 212 std::vector<llvm::Constant*> S; 213 S.push_back( 214 llvm::ConstantInt::get(llvm::Type::Int32Ty, I->second, false)); 215 S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)); 216 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 217 } 218 219 if (!Ctors.empty()) { 220 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 221 new llvm::GlobalVariable(TheModule, AT, false, 222 llvm::GlobalValue::AppendingLinkage, 223 llvm::ConstantArray::get(AT, Ctors), 224 GlobalName); 225 } 226 } 227 228 void CodeGenModule::EmitAnnotations() { 229 if (Annotations.empty()) 230 return; 231 232 // Create a new global variable for the ConstantStruct in the Module. 233 llvm::Constant *Array = 234 llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(), 235 Annotations.size()), 236 Annotations); 237 llvm::GlobalValue *gv = 238 new llvm::GlobalVariable(TheModule, Array->getType(), false, 239 llvm::GlobalValue::AppendingLinkage, Array, 240 "llvm.global.annotations"); 241 gv->setSection("llvm.metadata"); 242 } 243 244 static CodeGenModule::GVALinkage 245 GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD, 246 const LangOptions &Features) { 247 // The kind of external linkage this function will have, if it is not 248 // inline or static. 249 CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal; 250 if (Context.getLangOptions().CPlusPlus && 251 (FD->getPrimaryTemplate() || FD->getInstantiatedFromMemberFunction()) && 252 !FD->isExplicitSpecialization()) 253 External = CodeGenModule::GVA_TemplateInstantiation; 254 255 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 256 // C++ member functions defined inside the class are always inline. 257 if (MD->isInline() || !MD->isOutOfLine()) 258 return CodeGenModule::GVA_CXXInline; 259 260 return External; 261 } 262 263 // "static" functions get internal linkage. 264 if (FD->getStorageClass() == FunctionDecl::Static) 265 return CodeGenModule::GVA_Internal; 266 267 if (!FD->isInline()) 268 return External; 269 270 // If the inline function explicitly has the GNU inline attribute on it, or if 271 // this is C89 mode, we use to GNU semantics. 272 if (!Features.C99 && !Features.CPlusPlus) { 273 // extern inline in GNU mode is like C99 inline. 274 if (FD->getStorageClass() == FunctionDecl::Extern) 275 return CodeGenModule::GVA_C99Inline; 276 // Normal inline is a strong symbol. 277 return CodeGenModule::GVA_StrongExternal; 278 } else if (FD->hasActiveGNUInlineAttribute(Context)) { 279 // GCC in C99 mode seems to use a different decision-making 280 // process for extern inline, which factors in previous 281 // declarations. 282 if (FD->isExternGNUInline(Context)) 283 return CodeGenModule::GVA_C99Inline; 284 // Normal inline is a strong symbol. 285 return External; 286 } 287 288 // The definition of inline changes based on the language. Note that we 289 // have already handled "static inline" above, with the GVA_Internal case. 290 if (Features.CPlusPlus) // inline and extern inline. 291 return CodeGenModule::GVA_CXXInline; 292 293 assert(Features.C99 && "Must be in C99 mode if not in C89 or C++ mode"); 294 if (FD->isC99InlineDefinition()) 295 return CodeGenModule::GVA_C99Inline; 296 297 return CodeGenModule::GVA_StrongExternal; 298 } 299 300 /// SetFunctionDefinitionAttributes - Set attributes for a global. 301 /// 302 /// FIXME: This is currently only done for aliases and functions, but not for 303 /// variables (these details are set in EmitGlobalVarDefinition for variables). 304 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 305 llvm::GlobalValue *GV) { 306 GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features); 307 308 if (Linkage == GVA_Internal) { 309 GV->setLinkage(llvm::Function::InternalLinkage); 310 } else if (D->hasAttr<DLLExportAttr>()) { 311 GV->setLinkage(llvm::Function::DLLExportLinkage); 312 } else if (D->hasAttr<WeakAttr>()) { 313 GV->setLinkage(llvm::Function::WeakAnyLinkage); 314 } else if (Linkage == GVA_C99Inline) { 315 // In C99 mode, 'inline' functions are guaranteed to have a strong 316 // definition somewhere else, so we can use available_externally linkage. 317 GV->setLinkage(llvm::Function::AvailableExternallyLinkage); 318 } else if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) { 319 // In C++, the compiler has to emit a definition in every translation unit 320 // that references the function. We should use linkonce_odr because 321 // a) if all references in this translation unit are optimized away, we 322 // don't need to codegen it. b) if the function persists, it needs to be 323 // merged with other definitions. c) C++ has the ODR, so we know the 324 // definition is dependable. 325 GV->setLinkage(llvm::Function::LinkOnceODRLinkage); 326 } else { 327 assert(Linkage == GVA_StrongExternal); 328 // Otherwise, we have strong external linkage. 329 GV->setLinkage(llvm::Function::ExternalLinkage); 330 } 331 332 SetCommonAttributes(D, GV); 333 } 334 335 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 336 const CGFunctionInfo &Info, 337 llvm::Function *F) { 338 AttributeListType AttributeList; 339 ConstructAttributeList(Info, D, AttributeList); 340 341 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), 342 AttributeList.size())); 343 344 // Set the appropriate calling convention for the Function. 345 if (D->hasAttr<FastCallAttr>()) 346 F->setCallingConv(llvm::CallingConv::X86_FastCall); 347 348 if (D->hasAttr<StdCallAttr>()) 349 F->setCallingConv(llvm::CallingConv::X86_StdCall); 350 } 351 352 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 353 llvm::Function *F) { 354 if (!Features.Exceptions && !Features.ObjCNonFragileABI) 355 F->addFnAttr(llvm::Attribute::NoUnwind); 356 357 if (D->hasAttr<AlwaysInlineAttr>()) 358 F->addFnAttr(llvm::Attribute::AlwaysInline); 359 360 if (D->hasAttr<NoinlineAttr>()) 361 F->addFnAttr(llvm::Attribute::NoInline); 362 } 363 364 void CodeGenModule::SetCommonAttributes(const Decl *D, 365 llvm::GlobalValue *GV) { 366 setGlobalVisibility(GV, D); 367 368 if (D->hasAttr<UsedAttr>()) 369 AddUsedGlobal(GV); 370 371 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 372 GV->setSection(SA->getName()); 373 } 374 375 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 376 llvm::Function *F, 377 const CGFunctionInfo &FI) { 378 SetLLVMFunctionAttributes(D, FI, F); 379 SetLLVMFunctionAttributesForDefinition(D, F); 380 381 F->setLinkage(llvm::Function::InternalLinkage); 382 383 SetCommonAttributes(D, F); 384 } 385 386 void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD, 387 llvm::Function *F, 388 bool IsIncompleteFunction) { 389 if (!IsIncompleteFunction) 390 SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F); 391 392 // Only a few attributes are set on declarations; these may later be 393 // overridden by a definition. 394 395 if (FD->hasAttr<DLLImportAttr>()) { 396 F->setLinkage(llvm::Function::DLLImportLinkage); 397 } else if (FD->hasAttr<WeakAttr>() || 398 FD->hasAttr<WeakImportAttr>()) { 399 // "extern_weak" is overloaded in LLVM; we probably should have 400 // separate linkage types for this. 401 F->setLinkage(llvm::Function::ExternalWeakLinkage); 402 } else { 403 F->setLinkage(llvm::Function::ExternalLinkage); 404 } 405 406 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 407 F->setSection(SA->getName()); 408 } 409 410 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 411 assert(!GV->isDeclaration() && 412 "Only globals with definition can force usage."); 413 LLVMUsed.push_back(GV); 414 } 415 416 void CodeGenModule::EmitLLVMUsed() { 417 // Don't create llvm.used if there is no need. 418 if (LLVMUsed.empty()) 419 return; 420 421 llvm::Type *i8PTy = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); 422 423 // Convert LLVMUsed to what ConstantArray needs. 424 std::vector<llvm::Constant*> UsedArray; 425 UsedArray.resize(LLVMUsed.size()); 426 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 427 UsedArray[i] = 428 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), 429 i8PTy); 430 } 431 432 if (UsedArray.empty()) 433 return; 434 llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size()); 435 436 llvm::GlobalVariable *GV = 437 new llvm::GlobalVariable(getModule(), ATy, false, 438 llvm::GlobalValue::AppendingLinkage, 439 llvm::ConstantArray::get(ATy, UsedArray), 440 "llvm.used"); 441 442 GV->setSection("llvm.metadata"); 443 } 444 445 void CodeGenModule::EmitDeferred() { 446 // Emit code for any potentially referenced deferred decls. Since a 447 // previously unused static decl may become used during the generation of code 448 // for a static function, iterate until no changes are made. 449 while (!DeferredDeclsToEmit.empty()) { 450 GlobalDecl D = DeferredDeclsToEmit.back(); 451 DeferredDeclsToEmit.pop_back(); 452 453 // The mangled name for the decl must have been emitted in GlobalDeclMap. 454 // Look it up to see if it was defined with a stronger definition (e.g. an 455 // extern inline function with a strong function redefinition). If so, 456 // just ignore the deferred decl. 457 llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)]; 458 assert(CGRef && "Deferred decl wasn't referenced?"); 459 460 if (!CGRef->isDeclaration()) 461 continue; 462 463 // Otherwise, emit the definition and move on to the next one. 464 EmitGlobalDefinition(D); 465 } 466 } 467 468 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the 469 /// annotation information for a given GlobalValue. The annotation struct is 470 /// {i8 *, i8 *, i8 *, i32}. The first field is a constant expression, the 471 /// GlobalValue being annotated. The second field is the constant string 472 /// created from the AnnotateAttr's annotation. The third field is a constant 473 /// string containing the name of the translation unit. The fourth field is 474 /// the line number in the file of the annotated value declaration. 475 /// 476 /// FIXME: this does not unique the annotation string constants, as llvm-gcc 477 /// appears to. 478 /// 479 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 480 const AnnotateAttr *AA, 481 unsigned LineNo) { 482 llvm::Module *M = &getModule(); 483 484 // get [N x i8] constants for the annotation string, and the filename string 485 // which are the 2nd and 3rd elements of the global annotation structure. 486 const llvm::Type *SBP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); 487 llvm::Constant *anno = llvm::ConstantArray::get(AA->getAnnotation(), true); 488 llvm::Constant *unit = llvm::ConstantArray::get(M->getModuleIdentifier(), 489 true); 490 491 // Get the two global values corresponding to the ConstantArrays we just 492 // created to hold the bytes of the strings. 493 llvm::GlobalValue *annoGV = 494 new llvm::GlobalVariable(*M, anno->getType(), false, 495 llvm::GlobalValue::PrivateLinkage, anno, 496 GV->getName()); 497 // translation unit name string, emitted into the llvm.metadata section. 498 llvm::GlobalValue *unitGV = 499 new llvm::GlobalVariable(*M, unit->getType(), false, 500 llvm::GlobalValue::PrivateLinkage, unit, 501 ".str"); 502 503 // Create the ConstantStruct for the global annotation. 504 llvm::Constant *Fields[4] = { 505 llvm::ConstantExpr::getBitCast(GV, SBP), 506 llvm::ConstantExpr::getBitCast(annoGV, SBP), 507 llvm::ConstantExpr::getBitCast(unitGV, SBP), 508 llvm::ConstantInt::get(llvm::Type::Int32Ty, LineNo) 509 }; 510 return llvm::ConstantStruct::get(Fields, 4, false); 511 } 512 513 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 514 // Never defer when EmitAllDecls is specified or the decl has 515 // attribute used. 516 if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>()) 517 return false; 518 519 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 520 // Constructors and destructors should never be deferred. 521 if (FD->hasAttr<ConstructorAttr>() || 522 FD->hasAttr<DestructorAttr>()) 523 return false; 524 525 GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features); 526 527 // static, static inline, always_inline, and extern inline functions can 528 // always be deferred. Normal inline functions can be deferred in C99/C++. 529 if (Linkage == GVA_Internal || Linkage == GVA_C99Inline || 530 Linkage == GVA_CXXInline) 531 return true; 532 return false; 533 } 534 535 const VarDecl *VD = cast<VarDecl>(Global); 536 assert(VD->isFileVarDecl() && "Invalid decl"); 537 538 return VD->getStorageClass() == VarDecl::Static; 539 } 540 541 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 542 const ValueDecl *Global = GD.getDecl(); 543 544 // If this is an alias definition (which otherwise looks like a declaration) 545 // emit it now. 546 if (Global->hasAttr<AliasAttr>()) 547 return EmitAliasDefinition(Global); 548 549 // Ignore declarations, they will be emitted on their first use. 550 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 551 // Forward declarations are emitted lazily on first use. 552 if (!FD->isThisDeclarationADefinition()) 553 return; 554 } else { 555 const VarDecl *VD = cast<VarDecl>(Global); 556 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 557 558 // In C++, if this is marked "extern", defer code generation. 559 if (getLangOptions().CPlusPlus && !VD->getInit() && 560 (VD->getStorageClass() == VarDecl::Extern || 561 VD->isExternC(getContext()))) 562 return; 563 564 // In C, if this isn't a definition, defer code generation. 565 if (!getLangOptions().CPlusPlus && !VD->getInit()) 566 return; 567 } 568 569 // Defer code generation when possible if this is a static definition, inline 570 // function etc. These we only want to emit if they are used. 571 if (MayDeferGeneration(Global)) { 572 // If the value has already been used, add it directly to the 573 // DeferredDeclsToEmit list. 574 const char *MangledName = getMangledName(GD); 575 if (GlobalDeclMap.count(MangledName)) 576 DeferredDeclsToEmit.push_back(GD); 577 else { 578 // Otherwise, remember that we saw a deferred decl with this name. The 579 // first use of the mangled name will cause it to move into 580 // DeferredDeclsToEmit. 581 DeferredDecls[MangledName] = GD; 582 } 583 return; 584 } 585 586 // Otherwise emit the definition. 587 EmitGlobalDefinition(GD); 588 } 589 590 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { 591 const ValueDecl *D = GD.getDecl(); 592 593 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) 594 EmitCXXConstructor(CD, GD.getCtorType()); 595 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) 596 EmitCXXDestructor(DD, GD.getDtorType()); 597 else if (isa<FunctionDecl>(D)) 598 EmitGlobalFunctionDefinition(GD); 599 else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 600 EmitGlobalVarDefinition(VD); 601 else { 602 assert(0 && "Invalid argument to EmitGlobalDefinition()"); 603 } 604 } 605 606 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 607 /// module, create and return an llvm Function with the specified type. If there 608 /// is something in the module with the specified name, return it potentially 609 /// bitcasted to the right type. 610 /// 611 /// If D is non-null, it specifies a decl that correspond to this. This is used 612 /// to set the attributes on the function when it is first created. 613 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName, 614 const llvm::Type *Ty, 615 GlobalDecl D) { 616 // Lookup the entry, lazily creating it if necessary. 617 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 618 if (Entry) { 619 if (Entry->getType()->getElementType() == Ty) 620 return Entry; 621 622 // Make sure the result is of the correct type. 623 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 624 return llvm::ConstantExpr::getBitCast(Entry, PTy); 625 } 626 627 // This is the first use or definition of a mangled name. If there is a 628 // deferred decl with this name, remember that we need to emit it at the end 629 // of the file. 630 llvm::DenseMap<const char*, GlobalDecl>::iterator DDI = 631 DeferredDecls.find(MangledName); 632 if (DDI != DeferredDecls.end()) { 633 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 634 // list, and remove it from DeferredDecls (since we don't need it anymore). 635 DeferredDeclsToEmit.push_back(DDI->second); 636 DeferredDecls.erase(DDI); 637 } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) { 638 // If this the first reference to a C++ inline function in a class, queue up 639 // the deferred function body for emission. These are not seen as 640 // top-level declarations. 641 if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD)) 642 DeferredDeclsToEmit.push_back(D); 643 // A called constructor which has no definition or declaration need be 644 // synthesized. 645 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) { 646 const CXXRecordDecl *ClassDecl = 647 cast<CXXRecordDecl>(CD->getDeclContext()); 648 if (!ClassDecl->hasUserDeclaredConstructor()) 649 DeferredDeclsToEmit.push_back(D); 650 } 651 } 652 653 // This function doesn't have a complete type (for example, the return 654 // type is an incomplete struct). Use a fake type instead, and make 655 // sure not to try to set attributes. 656 bool IsIncompleteFunction = false; 657 if (!isa<llvm::FunctionType>(Ty)) { 658 Ty = llvm::FunctionType::get(llvm::Type::VoidTy, 659 std::vector<const llvm::Type*>(), false); 660 IsIncompleteFunction = true; 661 } 662 llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty), 663 llvm::Function::ExternalLinkage, 664 "", &getModule()); 665 F->setName(MangledName); 666 if (D.getDecl()) 667 SetFunctionAttributes(cast<FunctionDecl>(D.getDecl()), F, 668 IsIncompleteFunction); 669 Entry = F; 670 return F; 671 } 672 673 /// GetAddrOfFunction - Return the address of the given function. If Ty is 674 /// non-null, then this function will use the specified type if it has to 675 /// create it (this occurs when we see a definition of the function). 676 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 677 const llvm::Type *Ty) { 678 // If there was no specific requested type, just convert it now. 679 if (!Ty) 680 Ty = getTypes().ConvertType(GD.getDecl()->getType()); 681 return GetOrCreateLLVMFunction(getMangledName(GD.getDecl()), Ty, GD); 682 } 683 684 /// CreateRuntimeFunction - Create a new runtime function with the specified 685 /// type and name. 686 llvm::Constant * 687 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy, 688 const char *Name) { 689 // Convert Name to be a uniqued string from the IdentifierInfo table. 690 Name = getContext().Idents.get(Name).getName(); 691 return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl()); 692 } 693 694 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 695 /// create and return an llvm GlobalVariable with the specified type. If there 696 /// is something in the module with the specified name, return it potentially 697 /// bitcasted to the right type. 698 /// 699 /// If D is non-null, it specifies a decl that correspond to this. This is used 700 /// to set the attributes on the global when it is first created. 701 llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName, 702 const llvm::PointerType*Ty, 703 const VarDecl *D) { 704 // Lookup the entry, lazily creating it if necessary. 705 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 706 if (Entry) { 707 if (Entry->getType() == Ty) 708 return Entry; 709 710 // Make sure the result is of the correct type. 711 return llvm::ConstantExpr::getBitCast(Entry, Ty); 712 } 713 714 // This is the first use or definition of a mangled name. If there is a 715 // deferred decl with this name, remember that we need to emit it at the end 716 // of the file. 717 llvm::DenseMap<const char*, GlobalDecl>::iterator DDI = 718 DeferredDecls.find(MangledName); 719 if (DDI != DeferredDecls.end()) { 720 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 721 // list, and remove it from DeferredDecls (since we don't need it anymore). 722 DeferredDeclsToEmit.push_back(DDI->second); 723 DeferredDecls.erase(DDI); 724 } 725 726 llvm::GlobalVariable *GV = 727 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 728 llvm::GlobalValue::ExternalLinkage, 729 0, "", 0, 730 false, Ty->getAddressSpace()); 731 GV->setName(MangledName); 732 733 // Handle things which are present even on external declarations. 734 if (D) { 735 // FIXME: This code is overly simple and should be merged with other global 736 // handling. 737 GV->setConstant(D->getType().isConstant(Context)); 738 739 // FIXME: Merge with other attribute handling code. 740 if (D->getStorageClass() == VarDecl::PrivateExtern) 741 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 742 743 if (D->hasAttr<WeakAttr>() || 744 D->hasAttr<WeakImportAttr>()) 745 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 746 747 GV->setThreadLocal(D->isThreadSpecified()); 748 } 749 750 return Entry = GV; 751 } 752 753 754 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 755 /// given global variable. If Ty is non-null and if the global doesn't exist, 756 /// then it will be greated with the specified type instead of whatever the 757 /// normal requested type would be. 758 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 759 const llvm::Type *Ty) { 760 assert(D->hasGlobalStorage() && "Not a global variable"); 761 QualType ASTTy = D->getType(); 762 if (Ty == 0) 763 Ty = getTypes().ConvertTypeForMem(ASTTy); 764 765 const llvm::PointerType *PTy = 766 llvm::PointerType::get(Ty, ASTTy.getAddressSpace()); 767 return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D); 768 } 769 770 /// CreateRuntimeVariable - Create a new runtime global variable with the 771 /// specified type and name. 772 llvm::Constant * 773 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty, 774 const char *Name) { 775 // Convert Name to be a uniqued string from the IdentifierInfo table. 776 Name = getContext().Idents.get(Name).getName(); 777 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0); 778 } 779 780 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 781 assert(!D->getInit() && "Cannot emit definite definitions here!"); 782 783 if (MayDeferGeneration(D)) { 784 // If we have not seen a reference to this variable yet, place it 785 // into the deferred declarations table to be emitted if needed 786 // later. 787 const char *MangledName = getMangledName(D); 788 if (GlobalDeclMap.count(MangledName) == 0) { 789 DeferredDecls[MangledName] = GlobalDecl(D); 790 return; 791 } 792 } 793 794 // The tentative definition is the only definition. 795 EmitGlobalVarDefinition(D); 796 } 797 798 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 799 llvm::Constant *Init = 0; 800 QualType ASTTy = D->getType(); 801 802 if (D->getInit() == 0) { 803 // This is a tentative definition; tentative definitions are 804 // implicitly initialized with { 0 }. 805 // 806 // Note that tentative definitions are only emitted at the end of 807 // a translation unit, so they should never have incomplete 808 // type. In addition, EmitTentativeDefinition makes sure that we 809 // never attempt to emit a tentative definition if a real one 810 // exists. A use may still exists, however, so we still may need 811 // to do a RAUW. 812 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 813 Init = EmitNullConstant(D->getType()); 814 } else { 815 Init = EmitConstantExpr(D->getInit(), D->getType()); 816 if (!Init) { 817 ErrorUnsupported(D, "static initializer"); 818 QualType T = D->getInit()->getType(); 819 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 820 } 821 } 822 823 const llvm::Type* InitType = Init->getType(); 824 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 825 826 // Strip off a bitcast if we got one back. 827 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 828 assert(CE->getOpcode() == llvm::Instruction::BitCast || 829 // all zero index gep. 830 CE->getOpcode() == llvm::Instruction::GetElementPtr); 831 Entry = CE->getOperand(0); 832 } 833 834 // Entry is now either a Function or GlobalVariable. 835 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 836 837 // We have a definition after a declaration with the wrong type. 838 // We must make a new GlobalVariable* and update everything that used OldGV 839 // (a declaration or tentative definition) with the new GlobalVariable* 840 // (which will be a definition). 841 // 842 // This happens if there is a prototype for a global (e.g. 843 // "extern int x[];") and then a definition of a different type (e.g. 844 // "int x[10];"). This also happens when an initializer has a different type 845 // from the type of the global (this happens with unions). 846 if (GV == 0 || 847 GV->getType()->getElementType() != InitType || 848 GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) { 849 850 // Remove the old entry from GlobalDeclMap so that we'll create a new one. 851 GlobalDeclMap.erase(getMangledName(D)); 852 853 // Make a new global with the correct type, this is now guaranteed to work. 854 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 855 GV->takeName(cast<llvm::GlobalValue>(Entry)); 856 857 // Replace all uses of the old global with the new global 858 llvm::Constant *NewPtrForOldDecl = 859 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 860 Entry->replaceAllUsesWith(NewPtrForOldDecl); 861 862 // Erase the old global, since it is no longer used. 863 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 864 } 865 866 if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) { 867 SourceManager &SM = Context.getSourceManager(); 868 AddAnnotation(EmitAnnotateAttr(GV, AA, 869 SM.getInstantiationLineNumber(D->getLocation()))); 870 } 871 872 GV->setInitializer(Init); 873 GV->setConstant(D->getType().isConstant(Context)); 874 GV->setAlignment(getContext().getDeclAlignInBytes(D)); 875 876 // Set the llvm linkage type as appropriate. 877 if (D->getStorageClass() == VarDecl::Static) 878 GV->setLinkage(llvm::Function::InternalLinkage); 879 else if (D->hasAttr<DLLImportAttr>()) 880 GV->setLinkage(llvm::Function::DLLImportLinkage); 881 else if (D->hasAttr<DLLExportAttr>()) 882 GV->setLinkage(llvm::Function::DLLExportLinkage); 883 else if (D->hasAttr<WeakAttr>()) 884 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 885 else if (!CompileOpts.NoCommon && 886 (!D->hasExternalStorage() && !D->getInit())) 887 GV->setLinkage(llvm::GlobalVariable::CommonLinkage); 888 else 889 GV->setLinkage(llvm::GlobalVariable::ExternalLinkage); 890 891 SetCommonAttributes(D, GV); 892 893 // Emit global variable debug information. 894 if (CGDebugInfo *DI = getDebugInfo()) { 895 DI->setLocation(D->getLocation()); 896 DI->EmitGlobalVariable(GV, D); 897 } 898 } 899 900 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 901 /// implement a function with no prototype, e.g. "int foo() {}". If there are 902 /// existing call uses of the old function in the module, this adjusts them to 903 /// call the new function directly. 904 /// 905 /// This is not just a cleanup: the always_inline pass requires direct calls to 906 /// functions to be able to inline them. If there is a bitcast in the way, it 907 /// won't inline them. Instcombine normally deletes these calls, but it isn't 908 /// run at -O0. 909 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 910 llvm::Function *NewFn) { 911 // If we're redefining a global as a function, don't transform it. 912 llvm::Function *OldFn = dyn_cast<llvm::Function>(Old); 913 if (OldFn == 0) return; 914 915 const llvm::Type *NewRetTy = NewFn->getReturnType(); 916 llvm::SmallVector<llvm::Value*, 4> ArgList; 917 918 for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end(); 919 UI != E; ) { 920 // TODO: Do invokes ever occur in C code? If so, we should handle them too. 921 unsigned OpNo = UI.getOperandNo(); 922 llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*UI++); 923 if (!CI || OpNo != 0) continue; 924 925 // If the return types don't match exactly, and if the call isn't dead, then 926 // we can't transform this call. 927 if (CI->getType() != NewRetTy && !CI->use_empty()) 928 continue; 929 930 // If the function was passed too few arguments, don't transform. If extra 931 // arguments were passed, we silently drop them. If any of the types 932 // mismatch, we don't transform. 933 unsigned ArgNo = 0; 934 bool DontTransform = false; 935 for (llvm::Function::arg_iterator AI = NewFn->arg_begin(), 936 E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) { 937 if (CI->getNumOperands()-1 == ArgNo || 938 CI->getOperand(ArgNo+1)->getType() != AI->getType()) { 939 DontTransform = true; 940 break; 941 } 942 } 943 if (DontTransform) 944 continue; 945 946 // Okay, we can transform this. Create the new call instruction and copy 947 // over the required information. 948 ArgList.append(CI->op_begin()+1, CI->op_begin()+1+ArgNo); 949 llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(), 950 ArgList.end(), "", CI); 951 ArgList.clear(); 952 if (NewCall->getType() != llvm::Type::VoidTy) 953 NewCall->takeName(CI); 954 NewCall->setCallingConv(CI->getCallingConv()); 955 NewCall->setAttributes(CI->getAttributes()); 956 957 // Finally, remove the old call, replacing any uses with the new one. 958 if (!CI->use_empty()) 959 CI->replaceAllUsesWith(NewCall); 960 CI->eraseFromParent(); 961 } 962 } 963 964 965 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { 966 const llvm::FunctionType *Ty; 967 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 968 969 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) { 970 bool isVariadic = D->getType()->getAsFunctionProtoType()->isVariadic(); 971 972 Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic); 973 } else { 974 Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType())); 975 976 // As a special case, make sure that definitions of K&R function 977 // "type foo()" aren't declared as varargs (which forces the backend 978 // to do unnecessary work). 979 if (D->getType()->isFunctionNoProtoType()) { 980 assert(Ty->isVarArg() && "Didn't lower type as expected"); 981 // Due to stret, the lowered function could have arguments. 982 // Just create the same type as was lowered by ConvertType 983 // but strip off the varargs bit. 984 std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end()); 985 Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false); 986 } 987 } 988 989 // Get or create the prototype for the function. 990 llvm::Constant *Entry = GetAddrOfFunction(GD, Ty); 991 992 // Strip off a bitcast if we got one back. 993 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 994 assert(CE->getOpcode() == llvm::Instruction::BitCast); 995 Entry = CE->getOperand(0); 996 } 997 998 999 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 1000 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 1001 1002 // If the types mismatch then we have to rewrite the definition. 1003 assert(OldFn->isDeclaration() && 1004 "Shouldn't replace non-declaration"); 1005 1006 // F is the Function* for the one with the wrong type, we must make a new 1007 // Function* and update everything that used F (a declaration) with the new 1008 // Function* (which will be a definition). 1009 // 1010 // This happens if there is a prototype for a function 1011 // (e.g. "int f()") and then a definition of a different type 1012 // (e.g. "int f(int x)"). Start by making a new function of the 1013 // correct type, RAUW, then steal the name. 1014 GlobalDeclMap.erase(getMangledName(D)); 1015 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 1016 NewFn->takeName(OldFn); 1017 1018 // If this is an implementation of a function without a prototype, try to 1019 // replace any existing uses of the function (which may be calls) with uses 1020 // of the new function 1021 if (D->getType()->isFunctionNoProtoType()) { 1022 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 1023 OldFn->removeDeadConstantUsers(); 1024 } 1025 1026 // Replace uses of F with the Function we will endow with a body. 1027 if (!Entry->use_empty()) { 1028 llvm::Constant *NewPtrForOldDecl = 1029 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 1030 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1031 } 1032 1033 // Ok, delete the old function now, which is dead. 1034 OldFn->eraseFromParent(); 1035 1036 Entry = NewFn; 1037 } 1038 1039 llvm::Function *Fn = cast<llvm::Function>(Entry); 1040 1041 CodeGenFunction(*this).GenerateCode(D, Fn); 1042 1043 SetFunctionDefinitionAttributes(D, Fn); 1044 SetLLVMFunctionAttributesForDefinition(D, Fn); 1045 1046 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 1047 AddGlobalCtor(Fn, CA->getPriority()); 1048 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 1049 AddGlobalDtor(Fn, DA->getPriority()); 1050 } 1051 1052 void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) { 1053 const AliasAttr *AA = D->getAttr<AliasAttr>(); 1054 assert(AA && "Not an alias?"); 1055 1056 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 1057 1058 // Unique the name through the identifier table. 1059 const char *AliaseeName = AA->getAliasee().c_str(); 1060 AliaseeName = getContext().Idents.get(AliaseeName).getName(); 1061 1062 // Create a reference to the named value. This ensures that it is emitted 1063 // if a deferred decl. 1064 llvm::Constant *Aliasee; 1065 if (isa<llvm::FunctionType>(DeclTy)) 1066 Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, GlobalDecl()); 1067 else 1068 Aliasee = GetOrCreateLLVMGlobal(AliaseeName, 1069 llvm::PointerType::getUnqual(DeclTy), 0); 1070 1071 // Create the new alias itself, but don't set a name yet. 1072 llvm::GlobalValue *GA = 1073 new llvm::GlobalAlias(Aliasee->getType(), 1074 llvm::Function::ExternalLinkage, 1075 "", Aliasee, &getModule()); 1076 1077 // See if there is already something with the alias' name in the module. 1078 const char *MangledName = getMangledName(D); 1079 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 1080 1081 if (Entry && !Entry->isDeclaration()) { 1082 // If there is a definition in the module, then it wins over the alias. 1083 // This is dubious, but allow it to be safe. Just ignore the alias. 1084 GA->eraseFromParent(); 1085 return; 1086 } 1087 1088 if (Entry) { 1089 // If there is a declaration in the module, then we had an extern followed 1090 // by the alias, as in: 1091 // extern int test6(); 1092 // ... 1093 // int test6() __attribute__((alias("test7"))); 1094 // 1095 // Remove it and replace uses of it with the alias. 1096 1097 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 1098 Entry->getType())); 1099 Entry->eraseFromParent(); 1100 } 1101 1102 // Now we know that there is no conflict, set the name. 1103 Entry = GA; 1104 GA->setName(MangledName); 1105 1106 // Set attributes which are particular to an alias; this is a 1107 // specialization of the attributes which may be set on a global 1108 // variable/function. 1109 if (D->hasAttr<DLLExportAttr>()) { 1110 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1111 // The dllexport attribute is ignored for undefined symbols. 1112 if (FD->getBody()) 1113 GA->setLinkage(llvm::Function::DLLExportLinkage); 1114 } else { 1115 GA->setLinkage(llvm::Function::DLLExportLinkage); 1116 } 1117 } else if (D->hasAttr<WeakAttr>() || 1118 D->hasAttr<WeakImportAttr>()) { 1119 GA->setLinkage(llvm::Function::WeakAnyLinkage); 1120 } 1121 1122 SetCommonAttributes(D, GA); 1123 } 1124 1125 /// getBuiltinLibFunction - Given a builtin id for a function like 1126 /// "__builtin_fabsf", return a Function* for "fabsf". 1127 llvm::Value *CodeGenModule::getBuiltinLibFunction(unsigned BuiltinID) { 1128 assert((Context.BuiltinInfo.isLibFunction(BuiltinID) || 1129 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) && 1130 "isn't a lib fn"); 1131 1132 // Get the name, skip over the __builtin_ prefix (if necessary). 1133 const char *Name = Context.BuiltinInfo.GetName(BuiltinID); 1134 if (Context.BuiltinInfo.isLibFunction(BuiltinID)) 1135 Name += 10; 1136 1137 // Get the type for the builtin. 1138 ASTContext::GetBuiltinTypeError Error; 1139 QualType Type = Context.GetBuiltinType(BuiltinID, Error); 1140 assert(Error == ASTContext::GE_None && "Can't get builtin type"); 1141 1142 const llvm::FunctionType *Ty = 1143 cast<llvm::FunctionType>(getTypes().ConvertType(Type)); 1144 1145 // Unique the name through the identifier table. 1146 Name = getContext().Idents.get(Name).getName(); 1147 // FIXME: param attributes for sext/zext etc. 1148 return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl()); 1149 } 1150 1151 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys, 1152 unsigned NumTys) { 1153 return llvm::Intrinsic::getDeclaration(&getModule(), 1154 (llvm::Intrinsic::ID)IID, Tys, NumTys); 1155 } 1156 1157 llvm::Function *CodeGenModule::getMemCpyFn() { 1158 if (MemCpyFn) return MemCpyFn; 1159 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(); 1160 return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1); 1161 } 1162 1163 llvm::Function *CodeGenModule::getMemMoveFn() { 1164 if (MemMoveFn) return MemMoveFn; 1165 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(); 1166 return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1); 1167 } 1168 1169 llvm::Function *CodeGenModule::getMemSetFn() { 1170 if (MemSetFn) return MemSetFn; 1171 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(); 1172 return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1); 1173 } 1174 1175 static void appendFieldAndPadding(CodeGenModule &CGM, 1176 std::vector<llvm::Constant*>& Fields, 1177 FieldDecl *FieldD, FieldDecl *NextFieldD, 1178 llvm::Constant* Field, 1179 RecordDecl* RD, const llvm::StructType *STy) { 1180 // Append the field. 1181 Fields.push_back(Field); 1182 1183 int StructFieldNo = CGM.getTypes().getLLVMFieldNo(FieldD); 1184 1185 int NextStructFieldNo; 1186 if (!NextFieldD) { 1187 NextStructFieldNo = STy->getNumElements(); 1188 } else { 1189 NextStructFieldNo = CGM.getTypes().getLLVMFieldNo(NextFieldD); 1190 } 1191 1192 // Append padding 1193 for (int i = StructFieldNo + 1; i < NextStructFieldNo; i++) { 1194 llvm::Constant *C = 1195 llvm::Constant::getNullValue(STy->getElementType(StructFieldNo + 1)); 1196 1197 Fields.push_back(C); 1198 } 1199 } 1200 1201 static llvm::StringMapEntry<llvm::Constant*> & 1202 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1203 const StringLiteral *Literal, 1204 bool TargetIsLSB, 1205 bool &IsUTF16, 1206 unsigned &StringLength) { 1207 unsigned NumBytes = Literal->getByteLength(); 1208 1209 // Check for simple case. 1210 if (!Literal->containsNonAsciiOrNull()) { 1211 StringLength = NumBytes; 1212 return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(), 1213 StringLength)); 1214 } 1215 1216 // Otherwise, convert the UTF8 literals into a byte string. 1217 llvm::SmallVector<UTF16, 128> ToBuf(NumBytes); 1218 const UTF8 *FromPtr = (UTF8 *)Literal->getStrData(); 1219 UTF16 *ToPtr = &ToBuf[0]; 1220 1221 ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 1222 &ToPtr, ToPtr + NumBytes, 1223 strictConversion); 1224 1225 // Check for conversion failure. 1226 if (Result != conversionOK) { 1227 // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove 1228 // this duplicate code. 1229 assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed"); 1230 StringLength = NumBytes; 1231 return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(), 1232 StringLength)); 1233 } 1234 1235 // ConvertUTF8toUTF16 returns the length in ToPtr. 1236 StringLength = ToPtr - &ToBuf[0]; 1237 1238 // Render the UTF-16 string into a byte array and convert to the target byte 1239 // order. 1240 // 1241 // FIXME: This isn't something we should need to do here. 1242 llvm::SmallString<128> AsBytes; 1243 AsBytes.reserve(StringLength * 2); 1244 for (unsigned i = 0; i != StringLength; ++i) { 1245 unsigned short Val = ToBuf[i]; 1246 if (TargetIsLSB) { 1247 AsBytes.push_back(Val & 0xFF); 1248 AsBytes.push_back(Val >> 8); 1249 } else { 1250 AsBytes.push_back(Val >> 8); 1251 AsBytes.push_back(Val & 0xFF); 1252 } 1253 } 1254 1255 IsUTF16 = true; 1256 return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size())); 1257 } 1258 1259 llvm::Constant * 1260 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 1261 unsigned StringLength = 0; 1262 bool isUTF16 = false; 1263 llvm::StringMapEntry<llvm::Constant*> &Entry = 1264 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1265 getTargetData().isLittleEndian(), 1266 isUTF16, StringLength); 1267 1268 if (llvm::Constant *C = Entry.getValue()) 1269 return C; 1270 1271 llvm::Constant *Zero = llvm::Constant::getNullValue(llvm::Type::Int32Ty); 1272 llvm::Constant *Zeros[] = { Zero, Zero }; 1273 1274 // If we don't already have it, get __CFConstantStringClassReference. 1275 if (!CFConstantStringClassRef) { 1276 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1277 Ty = llvm::ArrayType::get(Ty, 0); 1278 llvm::Constant *GV = CreateRuntimeVariable(Ty, 1279 "__CFConstantStringClassReference"); 1280 // Decay array -> ptr 1281 CFConstantStringClassRef = 1282 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1283 } 1284 1285 QualType CFTy = getContext().getCFConstantStringType(); 1286 RecordDecl *CFRD = CFTy->getAs<RecordType>()->getDecl(); 1287 1288 const llvm::StructType *STy = 1289 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 1290 1291 std::vector<llvm::Constant*> Fields; 1292 RecordDecl::field_iterator Field = CFRD->field_begin(); 1293 1294 // Class pointer. 1295 FieldDecl *CurField = *Field++; 1296 FieldDecl *NextField = *Field++; 1297 appendFieldAndPadding(*this, Fields, CurField, NextField, 1298 CFConstantStringClassRef, CFRD, STy); 1299 1300 // Flags. 1301 CurField = NextField; 1302 NextField = *Field++; 1303 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1304 appendFieldAndPadding(*this, Fields, CurField, NextField, 1305 isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) 1306 : llvm::ConstantInt::get(Ty, 0x07C8), 1307 CFRD, STy); 1308 1309 // String pointer. 1310 CurField = NextField; 1311 NextField = *Field++; 1312 llvm::Constant *C = llvm::ConstantArray::get(Entry.getKey().str()); 1313 1314 const char *Sect, *Prefix; 1315 bool isConstant; 1316 llvm::GlobalValue::LinkageTypes Linkage; 1317 if (isUTF16) { 1318 Prefix = getContext().Target.getUnicodeStringSymbolPrefix(); 1319 Sect = getContext().Target.getUnicodeStringSection(); 1320 // FIXME: why do utf strings get "l" labels instead of "L" labels? 1321 Linkage = llvm::GlobalValue::InternalLinkage; 1322 // FIXME: Why does GCC not set constant here? 1323 isConstant = false; 1324 } else { 1325 Prefix = ".str"; 1326 Sect = getContext().Target.getCFStringDataSection(); 1327 Linkage = llvm::GlobalValue::PrivateLinkage; 1328 // FIXME: -fwritable-strings should probably affect this, but we 1329 // are following gcc here. 1330 isConstant = true; 1331 } 1332 llvm::GlobalVariable *GV = 1333 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, 1334 Linkage, C, Prefix); 1335 if (Sect) 1336 GV->setSection(Sect); 1337 if (isUTF16) { 1338 unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8; 1339 GV->setAlignment(Align); 1340 } 1341 appendFieldAndPadding(*this, Fields, CurField, NextField, 1342 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2), 1343 CFRD, STy); 1344 1345 // String length. 1346 CurField = NextField; 1347 NextField = 0; 1348 Ty = getTypes().ConvertType(getContext().LongTy); 1349 appendFieldAndPadding(*this, Fields, CurField, NextField, 1350 llvm::ConstantInt::get(Ty, StringLength), CFRD, STy); 1351 1352 // The struct. 1353 C = llvm::ConstantStruct::get(STy, Fields); 1354 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1355 llvm::GlobalVariable::PrivateLinkage, C, 1356 "_unnamed_cfstring_"); 1357 if (const char *Sect = getContext().Target.getCFStringSection()) 1358 GV->setSection(Sect); 1359 Entry.setValue(GV); 1360 1361 return GV; 1362 } 1363 1364 /// GetStringForStringLiteral - Return the appropriate bytes for a 1365 /// string literal, properly padded to match the literal type. 1366 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) { 1367 const char *StrData = E->getStrData(); 1368 unsigned Len = E->getByteLength(); 1369 1370 const ConstantArrayType *CAT = 1371 getContext().getAsConstantArrayType(E->getType()); 1372 assert(CAT && "String isn't pointer or array!"); 1373 1374 // Resize the string to the right size. 1375 std::string Str(StrData, StrData+Len); 1376 uint64_t RealLen = CAT->getSize().getZExtValue(); 1377 1378 if (E->isWide()) 1379 RealLen *= getContext().Target.getWCharWidth()/8; 1380 1381 Str.resize(RealLen, '\0'); 1382 1383 return Str; 1384 } 1385 1386 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 1387 /// constant array for the given string literal. 1388 llvm::Constant * 1389 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 1390 // FIXME: This can be more efficient. 1391 return GetAddrOfConstantString(GetStringForStringLiteral(S)); 1392 } 1393 1394 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 1395 /// array for the given ObjCEncodeExpr node. 1396 llvm::Constant * 1397 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 1398 std::string Str; 1399 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 1400 1401 return GetAddrOfConstantCString(Str); 1402 } 1403 1404 1405 /// GenerateWritableString -- Creates storage for a string literal. 1406 static llvm::Constant *GenerateStringLiteral(const std::string &str, 1407 bool constant, 1408 CodeGenModule &CGM, 1409 const char *GlobalName) { 1410 // Create Constant for this string literal. Don't add a '\0'. 1411 llvm::Constant *C = llvm::ConstantArray::get(str, false); 1412 1413 // Create a global variable for this string 1414 return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant, 1415 llvm::GlobalValue::PrivateLinkage, 1416 C, GlobalName); 1417 } 1418 1419 /// GetAddrOfConstantString - Returns a pointer to a character array 1420 /// containing the literal. This contents are exactly that of the 1421 /// given string, i.e. it will not be null terminated automatically; 1422 /// see GetAddrOfConstantCString. Note that whether the result is 1423 /// actually a pointer to an LLVM constant depends on 1424 /// Feature.WriteableStrings. 1425 /// 1426 /// The result has pointer to array type. 1427 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str, 1428 const char *GlobalName) { 1429 bool IsConstant = !Features.WritableStrings; 1430 1431 // Get the default prefix if a name wasn't specified. 1432 if (!GlobalName) 1433 GlobalName = ".str"; 1434 1435 // Don't share any string literals if strings aren't constant. 1436 if (!IsConstant) 1437 return GenerateStringLiteral(str, false, *this, GlobalName); 1438 1439 llvm::StringMapEntry<llvm::Constant *> &Entry = 1440 ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 1441 1442 if (Entry.getValue()) 1443 return Entry.getValue(); 1444 1445 // Create a global variable for this. 1446 llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName); 1447 Entry.setValue(C); 1448 return C; 1449 } 1450 1451 /// GetAddrOfConstantCString - Returns a pointer to a character 1452 /// array containing the literal and a terminating '\-' 1453 /// character. The result has pointer to array type. 1454 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str, 1455 const char *GlobalName){ 1456 return GetAddrOfConstantString(str + '\0', GlobalName); 1457 } 1458 1459 /// EmitObjCPropertyImplementations - Emit information for synthesized 1460 /// properties for an implementation. 1461 void CodeGenModule::EmitObjCPropertyImplementations(const 1462 ObjCImplementationDecl *D) { 1463 for (ObjCImplementationDecl::propimpl_iterator 1464 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { 1465 ObjCPropertyImplDecl *PID = *i; 1466 1467 // Dynamic is just for type-checking. 1468 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 1469 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1470 1471 // Determine which methods need to be implemented, some may have 1472 // been overridden. Note that ::isSynthesized is not the method 1473 // we want, that just indicates if the decl came from a 1474 // property. What we want to know is if the method is defined in 1475 // this implementation. 1476 if (!D->getInstanceMethod(PD->getGetterName())) 1477 CodeGenFunction(*this).GenerateObjCGetter( 1478 const_cast<ObjCImplementationDecl *>(D), PID); 1479 if (!PD->isReadOnly() && 1480 !D->getInstanceMethod(PD->getSetterName())) 1481 CodeGenFunction(*this).GenerateObjCSetter( 1482 const_cast<ObjCImplementationDecl *>(D), PID); 1483 } 1484 } 1485 } 1486 1487 /// EmitNamespace - Emit all declarations in a namespace. 1488 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 1489 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); 1490 I != E; ++I) 1491 EmitTopLevelDecl(*I); 1492 } 1493 1494 // EmitLinkageSpec - Emit all declarations in a linkage spec. 1495 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 1496 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 1497 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 1498 ErrorUnsupported(LSD, "linkage spec"); 1499 return; 1500 } 1501 1502 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); 1503 I != E; ++I) 1504 EmitTopLevelDecl(*I); 1505 } 1506 1507 /// EmitTopLevelDecl - Emit code for a single top level declaration. 1508 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 1509 // If an error has occurred, stop code generation, but continue 1510 // parsing and semantic analysis (to ensure all warnings and errors 1511 // are emitted). 1512 if (Diags.hasErrorOccurred()) 1513 return; 1514 1515 // Ignore dependent declarations. 1516 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 1517 return; 1518 1519 switch (D->getKind()) { 1520 case Decl::CXXMethod: 1521 case Decl::Function: 1522 // Skip function templates 1523 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 1524 return; 1525 1526 // Fall through 1527 1528 case Decl::Var: 1529 EmitGlobal(GlobalDecl(cast<ValueDecl>(D))); 1530 break; 1531 1532 // C++ Decls 1533 case Decl::Namespace: 1534 EmitNamespace(cast<NamespaceDecl>(D)); 1535 break; 1536 // No code generation needed. 1537 case Decl::Using: 1538 case Decl::ClassTemplate: 1539 case Decl::FunctionTemplate: 1540 break; 1541 case Decl::CXXConstructor: 1542 EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 1543 break; 1544 case Decl::CXXDestructor: 1545 EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 1546 break; 1547 1548 case Decl::StaticAssert: 1549 // Nothing to do. 1550 break; 1551 1552 // Objective-C Decls 1553 1554 // Forward declarations, no (immediate) code generation. 1555 case Decl::ObjCClass: 1556 case Decl::ObjCForwardProtocol: 1557 case Decl::ObjCCategory: 1558 case Decl::ObjCInterface: 1559 break; 1560 1561 case Decl::ObjCProtocol: 1562 Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D)); 1563 break; 1564 1565 case Decl::ObjCCategoryImpl: 1566 // Categories have properties but don't support synthesize so we 1567 // can ignore them here. 1568 Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 1569 break; 1570 1571 case Decl::ObjCImplementation: { 1572 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 1573 EmitObjCPropertyImplementations(OMD); 1574 Runtime->GenerateClass(OMD); 1575 break; 1576 } 1577 case Decl::ObjCMethod: { 1578 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 1579 // If this is not a prototype, emit the body. 1580 if (OMD->getBody()) 1581 CodeGenFunction(*this).GenerateObjCMethod(OMD); 1582 break; 1583 } 1584 case Decl::ObjCCompatibleAlias: 1585 // compatibility-alias is a directive and has no code gen. 1586 break; 1587 1588 case Decl::LinkageSpec: 1589 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 1590 break; 1591 1592 case Decl::FileScopeAsm: { 1593 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 1594 std::string AsmString(AD->getAsmString()->getStrData(), 1595 AD->getAsmString()->getByteLength()); 1596 1597 const std::string &S = getModule().getModuleInlineAsm(); 1598 if (S.empty()) 1599 getModule().setModuleInlineAsm(AsmString); 1600 else 1601 getModule().setModuleInlineAsm(S + '\n' + AsmString); 1602 break; 1603 } 1604 1605 default: 1606 // Make sure we handled everything we should, every other kind is a 1607 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 1608 // function. Need to recode Decl::Kind to do that easily. 1609 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 1610 } 1611 } 1612