xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 5556a5cf3b743992d13a5a2429749e88d5e73c8d)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGBlocks.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGCall.h"
19 #include "CGDebugInfo.h"
20 #include "CGObjCRuntime.h"
21 #include "CGOpenCLRuntime.h"
22 #include "CGOpenMPRuntime.h"
23 #include "CGOpenMPRuntimeNVPTX.h"
24 #include "CodeGenFunction.h"
25 #include "CodeGenPGO.h"
26 #include "CodeGenTBAA.h"
27 #include "CoverageMappingGen.h"
28 #include "TargetInfo.h"
29 #include "clang/AST/ASTContext.h"
30 #include "clang/AST/CharUnits.h"
31 #include "clang/AST/DeclCXX.h"
32 #include "clang/AST/DeclObjC.h"
33 #include "clang/AST/DeclTemplate.h"
34 #include "clang/AST/Mangle.h"
35 #include "clang/AST/RecordLayout.h"
36 #include "clang/AST/RecursiveASTVisitor.h"
37 #include "clang/Basic/Builtins.h"
38 #include "clang/Basic/CharInfo.h"
39 #include "clang/Basic/Diagnostic.h"
40 #include "clang/Basic/Module.h"
41 #include "clang/Basic/SourceManager.h"
42 #include "clang/Basic/TargetInfo.h"
43 #include "clang/Basic/Version.h"
44 #include "clang/Frontend/CodeGenOptions.h"
45 #include "clang/Sema/SemaDiagnostic.h"
46 #include "llvm/ADT/APSInt.h"
47 #include "llvm/ADT/Triple.h"
48 #include "llvm/IR/CallSite.h"
49 #include "llvm/IR/CallingConv.h"
50 #include "llvm/IR/DataLayout.h"
51 #include "llvm/IR/Intrinsics.h"
52 #include "llvm/IR/LLVMContext.h"
53 #include "llvm/IR/Module.h"
54 #include "llvm/ProfileData/InstrProfReader.h"
55 #include "llvm/Support/ConvertUTF.h"
56 #include "llvm/Support/ErrorHandling.h"
57 #include "llvm/Support/MD5.h"
58 
59 using namespace clang;
60 using namespace CodeGen;
61 
62 static const char AnnotationSection[] = "llvm.metadata";
63 
64 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
65   switch (CGM.getTarget().getCXXABI().getKind()) {
66   case TargetCXXABI::GenericAArch64:
67   case TargetCXXABI::GenericARM:
68   case TargetCXXABI::iOS:
69   case TargetCXXABI::iOS64:
70   case TargetCXXABI::WatchOS:
71   case TargetCXXABI::GenericMIPS:
72   case TargetCXXABI::GenericItanium:
73   case TargetCXXABI::WebAssembly:
74     return CreateItaniumCXXABI(CGM);
75   case TargetCXXABI::Microsoft:
76     return CreateMicrosoftCXXABI(CGM);
77   }
78 
79   llvm_unreachable("invalid C++ ABI kind");
80 }
81 
82 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
83                              const PreprocessorOptions &PPO,
84                              const CodeGenOptions &CGO, llvm::Module &M,
85                              DiagnosticsEngine &diags,
86                              CoverageSourceInfo *CoverageInfo)
87     : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
88       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
89       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
90       VMContext(M.getContext()), Types(*this), VTables(*this),
91       SanitizerMD(new SanitizerMetadata(*this)),
92       WholeProgramVTablesBlacklist(CGO.WholeProgramVTablesBlacklistFiles,
93                                    C.getSourceManager()) {
94 
95   // Initialize the type cache.
96   llvm::LLVMContext &LLVMContext = M.getContext();
97   VoidTy = llvm::Type::getVoidTy(LLVMContext);
98   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
99   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
100   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
101   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
102   FloatTy = llvm::Type::getFloatTy(LLVMContext);
103   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
104   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
105   PointerAlignInBytes =
106     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
107   IntAlignInBytes =
108     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
109   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
110   IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
111   Int8PtrTy = Int8Ty->getPointerTo(0);
112   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
113 
114   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
115   BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC();
116 
117   if (LangOpts.ObjC1)
118     createObjCRuntime();
119   if (LangOpts.OpenCL)
120     createOpenCLRuntime();
121   if (LangOpts.OpenMP)
122     createOpenMPRuntime();
123   if (LangOpts.CUDA)
124     createCUDARuntime();
125 
126   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
127   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
128       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
129     TBAA.reset(new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(),
130                                getCXXABI().getMangleContext()));
131 
132   // If debug info or coverage generation is enabled, create the CGDebugInfo
133   // object.
134   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
135       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
136     DebugInfo.reset(new CGDebugInfo(*this));
137 
138   Block.GlobalUniqueCount = 0;
139 
140   if (C.getLangOpts().ObjC1)
141     ObjCData.reset(new ObjCEntrypoints());
142 
143   if (CodeGenOpts.hasProfileClangUse()) {
144     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
145         CodeGenOpts.ProfileInstrumentUsePath);
146     if (std::error_code EC = ReaderOrErr.getError()) {
147       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
148                                               "Could not read profile %0: %1");
149       getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
150                                 << EC.message();
151     } else
152       PGOReader = std::move(ReaderOrErr.get());
153   }
154 
155   // If coverage mapping generation is enabled, create the
156   // CoverageMappingModuleGen object.
157   if (CodeGenOpts.CoverageMapping)
158     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
159 }
160 
161 CodeGenModule::~CodeGenModule() {}
162 
163 void CodeGenModule::createObjCRuntime() {
164   // This is just isGNUFamily(), but we want to force implementors of
165   // new ABIs to decide how best to do this.
166   switch (LangOpts.ObjCRuntime.getKind()) {
167   case ObjCRuntime::GNUstep:
168   case ObjCRuntime::GCC:
169   case ObjCRuntime::ObjFW:
170     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
171     return;
172 
173   case ObjCRuntime::FragileMacOSX:
174   case ObjCRuntime::MacOSX:
175   case ObjCRuntime::iOS:
176   case ObjCRuntime::WatchOS:
177     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
178     return;
179   }
180   llvm_unreachable("bad runtime kind");
181 }
182 
183 void CodeGenModule::createOpenCLRuntime() {
184   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
185 }
186 
187 void CodeGenModule::createOpenMPRuntime() {
188   // Select a specialized code generation class based on the target, if any.
189   // If it does not exist use the default implementation.
190   switch (getTarget().getTriple().getArch()) {
191 
192   case llvm::Triple::nvptx:
193   case llvm::Triple::nvptx64:
194     assert(getLangOpts().OpenMPIsDevice &&
195            "OpenMP NVPTX is only prepared to deal with device code.");
196     OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this));
197     break;
198   default:
199     OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
200     break;
201   }
202 }
203 
204 void CodeGenModule::createCUDARuntime() {
205   CUDARuntime.reset(CreateNVCUDARuntime(*this));
206 }
207 
208 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
209   Replacements[Name] = C;
210 }
211 
212 void CodeGenModule::applyReplacements() {
213   for (auto &I : Replacements) {
214     StringRef MangledName = I.first();
215     llvm::Constant *Replacement = I.second;
216     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
217     if (!Entry)
218       continue;
219     auto *OldF = cast<llvm::Function>(Entry);
220     auto *NewF = dyn_cast<llvm::Function>(Replacement);
221     if (!NewF) {
222       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
223         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
224       } else {
225         auto *CE = cast<llvm::ConstantExpr>(Replacement);
226         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
227                CE->getOpcode() == llvm::Instruction::GetElementPtr);
228         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
229       }
230     }
231 
232     // Replace old with new, but keep the old order.
233     OldF->replaceAllUsesWith(Replacement);
234     if (NewF) {
235       NewF->removeFromParent();
236       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
237                                                        NewF);
238     }
239     OldF->eraseFromParent();
240   }
241 }
242 
243 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
244   GlobalValReplacements.push_back(std::make_pair(GV, C));
245 }
246 
247 void CodeGenModule::applyGlobalValReplacements() {
248   for (auto &I : GlobalValReplacements) {
249     llvm::GlobalValue *GV = I.first;
250     llvm::Constant *C = I.second;
251 
252     GV->replaceAllUsesWith(C);
253     GV->eraseFromParent();
254   }
255 }
256 
257 // This is only used in aliases that we created and we know they have a
258 // linear structure.
259 static const llvm::GlobalObject *getAliasedGlobal(
260     const llvm::GlobalIndirectSymbol &GIS) {
261   llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited;
262   const llvm::Constant *C = &GIS;
263   for (;;) {
264     C = C->stripPointerCasts();
265     if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
266       return GO;
267     // stripPointerCasts will not walk over weak aliases.
268     auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C);
269     if (!GIS2)
270       return nullptr;
271     if (!Visited.insert(GIS2).second)
272       return nullptr;
273     C = GIS2->getIndirectSymbol();
274   }
275 }
276 
277 void CodeGenModule::checkAliases() {
278   // Check if the constructed aliases are well formed. It is really unfortunate
279   // that we have to do this in CodeGen, but we only construct mangled names
280   // and aliases during codegen.
281   bool Error = false;
282   DiagnosticsEngine &Diags = getDiags();
283   for (const GlobalDecl &GD : Aliases) {
284     const auto *D = cast<ValueDecl>(GD.getDecl());
285     SourceLocation Location;
286     bool IsIFunc = D->hasAttr<IFuncAttr>();
287     if (const Attr *A = D->getDefiningAttr())
288       Location = A->getLocation();
289     else
290       llvm_unreachable("Not an alias or ifunc?");
291     StringRef MangledName = getMangledName(GD);
292     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
293     auto *Alias  = cast<llvm::GlobalIndirectSymbol>(Entry);
294     const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
295     if (!GV) {
296       Error = true;
297       Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
298     } else if (GV->isDeclaration()) {
299       Error = true;
300       Diags.Report(Location, diag::err_alias_to_undefined)
301           << IsIFunc << IsIFunc;
302     } else if (IsIFunc) {
303       // Check resolver function type.
304       llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(
305           GV->getType()->getPointerElementType());
306       assert(FTy);
307       if (!FTy->getReturnType()->isPointerTy())
308         Diags.Report(Location, diag::err_ifunc_resolver_return);
309       if (FTy->getNumParams())
310         Diags.Report(Location, diag::err_ifunc_resolver_params);
311     }
312 
313     llvm::Constant *Aliasee = Alias->getIndirectSymbol();
314     llvm::GlobalValue *AliaseeGV;
315     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
316       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
317     else
318       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
319 
320     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
321       StringRef AliasSection = SA->getName();
322       if (AliasSection != AliaseeGV->getSection())
323         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
324             << AliasSection << IsIFunc << IsIFunc;
325     }
326 
327     // We have to handle alias to weak aliases in here. LLVM itself disallows
328     // this since the object semantics would not match the IL one. For
329     // compatibility with gcc we implement it by just pointing the alias
330     // to its aliasee's aliasee. We also warn, since the user is probably
331     // expecting the link to be weak.
332     if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) {
333       if (GA->isInterposable()) {
334         Diags.Report(Location, diag::warn_alias_to_weak_alias)
335             << GV->getName() << GA->getName() << IsIFunc;
336         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
337             GA->getIndirectSymbol(), Alias->getType());
338         Alias->setIndirectSymbol(Aliasee);
339       }
340     }
341   }
342   if (!Error)
343     return;
344 
345   for (const GlobalDecl &GD : Aliases) {
346     StringRef MangledName = getMangledName(GD);
347     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
348     auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry);
349     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
350     Alias->eraseFromParent();
351   }
352 }
353 
354 void CodeGenModule::clear() {
355   DeferredDeclsToEmit.clear();
356   if (OpenMPRuntime)
357     OpenMPRuntime->clear();
358 }
359 
360 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
361                                        StringRef MainFile) {
362   if (!hasDiagnostics())
363     return;
364   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
365     if (MainFile.empty())
366       MainFile = "<stdin>";
367     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
368   } else
369     Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Missing
370                                                       << Mismatched;
371 }
372 
373 void CodeGenModule::Release() {
374   EmitDeferred();
375   applyGlobalValReplacements();
376   applyReplacements();
377   checkAliases();
378   EmitCXXGlobalInitFunc();
379   EmitCXXGlobalDtorFunc();
380   EmitCXXThreadLocalInitFunc();
381   if (ObjCRuntime)
382     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
383       AddGlobalCtor(ObjCInitFunction);
384   if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice &&
385       CUDARuntime) {
386     if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction())
387       AddGlobalCtor(CudaCtorFunction);
388     if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction())
389       AddGlobalDtor(CudaDtorFunction);
390   }
391   if (OpenMPRuntime)
392     if (llvm::Function *OpenMPRegistrationFunction =
393             OpenMPRuntime->emitRegistrationFunction())
394       AddGlobalCtor(OpenMPRegistrationFunction, 0);
395   if (PGOReader) {
396     getModule().setMaximumFunctionCount(PGOReader->getMaximumFunctionCount());
397     getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext));
398     if (PGOStats.hasDiagnostics())
399       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
400   }
401   EmitCtorList(GlobalCtors, "llvm.global_ctors");
402   EmitCtorList(GlobalDtors, "llvm.global_dtors");
403   EmitGlobalAnnotations();
404   EmitStaticExternCAliases();
405   EmitDeferredUnusedCoverageMappings();
406   if (CoverageMapping)
407     CoverageMapping->emit();
408   if (CodeGenOpts.SanitizeCfiCrossDso)
409     CodeGenFunction(*this).EmitCfiCheckFail();
410   emitLLVMUsed();
411   if (SanStats)
412     SanStats->finish();
413 
414   if (CodeGenOpts.Autolink &&
415       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
416     EmitModuleLinkOptions();
417   }
418   if (CodeGenOpts.DwarfVersion) {
419     // We actually want the latest version when there are conflicts.
420     // We can change from Warning to Latest if such mode is supported.
421     getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
422                               CodeGenOpts.DwarfVersion);
423   }
424   if (CodeGenOpts.EmitCodeView) {
425     // Indicate that we want CodeView in the metadata.
426     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
427   }
428   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
429     // We don't support LTO with 2 with different StrictVTablePointers
430     // FIXME: we could support it by stripping all the information introduced
431     // by StrictVTablePointers.
432 
433     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
434 
435     llvm::Metadata *Ops[2] = {
436               llvm::MDString::get(VMContext, "StrictVTablePointers"),
437               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
438                   llvm::Type::getInt32Ty(VMContext), 1))};
439 
440     getModule().addModuleFlag(llvm::Module::Require,
441                               "StrictVTablePointersRequirement",
442                               llvm::MDNode::get(VMContext, Ops));
443   }
444   if (DebugInfo)
445     // We support a single version in the linked module. The LLVM
446     // parser will drop debug info with a different version number
447     // (and warn about it, too).
448     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
449                               llvm::DEBUG_METADATA_VERSION);
450 
451   // We need to record the widths of enums and wchar_t, so that we can generate
452   // the correct build attributes in the ARM backend.
453   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
454   if (   Arch == llvm::Triple::arm
455       || Arch == llvm::Triple::armeb
456       || Arch == llvm::Triple::thumb
457       || Arch == llvm::Triple::thumbeb) {
458     // Width of wchar_t in bytes
459     uint64_t WCharWidth =
460         Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
461     getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
462 
463     // The minimum width of an enum in bytes
464     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
465     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
466   }
467 
468   if (CodeGenOpts.SanitizeCfiCrossDso) {
469     // Indicate that we want cross-DSO control flow integrity checks.
470     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
471   }
472 
473   if (LangOpts.CUDAIsDevice && getTarget().getTriple().isNVPTX()) {
474     // Indicate whether __nvvm_reflect should be configured to flush denormal
475     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
476     // property.)
477     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
478                               LangOpts.CUDADeviceFlushDenormalsToZero ? 1 : 0);
479   }
480 
481   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
482     llvm::PICLevel::Level PL = llvm::PICLevel::Default;
483     switch (PLevel) {
484     case 0: break;
485     case 1: PL = llvm::PICLevel::Small; break;
486     case 2: PL = llvm::PICLevel::Large; break;
487     default: llvm_unreachable("Invalid PIC Level");
488     }
489 
490     getModule().setPICLevel(PL);
491   }
492 
493   SimplifyPersonality();
494 
495   if (getCodeGenOpts().EmitDeclMetadata)
496     EmitDeclMetadata();
497 
498   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
499     EmitCoverageFile();
500 
501   if (DebugInfo)
502     DebugInfo->finalize();
503 
504   EmitVersionIdentMetadata();
505 
506   EmitTargetMetadata();
507 }
508 
509 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
510   // Make sure that this type is translated.
511   Types.UpdateCompletedType(TD);
512 }
513 
514 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
515   // Make sure that this type is translated.
516   Types.RefreshTypeCacheForClass(RD);
517 }
518 
519 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
520   if (!TBAA)
521     return nullptr;
522   return TBAA->getTBAAInfo(QTy);
523 }
524 
525 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() {
526   if (!TBAA)
527     return nullptr;
528   return TBAA->getTBAAInfoForVTablePtr();
529 }
530 
531 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
532   if (!TBAA)
533     return nullptr;
534   return TBAA->getTBAAStructInfo(QTy);
535 }
536 
537 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy,
538                                                   llvm::MDNode *AccessN,
539                                                   uint64_t O) {
540   if (!TBAA)
541     return nullptr;
542   return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O);
543 }
544 
545 /// Decorate the instruction with a TBAA tag. For both scalar TBAA
546 /// and struct-path aware TBAA, the tag has the same format:
547 /// base type, access type and offset.
548 /// When ConvertTypeToTag is true, we create a tag based on the scalar type.
549 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
550                                                 llvm::MDNode *TBAAInfo,
551                                                 bool ConvertTypeToTag) {
552   if (ConvertTypeToTag && TBAA)
553     Inst->setMetadata(llvm::LLVMContext::MD_tbaa,
554                       TBAA->getTBAAScalarTagInfo(TBAAInfo));
555   else
556     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
557 }
558 
559 void CodeGenModule::DecorateInstructionWithInvariantGroup(
560     llvm::Instruction *I, const CXXRecordDecl *RD) {
561   llvm::Metadata *MD = CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
562   auto *MetaDataNode = dyn_cast<llvm::MDNode>(MD);
563   // Check if we have to wrap MDString in MDNode.
564   if (!MetaDataNode)
565     MetaDataNode = llvm::MDNode::get(getLLVMContext(), MD);
566   I->setMetadata(llvm::LLVMContext::MD_invariant_group, MetaDataNode);
567 }
568 
569 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
570   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
571   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
572 }
573 
574 /// ErrorUnsupported - Print out an error that codegen doesn't support the
575 /// specified stmt yet.
576 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
577   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
578                                                "cannot compile this %0 yet");
579   std::string Msg = Type;
580   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
581     << Msg << S->getSourceRange();
582 }
583 
584 /// ErrorUnsupported - Print out an error that codegen doesn't support the
585 /// specified decl yet.
586 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
587   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
588                                                "cannot compile this %0 yet");
589   std::string Msg = Type;
590   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
591 }
592 
593 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
594   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
595 }
596 
597 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
598                                         const NamedDecl *D) const {
599   // Internal definitions always have default visibility.
600   if (GV->hasLocalLinkage()) {
601     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
602     return;
603   }
604 
605   // Set visibility for definitions.
606   LinkageInfo LV = D->getLinkageAndVisibility();
607   if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage())
608     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
609 }
610 
611 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
612   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
613       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
614       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
615       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
616       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
617 }
618 
619 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
620     CodeGenOptions::TLSModel M) {
621   switch (M) {
622   case CodeGenOptions::GeneralDynamicTLSModel:
623     return llvm::GlobalVariable::GeneralDynamicTLSModel;
624   case CodeGenOptions::LocalDynamicTLSModel:
625     return llvm::GlobalVariable::LocalDynamicTLSModel;
626   case CodeGenOptions::InitialExecTLSModel:
627     return llvm::GlobalVariable::InitialExecTLSModel;
628   case CodeGenOptions::LocalExecTLSModel:
629     return llvm::GlobalVariable::LocalExecTLSModel;
630   }
631   llvm_unreachable("Invalid TLS model!");
632 }
633 
634 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
635   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
636 
637   llvm::GlobalValue::ThreadLocalMode TLM;
638   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
639 
640   // Override the TLS model if it is explicitly specified.
641   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
642     TLM = GetLLVMTLSModel(Attr->getModel());
643   }
644 
645   GV->setThreadLocalMode(TLM);
646 }
647 
648 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
649   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
650 
651   // Some ABIs don't have constructor variants.  Make sure that base and
652   // complete constructors get mangled the same.
653   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
654     if (!getTarget().getCXXABI().hasConstructorVariants()) {
655       CXXCtorType OrigCtorType = GD.getCtorType();
656       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
657       if (OrigCtorType == Ctor_Base)
658         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
659     }
660   }
661 
662   StringRef &FoundStr = MangledDeclNames[CanonicalGD];
663   if (!FoundStr.empty())
664     return FoundStr;
665 
666   const auto *ND = cast<NamedDecl>(GD.getDecl());
667   SmallString<256> Buffer;
668   StringRef Str;
669   if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
670     llvm::raw_svector_ostream Out(Buffer);
671     if (const auto *D = dyn_cast<CXXConstructorDecl>(ND))
672       getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
673     else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND))
674       getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
675     else
676       getCXXABI().getMangleContext().mangleName(ND, Out);
677     Str = Out.str();
678   } else {
679     IdentifierInfo *II = ND->getIdentifier();
680     assert(II && "Attempt to mangle unnamed decl.");
681     Str = II->getName();
682   }
683 
684   // Keep the first result in the case of a mangling collision.
685   auto Result = Manglings.insert(std::make_pair(Str, GD));
686   return FoundStr = Result.first->first();
687 }
688 
689 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
690                                              const BlockDecl *BD) {
691   MangleContext &MangleCtx = getCXXABI().getMangleContext();
692   const Decl *D = GD.getDecl();
693 
694   SmallString<256> Buffer;
695   llvm::raw_svector_ostream Out(Buffer);
696   if (!D)
697     MangleCtx.mangleGlobalBlock(BD,
698       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
699   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
700     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
701   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
702     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
703   else
704     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
705 
706   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
707   return Result.first->first();
708 }
709 
710 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
711   return getModule().getNamedValue(Name);
712 }
713 
714 /// AddGlobalCtor - Add a function to the list that will be called before
715 /// main() runs.
716 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
717                                   llvm::Constant *AssociatedData) {
718   // FIXME: Type coercion of void()* types.
719   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
720 }
721 
722 /// AddGlobalDtor - Add a function to the list that will be called
723 /// when the module is unloaded.
724 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) {
725   // FIXME: Type coercion of void()* types.
726   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
727 }
728 
729 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
730   // Ctor function type is void()*.
731   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
732   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
733 
734   // Get the type of a ctor entry, { i32, void ()*, i8* }.
735   llvm::StructType *CtorStructTy = llvm::StructType::get(
736       Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy, nullptr);
737 
738   // Construct the constructor and destructor arrays.
739   SmallVector<llvm::Constant *, 8> Ctors;
740   for (const auto &I : Fns) {
741     llvm::Constant *S[] = {
742         llvm::ConstantInt::get(Int32Ty, I.Priority, false),
743         llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy),
744         (I.AssociatedData
745              ? llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)
746              : llvm::Constant::getNullValue(VoidPtrTy))};
747     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
748   }
749 
750   if (!Ctors.empty()) {
751     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
752     new llvm::GlobalVariable(TheModule, AT, false,
753                              llvm::GlobalValue::AppendingLinkage,
754                              llvm::ConstantArray::get(AT, Ctors),
755                              GlobalName);
756   }
757 }
758 
759 llvm::GlobalValue::LinkageTypes
760 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
761   const auto *D = cast<FunctionDecl>(GD.getDecl());
762 
763   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
764 
765   if (isa<CXXDestructorDecl>(D) &&
766       getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
767                                          GD.getDtorType())) {
768     // Destructor variants in the Microsoft C++ ABI are always internal or
769     // linkonce_odr thunks emitted on an as-needed basis.
770     return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage
771                                    : llvm::GlobalValue::LinkOnceODRLinkage;
772   }
773 
774   return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false);
775 }
776 
777 void CodeGenModule::setFunctionDLLStorageClass(GlobalDecl GD, llvm::Function *F) {
778   const auto *FD = cast<FunctionDecl>(GD.getDecl());
779 
780   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) {
781     if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) {
782       // Don't dllexport/import destructor thunks.
783       F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
784       return;
785     }
786   }
787 
788   if (FD->hasAttr<DLLImportAttr>())
789     F->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
790   else if (FD->hasAttr<DLLExportAttr>())
791     F->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
792   else
793     F->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
794 }
795 
796 llvm::ConstantInt *
797 CodeGenModule::CreateCfiIdForTypeMetadata(llvm::Metadata *MD) {
798   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
799   if (!MDS) return nullptr;
800 
801   llvm::MD5 md5;
802   llvm::MD5::MD5Result result;
803   md5.update(MDS->getString());
804   md5.final(result);
805   uint64_t id = 0;
806   for (int i = 0; i < 8; ++i)
807     id |= static_cast<uint64_t>(result[i]) << (i * 8);
808   return llvm::ConstantInt::get(Int64Ty, id);
809 }
810 
811 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D,
812                                                     llvm::Function *F) {
813   setNonAliasAttributes(D, F);
814 }
815 
816 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
817                                               const CGFunctionInfo &Info,
818                                               llvm::Function *F) {
819   unsigned CallingConv;
820   AttributeListType AttributeList;
821   ConstructAttributeList(F->getName(), Info, D, AttributeList, CallingConv,
822                          false);
823   F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList));
824   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
825 }
826 
827 /// Determines whether the language options require us to model
828 /// unwind exceptions.  We treat -fexceptions as mandating this
829 /// except under the fragile ObjC ABI with only ObjC exceptions
830 /// enabled.  This means, for example, that C with -fexceptions
831 /// enables this.
832 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
833   // If exceptions are completely disabled, obviously this is false.
834   if (!LangOpts.Exceptions) return false;
835 
836   // If C++ exceptions are enabled, this is true.
837   if (LangOpts.CXXExceptions) return true;
838 
839   // If ObjC exceptions are enabled, this depends on the ABI.
840   if (LangOpts.ObjCExceptions) {
841     return LangOpts.ObjCRuntime.hasUnwindExceptions();
842   }
843 
844   return true;
845 }
846 
847 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
848                                                            llvm::Function *F) {
849   llvm::AttrBuilder B;
850 
851   if (CodeGenOpts.UnwindTables)
852     B.addAttribute(llvm::Attribute::UWTable);
853 
854   if (!hasUnwindExceptions(LangOpts))
855     B.addAttribute(llvm::Attribute::NoUnwind);
856 
857   if (LangOpts.getStackProtector() == LangOptions::SSPOn)
858     B.addAttribute(llvm::Attribute::StackProtect);
859   else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
860     B.addAttribute(llvm::Attribute::StackProtectStrong);
861   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
862     B.addAttribute(llvm::Attribute::StackProtectReq);
863 
864   if (!D) {
865     F->addAttributes(llvm::AttributeSet::FunctionIndex,
866                      llvm::AttributeSet::get(
867                          F->getContext(),
868                          llvm::AttributeSet::FunctionIndex, B));
869     return;
870   }
871 
872   if (D->hasAttr<NakedAttr>()) {
873     // Naked implies noinline: we should not be inlining such functions.
874     B.addAttribute(llvm::Attribute::Naked);
875     B.addAttribute(llvm::Attribute::NoInline);
876   } else if (D->hasAttr<NoDuplicateAttr>()) {
877     B.addAttribute(llvm::Attribute::NoDuplicate);
878   } else if (D->hasAttr<NoInlineAttr>()) {
879     B.addAttribute(llvm::Attribute::NoInline);
880   } else if (D->hasAttr<AlwaysInlineAttr>() &&
881              !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex,
882                                               llvm::Attribute::NoInline)) {
883     // (noinline wins over always_inline, and we can't specify both in IR)
884     B.addAttribute(llvm::Attribute::AlwaysInline);
885   }
886 
887   if (D->hasAttr<ColdAttr>()) {
888     if (!D->hasAttr<OptimizeNoneAttr>())
889       B.addAttribute(llvm::Attribute::OptimizeForSize);
890     B.addAttribute(llvm::Attribute::Cold);
891   }
892 
893   if (D->hasAttr<MinSizeAttr>())
894     B.addAttribute(llvm::Attribute::MinSize);
895 
896   F->addAttributes(llvm::AttributeSet::FunctionIndex,
897                    llvm::AttributeSet::get(
898                        F->getContext(), llvm::AttributeSet::FunctionIndex, B));
899 
900   if (D->hasAttr<OptimizeNoneAttr>()) {
901     // OptimizeNone implies noinline; we should not be inlining such functions.
902     F->addFnAttr(llvm::Attribute::OptimizeNone);
903     F->addFnAttr(llvm::Attribute::NoInline);
904 
905     // OptimizeNone wins over OptimizeForSize, MinSize, AlwaysInline.
906     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
907     F->removeFnAttr(llvm::Attribute::MinSize);
908     assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
909            "OptimizeNone and AlwaysInline on same function!");
910 
911     // Attribute 'inlinehint' has no effect on 'optnone' functions.
912     // Explicitly remove it from the set of function attributes.
913     F->removeFnAttr(llvm::Attribute::InlineHint);
914   }
915 
916   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
917   if (alignment)
918     F->setAlignment(alignment);
919 
920   // Some C++ ABIs require 2-byte alignment for member functions, in order to
921   // reserve a bit for differentiating between virtual and non-virtual member
922   // functions. If the current target's C++ ABI requires this and this is a
923   // member function, set its alignment accordingly.
924   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
925     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
926       F->setAlignment(2);
927   }
928 }
929 
930 void CodeGenModule::SetCommonAttributes(const Decl *D,
931                                         llvm::GlobalValue *GV) {
932   if (const auto *ND = dyn_cast_or_null<NamedDecl>(D))
933     setGlobalVisibility(GV, ND);
934   else
935     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
936 
937   if (D && D->hasAttr<UsedAttr>())
938     addUsedGlobal(GV);
939 }
940 
941 void CodeGenModule::setAliasAttributes(const Decl *D,
942                                        llvm::GlobalValue *GV) {
943   SetCommonAttributes(D, GV);
944 
945   // Process the dllexport attribute based on whether the original definition
946   // (not necessarily the aliasee) was exported.
947   if (D->hasAttr<DLLExportAttr>())
948     GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
949 }
950 
951 void CodeGenModule::setNonAliasAttributes(const Decl *D,
952                                           llvm::GlobalObject *GO) {
953   SetCommonAttributes(D, GO);
954 
955   if (D)
956     if (const SectionAttr *SA = D->getAttr<SectionAttr>())
957       GO->setSection(SA->getName());
958 
959   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
960 }
961 
962 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
963                                                   llvm::Function *F,
964                                                   const CGFunctionInfo &FI) {
965   SetLLVMFunctionAttributes(D, FI, F);
966   SetLLVMFunctionAttributesForDefinition(D, F);
967 
968   F->setLinkage(llvm::Function::InternalLinkage);
969 
970   setNonAliasAttributes(D, F);
971 }
972 
973 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV,
974                                          const NamedDecl *ND) {
975   // Set linkage and visibility in case we never see a definition.
976   LinkageInfo LV = ND->getLinkageAndVisibility();
977   if (LV.getLinkage() != ExternalLinkage) {
978     // Don't set internal linkage on declarations.
979   } else {
980     if (ND->hasAttr<DLLImportAttr>()) {
981       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
982       GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
983     } else if (ND->hasAttr<DLLExportAttr>()) {
984       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
985       GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
986     } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) {
987       // "extern_weak" is overloaded in LLVM; we probably should have
988       // separate linkage types for this.
989       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
990     }
991 
992     // Set visibility on a declaration only if it's explicit.
993     if (LV.isVisibilityExplicit())
994       GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility()));
995   }
996 }
997 
998 void CodeGenModule::CreateFunctionBitSetEntry(const FunctionDecl *FD,
999                                               llvm::Function *F) {
1000   // Only if we are checking indirect calls.
1001   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
1002     return;
1003 
1004   // Non-static class methods are handled via vtable pointer checks elsewhere.
1005   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
1006     return;
1007 
1008   // Additionally, if building with cross-DSO support...
1009   if (CodeGenOpts.SanitizeCfiCrossDso) {
1010     // Don't emit entries for function declarations. In cross-DSO mode these are
1011     // handled with better precision at run time.
1012     if (!FD->hasBody())
1013       return;
1014     // Skip available_externally functions. They won't be codegen'ed in the
1015     // current module anyway.
1016     if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally)
1017       return;
1018   }
1019 
1020   llvm::NamedMDNode *BitsetsMD =
1021       getModule().getOrInsertNamedMetadata("llvm.bitsets");
1022 
1023   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
1024   llvm::Metadata *BitsetOps[] = {
1025       MD, llvm::ConstantAsMetadata::get(F),
1026       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(Int64Ty, 0))};
1027   BitsetsMD->addOperand(llvm::MDTuple::get(getLLVMContext(), BitsetOps));
1028 
1029   // Emit a hash-based bit set entry for cross-DSO calls.
1030   if (CodeGenOpts.SanitizeCfiCrossDso) {
1031     if (auto TypeId = CreateCfiIdForTypeMetadata(MD)) {
1032       llvm::Metadata *BitsetOps2[] = {
1033           llvm::ConstantAsMetadata::get(TypeId),
1034           llvm::ConstantAsMetadata::get(F),
1035           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(Int64Ty, 0))};
1036       BitsetsMD->addOperand(llvm::MDTuple::get(getLLVMContext(), BitsetOps2));
1037     }
1038   }
1039 }
1040 
1041 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
1042                                           bool IsIncompleteFunction,
1043                                           bool IsThunk) {
1044   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
1045     // If this is an intrinsic function, set the function's attributes
1046     // to the intrinsic's attributes.
1047     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
1048     return;
1049   }
1050 
1051   const auto *FD = cast<FunctionDecl>(GD.getDecl());
1052 
1053   if (!IsIncompleteFunction)
1054     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
1055 
1056   // Add the Returned attribute for "this", except for iOS 5 and earlier
1057   // where substantial code, including the libstdc++ dylib, was compiled with
1058   // GCC and does not actually return "this".
1059   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
1060       !(getTarget().getTriple().isiOS() &&
1061         getTarget().getTriple().isOSVersionLT(6))) {
1062     assert(!F->arg_empty() &&
1063            F->arg_begin()->getType()
1064              ->canLosslesslyBitCastTo(F->getReturnType()) &&
1065            "unexpected this return");
1066     F->addAttribute(1, llvm::Attribute::Returned);
1067   }
1068 
1069   // Only a few attributes are set on declarations; these may later be
1070   // overridden by a definition.
1071 
1072   setLinkageAndVisibilityForGV(F, FD);
1073 
1074   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
1075     F->setSection(SA->getName());
1076 
1077   if (FD->isReplaceableGlobalAllocationFunction()) {
1078     // A replaceable global allocation function does not act like a builtin by
1079     // default, only if it is invoked by a new-expression or delete-expression.
1080     F->addAttribute(llvm::AttributeSet::FunctionIndex,
1081                     llvm::Attribute::NoBuiltin);
1082 
1083     // A sane operator new returns a non-aliasing pointer.
1084     // FIXME: Also add NonNull attribute to the return value
1085     // for the non-nothrow forms?
1086     auto Kind = FD->getDeclName().getCXXOverloadedOperator();
1087     if (getCodeGenOpts().AssumeSaneOperatorNew &&
1088         (Kind == OO_New || Kind == OO_Array_New))
1089       F->addAttribute(llvm::AttributeSet::ReturnIndex,
1090                       llvm::Attribute::NoAlias);
1091   }
1092 
1093   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
1094     F->setUnnamedAddr(true);
1095   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1096     if (MD->isVirtual())
1097       F->setUnnamedAddr(true);
1098 
1099   CreateFunctionBitSetEntry(FD, F);
1100 }
1101 
1102 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
1103   assert(!GV->isDeclaration() &&
1104          "Only globals with definition can force usage.");
1105   LLVMUsed.emplace_back(GV);
1106 }
1107 
1108 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
1109   assert(!GV->isDeclaration() &&
1110          "Only globals with definition can force usage.");
1111   LLVMCompilerUsed.emplace_back(GV);
1112 }
1113 
1114 static void emitUsed(CodeGenModule &CGM, StringRef Name,
1115                      std::vector<llvm::WeakVH> &List) {
1116   // Don't create llvm.used if there is no need.
1117   if (List.empty())
1118     return;
1119 
1120   // Convert List to what ConstantArray needs.
1121   SmallVector<llvm::Constant*, 8> UsedArray;
1122   UsedArray.resize(List.size());
1123   for (unsigned i = 0, e = List.size(); i != e; ++i) {
1124     UsedArray[i] =
1125         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
1126             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
1127   }
1128 
1129   if (UsedArray.empty())
1130     return;
1131   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
1132 
1133   auto *GV = new llvm::GlobalVariable(
1134       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
1135       llvm::ConstantArray::get(ATy, UsedArray), Name);
1136 
1137   GV->setSection("llvm.metadata");
1138 }
1139 
1140 void CodeGenModule::emitLLVMUsed() {
1141   emitUsed(*this, "llvm.used", LLVMUsed);
1142   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
1143 }
1144 
1145 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
1146   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
1147   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1148 }
1149 
1150 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
1151   llvm::SmallString<32> Opt;
1152   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
1153   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1154   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1155 }
1156 
1157 void CodeGenModule::AddDependentLib(StringRef Lib) {
1158   llvm::SmallString<24> Opt;
1159   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
1160   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1161   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1162 }
1163 
1164 /// \brief Add link options implied by the given module, including modules
1165 /// it depends on, using a postorder walk.
1166 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
1167                                     SmallVectorImpl<llvm::Metadata *> &Metadata,
1168                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
1169   // Import this module's parent.
1170   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
1171     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
1172   }
1173 
1174   // Import this module's dependencies.
1175   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
1176     if (Visited.insert(Mod->Imports[I - 1]).second)
1177       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
1178   }
1179 
1180   // Add linker options to link against the libraries/frameworks
1181   // described by this module.
1182   llvm::LLVMContext &Context = CGM.getLLVMContext();
1183   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
1184     // Link against a framework.  Frameworks are currently Darwin only, so we
1185     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
1186     if (Mod->LinkLibraries[I-1].IsFramework) {
1187       llvm::Metadata *Args[2] = {
1188           llvm::MDString::get(Context, "-framework"),
1189           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
1190 
1191       Metadata.push_back(llvm::MDNode::get(Context, Args));
1192       continue;
1193     }
1194 
1195     // Link against a library.
1196     llvm::SmallString<24> Opt;
1197     CGM.getTargetCodeGenInfo().getDependentLibraryOption(
1198       Mod->LinkLibraries[I-1].Library, Opt);
1199     auto *OptString = llvm::MDString::get(Context, Opt);
1200     Metadata.push_back(llvm::MDNode::get(Context, OptString));
1201   }
1202 }
1203 
1204 void CodeGenModule::EmitModuleLinkOptions() {
1205   // Collect the set of all of the modules we want to visit to emit link
1206   // options, which is essentially the imported modules and all of their
1207   // non-explicit child modules.
1208   llvm::SetVector<clang::Module *> LinkModules;
1209   llvm::SmallPtrSet<clang::Module *, 16> Visited;
1210   SmallVector<clang::Module *, 16> Stack;
1211 
1212   // Seed the stack with imported modules.
1213   for (Module *M : ImportedModules)
1214     if (Visited.insert(M).second)
1215       Stack.push_back(M);
1216 
1217   // Find all of the modules to import, making a little effort to prune
1218   // non-leaf modules.
1219   while (!Stack.empty()) {
1220     clang::Module *Mod = Stack.pop_back_val();
1221 
1222     bool AnyChildren = false;
1223 
1224     // Visit the submodules of this module.
1225     for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
1226                                         SubEnd = Mod->submodule_end();
1227          Sub != SubEnd; ++Sub) {
1228       // Skip explicit children; they need to be explicitly imported to be
1229       // linked against.
1230       if ((*Sub)->IsExplicit)
1231         continue;
1232 
1233       if (Visited.insert(*Sub).second) {
1234         Stack.push_back(*Sub);
1235         AnyChildren = true;
1236       }
1237     }
1238 
1239     // We didn't find any children, so add this module to the list of
1240     // modules to link against.
1241     if (!AnyChildren) {
1242       LinkModules.insert(Mod);
1243     }
1244   }
1245 
1246   // Add link options for all of the imported modules in reverse topological
1247   // order.  We don't do anything to try to order import link flags with respect
1248   // to linker options inserted by things like #pragma comment().
1249   SmallVector<llvm::Metadata *, 16> MetadataArgs;
1250   Visited.clear();
1251   for (Module *M : LinkModules)
1252     if (Visited.insert(M).second)
1253       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
1254   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
1255   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
1256 
1257   // Add the linker options metadata flag.
1258   getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options",
1259                             llvm::MDNode::get(getLLVMContext(),
1260                                               LinkerOptionsMetadata));
1261 }
1262 
1263 void CodeGenModule::EmitDeferred() {
1264   // Emit code for any potentially referenced deferred decls.  Since a
1265   // previously unused static decl may become used during the generation of code
1266   // for a static function, iterate until no changes are made.
1267 
1268   if (!DeferredVTables.empty()) {
1269     EmitDeferredVTables();
1270 
1271     // Emitting a vtable doesn't directly cause more vtables to
1272     // become deferred, although it can cause functions to be
1273     // emitted that then need those vtables.
1274     assert(DeferredVTables.empty());
1275   }
1276 
1277   // Stop if we're out of both deferred vtables and deferred declarations.
1278   if (DeferredDeclsToEmit.empty())
1279     return;
1280 
1281   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
1282   // work, it will not interfere with this.
1283   std::vector<DeferredGlobal> CurDeclsToEmit;
1284   CurDeclsToEmit.swap(DeferredDeclsToEmit);
1285 
1286   for (DeferredGlobal &G : CurDeclsToEmit) {
1287     GlobalDecl D = G.GD;
1288     G.GV = nullptr;
1289 
1290     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
1291     // to get GlobalValue with exactly the type we need, not something that
1292     // might had been created for another decl with the same mangled name but
1293     // different type.
1294     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
1295         GetAddrOfGlobal(D, /*IsForDefinition=*/true));
1296 
1297     // In case of different address spaces, we may still get a cast, even with
1298     // IsForDefinition equal to true. Query mangled names table to get
1299     // GlobalValue.
1300     if (!GV)
1301       GV = GetGlobalValue(getMangledName(D));
1302 
1303     // Make sure GetGlobalValue returned non-null.
1304     assert(GV);
1305 
1306     // Check to see if we've already emitted this.  This is necessary
1307     // for a couple of reasons: first, decls can end up in the
1308     // deferred-decls queue multiple times, and second, decls can end
1309     // up with definitions in unusual ways (e.g. by an extern inline
1310     // function acquiring a strong function redefinition).  Just
1311     // ignore these cases.
1312     if (!GV->isDeclaration())
1313       continue;
1314 
1315     // Otherwise, emit the definition and move on to the next one.
1316     EmitGlobalDefinition(D, GV);
1317 
1318     // If we found out that we need to emit more decls, do that recursively.
1319     // This has the advantage that the decls are emitted in a DFS and related
1320     // ones are close together, which is convenient for testing.
1321     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
1322       EmitDeferred();
1323       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
1324     }
1325   }
1326 }
1327 
1328 void CodeGenModule::EmitGlobalAnnotations() {
1329   if (Annotations.empty())
1330     return;
1331 
1332   // Create a new global variable for the ConstantStruct in the Module.
1333   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
1334     Annotations[0]->getType(), Annotations.size()), Annotations);
1335   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
1336                                       llvm::GlobalValue::AppendingLinkage,
1337                                       Array, "llvm.global.annotations");
1338   gv->setSection(AnnotationSection);
1339 }
1340 
1341 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
1342   llvm::Constant *&AStr = AnnotationStrings[Str];
1343   if (AStr)
1344     return AStr;
1345 
1346   // Not found yet, create a new global.
1347   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
1348   auto *gv =
1349       new llvm::GlobalVariable(getModule(), s->getType(), true,
1350                                llvm::GlobalValue::PrivateLinkage, s, ".str");
1351   gv->setSection(AnnotationSection);
1352   gv->setUnnamedAddr(true);
1353   AStr = gv;
1354   return gv;
1355 }
1356 
1357 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
1358   SourceManager &SM = getContext().getSourceManager();
1359   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
1360   if (PLoc.isValid())
1361     return EmitAnnotationString(PLoc.getFilename());
1362   return EmitAnnotationString(SM.getBufferName(Loc));
1363 }
1364 
1365 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
1366   SourceManager &SM = getContext().getSourceManager();
1367   PresumedLoc PLoc = SM.getPresumedLoc(L);
1368   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
1369     SM.getExpansionLineNumber(L);
1370   return llvm::ConstantInt::get(Int32Ty, LineNo);
1371 }
1372 
1373 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
1374                                                 const AnnotateAttr *AA,
1375                                                 SourceLocation L) {
1376   // Get the globals for file name, annotation, and the line number.
1377   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
1378                  *UnitGV = EmitAnnotationUnit(L),
1379                  *LineNoCst = EmitAnnotationLineNo(L);
1380 
1381   // Create the ConstantStruct for the global annotation.
1382   llvm::Constant *Fields[4] = {
1383     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
1384     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
1385     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
1386     LineNoCst
1387   };
1388   return llvm::ConstantStruct::getAnon(Fields);
1389 }
1390 
1391 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
1392                                          llvm::GlobalValue *GV) {
1393   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1394   // Get the struct elements for these annotations.
1395   for (const auto *I : D->specific_attrs<AnnotateAttr>())
1396     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
1397 }
1398 
1399 bool CodeGenModule::isInSanitizerBlacklist(llvm::Function *Fn,
1400                                            SourceLocation Loc) const {
1401   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1402   // Blacklist by function name.
1403   if (SanitizerBL.isBlacklistedFunction(Fn->getName()))
1404     return true;
1405   // Blacklist by location.
1406   if (Loc.isValid())
1407     return SanitizerBL.isBlacklistedLocation(Loc);
1408   // If location is unknown, this may be a compiler-generated function. Assume
1409   // it's located in the main file.
1410   auto &SM = Context.getSourceManager();
1411   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
1412     return SanitizerBL.isBlacklistedFile(MainFile->getName());
1413   }
1414   return false;
1415 }
1416 
1417 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV,
1418                                            SourceLocation Loc, QualType Ty,
1419                                            StringRef Category) const {
1420   // For now globals can be blacklisted only in ASan and KASan.
1421   if (!LangOpts.Sanitize.hasOneOf(
1422           SanitizerKind::Address | SanitizerKind::KernelAddress))
1423     return false;
1424   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1425   if (SanitizerBL.isBlacklistedGlobal(GV->getName(), Category))
1426     return true;
1427   if (SanitizerBL.isBlacklistedLocation(Loc, Category))
1428     return true;
1429   // Check global type.
1430   if (!Ty.isNull()) {
1431     // Drill down the array types: if global variable of a fixed type is
1432     // blacklisted, we also don't instrument arrays of them.
1433     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
1434       Ty = AT->getElementType();
1435     Ty = Ty.getCanonicalType().getUnqualifiedType();
1436     // We allow to blacklist only record types (classes, structs etc.)
1437     if (Ty->isRecordType()) {
1438       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
1439       if (SanitizerBL.isBlacklistedType(TypeStr, Category))
1440         return true;
1441     }
1442   }
1443   return false;
1444 }
1445 
1446 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
1447   // Never defer when EmitAllDecls is specified.
1448   if (LangOpts.EmitAllDecls)
1449     return true;
1450 
1451   return getContext().DeclMustBeEmitted(Global);
1452 }
1453 
1454 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
1455   if (const auto *FD = dyn_cast<FunctionDecl>(Global))
1456     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1457       // Implicit template instantiations may change linkage if they are later
1458       // explicitly instantiated, so they should not be emitted eagerly.
1459       return false;
1460   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
1461   // codegen for global variables, because they may be marked as threadprivate.
1462   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
1463       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global))
1464     return false;
1465 
1466   return true;
1467 }
1468 
1469 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor(
1470     const CXXUuidofExpr* E) {
1471   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
1472   // well-formed.
1473   StringRef Uuid = E->getUuidStr();
1474   std::string Name = "_GUID_" + Uuid.lower();
1475   std::replace(Name.begin(), Name.end(), '-', '_');
1476 
1477   // The UUID descriptor should be pointer aligned.
1478   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
1479 
1480   // Look for an existing global.
1481   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
1482     return ConstantAddress(GV, Alignment);
1483 
1484   llvm::Constant *Init = EmitUuidofInitializer(Uuid);
1485   assert(Init && "failed to initialize as constant");
1486 
1487   auto *GV = new llvm::GlobalVariable(
1488       getModule(), Init->getType(),
1489       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
1490   if (supportsCOMDAT())
1491     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
1492   return ConstantAddress(GV, Alignment);
1493 }
1494 
1495 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
1496   const AliasAttr *AA = VD->getAttr<AliasAttr>();
1497   assert(AA && "No alias?");
1498 
1499   CharUnits Alignment = getContext().getDeclAlign(VD);
1500   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
1501 
1502   // See if there is already something with the target's name in the module.
1503   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1504   if (Entry) {
1505     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1506     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
1507     return ConstantAddress(Ptr, Alignment);
1508   }
1509 
1510   llvm::Constant *Aliasee;
1511   if (isa<llvm::FunctionType>(DeclTy))
1512     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
1513                                       GlobalDecl(cast<FunctionDecl>(VD)),
1514                                       /*ForVTable=*/false);
1515   else
1516     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1517                                     llvm::PointerType::getUnqual(DeclTy),
1518                                     nullptr);
1519 
1520   auto *F = cast<llvm::GlobalValue>(Aliasee);
1521   F->setLinkage(llvm::Function::ExternalWeakLinkage);
1522   WeakRefReferences.insert(F);
1523 
1524   return ConstantAddress(Aliasee, Alignment);
1525 }
1526 
1527 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
1528   const auto *Global = cast<ValueDecl>(GD.getDecl());
1529 
1530   // Weak references don't produce any output by themselves.
1531   if (Global->hasAttr<WeakRefAttr>())
1532     return;
1533 
1534   // If this is an alias definition (which otherwise looks like a declaration)
1535   // emit it now.
1536   if (Global->hasAttr<AliasAttr>())
1537     return EmitAliasDefinition(GD);
1538 
1539   // IFunc like an alias whose value is resolved at runtime by calling resolver.
1540   if (Global->hasAttr<IFuncAttr>())
1541     return emitIFuncDefinition(GD);
1542 
1543   // If this is CUDA, be selective about which declarations we emit.
1544   if (LangOpts.CUDA) {
1545     if (LangOpts.CUDAIsDevice) {
1546       if (!Global->hasAttr<CUDADeviceAttr>() &&
1547           !Global->hasAttr<CUDAGlobalAttr>() &&
1548           !Global->hasAttr<CUDAConstantAttr>() &&
1549           !Global->hasAttr<CUDASharedAttr>())
1550         return;
1551     } else {
1552       // We need to emit host-side 'shadows' for all global
1553       // device-side variables because the CUDA runtime needs their
1554       // size and host-side address in order to provide access to
1555       // their device-side incarnations.
1556 
1557       // So device-only functions are the only things we skip.
1558       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
1559           Global->hasAttr<CUDADeviceAttr>())
1560         return;
1561 
1562       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
1563              "Expected Variable or Function");
1564     }
1565   }
1566 
1567   if (LangOpts.OpenMP) {
1568     // If this is OpenMP device, check if it is legal to emit this global
1569     // normally.
1570     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
1571       return;
1572     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
1573       if (MustBeEmitted(Global))
1574         EmitOMPDeclareReduction(DRD);
1575       return;
1576     }
1577   }
1578 
1579   // Ignore declarations, they will be emitted on their first use.
1580   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
1581     // Forward declarations are emitted lazily on first use.
1582     if (!FD->doesThisDeclarationHaveABody()) {
1583       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
1584         return;
1585 
1586       StringRef MangledName = getMangledName(GD);
1587 
1588       // Compute the function info and LLVM type.
1589       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
1590       llvm::Type *Ty = getTypes().GetFunctionType(FI);
1591 
1592       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
1593                               /*DontDefer=*/false);
1594       return;
1595     }
1596   } else {
1597     const auto *VD = cast<VarDecl>(Global);
1598     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
1599     // We need to emit device-side global CUDA variables even if a
1600     // variable does not have a definition -- we still need to define
1601     // host-side shadow for it.
1602     bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
1603                            !VD->hasDefinition() &&
1604                            (VD->hasAttr<CUDAConstantAttr>() ||
1605                             VD->hasAttr<CUDADeviceAttr>());
1606     if (!MustEmitForCuda &&
1607         VD->isThisDeclarationADefinition() != VarDecl::Definition &&
1608         !Context.isMSStaticDataMemberInlineDefinition(VD))
1609       return;
1610   }
1611 
1612   // Defer code generation to first use when possible, e.g. if this is an inline
1613   // function. If the global must always be emitted, do it eagerly if possible
1614   // to benefit from cache locality.
1615   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
1616     // Emit the definition if it can't be deferred.
1617     EmitGlobalDefinition(GD);
1618     return;
1619   }
1620 
1621   // If we're deferring emission of a C++ variable with an
1622   // initializer, remember the order in which it appeared in the file.
1623   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
1624       cast<VarDecl>(Global)->hasInit()) {
1625     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
1626     CXXGlobalInits.push_back(nullptr);
1627   }
1628 
1629   StringRef MangledName = getMangledName(GD);
1630   if (llvm::GlobalValue *GV = GetGlobalValue(MangledName)) {
1631     // The value has already been used and should therefore be emitted.
1632     addDeferredDeclToEmit(GV, GD);
1633   } else if (MustBeEmitted(Global)) {
1634     // The value must be emitted, but cannot be emitted eagerly.
1635     assert(!MayBeEmittedEagerly(Global));
1636     addDeferredDeclToEmit(/*GV=*/nullptr, GD);
1637   } else {
1638     // Otherwise, remember that we saw a deferred decl with this name.  The
1639     // first use of the mangled name will cause it to move into
1640     // DeferredDeclsToEmit.
1641     DeferredDecls[MangledName] = GD;
1642   }
1643 }
1644 
1645 namespace {
1646   struct FunctionIsDirectlyRecursive :
1647     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
1648     const StringRef Name;
1649     const Builtin::Context &BI;
1650     bool Result;
1651     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
1652       Name(N), BI(C), Result(false) {
1653     }
1654     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
1655 
1656     bool TraverseCallExpr(CallExpr *E) {
1657       const FunctionDecl *FD = E->getDirectCallee();
1658       if (!FD)
1659         return true;
1660       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1661       if (Attr && Name == Attr->getLabel()) {
1662         Result = true;
1663         return false;
1664       }
1665       unsigned BuiltinID = FD->getBuiltinID();
1666       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
1667         return true;
1668       StringRef BuiltinName = BI.getName(BuiltinID);
1669       if (BuiltinName.startswith("__builtin_") &&
1670           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
1671         Result = true;
1672         return false;
1673       }
1674       return true;
1675     }
1676   };
1677 
1678   struct DLLImportFunctionVisitor
1679       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
1680     bool SafeToInline = true;
1681 
1682     bool VisitVarDecl(VarDecl *VD) {
1683       // A thread-local variable cannot be imported.
1684       SafeToInline = !VD->getTLSKind();
1685       return SafeToInline;
1686     }
1687 
1688     // Make sure we're not referencing non-imported vars or functions.
1689     bool VisitDeclRefExpr(DeclRefExpr *E) {
1690       ValueDecl *VD = E->getDecl();
1691       if (isa<FunctionDecl>(VD))
1692         SafeToInline = VD->hasAttr<DLLImportAttr>();
1693       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
1694         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
1695       return SafeToInline;
1696     }
1697     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
1698       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
1699       return SafeToInline;
1700     }
1701     bool VisitCXXNewExpr(CXXNewExpr *E) {
1702       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
1703       return SafeToInline;
1704     }
1705   };
1706 }
1707 
1708 // isTriviallyRecursive - Check if this function calls another
1709 // decl that, because of the asm attribute or the other decl being a builtin,
1710 // ends up pointing to itself.
1711 bool
1712 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
1713   StringRef Name;
1714   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
1715     // asm labels are a special kind of mangling we have to support.
1716     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1717     if (!Attr)
1718       return false;
1719     Name = Attr->getLabel();
1720   } else {
1721     Name = FD->getName();
1722   }
1723 
1724   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
1725   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
1726   return Walker.Result;
1727 }
1728 
1729 bool
1730 CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
1731   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
1732     return true;
1733   const auto *F = cast<FunctionDecl>(GD.getDecl());
1734   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
1735     return false;
1736 
1737   if (F->hasAttr<DLLImportAttr>()) {
1738     // Check whether it would be safe to inline this dllimport function.
1739     DLLImportFunctionVisitor Visitor;
1740     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
1741     if (!Visitor.SafeToInline)
1742       return false;
1743   }
1744 
1745   // PR9614. Avoid cases where the source code is lying to us. An available
1746   // externally function should have an equivalent function somewhere else,
1747   // but a function that calls itself is clearly not equivalent to the real
1748   // implementation.
1749   // This happens in glibc's btowc and in some configure checks.
1750   return !isTriviallyRecursive(F);
1751 }
1752 
1753 /// If the type for the method's class was generated by
1754 /// CGDebugInfo::createContextChain(), the cache contains only a
1755 /// limited DIType without any declarations. Since EmitFunctionStart()
1756 /// needs to find the canonical declaration for each method, we need
1757 /// to construct the complete type prior to emitting the method.
1758 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) {
1759   if (!D->isInstance())
1760     return;
1761 
1762   if (CGDebugInfo *DI = getModuleDebugInfo())
1763     if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) {
1764       const auto *ThisPtr = cast<PointerType>(D->getThisType(getContext()));
1765       DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation());
1766     }
1767 }
1768 
1769 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
1770   const auto *D = cast<ValueDecl>(GD.getDecl());
1771 
1772   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
1773                                  Context.getSourceManager(),
1774                                  "Generating code for declaration");
1775 
1776   if (isa<FunctionDecl>(D)) {
1777     // At -O0, don't generate IR for functions with available_externally
1778     // linkage.
1779     if (!shouldEmitFunction(GD))
1780       return;
1781 
1782     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
1783       CompleteDIClassType(Method);
1784       // Make sure to emit the definition(s) before we emit the thunks.
1785       // This is necessary for the generation of certain thunks.
1786       if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method))
1787         ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType()));
1788       else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method))
1789         ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType()));
1790       else
1791         EmitGlobalFunctionDefinition(GD, GV);
1792 
1793       if (Method->isVirtual())
1794         getVTables().EmitThunks(GD);
1795 
1796       return;
1797     }
1798 
1799     return EmitGlobalFunctionDefinition(GD, GV);
1800   }
1801 
1802   if (const auto *VD = dyn_cast<VarDecl>(D))
1803     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
1804 
1805   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
1806 }
1807 
1808 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1809                                                       llvm::Function *NewFn);
1810 
1811 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
1812 /// module, create and return an llvm Function with the specified type. If there
1813 /// is something in the module with the specified name, return it potentially
1814 /// bitcasted to the right type.
1815 ///
1816 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1817 /// to set the attributes on the function when it is first created.
1818 llvm::Constant *
1819 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
1820                                        llvm::Type *Ty,
1821                                        GlobalDecl GD, bool ForVTable,
1822                                        bool DontDefer, bool IsThunk,
1823                                        llvm::AttributeSet ExtraAttrs,
1824                                        bool IsForDefinition) {
1825   const Decl *D = GD.getDecl();
1826 
1827   // Lookup the entry, lazily creating it if necessary.
1828   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1829   if (Entry) {
1830     if (WeakRefReferences.erase(Entry)) {
1831       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
1832       if (FD && !FD->hasAttr<WeakAttr>())
1833         Entry->setLinkage(llvm::Function::ExternalLinkage);
1834     }
1835 
1836     // Handle dropped DLL attributes.
1837     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
1838       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
1839 
1840     // If there are two attempts to define the same mangled name, issue an
1841     // error.
1842     if (IsForDefinition && !Entry->isDeclaration()) {
1843       GlobalDecl OtherGD;
1844       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
1845       // to make sure that we issue an error only once.
1846       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
1847           (GD.getCanonicalDecl().getDecl() !=
1848            OtherGD.getCanonicalDecl().getDecl()) &&
1849           DiagnosedConflictingDefinitions.insert(GD).second) {
1850         getDiags().Report(D->getLocation(),
1851                           diag::err_duplicate_mangled_name);
1852         getDiags().Report(OtherGD.getDecl()->getLocation(),
1853                           diag::note_previous_definition);
1854       }
1855     }
1856 
1857     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
1858         (Entry->getType()->getElementType() == Ty)) {
1859       return Entry;
1860     }
1861 
1862     // Make sure the result is of the correct type.
1863     // (If function is requested for a definition, we always need to create a new
1864     // function, not just return a bitcast.)
1865     if (!IsForDefinition)
1866       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
1867   }
1868 
1869   // This function doesn't have a complete type (for example, the return
1870   // type is an incomplete struct). Use a fake type instead, and make
1871   // sure not to try to set attributes.
1872   bool IsIncompleteFunction = false;
1873 
1874   llvm::FunctionType *FTy;
1875   if (isa<llvm::FunctionType>(Ty)) {
1876     FTy = cast<llvm::FunctionType>(Ty);
1877   } else {
1878     FTy = llvm::FunctionType::get(VoidTy, false);
1879     IsIncompleteFunction = true;
1880   }
1881 
1882   llvm::Function *F =
1883       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
1884                              Entry ? StringRef() : MangledName, &getModule());
1885 
1886   // If we already created a function with the same mangled name (but different
1887   // type) before, take its name and add it to the list of functions to be
1888   // replaced with F at the end of CodeGen.
1889   //
1890   // This happens if there is a prototype for a function (e.g. "int f()") and
1891   // then a definition of a different type (e.g. "int f(int x)").
1892   if (Entry) {
1893     F->takeName(Entry);
1894 
1895     // This might be an implementation of a function without a prototype, in
1896     // which case, try to do special replacement of calls which match the new
1897     // prototype.  The really key thing here is that we also potentially drop
1898     // arguments from the call site so as to make a direct call, which makes the
1899     // inliner happier and suppresses a number of optimizer warnings (!) about
1900     // dropping arguments.
1901     if (!Entry->use_empty()) {
1902       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
1903       Entry->removeDeadConstantUsers();
1904     }
1905 
1906     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
1907         F, Entry->getType()->getElementType()->getPointerTo());
1908     addGlobalValReplacement(Entry, BC);
1909   }
1910 
1911   assert(F->getName() == MangledName && "name was uniqued!");
1912   if (D)
1913     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
1914   if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) {
1915     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex);
1916     F->addAttributes(llvm::AttributeSet::FunctionIndex,
1917                      llvm::AttributeSet::get(VMContext,
1918                                              llvm::AttributeSet::FunctionIndex,
1919                                              B));
1920   }
1921 
1922   if (!DontDefer) {
1923     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
1924     // each other bottoming out with the base dtor.  Therefore we emit non-base
1925     // dtors on usage, even if there is no dtor definition in the TU.
1926     if (D && isa<CXXDestructorDecl>(D) &&
1927         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
1928                                            GD.getDtorType()))
1929       addDeferredDeclToEmit(F, GD);
1930 
1931     // This is the first use or definition of a mangled name.  If there is a
1932     // deferred decl with this name, remember that we need to emit it at the end
1933     // of the file.
1934     auto DDI = DeferredDecls.find(MangledName);
1935     if (DDI != DeferredDecls.end()) {
1936       // Move the potentially referenced deferred decl to the
1937       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
1938       // don't need it anymore).
1939       addDeferredDeclToEmit(F, DDI->second);
1940       DeferredDecls.erase(DDI);
1941 
1942       // Otherwise, there are cases we have to worry about where we're
1943       // using a declaration for which we must emit a definition but where
1944       // we might not find a top-level definition:
1945       //   - member functions defined inline in their classes
1946       //   - friend functions defined inline in some class
1947       //   - special member functions with implicit definitions
1948       // If we ever change our AST traversal to walk into class methods,
1949       // this will be unnecessary.
1950       //
1951       // We also don't emit a definition for a function if it's going to be an
1952       // entry in a vtable, unless it's already marked as used.
1953     } else if (getLangOpts().CPlusPlus && D) {
1954       // Look for a declaration that's lexically in a record.
1955       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
1956            FD = FD->getPreviousDecl()) {
1957         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
1958           if (FD->doesThisDeclarationHaveABody()) {
1959             addDeferredDeclToEmit(F, GD.getWithDecl(FD));
1960             break;
1961           }
1962         }
1963       }
1964     }
1965   }
1966 
1967   // Make sure the result is of the requested type.
1968   if (!IsIncompleteFunction) {
1969     assert(F->getType()->getElementType() == Ty);
1970     return F;
1971   }
1972 
1973   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1974   return llvm::ConstantExpr::getBitCast(F, PTy);
1975 }
1976 
1977 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
1978 /// non-null, then this function will use the specified type if it has to
1979 /// create it (this occurs when we see a definition of the function).
1980 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
1981                                                  llvm::Type *Ty,
1982                                                  bool ForVTable,
1983                                                  bool DontDefer,
1984                                                  bool IsForDefinition) {
1985   // If there was no specific requested type, just convert it now.
1986   if (!Ty) {
1987     const auto *FD = cast<FunctionDecl>(GD.getDecl());
1988     auto CanonTy = Context.getCanonicalType(FD->getType());
1989     Ty = getTypes().ConvertFunctionType(CanonTy, FD);
1990   }
1991 
1992   StringRef MangledName = getMangledName(GD);
1993   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
1994                                  /*IsThunk=*/false, llvm::AttributeSet(),
1995                                  IsForDefinition);
1996 }
1997 
1998 /// CreateRuntimeFunction - Create a new runtime function with the specified
1999 /// type and name.
2000 llvm::Constant *
2001 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy,
2002                                      StringRef Name,
2003                                      llvm::AttributeSet ExtraAttrs) {
2004   llvm::Constant *C =
2005       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
2006                               /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs);
2007   if (auto *F = dyn_cast<llvm::Function>(C))
2008     if (F->empty())
2009       F->setCallingConv(getRuntimeCC());
2010   return C;
2011 }
2012 
2013 /// CreateBuiltinFunction - Create a new builtin function with the specified
2014 /// type and name.
2015 llvm::Constant *
2016 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy,
2017                                      StringRef Name,
2018                                      llvm::AttributeSet ExtraAttrs) {
2019   llvm::Constant *C =
2020       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
2021                               /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs);
2022   if (auto *F = dyn_cast<llvm::Function>(C))
2023     if (F->empty())
2024       F->setCallingConv(getBuiltinCC());
2025   return C;
2026 }
2027 
2028 /// isTypeConstant - Determine whether an object of this type can be emitted
2029 /// as a constant.
2030 ///
2031 /// If ExcludeCtor is true, the duration when the object's constructor runs
2032 /// will not be considered. The caller will need to verify that the object is
2033 /// not written to during its construction.
2034 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
2035   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
2036     return false;
2037 
2038   if (Context.getLangOpts().CPlusPlus) {
2039     if (const CXXRecordDecl *Record
2040           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
2041       return ExcludeCtor && !Record->hasMutableFields() &&
2042              Record->hasTrivialDestructor();
2043   }
2044 
2045   return true;
2046 }
2047 
2048 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
2049 /// create and return an llvm GlobalVariable with the specified type.  If there
2050 /// is something in the module with the specified name, return it potentially
2051 /// bitcasted to the right type.
2052 ///
2053 /// If D is non-null, it specifies a decl that correspond to this.  This is used
2054 /// to set the attributes on the global when it is first created.
2055 ///
2056 /// If IsForDefinition is true, it is guranteed that an actual global with
2057 /// type Ty will be returned, not conversion of a variable with the same
2058 /// mangled name but some other type.
2059 llvm::Constant *
2060 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
2061                                      llvm::PointerType *Ty,
2062                                      const VarDecl *D,
2063                                      bool IsForDefinition) {
2064   // Lookup the entry, lazily creating it if necessary.
2065   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2066   if (Entry) {
2067     if (WeakRefReferences.erase(Entry)) {
2068       if (D && !D->hasAttr<WeakAttr>())
2069         Entry->setLinkage(llvm::Function::ExternalLinkage);
2070     }
2071 
2072     // Handle dropped DLL attributes.
2073     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
2074       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
2075 
2076     if (Entry->getType() == Ty)
2077       return Entry;
2078 
2079     // If there are two attempts to define the same mangled name, issue an
2080     // error.
2081     if (IsForDefinition && !Entry->isDeclaration()) {
2082       GlobalDecl OtherGD;
2083       const VarDecl *OtherD;
2084 
2085       // Check that D is not yet in DiagnosedConflictingDefinitions is required
2086       // to make sure that we issue an error only once.
2087       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
2088           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
2089           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
2090           OtherD->hasInit() &&
2091           DiagnosedConflictingDefinitions.insert(D).second) {
2092         getDiags().Report(D->getLocation(),
2093                           diag::err_duplicate_mangled_name);
2094         getDiags().Report(OtherGD.getDecl()->getLocation(),
2095                           diag::note_previous_definition);
2096       }
2097     }
2098 
2099     // Make sure the result is of the correct type.
2100     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
2101       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
2102 
2103     // (If global is requested for a definition, we always need to create a new
2104     // global, not just return a bitcast.)
2105     if (!IsForDefinition)
2106       return llvm::ConstantExpr::getBitCast(Entry, Ty);
2107   }
2108 
2109   unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace());
2110   auto *GV = new llvm::GlobalVariable(
2111       getModule(), Ty->getElementType(), false,
2112       llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
2113       llvm::GlobalVariable::NotThreadLocal, AddrSpace);
2114 
2115   // If we already created a global with the same mangled name (but different
2116   // type) before, take its name and remove it from its parent.
2117   if (Entry) {
2118     GV->takeName(Entry);
2119 
2120     if (!Entry->use_empty()) {
2121       llvm::Constant *NewPtrForOldDecl =
2122           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
2123       Entry->replaceAllUsesWith(NewPtrForOldDecl);
2124     }
2125 
2126     Entry->eraseFromParent();
2127   }
2128 
2129   // This is the first use or definition of a mangled name.  If there is a
2130   // deferred decl with this name, remember that we need to emit it at the end
2131   // of the file.
2132   auto DDI = DeferredDecls.find(MangledName);
2133   if (DDI != DeferredDecls.end()) {
2134     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
2135     // list, and remove it from DeferredDecls (since we don't need it anymore).
2136     addDeferredDeclToEmit(GV, DDI->second);
2137     DeferredDecls.erase(DDI);
2138   }
2139 
2140   // Handle things which are present even on external declarations.
2141   if (D) {
2142     // FIXME: This code is overly simple and should be merged with other global
2143     // handling.
2144     GV->setConstant(isTypeConstant(D->getType(), false));
2145 
2146     GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
2147 
2148     setLinkageAndVisibilityForGV(GV, D);
2149 
2150     if (D->getTLSKind()) {
2151       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
2152         CXXThreadLocals.push_back(D);
2153       setTLSMode(GV, *D);
2154     }
2155 
2156     // If required by the ABI, treat declarations of static data members with
2157     // inline initializers as definitions.
2158     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
2159       EmitGlobalVarDefinition(D);
2160     }
2161 
2162     // Handle XCore specific ABI requirements.
2163     if (getTarget().getTriple().getArch() == llvm::Triple::xcore &&
2164         D->getLanguageLinkage() == CLanguageLinkage &&
2165         D->getType().isConstant(Context) &&
2166         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
2167       GV->setSection(".cp.rodata");
2168   }
2169 
2170   if (AddrSpace != Ty->getAddressSpace())
2171     return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty);
2172 
2173   return GV;
2174 }
2175 
2176 llvm::Constant *
2177 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD,
2178                                bool IsForDefinition) {
2179   if (isa<CXXConstructorDecl>(GD.getDecl()))
2180     return getAddrOfCXXStructor(cast<CXXConstructorDecl>(GD.getDecl()),
2181                                 getFromCtorType(GD.getCtorType()),
2182                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
2183                                 /*DontDefer=*/false, IsForDefinition);
2184   else if (isa<CXXDestructorDecl>(GD.getDecl()))
2185     return getAddrOfCXXStructor(cast<CXXDestructorDecl>(GD.getDecl()),
2186                                 getFromDtorType(GD.getDtorType()),
2187                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
2188                                 /*DontDefer=*/false, IsForDefinition);
2189   else if (isa<CXXMethodDecl>(GD.getDecl())) {
2190     auto FInfo = &getTypes().arrangeCXXMethodDeclaration(
2191         cast<CXXMethodDecl>(GD.getDecl()));
2192     auto Ty = getTypes().GetFunctionType(*FInfo);
2193     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
2194                              IsForDefinition);
2195   } else if (isa<FunctionDecl>(GD.getDecl())) {
2196     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2197     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2198     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
2199                              IsForDefinition);
2200   } else
2201     return GetAddrOfGlobalVar(cast<VarDecl>(GD.getDecl()), /*Ty=*/nullptr,
2202                               IsForDefinition);
2203 }
2204 
2205 llvm::GlobalVariable *
2206 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
2207                                       llvm::Type *Ty,
2208                                       llvm::GlobalValue::LinkageTypes Linkage) {
2209   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
2210   llvm::GlobalVariable *OldGV = nullptr;
2211 
2212   if (GV) {
2213     // Check if the variable has the right type.
2214     if (GV->getType()->getElementType() == Ty)
2215       return GV;
2216 
2217     // Because C++ name mangling, the only way we can end up with an already
2218     // existing global with the same name is if it has been declared extern "C".
2219     assert(GV->isDeclaration() && "Declaration has wrong type!");
2220     OldGV = GV;
2221   }
2222 
2223   // Create a new variable.
2224   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
2225                                 Linkage, nullptr, Name);
2226 
2227   if (OldGV) {
2228     // Replace occurrences of the old variable if needed.
2229     GV->takeName(OldGV);
2230 
2231     if (!OldGV->use_empty()) {
2232       llvm::Constant *NewPtrForOldDecl =
2233       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
2234       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
2235     }
2236 
2237     OldGV->eraseFromParent();
2238   }
2239 
2240   if (supportsCOMDAT() && GV->isWeakForLinker() &&
2241       !GV->hasAvailableExternallyLinkage())
2242     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2243 
2244   return GV;
2245 }
2246 
2247 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
2248 /// given global variable.  If Ty is non-null and if the global doesn't exist,
2249 /// then it will be created with the specified type instead of whatever the
2250 /// normal requested type would be. If IsForDefinition is true, it is guranteed
2251 /// that an actual global with type Ty will be returned, not conversion of a
2252 /// variable with the same mangled name but some other type.
2253 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
2254                                                   llvm::Type *Ty,
2255                                                   bool IsForDefinition) {
2256   assert(D->hasGlobalStorage() && "Not a global variable");
2257   QualType ASTTy = D->getType();
2258   if (!Ty)
2259     Ty = getTypes().ConvertTypeForMem(ASTTy);
2260 
2261   llvm::PointerType *PTy =
2262     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
2263 
2264   StringRef MangledName = getMangledName(D);
2265   return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition);
2266 }
2267 
2268 /// CreateRuntimeVariable - Create a new runtime global variable with the
2269 /// specified type and name.
2270 llvm::Constant *
2271 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
2272                                      StringRef Name) {
2273   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr);
2274 }
2275 
2276 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
2277   assert(!D->getInit() && "Cannot emit definite definitions here!");
2278 
2279   StringRef MangledName = getMangledName(D);
2280   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
2281 
2282   // We already have a definition, not declaration, with the same mangled name.
2283   // Emitting of declaration is not required (and actually overwrites emitted
2284   // definition).
2285   if (GV && !GV->isDeclaration())
2286     return;
2287 
2288   // If we have not seen a reference to this variable yet, place it into the
2289   // deferred declarations table to be emitted if needed later.
2290   if (!MustBeEmitted(D) && !GV) {
2291       DeferredDecls[MangledName] = D;
2292       return;
2293   }
2294 
2295   // The tentative definition is the only definition.
2296   EmitGlobalVarDefinition(D);
2297 }
2298 
2299 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
2300   return Context.toCharUnitsFromBits(
2301       getDataLayout().getTypeStoreSizeInBits(Ty));
2302 }
2303 
2304 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D,
2305                                                  unsigned AddrSpace) {
2306   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
2307     if (D->hasAttr<CUDAConstantAttr>())
2308       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant);
2309     else if (D->hasAttr<CUDASharedAttr>())
2310       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared);
2311     else
2312       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device);
2313   }
2314 
2315   return AddrSpace;
2316 }
2317 
2318 template<typename SomeDecl>
2319 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
2320                                                llvm::GlobalValue *GV) {
2321   if (!getLangOpts().CPlusPlus)
2322     return;
2323 
2324   // Must have 'used' attribute, or else inline assembly can't rely on
2325   // the name existing.
2326   if (!D->template hasAttr<UsedAttr>())
2327     return;
2328 
2329   // Must have internal linkage and an ordinary name.
2330   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
2331     return;
2332 
2333   // Must be in an extern "C" context. Entities declared directly within
2334   // a record are not extern "C" even if the record is in such a context.
2335   const SomeDecl *First = D->getFirstDecl();
2336   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
2337     return;
2338 
2339   // OK, this is an internal linkage entity inside an extern "C" linkage
2340   // specification. Make a note of that so we can give it the "expected"
2341   // mangled name if nothing else is using that name.
2342   std::pair<StaticExternCMap::iterator, bool> R =
2343       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
2344 
2345   // If we have multiple internal linkage entities with the same name
2346   // in extern "C" regions, none of them gets that name.
2347   if (!R.second)
2348     R.first->second = nullptr;
2349 }
2350 
2351 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
2352   if (!CGM.supportsCOMDAT())
2353     return false;
2354 
2355   if (D.hasAttr<SelectAnyAttr>())
2356     return true;
2357 
2358   GVALinkage Linkage;
2359   if (auto *VD = dyn_cast<VarDecl>(&D))
2360     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
2361   else
2362     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
2363 
2364   switch (Linkage) {
2365   case GVA_Internal:
2366   case GVA_AvailableExternally:
2367   case GVA_StrongExternal:
2368     return false;
2369   case GVA_DiscardableODR:
2370   case GVA_StrongODR:
2371     return true;
2372   }
2373   llvm_unreachable("No such linkage");
2374 }
2375 
2376 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
2377                                           llvm::GlobalObject &GO) {
2378   if (!shouldBeInCOMDAT(*this, D))
2379     return;
2380   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
2381 }
2382 
2383 /// Pass IsTentative as true if you want to create a tentative definition.
2384 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
2385                                             bool IsTentative) {
2386   llvm::Constant *Init = nullptr;
2387   QualType ASTTy = D->getType();
2388   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
2389   bool NeedsGlobalCtor = false;
2390   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
2391 
2392   const VarDecl *InitDecl;
2393   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
2394 
2395   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
2396   // as part of their declaration."  Sema has already checked for
2397   // error cases, so we just need to set Init to UndefValue.
2398   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
2399       D->hasAttr<CUDASharedAttr>())
2400     Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
2401   else if (!InitExpr) {
2402     // This is a tentative definition; tentative definitions are
2403     // implicitly initialized with { 0 }.
2404     //
2405     // Note that tentative definitions are only emitted at the end of
2406     // a translation unit, so they should never have incomplete
2407     // type. In addition, EmitTentativeDefinition makes sure that we
2408     // never attempt to emit a tentative definition if a real one
2409     // exists. A use may still exists, however, so we still may need
2410     // to do a RAUW.
2411     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
2412     Init = EmitNullConstant(D->getType());
2413   } else {
2414     initializedGlobalDecl = GlobalDecl(D);
2415     Init = EmitConstantInit(*InitDecl);
2416 
2417     if (!Init) {
2418       QualType T = InitExpr->getType();
2419       if (D->getType()->isReferenceType())
2420         T = D->getType();
2421 
2422       if (getLangOpts().CPlusPlus) {
2423         Init = EmitNullConstant(T);
2424         NeedsGlobalCtor = true;
2425       } else {
2426         ErrorUnsupported(D, "static initializer");
2427         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
2428       }
2429     } else {
2430       // We don't need an initializer, so remove the entry for the delayed
2431       // initializer position (just in case this entry was delayed) if we
2432       // also don't need to register a destructor.
2433       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
2434         DelayedCXXInitPosition.erase(D);
2435     }
2436   }
2437 
2438   llvm::Type* InitType = Init->getType();
2439   llvm::Constant *Entry =
2440       GetAddrOfGlobalVar(D, InitType, /*IsForDefinition=*/!IsTentative);
2441 
2442   // Strip off a bitcast if we got one back.
2443   if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
2444     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
2445            CE->getOpcode() == llvm::Instruction::AddrSpaceCast ||
2446            // All zero index gep.
2447            CE->getOpcode() == llvm::Instruction::GetElementPtr);
2448     Entry = CE->getOperand(0);
2449   }
2450 
2451   // Entry is now either a Function or GlobalVariable.
2452   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
2453 
2454   // We have a definition after a declaration with the wrong type.
2455   // We must make a new GlobalVariable* and update everything that used OldGV
2456   // (a declaration or tentative definition) with the new GlobalVariable*
2457   // (which will be a definition).
2458   //
2459   // This happens if there is a prototype for a global (e.g.
2460   // "extern int x[];") and then a definition of a different type (e.g.
2461   // "int x[10];"). This also happens when an initializer has a different type
2462   // from the type of the global (this happens with unions).
2463   if (!GV ||
2464       GV->getType()->getElementType() != InitType ||
2465       GV->getType()->getAddressSpace() !=
2466        GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) {
2467 
2468     // Move the old entry aside so that we'll create a new one.
2469     Entry->setName(StringRef());
2470 
2471     // Make a new global with the correct type, this is now guaranteed to work.
2472     GV = cast<llvm::GlobalVariable>(
2473         GetAddrOfGlobalVar(D, InitType, /*IsForDefinition=*/!IsTentative));
2474 
2475     // Replace all uses of the old global with the new global
2476     llvm::Constant *NewPtrForOldDecl =
2477         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
2478     Entry->replaceAllUsesWith(NewPtrForOldDecl);
2479 
2480     // Erase the old global, since it is no longer used.
2481     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
2482   }
2483 
2484   MaybeHandleStaticInExternC(D, GV);
2485 
2486   if (D->hasAttr<AnnotateAttr>())
2487     AddGlobalAnnotations(D, GV);
2488 
2489   // Set the llvm linkage type as appropriate.
2490   llvm::GlobalValue::LinkageTypes Linkage =
2491       getLLVMLinkageVarDefinition(D, GV->isConstant());
2492 
2493   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
2494   // the device. [...]"
2495   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
2496   // __device__, declares a variable that: [...]
2497   // Is accessible from all the threads within the grid and from the host
2498   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
2499   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
2500   if (GV && LangOpts.CUDA) {
2501     if (LangOpts.CUDAIsDevice) {
2502       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>())
2503         GV->setExternallyInitialized(true);
2504     } else {
2505       // Host-side shadows of external declarations of device-side
2506       // global variables become internal definitions. These have to
2507       // be internal in order to prevent name conflicts with global
2508       // host variables with the same name in a different TUs.
2509       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) {
2510         Linkage = llvm::GlobalValue::InternalLinkage;
2511 
2512         // Shadow variables and their properties must be registered
2513         // with CUDA runtime.
2514         unsigned Flags = 0;
2515         if (!D->hasDefinition())
2516           Flags |= CGCUDARuntime::ExternDeviceVar;
2517         if (D->hasAttr<CUDAConstantAttr>())
2518           Flags |= CGCUDARuntime::ConstantDeviceVar;
2519         getCUDARuntime().registerDeviceVar(*GV, Flags);
2520       } else if (D->hasAttr<CUDASharedAttr>())
2521         // __shared__ variables are odd. Shadows do get created, but
2522         // they are not registered with the CUDA runtime, so they
2523         // can't really be used to access their device-side
2524         // counterparts. It's not clear yet whether it's nvcc's bug or
2525         // a feature, but we've got to do the same for compatibility.
2526         Linkage = llvm::GlobalValue::InternalLinkage;
2527     }
2528   }
2529   GV->setInitializer(Init);
2530 
2531   // If it is safe to mark the global 'constant', do so now.
2532   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
2533                   isTypeConstant(D->getType(), true));
2534 
2535   // If it is in a read-only section, mark it 'constant'.
2536   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
2537     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
2538     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
2539       GV->setConstant(true);
2540   }
2541 
2542   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
2543 
2544 
2545   // On Darwin, if the normal linkage of a C++ thread_local variable is
2546   // LinkOnce or Weak, we keep the normal linkage to prevent multiple
2547   // copies within a linkage unit; otherwise, the backing variable has
2548   // internal linkage and all accesses should just be calls to the
2549   // Itanium-specified entry point, which has the normal linkage of the
2550   // variable. This is to preserve the ability to change the implementation
2551   // behind the scenes.
2552   if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic &&
2553       Context.getTargetInfo().getTriple().isOSDarwin() &&
2554       !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) &&
2555       !llvm::GlobalVariable::isWeakLinkage(Linkage))
2556     Linkage = llvm::GlobalValue::InternalLinkage;
2557 
2558   GV->setLinkage(Linkage);
2559   if (D->hasAttr<DLLImportAttr>())
2560     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
2561   else if (D->hasAttr<DLLExportAttr>())
2562     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
2563   else
2564     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
2565 
2566   if (Linkage == llvm::GlobalVariable::CommonLinkage)
2567     // common vars aren't constant even if declared const.
2568     GV->setConstant(false);
2569 
2570   setNonAliasAttributes(D, GV);
2571 
2572   if (D->getTLSKind() && !GV->isThreadLocal()) {
2573     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
2574       CXXThreadLocals.push_back(D);
2575     setTLSMode(GV, *D);
2576   }
2577 
2578   maybeSetTrivialComdat(*D, *GV);
2579 
2580   // Emit the initializer function if necessary.
2581   if (NeedsGlobalCtor || NeedsGlobalDtor)
2582     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
2583 
2584   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
2585 
2586   // Emit global variable debug information.
2587   if (CGDebugInfo *DI = getModuleDebugInfo())
2588     if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
2589       DI->EmitGlobalVariable(GV, D);
2590 }
2591 
2592 static bool isVarDeclStrongDefinition(const ASTContext &Context,
2593                                       CodeGenModule &CGM, const VarDecl *D,
2594                                       bool NoCommon) {
2595   // Don't give variables common linkage if -fno-common was specified unless it
2596   // was overridden by a NoCommon attribute.
2597   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
2598     return true;
2599 
2600   // C11 6.9.2/2:
2601   //   A declaration of an identifier for an object that has file scope without
2602   //   an initializer, and without a storage-class specifier or with the
2603   //   storage-class specifier static, constitutes a tentative definition.
2604   if (D->getInit() || D->hasExternalStorage())
2605     return true;
2606 
2607   // A variable cannot be both common and exist in a section.
2608   if (D->hasAttr<SectionAttr>())
2609     return true;
2610 
2611   // Thread local vars aren't considered common linkage.
2612   if (D->getTLSKind())
2613     return true;
2614 
2615   // Tentative definitions marked with WeakImportAttr are true definitions.
2616   if (D->hasAttr<WeakImportAttr>())
2617     return true;
2618 
2619   // A variable cannot be both common and exist in a comdat.
2620   if (shouldBeInCOMDAT(CGM, *D))
2621     return true;
2622 
2623   // Declarations with a required alignment do not have common linakge in MSVC
2624   // mode.
2625   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
2626     if (D->hasAttr<AlignedAttr>())
2627       return true;
2628     QualType VarType = D->getType();
2629     if (Context.isAlignmentRequired(VarType))
2630       return true;
2631 
2632     if (const auto *RT = VarType->getAs<RecordType>()) {
2633       const RecordDecl *RD = RT->getDecl();
2634       for (const FieldDecl *FD : RD->fields()) {
2635         if (FD->isBitField())
2636           continue;
2637         if (FD->hasAttr<AlignedAttr>())
2638           return true;
2639         if (Context.isAlignmentRequired(FD->getType()))
2640           return true;
2641       }
2642     }
2643   }
2644 
2645   return false;
2646 }
2647 
2648 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
2649     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
2650   if (Linkage == GVA_Internal)
2651     return llvm::Function::InternalLinkage;
2652 
2653   if (D->hasAttr<WeakAttr>()) {
2654     if (IsConstantVariable)
2655       return llvm::GlobalVariable::WeakODRLinkage;
2656     else
2657       return llvm::GlobalVariable::WeakAnyLinkage;
2658   }
2659 
2660   // We are guaranteed to have a strong definition somewhere else,
2661   // so we can use available_externally linkage.
2662   if (Linkage == GVA_AvailableExternally)
2663     return llvm::Function::AvailableExternallyLinkage;
2664 
2665   // Note that Apple's kernel linker doesn't support symbol
2666   // coalescing, so we need to avoid linkonce and weak linkages there.
2667   // Normally, this means we just map to internal, but for explicit
2668   // instantiations we'll map to external.
2669 
2670   // In C++, the compiler has to emit a definition in every translation unit
2671   // that references the function.  We should use linkonce_odr because
2672   // a) if all references in this translation unit are optimized away, we
2673   // don't need to codegen it.  b) if the function persists, it needs to be
2674   // merged with other definitions. c) C++ has the ODR, so we know the
2675   // definition is dependable.
2676   if (Linkage == GVA_DiscardableODR)
2677     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
2678                                             : llvm::Function::InternalLinkage;
2679 
2680   // An explicit instantiation of a template has weak linkage, since
2681   // explicit instantiations can occur in multiple translation units
2682   // and must all be equivalent. However, we are not allowed to
2683   // throw away these explicit instantiations.
2684   if (Linkage == GVA_StrongODR)
2685     return !Context.getLangOpts().AppleKext ? llvm::Function::WeakODRLinkage
2686                                             : llvm::Function::ExternalLinkage;
2687 
2688   // C++ doesn't have tentative definitions and thus cannot have common
2689   // linkage.
2690   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
2691       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
2692                                  CodeGenOpts.NoCommon))
2693     return llvm::GlobalVariable::CommonLinkage;
2694 
2695   // selectany symbols are externally visible, so use weak instead of
2696   // linkonce.  MSVC optimizes away references to const selectany globals, so
2697   // all definitions should be the same and ODR linkage should be used.
2698   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
2699   if (D->hasAttr<SelectAnyAttr>())
2700     return llvm::GlobalVariable::WeakODRLinkage;
2701 
2702   // Otherwise, we have strong external linkage.
2703   assert(Linkage == GVA_StrongExternal);
2704   return llvm::GlobalVariable::ExternalLinkage;
2705 }
2706 
2707 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
2708     const VarDecl *VD, bool IsConstant) {
2709   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
2710   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
2711 }
2712 
2713 /// Replace the uses of a function that was declared with a non-proto type.
2714 /// We want to silently drop extra arguments from call sites
2715 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
2716                                           llvm::Function *newFn) {
2717   // Fast path.
2718   if (old->use_empty()) return;
2719 
2720   llvm::Type *newRetTy = newFn->getReturnType();
2721   SmallVector<llvm::Value*, 4> newArgs;
2722   SmallVector<llvm::OperandBundleDef, 1> newBundles;
2723 
2724   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
2725          ui != ue; ) {
2726     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
2727     llvm::User *user = use->getUser();
2728 
2729     // Recognize and replace uses of bitcasts.  Most calls to
2730     // unprototyped functions will use bitcasts.
2731     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
2732       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
2733         replaceUsesOfNonProtoConstant(bitcast, newFn);
2734       continue;
2735     }
2736 
2737     // Recognize calls to the function.
2738     llvm::CallSite callSite(user);
2739     if (!callSite) continue;
2740     if (!callSite.isCallee(&*use)) continue;
2741 
2742     // If the return types don't match exactly, then we can't
2743     // transform this call unless it's dead.
2744     if (callSite->getType() != newRetTy && !callSite->use_empty())
2745       continue;
2746 
2747     // Get the call site's attribute list.
2748     SmallVector<llvm::AttributeSet, 8> newAttrs;
2749     llvm::AttributeSet oldAttrs = callSite.getAttributes();
2750 
2751     // Collect any return attributes from the call.
2752     if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex))
2753       newAttrs.push_back(
2754         llvm::AttributeSet::get(newFn->getContext(),
2755                                 oldAttrs.getRetAttributes()));
2756 
2757     // If the function was passed too few arguments, don't transform.
2758     unsigned newNumArgs = newFn->arg_size();
2759     if (callSite.arg_size() < newNumArgs) continue;
2760 
2761     // If extra arguments were passed, we silently drop them.
2762     // If any of the types mismatch, we don't transform.
2763     unsigned argNo = 0;
2764     bool dontTransform = false;
2765     for (llvm::Function::arg_iterator ai = newFn->arg_begin(),
2766            ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) {
2767       if (callSite.getArgument(argNo)->getType() != ai->getType()) {
2768         dontTransform = true;
2769         break;
2770       }
2771 
2772       // Add any parameter attributes.
2773       if (oldAttrs.hasAttributes(argNo + 1))
2774         newAttrs.
2775           push_back(llvm::
2776                     AttributeSet::get(newFn->getContext(),
2777                                       oldAttrs.getParamAttributes(argNo + 1)));
2778     }
2779     if (dontTransform)
2780       continue;
2781 
2782     if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex))
2783       newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(),
2784                                                  oldAttrs.getFnAttributes()));
2785 
2786     // Okay, we can transform this.  Create the new call instruction and copy
2787     // over the required information.
2788     newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
2789 
2790     // Copy over any operand bundles.
2791     callSite.getOperandBundlesAsDefs(newBundles);
2792 
2793     llvm::CallSite newCall;
2794     if (callSite.isCall()) {
2795       newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "",
2796                                        callSite.getInstruction());
2797     } else {
2798       auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction());
2799       newCall = llvm::InvokeInst::Create(newFn,
2800                                          oldInvoke->getNormalDest(),
2801                                          oldInvoke->getUnwindDest(),
2802                                          newArgs, newBundles, "",
2803                                          callSite.getInstruction());
2804     }
2805     newArgs.clear(); // for the next iteration
2806 
2807     if (!newCall->getType()->isVoidTy())
2808       newCall->takeName(callSite.getInstruction());
2809     newCall.setAttributes(
2810                      llvm::AttributeSet::get(newFn->getContext(), newAttrs));
2811     newCall.setCallingConv(callSite.getCallingConv());
2812 
2813     // Finally, remove the old call, replacing any uses with the new one.
2814     if (!callSite->use_empty())
2815       callSite->replaceAllUsesWith(newCall.getInstruction());
2816 
2817     // Copy debug location attached to CI.
2818     if (callSite->getDebugLoc())
2819       newCall->setDebugLoc(callSite->getDebugLoc());
2820 
2821     callSite->eraseFromParent();
2822   }
2823 }
2824 
2825 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
2826 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
2827 /// existing call uses of the old function in the module, this adjusts them to
2828 /// call the new function directly.
2829 ///
2830 /// This is not just a cleanup: the always_inline pass requires direct calls to
2831 /// functions to be able to inline them.  If there is a bitcast in the way, it
2832 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
2833 /// run at -O0.
2834 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2835                                                       llvm::Function *NewFn) {
2836   // If we're redefining a global as a function, don't transform it.
2837   if (!isa<llvm::Function>(Old)) return;
2838 
2839   replaceUsesOfNonProtoConstant(Old, NewFn);
2840 }
2841 
2842 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
2843   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
2844   // If we have a definition, this might be a deferred decl. If the
2845   // instantiation is explicit, make sure we emit it at the end.
2846   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
2847     GetAddrOfGlobalVar(VD);
2848 
2849   EmitTopLevelDecl(VD);
2850 }
2851 
2852 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
2853                                                  llvm::GlobalValue *GV) {
2854   const auto *D = cast<FunctionDecl>(GD.getDecl());
2855 
2856   // Compute the function info and LLVM type.
2857   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2858   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2859 
2860   // Get or create the prototype for the function.
2861   if (!GV || (GV->getType()->getElementType() != Ty))
2862     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
2863                                                    /*DontDefer=*/true,
2864                                                    /*IsForDefinition=*/true));
2865 
2866   // Already emitted.
2867   if (!GV->isDeclaration())
2868     return;
2869 
2870   // We need to set linkage and visibility on the function before
2871   // generating code for it because various parts of IR generation
2872   // want to propagate this information down (e.g. to local static
2873   // declarations).
2874   auto *Fn = cast<llvm::Function>(GV);
2875   setFunctionLinkage(GD, Fn);
2876   setFunctionDLLStorageClass(GD, Fn);
2877 
2878   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
2879   setGlobalVisibility(Fn, D);
2880 
2881   MaybeHandleStaticInExternC(D, Fn);
2882 
2883   maybeSetTrivialComdat(*D, *Fn);
2884 
2885   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
2886 
2887   setFunctionDefinitionAttributes(D, Fn);
2888   SetLLVMFunctionAttributesForDefinition(D, Fn);
2889 
2890   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
2891     AddGlobalCtor(Fn, CA->getPriority());
2892   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
2893     AddGlobalDtor(Fn, DA->getPriority());
2894   if (D->hasAttr<AnnotateAttr>())
2895     AddGlobalAnnotations(D, Fn);
2896 }
2897 
2898 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
2899   const auto *D = cast<ValueDecl>(GD.getDecl());
2900   const AliasAttr *AA = D->getAttr<AliasAttr>();
2901   assert(AA && "Not an alias?");
2902 
2903   StringRef MangledName = getMangledName(GD);
2904 
2905   if (AA->getAliasee() == MangledName) {
2906     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
2907     return;
2908   }
2909 
2910   // If there is a definition in the module, then it wins over the alias.
2911   // This is dubious, but allow it to be safe.  Just ignore the alias.
2912   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2913   if (Entry && !Entry->isDeclaration())
2914     return;
2915 
2916   Aliases.push_back(GD);
2917 
2918   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
2919 
2920   // Create a reference to the named value.  This ensures that it is emitted
2921   // if a deferred decl.
2922   llvm::Constant *Aliasee;
2923   if (isa<llvm::FunctionType>(DeclTy))
2924     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
2925                                       /*ForVTable=*/false);
2926   else
2927     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2928                                     llvm::PointerType::getUnqual(DeclTy),
2929                                     /*D=*/nullptr);
2930 
2931   // Create the new alias itself, but don't set a name yet.
2932   auto *GA = llvm::GlobalAlias::create(
2933       DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule());
2934 
2935   if (Entry) {
2936     if (GA->getAliasee() == Entry) {
2937       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
2938       return;
2939     }
2940 
2941     assert(Entry->isDeclaration());
2942 
2943     // If there is a declaration in the module, then we had an extern followed
2944     // by the alias, as in:
2945     //   extern int test6();
2946     //   ...
2947     //   int test6() __attribute__((alias("test7")));
2948     //
2949     // Remove it and replace uses of it with the alias.
2950     GA->takeName(Entry);
2951 
2952     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
2953                                                           Entry->getType()));
2954     Entry->eraseFromParent();
2955   } else {
2956     GA->setName(MangledName);
2957   }
2958 
2959   // Set attributes which are particular to an alias; this is a
2960   // specialization of the attributes which may be set on a global
2961   // variable/function.
2962   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
2963       D->isWeakImported()) {
2964     GA->setLinkage(llvm::Function::WeakAnyLinkage);
2965   }
2966 
2967   if (const auto *VD = dyn_cast<VarDecl>(D))
2968     if (VD->getTLSKind())
2969       setTLSMode(GA, *VD);
2970 
2971   setAliasAttributes(D, GA);
2972 }
2973 
2974 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
2975   const auto *D = cast<ValueDecl>(GD.getDecl());
2976   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
2977   assert(IFA && "Not an ifunc?");
2978 
2979   StringRef MangledName = getMangledName(GD);
2980 
2981   if (IFA->getResolver() == MangledName) {
2982     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
2983     return;
2984   }
2985 
2986   // Report an error if some definition overrides ifunc.
2987   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2988   if (Entry && !Entry->isDeclaration()) {
2989     GlobalDecl OtherGD;
2990     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
2991         DiagnosedConflictingDefinitions.insert(GD).second) {
2992       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name);
2993       Diags.Report(OtherGD.getDecl()->getLocation(),
2994                    diag::note_previous_definition);
2995     }
2996     return;
2997   }
2998 
2999   Aliases.push_back(GD);
3000 
3001   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
3002   llvm::Constant *Resolver =
3003       GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD,
3004                               /*ForVTable=*/false);
3005   llvm::GlobalIFunc *GIF =
3006       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
3007                                 "", Resolver, &getModule());
3008   if (Entry) {
3009     if (GIF->getResolver() == Entry) {
3010       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
3011       return;
3012     }
3013     assert(Entry->isDeclaration());
3014 
3015     // If there is a declaration in the module, then we had an extern followed
3016     // by the ifunc, as in:
3017     //   extern int test();
3018     //   ...
3019     //   int test() __attribute__((ifunc("resolver")));
3020     //
3021     // Remove it and replace uses of it with the ifunc.
3022     GIF->takeName(Entry);
3023 
3024     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
3025                                                           Entry->getType()));
3026     Entry->eraseFromParent();
3027   } else
3028     GIF->setName(MangledName);
3029 
3030   SetCommonAttributes(D, GIF);
3031 }
3032 
3033 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
3034                                             ArrayRef<llvm::Type*> Tys) {
3035   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
3036                                          Tys);
3037 }
3038 
3039 static llvm::StringMapEntry<llvm::GlobalVariable *> &
3040 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
3041                          const StringLiteral *Literal, bool TargetIsLSB,
3042                          bool &IsUTF16, unsigned &StringLength) {
3043   StringRef String = Literal->getString();
3044   unsigned NumBytes = String.size();
3045 
3046   // Check for simple case.
3047   if (!Literal->containsNonAsciiOrNull()) {
3048     StringLength = NumBytes;
3049     return *Map.insert(std::make_pair(String, nullptr)).first;
3050   }
3051 
3052   // Otherwise, convert the UTF8 literals into a string of shorts.
3053   IsUTF16 = true;
3054 
3055   SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
3056   const UTF8 *FromPtr = (const UTF8 *)String.data();
3057   UTF16 *ToPtr = &ToBuf[0];
3058 
3059   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
3060                            &ToPtr, ToPtr + NumBytes,
3061                            strictConversion);
3062 
3063   // ConvertUTF8toUTF16 returns the length in ToPtr.
3064   StringLength = ToPtr - &ToBuf[0];
3065 
3066   // Add an explicit null.
3067   *ToPtr = 0;
3068   return *Map.insert(std::make_pair(
3069                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
3070                                    (StringLength + 1) * 2),
3071                          nullptr)).first;
3072 }
3073 
3074 static llvm::StringMapEntry<llvm::GlobalVariable *> &
3075 GetConstantStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
3076                        const StringLiteral *Literal, unsigned &StringLength) {
3077   StringRef String = Literal->getString();
3078   StringLength = String.size();
3079   return *Map.insert(std::make_pair(String, nullptr)).first;
3080 }
3081 
3082 ConstantAddress
3083 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
3084   unsigned StringLength = 0;
3085   bool isUTF16 = false;
3086   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
3087       GetConstantCFStringEntry(CFConstantStringMap, Literal,
3088                                getDataLayout().isLittleEndian(), isUTF16,
3089                                StringLength);
3090 
3091   if (auto *C = Entry.second)
3092     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
3093 
3094   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
3095   llvm::Constant *Zeros[] = { Zero, Zero };
3096   llvm::Value *V;
3097 
3098   // If we don't already have it, get __CFConstantStringClassReference.
3099   if (!CFConstantStringClassRef) {
3100     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
3101     Ty = llvm::ArrayType::get(Ty, 0);
3102     llvm::Constant *GV = CreateRuntimeVariable(Ty,
3103                                            "__CFConstantStringClassReference");
3104     // Decay array -> ptr
3105     V = llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros);
3106     CFConstantStringClassRef = V;
3107   }
3108   else
3109     V = CFConstantStringClassRef;
3110 
3111   QualType CFTy = getContext().getCFConstantStringType();
3112 
3113   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
3114 
3115   llvm::Constant *Fields[4];
3116 
3117   // Class pointer.
3118   Fields[0] = cast<llvm::ConstantExpr>(V);
3119 
3120   // Flags.
3121   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
3122   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
3123     llvm::ConstantInt::get(Ty, 0x07C8);
3124 
3125   // String pointer.
3126   llvm::Constant *C = nullptr;
3127   if (isUTF16) {
3128     auto Arr = llvm::makeArrayRef(
3129         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
3130         Entry.first().size() / 2);
3131     C = llvm::ConstantDataArray::get(VMContext, Arr);
3132   } else {
3133     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
3134   }
3135 
3136   // Note: -fwritable-strings doesn't make the backing store strings of
3137   // CFStrings writable. (See <rdar://problem/10657500>)
3138   auto *GV =
3139       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
3140                                llvm::GlobalValue::PrivateLinkage, C, ".str");
3141   GV->setUnnamedAddr(true);
3142   // Don't enforce the target's minimum global alignment, since the only use
3143   // of the string is via this class initializer.
3144   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. Without
3145   // it LLVM can merge the string with a non unnamed_addr one during LTO. Doing
3146   // that changes the section it ends in, which surprises ld64.
3147   if (isUTF16) {
3148     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
3149     GV->setAlignment(Align.getQuantity());
3150     GV->setSection("__TEXT,__ustring");
3151   } else {
3152     CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
3153     GV->setAlignment(Align.getQuantity());
3154     GV->setSection("__TEXT,__cstring,cstring_literals");
3155   }
3156 
3157   // String.
3158   Fields[2] =
3159       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
3160 
3161   if (isUTF16)
3162     // Cast the UTF16 string to the correct type.
3163     Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy);
3164 
3165   // String length.
3166   Ty = getTypes().ConvertType(getContext().LongTy);
3167   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
3168 
3169   CharUnits Alignment = getPointerAlign();
3170 
3171   // The struct.
3172   C = llvm::ConstantStruct::get(STy, Fields);
3173   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
3174                                 llvm::GlobalVariable::PrivateLinkage, C,
3175                                 "_unnamed_cfstring_");
3176   GV->setSection("__DATA,__cfstring");
3177   GV->setAlignment(Alignment.getQuantity());
3178   Entry.second = GV;
3179 
3180   return ConstantAddress(GV, Alignment);
3181 }
3182 
3183 ConstantAddress
3184 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
3185   unsigned StringLength = 0;
3186   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
3187       GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
3188 
3189   if (auto *C = Entry.second)
3190     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
3191 
3192   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
3193   llvm::Constant *Zeros[] = { Zero, Zero };
3194   llvm::Value *V;
3195   // If we don't already have it, get _NSConstantStringClassReference.
3196   if (!ConstantStringClassRef) {
3197     std::string StringClass(getLangOpts().ObjCConstantStringClass);
3198     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
3199     llvm::Constant *GV;
3200     if (LangOpts.ObjCRuntime.isNonFragile()) {
3201       std::string str =
3202         StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
3203                             : "OBJC_CLASS_$_" + StringClass;
3204       GV = getObjCRuntime().GetClassGlobal(str);
3205       // Make sure the result is of the correct type.
3206       llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
3207       V = llvm::ConstantExpr::getBitCast(GV, PTy);
3208       ConstantStringClassRef = V;
3209     } else {
3210       std::string str =
3211         StringClass.empty() ? "_NSConstantStringClassReference"
3212                             : "_" + StringClass + "ClassReference";
3213       llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
3214       GV = CreateRuntimeVariable(PTy, str);
3215       // Decay array -> ptr
3216       V = llvm::ConstantExpr::getGetElementPtr(PTy, GV, Zeros);
3217       ConstantStringClassRef = V;
3218     }
3219   } else
3220     V = ConstantStringClassRef;
3221 
3222   if (!NSConstantStringType) {
3223     // Construct the type for a constant NSString.
3224     RecordDecl *D = Context.buildImplicitRecord("__builtin_NSString");
3225     D->startDefinition();
3226 
3227     QualType FieldTypes[3];
3228 
3229     // const int *isa;
3230     FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst());
3231     // const char *str;
3232     FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst());
3233     // unsigned int length;
3234     FieldTypes[2] = Context.UnsignedIntTy;
3235 
3236     // Create fields
3237     for (unsigned i = 0; i < 3; ++i) {
3238       FieldDecl *Field = FieldDecl::Create(Context, D,
3239                                            SourceLocation(),
3240                                            SourceLocation(), nullptr,
3241                                            FieldTypes[i], /*TInfo=*/nullptr,
3242                                            /*BitWidth=*/nullptr,
3243                                            /*Mutable=*/false,
3244                                            ICIS_NoInit);
3245       Field->setAccess(AS_public);
3246       D->addDecl(Field);
3247     }
3248 
3249     D->completeDefinition();
3250     QualType NSTy = Context.getTagDeclType(D);
3251     NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy));
3252   }
3253 
3254   llvm::Constant *Fields[3];
3255 
3256   // Class pointer.
3257   Fields[0] = cast<llvm::ConstantExpr>(V);
3258 
3259   // String pointer.
3260   llvm::Constant *C =
3261       llvm::ConstantDataArray::getString(VMContext, Entry.first());
3262 
3263   llvm::GlobalValue::LinkageTypes Linkage;
3264   bool isConstant;
3265   Linkage = llvm::GlobalValue::PrivateLinkage;
3266   isConstant = !LangOpts.WritableStrings;
3267 
3268   auto *GV = new llvm::GlobalVariable(getModule(), C->getType(), isConstant,
3269                                       Linkage, C, ".str");
3270   GV->setUnnamedAddr(true);
3271   // Don't enforce the target's minimum global alignment, since the only use
3272   // of the string is via this class initializer.
3273   CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
3274   GV->setAlignment(Align.getQuantity());
3275   Fields[1] =
3276       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
3277 
3278   // String length.
3279   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
3280   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
3281 
3282   // The struct.
3283   CharUnits Alignment = getPointerAlign();
3284   C = llvm::ConstantStruct::get(NSConstantStringType, Fields);
3285   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
3286                                 llvm::GlobalVariable::PrivateLinkage, C,
3287                                 "_unnamed_nsstring_");
3288   GV->setAlignment(Alignment.getQuantity());
3289   const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip";
3290   const char *NSStringNonFragileABISection =
3291       "__DATA,__objc_stringobj,regular,no_dead_strip";
3292   // FIXME. Fix section.
3293   GV->setSection(LangOpts.ObjCRuntime.isNonFragile()
3294                      ? NSStringNonFragileABISection
3295                      : NSStringSection);
3296   Entry.second = GV;
3297 
3298   return ConstantAddress(GV, Alignment);
3299 }
3300 
3301 QualType CodeGenModule::getObjCFastEnumerationStateType() {
3302   if (ObjCFastEnumerationStateType.isNull()) {
3303     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
3304     D->startDefinition();
3305 
3306     QualType FieldTypes[] = {
3307       Context.UnsignedLongTy,
3308       Context.getPointerType(Context.getObjCIdType()),
3309       Context.getPointerType(Context.UnsignedLongTy),
3310       Context.getConstantArrayType(Context.UnsignedLongTy,
3311                            llvm::APInt(32, 5), ArrayType::Normal, 0)
3312     };
3313 
3314     for (size_t i = 0; i < 4; ++i) {
3315       FieldDecl *Field = FieldDecl::Create(Context,
3316                                            D,
3317                                            SourceLocation(),
3318                                            SourceLocation(), nullptr,
3319                                            FieldTypes[i], /*TInfo=*/nullptr,
3320                                            /*BitWidth=*/nullptr,
3321                                            /*Mutable=*/false,
3322                                            ICIS_NoInit);
3323       Field->setAccess(AS_public);
3324       D->addDecl(Field);
3325     }
3326 
3327     D->completeDefinition();
3328     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
3329   }
3330 
3331   return ObjCFastEnumerationStateType;
3332 }
3333 
3334 llvm::Constant *
3335 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
3336   assert(!E->getType()->isPointerType() && "Strings are always arrays");
3337 
3338   // Don't emit it as the address of the string, emit the string data itself
3339   // as an inline array.
3340   if (E->getCharByteWidth() == 1) {
3341     SmallString<64> Str(E->getString());
3342 
3343     // Resize the string to the right size, which is indicated by its type.
3344     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
3345     Str.resize(CAT->getSize().getZExtValue());
3346     return llvm::ConstantDataArray::getString(VMContext, Str, false);
3347   }
3348 
3349   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
3350   llvm::Type *ElemTy = AType->getElementType();
3351   unsigned NumElements = AType->getNumElements();
3352 
3353   // Wide strings have either 2-byte or 4-byte elements.
3354   if (ElemTy->getPrimitiveSizeInBits() == 16) {
3355     SmallVector<uint16_t, 32> Elements;
3356     Elements.reserve(NumElements);
3357 
3358     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
3359       Elements.push_back(E->getCodeUnit(i));
3360     Elements.resize(NumElements);
3361     return llvm::ConstantDataArray::get(VMContext, Elements);
3362   }
3363 
3364   assert(ElemTy->getPrimitiveSizeInBits() == 32);
3365   SmallVector<uint32_t, 32> Elements;
3366   Elements.reserve(NumElements);
3367 
3368   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
3369     Elements.push_back(E->getCodeUnit(i));
3370   Elements.resize(NumElements);
3371   return llvm::ConstantDataArray::get(VMContext, Elements);
3372 }
3373 
3374 static llvm::GlobalVariable *
3375 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
3376                       CodeGenModule &CGM, StringRef GlobalName,
3377                       CharUnits Alignment) {
3378   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
3379   unsigned AddrSpace = 0;
3380   if (CGM.getLangOpts().OpenCL)
3381     AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant);
3382 
3383   llvm::Module &M = CGM.getModule();
3384   // Create a global variable for this string
3385   auto *GV = new llvm::GlobalVariable(
3386       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
3387       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
3388   GV->setAlignment(Alignment.getQuantity());
3389   GV->setUnnamedAddr(true);
3390   if (GV->isWeakForLinker()) {
3391     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
3392     GV->setComdat(M.getOrInsertComdat(GV->getName()));
3393   }
3394 
3395   return GV;
3396 }
3397 
3398 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
3399 /// constant array for the given string literal.
3400 ConstantAddress
3401 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
3402                                                   StringRef Name) {
3403   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
3404 
3405   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
3406   llvm::GlobalVariable **Entry = nullptr;
3407   if (!LangOpts.WritableStrings) {
3408     Entry = &ConstantStringMap[C];
3409     if (auto GV = *Entry) {
3410       if (Alignment.getQuantity() > GV->getAlignment())
3411         GV->setAlignment(Alignment.getQuantity());
3412       return ConstantAddress(GV, Alignment);
3413     }
3414   }
3415 
3416   SmallString<256> MangledNameBuffer;
3417   StringRef GlobalVariableName;
3418   llvm::GlobalValue::LinkageTypes LT;
3419 
3420   // Mangle the string literal if the ABI allows for it.  However, we cannot
3421   // do this if  we are compiling with ASan or -fwritable-strings because they
3422   // rely on strings having normal linkage.
3423   if (!LangOpts.WritableStrings &&
3424       !LangOpts.Sanitize.has(SanitizerKind::Address) &&
3425       getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) {
3426     llvm::raw_svector_ostream Out(MangledNameBuffer);
3427     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
3428 
3429     LT = llvm::GlobalValue::LinkOnceODRLinkage;
3430     GlobalVariableName = MangledNameBuffer;
3431   } else {
3432     LT = llvm::GlobalValue::PrivateLinkage;
3433     GlobalVariableName = Name;
3434   }
3435 
3436   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
3437   if (Entry)
3438     *Entry = GV;
3439 
3440   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
3441                                   QualType());
3442   return ConstantAddress(GV, Alignment);
3443 }
3444 
3445 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
3446 /// array for the given ObjCEncodeExpr node.
3447 ConstantAddress
3448 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
3449   std::string Str;
3450   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
3451 
3452   return GetAddrOfConstantCString(Str);
3453 }
3454 
3455 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
3456 /// the literal and a terminating '\0' character.
3457 /// The result has pointer to array type.
3458 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
3459     const std::string &Str, const char *GlobalName) {
3460   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
3461   CharUnits Alignment =
3462     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
3463 
3464   llvm::Constant *C =
3465       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
3466 
3467   // Don't share any string literals if strings aren't constant.
3468   llvm::GlobalVariable **Entry = nullptr;
3469   if (!LangOpts.WritableStrings) {
3470     Entry = &ConstantStringMap[C];
3471     if (auto GV = *Entry) {
3472       if (Alignment.getQuantity() > GV->getAlignment())
3473         GV->setAlignment(Alignment.getQuantity());
3474       return ConstantAddress(GV, Alignment);
3475     }
3476   }
3477 
3478   // Get the default prefix if a name wasn't specified.
3479   if (!GlobalName)
3480     GlobalName = ".str";
3481   // Create a global variable for this.
3482   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
3483                                   GlobalName, Alignment);
3484   if (Entry)
3485     *Entry = GV;
3486   return ConstantAddress(GV, Alignment);
3487 }
3488 
3489 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
3490     const MaterializeTemporaryExpr *E, const Expr *Init) {
3491   assert((E->getStorageDuration() == SD_Static ||
3492           E->getStorageDuration() == SD_Thread) && "not a global temporary");
3493   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
3494 
3495   // If we're not materializing a subobject of the temporary, keep the
3496   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
3497   QualType MaterializedType = Init->getType();
3498   if (Init == E->GetTemporaryExpr())
3499     MaterializedType = E->getType();
3500 
3501   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
3502 
3503   if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E])
3504     return ConstantAddress(Slot, Align);
3505 
3506   // FIXME: If an externally-visible declaration extends multiple temporaries,
3507   // we need to give each temporary the same name in every translation unit (and
3508   // we also need to make the temporaries externally-visible).
3509   SmallString<256> Name;
3510   llvm::raw_svector_ostream Out(Name);
3511   getCXXABI().getMangleContext().mangleReferenceTemporary(
3512       VD, E->getManglingNumber(), Out);
3513 
3514   APValue *Value = nullptr;
3515   if (E->getStorageDuration() == SD_Static) {
3516     // We might have a cached constant initializer for this temporary. Note
3517     // that this might have a different value from the value computed by
3518     // evaluating the initializer if the surrounding constant expression
3519     // modifies the temporary.
3520     Value = getContext().getMaterializedTemporaryValue(E, false);
3521     if (Value && Value->isUninit())
3522       Value = nullptr;
3523   }
3524 
3525   // Try evaluating it now, it might have a constant initializer.
3526   Expr::EvalResult EvalResult;
3527   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
3528       !EvalResult.hasSideEffects())
3529     Value = &EvalResult.Val;
3530 
3531   llvm::Constant *InitialValue = nullptr;
3532   bool Constant = false;
3533   llvm::Type *Type;
3534   if (Value) {
3535     // The temporary has a constant initializer, use it.
3536     InitialValue = EmitConstantValue(*Value, MaterializedType, nullptr);
3537     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
3538     Type = InitialValue->getType();
3539   } else {
3540     // No initializer, the initialization will be provided when we
3541     // initialize the declaration which performed lifetime extension.
3542     Type = getTypes().ConvertTypeForMem(MaterializedType);
3543   }
3544 
3545   // Create a global variable for this lifetime-extended temporary.
3546   llvm::GlobalValue::LinkageTypes Linkage =
3547       getLLVMLinkageVarDefinition(VD, Constant);
3548   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
3549     const VarDecl *InitVD;
3550     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
3551         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
3552       // Temporaries defined inside a class get linkonce_odr linkage because the
3553       // class can be defined in multipe translation units.
3554       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
3555     } else {
3556       // There is no need for this temporary to have external linkage if the
3557       // VarDecl has external linkage.
3558       Linkage = llvm::GlobalVariable::InternalLinkage;
3559     }
3560   }
3561   unsigned AddrSpace = GetGlobalVarAddressSpace(
3562       VD, getContext().getTargetAddressSpace(MaterializedType));
3563   auto *GV = new llvm::GlobalVariable(
3564       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
3565       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal,
3566       AddrSpace);
3567   setGlobalVisibility(GV, VD);
3568   GV->setAlignment(Align.getQuantity());
3569   if (supportsCOMDAT() && GV->isWeakForLinker())
3570     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3571   if (VD->getTLSKind())
3572     setTLSMode(GV, *VD);
3573   MaterializedGlobalTemporaryMap[E] = GV;
3574   return ConstantAddress(GV, Align);
3575 }
3576 
3577 /// EmitObjCPropertyImplementations - Emit information for synthesized
3578 /// properties for an implementation.
3579 void CodeGenModule::EmitObjCPropertyImplementations(const
3580                                                     ObjCImplementationDecl *D) {
3581   for (const auto *PID : D->property_impls()) {
3582     // Dynamic is just for type-checking.
3583     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
3584       ObjCPropertyDecl *PD = PID->getPropertyDecl();
3585 
3586       // Determine which methods need to be implemented, some may have
3587       // been overridden. Note that ::isPropertyAccessor is not the method
3588       // we want, that just indicates if the decl came from a
3589       // property. What we want to know is if the method is defined in
3590       // this implementation.
3591       if (!D->getInstanceMethod(PD->getGetterName()))
3592         CodeGenFunction(*this).GenerateObjCGetter(
3593                                  const_cast<ObjCImplementationDecl *>(D), PID);
3594       if (!PD->isReadOnly() &&
3595           !D->getInstanceMethod(PD->getSetterName()))
3596         CodeGenFunction(*this).GenerateObjCSetter(
3597                                  const_cast<ObjCImplementationDecl *>(D), PID);
3598     }
3599   }
3600 }
3601 
3602 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
3603   const ObjCInterfaceDecl *iface = impl->getClassInterface();
3604   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
3605        ivar; ivar = ivar->getNextIvar())
3606     if (ivar->getType().isDestructedType())
3607       return true;
3608 
3609   return false;
3610 }
3611 
3612 static bool AllTrivialInitializers(CodeGenModule &CGM,
3613                                    ObjCImplementationDecl *D) {
3614   CodeGenFunction CGF(CGM);
3615   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
3616        E = D->init_end(); B != E; ++B) {
3617     CXXCtorInitializer *CtorInitExp = *B;
3618     Expr *Init = CtorInitExp->getInit();
3619     if (!CGF.isTrivialInitializer(Init))
3620       return false;
3621   }
3622   return true;
3623 }
3624 
3625 /// EmitObjCIvarInitializations - Emit information for ivar initialization
3626 /// for an implementation.
3627 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
3628   // We might need a .cxx_destruct even if we don't have any ivar initializers.
3629   if (needsDestructMethod(D)) {
3630     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
3631     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
3632     ObjCMethodDecl *DTORMethod =
3633       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
3634                              cxxSelector, getContext().VoidTy, nullptr, D,
3635                              /*isInstance=*/true, /*isVariadic=*/false,
3636                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
3637                              /*isDefined=*/false, ObjCMethodDecl::Required);
3638     D->addInstanceMethod(DTORMethod);
3639     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
3640     D->setHasDestructors(true);
3641   }
3642 
3643   // If the implementation doesn't have any ivar initializers, we don't need
3644   // a .cxx_construct.
3645   if (D->getNumIvarInitializers() == 0 ||
3646       AllTrivialInitializers(*this, D))
3647     return;
3648 
3649   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
3650   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
3651   // The constructor returns 'self'.
3652   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
3653                                                 D->getLocation(),
3654                                                 D->getLocation(),
3655                                                 cxxSelector,
3656                                                 getContext().getObjCIdType(),
3657                                                 nullptr, D, /*isInstance=*/true,
3658                                                 /*isVariadic=*/false,
3659                                                 /*isPropertyAccessor=*/true,
3660                                                 /*isImplicitlyDeclared=*/true,
3661                                                 /*isDefined=*/false,
3662                                                 ObjCMethodDecl::Required);
3663   D->addInstanceMethod(CTORMethod);
3664   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
3665   D->setHasNonZeroConstructors(true);
3666 }
3667 
3668 /// EmitNamespace - Emit all declarations in a namespace.
3669 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
3670   for (auto *I : ND->decls()) {
3671     if (const auto *VD = dyn_cast<VarDecl>(I))
3672       if (VD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization &&
3673           VD->getTemplateSpecializationKind() != TSK_Undeclared)
3674         continue;
3675     EmitTopLevelDecl(I);
3676   }
3677 }
3678 
3679 // EmitLinkageSpec - Emit all declarations in a linkage spec.
3680 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
3681   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
3682       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
3683     ErrorUnsupported(LSD, "linkage spec");
3684     return;
3685   }
3686 
3687   for (auto *I : LSD->decls()) {
3688     // Meta-data for ObjC class includes references to implemented methods.
3689     // Generate class's method definitions first.
3690     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
3691       for (auto *M : OID->methods())
3692         EmitTopLevelDecl(M);
3693     }
3694     EmitTopLevelDecl(I);
3695   }
3696 }
3697 
3698 /// EmitTopLevelDecl - Emit code for a single top level declaration.
3699 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
3700   // Ignore dependent declarations.
3701   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
3702     return;
3703 
3704   switch (D->getKind()) {
3705   case Decl::CXXConversion:
3706   case Decl::CXXMethod:
3707   case Decl::Function:
3708     // Skip function templates
3709     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
3710         cast<FunctionDecl>(D)->isLateTemplateParsed())
3711       return;
3712 
3713     EmitGlobal(cast<FunctionDecl>(D));
3714     // Always provide some coverage mapping
3715     // even for the functions that aren't emitted.
3716     AddDeferredUnusedCoverageMapping(D);
3717     break;
3718 
3719   case Decl::Var:
3720     // Skip variable templates
3721     if (cast<VarDecl>(D)->getDescribedVarTemplate())
3722       return;
3723   case Decl::VarTemplateSpecialization:
3724     EmitGlobal(cast<VarDecl>(D));
3725     break;
3726 
3727   // Indirect fields from global anonymous structs and unions can be
3728   // ignored; only the actual variable requires IR gen support.
3729   case Decl::IndirectField:
3730     break;
3731 
3732   // C++ Decls
3733   case Decl::Namespace:
3734     EmitNamespace(cast<NamespaceDecl>(D));
3735     break;
3736     // No code generation needed.
3737   case Decl::UsingShadow:
3738   case Decl::ClassTemplate:
3739   case Decl::VarTemplate:
3740   case Decl::VarTemplatePartialSpecialization:
3741   case Decl::FunctionTemplate:
3742   case Decl::TypeAliasTemplate:
3743   case Decl::Block:
3744   case Decl::Empty:
3745     break;
3746   case Decl::Using:          // using X; [C++]
3747     if (CGDebugInfo *DI = getModuleDebugInfo())
3748         DI->EmitUsingDecl(cast<UsingDecl>(*D));
3749     return;
3750   case Decl::NamespaceAlias:
3751     if (CGDebugInfo *DI = getModuleDebugInfo())
3752         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
3753     return;
3754   case Decl::UsingDirective: // using namespace X; [C++]
3755     if (CGDebugInfo *DI = getModuleDebugInfo())
3756       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
3757     return;
3758   case Decl::CXXConstructor:
3759     // Skip function templates
3760     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
3761         cast<FunctionDecl>(D)->isLateTemplateParsed())
3762       return;
3763 
3764     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
3765     break;
3766   case Decl::CXXDestructor:
3767     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
3768       return;
3769     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
3770     break;
3771 
3772   case Decl::StaticAssert:
3773     // Nothing to do.
3774     break;
3775 
3776   // Objective-C Decls
3777 
3778   // Forward declarations, no (immediate) code generation.
3779   case Decl::ObjCInterface:
3780   case Decl::ObjCCategory:
3781     break;
3782 
3783   case Decl::ObjCProtocol: {
3784     auto *Proto = cast<ObjCProtocolDecl>(D);
3785     if (Proto->isThisDeclarationADefinition())
3786       ObjCRuntime->GenerateProtocol(Proto);
3787     break;
3788   }
3789 
3790   case Decl::ObjCCategoryImpl:
3791     // Categories have properties but don't support synthesize so we
3792     // can ignore them here.
3793     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
3794     break;
3795 
3796   case Decl::ObjCImplementation: {
3797     auto *OMD = cast<ObjCImplementationDecl>(D);
3798     EmitObjCPropertyImplementations(OMD);
3799     EmitObjCIvarInitializations(OMD);
3800     ObjCRuntime->GenerateClass(OMD);
3801     // Emit global variable debug information.
3802     if (CGDebugInfo *DI = getModuleDebugInfo())
3803       if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
3804         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
3805             OMD->getClassInterface()), OMD->getLocation());
3806     break;
3807   }
3808   case Decl::ObjCMethod: {
3809     auto *OMD = cast<ObjCMethodDecl>(D);
3810     // If this is not a prototype, emit the body.
3811     if (OMD->getBody())
3812       CodeGenFunction(*this).GenerateObjCMethod(OMD);
3813     break;
3814   }
3815   case Decl::ObjCCompatibleAlias:
3816     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
3817     break;
3818 
3819   case Decl::PragmaComment: {
3820     const auto *PCD = cast<PragmaCommentDecl>(D);
3821     switch (PCD->getCommentKind()) {
3822     case PCK_Unknown:
3823       llvm_unreachable("unexpected pragma comment kind");
3824     case PCK_Linker:
3825       AppendLinkerOptions(PCD->getArg());
3826       break;
3827     case PCK_Lib:
3828       AddDependentLib(PCD->getArg());
3829       break;
3830     case PCK_Compiler:
3831     case PCK_ExeStr:
3832     case PCK_User:
3833       break; // We ignore all of these.
3834     }
3835     break;
3836   }
3837 
3838   case Decl::PragmaDetectMismatch: {
3839     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
3840     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
3841     break;
3842   }
3843 
3844   case Decl::LinkageSpec:
3845     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
3846     break;
3847 
3848   case Decl::FileScopeAsm: {
3849     // File-scope asm is ignored during device-side CUDA compilation.
3850     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
3851       break;
3852     // File-scope asm is ignored during device-side OpenMP compilation.
3853     if (LangOpts.OpenMPIsDevice)
3854       break;
3855     auto *AD = cast<FileScopeAsmDecl>(D);
3856     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
3857     break;
3858   }
3859 
3860   case Decl::Import: {
3861     auto *Import = cast<ImportDecl>(D);
3862 
3863     // Ignore import declarations that come from imported modules.
3864     if (Import->getImportedOwningModule())
3865       break;
3866     if (CGDebugInfo *DI = getModuleDebugInfo())
3867       DI->EmitImportDecl(*Import);
3868 
3869     ImportedModules.insert(Import->getImportedModule());
3870     break;
3871   }
3872 
3873   case Decl::OMPThreadPrivate:
3874     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
3875     break;
3876 
3877   case Decl::ClassTemplateSpecialization: {
3878     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
3879     if (DebugInfo &&
3880         Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition &&
3881         Spec->hasDefinition())
3882       DebugInfo->completeTemplateDefinition(*Spec);
3883     break;
3884   }
3885 
3886   case Decl::OMPDeclareReduction:
3887     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
3888     break;
3889 
3890   default:
3891     // Make sure we handled everything we should, every other kind is a
3892     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
3893     // function. Need to recode Decl::Kind to do that easily.
3894     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
3895     break;
3896   }
3897 }
3898 
3899 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
3900   // Do we need to generate coverage mapping?
3901   if (!CodeGenOpts.CoverageMapping)
3902     return;
3903   switch (D->getKind()) {
3904   case Decl::CXXConversion:
3905   case Decl::CXXMethod:
3906   case Decl::Function:
3907   case Decl::ObjCMethod:
3908   case Decl::CXXConstructor:
3909   case Decl::CXXDestructor: {
3910     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
3911       return;
3912     auto I = DeferredEmptyCoverageMappingDecls.find(D);
3913     if (I == DeferredEmptyCoverageMappingDecls.end())
3914       DeferredEmptyCoverageMappingDecls[D] = true;
3915     break;
3916   }
3917   default:
3918     break;
3919   };
3920 }
3921 
3922 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
3923   // Do we need to generate coverage mapping?
3924   if (!CodeGenOpts.CoverageMapping)
3925     return;
3926   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
3927     if (Fn->isTemplateInstantiation())
3928       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
3929   }
3930   auto I = DeferredEmptyCoverageMappingDecls.find(D);
3931   if (I == DeferredEmptyCoverageMappingDecls.end())
3932     DeferredEmptyCoverageMappingDecls[D] = false;
3933   else
3934     I->second = false;
3935 }
3936 
3937 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
3938   std::vector<const Decl *> DeferredDecls;
3939   for (const auto &I : DeferredEmptyCoverageMappingDecls) {
3940     if (!I.second)
3941       continue;
3942     DeferredDecls.push_back(I.first);
3943   }
3944   // Sort the declarations by their location to make sure that the tests get a
3945   // predictable order for the coverage mapping for the unused declarations.
3946   if (CodeGenOpts.DumpCoverageMapping)
3947     std::sort(DeferredDecls.begin(), DeferredDecls.end(),
3948               [] (const Decl *LHS, const Decl *RHS) {
3949       return LHS->getLocStart() < RHS->getLocStart();
3950     });
3951   for (const auto *D : DeferredDecls) {
3952     switch (D->getKind()) {
3953     case Decl::CXXConversion:
3954     case Decl::CXXMethod:
3955     case Decl::Function:
3956     case Decl::ObjCMethod: {
3957       CodeGenPGO PGO(*this);
3958       GlobalDecl GD(cast<FunctionDecl>(D));
3959       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
3960                                   getFunctionLinkage(GD));
3961       break;
3962     }
3963     case Decl::CXXConstructor: {
3964       CodeGenPGO PGO(*this);
3965       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
3966       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
3967                                   getFunctionLinkage(GD));
3968       break;
3969     }
3970     case Decl::CXXDestructor: {
3971       CodeGenPGO PGO(*this);
3972       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
3973       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
3974                                   getFunctionLinkage(GD));
3975       break;
3976     }
3977     default:
3978       break;
3979     };
3980   }
3981 }
3982 
3983 /// Turns the given pointer into a constant.
3984 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
3985                                           const void *Ptr) {
3986   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
3987   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
3988   return llvm::ConstantInt::get(i64, PtrInt);
3989 }
3990 
3991 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
3992                                    llvm::NamedMDNode *&GlobalMetadata,
3993                                    GlobalDecl D,
3994                                    llvm::GlobalValue *Addr) {
3995   if (!GlobalMetadata)
3996     GlobalMetadata =
3997       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
3998 
3999   // TODO: should we report variant information for ctors/dtors?
4000   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
4001                            llvm::ConstantAsMetadata::get(GetPointerConstant(
4002                                CGM.getLLVMContext(), D.getDecl()))};
4003   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
4004 }
4005 
4006 /// For each function which is declared within an extern "C" region and marked
4007 /// as 'used', but has internal linkage, create an alias from the unmangled
4008 /// name to the mangled name if possible. People expect to be able to refer
4009 /// to such functions with an unmangled name from inline assembly within the
4010 /// same translation unit.
4011 void CodeGenModule::EmitStaticExternCAliases() {
4012   // Don't do anything if we're generating CUDA device code -- the NVPTX
4013   // assembly target doesn't support aliases.
4014   if (Context.getTargetInfo().getTriple().isNVPTX())
4015     return;
4016   for (auto &I : StaticExternCValues) {
4017     IdentifierInfo *Name = I.first;
4018     llvm::GlobalValue *Val = I.second;
4019     if (Val && !getModule().getNamedValue(Name->getName()))
4020       addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
4021   }
4022 }
4023 
4024 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
4025                                              GlobalDecl &Result) const {
4026   auto Res = Manglings.find(MangledName);
4027   if (Res == Manglings.end())
4028     return false;
4029   Result = Res->getValue();
4030   return true;
4031 }
4032 
4033 /// Emits metadata nodes associating all the global values in the
4034 /// current module with the Decls they came from.  This is useful for
4035 /// projects using IR gen as a subroutine.
4036 ///
4037 /// Since there's currently no way to associate an MDNode directly
4038 /// with an llvm::GlobalValue, we create a global named metadata
4039 /// with the name 'clang.global.decl.ptrs'.
4040 void CodeGenModule::EmitDeclMetadata() {
4041   llvm::NamedMDNode *GlobalMetadata = nullptr;
4042 
4043   for (auto &I : MangledDeclNames) {
4044     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
4045     // Some mangled names don't necessarily have an associated GlobalValue
4046     // in this module, e.g. if we mangled it for DebugInfo.
4047     if (Addr)
4048       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
4049   }
4050 }
4051 
4052 /// Emits metadata nodes for all the local variables in the current
4053 /// function.
4054 void CodeGenFunction::EmitDeclMetadata() {
4055   if (LocalDeclMap.empty()) return;
4056 
4057   llvm::LLVMContext &Context = getLLVMContext();
4058 
4059   // Find the unique metadata ID for this name.
4060   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
4061 
4062   llvm::NamedMDNode *GlobalMetadata = nullptr;
4063 
4064   for (auto &I : LocalDeclMap) {
4065     const Decl *D = I.first;
4066     llvm::Value *Addr = I.second.getPointer();
4067     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
4068       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
4069       Alloca->setMetadata(
4070           DeclPtrKind, llvm::MDNode::get(
4071                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
4072     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
4073       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
4074       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
4075     }
4076   }
4077 }
4078 
4079 void CodeGenModule::EmitVersionIdentMetadata() {
4080   llvm::NamedMDNode *IdentMetadata =
4081     TheModule.getOrInsertNamedMetadata("llvm.ident");
4082   std::string Version = getClangFullVersion();
4083   llvm::LLVMContext &Ctx = TheModule.getContext();
4084 
4085   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
4086   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
4087 }
4088 
4089 void CodeGenModule::EmitTargetMetadata() {
4090   // Warning, new MangledDeclNames may be appended within this loop.
4091   // We rely on MapVector insertions adding new elements to the end
4092   // of the container.
4093   // FIXME: Move this loop into the one target that needs it, and only
4094   // loop over those declarations for which we couldn't emit the target
4095   // metadata when we emitted the declaration.
4096   for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
4097     auto Val = *(MangledDeclNames.begin() + I);
4098     const Decl *D = Val.first.getDecl()->getMostRecentDecl();
4099     llvm::GlobalValue *GV = GetGlobalValue(Val.second);
4100     getTargetCodeGenInfo().emitTargetMD(D, GV, *this);
4101   }
4102 }
4103 
4104 void CodeGenModule::EmitCoverageFile() {
4105   if (!getCodeGenOpts().CoverageFile.empty()) {
4106     if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
4107       llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
4108       llvm::LLVMContext &Ctx = TheModule.getContext();
4109       llvm::MDString *CoverageFile =
4110           llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
4111       for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
4112         llvm::MDNode *CU = CUNode->getOperand(i);
4113         llvm::Metadata *Elts[] = {CoverageFile, CU};
4114         GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
4115       }
4116     }
4117   }
4118 }
4119 
4120 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) {
4121   // Sema has checked that all uuid strings are of the form
4122   // "12345678-1234-1234-1234-1234567890ab".
4123   assert(Uuid.size() == 36);
4124   for (unsigned i = 0; i < 36; ++i) {
4125     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-');
4126     else                                         assert(isHexDigit(Uuid[i]));
4127   }
4128 
4129   // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab".
4130   const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
4131 
4132   llvm::Constant *Field3[8];
4133   for (unsigned Idx = 0; Idx < 8; ++Idx)
4134     Field3[Idx] = llvm::ConstantInt::get(
4135         Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
4136 
4137   llvm::Constant *Fields[4] = {
4138     llvm::ConstantInt::get(Int32Ty, Uuid.substr(0,  8), 16),
4139     llvm::ConstantInt::get(Int16Ty, Uuid.substr(9,  4), 16),
4140     llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
4141     llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
4142   };
4143 
4144   return llvm::ConstantStruct::getAnon(Fields);
4145 }
4146 
4147 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
4148                                                        bool ForEH) {
4149   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
4150   // FIXME: should we even be calling this method if RTTI is disabled
4151   // and it's not for EH?
4152   if (!ForEH && !getLangOpts().RTTI)
4153     return llvm::Constant::getNullValue(Int8PtrTy);
4154 
4155   if (ForEH && Ty->isObjCObjectPointerType() &&
4156       LangOpts.ObjCRuntime.isGNUFamily())
4157     return ObjCRuntime->GetEHType(Ty);
4158 
4159   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
4160 }
4161 
4162 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
4163   for (auto RefExpr : D->varlists()) {
4164     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
4165     bool PerformInit =
4166         VD->getAnyInitializer() &&
4167         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
4168                                                         /*ForRef=*/false);
4169 
4170     Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
4171     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
4172             VD, Addr, RefExpr->getLocStart(), PerformInit))
4173       CXXGlobalInits.push_back(InitFunction);
4174   }
4175 }
4176 
4177 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
4178   llvm::Metadata *&InternalId = MetadataIdMap[T.getCanonicalType()];
4179   if (InternalId)
4180     return InternalId;
4181 
4182   if (isExternallyVisible(T->getLinkage())) {
4183     std::string OutName;
4184     llvm::raw_string_ostream Out(OutName);
4185     getCXXABI().getMangleContext().mangleTypeName(T, Out);
4186 
4187     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
4188   } else {
4189     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
4190                                            llvm::ArrayRef<llvm::Metadata *>());
4191   }
4192 
4193   return InternalId;
4194 }
4195 
4196 /// Returns whether this module needs the "all-vtables" bitset.
4197 bool CodeGenModule::NeedAllVtablesBitSet() const {
4198   // Returns true if at least one of vtable-based CFI checkers is enabled and
4199   // is not in the trapping mode.
4200   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
4201            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
4202           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
4203            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
4204           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
4205            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
4206           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
4207            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
4208 }
4209 
4210 void CodeGenModule::CreateVTableBitSetEntry(llvm::NamedMDNode *BitsetsMD,
4211                                             llvm::GlobalVariable *VTable,
4212                                             CharUnits Offset,
4213                                             const CXXRecordDecl *RD) {
4214   llvm::Metadata *MD =
4215       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
4216   llvm::Metadata *BitsetOps[] = {
4217       MD, llvm::ConstantAsMetadata::get(VTable),
4218       llvm::ConstantAsMetadata::get(
4219           llvm::ConstantInt::get(Int64Ty, Offset.getQuantity()))};
4220   BitsetsMD->addOperand(llvm::MDTuple::get(getLLVMContext(), BitsetOps));
4221 
4222   if (CodeGenOpts.SanitizeCfiCrossDso) {
4223     if (auto TypeId = CreateCfiIdForTypeMetadata(MD)) {
4224       llvm::Metadata *BitsetOps2[] = {
4225           llvm::ConstantAsMetadata::get(TypeId),
4226           llvm::ConstantAsMetadata::get(VTable),
4227           llvm::ConstantAsMetadata::get(
4228               llvm::ConstantInt::get(Int64Ty, Offset.getQuantity()))};
4229       BitsetsMD->addOperand(llvm::MDTuple::get(getLLVMContext(), BitsetOps2));
4230     }
4231   }
4232 
4233   if (NeedAllVtablesBitSet()) {
4234     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
4235     llvm::Metadata *BitsetOps[] = {
4236         MD, llvm::ConstantAsMetadata::get(VTable),
4237         llvm::ConstantAsMetadata::get(
4238             llvm::ConstantInt::get(Int64Ty, Offset.getQuantity()))};
4239     // Avoid adding a node to BitsetsMD twice.
4240     if (!llvm::MDTuple::getIfExists(getLLVMContext(), BitsetOps))
4241       BitsetsMD->addOperand(llvm::MDTuple::get(getLLVMContext(), BitsetOps));
4242   }
4243 }
4244 
4245 // Fills in the supplied string map with the set of target features for the
4246 // passed in function.
4247 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
4248                                           const FunctionDecl *FD) {
4249   StringRef TargetCPU = Target.getTargetOpts().CPU;
4250   if (const auto *TD = FD->getAttr<TargetAttr>()) {
4251     // If we have a TargetAttr build up the feature map based on that.
4252     TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
4253 
4254     // Make a copy of the features as passed on the command line into the
4255     // beginning of the additional features from the function to override.
4256     ParsedAttr.first.insert(ParsedAttr.first.begin(),
4257                             Target.getTargetOpts().FeaturesAsWritten.begin(),
4258                             Target.getTargetOpts().FeaturesAsWritten.end());
4259 
4260     if (ParsedAttr.second != "")
4261       TargetCPU = ParsedAttr.second;
4262 
4263     // Now populate the feature map, first with the TargetCPU which is either
4264     // the default or a new one from the target attribute string. Then we'll use
4265     // the passed in features (FeaturesAsWritten) along with the new ones from
4266     // the attribute.
4267     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, ParsedAttr.first);
4268   } else {
4269     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
4270                           Target.getTargetOpts().Features);
4271   }
4272 }
4273 
4274 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
4275   if (!SanStats)
4276     SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule());
4277 
4278   return *SanStats;
4279 }
4280