1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGBlocks.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGCall.h" 19 #include "CGDebugInfo.h" 20 #include "CGObjCRuntime.h" 21 #include "CGOpenCLRuntime.h" 22 #include "CGOpenMPRuntime.h" 23 #include "CGOpenMPRuntimeNVPTX.h" 24 #include "CodeGenFunction.h" 25 #include "CodeGenPGO.h" 26 #include "ConstantEmitter.h" 27 #include "CoverageMappingGen.h" 28 #include "TargetInfo.h" 29 #include "clang/AST/ASTContext.h" 30 #include "clang/AST/CharUnits.h" 31 #include "clang/AST/DeclCXX.h" 32 #include "clang/AST/DeclObjC.h" 33 #include "clang/AST/DeclTemplate.h" 34 #include "clang/AST/Mangle.h" 35 #include "clang/AST/RecordLayout.h" 36 #include "clang/AST/RecursiveASTVisitor.h" 37 #include "clang/Basic/Builtins.h" 38 #include "clang/Basic/CharInfo.h" 39 #include "clang/Basic/Diagnostic.h" 40 #include "clang/Basic/Module.h" 41 #include "clang/Basic/SourceManager.h" 42 #include "clang/Basic/TargetInfo.h" 43 #include "clang/Basic/Version.h" 44 #include "clang/CodeGen/ConstantInitBuilder.h" 45 #include "clang/Frontend/CodeGenOptions.h" 46 #include "clang/Sema/SemaDiagnostic.h" 47 #include "llvm/ADT/Triple.h" 48 #include "llvm/Analysis/TargetLibraryInfo.h" 49 #include "llvm/IR/CallSite.h" 50 #include "llvm/IR/CallingConv.h" 51 #include "llvm/IR/DataLayout.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/Module.h" 55 #include "llvm/ProfileData/InstrProfReader.h" 56 #include "llvm/Support/ConvertUTF.h" 57 #include "llvm/Support/ErrorHandling.h" 58 #include "llvm/Support/MD5.h" 59 60 using namespace clang; 61 using namespace CodeGen; 62 63 static llvm::cl::opt<bool> LimitedCoverage( 64 "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden, 65 llvm::cl::desc("Emit limited coverage mapping information (experimental)"), 66 llvm::cl::init(false)); 67 68 static const char AnnotationSection[] = "llvm.metadata"; 69 70 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 71 switch (CGM.getTarget().getCXXABI().getKind()) { 72 case TargetCXXABI::GenericAArch64: 73 case TargetCXXABI::GenericARM: 74 case TargetCXXABI::iOS: 75 case TargetCXXABI::iOS64: 76 case TargetCXXABI::WatchOS: 77 case TargetCXXABI::GenericMIPS: 78 case TargetCXXABI::GenericItanium: 79 case TargetCXXABI::WebAssembly: 80 return CreateItaniumCXXABI(CGM); 81 case TargetCXXABI::Microsoft: 82 return CreateMicrosoftCXXABI(CGM); 83 } 84 85 llvm_unreachable("invalid C++ ABI kind"); 86 } 87 88 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 89 const PreprocessorOptions &PPO, 90 const CodeGenOptions &CGO, llvm::Module &M, 91 DiagnosticsEngine &diags, 92 CoverageSourceInfo *CoverageInfo) 93 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 94 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 95 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 96 VMContext(M.getContext()), Types(*this), VTables(*this), 97 SanitizerMD(new SanitizerMetadata(*this)) { 98 99 // Initialize the type cache. 100 llvm::LLVMContext &LLVMContext = M.getContext(); 101 VoidTy = llvm::Type::getVoidTy(LLVMContext); 102 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 103 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 104 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 105 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 106 HalfTy = llvm::Type::getHalfTy(LLVMContext); 107 FloatTy = llvm::Type::getFloatTy(LLVMContext); 108 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 109 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 110 PointerAlignInBytes = 111 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 112 SizeSizeInBytes = 113 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 114 IntAlignInBytes = 115 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 116 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 117 IntPtrTy = llvm::IntegerType::get(LLVMContext, 118 C.getTargetInfo().getMaxPointerWidth()); 119 Int8PtrTy = Int8Ty->getPointerTo(0); 120 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 121 AllocaInt8PtrTy = Int8Ty->getPointerTo( 122 M.getDataLayout().getAllocaAddrSpace()); 123 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 124 125 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 126 BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC(); 127 128 if (LangOpts.ObjC1) 129 createObjCRuntime(); 130 if (LangOpts.OpenCL) 131 createOpenCLRuntime(); 132 if (LangOpts.OpenMP) 133 createOpenMPRuntime(); 134 if (LangOpts.CUDA) 135 createCUDARuntime(); 136 137 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 138 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 139 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 140 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(), 141 getCXXABI().getMangleContext())); 142 143 // If debug info or coverage generation is enabled, create the CGDebugInfo 144 // object. 145 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 146 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 147 DebugInfo.reset(new CGDebugInfo(*this)); 148 149 Block.GlobalUniqueCount = 0; 150 151 if (C.getLangOpts().ObjC1) 152 ObjCData.reset(new ObjCEntrypoints()); 153 154 if (CodeGenOpts.hasProfileClangUse()) { 155 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 156 CodeGenOpts.ProfileInstrumentUsePath); 157 if (auto E = ReaderOrErr.takeError()) { 158 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 159 "Could not read profile %0: %1"); 160 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) { 161 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 162 << EI.message(); 163 }); 164 } else 165 PGOReader = std::move(ReaderOrErr.get()); 166 } 167 168 // If coverage mapping generation is enabled, create the 169 // CoverageMappingModuleGen object. 170 if (CodeGenOpts.CoverageMapping) 171 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 172 } 173 174 CodeGenModule::~CodeGenModule() {} 175 176 void CodeGenModule::createObjCRuntime() { 177 // This is just isGNUFamily(), but we want to force implementors of 178 // new ABIs to decide how best to do this. 179 switch (LangOpts.ObjCRuntime.getKind()) { 180 case ObjCRuntime::GNUstep: 181 case ObjCRuntime::GCC: 182 case ObjCRuntime::ObjFW: 183 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 184 return; 185 186 case ObjCRuntime::FragileMacOSX: 187 case ObjCRuntime::MacOSX: 188 case ObjCRuntime::iOS: 189 case ObjCRuntime::WatchOS: 190 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 191 return; 192 } 193 llvm_unreachable("bad runtime kind"); 194 } 195 196 void CodeGenModule::createOpenCLRuntime() { 197 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 198 } 199 200 void CodeGenModule::createOpenMPRuntime() { 201 // Select a specialized code generation class based on the target, if any. 202 // If it does not exist use the default implementation. 203 switch (getTriple().getArch()) { 204 case llvm::Triple::nvptx: 205 case llvm::Triple::nvptx64: 206 assert(getLangOpts().OpenMPIsDevice && 207 "OpenMP NVPTX is only prepared to deal with device code."); 208 OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this)); 209 break; 210 default: 211 if (LangOpts.OpenMPSimd) 212 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 213 else 214 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 215 break; 216 } 217 } 218 219 void CodeGenModule::createCUDARuntime() { 220 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 221 } 222 223 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 224 Replacements[Name] = C; 225 } 226 227 void CodeGenModule::applyReplacements() { 228 for (auto &I : Replacements) { 229 StringRef MangledName = I.first(); 230 llvm::Constant *Replacement = I.second; 231 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 232 if (!Entry) 233 continue; 234 auto *OldF = cast<llvm::Function>(Entry); 235 auto *NewF = dyn_cast<llvm::Function>(Replacement); 236 if (!NewF) { 237 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 238 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 239 } else { 240 auto *CE = cast<llvm::ConstantExpr>(Replacement); 241 assert(CE->getOpcode() == llvm::Instruction::BitCast || 242 CE->getOpcode() == llvm::Instruction::GetElementPtr); 243 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 244 } 245 } 246 247 // Replace old with new, but keep the old order. 248 OldF->replaceAllUsesWith(Replacement); 249 if (NewF) { 250 NewF->removeFromParent(); 251 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 252 NewF); 253 } 254 OldF->eraseFromParent(); 255 } 256 } 257 258 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 259 GlobalValReplacements.push_back(std::make_pair(GV, C)); 260 } 261 262 void CodeGenModule::applyGlobalValReplacements() { 263 for (auto &I : GlobalValReplacements) { 264 llvm::GlobalValue *GV = I.first; 265 llvm::Constant *C = I.second; 266 267 GV->replaceAllUsesWith(C); 268 GV->eraseFromParent(); 269 } 270 } 271 272 // This is only used in aliases that we created and we know they have a 273 // linear structure. 274 static const llvm::GlobalObject *getAliasedGlobal( 275 const llvm::GlobalIndirectSymbol &GIS) { 276 llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited; 277 const llvm::Constant *C = &GIS; 278 for (;;) { 279 C = C->stripPointerCasts(); 280 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 281 return GO; 282 // stripPointerCasts will not walk over weak aliases. 283 auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C); 284 if (!GIS2) 285 return nullptr; 286 if (!Visited.insert(GIS2).second) 287 return nullptr; 288 C = GIS2->getIndirectSymbol(); 289 } 290 } 291 292 void CodeGenModule::checkAliases() { 293 // Check if the constructed aliases are well formed. It is really unfortunate 294 // that we have to do this in CodeGen, but we only construct mangled names 295 // and aliases during codegen. 296 bool Error = false; 297 DiagnosticsEngine &Diags = getDiags(); 298 for (const GlobalDecl &GD : Aliases) { 299 const auto *D = cast<ValueDecl>(GD.getDecl()); 300 SourceLocation Location; 301 bool IsIFunc = D->hasAttr<IFuncAttr>(); 302 if (const Attr *A = D->getDefiningAttr()) 303 Location = A->getLocation(); 304 else 305 llvm_unreachable("Not an alias or ifunc?"); 306 StringRef MangledName = getMangledName(GD); 307 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 308 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry); 309 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 310 if (!GV) { 311 Error = true; 312 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 313 } else if (GV->isDeclaration()) { 314 Error = true; 315 Diags.Report(Location, diag::err_alias_to_undefined) 316 << IsIFunc << IsIFunc; 317 } else if (IsIFunc) { 318 // Check resolver function type. 319 llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>( 320 GV->getType()->getPointerElementType()); 321 assert(FTy); 322 if (!FTy->getReturnType()->isPointerTy()) 323 Diags.Report(Location, diag::err_ifunc_resolver_return); 324 if (FTy->getNumParams()) 325 Diags.Report(Location, diag::err_ifunc_resolver_params); 326 } 327 328 llvm::Constant *Aliasee = Alias->getIndirectSymbol(); 329 llvm::GlobalValue *AliaseeGV; 330 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 331 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 332 else 333 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 334 335 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 336 StringRef AliasSection = SA->getName(); 337 if (AliasSection != AliaseeGV->getSection()) 338 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 339 << AliasSection << IsIFunc << IsIFunc; 340 } 341 342 // We have to handle alias to weak aliases in here. LLVM itself disallows 343 // this since the object semantics would not match the IL one. For 344 // compatibility with gcc we implement it by just pointing the alias 345 // to its aliasee's aliasee. We also warn, since the user is probably 346 // expecting the link to be weak. 347 if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) { 348 if (GA->isInterposable()) { 349 Diags.Report(Location, diag::warn_alias_to_weak_alias) 350 << GV->getName() << GA->getName() << IsIFunc; 351 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 352 GA->getIndirectSymbol(), Alias->getType()); 353 Alias->setIndirectSymbol(Aliasee); 354 } 355 } 356 } 357 if (!Error) 358 return; 359 360 for (const GlobalDecl &GD : Aliases) { 361 StringRef MangledName = getMangledName(GD); 362 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 363 auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry); 364 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 365 Alias->eraseFromParent(); 366 } 367 } 368 369 void CodeGenModule::clear() { 370 DeferredDeclsToEmit.clear(); 371 if (OpenMPRuntime) 372 OpenMPRuntime->clear(); 373 } 374 375 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 376 StringRef MainFile) { 377 if (!hasDiagnostics()) 378 return; 379 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 380 if (MainFile.empty()) 381 MainFile = "<stdin>"; 382 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 383 } else { 384 if (Mismatched > 0) 385 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 386 387 if (Missing > 0) 388 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 389 } 390 } 391 392 void CodeGenModule::Release() { 393 EmitDeferred(); 394 EmitVTablesOpportunistically(); 395 applyGlobalValReplacements(); 396 applyReplacements(); 397 checkAliases(); 398 emitMultiVersionFunctions(); 399 EmitCXXGlobalInitFunc(); 400 EmitCXXGlobalDtorFunc(); 401 EmitCXXThreadLocalInitFunc(); 402 if (ObjCRuntime) 403 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 404 AddGlobalCtor(ObjCInitFunction); 405 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice && 406 CUDARuntime) { 407 if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction()) 408 AddGlobalCtor(CudaCtorFunction); 409 if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction()) 410 AddGlobalDtor(CudaDtorFunction); 411 } 412 if (OpenMPRuntime) 413 if (llvm::Function *OpenMPRegistrationFunction = 414 OpenMPRuntime->emitRegistrationFunction()) { 415 auto ComdatKey = OpenMPRegistrationFunction->hasComdat() ? 416 OpenMPRegistrationFunction : nullptr; 417 AddGlobalCtor(OpenMPRegistrationFunction, 0, ComdatKey); 418 } 419 if (PGOReader) { 420 getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext)); 421 if (PGOStats.hasDiagnostics()) 422 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 423 } 424 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 425 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 426 EmitGlobalAnnotations(); 427 EmitStaticExternCAliases(); 428 EmitDeferredUnusedCoverageMappings(); 429 if (CoverageMapping) 430 CoverageMapping->emit(); 431 if (CodeGenOpts.SanitizeCfiCrossDso) { 432 CodeGenFunction(*this).EmitCfiCheckFail(); 433 CodeGenFunction(*this).EmitCfiCheckStub(); 434 } 435 emitAtAvailableLinkGuard(); 436 emitLLVMUsed(); 437 if (SanStats) 438 SanStats->finish(); 439 440 if (CodeGenOpts.Autolink && 441 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 442 EmitModuleLinkOptions(); 443 } 444 445 // Record mregparm value now so it is visible through rest of codegen. 446 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 447 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 448 CodeGenOpts.NumRegisterParameters); 449 450 if (CodeGenOpts.DwarfVersion) { 451 // We actually want the latest version when there are conflicts. 452 // We can change from Warning to Latest if such mode is supported. 453 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 454 CodeGenOpts.DwarfVersion); 455 } 456 if (CodeGenOpts.EmitCodeView) { 457 // Indicate that we want CodeView in the metadata. 458 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 459 } 460 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 461 // We don't support LTO with 2 with different StrictVTablePointers 462 // FIXME: we could support it by stripping all the information introduced 463 // by StrictVTablePointers. 464 465 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 466 467 llvm::Metadata *Ops[2] = { 468 llvm::MDString::get(VMContext, "StrictVTablePointers"), 469 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 470 llvm::Type::getInt32Ty(VMContext), 1))}; 471 472 getModule().addModuleFlag(llvm::Module::Require, 473 "StrictVTablePointersRequirement", 474 llvm::MDNode::get(VMContext, Ops)); 475 } 476 if (DebugInfo) 477 // We support a single version in the linked module. The LLVM 478 // parser will drop debug info with a different version number 479 // (and warn about it, too). 480 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 481 llvm::DEBUG_METADATA_VERSION); 482 483 // We need to record the widths of enums and wchar_t, so that we can generate 484 // the correct build attributes in the ARM backend. wchar_size is also used by 485 // TargetLibraryInfo. 486 uint64_t WCharWidth = 487 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 488 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 489 490 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 491 if ( Arch == llvm::Triple::arm 492 || Arch == llvm::Triple::armeb 493 || Arch == llvm::Triple::thumb 494 || Arch == llvm::Triple::thumbeb) { 495 // The minimum width of an enum in bytes 496 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 497 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 498 } 499 500 if (CodeGenOpts.SanitizeCfiCrossDso) { 501 // Indicate that we want cross-DSO control flow integrity checks. 502 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 503 } 504 505 if (CodeGenOpts.CFProtectionReturn && 506 Target.checkCFProtectionReturnSupported(getDiags())) { 507 // Indicate that we want to instrument return control flow protection. 508 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return", 509 1); 510 } 511 512 if (CodeGenOpts.CFProtectionBranch && 513 Target.checkCFProtectionBranchSupported(getDiags())) { 514 // Indicate that we want to instrument branch control flow protection. 515 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch", 516 1); 517 } 518 519 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 520 // Indicate whether __nvvm_reflect should be configured to flush denormal 521 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 522 // property.) 523 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 524 LangOpts.CUDADeviceFlushDenormalsToZero ? 1 : 0); 525 } 526 527 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 528 if (LangOpts.OpenCL) { 529 EmitOpenCLMetadata(); 530 // Emit SPIR version. 531 if (getTriple().getArch() == llvm::Triple::spir || 532 getTriple().getArch() == llvm::Triple::spir64) { 533 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 534 // opencl.spir.version named metadata. 535 llvm::Metadata *SPIRVerElts[] = { 536 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 537 Int32Ty, LangOpts.OpenCLVersion / 100)), 538 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 539 Int32Ty, (LangOpts.OpenCLVersion / 100 > 1) ? 0 : 2))}; 540 llvm::NamedMDNode *SPIRVerMD = 541 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 542 llvm::LLVMContext &Ctx = TheModule.getContext(); 543 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 544 } 545 } 546 547 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 548 assert(PLevel < 3 && "Invalid PIC Level"); 549 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 550 if (Context.getLangOpts().PIE) 551 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 552 } 553 554 SimplifyPersonality(); 555 556 if (getCodeGenOpts().EmitDeclMetadata) 557 EmitDeclMetadata(); 558 559 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 560 EmitCoverageFile(); 561 562 if (DebugInfo) 563 DebugInfo->finalize(); 564 565 EmitVersionIdentMetadata(); 566 567 EmitTargetMetadata(); 568 } 569 570 void CodeGenModule::EmitOpenCLMetadata() { 571 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 572 // opencl.ocl.version named metadata node. 573 llvm::Metadata *OCLVerElts[] = { 574 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 575 Int32Ty, LangOpts.OpenCLVersion / 100)), 576 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 577 Int32Ty, (LangOpts.OpenCLVersion % 100) / 10))}; 578 llvm::NamedMDNode *OCLVerMD = 579 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 580 llvm::LLVMContext &Ctx = TheModule.getContext(); 581 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 582 } 583 584 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 585 // Make sure that this type is translated. 586 Types.UpdateCompletedType(TD); 587 } 588 589 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 590 // Make sure that this type is translated. 591 Types.RefreshTypeCacheForClass(RD); 592 } 593 594 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 595 if (!TBAA) 596 return nullptr; 597 return TBAA->getTypeInfo(QTy); 598 } 599 600 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 601 // Pointee values may have incomplete types, but they shall never be 602 // dereferenced. 603 if (AccessType->isIncompleteType()) 604 return TBAAAccessInfo::getIncompleteInfo(); 605 606 uint64_t Size = Context.getTypeSizeInChars(AccessType).getQuantity(); 607 return TBAAAccessInfo(getTBAATypeInfo(AccessType), Size); 608 } 609 610 TBAAAccessInfo 611 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 612 if (!TBAA) 613 return TBAAAccessInfo(); 614 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 615 } 616 617 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 618 if (!TBAA) 619 return nullptr; 620 return TBAA->getTBAAStructInfo(QTy); 621 } 622 623 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 624 if (!TBAA) 625 return nullptr; 626 return TBAA->getBaseTypeInfo(QTy); 627 } 628 629 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 630 if (!TBAA) 631 return nullptr; 632 return TBAA->getAccessTagInfo(Info); 633 } 634 635 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 636 TBAAAccessInfo TargetInfo) { 637 if (!TBAA) 638 return TBAAAccessInfo(); 639 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 640 } 641 642 TBAAAccessInfo 643 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 644 TBAAAccessInfo InfoB) { 645 if (!TBAA) 646 return TBAAAccessInfo(); 647 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 648 } 649 650 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 651 TBAAAccessInfo TBAAInfo) { 652 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 653 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 654 } 655 656 void CodeGenModule::DecorateInstructionWithInvariantGroup( 657 llvm::Instruction *I, const CXXRecordDecl *RD) { 658 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 659 llvm::MDNode::get(getLLVMContext(), {})); 660 } 661 662 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 663 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 664 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 665 } 666 667 /// ErrorUnsupported - Print out an error that codegen doesn't support the 668 /// specified stmt yet. 669 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 670 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 671 "cannot compile this %0 yet"); 672 std::string Msg = Type; 673 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 674 << Msg << S->getSourceRange(); 675 } 676 677 /// ErrorUnsupported - Print out an error that codegen doesn't support the 678 /// specified decl yet. 679 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 680 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 681 "cannot compile this %0 yet"); 682 std::string Msg = Type; 683 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 684 } 685 686 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 687 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 688 } 689 690 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 691 const NamedDecl *D, 692 ForDefinition_t IsForDefinition) const { 693 // Internal definitions always have default visibility. 694 if (GV->hasLocalLinkage()) { 695 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 696 return; 697 } 698 699 // Set visibility for definitions. 700 LinkageInfo LV = D->getLinkageAndVisibility(); 701 if (LV.isVisibilityExplicit() || 702 (IsForDefinition && !GV->hasAvailableExternallyLinkage())) 703 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 704 } 705 706 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 707 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 708 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 709 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 710 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 711 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 712 } 713 714 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 715 CodeGenOptions::TLSModel M) { 716 switch (M) { 717 case CodeGenOptions::GeneralDynamicTLSModel: 718 return llvm::GlobalVariable::GeneralDynamicTLSModel; 719 case CodeGenOptions::LocalDynamicTLSModel: 720 return llvm::GlobalVariable::LocalDynamicTLSModel; 721 case CodeGenOptions::InitialExecTLSModel: 722 return llvm::GlobalVariable::InitialExecTLSModel; 723 case CodeGenOptions::LocalExecTLSModel: 724 return llvm::GlobalVariable::LocalExecTLSModel; 725 } 726 llvm_unreachable("Invalid TLS model!"); 727 } 728 729 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 730 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 731 732 llvm::GlobalValue::ThreadLocalMode TLM; 733 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 734 735 // Override the TLS model if it is explicitly specified. 736 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 737 TLM = GetLLVMTLSModel(Attr->getModel()); 738 } 739 740 GV->setThreadLocalMode(TLM); 741 } 742 743 static void AppendTargetMangling(const CodeGenModule &CGM, 744 const TargetAttr *Attr, raw_ostream &Out) { 745 if (Attr->isDefaultVersion()) 746 return; 747 748 Out << '.'; 749 const auto &Target = CGM.getTarget(); 750 TargetAttr::ParsedTargetAttr Info = 751 Attr->parse([&Target](StringRef LHS, StringRef RHS) { 752 return Target.multiVersionSortPriority(LHS) > 753 Target.multiVersionSortPriority(RHS); 754 }); 755 756 bool IsFirst = true; 757 758 if (!Info.Architecture.empty()) { 759 IsFirst = false; 760 Out << "arch_" << Info.Architecture; 761 } 762 763 for (StringRef Feat : Info.Features) { 764 if (!IsFirst) 765 Out << '_'; 766 IsFirst = false; 767 Out << Feat.substr(1); 768 } 769 } 770 771 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD, 772 const NamedDecl *ND, 773 bool OmitTargetMangling = false) { 774 SmallString<256> Buffer; 775 llvm::raw_svector_ostream Out(Buffer); 776 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 777 if (MC.shouldMangleDeclName(ND)) { 778 llvm::raw_svector_ostream Out(Buffer); 779 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) 780 MC.mangleCXXCtor(D, GD.getCtorType(), Out); 781 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) 782 MC.mangleCXXDtor(D, GD.getDtorType(), Out); 783 else 784 MC.mangleName(ND, Out); 785 } else { 786 IdentifierInfo *II = ND->getIdentifier(); 787 assert(II && "Attempt to mangle unnamed decl."); 788 const auto *FD = dyn_cast<FunctionDecl>(ND); 789 790 if (FD && 791 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 792 llvm::raw_svector_ostream Out(Buffer); 793 Out << "__regcall3__" << II->getName(); 794 } else { 795 Out << II->getName(); 796 } 797 } 798 799 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 800 if (FD->isMultiVersion() && !OmitTargetMangling) 801 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out); 802 return Out.str(); 803 } 804 805 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 806 const FunctionDecl *FD) { 807 if (!FD->isMultiVersion()) 808 return; 809 810 // Get the name of what this would be without the 'target' attribute. This 811 // allows us to lookup the version that was emitted when this wasn't a 812 // multiversion function. 813 std::string NonTargetName = 814 getMangledNameImpl(*this, GD, FD, /*OmitTargetMangling=*/true); 815 GlobalDecl OtherGD; 816 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 817 assert(OtherGD.getCanonicalDecl() 818 .getDecl() 819 ->getAsFunction() 820 ->isMultiVersion() && 821 "Other GD should now be a multiversioned function"); 822 // OtherFD is the version of this function that was mangled BEFORE 823 // becoming a MultiVersion function. It potentially needs to be updated. 824 const FunctionDecl *OtherFD = 825 OtherGD.getCanonicalDecl().getDecl()->getAsFunction(); 826 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 827 // This is so that if the initial version was already the 'default' 828 // version, we don't try to update it. 829 if (OtherName != NonTargetName) { 830 // Remove instead of erase, since others may have stored the StringRef 831 // to this. 832 const auto ExistingRecord = Manglings.find(NonTargetName); 833 if (ExistingRecord != std::end(Manglings)) 834 Manglings.remove(&(*ExistingRecord)); 835 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 836 MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first(); 837 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 838 Entry->setName(OtherName); 839 } 840 } 841 } 842 843 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 844 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 845 846 // Some ABIs don't have constructor variants. Make sure that base and 847 // complete constructors get mangled the same. 848 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 849 if (!getTarget().getCXXABI().hasConstructorVariants()) { 850 CXXCtorType OrigCtorType = GD.getCtorType(); 851 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 852 if (OrigCtorType == Ctor_Base) 853 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 854 } 855 } 856 857 auto FoundName = MangledDeclNames.find(CanonicalGD); 858 if (FoundName != MangledDeclNames.end()) 859 return FoundName->second; 860 861 862 // Keep the first result in the case of a mangling collision. 863 const auto *ND = cast<NamedDecl>(GD.getDecl()); 864 auto Result = 865 Manglings.insert(std::make_pair(getMangledNameImpl(*this, GD, ND), GD)); 866 return MangledDeclNames[CanonicalGD] = Result.first->first(); 867 } 868 869 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 870 const BlockDecl *BD) { 871 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 872 const Decl *D = GD.getDecl(); 873 874 SmallString<256> Buffer; 875 llvm::raw_svector_ostream Out(Buffer); 876 if (!D) 877 MangleCtx.mangleGlobalBlock(BD, 878 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 879 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 880 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 881 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 882 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 883 else 884 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 885 886 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 887 return Result.first->first(); 888 } 889 890 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 891 return getModule().getNamedValue(Name); 892 } 893 894 /// AddGlobalCtor - Add a function to the list that will be called before 895 /// main() runs. 896 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 897 llvm::Constant *AssociatedData) { 898 // FIXME: Type coercion of void()* types. 899 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 900 } 901 902 /// AddGlobalDtor - Add a function to the list that will be called 903 /// when the module is unloaded. 904 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 905 // FIXME: Type coercion of void()* types. 906 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 907 } 908 909 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 910 if (Fns.empty()) return; 911 912 // Ctor function type is void()*. 913 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 914 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 915 916 // Get the type of a ctor entry, { i32, void ()*, i8* }. 917 llvm::StructType *CtorStructTy = llvm::StructType::get( 918 Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy); 919 920 // Construct the constructor and destructor arrays. 921 ConstantInitBuilder builder(*this); 922 auto ctors = builder.beginArray(CtorStructTy); 923 for (const auto &I : Fns) { 924 auto ctor = ctors.beginStruct(CtorStructTy); 925 ctor.addInt(Int32Ty, I.Priority); 926 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 927 if (I.AssociatedData) 928 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 929 else 930 ctor.addNullPointer(VoidPtrTy); 931 ctor.finishAndAddTo(ctors); 932 } 933 934 auto list = 935 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 936 /*constant*/ false, 937 llvm::GlobalValue::AppendingLinkage); 938 939 // The LTO linker doesn't seem to like it when we set an alignment 940 // on appending variables. Take it off as a workaround. 941 list->setAlignment(0); 942 943 Fns.clear(); 944 } 945 946 llvm::GlobalValue::LinkageTypes 947 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 948 const auto *D = cast<FunctionDecl>(GD.getDecl()); 949 950 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 951 952 if (isa<CXXDestructorDecl>(D) && 953 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 954 GD.getDtorType())) { 955 // Destructor variants in the Microsoft C++ ABI are always internal or 956 // linkonce_odr thunks emitted on an as-needed basis. 957 return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage 958 : llvm::GlobalValue::LinkOnceODRLinkage; 959 } 960 961 if (isa<CXXConstructorDecl>(D) && 962 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 963 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 964 // Our approach to inheriting constructors is fundamentally different from 965 // that used by the MS ABI, so keep our inheriting constructor thunks 966 // internal rather than trying to pick an unambiguous mangling for them. 967 return llvm::GlobalValue::InternalLinkage; 968 } 969 970 return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false); 971 } 972 973 void CodeGenModule::setFunctionDLLStorageClass(GlobalDecl GD, llvm::Function *F) { 974 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 975 976 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) { 977 if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) { 978 // Don't dllexport/import destructor thunks. 979 F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 980 return; 981 } 982 } 983 984 if (FD->hasAttr<DLLImportAttr>()) 985 F->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 986 else if (FD->hasAttr<DLLExportAttr>()) 987 F->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 988 else 989 F->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 990 } 991 992 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 993 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 994 if (!MDS) return nullptr; 995 996 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 997 } 998 999 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D, 1000 llvm::Function *F) { 1001 setNonAliasAttributes(D, F); 1002 } 1003 1004 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 1005 const CGFunctionInfo &Info, 1006 llvm::Function *F) { 1007 unsigned CallingConv; 1008 llvm::AttributeList PAL; 1009 ConstructAttributeList(F->getName(), Info, D, PAL, CallingConv, false); 1010 F->setAttributes(PAL); 1011 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 1012 } 1013 1014 /// Determines whether the language options require us to model 1015 /// unwind exceptions. We treat -fexceptions as mandating this 1016 /// except under the fragile ObjC ABI with only ObjC exceptions 1017 /// enabled. This means, for example, that C with -fexceptions 1018 /// enables this. 1019 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 1020 // If exceptions are completely disabled, obviously this is false. 1021 if (!LangOpts.Exceptions) return false; 1022 1023 // If C++ exceptions are enabled, this is true. 1024 if (LangOpts.CXXExceptions) return true; 1025 1026 // If ObjC exceptions are enabled, this depends on the ABI. 1027 if (LangOpts.ObjCExceptions) { 1028 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 1029 } 1030 1031 return true; 1032 } 1033 1034 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 1035 llvm::Function *F) { 1036 llvm::AttrBuilder B; 1037 1038 if (CodeGenOpts.UnwindTables) 1039 B.addAttribute(llvm::Attribute::UWTable); 1040 1041 if (!hasUnwindExceptions(LangOpts)) 1042 B.addAttribute(llvm::Attribute::NoUnwind); 1043 1044 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 1045 B.addAttribute(llvm::Attribute::StackProtect); 1046 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 1047 B.addAttribute(llvm::Attribute::StackProtectStrong); 1048 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 1049 B.addAttribute(llvm::Attribute::StackProtectReq); 1050 1051 if (!D) { 1052 // If we don't have a declaration to control inlining, the function isn't 1053 // explicitly marked as alwaysinline for semantic reasons, and inlining is 1054 // disabled, mark the function as noinline. 1055 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1056 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 1057 B.addAttribute(llvm::Attribute::NoInline); 1058 1059 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1060 return; 1061 } 1062 1063 // Track whether we need to add the optnone LLVM attribute, 1064 // starting with the default for this optimization level. 1065 bool ShouldAddOptNone = 1066 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 1067 // We can't add optnone in the following cases, it won't pass the verifier. 1068 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 1069 ShouldAddOptNone &= !F->hasFnAttribute(llvm::Attribute::AlwaysInline); 1070 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 1071 1072 if (ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) { 1073 B.addAttribute(llvm::Attribute::OptimizeNone); 1074 1075 // OptimizeNone implies noinline; we should not be inlining such functions. 1076 B.addAttribute(llvm::Attribute::NoInline); 1077 assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1078 "OptimizeNone and AlwaysInline on same function!"); 1079 1080 // We still need to handle naked functions even though optnone subsumes 1081 // much of their semantics. 1082 if (D->hasAttr<NakedAttr>()) 1083 B.addAttribute(llvm::Attribute::Naked); 1084 1085 // OptimizeNone wins over OptimizeForSize and MinSize. 1086 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 1087 F->removeFnAttr(llvm::Attribute::MinSize); 1088 } else if (D->hasAttr<NakedAttr>()) { 1089 // Naked implies noinline: we should not be inlining such functions. 1090 B.addAttribute(llvm::Attribute::Naked); 1091 B.addAttribute(llvm::Attribute::NoInline); 1092 } else if (D->hasAttr<NoDuplicateAttr>()) { 1093 B.addAttribute(llvm::Attribute::NoDuplicate); 1094 } else if (D->hasAttr<NoInlineAttr>()) { 1095 B.addAttribute(llvm::Attribute::NoInline); 1096 } else if (D->hasAttr<AlwaysInlineAttr>() && 1097 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 1098 // (noinline wins over always_inline, and we can't specify both in IR) 1099 B.addAttribute(llvm::Attribute::AlwaysInline); 1100 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 1101 // If we're not inlining, then force everything that isn't always_inline to 1102 // carry an explicit noinline attribute. 1103 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 1104 B.addAttribute(llvm::Attribute::NoInline); 1105 } else { 1106 // Otherwise, propagate the inline hint attribute and potentially use its 1107 // absence to mark things as noinline. 1108 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1109 if (any_of(FD->redecls(), [&](const FunctionDecl *Redecl) { 1110 return Redecl->isInlineSpecified(); 1111 })) { 1112 B.addAttribute(llvm::Attribute::InlineHint); 1113 } else if (CodeGenOpts.getInlining() == 1114 CodeGenOptions::OnlyHintInlining && 1115 !FD->isInlined() && 1116 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1117 B.addAttribute(llvm::Attribute::NoInline); 1118 } 1119 } 1120 } 1121 1122 // Add other optimization related attributes if we are optimizing this 1123 // function. 1124 if (!D->hasAttr<OptimizeNoneAttr>()) { 1125 if (D->hasAttr<ColdAttr>()) { 1126 if (!ShouldAddOptNone) 1127 B.addAttribute(llvm::Attribute::OptimizeForSize); 1128 B.addAttribute(llvm::Attribute::Cold); 1129 } 1130 1131 if (D->hasAttr<MinSizeAttr>()) 1132 B.addAttribute(llvm::Attribute::MinSize); 1133 } 1134 1135 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1136 1137 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 1138 if (alignment) 1139 F->setAlignment(alignment); 1140 1141 // Some C++ ABIs require 2-byte alignment for member functions, in order to 1142 // reserve a bit for differentiating between virtual and non-virtual member 1143 // functions. If the current target's C++ ABI requires this and this is a 1144 // member function, set its alignment accordingly. 1145 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 1146 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 1147 F->setAlignment(2); 1148 } 1149 1150 // In the cross-dso CFI mode, we want !type attributes on definitions only. 1151 if (CodeGenOpts.SanitizeCfiCrossDso) 1152 if (auto *FD = dyn_cast<FunctionDecl>(D)) 1153 CreateFunctionTypeMetadata(FD, F); 1154 } 1155 1156 void CodeGenModule::SetCommonAttributes(const Decl *D, 1157 llvm::GlobalValue *GV) { 1158 if (const auto *ND = dyn_cast_or_null<NamedDecl>(D)) 1159 setGlobalVisibility(GV, ND, ForDefinition); 1160 else 1161 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1162 1163 if (D && D->hasAttr<UsedAttr>()) 1164 addUsedGlobal(GV); 1165 } 1166 1167 void CodeGenModule::setAliasAttributes(const Decl *D, 1168 llvm::GlobalValue *GV) { 1169 SetCommonAttributes(D, GV); 1170 1171 // Process the dllexport attribute based on whether the original definition 1172 // (not necessarily the aliasee) was exported. 1173 if (D->hasAttr<DLLExportAttr>()) 1174 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 1175 } 1176 1177 void CodeGenModule::setNonAliasAttributes(const Decl *D, 1178 llvm::GlobalObject *GO) { 1179 SetCommonAttributes(D, GO); 1180 1181 if (D) { 1182 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 1183 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 1184 GV->addAttribute("bss-section", SA->getName()); 1185 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 1186 GV->addAttribute("data-section", SA->getName()); 1187 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 1188 GV->addAttribute("rodata-section", SA->getName()); 1189 } 1190 1191 if (auto *F = dyn_cast<llvm::Function>(GO)) { 1192 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 1193 if (!D->getAttr<SectionAttr>()) 1194 F->addFnAttr("implicit-section-name", SA->getName()); 1195 } 1196 1197 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 1198 GO->setSection(SA->getName()); 1199 } 1200 1201 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this, ForDefinition); 1202 } 1203 1204 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 1205 llvm::Function *F, 1206 const CGFunctionInfo &FI) { 1207 SetLLVMFunctionAttributes(D, FI, F); 1208 SetLLVMFunctionAttributesForDefinition(D, F); 1209 1210 F->setLinkage(llvm::Function::InternalLinkage); 1211 1212 setNonAliasAttributes(D, F); 1213 } 1214 1215 static void setLinkageForGV(llvm::GlobalValue *GV, 1216 const NamedDecl *ND) { 1217 // Set linkage and visibility in case we never see a definition. 1218 LinkageInfo LV = ND->getLinkageAndVisibility(); 1219 if (!isExternallyVisible(LV.getLinkage())) { 1220 // Don't set internal linkage on declarations. 1221 } else { 1222 if (ND->hasAttr<DLLImportAttr>()) { 1223 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 1224 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 1225 } else if (ND->hasAttr<DLLExportAttr>()) { 1226 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 1227 } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) { 1228 // "extern_weak" is overloaded in LLVM; we probably should have 1229 // separate linkage types for this. 1230 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1231 } 1232 } 1233 } 1234 1235 void CodeGenModule::CreateFunctionTypeMetadata(const FunctionDecl *FD, 1236 llvm::Function *F) { 1237 // Only if we are checking indirect calls. 1238 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 1239 return; 1240 1241 // Non-static class methods are handled via vtable pointer checks elsewhere. 1242 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 1243 return; 1244 1245 // Additionally, if building with cross-DSO support... 1246 if (CodeGenOpts.SanitizeCfiCrossDso) { 1247 // Skip available_externally functions. They won't be codegen'ed in the 1248 // current module anyway. 1249 if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally) 1250 return; 1251 } 1252 1253 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 1254 F->addTypeMetadata(0, MD); 1255 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 1256 1257 // Emit a hash-based bit set entry for cross-DSO calls. 1258 if (CodeGenOpts.SanitizeCfiCrossDso) 1259 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 1260 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 1261 } 1262 1263 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 1264 bool IsIncompleteFunction, 1265 bool IsThunk, 1266 ForDefinition_t IsForDefinition) { 1267 1268 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 1269 // If this is an intrinsic function, set the function's attributes 1270 // to the intrinsic's attributes. 1271 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 1272 return; 1273 } 1274 1275 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 1276 1277 if (!IsIncompleteFunction) { 1278 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 1279 // Setup target-specific attributes. 1280 if (!IsForDefinition) 1281 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this, 1282 NotForDefinition); 1283 } 1284 1285 // Add the Returned attribute for "this", except for iOS 5 and earlier 1286 // where substantial code, including the libstdc++ dylib, was compiled with 1287 // GCC and does not actually return "this". 1288 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 1289 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 1290 assert(!F->arg_empty() && 1291 F->arg_begin()->getType() 1292 ->canLosslesslyBitCastTo(F->getReturnType()) && 1293 "unexpected this return"); 1294 F->addAttribute(1, llvm::Attribute::Returned); 1295 } 1296 1297 // Only a few attributes are set on declarations; these may later be 1298 // overridden by a definition. 1299 1300 setLinkageForGV(F, FD); 1301 setGlobalVisibility(F, FD, NotForDefinition); 1302 1303 if (FD->getAttr<PragmaClangTextSectionAttr>()) { 1304 F->addFnAttr("implicit-section-name"); 1305 } 1306 1307 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 1308 F->setSection(SA->getName()); 1309 1310 if (FD->isReplaceableGlobalAllocationFunction()) { 1311 // A replaceable global allocation function does not act like a builtin by 1312 // default, only if it is invoked by a new-expression or delete-expression. 1313 F->addAttribute(llvm::AttributeList::FunctionIndex, 1314 llvm::Attribute::NoBuiltin); 1315 1316 // A sane operator new returns a non-aliasing pointer. 1317 // FIXME: Also add NonNull attribute to the return value 1318 // for the non-nothrow forms? 1319 auto Kind = FD->getDeclName().getCXXOverloadedOperator(); 1320 if (getCodeGenOpts().AssumeSaneOperatorNew && 1321 (Kind == OO_New || Kind == OO_Array_New)) 1322 F->addAttribute(llvm::AttributeList::ReturnIndex, 1323 llvm::Attribute::NoAlias); 1324 } 1325 1326 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 1327 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1328 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 1329 if (MD->isVirtual()) 1330 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1331 1332 // Don't emit entries for function declarations in the cross-DSO mode. This 1333 // is handled with better precision by the receiving DSO. 1334 if (!CodeGenOpts.SanitizeCfiCrossDso) 1335 CreateFunctionTypeMetadata(FD, F); 1336 1337 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 1338 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 1339 } 1340 1341 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 1342 assert(!GV->isDeclaration() && 1343 "Only globals with definition can force usage."); 1344 LLVMUsed.emplace_back(GV); 1345 } 1346 1347 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 1348 assert(!GV->isDeclaration() && 1349 "Only globals with definition can force usage."); 1350 LLVMCompilerUsed.emplace_back(GV); 1351 } 1352 1353 static void emitUsed(CodeGenModule &CGM, StringRef Name, 1354 std::vector<llvm::WeakTrackingVH> &List) { 1355 // Don't create llvm.used if there is no need. 1356 if (List.empty()) 1357 return; 1358 1359 // Convert List to what ConstantArray needs. 1360 SmallVector<llvm::Constant*, 8> UsedArray; 1361 UsedArray.resize(List.size()); 1362 for (unsigned i = 0, e = List.size(); i != e; ++i) { 1363 UsedArray[i] = 1364 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 1365 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 1366 } 1367 1368 if (UsedArray.empty()) 1369 return; 1370 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 1371 1372 auto *GV = new llvm::GlobalVariable( 1373 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 1374 llvm::ConstantArray::get(ATy, UsedArray), Name); 1375 1376 GV->setSection("llvm.metadata"); 1377 } 1378 1379 void CodeGenModule::emitLLVMUsed() { 1380 emitUsed(*this, "llvm.used", LLVMUsed); 1381 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 1382 } 1383 1384 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 1385 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 1386 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1387 } 1388 1389 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 1390 llvm::SmallString<32> Opt; 1391 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 1392 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1393 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1394 } 1395 1396 void CodeGenModule::AddDependentLib(StringRef Lib) { 1397 llvm::SmallString<24> Opt; 1398 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 1399 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1400 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1401 } 1402 1403 /// \brief Add link options implied by the given module, including modules 1404 /// it depends on, using a postorder walk. 1405 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 1406 SmallVectorImpl<llvm::MDNode *> &Metadata, 1407 llvm::SmallPtrSet<Module *, 16> &Visited) { 1408 // Import this module's parent. 1409 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 1410 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 1411 } 1412 1413 // Import this module's dependencies. 1414 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 1415 if (Visited.insert(Mod->Imports[I - 1]).second) 1416 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 1417 } 1418 1419 // Add linker options to link against the libraries/frameworks 1420 // described by this module. 1421 llvm::LLVMContext &Context = CGM.getLLVMContext(); 1422 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 1423 // Link against a framework. Frameworks are currently Darwin only, so we 1424 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 1425 if (Mod->LinkLibraries[I-1].IsFramework) { 1426 llvm::Metadata *Args[2] = { 1427 llvm::MDString::get(Context, "-framework"), 1428 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 1429 1430 Metadata.push_back(llvm::MDNode::get(Context, Args)); 1431 continue; 1432 } 1433 1434 // Link against a library. 1435 llvm::SmallString<24> Opt; 1436 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 1437 Mod->LinkLibraries[I-1].Library, Opt); 1438 auto *OptString = llvm::MDString::get(Context, Opt); 1439 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 1440 } 1441 } 1442 1443 void CodeGenModule::EmitModuleLinkOptions() { 1444 // Collect the set of all of the modules we want to visit to emit link 1445 // options, which is essentially the imported modules and all of their 1446 // non-explicit child modules. 1447 llvm::SetVector<clang::Module *> LinkModules; 1448 llvm::SmallPtrSet<clang::Module *, 16> Visited; 1449 SmallVector<clang::Module *, 16> Stack; 1450 1451 // Seed the stack with imported modules. 1452 for (Module *M : ImportedModules) { 1453 // Do not add any link flags when an implementation TU of a module imports 1454 // a header of that same module. 1455 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 1456 !getLangOpts().isCompilingModule()) 1457 continue; 1458 if (Visited.insert(M).second) 1459 Stack.push_back(M); 1460 } 1461 1462 // Find all of the modules to import, making a little effort to prune 1463 // non-leaf modules. 1464 while (!Stack.empty()) { 1465 clang::Module *Mod = Stack.pop_back_val(); 1466 1467 bool AnyChildren = false; 1468 1469 // Visit the submodules of this module. 1470 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 1471 SubEnd = Mod->submodule_end(); 1472 Sub != SubEnd; ++Sub) { 1473 // Skip explicit children; they need to be explicitly imported to be 1474 // linked against. 1475 if ((*Sub)->IsExplicit) 1476 continue; 1477 1478 if (Visited.insert(*Sub).second) { 1479 Stack.push_back(*Sub); 1480 AnyChildren = true; 1481 } 1482 } 1483 1484 // We didn't find any children, so add this module to the list of 1485 // modules to link against. 1486 if (!AnyChildren) { 1487 LinkModules.insert(Mod); 1488 } 1489 } 1490 1491 // Add link options for all of the imported modules in reverse topological 1492 // order. We don't do anything to try to order import link flags with respect 1493 // to linker options inserted by things like #pragma comment(). 1494 SmallVector<llvm::MDNode *, 16> MetadataArgs; 1495 Visited.clear(); 1496 for (Module *M : LinkModules) 1497 if (Visited.insert(M).second) 1498 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 1499 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 1500 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 1501 1502 // Add the linker options metadata flag. 1503 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 1504 for (auto *MD : LinkerOptionsMetadata) 1505 NMD->addOperand(MD); 1506 } 1507 1508 void CodeGenModule::EmitDeferred() { 1509 // Emit code for any potentially referenced deferred decls. Since a 1510 // previously unused static decl may become used during the generation of code 1511 // for a static function, iterate until no changes are made. 1512 1513 if (!DeferredVTables.empty()) { 1514 EmitDeferredVTables(); 1515 1516 // Emitting a vtable doesn't directly cause more vtables to 1517 // become deferred, although it can cause functions to be 1518 // emitted that then need those vtables. 1519 assert(DeferredVTables.empty()); 1520 } 1521 1522 // Stop if we're out of both deferred vtables and deferred declarations. 1523 if (DeferredDeclsToEmit.empty()) 1524 return; 1525 1526 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 1527 // work, it will not interfere with this. 1528 std::vector<GlobalDecl> CurDeclsToEmit; 1529 CurDeclsToEmit.swap(DeferredDeclsToEmit); 1530 1531 for (GlobalDecl &D : CurDeclsToEmit) { 1532 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 1533 // to get GlobalValue with exactly the type we need, not something that 1534 // might had been created for another decl with the same mangled name but 1535 // different type. 1536 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 1537 GetAddrOfGlobal(D, ForDefinition)); 1538 1539 // In case of different address spaces, we may still get a cast, even with 1540 // IsForDefinition equal to true. Query mangled names table to get 1541 // GlobalValue. 1542 if (!GV) 1543 GV = GetGlobalValue(getMangledName(D)); 1544 1545 // Make sure GetGlobalValue returned non-null. 1546 assert(GV); 1547 1548 // Check to see if we've already emitted this. This is necessary 1549 // for a couple of reasons: first, decls can end up in the 1550 // deferred-decls queue multiple times, and second, decls can end 1551 // up with definitions in unusual ways (e.g. by an extern inline 1552 // function acquiring a strong function redefinition). Just 1553 // ignore these cases. 1554 if (!GV->isDeclaration()) 1555 continue; 1556 1557 // Otherwise, emit the definition and move on to the next one. 1558 EmitGlobalDefinition(D, GV); 1559 1560 // If we found out that we need to emit more decls, do that recursively. 1561 // This has the advantage that the decls are emitted in a DFS and related 1562 // ones are close together, which is convenient for testing. 1563 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 1564 EmitDeferred(); 1565 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 1566 } 1567 } 1568 } 1569 1570 void CodeGenModule::EmitVTablesOpportunistically() { 1571 // Try to emit external vtables as available_externally if they have emitted 1572 // all inlined virtual functions. It runs after EmitDeferred() and therefore 1573 // is not allowed to create new references to things that need to be emitted 1574 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 1575 1576 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 1577 && "Only emit opportunistic vtables with optimizations"); 1578 1579 for (const CXXRecordDecl *RD : OpportunisticVTables) { 1580 assert(getVTables().isVTableExternal(RD) && 1581 "This queue should only contain external vtables"); 1582 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 1583 VTables.GenerateClassData(RD); 1584 } 1585 OpportunisticVTables.clear(); 1586 } 1587 1588 void CodeGenModule::EmitGlobalAnnotations() { 1589 if (Annotations.empty()) 1590 return; 1591 1592 // Create a new global variable for the ConstantStruct in the Module. 1593 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 1594 Annotations[0]->getType(), Annotations.size()), Annotations); 1595 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 1596 llvm::GlobalValue::AppendingLinkage, 1597 Array, "llvm.global.annotations"); 1598 gv->setSection(AnnotationSection); 1599 } 1600 1601 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 1602 llvm::Constant *&AStr = AnnotationStrings[Str]; 1603 if (AStr) 1604 return AStr; 1605 1606 // Not found yet, create a new global. 1607 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 1608 auto *gv = 1609 new llvm::GlobalVariable(getModule(), s->getType(), true, 1610 llvm::GlobalValue::PrivateLinkage, s, ".str"); 1611 gv->setSection(AnnotationSection); 1612 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1613 AStr = gv; 1614 return gv; 1615 } 1616 1617 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1618 SourceManager &SM = getContext().getSourceManager(); 1619 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1620 if (PLoc.isValid()) 1621 return EmitAnnotationString(PLoc.getFilename()); 1622 return EmitAnnotationString(SM.getBufferName(Loc)); 1623 } 1624 1625 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1626 SourceManager &SM = getContext().getSourceManager(); 1627 PresumedLoc PLoc = SM.getPresumedLoc(L); 1628 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1629 SM.getExpansionLineNumber(L); 1630 return llvm::ConstantInt::get(Int32Ty, LineNo); 1631 } 1632 1633 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1634 const AnnotateAttr *AA, 1635 SourceLocation L) { 1636 // Get the globals for file name, annotation, and the line number. 1637 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1638 *UnitGV = EmitAnnotationUnit(L), 1639 *LineNoCst = EmitAnnotationLineNo(L); 1640 1641 // Create the ConstantStruct for the global annotation. 1642 llvm::Constant *Fields[4] = { 1643 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1644 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1645 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1646 LineNoCst 1647 }; 1648 return llvm::ConstantStruct::getAnon(Fields); 1649 } 1650 1651 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1652 llvm::GlobalValue *GV) { 1653 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1654 // Get the struct elements for these annotations. 1655 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1656 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 1657 } 1658 1659 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind, 1660 llvm::Function *Fn, 1661 SourceLocation Loc) const { 1662 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1663 // Blacklist by function name. 1664 if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName())) 1665 return true; 1666 // Blacklist by location. 1667 if (Loc.isValid()) 1668 return SanitizerBL.isBlacklistedLocation(Kind, Loc); 1669 // If location is unknown, this may be a compiler-generated function. Assume 1670 // it's located in the main file. 1671 auto &SM = Context.getSourceManager(); 1672 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 1673 return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName()); 1674 } 1675 return false; 1676 } 1677 1678 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 1679 SourceLocation Loc, QualType Ty, 1680 StringRef Category) const { 1681 // For now globals can be blacklisted only in ASan and KASan. 1682 const SanitizerMask EnabledAsanMask = LangOpts.Sanitize.Mask & 1683 (SanitizerKind::Address | SanitizerKind::KernelAddress | SanitizerKind::HWAddress); 1684 if (!EnabledAsanMask) 1685 return false; 1686 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1687 if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category)) 1688 return true; 1689 if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category)) 1690 return true; 1691 // Check global type. 1692 if (!Ty.isNull()) { 1693 // Drill down the array types: if global variable of a fixed type is 1694 // blacklisted, we also don't instrument arrays of them. 1695 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 1696 Ty = AT->getElementType(); 1697 Ty = Ty.getCanonicalType().getUnqualifiedType(); 1698 // We allow to blacklist only record types (classes, structs etc.) 1699 if (Ty->isRecordType()) { 1700 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 1701 if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category)) 1702 return true; 1703 } 1704 } 1705 return false; 1706 } 1707 1708 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 1709 StringRef Category) const { 1710 if (!LangOpts.XRayInstrument) 1711 return false; 1712 const auto &XRayFilter = getContext().getXRayFilter(); 1713 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 1714 auto Attr = XRayFunctionFilter::ImbueAttribute::NONE; 1715 if (Loc.isValid()) 1716 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 1717 if (Attr == ImbueAttr::NONE) 1718 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 1719 switch (Attr) { 1720 case ImbueAttr::NONE: 1721 return false; 1722 case ImbueAttr::ALWAYS: 1723 Fn->addFnAttr("function-instrument", "xray-always"); 1724 break; 1725 case ImbueAttr::ALWAYS_ARG1: 1726 Fn->addFnAttr("function-instrument", "xray-always"); 1727 Fn->addFnAttr("xray-log-args", "1"); 1728 break; 1729 case ImbueAttr::NEVER: 1730 Fn->addFnAttr("function-instrument", "xray-never"); 1731 break; 1732 } 1733 return true; 1734 } 1735 1736 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 1737 // Never defer when EmitAllDecls is specified. 1738 if (LangOpts.EmitAllDecls) 1739 return true; 1740 1741 return getContext().DeclMustBeEmitted(Global); 1742 } 1743 1744 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 1745 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) 1746 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 1747 // Implicit template instantiations may change linkage if they are later 1748 // explicitly instantiated, so they should not be emitted eagerly. 1749 return false; 1750 if (const auto *VD = dyn_cast<VarDecl>(Global)) 1751 if (Context.getInlineVariableDefinitionKind(VD) == 1752 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 1753 // A definition of an inline constexpr static data member may change 1754 // linkage later if it's redeclared outside the class. 1755 return false; 1756 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 1757 // codegen for global variables, because they may be marked as threadprivate. 1758 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 1759 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global)) 1760 return false; 1761 1762 return true; 1763 } 1764 1765 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor( 1766 const CXXUuidofExpr* E) { 1767 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 1768 // well-formed. 1769 StringRef Uuid = E->getUuidStr(); 1770 std::string Name = "_GUID_" + Uuid.lower(); 1771 std::replace(Name.begin(), Name.end(), '-', '_'); 1772 1773 // The UUID descriptor should be pointer aligned. 1774 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 1775 1776 // Look for an existing global. 1777 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 1778 return ConstantAddress(GV, Alignment); 1779 1780 llvm::Constant *Init = EmitUuidofInitializer(Uuid); 1781 assert(Init && "failed to initialize as constant"); 1782 1783 auto *GV = new llvm::GlobalVariable( 1784 getModule(), Init->getType(), 1785 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 1786 if (supportsCOMDAT()) 1787 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 1788 return ConstantAddress(GV, Alignment); 1789 } 1790 1791 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 1792 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 1793 assert(AA && "No alias?"); 1794 1795 CharUnits Alignment = getContext().getDeclAlign(VD); 1796 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 1797 1798 // See if there is already something with the target's name in the module. 1799 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 1800 if (Entry) { 1801 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 1802 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 1803 return ConstantAddress(Ptr, Alignment); 1804 } 1805 1806 llvm::Constant *Aliasee; 1807 if (isa<llvm::FunctionType>(DeclTy)) 1808 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 1809 GlobalDecl(cast<FunctionDecl>(VD)), 1810 /*ForVTable=*/false); 1811 else 1812 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1813 llvm::PointerType::getUnqual(DeclTy), 1814 nullptr); 1815 1816 auto *F = cast<llvm::GlobalValue>(Aliasee); 1817 F->setLinkage(llvm::Function::ExternalWeakLinkage); 1818 WeakRefReferences.insert(F); 1819 1820 return ConstantAddress(Aliasee, Alignment); 1821 } 1822 1823 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 1824 const auto *Global = cast<ValueDecl>(GD.getDecl()); 1825 1826 // Weak references don't produce any output by themselves. 1827 if (Global->hasAttr<WeakRefAttr>()) 1828 return; 1829 1830 // If this is an alias definition (which otherwise looks like a declaration) 1831 // emit it now. 1832 if (Global->hasAttr<AliasAttr>()) 1833 return EmitAliasDefinition(GD); 1834 1835 // IFunc like an alias whose value is resolved at runtime by calling resolver. 1836 if (Global->hasAttr<IFuncAttr>()) 1837 return emitIFuncDefinition(GD); 1838 1839 // If this is CUDA, be selective about which declarations we emit. 1840 if (LangOpts.CUDA) { 1841 if (LangOpts.CUDAIsDevice) { 1842 if (!Global->hasAttr<CUDADeviceAttr>() && 1843 !Global->hasAttr<CUDAGlobalAttr>() && 1844 !Global->hasAttr<CUDAConstantAttr>() && 1845 !Global->hasAttr<CUDASharedAttr>()) 1846 return; 1847 } else { 1848 // We need to emit host-side 'shadows' for all global 1849 // device-side variables because the CUDA runtime needs their 1850 // size and host-side address in order to provide access to 1851 // their device-side incarnations. 1852 1853 // So device-only functions are the only things we skip. 1854 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 1855 Global->hasAttr<CUDADeviceAttr>()) 1856 return; 1857 1858 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 1859 "Expected Variable or Function"); 1860 } 1861 } 1862 1863 if (LangOpts.OpenMP) { 1864 // If this is OpenMP device, check if it is legal to emit this global 1865 // normally. 1866 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 1867 return; 1868 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 1869 if (MustBeEmitted(Global)) 1870 EmitOMPDeclareReduction(DRD); 1871 return; 1872 } 1873 } 1874 1875 // Ignore declarations, they will be emitted on their first use. 1876 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 1877 // Forward declarations are emitted lazily on first use. 1878 if (!FD->doesThisDeclarationHaveABody()) { 1879 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 1880 return; 1881 1882 StringRef MangledName = getMangledName(GD); 1883 1884 // Compute the function info and LLVM type. 1885 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 1886 llvm::Type *Ty = getTypes().GetFunctionType(FI); 1887 1888 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 1889 /*DontDefer=*/false); 1890 return; 1891 } 1892 } else { 1893 const auto *VD = cast<VarDecl>(Global); 1894 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 1895 // We need to emit device-side global CUDA variables even if a 1896 // variable does not have a definition -- we still need to define 1897 // host-side shadow for it. 1898 bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice && 1899 !VD->hasDefinition() && 1900 (VD->hasAttr<CUDAConstantAttr>() || 1901 VD->hasAttr<CUDADeviceAttr>()); 1902 if (!MustEmitForCuda && 1903 VD->isThisDeclarationADefinition() != VarDecl::Definition && 1904 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 1905 // If this declaration may have caused an inline variable definition to 1906 // change linkage, make sure that it's emitted. 1907 if (Context.getInlineVariableDefinitionKind(VD) == 1908 ASTContext::InlineVariableDefinitionKind::Strong) 1909 GetAddrOfGlobalVar(VD); 1910 return; 1911 } 1912 } 1913 1914 // Defer code generation to first use when possible, e.g. if this is an inline 1915 // function. If the global must always be emitted, do it eagerly if possible 1916 // to benefit from cache locality. 1917 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 1918 // Emit the definition if it can't be deferred. 1919 EmitGlobalDefinition(GD); 1920 return; 1921 } 1922 1923 // If we're deferring emission of a C++ variable with an 1924 // initializer, remember the order in which it appeared in the file. 1925 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 1926 cast<VarDecl>(Global)->hasInit()) { 1927 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 1928 CXXGlobalInits.push_back(nullptr); 1929 } 1930 1931 StringRef MangledName = getMangledName(GD); 1932 if (GetGlobalValue(MangledName) != nullptr) { 1933 // The value has already been used and should therefore be emitted. 1934 addDeferredDeclToEmit(GD); 1935 } else if (MustBeEmitted(Global)) { 1936 // The value must be emitted, but cannot be emitted eagerly. 1937 assert(!MayBeEmittedEagerly(Global)); 1938 addDeferredDeclToEmit(GD); 1939 } else { 1940 // Otherwise, remember that we saw a deferred decl with this name. The 1941 // first use of the mangled name will cause it to move into 1942 // DeferredDeclsToEmit. 1943 DeferredDecls[MangledName] = GD; 1944 } 1945 } 1946 1947 // Check if T is a class type with a destructor that's not dllimport. 1948 static bool HasNonDllImportDtor(QualType T) { 1949 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 1950 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1951 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 1952 return true; 1953 1954 return false; 1955 } 1956 1957 namespace { 1958 struct FunctionIsDirectlyRecursive : 1959 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 1960 const StringRef Name; 1961 const Builtin::Context &BI; 1962 bool Result; 1963 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 1964 Name(N), BI(C), Result(false) { 1965 } 1966 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 1967 1968 bool TraverseCallExpr(CallExpr *E) { 1969 const FunctionDecl *FD = E->getDirectCallee(); 1970 if (!FD) 1971 return true; 1972 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1973 if (Attr && Name == Attr->getLabel()) { 1974 Result = true; 1975 return false; 1976 } 1977 unsigned BuiltinID = FD->getBuiltinID(); 1978 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 1979 return true; 1980 StringRef BuiltinName = BI.getName(BuiltinID); 1981 if (BuiltinName.startswith("__builtin_") && 1982 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 1983 Result = true; 1984 return false; 1985 } 1986 return true; 1987 } 1988 }; 1989 1990 // Make sure we're not referencing non-imported vars or functions. 1991 struct DLLImportFunctionVisitor 1992 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 1993 bool SafeToInline = true; 1994 1995 bool shouldVisitImplicitCode() const { return true; } 1996 1997 bool VisitVarDecl(VarDecl *VD) { 1998 if (VD->getTLSKind()) { 1999 // A thread-local variable cannot be imported. 2000 SafeToInline = false; 2001 return SafeToInline; 2002 } 2003 2004 // A variable definition might imply a destructor call. 2005 if (VD->isThisDeclarationADefinition()) 2006 SafeToInline = !HasNonDllImportDtor(VD->getType()); 2007 2008 return SafeToInline; 2009 } 2010 2011 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 2012 if (const auto *D = E->getTemporary()->getDestructor()) 2013 SafeToInline = D->hasAttr<DLLImportAttr>(); 2014 return SafeToInline; 2015 } 2016 2017 bool VisitDeclRefExpr(DeclRefExpr *E) { 2018 ValueDecl *VD = E->getDecl(); 2019 if (isa<FunctionDecl>(VD)) 2020 SafeToInline = VD->hasAttr<DLLImportAttr>(); 2021 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 2022 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 2023 return SafeToInline; 2024 } 2025 2026 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 2027 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 2028 return SafeToInline; 2029 } 2030 2031 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 2032 CXXMethodDecl *M = E->getMethodDecl(); 2033 if (!M) { 2034 // Call through a pointer to member function. This is safe to inline. 2035 SafeToInline = true; 2036 } else { 2037 SafeToInline = M->hasAttr<DLLImportAttr>(); 2038 } 2039 return SafeToInline; 2040 } 2041 2042 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 2043 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 2044 return SafeToInline; 2045 } 2046 2047 bool VisitCXXNewExpr(CXXNewExpr *E) { 2048 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 2049 return SafeToInline; 2050 } 2051 }; 2052 } 2053 2054 // isTriviallyRecursive - Check if this function calls another 2055 // decl that, because of the asm attribute or the other decl being a builtin, 2056 // ends up pointing to itself. 2057 bool 2058 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 2059 StringRef Name; 2060 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 2061 // asm labels are a special kind of mangling we have to support. 2062 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2063 if (!Attr) 2064 return false; 2065 Name = Attr->getLabel(); 2066 } else { 2067 Name = FD->getName(); 2068 } 2069 2070 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 2071 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 2072 return Walker.Result; 2073 } 2074 2075 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 2076 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 2077 return true; 2078 const auto *F = cast<FunctionDecl>(GD.getDecl()); 2079 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 2080 return false; 2081 2082 if (F->hasAttr<DLLImportAttr>()) { 2083 // Check whether it would be safe to inline this dllimport function. 2084 DLLImportFunctionVisitor Visitor; 2085 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 2086 if (!Visitor.SafeToInline) 2087 return false; 2088 2089 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 2090 // Implicit destructor invocations aren't captured in the AST, so the 2091 // check above can't see them. Check for them manually here. 2092 for (const Decl *Member : Dtor->getParent()->decls()) 2093 if (isa<FieldDecl>(Member)) 2094 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 2095 return false; 2096 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 2097 if (HasNonDllImportDtor(B.getType())) 2098 return false; 2099 } 2100 } 2101 2102 // PR9614. Avoid cases where the source code is lying to us. An available 2103 // externally function should have an equivalent function somewhere else, 2104 // but a function that calls itself is clearly not equivalent to the real 2105 // implementation. 2106 // This happens in glibc's btowc and in some configure checks. 2107 return !isTriviallyRecursive(F); 2108 } 2109 2110 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 2111 return CodeGenOpts.OptimizationLevel > 0; 2112 } 2113 2114 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 2115 const auto *D = cast<ValueDecl>(GD.getDecl()); 2116 2117 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 2118 Context.getSourceManager(), 2119 "Generating code for declaration"); 2120 2121 if (isa<FunctionDecl>(D)) { 2122 // At -O0, don't generate IR for functions with available_externally 2123 // linkage. 2124 if (!shouldEmitFunction(GD)) 2125 return; 2126 2127 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 2128 // Make sure to emit the definition(s) before we emit the thunks. 2129 // This is necessary for the generation of certain thunks. 2130 if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method)) 2131 ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType())); 2132 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method)) 2133 ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType())); 2134 else 2135 EmitGlobalFunctionDefinition(GD, GV); 2136 2137 if (Method->isVirtual()) 2138 getVTables().EmitThunks(GD); 2139 2140 return; 2141 } 2142 2143 return EmitGlobalFunctionDefinition(GD, GV); 2144 } 2145 2146 if (const auto *VD = dyn_cast<VarDecl>(D)) 2147 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 2148 2149 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 2150 } 2151 2152 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2153 llvm::Function *NewFn); 2154 2155 void CodeGenModule::emitMultiVersionFunctions() { 2156 for (GlobalDecl GD : MultiVersionFuncs) { 2157 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 2158 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 2159 getContext().forEachMultiversionedFunctionVersion( 2160 FD, [this, &GD, &Options](const FunctionDecl *CurFD) { 2161 GlobalDecl CurGD{ 2162 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)}; 2163 StringRef MangledName = getMangledName(CurGD); 2164 llvm::Constant *Func = GetGlobalValue(MangledName); 2165 if (!Func) { 2166 if (CurFD->isDefined()) { 2167 EmitGlobalFunctionDefinition(CurGD, nullptr); 2168 Func = GetGlobalValue(MangledName); 2169 } else { 2170 const CGFunctionInfo &FI = 2171 getTypes().arrangeGlobalDeclaration(GD); 2172 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2173 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 2174 /*DontDefer=*/false, ForDefinition); 2175 } 2176 assert(Func && "This should have just been created"); 2177 } 2178 Options.emplace_back(getTarget(), cast<llvm::Function>(Func), 2179 CurFD->getAttr<TargetAttr>()->parse()); 2180 }); 2181 2182 llvm::Function *ResolverFunc = cast<llvm::Function>( 2183 GetGlobalValue((getMangledName(GD) + ".resolver").str())); 2184 std::stable_sort( 2185 Options.begin(), Options.end(), 2186 std::greater<CodeGenFunction::MultiVersionResolverOption>()); 2187 CodeGenFunction CGF(*this); 2188 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 2189 } 2190 } 2191 2192 /// If an ifunc for the specified mangled name is not in the module, create and 2193 /// return an llvm IFunc Function with the specified type. 2194 llvm::Constant * 2195 CodeGenModule::GetOrCreateMultiVersionIFunc(GlobalDecl GD, llvm::Type *DeclTy, 2196 StringRef MangledName, 2197 const FunctionDecl *FD) { 2198 std::string IFuncName = (MangledName + ".ifunc").str(); 2199 if (llvm::GlobalValue *IFuncGV = GetGlobalValue(IFuncName)) 2200 return IFuncGV; 2201 2202 // Since this is the first time we've created this IFunc, make sure 2203 // that we put this multiversioned function into the list to be 2204 // replaced later. 2205 MultiVersionFuncs.push_back(GD); 2206 2207 std::string ResolverName = (MangledName + ".resolver").str(); 2208 llvm::Type *ResolverType = llvm::FunctionType::get( 2209 llvm::PointerType::get(DeclTy, 2210 Context.getTargetAddressSpace(FD->getType())), 2211 false); 2212 llvm::Constant *Resolver = 2213 GetOrCreateLLVMFunction(ResolverName, ResolverType, GlobalDecl{}, 2214 /*ForVTable=*/false); 2215 llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create( 2216 DeclTy, 0, llvm::Function::ExternalLinkage, "", Resolver, &getModule()); 2217 GIF->setName(IFuncName); 2218 SetCommonAttributes(FD, GIF); 2219 2220 return GIF; 2221 } 2222 2223 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 2224 /// module, create and return an llvm Function with the specified type. If there 2225 /// is something in the module with the specified name, return it potentially 2226 /// bitcasted to the right type. 2227 /// 2228 /// If D is non-null, it specifies a decl that correspond to this. This is used 2229 /// to set the attributes on the function when it is first created. 2230 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 2231 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 2232 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 2233 ForDefinition_t IsForDefinition) { 2234 const Decl *D = GD.getDecl(); 2235 2236 // Any attempts to use a MultiVersion function should result in retrieving 2237 // the iFunc instead. Name Mangling will handle the rest of the changes. 2238 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 2239 if (FD->isMultiVersion() && FD->getAttr<TargetAttr>()->isDefaultVersion()) { 2240 UpdateMultiVersionNames(GD, FD); 2241 if (!IsForDefinition) 2242 return GetOrCreateMultiVersionIFunc(GD, Ty, MangledName, FD); 2243 } 2244 } 2245 2246 // Lookup the entry, lazily creating it if necessary. 2247 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2248 if (Entry) { 2249 if (WeakRefReferences.erase(Entry)) { 2250 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 2251 if (FD && !FD->hasAttr<WeakAttr>()) 2252 Entry->setLinkage(llvm::Function::ExternalLinkage); 2253 } 2254 2255 // Handle dropped DLL attributes. 2256 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 2257 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 2258 2259 // If there are two attempts to define the same mangled name, issue an 2260 // error. 2261 if (IsForDefinition && !Entry->isDeclaration()) { 2262 GlobalDecl OtherGD; 2263 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 2264 // to make sure that we issue an error only once. 2265 if (lookupRepresentativeDecl(MangledName, OtherGD) && 2266 (GD.getCanonicalDecl().getDecl() != 2267 OtherGD.getCanonicalDecl().getDecl()) && 2268 DiagnosedConflictingDefinitions.insert(GD).second) { 2269 getDiags().Report(D->getLocation(), 2270 diag::err_duplicate_mangled_name); 2271 getDiags().Report(OtherGD.getDecl()->getLocation(), 2272 diag::note_previous_definition); 2273 } 2274 } 2275 2276 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 2277 (Entry->getType()->getElementType() == Ty)) { 2278 return Entry; 2279 } 2280 2281 // Make sure the result is of the correct type. 2282 // (If function is requested for a definition, we always need to create a new 2283 // function, not just return a bitcast.) 2284 if (!IsForDefinition) 2285 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 2286 } 2287 2288 // This function doesn't have a complete type (for example, the return 2289 // type is an incomplete struct). Use a fake type instead, and make 2290 // sure not to try to set attributes. 2291 bool IsIncompleteFunction = false; 2292 2293 llvm::FunctionType *FTy; 2294 if (isa<llvm::FunctionType>(Ty)) { 2295 FTy = cast<llvm::FunctionType>(Ty); 2296 } else { 2297 FTy = llvm::FunctionType::get(VoidTy, false); 2298 IsIncompleteFunction = true; 2299 } 2300 2301 llvm::Function *F = 2302 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 2303 Entry ? StringRef() : MangledName, &getModule()); 2304 2305 // If we already created a function with the same mangled name (but different 2306 // type) before, take its name and add it to the list of functions to be 2307 // replaced with F at the end of CodeGen. 2308 // 2309 // This happens if there is a prototype for a function (e.g. "int f()") and 2310 // then a definition of a different type (e.g. "int f(int x)"). 2311 if (Entry) { 2312 F->takeName(Entry); 2313 2314 // This might be an implementation of a function without a prototype, in 2315 // which case, try to do special replacement of calls which match the new 2316 // prototype. The really key thing here is that we also potentially drop 2317 // arguments from the call site so as to make a direct call, which makes the 2318 // inliner happier and suppresses a number of optimizer warnings (!) about 2319 // dropping arguments. 2320 if (!Entry->use_empty()) { 2321 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 2322 Entry->removeDeadConstantUsers(); 2323 } 2324 2325 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 2326 F, Entry->getType()->getElementType()->getPointerTo()); 2327 addGlobalValReplacement(Entry, BC); 2328 } 2329 2330 assert(F->getName() == MangledName && "name was uniqued!"); 2331 if (D) 2332 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk, 2333 IsForDefinition); 2334 if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) { 2335 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex); 2336 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 2337 } 2338 2339 if (!DontDefer) { 2340 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 2341 // each other bottoming out with the base dtor. Therefore we emit non-base 2342 // dtors on usage, even if there is no dtor definition in the TU. 2343 if (D && isa<CXXDestructorDecl>(D) && 2344 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 2345 GD.getDtorType())) 2346 addDeferredDeclToEmit(GD); 2347 2348 // This is the first use or definition of a mangled name. If there is a 2349 // deferred decl with this name, remember that we need to emit it at the end 2350 // of the file. 2351 auto DDI = DeferredDecls.find(MangledName); 2352 if (DDI != DeferredDecls.end()) { 2353 // Move the potentially referenced deferred decl to the 2354 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 2355 // don't need it anymore). 2356 addDeferredDeclToEmit(DDI->second); 2357 DeferredDecls.erase(DDI); 2358 2359 // Otherwise, there are cases we have to worry about where we're 2360 // using a declaration for which we must emit a definition but where 2361 // we might not find a top-level definition: 2362 // - member functions defined inline in their classes 2363 // - friend functions defined inline in some class 2364 // - special member functions with implicit definitions 2365 // If we ever change our AST traversal to walk into class methods, 2366 // this will be unnecessary. 2367 // 2368 // We also don't emit a definition for a function if it's going to be an 2369 // entry in a vtable, unless it's already marked as used. 2370 } else if (getLangOpts().CPlusPlus && D) { 2371 // Look for a declaration that's lexically in a record. 2372 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 2373 FD = FD->getPreviousDecl()) { 2374 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 2375 if (FD->doesThisDeclarationHaveABody()) { 2376 addDeferredDeclToEmit(GD.getWithDecl(FD)); 2377 break; 2378 } 2379 } 2380 } 2381 } 2382 } 2383 2384 // Make sure the result is of the requested type. 2385 if (!IsIncompleteFunction) { 2386 assert(F->getType()->getElementType() == Ty); 2387 return F; 2388 } 2389 2390 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2391 return llvm::ConstantExpr::getBitCast(F, PTy); 2392 } 2393 2394 /// GetAddrOfFunction - Return the address of the given function. If Ty is 2395 /// non-null, then this function will use the specified type if it has to 2396 /// create it (this occurs when we see a definition of the function). 2397 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 2398 llvm::Type *Ty, 2399 bool ForVTable, 2400 bool DontDefer, 2401 ForDefinition_t IsForDefinition) { 2402 // If there was no specific requested type, just convert it now. 2403 if (!Ty) { 2404 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2405 auto CanonTy = Context.getCanonicalType(FD->getType()); 2406 Ty = getTypes().ConvertFunctionType(CanonTy, FD); 2407 } 2408 2409 StringRef MangledName = getMangledName(GD); 2410 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 2411 /*IsThunk=*/false, llvm::AttributeList(), 2412 IsForDefinition); 2413 } 2414 2415 static const FunctionDecl * 2416 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 2417 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 2418 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 2419 2420 IdentifierInfo &CII = C.Idents.get(Name); 2421 for (const auto &Result : DC->lookup(&CII)) 2422 if (const auto FD = dyn_cast<FunctionDecl>(Result)) 2423 return FD; 2424 2425 if (!C.getLangOpts().CPlusPlus) 2426 return nullptr; 2427 2428 // Demangle the premangled name from getTerminateFn() 2429 IdentifierInfo &CXXII = 2430 (Name == "_ZSt9terminatev" || Name == "\01?terminate@@YAXXZ") 2431 ? C.Idents.get("terminate") 2432 : C.Idents.get(Name); 2433 2434 for (const auto &N : {"__cxxabiv1", "std"}) { 2435 IdentifierInfo &NS = C.Idents.get(N); 2436 for (const auto &Result : DC->lookup(&NS)) { 2437 NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 2438 if (auto LSD = dyn_cast<LinkageSpecDecl>(Result)) 2439 for (const auto &Result : LSD->lookup(&NS)) 2440 if ((ND = dyn_cast<NamespaceDecl>(Result))) 2441 break; 2442 2443 if (ND) 2444 for (const auto &Result : ND->lookup(&CXXII)) 2445 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 2446 return FD; 2447 } 2448 } 2449 2450 return nullptr; 2451 } 2452 2453 /// CreateRuntimeFunction - Create a new runtime function with the specified 2454 /// type and name. 2455 llvm::Constant * 2456 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 2457 llvm::AttributeList ExtraAttrs, 2458 bool Local) { 2459 llvm::Constant *C = 2460 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 2461 /*DontDefer=*/false, /*IsThunk=*/false, 2462 ExtraAttrs); 2463 2464 if (auto *F = dyn_cast<llvm::Function>(C)) { 2465 if (F->empty()) { 2466 F->setCallingConv(getRuntimeCC()); 2467 2468 if (!Local && getTriple().isOSBinFormatCOFF() && 2469 !getCodeGenOpts().LTOVisibilityPublicStd && 2470 !getTriple().isWindowsGNUEnvironment()) { 2471 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 2472 if (!FD || FD->hasAttr<DLLImportAttr>()) { 2473 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 2474 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 2475 } 2476 } 2477 } 2478 } 2479 2480 return C; 2481 } 2482 2483 /// CreateBuiltinFunction - Create a new builtin function with the specified 2484 /// type and name. 2485 llvm::Constant * 2486 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, StringRef Name, 2487 llvm::AttributeList ExtraAttrs) { 2488 llvm::Constant *C = 2489 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 2490 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); 2491 if (auto *F = dyn_cast<llvm::Function>(C)) 2492 if (F->empty()) 2493 F->setCallingConv(getBuiltinCC()); 2494 return C; 2495 } 2496 2497 /// isTypeConstant - Determine whether an object of this type can be emitted 2498 /// as a constant. 2499 /// 2500 /// If ExcludeCtor is true, the duration when the object's constructor runs 2501 /// will not be considered. The caller will need to verify that the object is 2502 /// not written to during its construction. 2503 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 2504 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 2505 return false; 2506 2507 if (Context.getLangOpts().CPlusPlus) { 2508 if (const CXXRecordDecl *Record 2509 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 2510 return ExcludeCtor && !Record->hasMutableFields() && 2511 Record->hasTrivialDestructor(); 2512 } 2513 2514 return true; 2515 } 2516 2517 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 2518 /// create and return an llvm GlobalVariable with the specified type. If there 2519 /// is something in the module with the specified name, return it potentially 2520 /// bitcasted to the right type. 2521 /// 2522 /// If D is non-null, it specifies a decl that correspond to this. This is used 2523 /// to set the attributes on the global when it is first created. 2524 /// 2525 /// If IsForDefinition is true, it is guranteed that an actual global with 2526 /// type Ty will be returned, not conversion of a variable with the same 2527 /// mangled name but some other type. 2528 llvm::Constant * 2529 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 2530 llvm::PointerType *Ty, 2531 const VarDecl *D, 2532 ForDefinition_t IsForDefinition) { 2533 // Lookup the entry, lazily creating it if necessary. 2534 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2535 if (Entry) { 2536 if (WeakRefReferences.erase(Entry)) { 2537 if (D && !D->hasAttr<WeakAttr>()) 2538 Entry->setLinkage(llvm::Function::ExternalLinkage); 2539 } 2540 2541 // Handle dropped DLL attributes. 2542 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 2543 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 2544 2545 if (Entry->getType() == Ty) 2546 return Entry; 2547 2548 // If there are two attempts to define the same mangled name, issue an 2549 // error. 2550 if (IsForDefinition && !Entry->isDeclaration()) { 2551 GlobalDecl OtherGD; 2552 const VarDecl *OtherD; 2553 2554 // Check that D is not yet in DiagnosedConflictingDefinitions is required 2555 // to make sure that we issue an error only once. 2556 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 2557 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 2558 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 2559 OtherD->hasInit() && 2560 DiagnosedConflictingDefinitions.insert(D).second) { 2561 getDiags().Report(D->getLocation(), 2562 diag::err_duplicate_mangled_name); 2563 getDiags().Report(OtherGD.getDecl()->getLocation(), 2564 diag::note_previous_definition); 2565 } 2566 } 2567 2568 // Make sure the result is of the correct type. 2569 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 2570 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 2571 2572 // (If global is requested for a definition, we always need to create a new 2573 // global, not just return a bitcast.) 2574 if (!IsForDefinition) 2575 return llvm::ConstantExpr::getBitCast(Entry, Ty); 2576 } 2577 2578 auto AddrSpace = GetGlobalVarAddressSpace(D); 2579 auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace); 2580 2581 auto *GV = new llvm::GlobalVariable( 2582 getModule(), Ty->getElementType(), false, 2583 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 2584 llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace); 2585 2586 // If we already created a global with the same mangled name (but different 2587 // type) before, take its name and remove it from its parent. 2588 if (Entry) { 2589 GV->takeName(Entry); 2590 2591 if (!Entry->use_empty()) { 2592 llvm::Constant *NewPtrForOldDecl = 2593 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2594 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2595 } 2596 2597 Entry->eraseFromParent(); 2598 } 2599 2600 // This is the first use or definition of a mangled name. If there is a 2601 // deferred decl with this name, remember that we need to emit it at the end 2602 // of the file. 2603 auto DDI = DeferredDecls.find(MangledName); 2604 if (DDI != DeferredDecls.end()) { 2605 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 2606 // list, and remove it from DeferredDecls (since we don't need it anymore). 2607 addDeferredDeclToEmit(DDI->second); 2608 DeferredDecls.erase(DDI); 2609 } 2610 2611 // Handle things which are present even on external declarations. 2612 if (D) { 2613 // FIXME: This code is overly simple and should be merged with other global 2614 // handling. 2615 GV->setConstant(isTypeConstant(D->getType(), false)); 2616 2617 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2618 2619 setLinkageForGV(GV, D); 2620 setGlobalVisibility(GV, D, NotForDefinition); 2621 2622 if (D->getTLSKind()) { 2623 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2624 CXXThreadLocals.push_back(D); 2625 setTLSMode(GV, *D); 2626 } 2627 2628 // If required by the ABI, treat declarations of static data members with 2629 // inline initializers as definitions. 2630 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 2631 EmitGlobalVarDefinition(D); 2632 } 2633 2634 // Emit section information for extern variables. 2635 if (D->hasExternalStorage()) { 2636 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 2637 GV->setSection(SA->getName()); 2638 } 2639 2640 // Handle XCore specific ABI requirements. 2641 if (getTriple().getArch() == llvm::Triple::xcore && 2642 D->getLanguageLinkage() == CLanguageLinkage && 2643 D->getType().isConstant(Context) && 2644 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 2645 GV->setSection(".cp.rodata"); 2646 2647 // Check if we a have a const declaration with an initializer, we may be 2648 // able to emit it as available_externally to expose it's value to the 2649 // optimizer. 2650 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 2651 D->getType().isConstQualified() && !GV->hasInitializer() && 2652 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 2653 const auto *Record = 2654 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 2655 bool HasMutableFields = Record && Record->hasMutableFields(); 2656 if (!HasMutableFields) { 2657 const VarDecl *InitDecl; 2658 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 2659 if (InitExpr) { 2660 ConstantEmitter emitter(*this); 2661 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 2662 if (Init) { 2663 auto *InitType = Init->getType(); 2664 if (GV->getType()->getElementType() != InitType) { 2665 // The type of the initializer does not match the definition. 2666 // This happens when an initializer has a different type from 2667 // the type of the global (because of padding at the end of a 2668 // structure for instance). 2669 GV->setName(StringRef()); 2670 // Make a new global with the correct type, this is now guaranteed 2671 // to work. 2672 auto *NewGV = cast<llvm::GlobalVariable>( 2673 GetAddrOfGlobalVar(D, InitType, IsForDefinition)); 2674 2675 // Erase the old global, since it is no longer used. 2676 cast<llvm::GlobalValue>(GV)->eraseFromParent(); 2677 GV = NewGV; 2678 } else { 2679 GV->setInitializer(Init); 2680 GV->setConstant(true); 2681 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 2682 } 2683 emitter.finalize(GV); 2684 } 2685 } 2686 } 2687 } 2688 } 2689 2690 LangAS ExpectedAS = 2691 D ? D->getType().getAddressSpace() 2692 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 2693 assert(getContext().getTargetAddressSpace(ExpectedAS) == 2694 Ty->getPointerAddressSpace()); 2695 if (AddrSpace != ExpectedAS) 2696 return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace, 2697 ExpectedAS, Ty); 2698 2699 return GV; 2700 } 2701 2702 llvm::Constant * 2703 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, 2704 ForDefinition_t IsForDefinition) { 2705 const Decl *D = GD.getDecl(); 2706 if (isa<CXXConstructorDecl>(D)) 2707 return getAddrOfCXXStructor(cast<CXXConstructorDecl>(D), 2708 getFromCtorType(GD.getCtorType()), 2709 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2710 /*DontDefer=*/false, IsForDefinition); 2711 else if (isa<CXXDestructorDecl>(D)) 2712 return getAddrOfCXXStructor(cast<CXXDestructorDecl>(D), 2713 getFromDtorType(GD.getDtorType()), 2714 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2715 /*DontDefer=*/false, IsForDefinition); 2716 else if (isa<CXXMethodDecl>(D)) { 2717 auto FInfo = &getTypes().arrangeCXXMethodDeclaration( 2718 cast<CXXMethodDecl>(D)); 2719 auto Ty = getTypes().GetFunctionType(*FInfo); 2720 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2721 IsForDefinition); 2722 } else if (isa<FunctionDecl>(D)) { 2723 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2724 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2725 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2726 IsForDefinition); 2727 } else 2728 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, 2729 IsForDefinition); 2730 } 2731 2732 llvm::GlobalVariable * 2733 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 2734 llvm::Type *Ty, 2735 llvm::GlobalValue::LinkageTypes Linkage) { 2736 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 2737 llvm::GlobalVariable *OldGV = nullptr; 2738 2739 if (GV) { 2740 // Check if the variable has the right type. 2741 if (GV->getType()->getElementType() == Ty) 2742 return GV; 2743 2744 // Because C++ name mangling, the only way we can end up with an already 2745 // existing global with the same name is if it has been declared extern "C". 2746 assert(GV->isDeclaration() && "Declaration has wrong type!"); 2747 OldGV = GV; 2748 } 2749 2750 // Create a new variable. 2751 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 2752 Linkage, nullptr, Name); 2753 2754 if (OldGV) { 2755 // Replace occurrences of the old variable if needed. 2756 GV->takeName(OldGV); 2757 2758 if (!OldGV->use_empty()) { 2759 llvm::Constant *NewPtrForOldDecl = 2760 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 2761 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 2762 } 2763 2764 OldGV->eraseFromParent(); 2765 } 2766 2767 if (supportsCOMDAT() && GV->isWeakForLinker() && 2768 !GV->hasAvailableExternallyLinkage()) 2769 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2770 2771 return GV; 2772 } 2773 2774 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 2775 /// given global variable. If Ty is non-null and if the global doesn't exist, 2776 /// then it will be created with the specified type instead of whatever the 2777 /// normal requested type would be. If IsForDefinition is true, it is guranteed 2778 /// that an actual global with type Ty will be returned, not conversion of a 2779 /// variable with the same mangled name but some other type. 2780 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 2781 llvm::Type *Ty, 2782 ForDefinition_t IsForDefinition) { 2783 assert(D->hasGlobalStorage() && "Not a global variable"); 2784 QualType ASTTy = D->getType(); 2785 if (!Ty) 2786 Ty = getTypes().ConvertTypeForMem(ASTTy); 2787 2788 llvm::PointerType *PTy = 2789 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 2790 2791 StringRef MangledName = getMangledName(D); 2792 return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition); 2793 } 2794 2795 /// CreateRuntimeVariable - Create a new runtime global variable with the 2796 /// specified type and name. 2797 llvm::Constant * 2798 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 2799 StringRef Name) { 2800 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr); 2801 } 2802 2803 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 2804 assert(!D->getInit() && "Cannot emit definite definitions here!"); 2805 2806 StringRef MangledName = getMangledName(D); 2807 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 2808 2809 // We already have a definition, not declaration, with the same mangled name. 2810 // Emitting of declaration is not required (and actually overwrites emitted 2811 // definition). 2812 if (GV && !GV->isDeclaration()) 2813 return; 2814 2815 // If we have not seen a reference to this variable yet, place it into the 2816 // deferred declarations table to be emitted if needed later. 2817 if (!MustBeEmitted(D) && !GV) { 2818 DeferredDecls[MangledName] = D; 2819 return; 2820 } 2821 2822 // The tentative definition is the only definition. 2823 EmitGlobalVarDefinition(D); 2824 } 2825 2826 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 2827 return Context.toCharUnitsFromBits( 2828 getDataLayout().getTypeStoreSizeInBits(Ty)); 2829 } 2830 2831 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 2832 LangAS AddrSpace = LangAS::Default; 2833 if (LangOpts.OpenCL) { 2834 AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 2835 assert(AddrSpace == LangAS::opencl_global || 2836 AddrSpace == LangAS::opencl_constant || 2837 AddrSpace == LangAS::opencl_local || 2838 AddrSpace >= LangAS::FirstTargetAddressSpace); 2839 return AddrSpace; 2840 } 2841 2842 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 2843 if (D && D->hasAttr<CUDAConstantAttr>()) 2844 return LangAS::cuda_constant; 2845 else if (D && D->hasAttr<CUDASharedAttr>()) 2846 return LangAS::cuda_shared; 2847 else 2848 return LangAS::cuda_device; 2849 } 2850 2851 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 2852 } 2853 2854 template<typename SomeDecl> 2855 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 2856 llvm::GlobalValue *GV) { 2857 if (!getLangOpts().CPlusPlus) 2858 return; 2859 2860 // Must have 'used' attribute, or else inline assembly can't rely on 2861 // the name existing. 2862 if (!D->template hasAttr<UsedAttr>()) 2863 return; 2864 2865 // Must have internal linkage and an ordinary name. 2866 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 2867 return; 2868 2869 // Must be in an extern "C" context. Entities declared directly within 2870 // a record are not extern "C" even if the record is in such a context. 2871 const SomeDecl *First = D->getFirstDecl(); 2872 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 2873 return; 2874 2875 // OK, this is an internal linkage entity inside an extern "C" linkage 2876 // specification. Make a note of that so we can give it the "expected" 2877 // mangled name if nothing else is using that name. 2878 std::pair<StaticExternCMap::iterator, bool> R = 2879 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 2880 2881 // If we have multiple internal linkage entities with the same name 2882 // in extern "C" regions, none of them gets that name. 2883 if (!R.second) 2884 R.first->second = nullptr; 2885 } 2886 2887 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 2888 if (!CGM.supportsCOMDAT()) 2889 return false; 2890 2891 if (D.hasAttr<SelectAnyAttr>()) 2892 return true; 2893 2894 GVALinkage Linkage; 2895 if (auto *VD = dyn_cast<VarDecl>(&D)) 2896 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 2897 else 2898 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 2899 2900 switch (Linkage) { 2901 case GVA_Internal: 2902 case GVA_AvailableExternally: 2903 case GVA_StrongExternal: 2904 return false; 2905 case GVA_DiscardableODR: 2906 case GVA_StrongODR: 2907 return true; 2908 } 2909 llvm_unreachable("No such linkage"); 2910 } 2911 2912 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 2913 llvm::GlobalObject &GO) { 2914 if (!shouldBeInCOMDAT(*this, D)) 2915 return; 2916 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 2917 } 2918 2919 /// Pass IsTentative as true if you want to create a tentative definition. 2920 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 2921 bool IsTentative) { 2922 // OpenCL global variables of sampler type are translated to function calls, 2923 // therefore no need to be translated. 2924 QualType ASTTy = D->getType(); 2925 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 2926 return; 2927 2928 llvm::Constant *Init = nullptr; 2929 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 2930 bool NeedsGlobalCtor = false; 2931 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 2932 2933 const VarDecl *InitDecl; 2934 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 2935 2936 Optional<ConstantEmitter> emitter; 2937 2938 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 2939 // as part of their declaration." Sema has already checked for 2940 // error cases, so we just need to set Init to UndefValue. 2941 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 2942 D->hasAttr<CUDASharedAttr>()) 2943 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 2944 else if (!InitExpr) { 2945 // This is a tentative definition; tentative definitions are 2946 // implicitly initialized with { 0 }. 2947 // 2948 // Note that tentative definitions are only emitted at the end of 2949 // a translation unit, so they should never have incomplete 2950 // type. In addition, EmitTentativeDefinition makes sure that we 2951 // never attempt to emit a tentative definition if a real one 2952 // exists. A use may still exists, however, so we still may need 2953 // to do a RAUW. 2954 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 2955 Init = EmitNullConstant(D->getType()); 2956 } else { 2957 initializedGlobalDecl = GlobalDecl(D); 2958 emitter.emplace(*this); 2959 Init = emitter->tryEmitForInitializer(*InitDecl); 2960 2961 if (!Init) { 2962 QualType T = InitExpr->getType(); 2963 if (D->getType()->isReferenceType()) 2964 T = D->getType(); 2965 2966 if (getLangOpts().CPlusPlus) { 2967 Init = EmitNullConstant(T); 2968 NeedsGlobalCtor = true; 2969 } else { 2970 ErrorUnsupported(D, "static initializer"); 2971 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 2972 } 2973 } else { 2974 // We don't need an initializer, so remove the entry for the delayed 2975 // initializer position (just in case this entry was delayed) if we 2976 // also don't need to register a destructor. 2977 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 2978 DelayedCXXInitPosition.erase(D); 2979 } 2980 } 2981 2982 llvm::Type* InitType = Init->getType(); 2983 llvm::Constant *Entry = 2984 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 2985 2986 // Strip off a bitcast if we got one back. 2987 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 2988 assert(CE->getOpcode() == llvm::Instruction::BitCast || 2989 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 2990 // All zero index gep. 2991 CE->getOpcode() == llvm::Instruction::GetElementPtr); 2992 Entry = CE->getOperand(0); 2993 } 2994 2995 // Entry is now either a Function or GlobalVariable. 2996 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 2997 2998 // We have a definition after a declaration with the wrong type. 2999 // We must make a new GlobalVariable* and update everything that used OldGV 3000 // (a declaration or tentative definition) with the new GlobalVariable* 3001 // (which will be a definition). 3002 // 3003 // This happens if there is a prototype for a global (e.g. 3004 // "extern int x[];") and then a definition of a different type (e.g. 3005 // "int x[10];"). This also happens when an initializer has a different type 3006 // from the type of the global (this happens with unions). 3007 if (!GV || GV->getType()->getElementType() != InitType || 3008 GV->getType()->getAddressSpace() != 3009 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 3010 3011 // Move the old entry aside so that we'll create a new one. 3012 Entry->setName(StringRef()); 3013 3014 // Make a new global with the correct type, this is now guaranteed to work. 3015 GV = cast<llvm::GlobalVariable>( 3016 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))); 3017 3018 // Replace all uses of the old global with the new global 3019 llvm::Constant *NewPtrForOldDecl = 3020 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 3021 Entry->replaceAllUsesWith(NewPtrForOldDecl); 3022 3023 // Erase the old global, since it is no longer used. 3024 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 3025 } 3026 3027 MaybeHandleStaticInExternC(D, GV); 3028 3029 if (D->hasAttr<AnnotateAttr>()) 3030 AddGlobalAnnotations(D, GV); 3031 3032 // Set the llvm linkage type as appropriate. 3033 llvm::GlobalValue::LinkageTypes Linkage = 3034 getLLVMLinkageVarDefinition(D, GV->isConstant()); 3035 3036 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 3037 // the device. [...]" 3038 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 3039 // __device__, declares a variable that: [...] 3040 // Is accessible from all the threads within the grid and from the host 3041 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 3042 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 3043 if (GV && LangOpts.CUDA) { 3044 if (LangOpts.CUDAIsDevice) { 3045 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) 3046 GV->setExternallyInitialized(true); 3047 } else { 3048 // Host-side shadows of external declarations of device-side 3049 // global variables become internal definitions. These have to 3050 // be internal in order to prevent name conflicts with global 3051 // host variables with the same name in a different TUs. 3052 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) { 3053 Linkage = llvm::GlobalValue::InternalLinkage; 3054 3055 // Shadow variables and their properties must be registered 3056 // with CUDA runtime. 3057 unsigned Flags = 0; 3058 if (!D->hasDefinition()) 3059 Flags |= CGCUDARuntime::ExternDeviceVar; 3060 if (D->hasAttr<CUDAConstantAttr>()) 3061 Flags |= CGCUDARuntime::ConstantDeviceVar; 3062 getCUDARuntime().registerDeviceVar(*GV, Flags); 3063 } else if (D->hasAttr<CUDASharedAttr>()) 3064 // __shared__ variables are odd. Shadows do get created, but 3065 // they are not registered with the CUDA runtime, so they 3066 // can't really be used to access their device-side 3067 // counterparts. It's not clear yet whether it's nvcc's bug or 3068 // a feature, but we've got to do the same for compatibility. 3069 Linkage = llvm::GlobalValue::InternalLinkage; 3070 } 3071 } 3072 3073 GV->setInitializer(Init); 3074 if (emitter) emitter->finalize(GV); 3075 3076 // If it is safe to mark the global 'constant', do so now. 3077 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 3078 isTypeConstant(D->getType(), true)); 3079 3080 // If it is in a read-only section, mark it 'constant'. 3081 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 3082 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 3083 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 3084 GV->setConstant(true); 3085 } 3086 3087 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 3088 3089 3090 // On Darwin, if the normal linkage of a C++ thread_local variable is 3091 // LinkOnce or Weak, we keep the normal linkage to prevent multiple 3092 // copies within a linkage unit; otherwise, the backing variable has 3093 // internal linkage and all accesses should just be calls to the 3094 // Itanium-specified entry point, which has the normal linkage of the 3095 // variable. This is to preserve the ability to change the implementation 3096 // behind the scenes. 3097 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic && 3098 Context.getTargetInfo().getTriple().isOSDarwin() && 3099 !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) && 3100 !llvm::GlobalVariable::isWeakLinkage(Linkage)) 3101 Linkage = llvm::GlobalValue::InternalLinkage; 3102 3103 GV->setLinkage(Linkage); 3104 if (D->hasAttr<DLLImportAttr>()) 3105 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 3106 else if (D->hasAttr<DLLExportAttr>()) 3107 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 3108 else 3109 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 3110 3111 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 3112 // common vars aren't constant even if declared const. 3113 GV->setConstant(false); 3114 // Tentative definition of global variables may be initialized with 3115 // non-zero null pointers. In this case they should have weak linkage 3116 // since common linkage must have zero initializer and must not have 3117 // explicit section therefore cannot have non-zero initial value. 3118 if (!GV->getInitializer()->isNullValue()) 3119 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 3120 } 3121 3122 setNonAliasAttributes(D, GV); 3123 3124 if (D->getTLSKind() && !GV->isThreadLocal()) { 3125 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 3126 CXXThreadLocals.push_back(D); 3127 setTLSMode(GV, *D); 3128 } 3129 3130 maybeSetTrivialComdat(*D, *GV); 3131 3132 // Emit the initializer function if necessary. 3133 if (NeedsGlobalCtor || NeedsGlobalDtor) 3134 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 3135 3136 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 3137 3138 // Emit global variable debug information. 3139 if (CGDebugInfo *DI = getModuleDebugInfo()) 3140 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 3141 DI->EmitGlobalVariable(GV, D); 3142 } 3143 3144 static bool isVarDeclStrongDefinition(const ASTContext &Context, 3145 CodeGenModule &CGM, const VarDecl *D, 3146 bool NoCommon) { 3147 // Don't give variables common linkage if -fno-common was specified unless it 3148 // was overridden by a NoCommon attribute. 3149 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 3150 return true; 3151 3152 // C11 6.9.2/2: 3153 // A declaration of an identifier for an object that has file scope without 3154 // an initializer, and without a storage-class specifier or with the 3155 // storage-class specifier static, constitutes a tentative definition. 3156 if (D->getInit() || D->hasExternalStorage()) 3157 return true; 3158 3159 // A variable cannot be both common and exist in a section. 3160 if (D->hasAttr<SectionAttr>()) 3161 return true; 3162 3163 // A variable cannot be both common and exist in a section. 3164 // We dont try to determine which is the right section in the front-end. 3165 // If no specialized section name is applicable, it will resort to default. 3166 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 3167 D->hasAttr<PragmaClangDataSectionAttr>() || 3168 D->hasAttr<PragmaClangRodataSectionAttr>()) 3169 return true; 3170 3171 // Thread local vars aren't considered common linkage. 3172 if (D->getTLSKind()) 3173 return true; 3174 3175 // Tentative definitions marked with WeakImportAttr are true definitions. 3176 if (D->hasAttr<WeakImportAttr>()) 3177 return true; 3178 3179 // A variable cannot be both common and exist in a comdat. 3180 if (shouldBeInCOMDAT(CGM, *D)) 3181 return true; 3182 3183 // Declarations with a required alignment do not have common linkage in MSVC 3184 // mode. 3185 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 3186 if (D->hasAttr<AlignedAttr>()) 3187 return true; 3188 QualType VarType = D->getType(); 3189 if (Context.isAlignmentRequired(VarType)) 3190 return true; 3191 3192 if (const auto *RT = VarType->getAs<RecordType>()) { 3193 const RecordDecl *RD = RT->getDecl(); 3194 for (const FieldDecl *FD : RD->fields()) { 3195 if (FD->isBitField()) 3196 continue; 3197 if (FD->hasAttr<AlignedAttr>()) 3198 return true; 3199 if (Context.isAlignmentRequired(FD->getType())) 3200 return true; 3201 } 3202 } 3203 } 3204 3205 return false; 3206 } 3207 3208 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 3209 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 3210 if (Linkage == GVA_Internal) 3211 return llvm::Function::InternalLinkage; 3212 3213 if (D->hasAttr<WeakAttr>()) { 3214 if (IsConstantVariable) 3215 return llvm::GlobalVariable::WeakODRLinkage; 3216 else 3217 return llvm::GlobalVariable::WeakAnyLinkage; 3218 } 3219 3220 // We are guaranteed to have a strong definition somewhere else, 3221 // so we can use available_externally linkage. 3222 if (Linkage == GVA_AvailableExternally) 3223 return llvm::GlobalValue::AvailableExternallyLinkage; 3224 3225 // Note that Apple's kernel linker doesn't support symbol 3226 // coalescing, so we need to avoid linkonce and weak linkages there. 3227 // Normally, this means we just map to internal, but for explicit 3228 // instantiations we'll map to external. 3229 3230 // In C++, the compiler has to emit a definition in every translation unit 3231 // that references the function. We should use linkonce_odr because 3232 // a) if all references in this translation unit are optimized away, we 3233 // don't need to codegen it. b) if the function persists, it needs to be 3234 // merged with other definitions. c) C++ has the ODR, so we know the 3235 // definition is dependable. 3236 if (Linkage == GVA_DiscardableODR) 3237 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 3238 : llvm::Function::InternalLinkage; 3239 3240 // An explicit instantiation of a template has weak linkage, since 3241 // explicit instantiations can occur in multiple translation units 3242 // and must all be equivalent. However, we are not allowed to 3243 // throw away these explicit instantiations. 3244 // 3245 // We don't currently support CUDA device code spread out across multiple TUs, 3246 // so say that CUDA templates are either external (for kernels) or internal. 3247 // This lets llvm perform aggressive inter-procedural optimizations. 3248 if (Linkage == GVA_StrongODR) { 3249 if (Context.getLangOpts().AppleKext) 3250 return llvm::Function::ExternalLinkage; 3251 if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice) 3252 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 3253 : llvm::Function::InternalLinkage; 3254 return llvm::Function::WeakODRLinkage; 3255 } 3256 3257 // C++ doesn't have tentative definitions and thus cannot have common 3258 // linkage. 3259 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 3260 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 3261 CodeGenOpts.NoCommon)) 3262 return llvm::GlobalVariable::CommonLinkage; 3263 3264 // selectany symbols are externally visible, so use weak instead of 3265 // linkonce. MSVC optimizes away references to const selectany globals, so 3266 // all definitions should be the same and ODR linkage should be used. 3267 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 3268 if (D->hasAttr<SelectAnyAttr>()) 3269 return llvm::GlobalVariable::WeakODRLinkage; 3270 3271 // Otherwise, we have strong external linkage. 3272 assert(Linkage == GVA_StrongExternal); 3273 return llvm::GlobalVariable::ExternalLinkage; 3274 } 3275 3276 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 3277 const VarDecl *VD, bool IsConstant) { 3278 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 3279 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 3280 } 3281 3282 /// Replace the uses of a function that was declared with a non-proto type. 3283 /// We want to silently drop extra arguments from call sites 3284 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 3285 llvm::Function *newFn) { 3286 // Fast path. 3287 if (old->use_empty()) return; 3288 3289 llvm::Type *newRetTy = newFn->getReturnType(); 3290 SmallVector<llvm::Value*, 4> newArgs; 3291 SmallVector<llvm::OperandBundleDef, 1> newBundles; 3292 3293 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 3294 ui != ue; ) { 3295 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 3296 llvm::User *user = use->getUser(); 3297 3298 // Recognize and replace uses of bitcasts. Most calls to 3299 // unprototyped functions will use bitcasts. 3300 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 3301 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 3302 replaceUsesOfNonProtoConstant(bitcast, newFn); 3303 continue; 3304 } 3305 3306 // Recognize calls to the function. 3307 llvm::CallSite callSite(user); 3308 if (!callSite) continue; 3309 if (!callSite.isCallee(&*use)) continue; 3310 3311 // If the return types don't match exactly, then we can't 3312 // transform this call unless it's dead. 3313 if (callSite->getType() != newRetTy && !callSite->use_empty()) 3314 continue; 3315 3316 // Get the call site's attribute list. 3317 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 3318 llvm::AttributeList oldAttrs = callSite.getAttributes(); 3319 3320 // If the function was passed too few arguments, don't transform. 3321 unsigned newNumArgs = newFn->arg_size(); 3322 if (callSite.arg_size() < newNumArgs) continue; 3323 3324 // If extra arguments were passed, we silently drop them. 3325 // If any of the types mismatch, we don't transform. 3326 unsigned argNo = 0; 3327 bool dontTransform = false; 3328 for (llvm::Argument &A : newFn->args()) { 3329 if (callSite.getArgument(argNo)->getType() != A.getType()) { 3330 dontTransform = true; 3331 break; 3332 } 3333 3334 // Add any parameter attributes. 3335 newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo)); 3336 argNo++; 3337 } 3338 if (dontTransform) 3339 continue; 3340 3341 // Okay, we can transform this. Create the new call instruction and copy 3342 // over the required information. 3343 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 3344 3345 // Copy over any operand bundles. 3346 callSite.getOperandBundlesAsDefs(newBundles); 3347 3348 llvm::CallSite newCall; 3349 if (callSite.isCall()) { 3350 newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "", 3351 callSite.getInstruction()); 3352 } else { 3353 auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction()); 3354 newCall = llvm::InvokeInst::Create(newFn, 3355 oldInvoke->getNormalDest(), 3356 oldInvoke->getUnwindDest(), 3357 newArgs, newBundles, "", 3358 callSite.getInstruction()); 3359 } 3360 newArgs.clear(); // for the next iteration 3361 3362 if (!newCall->getType()->isVoidTy()) 3363 newCall->takeName(callSite.getInstruction()); 3364 newCall.setAttributes(llvm::AttributeList::get( 3365 newFn->getContext(), oldAttrs.getFnAttributes(), 3366 oldAttrs.getRetAttributes(), newArgAttrs)); 3367 newCall.setCallingConv(callSite.getCallingConv()); 3368 3369 // Finally, remove the old call, replacing any uses with the new one. 3370 if (!callSite->use_empty()) 3371 callSite->replaceAllUsesWith(newCall.getInstruction()); 3372 3373 // Copy debug location attached to CI. 3374 if (callSite->getDebugLoc()) 3375 newCall->setDebugLoc(callSite->getDebugLoc()); 3376 3377 callSite->eraseFromParent(); 3378 } 3379 } 3380 3381 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 3382 /// implement a function with no prototype, e.g. "int foo() {}". If there are 3383 /// existing call uses of the old function in the module, this adjusts them to 3384 /// call the new function directly. 3385 /// 3386 /// This is not just a cleanup: the always_inline pass requires direct calls to 3387 /// functions to be able to inline them. If there is a bitcast in the way, it 3388 /// won't inline them. Instcombine normally deletes these calls, but it isn't 3389 /// run at -O0. 3390 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 3391 llvm::Function *NewFn) { 3392 // If we're redefining a global as a function, don't transform it. 3393 if (!isa<llvm::Function>(Old)) return; 3394 3395 replaceUsesOfNonProtoConstant(Old, NewFn); 3396 } 3397 3398 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 3399 auto DK = VD->isThisDeclarationADefinition(); 3400 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 3401 return; 3402 3403 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 3404 // If we have a definition, this might be a deferred decl. If the 3405 // instantiation is explicit, make sure we emit it at the end. 3406 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 3407 GetAddrOfGlobalVar(VD); 3408 3409 EmitTopLevelDecl(VD); 3410 } 3411 3412 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 3413 llvm::GlobalValue *GV) { 3414 const auto *D = cast<FunctionDecl>(GD.getDecl()); 3415 3416 // Compute the function info and LLVM type. 3417 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3418 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3419 3420 // Get or create the prototype for the function. 3421 if (!GV || (GV->getType()->getElementType() != Ty)) 3422 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 3423 /*DontDefer=*/true, 3424 ForDefinition)); 3425 3426 // Already emitted. 3427 if (!GV->isDeclaration()) 3428 return; 3429 3430 // We need to set linkage and visibility on the function before 3431 // generating code for it because various parts of IR generation 3432 // want to propagate this information down (e.g. to local static 3433 // declarations). 3434 auto *Fn = cast<llvm::Function>(GV); 3435 setFunctionLinkage(GD, Fn); 3436 setFunctionDLLStorageClass(GD, Fn); 3437 3438 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 3439 setGlobalVisibility(Fn, D, ForDefinition); 3440 3441 MaybeHandleStaticInExternC(D, Fn); 3442 3443 maybeSetTrivialComdat(*D, *Fn); 3444 3445 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 3446 3447 setFunctionDefinitionAttributes(D, Fn); 3448 SetLLVMFunctionAttributesForDefinition(D, Fn); 3449 3450 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 3451 AddGlobalCtor(Fn, CA->getPriority()); 3452 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 3453 AddGlobalDtor(Fn, DA->getPriority()); 3454 if (D->hasAttr<AnnotateAttr>()) 3455 AddGlobalAnnotations(D, Fn); 3456 } 3457 3458 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 3459 const auto *D = cast<ValueDecl>(GD.getDecl()); 3460 const AliasAttr *AA = D->getAttr<AliasAttr>(); 3461 assert(AA && "Not an alias?"); 3462 3463 StringRef MangledName = getMangledName(GD); 3464 3465 if (AA->getAliasee() == MangledName) { 3466 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 3467 return; 3468 } 3469 3470 // If there is a definition in the module, then it wins over the alias. 3471 // This is dubious, but allow it to be safe. Just ignore the alias. 3472 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3473 if (Entry && !Entry->isDeclaration()) 3474 return; 3475 3476 Aliases.push_back(GD); 3477 3478 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 3479 3480 // Create a reference to the named value. This ensures that it is emitted 3481 // if a deferred decl. 3482 llvm::Constant *Aliasee; 3483 if (isa<llvm::FunctionType>(DeclTy)) 3484 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 3485 /*ForVTable=*/false); 3486 else 3487 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 3488 llvm::PointerType::getUnqual(DeclTy), 3489 /*D=*/nullptr); 3490 3491 // Create the new alias itself, but don't set a name yet. 3492 auto *GA = llvm::GlobalAlias::create( 3493 DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule()); 3494 3495 if (Entry) { 3496 if (GA->getAliasee() == Entry) { 3497 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 3498 return; 3499 } 3500 3501 assert(Entry->isDeclaration()); 3502 3503 // If there is a declaration in the module, then we had an extern followed 3504 // by the alias, as in: 3505 // extern int test6(); 3506 // ... 3507 // int test6() __attribute__((alias("test7"))); 3508 // 3509 // Remove it and replace uses of it with the alias. 3510 GA->takeName(Entry); 3511 3512 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 3513 Entry->getType())); 3514 Entry->eraseFromParent(); 3515 } else { 3516 GA->setName(MangledName); 3517 } 3518 3519 // Set attributes which are particular to an alias; this is a 3520 // specialization of the attributes which may be set on a global 3521 // variable/function. 3522 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 3523 D->isWeakImported()) { 3524 GA->setLinkage(llvm::Function::WeakAnyLinkage); 3525 } 3526 3527 if (const auto *VD = dyn_cast<VarDecl>(D)) 3528 if (VD->getTLSKind()) 3529 setTLSMode(GA, *VD); 3530 3531 setAliasAttributes(D, GA); 3532 } 3533 3534 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 3535 const auto *D = cast<ValueDecl>(GD.getDecl()); 3536 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 3537 assert(IFA && "Not an ifunc?"); 3538 3539 StringRef MangledName = getMangledName(GD); 3540 3541 if (IFA->getResolver() == MangledName) { 3542 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 3543 return; 3544 } 3545 3546 // Report an error if some definition overrides ifunc. 3547 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3548 if (Entry && !Entry->isDeclaration()) { 3549 GlobalDecl OtherGD; 3550 if (lookupRepresentativeDecl(MangledName, OtherGD) && 3551 DiagnosedConflictingDefinitions.insert(GD).second) { 3552 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name); 3553 Diags.Report(OtherGD.getDecl()->getLocation(), 3554 diag::note_previous_definition); 3555 } 3556 return; 3557 } 3558 3559 Aliases.push_back(GD); 3560 3561 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 3562 llvm::Constant *Resolver = 3563 GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD, 3564 /*ForVTable=*/false); 3565 llvm::GlobalIFunc *GIF = 3566 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 3567 "", Resolver, &getModule()); 3568 if (Entry) { 3569 if (GIF->getResolver() == Entry) { 3570 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 3571 return; 3572 } 3573 assert(Entry->isDeclaration()); 3574 3575 // If there is a declaration in the module, then we had an extern followed 3576 // by the ifunc, as in: 3577 // extern int test(); 3578 // ... 3579 // int test() __attribute__((ifunc("resolver"))); 3580 // 3581 // Remove it and replace uses of it with the ifunc. 3582 GIF->takeName(Entry); 3583 3584 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 3585 Entry->getType())); 3586 Entry->eraseFromParent(); 3587 } else 3588 GIF->setName(MangledName); 3589 3590 SetCommonAttributes(D, GIF); 3591 } 3592 3593 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 3594 ArrayRef<llvm::Type*> Tys) { 3595 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 3596 Tys); 3597 } 3598 3599 static llvm::StringMapEntry<llvm::GlobalVariable *> & 3600 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 3601 const StringLiteral *Literal, bool TargetIsLSB, 3602 bool &IsUTF16, unsigned &StringLength) { 3603 StringRef String = Literal->getString(); 3604 unsigned NumBytes = String.size(); 3605 3606 // Check for simple case. 3607 if (!Literal->containsNonAsciiOrNull()) { 3608 StringLength = NumBytes; 3609 return *Map.insert(std::make_pair(String, nullptr)).first; 3610 } 3611 3612 // Otherwise, convert the UTF8 literals into a string of shorts. 3613 IsUTF16 = true; 3614 3615 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 3616 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 3617 llvm::UTF16 *ToPtr = &ToBuf[0]; 3618 3619 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 3620 ToPtr + NumBytes, llvm::strictConversion); 3621 3622 // ConvertUTF8toUTF16 returns the length in ToPtr. 3623 StringLength = ToPtr - &ToBuf[0]; 3624 3625 // Add an explicit null. 3626 *ToPtr = 0; 3627 return *Map.insert(std::make_pair( 3628 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 3629 (StringLength + 1) * 2), 3630 nullptr)).first; 3631 } 3632 3633 ConstantAddress 3634 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 3635 unsigned StringLength = 0; 3636 bool isUTF16 = false; 3637 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 3638 GetConstantCFStringEntry(CFConstantStringMap, Literal, 3639 getDataLayout().isLittleEndian(), isUTF16, 3640 StringLength); 3641 3642 if (auto *C = Entry.second) 3643 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 3644 3645 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 3646 llvm::Constant *Zeros[] = { Zero, Zero }; 3647 3648 // If we don't already have it, get __CFConstantStringClassReference. 3649 if (!CFConstantStringClassRef) { 3650 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 3651 Ty = llvm::ArrayType::get(Ty, 0); 3652 llvm::Constant *GV = 3653 CreateRuntimeVariable(Ty, "__CFConstantStringClassReference"); 3654 3655 if (getTriple().isOSBinFormatCOFF()) { 3656 IdentifierInfo &II = getContext().Idents.get(GV->getName()); 3657 TranslationUnitDecl *TUDecl = getContext().getTranslationUnitDecl(); 3658 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 3659 llvm::GlobalValue *CGV = cast<llvm::GlobalValue>(GV); 3660 3661 const VarDecl *VD = nullptr; 3662 for (const auto &Result : DC->lookup(&II)) 3663 if ((VD = dyn_cast<VarDecl>(Result))) 3664 break; 3665 3666 if (!VD || !VD->hasAttr<DLLExportAttr>()) { 3667 CGV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 3668 CGV->setLinkage(llvm::GlobalValue::ExternalLinkage); 3669 } else { 3670 CGV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 3671 CGV->setLinkage(llvm::GlobalValue::ExternalLinkage); 3672 } 3673 } 3674 3675 // Decay array -> ptr 3676 CFConstantStringClassRef = 3677 llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros); 3678 } 3679 3680 QualType CFTy = getContext().getCFConstantStringType(); 3681 3682 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 3683 3684 ConstantInitBuilder Builder(*this); 3685 auto Fields = Builder.beginStruct(STy); 3686 3687 // Class pointer. 3688 Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef)); 3689 3690 // Flags. 3691 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 3692 3693 // String pointer. 3694 llvm::Constant *C = nullptr; 3695 if (isUTF16) { 3696 auto Arr = llvm::makeArrayRef( 3697 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 3698 Entry.first().size() / 2); 3699 C = llvm::ConstantDataArray::get(VMContext, Arr); 3700 } else { 3701 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 3702 } 3703 3704 // Note: -fwritable-strings doesn't make the backing store strings of 3705 // CFStrings writable. (See <rdar://problem/10657500>) 3706 auto *GV = 3707 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 3708 llvm::GlobalValue::PrivateLinkage, C, ".str"); 3709 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3710 // Don't enforce the target's minimum global alignment, since the only use 3711 // of the string is via this class initializer. 3712 CharUnits Align = isUTF16 3713 ? getContext().getTypeAlignInChars(getContext().ShortTy) 3714 : getContext().getTypeAlignInChars(getContext().CharTy); 3715 GV->setAlignment(Align.getQuantity()); 3716 3717 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 3718 // Without it LLVM can merge the string with a non unnamed_addr one during 3719 // LTO. Doing that changes the section it ends in, which surprises ld64. 3720 if (getTriple().isOSBinFormatMachO()) 3721 GV->setSection(isUTF16 ? "__TEXT,__ustring" 3722 : "__TEXT,__cstring,cstring_literals"); 3723 3724 // String. 3725 llvm::Constant *Str = 3726 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 3727 3728 if (isUTF16) 3729 // Cast the UTF16 string to the correct type. 3730 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 3731 Fields.add(Str); 3732 3733 // String length. 3734 auto Ty = getTypes().ConvertType(getContext().LongTy); 3735 Fields.addInt(cast<llvm::IntegerType>(Ty), StringLength); 3736 3737 CharUnits Alignment = getPointerAlign(); 3738 3739 // The struct. 3740 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 3741 /*isConstant=*/false, 3742 llvm::GlobalVariable::PrivateLinkage); 3743 switch (getTriple().getObjectFormat()) { 3744 case llvm::Triple::UnknownObjectFormat: 3745 llvm_unreachable("unknown file format"); 3746 case llvm::Triple::COFF: 3747 case llvm::Triple::ELF: 3748 case llvm::Triple::Wasm: 3749 GV->setSection("cfstring"); 3750 break; 3751 case llvm::Triple::MachO: 3752 GV->setSection("__DATA,__cfstring"); 3753 break; 3754 } 3755 Entry.second = GV; 3756 3757 return ConstantAddress(GV, Alignment); 3758 } 3759 3760 bool CodeGenModule::getExpressionLocationsEnabled() const { 3761 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 3762 } 3763 3764 QualType CodeGenModule::getObjCFastEnumerationStateType() { 3765 if (ObjCFastEnumerationStateType.isNull()) { 3766 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 3767 D->startDefinition(); 3768 3769 QualType FieldTypes[] = { 3770 Context.UnsignedLongTy, 3771 Context.getPointerType(Context.getObjCIdType()), 3772 Context.getPointerType(Context.UnsignedLongTy), 3773 Context.getConstantArrayType(Context.UnsignedLongTy, 3774 llvm::APInt(32, 5), ArrayType::Normal, 0) 3775 }; 3776 3777 for (size_t i = 0; i < 4; ++i) { 3778 FieldDecl *Field = FieldDecl::Create(Context, 3779 D, 3780 SourceLocation(), 3781 SourceLocation(), nullptr, 3782 FieldTypes[i], /*TInfo=*/nullptr, 3783 /*BitWidth=*/nullptr, 3784 /*Mutable=*/false, 3785 ICIS_NoInit); 3786 Field->setAccess(AS_public); 3787 D->addDecl(Field); 3788 } 3789 3790 D->completeDefinition(); 3791 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 3792 } 3793 3794 return ObjCFastEnumerationStateType; 3795 } 3796 3797 llvm::Constant * 3798 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 3799 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 3800 3801 // Don't emit it as the address of the string, emit the string data itself 3802 // as an inline array. 3803 if (E->getCharByteWidth() == 1) { 3804 SmallString<64> Str(E->getString()); 3805 3806 // Resize the string to the right size, which is indicated by its type. 3807 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 3808 Str.resize(CAT->getSize().getZExtValue()); 3809 return llvm::ConstantDataArray::getString(VMContext, Str, false); 3810 } 3811 3812 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 3813 llvm::Type *ElemTy = AType->getElementType(); 3814 unsigned NumElements = AType->getNumElements(); 3815 3816 // Wide strings have either 2-byte or 4-byte elements. 3817 if (ElemTy->getPrimitiveSizeInBits() == 16) { 3818 SmallVector<uint16_t, 32> Elements; 3819 Elements.reserve(NumElements); 3820 3821 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3822 Elements.push_back(E->getCodeUnit(i)); 3823 Elements.resize(NumElements); 3824 return llvm::ConstantDataArray::get(VMContext, Elements); 3825 } 3826 3827 assert(ElemTy->getPrimitiveSizeInBits() == 32); 3828 SmallVector<uint32_t, 32> Elements; 3829 Elements.reserve(NumElements); 3830 3831 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3832 Elements.push_back(E->getCodeUnit(i)); 3833 Elements.resize(NumElements); 3834 return llvm::ConstantDataArray::get(VMContext, Elements); 3835 } 3836 3837 static llvm::GlobalVariable * 3838 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 3839 CodeGenModule &CGM, StringRef GlobalName, 3840 CharUnits Alignment) { 3841 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 3842 unsigned AddrSpace = 0; 3843 if (CGM.getLangOpts().OpenCL) 3844 AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant); 3845 3846 llvm::Module &M = CGM.getModule(); 3847 // Create a global variable for this string 3848 auto *GV = new llvm::GlobalVariable( 3849 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 3850 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 3851 GV->setAlignment(Alignment.getQuantity()); 3852 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3853 if (GV->isWeakForLinker()) { 3854 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 3855 GV->setComdat(M.getOrInsertComdat(GV->getName())); 3856 } 3857 3858 return GV; 3859 } 3860 3861 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 3862 /// constant array for the given string literal. 3863 ConstantAddress 3864 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 3865 StringRef Name) { 3866 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 3867 3868 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 3869 llvm::GlobalVariable **Entry = nullptr; 3870 if (!LangOpts.WritableStrings) { 3871 Entry = &ConstantStringMap[C]; 3872 if (auto GV = *Entry) { 3873 if (Alignment.getQuantity() > GV->getAlignment()) 3874 GV->setAlignment(Alignment.getQuantity()); 3875 return ConstantAddress(GV, Alignment); 3876 } 3877 } 3878 3879 SmallString<256> MangledNameBuffer; 3880 StringRef GlobalVariableName; 3881 llvm::GlobalValue::LinkageTypes LT; 3882 3883 // Mangle the string literal if the ABI allows for it. However, we cannot 3884 // do this if we are compiling with ASan or -fwritable-strings because they 3885 // rely on strings having normal linkage. 3886 if (!LangOpts.WritableStrings && 3887 !LangOpts.Sanitize.has(SanitizerKind::Address) && 3888 getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) { 3889 llvm::raw_svector_ostream Out(MangledNameBuffer); 3890 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 3891 3892 LT = llvm::GlobalValue::LinkOnceODRLinkage; 3893 GlobalVariableName = MangledNameBuffer; 3894 } else { 3895 LT = llvm::GlobalValue::PrivateLinkage; 3896 GlobalVariableName = Name; 3897 } 3898 3899 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 3900 if (Entry) 3901 *Entry = GV; 3902 3903 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 3904 QualType()); 3905 return ConstantAddress(GV, Alignment); 3906 } 3907 3908 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 3909 /// array for the given ObjCEncodeExpr node. 3910 ConstantAddress 3911 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 3912 std::string Str; 3913 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 3914 3915 return GetAddrOfConstantCString(Str); 3916 } 3917 3918 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 3919 /// the literal and a terminating '\0' character. 3920 /// The result has pointer to array type. 3921 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 3922 const std::string &Str, const char *GlobalName) { 3923 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 3924 CharUnits Alignment = 3925 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 3926 3927 llvm::Constant *C = 3928 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 3929 3930 // Don't share any string literals if strings aren't constant. 3931 llvm::GlobalVariable **Entry = nullptr; 3932 if (!LangOpts.WritableStrings) { 3933 Entry = &ConstantStringMap[C]; 3934 if (auto GV = *Entry) { 3935 if (Alignment.getQuantity() > GV->getAlignment()) 3936 GV->setAlignment(Alignment.getQuantity()); 3937 return ConstantAddress(GV, Alignment); 3938 } 3939 } 3940 3941 // Get the default prefix if a name wasn't specified. 3942 if (!GlobalName) 3943 GlobalName = ".str"; 3944 // Create a global variable for this. 3945 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 3946 GlobalName, Alignment); 3947 if (Entry) 3948 *Entry = GV; 3949 return ConstantAddress(GV, Alignment); 3950 } 3951 3952 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 3953 const MaterializeTemporaryExpr *E, const Expr *Init) { 3954 assert((E->getStorageDuration() == SD_Static || 3955 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 3956 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 3957 3958 // If we're not materializing a subobject of the temporary, keep the 3959 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 3960 QualType MaterializedType = Init->getType(); 3961 if (Init == E->GetTemporaryExpr()) 3962 MaterializedType = E->getType(); 3963 3964 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 3965 3966 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E]) 3967 return ConstantAddress(Slot, Align); 3968 3969 // FIXME: If an externally-visible declaration extends multiple temporaries, 3970 // we need to give each temporary the same name in every translation unit (and 3971 // we also need to make the temporaries externally-visible). 3972 SmallString<256> Name; 3973 llvm::raw_svector_ostream Out(Name); 3974 getCXXABI().getMangleContext().mangleReferenceTemporary( 3975 VD, E->getManglingNumber(), Out); 3976 3977 APValue *Value = nullptr; 3978 if (E->getStorageDuration() == SD_Static) { 3979 // We might have a cached constant initializer for this temporary. Note 3980 // that this might have a different value from the value computed by 3981 // evaluating the initializer if the surrounding constant expression 3982 // modifies the temporary. 3983 Value = getContext().getMaterializedTemporaryValue(E, false); 3984 if (Value && Value->isUninit()) 3985 Value = nullptr; 3986 } 3987 3988 // Try evaluating it now, it might have a constant initializer. 3989 Expr::EvalResult EvalResult; 3990 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 3991 !EvalResult.hasSideEffects()) 3992 Value = &EvalResult.Val; 3993 3994 LangAS AddrSpace = 3995 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace(); 3996 3997 Optional<ConstantEmitter> emitter; 3998 llvm::Constant *InitialValue = nullptr; 3999 bool Constant = false; 4000 llvm::Type *Type; 4001 if (Value) { 4002 // The temporary has a constant initializer, use it. 4003 emitter.emplace(*this); 4004 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 4005 MaterializedType); 4006 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 4007 Type = InitialValue->getType(); 4008 } else { 4009 // No initializer, the initialization will be provided when we 4010 // initialize the declaration which performed lifetime extension. 4011 Type = getTypes().ConvertTypeForMem(MaterializedType); 4012 } 4013 4014 // Create a global variable for this lifetime-extended temporary. 4015 llvm::GlobalValue::LinkageTypes Linkage = 4016 getLLVMLinkageVarDefinition(VD, Constant); 4017 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 4018 const VarDecl *InitVD; 4019 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 4020 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 4021 // Temporaries defined inside a class get linkonce_odr linkage because the 4022 // class can be defined in multipe translation units. 4023 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 4024 } else { 4025 // There is no need for this temporary to have external linkage if the 4026 // VarDecl has external linkage. 4027 Linkage = llvm::GlobalVariable::InternalLinkage; 4028 } 4029 } 4030 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 4031 auto *GV = new llvm::GlobalVariable( 4032 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 4033 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 4034 if (emitter) emitter->finalize(GV); 4035 setGlobalVisibility(GV, VD, ForDefinition); 4036 GV->setAlignment(Align.getQuantity()); 4037 if (supportsCOMDAT() && GV->isWeakForLinker()) 4038 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 4039 if (VD->getTLSKind()) 4040 setTLSMode(GV, *VD); 4041 llvm::Constant *CV = GV; 4042 if (AddrSpace != LangAS::Default) 4043 CV = getTargetCodeGenInfo().performAddrSpaceCast( 4044 *this, GV, AddrSpace, LangAS::Default, 4045 Type->getPointerTo( 4046 getContext().getTargetAddressSpace(LangAS::Default))); 4047 MaterializedGlobalTemporaryMap[E] = CV; 4048 return ConstantAddress(CV, Align); 4049 } 4050 4051 /// EmitObjCPropertyImplementations - Emit information for synthesized 4052 /// properties for an implementation. 4053 void CodeGenModule::EmitObjCPropertyImplementations(const 4054 ObjCImplementationDecl *D) { 4055 for (const auto *PID : D->property_impls()) { 4056 // Dynamic is just for type-checking. 4057 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 4058 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 4059 4060 // Determine which methods need to be implemented, some may have 4061 // been overridden. Note that ::isPropertyAccessor is not the method 4062 // we want, that just indicates if the decl came from a 4063 // property. What we want to know is if the method is defined in 4064 // this implementation. 4065 if (!D->getInstanceMethod(PD->getGetterName())) 4066 CodeGenFunction(*this).GenerateObjCGetter( 4067 const_cast<ObjCImplementationDecl *>(D), PID); 4068 if (!PD->isReadOnly() && 4069 !D->getInstanceMethod(PD->getSetterName())) 4070 CodeGenFunction(*this).GenerateObjCSetter( 4071 const_cast<ObjCImplementationDecl *>(D), PID); 4072 } 4073 } 4074 } 4075 4076 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 4077 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 4078 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 4079 ivar; ivar = ivar->getNextIvar()) 4080 if (ivar->getType().isDestructedType()) 4081 return true; 4082 4083 return false; 4084 } 4085 4086 static bool AllTrivialInitializers(CodeGenModule &CGM, 4087 ObjCImplementationDecl *D) { 4088 CodeGenFunction CGF(CGM); 4089 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 4090 E = D->init_end(); B != E; ++B) { 4091 CXXCtorInitializer *CtorInitExp = *B; 4092 Expr *Init = CtorInitExp->getInit(); 4093 if (!CGF.isTrivialInitializer(Init)) 4094 return false; 4095 } 4096 return true; 4097 } 4098 4099 /// EmitObjCIvarInitializations - Emit information for ivar initialization 4100 /// for an implementation. 4101 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 4102 // We might need a .cxx_destruct even if we don't have any ivar initializers. 4103 if (needsDestructMethod(D)) { 4104 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 4105 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 4106 ObjCMethodDecl *DTORMethod = 4107 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 4108 cxxSelector, getContext().VoidTy, nullptr, D, 4109 /*isInstance=*/true, /*isVariadic=*/false, 4110 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 4111 /*isDefined=*/false, ObjCMethodDecl::Required); 4112 D->addInstanceMethod(DTORMethod); 4113 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 4114 D->setHasDestructors(true); 4115 } 4116 4117 // If the implementation doesn't have any ivar initializers, we don't need 4118 // a .cxx_construct. 4119 if (D->getNumIvarInitializers() == 0 || 4120 AllTrivialInitializers(*this, D)) 4121 return; 4122 4123 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 4124 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 4125 // The constructor returns 'self'. 4126 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 4127 D->getLocation(), 4128 D->getLocation(), 4129 cxxSelector, 4130 getContext().getObjCIdType(), 4131 nullptr, D, /*isInstance=*/true, 4132 /*isVariadic=*/false, 4133 /*isPropertyAccessor=*/true, 4134 /*isImplicitlyDeclared=*/true, 4135 /*isDefined=*/false, 4136 ObjCMethodDecl::Required); 4137 D->addInstanceMethod(CTORMethod); 4138 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 4139 D->setHasNonZeroConstructors(true); 4140 } 4141 4142 // EmitLinkageSpec - Emit all declarations in a linkage spec. 4143 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 4144 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 4145 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 4146 ErrorUnsupported(LSD, "linkage spec"); 4147 return; 4148 } 4149 4150 EmitDeclContext(LSD); 4151 } 4152 4153 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 4154 for (auto *I : DC->decls()) { 4155 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 4156 // are themselves considered "top-level", so EmitTopLevelDecl on an 4157 // ObjCImplDecl does not recursively visit them. We need to do that in 4158 // case they're nested inside another construct (LinkageSpecDecl / 4159 // ExportDecl) that does stop them from being considered "top-level". 4160 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 4161 for (auto *M : OID->methods()) 4162 EmitTopLevelDecl(M); 4163 } 4164 4165 EmitTopLevelDecl(I); 4166 } 4167 } 4168 4169 /// EmitTopLevelDecl - Emit code for a single top level declaration. 4170 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 4171 // Ignore dependent declarations. 4172 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 4173 return; 4174 4175 switch (D->getKind()) { 4176 case Decl::CXXConversion: 4177 case Decl::CXXMethod: 4178 case Decl::Function: 4179 // Skip function templates 4180 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 4181 cast<FunctionDecl>(D)->isLateTemplateParsed()) 4182 return; 4183 4184 EmitGlobal(cast<FunctionDecl>(D)); 4185 // Always provide some coverage mapping 4186 // even for the functions that aren't emitted. 4187 AddDeferredUnusedCoverageMapping(D); 4188 break; 4189 4190 case Decl::CXXDeductionGuide: 4191 // Function-like, but does not result in code emission. 4192 break; 4193 4194 case Decl::Var: 4195 case Decl::Decomposition: 4196 // Skip variable templates 4197 if (cast<VarDecl>(D)->getDescribedVarTemplate()) 4198 return; 4199 LLVM_FALLTHROUGH; 4200 case Decl::VarTemplateSpecialization: 4201 EmitGlobal(cast<VarDecl>(D)); 4202 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 4203 for (auto *B : DD->bindings()) 4204 if (auto *HD = B->getHoldingVar()) 4205 EmitGlobal(HD); 4206 break; 4207 4208 // Indirect fields from global anonymous structs and unions can be 4209 // ignored; only the actual variable requires IR gen support. 4210 case Decl::IndirectField: 4211 break; 4212 4213 // C++ Decls 4214 case Decl::Namespace: 4215 EmitDeclContext(cast<NamespaceDecl>(D)); 4216 break; 4217 case Decl::ClassTemplateSpecialization: { 4218 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 4219 if (DebugInfo && 4220 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition && 4221 Spec->hasDefinition()) 4222 DebugInfo->completeTemplateDefinition(*Spec); 4223 } LLVM_FALLTHROUGH; 4224 case Decl::CXXRecord: 4225 if (DebugInfo) { 4226 if (auto *ES = D->getASTContext().getExternalSource()) 4227 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 4228 DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D)); 4229 } 4230 // Emit any static data members, they may be definitions. 4231 for (auto *I : cast<CXXRecordDecl>(D)->decls()) 4232 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 4233 EmitTopLevelDecl(I); 4234 break; 4235 // No code generation needed. 4236 case Decl::UsingShadow: 4237 case Decl::ClassTemplate: 4238 case Decl::VarTemplate: 4239 case Decl::VarTemplatePartialSpecialization: 4240 case Decl::FunctionTemplate: 4241 case Decl::TypeAliasTemplate: 4242 case Decl::Block: 4243 case Decl::Empty: 4244 break; 4245 case Decl::Using: // using X; [C++] 4246 if (CGDebugInfo *DI = getModuleDebugInfo()) 4247 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 4248 return; 4249 case Decl::NamespaceAlias: 4250 if (CGDebugInfo *DI = getModuleDebugInfo()) 4251 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 4252 return; 4253 case Decl::UsingDirective: // using namespace X; [C++] 4254 if (CGDebugInfo *DI = getModuleDebugInfo()) 4255 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 4256 return; 4257 case Decl::CXXConstructor: 4258 // Skip function templates 4259 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 4260 cast<FunctionDecl>(D)->isLateTemplateParsed()) 4261 return; 4262 4263 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 4264 break; 4265 case Decl::CXXDestructor: 4266 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 4267 return; 4268 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 4269 break; 4270 4271 case Decl::StaticAssert: 4272 // Nothing to do. 4273 break; 4274 4275 // Objective-C Decls 4276 4277 // Forward declarations, no (immediate) code generation. 4278 case Decl::ObjCInterface: 4279 case Decl::ObjCCategory: 4280 break; 4281 4282 case Decl::ObjCProtocol: { 4283 auto *Proto = cast<ObjCProtocolDecl>(D); 4284 if (Proto->isThisDeclarationADefinition()) 4285 ObjCRuntime->GenerateProtocol(Proto); 4286 break; 4287 } 4288 4289 case Decl::ObjCCategoryImpl: 4290 // Categories have properties but don't support synthesize so we 4291 // can ignore them here. 4292 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 4293 break; 4294 4295 case Decl::ObjCImplementation: { 4296 auto *OMD = cast<ObjCImplementationDecl>(D); 4297 EmitObjCPropertyImplementations(OMD); 4298 EmitObjCIvarInitializations(OMD); 4299 ObjCRuntime->GenerateClass(OMD); 4300 // Emit global variable debug information. 4301 if (CGDebugInfo *DI = getModuleDebugInfo()) 4302 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 4303 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 4304 OMD->getClassInterface()), OMD->getLocation()); 4305 break; 4306 } 4307 case Decl::ObjCMethod: { 4308 auto *OMD = cast<ObjCMethodDecl>(D); 4309 // If this is not a prototype, emit the body. 4310 if (OMD->getBody()) 4311 CodeGenFunction(*this).GenerateObjCMethod(OMD); 4312 break; 4313 } 4314 case Decl::ObjCCompatibleAlias: 4315 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 4316 break; 4317 4318 case Decl::PragmaComment: { 4319 const auto *PCD = cast<PragmaCommentDecl>(D); 4320 switch (PCD->getCommentKind()) { 4321 case PCK_Unknown: 4322 llvm_unreachable("unexpected pragma comment kind"); 4323 case PCK_Linker: 4324 AppendLinkerOptions(PCD->getArg()); 4325 break; 4326 case PCK_Lib: 4327 AddDependentLib(PCD->getArg()); 4328 break; 4329 case PCK_Compiler: 4330 case PCK_ExeStr: 4331 case PCK_User: 4332 break; // We ignore all of these. 4333 } 4334 break; 4335 } 4336 4337 case Decl::PragmaDetectMismatch: { 4338 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 4339 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 4340 break; 4341 } 4342 4343 case Decl::LinkageSpec: 4344 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 4345 break; 4346 4347 case Decl::FileScopeAsm: { 4348 // File-scope asm is ignored during device-side CUDA compilation. 4349 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 4350 break; 4351 // File-scope asm is ignored during device-side OpenMP compilation. 4352 if (LangOpts.OpenMPIsDevice) 4353 break; 4354 auto *AD = cast<FileScopeAsmDecl>(D); 4355 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 4356 break; 4357 } 4358 4359 case Decl::Import: { 4360 auto *Import = cast<ImportDecl>(D); 4361 4362 // If we've already imported this module, we're done. 4363 if (!ImportedModules.insert(Import->getImportedModule())) 4364 break; 4365 4366 // Emit debug information for direct imports. 4367 if (!Import->getImportedOwningModule()) { 4368 if (CGDebugInfo *DI = getModuleDebugInfo()) 4369 DI->EmitImportDecl(*Import); 4370 } 4371 4372 // Find all of the submodules and emit the module initializers. 4373 llvm::SmallPtrSet<clang::Module *, 16> Visited; 4374 SmallVector<clang::Module *, 16> Stack; 4375 Visited.insert(Import->getImportedModule()); 4376 Stack.push_back(Import->getImportedModule()); 4377 4378 while (!Stack.empty()) { 4379 clang::Module *Mod = Stack.pop_back_val(); 4380 if (!EmittedModuleInitializers.insert(Mod).second) 4381 continue; 4382 4383 for (auto *D : Context.getModuleInitializers(Mod)) 4384 EmitTopLevelDecl(D); 4385 4386 // Visit the submodules of this module. 4387 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 4388 SubEnd = Mod->submodule_end(); 4389 Sub != SubEnd; ++Sub) { 4390 // Skip explicit children; they need to be explicitly imported to emit 4391 // the initializers. 4392 if ((*Sub)->IsExplicit) 4393 continue; 4394 4395 if (Visited.insert(*Sub).second) 4396 Stack.push_back(*Sub); 4397 } 4398 } 4399 break; 4400 } 4401 4402 case Decl::Export: 4403 EmitDeclContext(cast<ExportDecl>(D)); 4404 break; 4405 4406 case Decl::OMPThreadPrivate: 4407 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 4408 break; 4409 4410 case Decl::OMPDeclareReduction: 4411 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 4412 break; 4413 4414 default: 4415 // Make sure we handled everything we should, every other kind is a 4416 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 4417 // function. Need to recode Decl::Kind to do that easily. 4418 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 4419 break; 4420 } 4421 } 4422 4423 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 4424 // Do we need to generate coverage mapping? 4425 if (!CodeGenOpts.CoverageMapping) 4426 return; 4427 switch (D->getKind()) { 4428 case Decl::CXXConversion: 4429 case Decl::CXXMethod: 4430 case Decl::Function: 4431 case Decl::ObjCMethod: 4432 case Decl::CXXConstructor: 4433 case Decl::CXXDestructor: { 4434 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 4435 return; 4436 SourceManager &SM = getContext().getSourceManager(); 4437 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getLocStart())) 4438 return; 4439 auto I = DeferredEmptyCoverageMappingDecls.find(D); 4440 if (I == DeferredEmptyCoverageMappingDecls.end()) 4441 DeferredEmptyCoverageMappingDecls[D] = true; 4442 break; 4443 } 4444 default: 4445 break; 4446 }; 4447 } 4448 4449 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 4450 // Do we need to generate coverage mapping? 4451 if (!CodeGenOpts.CoverageMapping) 4452 return; 4453 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 4454 if (Fn->isTemplateInstantiation()) 4455 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 4456 } 4457 auto I = DeferredEmptyCoverageMappingDecls.find(D); 4458 if (I == DeferredEmptyCoverageMappingDecls.end()) 4459 DeferredEmptyCoverageMappingDecls[D] = false; 4460 else 4461 I->second = false; 4462 } 4463 4464 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 4465 // We call takeVector() here to avoid use-after-free. 4466 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 4467 // we deserialize function bodies to emit coverage info for them, and that 4468 // deserializes more declarations. How should we handle that case? 4469 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 4470 if (!Entry.second) 4471 continue; 4472 const Decl *D = Entry.first; 4473 switch (D->getKind()) { 4474 case Decl::CXXConversion: 4475 case Decl::CXXMethod: 4476 case Decl::Function: 4477 case Decl::ObjCMethod: { 4478 CodeGenPGO PGO(*this); 4479 GlobalDecl GD(cast<FunctionDecl>(D)); 4480 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4481 getFunctionLinkage(GD)); 4482 break; 4483 } 4484 case Decl::CXXConstructor: { 4485 CodeGenPGO PGO(*this); 4486 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 4487 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4488 getFunctionLinkage(GD)); 4489 break; 4490 } 4491 case Decl::CXXDestructor: { 4492 CodeGenPGO PGO(*this); 4493 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 4494 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4495 getFunctionLinkage(GD)); 4496 break; 4497 } 4498 default: 4499 break; 4500 }; 4501 } 4502 } 4503 4504 /// Turns the given pointer into a constant. 4505 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 4506 const void *Ptr) { 4507 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 4508 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 4509 return llvm::ConstantInt::get(i64, PtrInt); 4510 } 4511 4512 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 4513 llvm::NamedMDNode *&GlobalMetadata, 4514 GlobalDecl D, 4515 llvm::GlobalValue *Addr) { 4516 if (!GlobalMetadata) 4517 GlobalMetadata = 4518 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 4519 4520 // TODO: should we report variant information for ctors/dtors? 4521 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 4522 llvm::ConstantAsMetadata::get(GetPointerConstant( 4523 CGM.getLLVMContext(), D.getDecl()))}; 4524 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 4525 } 4526 4527 /// For each function which is declared within an extern "C" region and marked 4528 /// as 'used', but has internal linkage, create an alias from the unmangled 4529 /// name to the mangled name if possible. People expect to be able to refer 4530 /// to such functions with an unmangled name from inline assembly within the 4531 /// same translation unit. 4532 void CodeGenModule::EmitStaticExternCAliases() { 4533 // Don't do anything if we're generating CUDA device code -- the NVPTX 4534 // assembly target doesn't support aliases. 4535 if (Context.getTargetInfo().getTriple().isNVPTX()) 4536 return; 4537 for (auto &I : StaticExternCValues) { 4538 IdentifierInfo *Name = I.first; 4539 llvm::GlobalValue *Val = I.second; 4540 if (Val && !getModule().getNamedValue(Name->getName())) 4541 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 4542 } 4543 } 4544 4545 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 4546 GlobalDecl &Result) const { 4547 auto Res = Manglings.find(MangledName); 4548 if (Res == Manglings.end()) 4549 return false; 4550 Result = Res->getValue(); 4551 return true; 4552 } 4553 4554 /// Emits metadata nodes associating all the global values in the 4555 /// current module with the Decls they came from. This is useful for 4556 /// projects using IR gen as a subroutine. 4557 /// 4558 /// Since there's currently no way to associate an MDNode directly 4559 /// with an llvm::GlobalValue, we create a global named metadata 4560 /// with the name 'clang.global.decl.ptrs'. 4561 void CodeGenModule::EmitDeclMetadata() { 4562 llvm::NamedMDNode *GlobalMetadata = nullptr; 4563 4564 for (auto &I : MangledDeclNames) { 4565 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 4566 // Some mangled names don't necessarily have an associated GlobalValue 4567 // in this module, e.g. if we mangled it for DebugInfo. 4568 if (Addr) 4569 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 4570 } 4571 } 4572 4573 /// Emits metadata nodes for all the local variables in the current 4574 /// function. 4575 void CodeGenFunction::EmitDeclMetadata() { 4576 if (LocalDeclMap.empty()) return; 4577 4578 llvm::LLVMContext &Context = getLLVMContext(); 4579 4580 // Find the unique metadata ID for this name. 4581 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 4582 4583 llvm::NamedMDNode *GlobalMetadata = nullptr; 4584 4585 for (auto &I : LocalDeclMap) { 4586 const Decl *D = I.first; 4587 llvm::Value *Addr = I.second.getPointer(); 4588 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 4589 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 4590 Alloca->setMetadata( 4591 DeclPtrKind, llvm::MDNode::get( 4592 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 4593 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 4594 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 4595 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 4596 } 4597 } 4598 } 4599 4600 void CodeGenModule::EmitVersionIdentMetadata() { 4601 llvm::NamedMDNode *IdentMetadata = 4602 TheModule.getOrInsertNamedMetadata("llvm.ident"); 4603 std::string Version = getClangFullVersion(); 4604 llvm::LLVMContext &Ctx = TheModule.getContext(); 4605 4606 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 4607 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 4608 } 4609 4610 void CodeGenModule::EmitTargetMetadata() { 4611 // Warning, new MangledDeclNames may be appended within this loop. 4612 // We rely on MapVector insertions adding new elements to the end 4613 // of the container. 4614 // FIXME: Move this loop into the one target that needs it, and only 4615 // loop over those declarations for which we couldn't emit the target 4616 // metadata when we emitted the declaration. 4617 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 4618 auto Val = *(MangledDeclNames.begin() + I); 4619 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 4620 llvm::GlobalValue *GV = GetGlobalValue(Val.second); 4621 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 4622 } 4623 } 4624 4625 void CodeGenModule::EmitCoverageFile() { 4626 if (getCodeGenOpts().CoverageDataFile.empty() && 4627 getCodeGenOpts().CoverageNotesFile.empty()) 4628 return; 4629 4630 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 4631 if (!CUNode) 4632 return; 4633 4634 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 4635 llvm::LLVMContext &Ctx = TheModule.getContext(); 4636 auto *CoverageDataFile = 4637 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 4638 auto *CoverageNotesFile = 4639 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 4640 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 4641 llvm::MDNode *CU = CUNode->getOperand(i); 4642 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 4643 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 4644 } 4645 } 4646 4647 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) { 4648 // Sema has checked that all uuid strings are of the form 4649 // "12345678-1234-1234-1234-1234567890ab". 4650 assert(Uuid.size() == 36); 4651 for (unsigned i = 0; i < 36; ++i) { 4652 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 4653 else assert(isHexDigit(Uuid[i])); 4654 } 4655 4656 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab". 4657 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 4658 4659 llvm::Constant *Field3[8]; 4660 for (unsigned Idx = 0; Idx < 8; ++Idx) 4661 Field3[Idx] = llvm::ConstantInt::get( 4662 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 4663 4664 llvm::Constant *Fields[4] = { 4665 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 4666 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 4667 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 4668 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 4669 }; 4670 4671 return llvm::ConstantStruct::getAnon(Fields); 4672 } 4673 4674 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 4675 bool ForEH) { 4676 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 4677 // FIXME: should we even be calling this method if RTTI is disabled 4678 // and it's not for EH? 4679 if (!ForEH && !getLangOpts().RTTI) 4680 return llvm::Constant::getNullValue(Int8PtrTy); 4681 4682 if (ForEH && Ty->isObjCObjectPointerType() && 4683 LangOpts.ObjCRuntime.isGNUFamily()) 4684 return ObjCRuntime->GetEHType(Ty); 4685 4686 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 4687 } 4688 4689 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 4690 // Do not emit threadprivates in simd-only mode. 4691 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 4692 return; 4693 for (auto RefExpr : D->varlists()) { 4694 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 4695 bool PerformInit = 4696 VD->getAnyInitializer() && 4697 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 4698 /*ForRef=*/false); 4699 4700 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 4701 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 4702 VD, Addr, RefExpr->getLocStart(), PerformInit)) 4703 CXXGlobalInits.push_back(InitFunction); 4704 } 4705 } 4706 4707 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 4708 llvm::Metadata *&InternalId = MetadataIdMap[T.getCanonicalType()]; 4709 if (InternalId) 4710 return InternalId; 4711 4712 if (isExternallyVisible(T->getLinkage())) { 4713 std::string OutName; 4714 llvm::raw_string_ostream Out(OutName); 4715 getCXXABI().getMangleContext().mangleTypeName(T, Out); 4716 4717 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 4718 } else { 4719 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 4720 llvm::ArrayRef<llvm::Metadata *>()); 4721 } 4722 4723 return InternalId; 4724 } 4725 4726 // Generalize pointer types to a void pointer with the qualifiers of the 4727 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 4728 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 4729 // 'void *'. 4730 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 4731 if (!Ty->isPointerType()) 4732 return Ty; 4733 4734 return Ctx.getPointerType( 4735 QualType(Ctx.VoidTy).withCVRQualifiers( 4736 Ty->getPointeeType().getCVRQualifiers())); 4737 } 4738 4739 // Apply type generalization to a FunctionType's return and argument types 4740 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 4741 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 4742 SmallVector<QualType, 8> GeneralizedParams; 4743 for (auto &Param : FnType->param_types()) 4744 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 4745 4746 return Ctx.getFunctionType( 4747 GeneralizeType(Ctx, FnType->getReturnType()), 4748 GeneralizedParams, FnType->getExtProtoInfo()); 4749 } 4750 4751 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 4752 return Ctx.getFunctionNoProtoType( 4753 GeneralizeType(Ctx, FnType->getReturnType())); 4754 4755 llvm_unreachable("Encountered unknown FunctionType"); 4756 } 4757 4758 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 4759 T = GeneralizeFunctionType(getContext(), T); 4760 4761 llvm::Metadata *&InternalId = GeneralizedMetadataIdMap[T.getCanonicalType()]; 4762 if (InternalId) 4763 return InternalId; 4764 4765 if (isExternallyVisible(T->getLinkage())) { 4766 std::string OutName; 4767 llvm::raw_string_ostream Out(OutName); 4768 getCXXABI().getMangleContext().mangleTypeName(T, Out); 4769 Out << ".generalized"; 4770 4771 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 4772 } else { 4773 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 4774 llvm::ArrayRef<llvm::Metadata *>()); 4775 } 4776 4777 return InternalId; 4778 } 4779 4780 /// Returns whether this module needs the "all-vtables" type identifier. 4781 bool CodeGenModule::NeedAllVtablesTypeId() const { 4782 // Returns true if at least one of vtable-based CFI checkers is enabled and 4783 // is not in the trapping mode. 4784 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 4785 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 4786 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 4787 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 4788 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 4789 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 4790 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 4791 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 4792 } 4793 4794 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 4795 CharUnits Offset, 4796 const CXXRecordDecl *RD) { 4797 llvm::Metadata *MD = 4798 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 4799 VTable->addTypeMetadata(Offset.getQuantity(), MD); 4800 4801 if (CodeGenOpts.SanitizeCfiCrossDso) 4802 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 4803 VTable->addTypeMetadata(Offset.getQuantity(), 4804 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 4805 4806 if (NeedAllVtablesTypeId()) { 4807 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 4808 VTable->addTypeMetadata(Offset.getQuantity(), MD); 4809 } 4810 } 4811 4812 // Fills in the supplied string map with the set of target features for the 4813 // passed in function. 4814 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap, 4815 const FunctionDecl *FD) { 4816 StringRef TargetCPU = Target.getTargetOpts().CPU; 4817 if (const auto *TD = FD->getAttr<TargetAttr>()) { 4818 // If we have a TargetAttr build up the feature map based on that. 4819 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 4820 4821 ParsedAttr.Features.erase( 4822 llvm::remove_if(ParsedAttr.Features, 4823 [&](const std::string &Feat) { 4824 return !Target.isValidFeatureName( 4825 StringRef{Feat}.substr(1)); 4826 }), 4827 ParsedAttr.Features.end()); 4828 4829 // Make a copy of the features as passed on the command line into the 4830 // beginning of the additional features from the function to override. 4831 ParsedAttr.Features.insert(ParsedAttr.Features.begin(), 4832 Target.getTargetOpts().FeaturesAsWritten.begin(), 4833 Target.getTargetOpts().FeaturesAsWritten.end()); 4834 4835 if (ParsedAttr.Architecture != "" && 4836 Target.isValidCPUName(ParsedAttr.Architecture)) 4837 TargetCPU = ParsedAttr.Architecture; 4838 4839 // Now populate the feature map, first with the TargetCPU which is either 4840 // the default or a new one from the target attribute string. Then we'll use 4841 // the passed in features (FeaturesAsWritten) along with the new ones from 4842 // the attribute. 4843 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 4844 ParsedAttr.Features); 4845 } else { 4846 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 4847 Target.getTargetOpts().Features); 4848 } 4849 } 4850 4851 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 4852 if (!SanStats) 4853 SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule()); 4854 4855 return *SanStats; 4856 } 4857 llvm::Value * 4858 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 4859 CodeGenFunction &CGF) { 4860 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 4861 auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 4862 auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 4863 return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy, 4864 "__translate_sampler_initializer"), 4865 {C}); 4866 } 4867