1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGBlocks.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGCall.h" 19 #include "CGDebugInfo.h" 20 #include "CGObjCRuntime.h" 21 #include "CGOpenCLRuntime.h" 22 #include "CGOpenMPRuntime.h" 23 #include "CGOpenMPRuntimeNVPTX.h" 24 #include "CodeGenFunction.h" 25 #include "CodeGenPGO.h" 26 #include "CodeGenTBAA.h" 27 #include "CoverageMappingGen.h" 28 #include "TargetInfo.h" 29 #include "clang/AST/ASTContext.h" 30 #include "clang/AST/CharUnits.h" 31 #include "clang/AST/DeclCXX.h" 32 #include "clang/AST/DeclObjC.h" 33 #include "clang/AST/DeclTemplate.h" 34 #include "clang/AST/Mangle.h" 35 #include "clang/AST/RecordLayout.h" 36 #include "clang/AST/RecursiveASTVisitor.h" 37 #include "clang/Basic/Builtins.h" 38 #include "clang/Basic/CharInfo.h" 39 #include "clang/Basic/Diagnostic.h" 40 #include "clang/Basic/Module.h" 41 #include "clang/Basic/SourceManager.h" 42 #include "clang/Basic/TargetInfo.h" 43 #include "clang/Basic/Version.h" 44 #include "clang/Frontend/CodeGenOptions.h" 45 #include "clang/Sema/SemaDiagnostic.h" 46 #include "llvm/ADT/APSInt.h" 47 #include "llvm/ADT/Triple.h" 48 #include "llvm/IR/CallSite.h" 49 #include "llvm/IR/CallingConv.h" 50 #include "llvm/IR/DataLayout.h" 51 #include "llvm/IR/Intrinsics.h" 52 #include "llvm/IR/LLVMContext.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/ProfileData/InstrProfReader.h" 55 #include "llvm/Support/ConvertUTF.h" 56 #include "llvm/Support/ErrorHandling.h" 57 #include "llvm/Support/MD5.h" 58 59 using namespace clang; 60 using namespace CodeGen; 61 62 static const char AnnotationSection[] = "llvm.metadata"; 63 64 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 65 switch (CGM.getTarget().getCXXABI().getKind()) { 66 case TargetCXXABI::GenericAArch64: 67 case TargetCXXABI::GenericARM: 68 case TargetCXXABI::iOS: 69 case TargetCXXABI::iOS64: 70 case TargetCXXABI::WatchOS: 71 case TargetCXXABI::GenericMIPS: 72 case TargetCXXABI::GenericItanium: 73 case TargetCXXABI::WebAssembly: 74 return CreateItaniumCXXABI(CGM); 75 case TargetCXXABI::Microsoft: 76 return CreateMicrosoftCXXABI(CGM); 77 } 78 79 llvm_unreachable("invalid C++ ABI kind"); 80 } 81 82 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 83 const PreprocessorOptions &PPO, 84 const CodeGenOptions &CGO, llvm::Module &M, 85 DiagnosticsEngine &diags, 86 CoverageSourceInfo *CoverageInfo) 87 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 88 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 89 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 90 VMContext(M.getContext()), Types(*this), VTables(*this), 91 SanitizerMD(new SanitizerMetadata(*this)), 92 WholeProgramVTablesBlacklist(CGO.WholeProgramVTablesBlacklistFiles, 93 C.getSourceManager()) { 94 95 // Initialize the type cache. 96 llvm::LLVMContext &LLVMContext = M.getContext(); 97 VoidTy = llvm::Type::getVoidTy(LLVMContext); 98 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 99 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 100 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 101 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 102 FloatTy = llvm::Type::getFloatTy(LLVMContext); 103 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 104 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 105 PointerAlignInBytes = 106 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 107 IntAlignInBytes = 108 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 109 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 110 IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits); 111 Int8PtrTy = Int8Ty->getPointerTo(0); 112 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 113 114 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 115 BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC(); 116 117 if (LangOpts.ObjC1) 118 createObjCRuntime(); 119 if (LangOpts.OpenCL) 120 createOpenCLRuntime(); 121 if (LangOpts.OpenMP) 122 createOpenMPRuntime(); 123 if (LangOpts.CUDA) 124 createCUDARuntime(); 125 126 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 127 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 128 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 129 TBAA.reset(new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(), 130 getCXXABI().getMangleContext())); 131 132 // If debug info or coverage generation is enabled, create the CGDebugInfo 133 // object. 134 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 135 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 136 DebugInfo.reset(new CGDebugInfo(*this)); 137 138 Block.GlobalUniqueCount = 0; 139 140 if (C.getLangOpts().ObjC1) 141 ObjCData.reset(new ObjCEntrypoints()); 142 143 if (CodeGenOpts.hasProfileClangUse()) { 144 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 145 CodeGenOpts.ProfileInstrumentUsePath); 146 if (std::error_code EC = ReaderOrErr.getError()) { 147 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 148 "Could not read profile %0: %1"); 149 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 150 << EC.message(); 151 } else 152 PGOReader = std::move(ReaderOrErr.get()); 153 } 154 155 // If coverage mapping generation is enabled, create the 156 // CoverageMappingModuleGen object. 157 if (CodeGenOpts.CoverageMapping) 158 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 159 } 160 161 CodeGenModule::~CodeGenModule() {} 162 163 void CodeGenModule::createObjCRuntime() { 164 // This is just isGNUFamily(), but we want to force implementors of 165 // new ABIs to decide how best to do this. 166 switch (LangOpts.ObjCRuntime.getKind()) { 167 case ObjCRuntime::GNUstep: 168 case ObjCRuntime::GCC: 169 case ObjCRuntime::ObjFW: 170 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 171 return; 172 173 case ObjCRuntime::FragileMacOSX: 174 case ObjCRuntime::MacOSX: 175 case ObjCRuntime::iOS: 176 case ObjCRuntime::WatchOS: 177 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 178 return; 179 } 180 llvm_unreachable("bad runtime kind"); 181 } 182 183 void CodeGenModule::createOpenCLRuntime() { 184 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 185 } 186 187 void CodeGenModule::createOpenMPRuntime() { 188 // Select a specialized code generation class based on the target, if any. 189 // If it does not exist use the default implementation. 190 switch (getTarget().getTriple().getArch()) { 191 192 case llvm::Triple::nvptx: 193 case llvm::Triple::nvptx64: 194 assert(getLangOpts().OpenMPIsDevice && 195 "OpenMP NVPTX is only prepared to deal with device code."); 196 OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this)); 197 break; 198 default: 199 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 200 break; 201 } 202 } 203 204 void CodeGenModule::createCUDARuntime() { 205 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 206 } 207 208 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 209 Replacements[Name] = C; 210 } 211 212 void CodeGenModule::applyReplacements() { 213 for (auto &I : Replacements) { 214 StringRef MangledName = I.first(); 215 llvm::Constant *Replacement = I.second; 216 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 217 if (!Entry) 218 continue; 219 auto *OldF = cast<llvm::Function>(Entry); 220 auto *NewF = dyn_cast<llvm::Function>(Replacement); 221 if (!NewF) { 222 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 223 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 224 } else { 225 auto *CE = cast<llvm::ConstantExpr>(Replacement); 226 assert(CE->getOpcode() == llvm::Instruction::BitCast || 227 CE->getOpcode() == llvm::Instruction::GetElementPtr); 228 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 229 } 230 } 231 232 // Replace old with new, but keep the old order. 233 OldF->replaceAllUsesWith(Replacement); 234 if (NewF) { 235 NewF->removeFromParent(); 236 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 237 NewF); 238 } 239 OldF->eraseFromParent(); 240 } 241 } 242 243 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 244 GlobalValReplacements.push_back(std::make_pair(GV, C)); 245 } 246 247 void CodeGenModule::applyGlobalValReplacements() { 248 for (auto &I : GlobalValReplacements) { 249 llvm::GlobalValue *GV = I.first; 250 llvm::Constant *C = I.second; 251 252 GV->replaceAllUsesWith(C); 253 GV->eraseFromParent(); 254 } 255 } 256 257 // This is only used in aliases that we created and we know they have a 258 // linear structure. 259 static const llvm::GlobalObject *getAliasedGlobal( 260 const llvm::GlobalIndirectSymbol &GIS) { 261 llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited; 262 const llvm::Constant *C = &GIS; 263 for (;;) { 264 C = C->stripPointerCasts(); 265 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 266 return GO; 267 // stripPointerCasts will not walk over weak aliases. 268 auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C); 269 if (!GIS2) 270 return nullptr; 271 if (!Visited.insert(GIS2).second) 272 return nullptr; 273 C = GIS2->getIndirectSymbol(); 274 } 275 } 276 277 void CodeGenModule::checkAliases() { 278 // Check if the constructed aliases are well formed. It is really unfortunate 279 // that we have to do this in CodeGen, but we only construct mangled names 280 // and aliases during codegen. 281 bool Error = false; 282 DiagnosticsEngine &Diags = getDiags(); 283 for (const GlobalDecl &GD : Aliases) { 284 const auto *D = cast<ValueDecl>(GD.getDecl()); 285 SourceLocation Location; 286 bool IsIFunc = D->hasAttr<IFuncAttr>(); 287 if (const Attr *A = D->getDefiningAttr()) 288 Location = A->getLocation(); 289 else 290 llvm_unreachable("Not an alias or ifunc?"); 291 StringRef MangledName = getMangledName(GD); 292 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 293 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry); 294 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 295 if (!GV) { 296 Error = true; 297 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 298 } else if (GV->isDeclaration()) { 299 Error = true; 300 Diags.Report(Location, diag::err_alias_to_undefined) 301 << IsIFunc << IsIFunc; 302 } else if (IsIFunc) { 303 // Check resolver function type. 304 llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>( 305 GV->getType()->getPointerElementType()); 306 assert(FTy); 307 if (!FTy->getReturnType()->isPointerTy()) 308 Diags.Report(Location, diag::err_ifunc_resolver_return); 309 if (FTy->getNumParams()) 310 Diags.Report(Location, diag::err_ifunc_resolver_params); 311 } 312 313 llvm::Constant *Aliasee = Alias->getIndirectSymbol(); 314 llvm::GlobalValue *AliaseeGV; 315 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 316 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 317 else 318 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 319 320 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 321 StringRef AliasSection = SA->getName(); 322 if (AliasSection != AliaseeGV->getSection()) 323 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 324 << AliasSection << IsIFunc << IsIFunc; 325 } 326 327 // We have to handle alias to weak aliases in here. LLVM itself disallows 328 // this since the object semantics would not match the IL one. For 329 // compatibility with gcc we implement it by just pointing the alias 330 // to its aliasee's aliasee. We also warn, since the user is probably 331 // expecting the link to be weak. 332 if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) { 333 if (GA->isInterposable()) { 334 Diags.Report(Location, diag::warn_alias_to_weak_alias) 335 << GV->getName() << GA->getName() << IsIFunc; 336 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 337 GA->getIndirectSymbol(), Alias->getType()); 338 Alias->setIndirectSymbol(Aliasee); 339 } 340 } 341 } 342 if (!Error) 343 return; 344 345 for (const GlobalDecl &GD : Aliases) { 346 StringRef MangledName = getMangledName(GD); 347 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 348 auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry); 349 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 350 Alias->eraseFromParent(); 351 } 352 } 353 354 void CodeGenModule::clear() { 355 DeferredDeclsToEmit.clear(); 356 if (OpenMPRuntime) 357 OpenMPRuntime->clear(); 358 } 359 360 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 361 StringRef MainFile) { 362 if (!hasDiagnostics()) 363 return; 364 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 365 if (MainFile.empty()) 366 MainFile = "<stdin>"; 367 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 368 } else 369 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Missing 370 << Mismatched; 371 } 372 373 void CodeGenModule::Release() { 374 EmitDeferred(); 375 applyGlobalValReplacements(); 376 applyReplacements(); 377 checkAliases(); 378 EmitCXXGlobalInitFunc(); 379 EmitCXXGlobalDtorFunc(); 380 EmitCXXThreadLocalInitFunc(); 381 if (ObjCRuntime) 382 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 383 AddGlobalCtor(ObjCInitFunction); 384 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice && 385 CUDARuntime) { 386 if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction()) 387 AddGlobalCtor(CudaCtorFunction); 388 if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction()) 389 AddGlobalDtor(CudaDtorFunction); 390 } 391 if (OpenMPRuntime) 392 if (llvm::Function *OpenMPRegistrationFunction = 393 OpenMPRuntime->emitRegistrationFunction()) 394 AddGlobalCtor(OpenMPRegistrationFunction, 0); 395 if (PGOReader) { 396 getModule().setMaximumFunctionCount(PGOReader->getMaximumFunctionCount()); 397 getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext)); 398 if (PGOStats.hasDiagnostics()) 399 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 400 } 401 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 402 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 403 EmitGlobalAnnotations(); 404 EmitStaticExternCAliases(); 405 EmitDeferredUnusedCoverageMappings(); 406 if (CoverageMapping) 407 CoverageMapping->emit(); 408 if (CodeGenOpts.SanitizeCfiCrossDso) 409 CodeGenFunction(*this).EmitCfiCheckFail(); 410 emitLLVMUsed(); 411 if (SanStats) 412 SanStats->finish(); 413 414 if (CodeGenOpts.Autolink && 415 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 416 EmitModuleLinkOptions(); 417 } 418 if (CodeGenOpts.DwarfVersion) { 419 // We actually want the latest version when there are conflicts. 420 // We can change from Warning to Latest if such mode is supported. 421 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 422 CodeGenOpts.DwarfVersion); 423 } 424 if (CodeGenOpts.EmitCodeView) { 425 // Indicate that we want CodeView in the metadata. 426 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 427 } 428 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 429 // We don't support LTO with 2 with different StrictVTablePointers 430 // FIXME: we could support it by stripping all the information introduced 431 // by StrictVTablePointers. 432 433 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 434 435 llvm::Metadata *Ops[2] = { 436 llvm::MDString::get(VMContext, "StrictVTablePointers"), 437 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 438 llvm::Type::getInt32Ty(VMContext), 1))}; 439 440 getModule().addModuleFlag(llvm::Module::Require, 441 "StrictVTablePointersRequirement", 442 llvm::MDNode::get(VMContext, Ops)); 443 } 444 if (DebugInfo) 445 // We support a single version in the linked module. The LLVM 446 // parser will drop debug info with a different version number 447 // (and warn about it, too). 448 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 449 llvm::DEBUG_METADATA_VERSION); 450 451 // We need to record the widths of enums and wchar_t, so that we can generate 452 // the correct build attributes in the ARM backend. 453 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 454 if ( Arch == llvm::Triple::arm 455 || Arch == llvm::Triple::armeb 456 || Arch == llvm::Triple::thumb 457 || Arch == llvm::Triple::thumbeb) { 458 // Width of wchar_t in bytes 459 uint64_t WCharWidth = 460 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 461 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 462 463 // The minimum width of an enum in bytes 464 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 465 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 466 } 467 468 if (CodeGenOpts.SanitizeCfiCrossDso) { 469 // Indicate that we want cross-DSO control flow integrity checks. 470 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 471 } 472 473 if (LangOpts.CUDAIsDevice && getTarget().getTriple().isNVPTX()) { 474 // Indicate whether __nvvm_reflect should be configured to flush denormal 475 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 476 // property.) 477 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 478 LangOpts.CUDADeviceFlushDenormalsToZero ? 1 : 0); 479 } 480 481 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 482 llvm::PICLevel::Level PL = llvm::PICLevel::Default; 483 switch (PLevel) { 484 case 0: break; 485 case 1: PL = llvm::PICLevel::Small; break; 486 case 2: PL = llvm::PICLevel::Large; break; 487 default: llvm_unreachable("Invalid PIC Level"); 488 } 489 490 getModule().setPICLevel(PL); 491 } 492 493 SimplifyPersonality(); 494 495 if (getCodeGenOpts().EmitDeclMetadata) 496 EmitDeclMetadata(); 497 498 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 499 EmitCoverageFile(); 500 501 if (DebugInfo) 502 DebugInfo->finalize(); 503 504 EmitVersionIdentMetadata(); 505 506 EmitTargetMetadata(); 507 } 508 509 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 510 // Make sure that this type is translated. 511 Types.UpdateCompletedType(TD); 512 } 513 514 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 515 // Make sure that this type is translated. 516 Types.RefreshTypeCacheForClass(RD); 517 } 518 519 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 520 if (!TBAA) 521 return nullptr; 522 return TBAA->getTBAAInfo(QTy); 523 } 524 525 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() { 526 if (!TBAA) 527 return nullptr; 528 return TBAA->getTBAAInfoForVTablePtr(); 529 } 530 531 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 532 if (!TBAA) 533 return nullptr; 534 return TBAA->getTBAAStructInfo(QTy); 535 } 536 537 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy, 538 llvm::MDNode *AccessN, 539 uint64_t O) { 540 if (!TBAA) 541 return nullptr; 542 return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O); 543 } 544 545 /// Decorate the instruction with a TBAA tag. For both scalar TBAA 546 /// and struct-path aware TBAA, the tag has the same format: 547 /// base type, access type and offset. 548 /// When ConvertTypeToTag is true, we create a tag based on the scalar type. 549 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 550 llvm::MDNode *TBAAInfo, 551 bool ConvertTypeToTag) { 552 if (ConvertTypeToTag && TBAA) 553 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, 554 TBAA->getTBAAScalarTagInfo(TBAAInfo)); 555 else 556 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 557 } 558 559 void CodeGenModule::DecorateInstructionWithInvariantGroup( 560 llvm::Instruction *I, const CXXRecordDecl *RD) { 561 llvm::Metadata *MD = CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 562 auto *MetaDataNode = dyn_cast<llvm::MDNode>(MD); 563 // Check if we have to wrap MDString in MDNode. 564 if (!MetaDataNode) 565 MetaDataNode = llvm::MDNode::get(getLLVMContext(), MD); 566 I->setMetadata(llvm::LLVMContext::MD_invariant_group, MetaDataNode); 567 } 568 569 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 570 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 571 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 572 } 573 574 /// ErrorUnsupported - Print out an error that codegen doesn't support the 575 /// specified stmt yet. 576 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 577 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 578 "cannot compile this %0 yet"); 579 std::string Msg = Type; 580 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 581 << Msg << S->getSourceRange(); 582 } 583 584 /// ErrorUnsupported - Print out an error that codegen doesn't support the 585 /// specified decl yet. 586 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 587 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 588 "cannot compile this %0 yet"); 589 std::string Msg = Type; 590 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 591 } 592 593 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 594 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 595 } 596 597 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 598 const NamedDecl *D) const { 599 // Internal definitions always have default visibility. 600 if (GV->hasLocalLinkage()) { 601 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 602 return; 603 } 604 605 // Set visibility for definitions. 606 LinkageInfo LV = D->getLinkageAndVisibility(); 607 if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 608 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 609 } 610 611 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 612 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 613 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 614 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 615 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 616 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 617 } 618 619 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 620 CodeGenOptions::TLSModel M) { 621 switch (M) { 622 case CodeGenOptions::GeneralDynamicTLSModel: 623 return llvm::GlobalVariable::GeneralDynamicTLSModel; 624 case CodeGenOptions::LocalDynamicTLSModel: 625 return llvm::GlobalVariable::LocalDynamicTLSModel; 626 case CodeGenOptions::InitialExecTLSModel: 627 return llvm::GlobalVariable::InitialExecTLSModel; 628 case CodeGenOptions::LocalExecTLSModel: 629 return llvm::GlobalVariable::LocalExecTLSModel; 630 } 631 llvm_unreachable("Invalid TLS model!"); 632 } 633 634 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 635 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 636 637 llvm::GlobalValue::ThreadLocalMode TLM; 638 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 639 640 // Override the TLS model if it is explicitly specified. 641 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 642 TLM = GetLLVMTLSModel(Attr->getModel()); 643 } 644 645 GV->setThreadLocalMode(TLM); 646 } 647 648 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 649 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 650 651 // Some ABIs don't have constructor variants. Make sure that base and 652 // complete constructors get mangled the same. 653 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 654 if (!getTarget().getCXXABI().hasConstructorVariants()) { 655 CXXCtorType OrigCtorType = GD.getCtorType(); 656 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 657 if (OrigCtorType == Ctor_Base) 658 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 659 } 660 } 661 662 StringRef &FoundStr = MangledDeclNames[CanonicalGD]; 663 if (!FoundStr.empty()) 664 return FoundStr; 665 666 const auto *ND = cast<NamedDecl>(GD.getDecl()); 667 SmallString<256> Buffer; 668 StringRef Str; 669 if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 670 llvm::raw_svector_ostream Out(Buffer); 671 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) 672 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 673 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) 674 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 675 else 676 getCXXABI().getMangleContext().mangleName(ND, Out); 677 Str = Out.str(); 678 } else { 679 IdentifierInfo *II = ND->getIdentifier(); 680 assert(II && "Attempt to mangle unnamed decl."); 681 Str = II->getName(); 682 } 683 684 // Keep the first result in the case of a mangling collision. 685 auto Result = Manglings.insert(std::make_pair(Str, GD)); 686 return FoundStr = Result.first->first(); 687 } 688 689 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 690 const BlockDecl *BD) { 691 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 692 const Decl *D = GD.getDecl(); 693 694 SmallString<256> Buffer; 695 llvm::raw_svector_ostream Out(Buffer); 696 if (!D) 697 MangleCtx.mangleGlobalBlock(BD, 698 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 699 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 700 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 701 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 702 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 703 else 704 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 705 706 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 707 return Result.first->first(); 708 } 709 710 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 711 return getModule().getNamedValue(Name); 712 } 713 714 /// AddGlobalCtor - Add a function to the list that will be called before 715 /// main() runs. 716 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 717 llvm::Constant *AssociatedData) { 718 // FIXME: Type coercion of void()* types. 719 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 720 } 721 722 /// AddGlobalDtor - Add a function to the list that will be called 723 /// when the module is unloaded. 724 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 725 // FIXME: Type coercion of void()* types. 726 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 727 } 728 729 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 730 // Ctor function type is void()*. 731 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 732 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 733 734 // Get the type of a ctor entry, { i32, void ()*, i8* }. 735 llvm::StructType *CtorStructTy = llvm::StructType::get( 736 Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy, nullptr); 737 738 // Construct the constructor and destructor arrays. 739 SmallVector<llvm::Constant *, 8> Ctors; 740 for (const auto &I : Fns) { 741 llvm::Constant *S[] = { 742 llvm::ConstantInt::get(Int32Ty, I.Priority, false), 743 llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy), 744 (I.AssociatedData 745 ? llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy) 746 : llvm::Constant::getNullValue(VoidPtrTy))}; 747 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 748 } 749 750 if (!Ctors.empty()) { 751 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 752 new llvm::GlobalVariable(TheModule, AT, false, 753 llvm::GlobalValue::AppendingLinkage, 754 llvm::ConstantArray::get(AT, Ctors), 755 GlobalName); 756 } 757 } 758 759 llvm::GlobalValue::LinkageTypes 760 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 761 const auto *D = cast<FunctionDecl>(GD.getDecl()); 762 763 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 764 765 if (isa<CXXDestructorDecl>(D) && 766 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 767 GD.getDtorType())) { 768 // Destructor variants in the Microsoft C++ ABI are always internal or 769 // linkonce_odr thunks emitted on an as-needed basis. 770 return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage 771 : llvm::GlobalValue::LinkOnceODRLinkage; 772 } 773 774 return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false); 775 } 776 777 void CodeGenModule::setFunctionDLLStorageClass(GlobalDecl GD, llvm::Function *F) { 778 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 779 780 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) { 781 if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) { 782 // Don't dllexport/import destructor thunks. 783 F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 784 return; 785 } 786 } 787 788 if (FD->hasAttr<DLLImportAttr>()) 789 F->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 790 else if (FD->hasAttr<DLLExportAttr>()) 791 F->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 792 else 793 F->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 794 } 795 796 llvm::ConstantInt * 797 CodeGenModule::CreateCfiIdForTypeMetadata(llvm::Metadata *MD) { 798 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 799 if (!MDS) return nullptr; 800 801 llvm::MD5 md5; 802 llvm::MD5::MD5Result result; 803 md5.update(MDS->getString()); 804 md5.final(result); 805 uint64_t id = 0; 806 for (int i = 0; i < 8; ++i) 807 id |= static_cast<uint64_t>(result[i]) << (i * 8); 808 return llvm::ConstantInt::get(Int64Ty, id); 809 } 810 811 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D, 812 llvm::Function *F) { 813 setNonAliasAttributes(D, F); 814 } 815 816 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 817 const CGFunctionInfo &Info, 818 llvm::Function *F) { 819 unsigned CallingConv; 820 AttributeListType AttributeList; 821 ConstructAttributeList(F->getName(), Info, D, AttributeList, CallingConv, 822 false); 823 F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList)); 824 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 825 } 826 827 /// Determines whether the language options require us to model 828 /// unwind exceptions. We treat -fexceptions as mandating this 829 /// except under the fragile ObjC ABI with only ObjC exceptions 830 /// enabled. This means, for example, that C with -fexceptions 831 /// enables this. 832 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 833 // If exceptions are completely disabled, obviously this is false. 834 if (!LangOpts.Exceptions) return false; 835 836 // If C++ exceptions are enabled, this is true. 837 if (LangOpts.CXXExceptions) return true; 838 839 // If ObjC exceptions are enabled, this depends on the ABI. 840 if (LangOpts.ObjCExceptions) { 841 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 842 } 843 844 return true; 845 } 846 847 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 848 llvm::Function *F) { 849 llvm::AttrBuilder B; 850 851 if (CodeGenOpts.UnwindTables) 852 B.addAttribute(llvm::Attribute::UWTable); 853 854 if (!hasUnwindExceptions(LangOpts)) 855 B.addAttribute(llvm::Attribute::NoUnwind); 856 857 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 858 B.addAttribute(llvm::Attribute::StackProtect); 859 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 860 B.addAttribute(llvm::Attribute::StackProtectStrong); 861 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 862 B.addAttribute(llvm::Attribute::StackProtectReq); 863 864 if (!D) { 865 F->addAttributes(llvm::AttributeSet::FunctionIndex, 866 llvm::AttributeSet::get( 867 F->getContext(), 868 llvm::AttributeSet::FunctionIndex, B)); 869 return; 870 } 871 872 if (D->hasAttr<NakedAttr>()) { 873 // Naked implies noinline: we should not be inlining such functions. 874 B.addAttribute(llvm::Attribute::Naked); 875 B.addAttribute(llvm::Attribute::NoInline); 876 } else if (D->hasAttr<NoDuplicateAttr>()) { 877 B.addAttribute(llvm::Attribute::NoDuplicate); 878 } else if (D->hasAttr<NoInlineAttr>()) { 879 B.addAttribute(llvm::Attribute::NoInline); 880 } else if (D->hasAttr<AlwaysInlineAttr>() && 881 !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex, 882 llvm::Attribute::NoInline)) { 883 // (noinline wins over always_inline, and we can't specify both in IR) 884 B.addAttribute(llvm::Attribute::AlwaysInline); 885 } 886 887 if (D->hasAttr<ColdAttr>()) { 888 if (!D->hasAttr<OptimizeNoneAttr>()) 889 B.addAttribute(llvm::Attribute::OptimizeForSize); 890 B.addAttribute(llvm::Attribute::Cold); 891 } 892 893 if (D->hasAttr<MinSizeAttr>()) 894 B.addAttribute(llvm::Attribute::MinSize); 895 896 F->addAttributes(llvm::AttributeSet::FunctionIndex, 897 llvm::AttributeSet::get( 898 F->getContext(), llvm::AttributeSet::FunctionIndex, B)); 899 900 if (D->hasAttr<OptimizeNoneAttr>()) { 901 // OptimizeNone implies noinline; we should not be inlining such functions. 902 F->addFnAttr(llvm::Attribute::OptimizeNone); 903 F->addFnAttr(llvm::Attribute::NoInline); 904 905 // OptimizeNone wins over OptimizeForSize, MinSize, AlwaysInline. 906 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 907 F->removeFnAttr(llvm::Attribute::MinSize); 908 assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 909 "OptimizeNone and AlwaysInline on same function!"); 910 911 // Attribute 'inlinehint' has no effect on 'optnone' functions. 912 // Explicitly remove it from the set of function attributes. 913 F->removeFnAttr(llvm::Attribute::InlineHint); 914 } 915 916 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 917 if (alignment) 918 F->setAlignment(alignment); 919 920 // Some C++ ABIs require 2-byte alignment for member functions, in order to 921 // reserve a bit for differentiating between virtual and non-virtual member 922 // functions. If the current target's C++ ABI requires this and this is a 923 // member function, set its alignment accordingly. 924 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 925 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 926 F->setAlignment(2); 927 } 928 } 929 930 void CodeGenModule::SetCommonAttributes(const Decl *D, 931 llvm::GlobalValue *GV) { 932 if (const auto *ND = dyn_cast_or_null<NamedDecl>(D)) 933 setGlobalVisibility(GV, ND); 934 else 935 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 936 937 if (D && D->hasAttr<UsedAttr>()) 938 addUsedGlobal(GV); 939 } 940 941 void CodeGenModule::setAliasAttributes(const Decl *D, 942 llvm::GlobalValue *GV) { 943 SetCommonAttributes(D, GV); 944 945 // Process the dllexport attribute based on whether the original definition 946 // (not necessarily the aliasee) was exported. 947 if (D->hasAttr<DLLExportAttr>()) 948 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 949 } 950 951 void CodeGenModule::setNonAliasAttributes(const Decl *D, 952 llvm::GlobalObject *GO) { 953 SetCommonAttributes(D, GO); 954 955 if (D) 956 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 957 GO->setSection(SA->getName()); 958 959 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 960 } 961 962 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 963 llvm::Function *F, 964 const CGFunctionInfo &FI) { 965 SetLLVMFunctionAttributes(D, FI, F); 966 SetLLVMFunctionAttributesForDefinition(D, F); 967 968 F->setLinkage(llvm::Function::InternalLinkage); 969 970 setNonAliasAttributes(D, F); 971 } 972 973 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV, 974 const NamedDecl *ND) { 975 // Set linkage and visibility in case we never see a definition. 976 LinkageInfo LV = ND->getLinkageAndVisibility(); 977 if (LV.getLinkage() != ExternalLinkage) { 978 // Don't set internal linkage on declarations. 979 } else { 980 if (ND->hasAttr<DLLImportAttr>()) { 981 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 982 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 983 } else if (ND->hasAttr<DLLExportAttr>()) { 984 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 985 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 986 } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) { 987 // "extern_weak" is overloaded in LLVM; we probably should have 988 // separate linkage types for this. 989 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 990 } 991 992 // Set visibility on a declaration only if it's explicit. 993 if (LV.isVisibilityExplicit()) 994 GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility())); 995 } 996 } 997 998 void CodeGenModule::CreateFunctionBitSetEntry(const FunctionDecl *FD, 999 llvm::Function *F) { 1000 // Only if we are checking indirect calls. 1001 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 1002 return; 1003 1004 // Non-static class methods are handled via vtable pointer checks elsewhere. 1005 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 1006 return; 1007 1008 // Additionally, if building with cross-DSO support... 1009 if (CodeGenOpts.SanitizeCfiCrossDso) { 1010 // Don't emit entries for function declarations. In cross-DSO mode these are 1011 // handled with better precision at run time. 1012 if (!FD->hasBody()) 1013 return; 1014 // Skip available_externally functions. They won't be codegen'ed in the 1015 // current module anyway. 1016 if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally) 1017 return; 1018 } 1019 1020 llvm::NamedMDNode *BitsetsMD = 1021 getModule().getOrInsertNamedMetadata("llvm.bitsets"); 1022 1023 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 1024 llvm::Metadata *BitsetOps[] = { 1025 MD, llvm::ConstantAsMetadata::get(F), 1026 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(Int64Ty, 0))}; 1027 BitsetsMD->addOperand(llvm::MDTuple::get(getLLVMContext(), BitsetOps)); 1028 1029 // Emit a hash-based bit set entry for cross-DSO calls. 1030 if (CodeGenOpts.SanitizeCfiCrossDso) { 1031 if (auto TypeId = CreateCfiIdForTypeMetadata(MD)) { 1032 llvm::Metadata *BitsetOps2[] = { 1033 llvm::ConstantAsMetadata::get(TypeId), 1034 llvm::ConstantAsMetadata::get(F), 1035 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(Int64Ty, 0))}; 1036 BitsetsMD->addOperand(llvm::MDTuple::get(getLLVMContext(), BitsetOps2)); 1037 } 1038 } 1039 } 1040 1041 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 1042 bool IsIncompleteFunction, 1043 bool IsThunk) { 1044 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 1045 // If this is an intrinsic function, set the function's attributes 1046 // to the intrinsic's attributes. 1047 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 1048 return; 1049 } 1050 1051 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 1052 1053 if (!IsIncompleteFunction) 1054 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 1055 1056 // Add the Returned attribute for "this", except for iOS 5 and earlier 1057 // where substantial code, including the libstdc++ dylib, was compiled with 1058 // GCC and does not actually return "this". 1059 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 1060 !(getTarget().getTriple().isiOS() && 1061 getTarget().getTriple().isOSVersionLT(6))) { 1062 assert(!F->arg_empty() && 1063 F->arg_begin()->getType() 1064 ->canLosslesslyBitCastTo(F->getReturnType()) && 1065 "unexpected this return"); 1066 F->addAttribute(1, llvm::Attribute::Returned); 1067 } 1068 1069 // Only a few attributes are set on declarations; these may later be 1070 // overridden by a definition. 1071 1072 setLinkageAndVisibilityForGV(F, FD); 1073 1074 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 1075 F->setSection(SA->getName()); 1076 1077 if (FD->isReplaceableGlobalAllocationFunction()) { 1078 // A replaceable global allocation function does not act like a builtin by 1079 // default, only if it is invoked by a new-expression or delete-expression. 1080 F->addAttribute(llvm::AttributeSet::FunctionIndex, 1081 llvm::Attribute::NoBuiltin); 1082 1083 // A sane operator new returns a non-aliasing pointer. 1084 // FIXME: Also add NonNull attribute to the return value 1085 // for the non-nothrow forms? 1086 auto Kind = FD->getDeclName().getCXXOverloadedOperator(); 1087 if (getCodeGenOpts().AssumeSaneOperatorNew && 1088 (Kind == OO_New || Kind == OO_Array_New)) 1089 F->addAttribute(llvm::AttributeSet::ReturnIndex, 1090 llvm::Attribute::NoAlias); 1091 } 1092 1093 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 1094 F->setUnnamedAddr(true); 1095 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 1096 if (MD->isVirtual()) 1097 F->setUnnamedAddr(true); 1098 1099 CreateFunctionBitSetEntry(FD, F); 1100 } 1101 1102 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 1103 assert(!GV->isDeclaration() && 1104 "Only globals with definition can force usage."); 1105 LLVMUsed.emplace_back(GV); 1106 } 1107 1108 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 1109 assert(!GV->isDeclaration() && 1110 "Only globals with definition can force usage."); 1111 LLVMCompilerUsed.emplace_back(GV); 1112 } 1113 1114 static void emitUsed(CodeGenModule &CGM, StringRef Name, 1115 std::vector<llvm::WeakVH> &List) { 1116 // Don't create llvm.used if there is no need. 1117 if (List.empty()) 1118 return; 1119 1120 // Convert List to what ConstantArray needs. 1121 SmallVector<llvm::Constant*, 8> UsedArray; 1122 UsedArray.resize(List.size()); 1123 for (unsigned i = 0, e = List.size(); i != e; ++i) { 1124 UsedArray[i] = 1125 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 1126 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 1127 } 1128 1129 if (UsedArray.empty()) 1130 return; 1131 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 1132 1133 auto *GV = new llvm::GlobalVariable( 1134 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 1135 llvm::ConstantArray::get(ATy, UsedArray), Name); 1136 1137 GV->setSection("llvm.metadata"); 1138 } 1139 1140 void CodeGenModule::emitLLVMUsed() { 1141 emitUsed(*this, "llvm.used", LLVMUsed); 1142 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 1143 } 1144 1145 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 1146 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 1147 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1148 } 1149 1150 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 1151 llvm::SmallString<32> Opt; 1152 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 1153 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1154 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1155 } 1156 1157 void CodeGenModule::AddDependentLib(StringRef Lib) { 1158 llvm::SmallString<24> Opt; 1159 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 1160 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1161 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1162 } 1163 1164 /// \brief Add link options implied by the given module, including modules 1165 /// it depends on, using a postorder walk. 1166 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 1167 SmallVectorImpl<llvm::Metadata *> &Metadata, 1168 llvm::SmallPtrSet<Module *, 16> &Visited) { 1169 // Import this module's parent. 1170 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 1171 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 1172 } 1173 1174 // Import this module's dependencies. 1175 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 1176 if (Visited.insert(Mod->Imports[I - 1]).second) 1177 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 1178 } 1179 1180 // Add linker options to link against the libraries/frameworks 1181 // described by this module. 1182 llvm::LLVMContext &Context = CGM.getLLVMContext(); 1183 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 1184 // Link against a framework. Frameworks are currently Darwin only, so we 1185 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 1186 if (Mod->LinkLibraries[I-1].IsFramework) { 1187 llvm::Metadata *Args[2] = { 1188 llvm::MDString::get(Context, "-framework"), 1189 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 1190 1191 Metadata.push_back(llvm::MDNode::get(Context, Args)); 1192 continue; 1193 } 1194 1195 // Link against a library. 1196 llvm::SmallString<24> Opt; 1197 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 1198 Mod->LinkLibraries[I-1].Library, Opt); 1199 auto *OptString = llvm::MDString::get(Context, Opt); 1200 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 1201 } 1202 } 1203 1204 void CodeGenModule::EmitModuleLinkOptions() { 1205 // Collect the set of all of the modules we want to visit to emit link 1206 // options, which is essentially the imported modules and all of their 1207 // non-explicit child modules. 1208 llvm::SetVector<clang::Module *> LinkModules; 1209 llvm::SmallPtrSet<clang::Module *, 16> Visited; 1210 SmallVector<clang::Module *, 16> Stack; 1211 1212 // Seed the stack with imported modules. 1213 for (Module *M : ImportedModules) 1214 if (Visited.insert(M).second) 1215 Stack.push_back(M); 1216 1217 // Find all of the modules to import, making a little effort to prune 1218 // non-leaf modules. 1219 while (!Stack.empty()) { 1220 clang::Module *Mod = Stack.pop_back_val(); 1221 1222 bool AnyChildren = false; 1223 1224 // Visit the submodules of this module. 1225 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 1226 SubEnd = Mod->submodule_end(); 1227 Sub != SubEnd; ++Sub) { 1228 // Skip explicit children; they need to be explicitly imported to be 1229 // linked against. 1230 if ((*Sub)->IsExplicit) 1231 continue; 1232 1233 if (Visited.insert(*Sub).second) { 1234 Stack.push_back(*Sub); 1235 AnyChildren = true; 1236 } 1237 } 1238 1239 // We didn't find any children, so add this module to the list of 1240 // modules to link against. 1241 if (!AnyChildren) { 1242 LinkModules.insert(Mod); 1243 } 1244 } 1245 1246 // Add link options for all of the imported modules in reverse topological 1247 // order. We don't do anything to try to order import link flags with respect 1248 // to linker options inserted by things like #pragma comment(). 1249 SmallVector<llvm::Metadata *, 16> MetadataArgs; 1250 Visited.clear(); 1251 for (Module *M : LinkModules) 1252 if (Visited.insert(M).second) 1253 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 1254 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 1255 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 1256 1257 // Add the linker options metadata flag. 1258 getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options", 1259 llvm::MDNode::get(getLLVMContext(), 1260 LinkerOptionsMetadata)); 1261 } 1262 1263 void CodeGenModule::EmitDeferred() { 1264 // Emit code for any potentially referenced deferred decls. Since a 1265 // previously unused static decl may become used during the generation of code 1266 // for a static function, iterate until no changes are made. 1267 1268 if (!DeferredVTables.empty()) { 1269 EmitDeferredVTables(); 1270 1271 // Emitting a vtable doesn't directly cause more vtables to 1272 // become deferred, although it can cause functions to be 1273 // emitted that then need those vtables. 1274 assert(DeferredVTables.empty()); 1275 } 1276 1277 // Stop if we're out of both deferred vtables and deferred declarations. 1278 if (DeferredDeclsToEmit.empty()) 1279 return; 1280 1281 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 1282 // work, it will not interfere with this. 1283 std::vector<DeferredGlobal> CurDeclsToEmit; 1284 CurDeclsToEmit.swap(DeferredDeclsToEmit); 1285 1286 for (DeferredGlobal &G : CurDeclsToEmit) { 1287 GlobalDecl D = G.GD; 1288 G.GV = nullptr; 1289 1290 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 1291 // to get GlobalValue with exactly the type we need, not something that 1292 // might had been created for another decl with the same mangled name but 1293 // different type. 1294 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 1295 GetAddrOfGlobal(D, /*IsForDefinition=*/true)); 1296 1297 // In case of different address spaces, we may still get a cast, even with 1298 // IsForDefinition equal to true. Query mangled names table to get 1299 // GlobalValue. 1300 if (!GV) 1301 GV = GetGlobalValue(getMangledName(D)); 1302 1303 // Make sure GetGlobalValue returned non-null. 1304 assert(GV); 1305 1306 // Check to see if we've already emitted this. This is necessary 1307 // for a couple of reasons: first, decls can end up in the 1308 // deferred-decls queue multiple times, and second, decls can end 1309 // up with definitions in unusual ways (e.g. by an extern inline 1310 // function acquiring a strong function redefinition). Just 1311 // ignore these cases. 1312 if (!GV->isDeclaration()) 1313 continue; 1314 1315 // Otherwise, emit the definition and move on to the next one. 1316 EmitGlobalDefinition(D, GV); 1317 1318 // If we found out that we need to emit more decls, do that recursively. 1319 // This has the advantage that the decls are emitted in a DFS and related 1320 // ones are close together, which is convenient for testing. 1321 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 1322 EmitDeferred(); 1323 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 1324 } 1325 } 1326 } 1327 1328 void CodeGenModule::EmitGlobalAnnotations() { 1329 if (Annotations.empty()) 1330 return; 1331 1332 // Create a new global variable for the ConstantStruct in the Module. 1333 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 1334 Annotations[0]->getType(), Annotations.size()), Annotations); 1335 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 1336 llvm::GlobalValue::AppendingLinkage, 1337 Array, "llvm.global.annotations"); 1338 gv->setSection(AnnotationSection); 1339 } 1340 1341 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 1342 llvm::Constant *&AStr = AnnotationStrings[Str]; 1343 if (AStr) 1344 return AStr; 1345 1346 // Not found yet, create a new global. 1347 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 1348 auto *gv = 1349 new llvm::GlobalVariable(getModule(), s->getType(), true, 1350 llvm::GlobalValue::PrivateLinkage, s, ".str"); 1351 gv->setSection(AnnotationSection); 1352 gv->setUnnamedAddr(true); 1353 AStr = gv; 1354 return gv; 1355 } 1356 1357 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1358 SourceManager &SM = getContext().getSourceManager(); 1359 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1360 if (PLoc.isValid()) 1361 return EmitAnnotationString(PLoc.getFilename()); 1362 return EmitAnnotationString(SM.getBufferName(Loc)); 1363 } 1364 1365 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1366 SourceManager &SM = getContext().getSourceManager(); 1367 PresumedLoc PLoc = SM.getPresumedLoc(L); 1368 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1369 SM.getExpansionLineNumber(L); 1370 return llvm::ConstantInt::get(Int32Ty, LineNo); 1371 } 1372 1373 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1374 const AnnotateAttr *AA, 1375 SourceLocation L) { 1376 // Get the globals for file name, annotation, and the line number. 1377 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1378 *UnitGV = EmitAnnotationUnit(L), 1379 *LineNoCst = EmitAnnotationLineNo(L); 1380 1381 // Create the ConstantStruct for the global annotation. 1382 llvm::Constant *Fields[4] = { 1383 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1384 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1385 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1386 LineNoCst 1387 }; 1388 return llvm::ConstantStruct::getAnon(Fields); 1389 } 1390 1391 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1392 llvm::GlobalValue *GV) { 1393 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1394 // Get the struct elements for these annotations. 1395 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1396 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 1397 } 1398 1399 bool CodeGenModule::isInSanitizerBlacklist(llvm::Function *Fn, 1400 SourceLocation Loc) const { 1401 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1402 // Blacklist by function name. 1403 if (SanitizerBL.isBlacklistedFunction(Fn->getName())) 1404 return true; 1405 // Blacklist by location. 1406 if (Loc.isValid()) 1407 return SanitizerBL.isBlacklistedLocation(Loc); 1408 // If location is unknown, this may be a compiler-generated function. Assume 1409 // it's located in the main file. 1410 auto &SM = Context.getSourceManager(); 1411 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 1412 return SanitizerBL.isBlacklistedFile(MainFile->getName()); 1413 } 1414 return false; 1415 } 1416 1417 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 1418 SourceLocation Loc, QualType Ty, 1419 StringRef Category) const { 1420 // For now globals can be blacklisted only in ASan and KASan. 1421 if (!LangOpts.Sanitize.hasOneOf( 1422 SanitizerKind::Address | SanitizerKind::KernelAddress)) 1423 return false; 1424 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1425 if (SanitizerBL.isBlacklistedGlobal(GV->getName(), Category)) 1426 return true; 1427 if (SanitizerBL.isBlacklistedLocation(Loc, Category)) 1428 return true; 1429 // Check global type. 1430 if (!Ty.isNull()) { 1431 // Drill down the array types: if global variable of a fixed type is 1432 // blacklisted, we also don't instrument arrays of them. 1433 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 1434 Ty = AT->getElementType(); 1435 Ty = Ty.getCanonicalType().getUnqualifiedType(); 1436 // We allow to blacklist only record types (classes, structs etc.) 1437 if (Ty->isRecordType()) { 1438 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 1439 if (SanitizerBL.isBlacklistedType(TypeStr, Category)) 1440 return true; 1441 } 1442 } 1443 return false; 1444 } 1445 1446 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 1447 // Never defer when EmitAllDecls is specified. 1448 if (LangOpts.EmitAllDecls) 1449 return true; 1450 1451 return getContext().DeclMustBeEmitted(Global); 1452 } 1453 1454 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 1455 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) 1456 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 1457 // Implicit template instantiations may change linkage if they are later 1458 // explicitly instantiated, so they should not be emitted eagerly. 1459 return false; 1460 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 1461 // codegen for global variables, because they may be marked as threadprivate. 1462 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 1463 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global)) 1464 return false; 1465 1466 return true; 1467 } 1468 1469 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor( 1470 const CXXUuidofExpr* E) { 1471 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 1472 // well-formed. 1473 StringRef Uuid = E->getUuidStr(); 1474 std::string Name = "_GUID_" + Uuid.lower(); 1475 std::replace(Name.begin(), Name.end(), '-', '_'); 1476 1477 // The UUID descriptor should be pointer aligned. 1478 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 1479 1480 // Look for an existing global. 1481 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 1482 return ConstantAddress(GV, Alignment); 1483 1484 llvm::Constant *Init = EmitUuidofInitializer(Uuid); 1485 assert(Init && "failed to initialize as constant"); 1486 1487 auto *GV = new llvm::GlobalVariable( 1488 getModule(), Init->getType(), 1489 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 1490 if (supportsCOMDAT()) 1491 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 1492 return ConstantAddress(GV, Alignment); 1493 } 1494 1495 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 1496 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 1497 assert(AA && "No alias?"); 1498 1499 CharUnits Alignment = getContext().getDeclAlign(VD); 1500 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 1501 1502 // See if there is already something with the target's name in the module. 1503 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 1504 if (Entry) { 1505 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 1506 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 1507 return ConstantAddress(Ptr, Alignment); 1508 } 1509 1510 llvm::Constant *Aliasee; 1511 if (isa<llvm::FunctionType>(DeclTy)) 1512 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 1513 GlobalDecl(cast<FunctionDecl>(VD)), 1514 /*ForVTable=*/false); 1515 else 1516 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1517 llvm::PointerType::getUnqual(DeclTy), 1518 nullptr); 1519 1520 auto *F = cast<llvm::GlobalValue>(Aliasee); 1521 F->setLinkage(llvm::Function::ExternalWeakLinkage); 1522 WeakRefReferences.insert(F); 1523 1524 return ConstantAddress(Aliasee, Alignment); 1525 } 1526 1527 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 1528 const auto *Global = cast<ValueDecl>(GD.getDecl()); 1529 1530 // Weak references don't produce any output by themselves. 1531 if (Global->hasAttr<WeakRefAttr>()) 1532 return; 1533 1534 // If this is an alias definition (which otherwise looks like a declaration) 1535 // emit it now. 1536 if (Global->hasAttr<AliasAttr>()) 1537 return EmitAliasDefinition(GD); 1538 1539 // IFunc like an alias whose value is resolved at runtime by calling resolver. 1540 if (Global->hasAttr<IFuncAttr>()) 1541 return emitIFuncDefinition(GD); 1542 1543 // If this is CUDA, be selective about which declarations we emit. 1544 if (LangOpts.CUDA) { 1545 if (LangOpts.CUDAIsDevice) { 1546 if (!Global->hasAttr<CUDADeviceAttr>() && 1547 !Global->hasAttr<CUDAGlobalAttr>() && 1548 !Global->hasAttr<CUDAConstantAttr>() && 1549 !Global->hasAttr<CUDASharedAttr>()) 1550 return; 1551 } else { 1552 // We need to emit host-side 'shadows' for all global 1553 // device-side variables because the CUDA runtime needs their 1554 // size and host-side address in order to provide access to 1555 // their device-side incarnations. 1556 1557 // So device-only functions are the only things we skip. 1558 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 1559 Global->hasAttr<CUDADeviceAttr>()) 1560 return; 1561 1562 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 1563 "Expected Variable or Function"); 1564 } 1565 } 1566 1567 if (LangOpts.OpenMP) { 1568 // If this is OpenMP device, check if it is legal to emit this global 1569 // normally. 1570 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 1571 return; 1572 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 1573 if (MustBeEmitted(Global)) 1574 EmitOMPDeclareReduction(DRD); 1575 return; 1576 } 1577 } 1578 1579 // Ignore declarations, they will be emitted on their first use. 1580 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 1581 // Forward declarations are emitted lazily on first use. 1582 if (!FD->doesThisDeclarationHaveABody()) { 1583 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 1584 return; 1585 1586 StringRef MangledName = getMangledName(GD); 1587 1588 // Compute the function info and LLVM type. 1589 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 1590 llvm::Type *Ty = getTypes().GetFunctionType(FI); 1591 1592 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 1593 /*DontDefer=*/false); 1594 return; 1595 } 1596 } else { 1597 const auto *VD = cast<VarDecl>(Global); 1598 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 1599 // We need to emit device-side global CUDA variables even if a 1600 // variable does not have a definition -- we still need to define 1601 // host-side shadow for it. 1602 bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice && 1603 !VD->hasDefinition() && 1604 (VD->hasAttr<CUDAConstantAttr>() || 1605 VD->hasAttr<CUDADeviceAttr>()); 1606 if (!MustEmitForCuda && 1607 VD->isThisDeclarationADefinition() != VarDecl::Definition && 1608 !Context.isMSStaticDataMemberInlineDefinition(VD)) 1609 return; 1610 } 1611 1612 // Defer code generation to first use when possible, e.g. if this is an inline 1613 // function. If the global must always be emitted, do it eagerly if possible 1614 // to benefit from cache locality. 1615 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 1616 // Emit the definition if it can't be deferred. 1617 EmitGlobalDefinition(GD); 1618 return; 1619 } 1620 1621 // If we're deferring emission of a C++ variable with an 1622 // initializer, remember the order in which it appeared in the file. 1623 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 1624 cast<VarDecl>(Global)->hasInit()) { 1625 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 1626 CXXGlobalInits.push_back(nullptr); 1627 } 1628 1629 StringRef MangledName = getMangledName(GD); 1630 if (llvm::GlobalValue *GV = GetGlobalValue(MangledName)) { 1631 // The value has already been used and should therefore be emitted. 1632 addDeferredDeclToEmit(GV, GD); 1633 } else if (MustBeEmitted(Global)) { 1634 // The value must be emitted, but cannot be emitted eagerly. 1635 assert(!MayBeEmittedEagerly(Global)); 1636 addDeferredDeclToEmit(/*GV=*/nullptr, GD); 1637 } else { 1638 // Otherwise, remember that we saw a deferred decl with this name. The 1639 // first use of the mangled name will cause it to move into 1640 // DeferredDeclsToEmit. 1641 DeferredDecls[MangledName] = GD; 1642 } 1643 } 1644 1645 namespace { 1646 struct FunctionIsDirectlyRecursive : 1647 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 1648 const StringRef Name; 1649 const Builtin::Context &BI; 1650 bool Result; 1651 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 1652 Name(N), BI(C), Result(false) { 1653 } 1654 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 1655 1656 bool TraverseCallExpr(CallExpr *E) { 1657 const FunctionDecl *FD = E->getDirectCallee(); 1658 if (!FD) 1659 return true; 1660 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1661 if (Attr && Name == Attr->getLabel()) { 1662 Result = true; 1663 return false; 1664 } 1665 unsigned BuiltinID = FD->getBuiltinID(); 1666 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 1667 return true; 1668 StringRef BuiltinName = BI.getName(BuiltinID); 1669 if (BuiltinName.startswith("__builtin_") && 1670 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 1671 Result = true; 1672 return false; 1673 } 1674 return true; 1675 } 1676 }; 1677 1678 struct DLLImportFunctionVisitor 1679 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 1680 bool SafeToInline = true; 1681 1682 bool VisitVarDecl(VarDecl *VD) { 1683 // A thread-local variable cannot be imported. 1684 SafeToInline = !VD->getTLSKind(); 1685 return SafeToInline; 1686 } 1687 1688 // Make sure we're not referencing non-imported vars or functions. 1689 bool VisitDeclRefExpr(DeclRefExpr *E) { 1690 ValueDecl *VD = E->getDecl(); 1691 if (isa<FunctionDecl>(VD)) 1692 SafeToInline = VD->hasAttr<DLLImportAttr>(); 1693 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 1694 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 1695 return SafeToInline; 1696 } 1697 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 1698 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 1699 return SafeToInline; 1700 } 1701 bool VisitCXXNewExpr(CXXNewExpr *E) { 1702 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 1703 return SafeToInline; 1704 } 1705 }; 1706 } 1707 1708 // isTriviallyRecursive - Check if this function calls another 1709 // decl that, because of the asm attribute or the other decl being a builtin, 1710 // ends up pointing to itself. 1711 bool 1712 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 1713 StringRef Name; 1714 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 1715 // asm labels are a special kind of mangling we have to support. 1716 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1717 if (!Attr) 1718 return false; 1719 Name = Attr->getLabel(); 1720 } else { 1721 Name = FD->getName(); 1722 } 1723 1724 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 1725 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 1726 return Walker.Result; 1727 } 1728 1729 bool 1730 CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 1731 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 1732 return true; 1733 const auto *F = cast<FunctionDecl>(GD.getDecl()); 1734 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 1735 return false; 1736 1737 if (F->hasAttr<DLLImportAttr>()) { 1738 // Check whether it would be safe to inline this dllimport function. 1739 DLLImportFunctionVisitor Visitor; 1740 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 1741 if (!Visitor.SafeToInline) 1742 return false; 1743 } 1744 1745 // PR9614. Avoid cases where the source code is lying to us. An available 1746 // externally function should have an equivalent function somewhere else, 1747 // but a function that calls itself is clearly not equivalent to the real 1748 // implementation. 1749 // This happens in glibc's btowc and in some configure checks. 1750 return !isTriviallyRecursive(F); 1751 } 1752 1753 /// If the type for the method's class was generated by 1754 /// CGDebugInfo::createContextChain(), the cache contains only a 1755 /// limited DIType without any declarations. Since EmitFunctionStart() 1756 /// needs to find the canonical declaration for each method, we need 1757 /// to construct the complete type prior to emitting the method. 1758 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) { 1759 if (!D->isInstance()) 1760 return; 1761 1762 if (CGDebugInfo *DI = getModuleDebugInfo()) 1763 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) { 1764 const auto *ThisPtr = cast<PointerType>(D->getThisType(getContext())); 1765 DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation()); 1766 } 1767 } 1768 1769 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 1770 const auto *D = cast<ValueDecl>(GD.getDecl()); 1771 1772 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 1773 Context.getSourceManager(), 1774 "Generating code for declaration"); 1775 1776 if (isa<FunctionDecl>(D)) { 1777 // At -O0, don't generate IR for functions with available_externally 1778 // linkage. 1779 if (!shouldEmitFunction(GD)) 1780 return; 1781 1782 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 1783 CompleteDIClassType(Method); 1784 // Make sure to emit the definition(s) before we emit the thunks. 1785 // This is necessary for the generation of certain thunks. 1786 if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method)) 1787 ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType())); 1788 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method)) 1789 ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType())); 1790 else 1791 EmitGlobalFunctionDefinition(GD, GV); 1792 1793 if (Method->isVirtual()) 1794 getVTables().EmitThunks(GD); 1795 1796 return; 1797 } 1798 1799 return EmitGlobalFunctionDefinition(GD, GV); 1800 } 1801 1802 if (const auto *VD = dyn_cast<VarDecl>(D)) 1803 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 1804 1805 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 1806 } 1807 1808 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1809 llvm::Function *NewFn); 1810 1811 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 1812 /// module, create and return an llvm Function with the specified type. If there 1813 /// is something in the module with the specified name, return it potentially 1814 /// bitcasted to the right type. 1815 /// 1816 /// If D is non-null, it specifies a decl that correspond to this. This is used 1817 /// to set the attributes on the function when it is first created. 1818 llvm::Constant * 1819 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName, 1820 llvm::Type *Ty, 1821 GlobalDecl GD, bool ForVTable, 1822 bool DontDefer, bool IsThunk, 1823 llvm::AttributeSet ExtraAttrs, 1824 bool IsForDefinition) { 1825 const Decl *D = GD.getDecl(); 1826 1827 // Lookup the entry, lazily creating it if necessary. 1828 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1829 if (Entry) { 1830 if (WeakRefReferences.erase(Entry)) { 1831 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 1832 if (FD && !FD->hasAttr<WeakAttr>()) 1833 Entry->setLinkage(llvm::Function::ExternalLinkage); 1834 } 1835 1836 // Handle dropped DLL attributes. 1837 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 1838 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 1839 1840 // If there are two attempts to define the same mangled name, issue an 1841 // error. 1842 if (IsForDefinition && !Entry->isDeclaration()) { 1843 GlobalDecl OtherGD; 1844 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 1845 // to make sure that we issue an error only once. 1846 if (lookupRepresentativeDecl(MangledName, OtherGD) && 1847 (GD.getCanonicalDecl().getDecl() != 1848 OtherGD.getCanonicalDecl().getDecl()) && 1849 DiagnosedConflictingDefinitions.insert(GD).second) { 1850 getDiags().Report(D->getLocation(), 1851 diag::err_duplicate_mangled_name); 1852 getDiags().Report(OtherGD.getDecl()->getLocation(), 1853 diag::note_previous_definition); 1854 } 1855 } 1856 1857 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 1858 (Entry->getType()->getElementType() == Ty)) { 1859 return Entry; 1860 } 1861 1862 // Make sure the result is of the correct type. 1863 // (If function is requested for a definition, we always need to create a new 1864 // function, not just return a bitcast.) 1865 if (!IsForDefinition) 1866 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 1867 } 1868 1869 // This function doesn't have a complete type (for example, the return 1870 // type is an incomplete struct). Use a fake type instead, and make 1871 // sure not to try to set attributes. 1872 bool IsIncompleteFunction = false; 1873 1874 llvm::FunctionType *FTy; 1875 if (isa<llvm::FunctionType>(Ty)) { 1876 FTy = cast<llvm::FunctionType>(Ty); 1877 } else { 1878 FTy = llvm::FunctionType::get(VoidTy, false); 1879 IsIncompleteFunction = true; 1880 } 1881 1882 llvm::Function *F = 1883 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 1884 Entry ? StringRef() : MangledName, &getModule()); 1885 1886 // If we already created a function with the same mangled name (but different 1887 // type) before, take its name and add it to the list of functions to be 1888 // replaced with F at the end of CodeGen. 1889 // 1890 // This happens if there is a prototype for a function (e.g. "int f()") and 1891 // then a definition of a different type (e.g. "int f(int x)"). 1892 if (Entry) { 1893 F->takeName(Entry); 1894 1895 // This might be an implementation of a function without a prototype, in 1896 // which case, try to do special replacement of calls which match the new 1897 // prototype. The really key thing here is that we also potentially drop 1898 // arguments from the call site so as to make a direct call, which makes the 1899 // inliner happier and suppresses a number of optimizer warnings (!) about 1900 // dropping arguments. 1901 if (!Entry->use_empty()) { 1902 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 1903 Entry->removeDeadConstantUsers(); 1904 } 1905 1906 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 1907 F, Entry->getType()->getElementType()->getPointerTo()); 1908 addGlobalValReplacement(Entry, BC); 1909 } 1910 1911 assert(F->getName() == MangledName && "name was uniqued!"); 1912 if (D) 1913 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 1914 if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) { 1915 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex); 1916 F->addAttributes(llvm::AttributeSet::FunctionIndex, 1917 llvm::AttributeSet::get(VMContext, 1918 llvm::AttributeSet::FunctionIndex, 1919 B)); 1920 } 1921 1922 if (!DontDefer) { 1923 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 1924 // each other bottoming out with the base dtor. Therefore we emit non-base 1925 // dtors on usage, even if there is no dtor definition in the TU. 1926 if (D && isa<CXXDestructorDecl>(D) && 1927 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 1928 GD.getDtorType())) 1929 addDeferredDeclToEmit(F, GD); 1930 1931 // This is the first use or definition of a mangled name. If there is a 1932 // deferred decl with this name, remember that we need to emit it at the end 1933 // of the file. 1934 auto DDI = DeferredDecls.find(MangledName); 1935 if (DDI != DeferredDecls.end()) { 1936 // Move the potentially referenced deferred decl to the 1937 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 1938 // don't need it anymore). 1939 addDeferredDeclToEmit(F, DDI->second); 1940 DeferredDecls.erase(DDI); 1941 1942 // Otherwise, there are cases we have to worry about where we're 1943 // using a declaration for which we must emit a definition but where 1944 // we might not find a top-level definition: 1945 // - member functions defined inline in their classes 1946 // - friend functions defined inline in some class 1947 // - special member functions with implicit definitions 1948 // If we ever change our AST traversal to walk into class methods, 1949 // this will be unnecessary. 1950 // 1951 // We also don't emit a definition for a function if it's going to be an 1952 // entry in a vtable, unless it's already marked as used. 1953 } else if (getLangOpts().CPlusPlus && D) { 1954 // Look for a declaration that's lexically in a record. 1955 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 1956 FD = FD->getPreviousDecl()) { 1957 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 1958 if (FD->doesThisDeclarationHaveABody()) { 1959 addDeferredDeclToEmit(F, GD.getWithDecl(FD)); 1960 break; 1961 } 1962 } 1963 } 1964 } 1965 } 1966 1967 // Make sure the result is of the requested type. 1968 if (!IsIncompleteFunction) { 1969 assert(F->getType()->getElementType() == Ty); 1970 return F; 1971 } 1972 1973 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 1974 return llvm::ConstantExpr::getBitCast(F, PTy); 1975 } 1976 1977 /// GetAddrOfFunction - Return the address of the given function. If Ty is 1978 /// non-null, then this function will use the specified type if it has to 1979 /// create it (this occurs when we see a definition of the function). 1980 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 1981 llvm::Type *Ty, 1982 bool ForVTable, 1983 bool DontDefer, 1984 bool IsForDefinition) { 1985 // If there was no specific requested type, just convert it now. 1986 if (!Ty) { 1987 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 1988 auto CanonTy = Context.getCanonicalType(FD->getType()); 1989 Ty = getTypes().ConvertFunctionType(CanonTy, FD); 1990 } 1991 1992 StringRef MangledName = getMangledName(GD); 1993 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 1994 /*IsThunk=*/false, llvm::AttributeSet(), 1995 IsForDefinition); 1996 } 1997 1998 /// CreateRuntimeFunction - Create a new runtime function with the specified 1999 /// type and name. 2000 llvm::Constant * 2001 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, 2002 StringRef Name, 2003 llvm::AttributeSet ExtraAttrs) { 2004 llvm::Constant *C = 2005 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 2006 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); 2007 if (auto *F = dyn_cast<llvm::Function>(C)) 2008 if (F->empty()) 2009 F->setCallingConv(getRuntimeCC()); 2010 return C; 2011 } 2012 2013 /// CreateBuiltinFunction - Create a new builtin function with the specified 2014 /// type and name. 2015 llvm::Constant * 2016 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, 2017 StringRef Name, 2018 llvm::AttributeSet ExtraAttrs) { 2019 llvm::Constant *C = 2020 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 2021 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); 2022 if (auto *F = dyn_cast<llvm::Function>(C)) 2023 if (F->empty()) 2024 F->setCallingConv(getBuiltinCC()); 2025 return C; 2026 } 2027 2028 /// isTypeConstant - Determine whether an object of this type can be emitted 2029 /// as a constant. 2030 /// 2031 /// If ExcludeCtor is true, the duration when the object's constructor runs 2032 /// will not be considered. The caller will need to verify that the object is 2033 /// not written to during its construction. 2034 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 2035 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 2036 return false; 2037 2038 if (Context.getLangOpts().CPlusPlus) { 2039 if (const CXXRecordDecl *Record 2040 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 2041 return ExcludeCtor && !Record->hasMutableFields() && 2042 Record->hasTrivialDestructor(); 2043 } 2044 2045 return true; 2046 } 2047 2048 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 2049 /// create and return an llvm GlobalVariable with the specified type. If there 2050 /// is something in the module with the specified name, return it potentially 2051 /// bitcasted to the right type. 2052 /// 2053 /// If D is non-null, it specifies a decl that correspond to this. This is used 2054 /// to set the attributes on the global when it is first created. 2055 /// 2056 /// If IsForDefinition is true, it is guranteed that an actual global with 2057 /// type Ty will be returned, not conversion of a variable with the same 2058 /// mangled name but some other type. 2059 llvm::Constant * 2060 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 2061 llvm::PointerType *Ty, 2062 const VarDecl *D, 2063 bool IsForDefinition) { 2064 // Lookup the entry, lazily creating it if necessary. 2065 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2066 if (Entry) { 2067 if (WeakRefReferences.erase(Entry)) { 2068 if (D && !D->hasAttr<WeakAttr>()) 2069 Entry->setLinkage(llvm::Function::ExternalLinkage); 2070 } 2071 2072 // Handle dropped DLL attributes. 2073 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 2074 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 2075 2076 if (Entry->getType() == Ty) 2077 return Entry; 2078 2079 // If there are two attempts to define the same mangled name, issue an 2080 // error. 2081 if (IsForDefinition && !Entry->isDeclaration()) { 2082 GlobalDecl OtherGD; 2083 const VarDecl *OtherD; 2084 2085 // Check that D is not yet in DiagnosedConflictingDefinitions is required 2086 // to make sure that we issue an error only once. 2087 if (lookupRepresentativeDecl(MangledName, OtherGD) && 2088 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 2089 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 2090 OtherD->hasInit() && 2091 DiagnosedConflictingDefinitions.insert(D).second) { 2092 getDiags().Report(D->getLocation(), 2093 diag::err_duplicate_mangled_name); 2094 getDiags().Report(OtherGD.getDecl()->getLocation(), 2095 diag::note_previous_definition); 2096 } 2097 } 2098 2099 // Make sure the result is of the correct type. 2100 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 2101 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 2102 2103 // (If global is requested for a definition, we always need to create a new 2104 // global, not just return a bitcast.) 2105 if (!IsForDefinition) 2106 return llvm::ConstantExpr::getBitCast(Entry, Ty); 2107 } 2108 2109 unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace()); 2110 auto *GV = new llvm::GlobalVariable( 2111 getModule(), Ty->getElementType(), false, 2112 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 2113 llvm::GlobalVariable::NotThreadLocal, AddrSpace); 2114 2115 // If we already created a global with the same mangled name (but different 2116 // type) before, take its name and remove it from its parent. 2117 if (Entry) { 2118 GV->takeName(Entry); 2119 2120 if (!Entry->use_empty()) { 2121 llvm::Constant *NewPtrForOldDecl = 2122 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2123 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2124 } 2125 2126 Entry->eraseFromParent(); 2127 } 2128 2129 // This is the first use or definition of a mangled name. If there is a 2130 // deferred decl with this name, remember that we need to emit it at the end 2131 // of the file. 2132 auto DDI = DeferredDecls.find(MangledName); 2133 if (DDI != DeferredDecls.end()) { 2134 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 2135 // list, and remove it from DeferredDecls (since we don't need it anymore). 2136 addDeferredDeclToEmit(GV, DDI->second); 2137 DeferredDecls.erase(DDI); 2138 } 2139 2140 // Handle things which are present even on external declarations. 2141 if (D) { 2142 // FIXME: This code is overly simple and should be merged with other global 2143 // handling. 2144 GV->setConstant(isTypeConstant(D->getType(), false)); 2145 2146 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2147 2148 setLinkageAndVisibilityForGV(GV, D); 2149 2150 if (D->getTLSKind()) { 2151 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2152 CXXThreadLocals.push_back(D); 2153 setTLSMode(GV, *D); 2154 } 2155 2156 // If required by the ABI, treat declarations of static data members with 2157 // inline initializers as definitions. 2158 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 2159 EmitGlobalVarDefinition(D); 2160 } 2161 2162 // Handle XCore specific ABI requirements. 2163 if (getTarget().getTriple().getArch() == llvm::Triple::xcore && 2164 D->getLanguageLinkage() == CLanguageLinkage && 2165 D->getType().isConstant(Context) && 2166 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 2167 GV->setSection(".cp.rodata"); 2168 } 2169 2170 if (AddrSpace != Ty->getAddressSpace()) 2171 return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty); 2172 2173 return GV; 2174 } 2175 2176 llvm::Constant * 2177 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, 2178 bool IsForDefinition) { 2179 if (isa<CXXConstructorDecl>(GD.getDecl())) 2180 return getAddrOfCXXStructor(cast<CXXConstructorDecl>(GD.getDecl()), 2181 getFromCtorType(GD.getCtorType()), 2182 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2183 /*DontDefer=*/false, IsForDefinition); 2184 else if (isa<CXXDestructorDecl>(GD.getDecl())) 2185 return getAddrOfCXXStructor(cast<CXXDestructorDecl>(GD.getDecl()), 2186 getFromDtorType(GD.getDtorType()), 2187 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2188 /*DontDefer=*/false, IsForDefinition); 2189 else if (isa<CXXMethodDecl>(GD.getDecl())) { 2190 auto FInfo = &getTypes().arrangeCXXMethodDeclaration( 2191 cast<CXXMethodDecl>(GD.getDecl())); 2192 auto Ty = getTypes().GetFunctionType(*FInfo); 2193 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2194 IsForDefinition); 2195 } else if (isa<FunctionDecl>(GD.getDecl())) { 2196 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2197 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2198 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2199 IsForDefinition); 2200 } else 2201 return GetAddrOfGlobalVar(cast<VarDecl>(GD.getDecl()), /*Ty=*/nullptr, 2202 IsForDefinition); 2203 } 2204 2205 llvm::GlobalVariable * 2206 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 2207 llvm::Type *Ty, 2208 llvm::GlobalValue::LinkageTypes Linkage) { 2209 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 2210 llvm::GlobalVariable *OldGV = nullptr; 2211 2212 if (GV) { 2213 // Check if the variable has the right type. 2214 if (GV->getType()->getElementType() == Ty) 2215 return GV; 2216 2217 // Because C++ name mangling, the only way we can end up with an already 2218 // existing global with the same name is if it has been declared extern "C". 2219 assert(GV->isDeclaration() && "Declaration has wrong type!"); 2220 OldGV = GV; 2221 } 2222 2223 // Create a new variable. 2224 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 2225 Linkage, nullptr, Name); 2226 2227 if (OldGV) { 2228 // Replace occurrences of the old variable if needed. 2229 GV->takeName(OldGV); 2230 2231 if (!OldGV->use_empty()) { 2232 llvm::Constant *NewPtrForOldDecl = 2233 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 2234 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 2235 } 2236 2237 OldGV->eraseFromParent(); 2238 } 2239 2240 if (supportsCOMDAT() && GV->isWeakForLinker() && 2241 !GV->hasAvailableExternallyLinkage()) 2242 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2243 2244 return GV; 2245 } 2246 2247 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 2248 /// given global variable. If Ty is non-null and if the global doesn't exist, 2249 /// then it will be created with the specified type instead of whatever the 2250 /// normal requested type would be. If IsForDefinition is true, it is guranteed 2251 /// that an actual global with type Ty will be returned, not conversion of a 2252 /// variable with the same mangled name but some other type. 2253 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 2254 llvm::Type *Ty, 2255 bool IsForDefinition) { 2256 assert(D->hasGlobalStorage() && "Not a global variable"); 2257 QualType ASTTy = D->getType(); 2258 if (!Ty) 2259 Ty = getTypes().ConvertTypeForMem(ASTTy); 2260 2261 llvm::PointerType *PTy = 2262 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 2263 2264 StringRef MangledName = getMangledName(D); 2265 return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition); 2266 } 2267 2268 /// CreateRuntimeVariable - Create a new runtime global variable with the 2269 /// specified type and name. 2270 llvm::Constant * 2271 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 2272 StringRef Name) { 2273 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr); 2274 } 2275 2276 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 2277 assert(!D->getInit() && "Cannot emit definite definitions here!"); 2278 2279 StringRef MangledName = getMangledName(D); 2280 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 2281 2282 // We already have a definition, not declaration, with the same mangled name. 2283 // Emitting of declaration is not required (and actually overwrites emitted 2284 // definition). 2285 if (GV && !GV->isDeclaration()) 2286 return; 2287 2288 // If we have not seen a reference to this variable yet, place it into the 2289 // deferred declarations table to be emitted if needed later. 2290 if (!MustBeEmitted(D) && !GV) { 2291 DeferredDecls[MangledName] = D; 2292 return; 2293 } 2294 2295 // The tentative definition is the only definition. 2296 EmitGlobalVarDefinition(D); 2297 } 2298 2299 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 2300 return Context.toCharUnitsFromBits( 2301 getDataLayout().getTypeStoreSizeInBits(Ty)); 2302 } 2303 2304 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D, 2305 unsigned AddrSpace) { 2306 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 2307 if (D->hasAttr<CUDAConstantAttr>()) 2308 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant); 2309 else if (D->hasAttr<CUDASharedAttr>()) 2310 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared); 2311 else 2312 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device); 2313 } 2314 2315 return AddrSpace; 2316 } 2317 2318 template<typename SomeDecl> 2319 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 2320 llvm::GlobalValue *GV) { 2321 if (!getLangOpts().CPlusPlus) 2322 return; 2323 2324 // Must have 'used' attribute, or else inline assembly can't rely on 2325 // the name existing. 2326 if (!D->template hasAttr<UsedAttr>()) 2327 return; 2328 2329 // Must have internal linkage and an ordinary name. 2330 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 2331 return; 2332 2333 // Must be in an extern "C" context. Entities declared directly within 2334 // a record are not extern "C" even if the record is in such a context. 2335 const SomeDecl *First = D->getFirstDecl(); 2336 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 2337 return; 2338 2339 // OK, this is an internal linkage entity inside an extern "C" linkage 2340 // specification. Make a note of that so we can give it the "expected" 2341 // mangled name if nothing else is using that name. 2342 std::pair<StaticExternCMap::iterator, bool> R = 2343 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 2344 2345 // If we have multiple internal linkage entities with the same name 2346 // in extern "C" regions, none of them gets that name. 2347 if (!R.second) 2348 R.first->second = nullptr; 2349 } 2350 2351 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 2352 if (!CGM.supportsCOMDAT()) 2353 return false; 2354 2355 if (D.hasAttr<SelectAnyAttr>()) 2356 return true; 2357 2358 GVALinkage Linkage; 2359 if (auto *VD = dyn_cast<VarDecl>(&D)) 2360 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 2361 else 2362 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 2363 2364 switch (Linkage) { 2365 case GVA_Internal: 2366 case GVA_AvailableExternally: 2367 case GVA_StrongExternal: 2368 return false; 2369 case GVA_DiscardableODR: 2370 case GVA_StrongODR: 2371 return true; 2372 } 2373 llvm_unreachable("No such linkage"); 2374 } 2375 2376 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 2377 llvm::GlobalObject &GO) { 2378 if (!shouldBeInCOMDAT(*this, D)) 2379 return; 2380 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 2381 } 2382 2383 /// Pass IsTentative as true if you want to create a tentative definition. 2384 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 2385 bool IsTentative) { 2386 llvm::Constant *Init = nullptr; 2387 QualType ASTTy = D->getType(); 2388 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 2389 bool NeedsGlobalCtor = false; 2390 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 2391 2392 const VarDecl *InitDecl; 2393 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 2394 2395 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 2396 // as part of their declaration." Sema has already checked for 2397 // error cases, so we just need to set Init to UndefValue. 2398 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 2399 D->hasAttr<CUDASharedAttr>()) 2400 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 2401 else if (!InitExpr) { 2402 // This is a tentative definition; tentative definitions are 2403 // implicitly initialized with { 0 }. 2404 // 2405 // Note that tentative definitions are only emitted at the end of 2406 // a translation unit, so they should never have incomplete 2407 // type. In addition, EmitTentativeDefinition makes sure that we 2408 // never attempt to emit a tentative definition if a real one 2409 // exists. A use may still exists, however, so we still may need 2410 // to do a RAUW. 2411 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 2412 Init = EmitNullConstant(D->getType()); 2413 } else { 2414 initializedGlobalDecl = GlobalDecl(D); 2415 Init = EmitConstantInit(*InitDecl); 2416 2417 if (!Init) { 2418 QualType T = InitExpr->getType(); 2419 if (D->getType()->isReferenceType()) 2420 T = D->getType(); 2421 2422 if (getLangOpts().CPlusPlus) { 2423 Init = EmitNullConstant(T); 2424 NeedsGlobalCtor = true; 2425 } else { 2426 ErrorUnsupported(D, "static initializer"); 2427 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 2428 } 2429 } else { 2430 // We don't need an initializer, so remove the entry for the delayed 2431 // initializer position (just in case this entry was delayed) if we 2432 // also don't need to register a destructor. 2433 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 2434 DelayedCXXInitPosition.erase(D); 2435 } 2436 } 2437 2438 llvm::Type* InitType = Init->getType(); 2439 llvm::Constant *Entry = 2440 GetAddrOfGlobalVar(D, InitType, /*IsForDefinition=*/!IsTentative); 2441 2442 // Strip off a bitcast if we got one back. 2443 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 2444 assert(CE->getOpcode() == llvm::Instruction::BitCast || 2445 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 2446 // All zero index gep. 2447 CE->getOpcode() == llvm::Instruction::GetElementPtr); 2448 Entry = CE->getOperand(0); 2449 } 2450 2451 // Entry is now either a Function or GlobalVariable. 2452 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 2453 2454 // We have a definition after a declaration with the wrong type. 2455 // We must make a new GlobalVariable* and update everything that used OldGV 2456 // (a declaration or tentative definition) with the new GlobalVariable* 2457 // (which will be a definition). 2458 // 2459 // This happens if there is a prototype for a global (e.g. 2460 // "extern int x[];") and then a definition of a different type (e.g. 2461 // "int x[10];"). This also happens when an initializer has a different type 2462 // from the type of the global (this happens with unions). 2463 if (!GV || 2464 GV->getType()->getElementType() != InitType || 2465 GV->getType()->getAddressSpace() != 2466 GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) { 2467 2468 // Move the old entry aside so that we'll create a new one. 2469 Entry->setName(StringRef()); 2470 2471 // Make a new global with the correct type, this is now guaranteed to work. 2472 GV = cast<llvm::GlobalVariable>( 2473 GetAddrOfGlobalVar(D, InitType, /*IsForDefinition=*/!IsTentative)); 2474 2475 // Replace all uses of the old global with the new global 2476 llvm::Constant *NewPtrForOldDecl = 2477 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2478 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2479 2480 // Erase the old global, since it is no longer used. 2481 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 2482 } 2483 2484 MaybeHandleStaticInExternC(D, GV); 2485 2486 if (D->hasAttr<AnnotateAttr>()) 2487 AddGlobalAnnotations(D, GV); 2488 2489 // Set the llvm linkage type as appropriate. 2490 llvm::GlobalValue::LinkageTypes Linkage = 2491 getLLVMLinkageVarDefinition(D, GV->isConstant()); 2492 2493 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 2494 // the device. [...]" 2495 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 2496 // __device__, declares a variable that: [...] 2497 // Is accessible from all the threads within the grid and from the host 2498 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 2499 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 2500 if (GV && LangOpts.CUDA) { 2501 if (LangOpts.CUDAIsDevice) { 2502 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) 2503 GV->setExternallyInitialized(true); 2504 } else { 2505 // Host-side shadows of external declarations of device-side 2506 // global variables become internal definitions. These have to 2507 // be internal in order to prevent name conflicts with global 2508 // host variables with the same name in a different TUs. 2509 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) { 2510 Linkage = llvm::GlobalValue::InternalLinkage; 2511 2512 // Shadow variables and their properties must be registered 2513 // with CUDA runtime. 2514 unsigned Flags = 0; 2515 if (!D->hasDefinition()) 2516 Flags |= CGCUDARuntime::ExternDeviceVar; 2517 if (D->hasAttr<CUDAConstantAttr>()) 2518 Flags |= CGCUDARuntime::ConstantDeviceVar; 2519 getCUDARuntime().registerDeviceVar(*GV, Flags); 2520 } else if (D->hasAttr<CUDASharedAttr>()) 2521 // __shared__ variables are odd. Shadows do get created, but 2522 // they are not registered with the CUDA runtime, so they 2523 // can't really be used to access their device-side 2524 // counterparts. It's not clear yet whether it's nvcc's bug or 2525 // a feature, but we've got to do the same for compatibility. 2526 Linkage = llvm::GlobalValue::InternalLinkage; 2527 } 2528 } 2529 GV->setInitializer(Init); 2530 2531 // If it is safe to mark the global 'constant', do so now. 2532 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 2533 isTypeConstant(D->getType(), true)); 2534 2535 // If it is in a read-only section, mark it 'constant'. 2536 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 2537 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 2538 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 2539 GV->setConstant(true); 2540 } 2541 2542 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2543 2544 2545 // On Darwin, if the normal linkage of a C++ thread_local variable is 2546 // LinkOnce or Weak, we keep the normal linkage to prevent multiple 2547 // copies within a linkage unit; otherwise, the backing variable has 2548 // internal linkage and all accesses should just be calls to the 2549 // Itanium-specified entry point, which has the normal linkage of the 2550 // variable. This is to preserve the ability to change the implementation 2551 // behind the scenes. 2552 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic && 2553 Context.getTargetInfo().getTriple().isOSDarwin() && 2554 !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) && 2555 !llvm::GlobalVariable::isWeakLinkage(Linkage)) 2556 Linkage = llvm::GlobalValue::InternalLinkage; 2557 2558 GV->setLinkage(Linkage); 2559 if (D->hasAttr<DLLImportAttr>()) 2560 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 2561 else if (D->hasAttr<DLLExportAttr>()) 2562 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 2563 else 2564 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 2565 2566 if (Linkage == llvm::GlobalVariable::CommonLinkage) 2567 // common vars aren't constant even if declared const. 2568 GV->setConstant(false); 2569 2570 setNonAliasAttributes(D, GV); 2571 2572 if (D->getTLSKind() && !GV->isThreadLocal()) { 2573 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2574 CXXThreadLocals.push_back(D); 2575 setTLSMode(GV, *D); 2576 } 2577 2578 maybeSetTrivialComdat(*D, *GV); 2579 2580 // Emit the initializer function if necessary. 2581 if (NeedsGlobalCtor || NeedsGlobalDtor) 2582 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 2583 2584 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 2585 2586 // Emit global variable debug information. 2587 if (CGDebugInfo *DI = getModuleDebugInfo()) 2588 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 2589 DI->EmitGlobalVariable(GV, D); 2590 } 2591 2592 static bool isVarDeclStrongDefinition(const ASTContext &Context, 2593 CodeGenModule &CGM, const VarDecl *D, 2594 bool NoCommon) { 2595 // Don't give variables common linkage if -fno-common was specified unless it 2596 // was overridden by a NoCommon attribute. 2597 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 2598 return true; 2599 2600 // C11 6.9.2/2: 2601 // A declaration of an identifier for an object that has file scope without 2602 // an initializer, and without a storage-class specifier or with the 2603 // storage-class specifier static, constitutes a tentative definition. 2604 if (D->getInit() || D->hasExternalStorage()) 2605 return true; 2606 2607 // A variable cannot be both common and exist in a section. 2608 if (D->hasAttr<SectionAttr>()) 2609 return true; 2610 2611 // Thread local vars aren't considered common linkage. 2612 if (D->getTLSKind()) 2613 return true; 2614 2615 // Tentative definitions marked with WeakImportAttr are true definitions. 2616 if (D->hasAttr<WeakImportAttr>()) 2617 return true; 2618 2619 // A variable cannot be both common and exist in a comdat. 2620 if (shouldBeInCOMDAT(CGM, *D)) 2621 return true; 2622 2623 // Declarations with a required alignment do not have common linakge in MSVC 2624 // mode. 2625 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 2626 if (D->hasAttr<AlignedAttr>()) 2627 return true; 2628 QualType VarType = D->getType(); 2629 if (Context.isAlignmentRequired(VarType)) 2630 return true; 2631 2632 if (const auto *RT = VarType->getAs<RecordType>()) { 2633 const RecordDecl *RD = RT->getDecl(); 2634 for (const FieldDecl *FD : RD->fields()) { 2635 if (FD->isBitField()) 2636 continue; 2637 if (FD->hasAttr<AlignedAttr>()) 2638 return true; 2639 if (Context.isAlignmentRequired(FD->getType())) 2640 return true; 2641 } 2642 } 2643 } 2644 2645 return false; 2646 } 2647 2648 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 2649 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 2650 if (Linkage == GVA_Internal) 2651 return llvm::Function::InternalLinkage; 2652 2653 if (D->hasAttr<WeakAttr>()) { 2654 if (IsConstantVariable) 2655 return llvm::GlobalVariable::WeakODRLinkage; 2656 else 2657 return llvm::GlobalVariable::WeakAnyLinkage; 2658 } 2659 2660 // We are guaranteed to have a strong definition somewhere else, 2661 // so we can use available_externally linkage. 2662 if (Linkage == GVA_AvailableExternally) 2663 return llvm::Function::AvailableExternallyLinkage; 2664 2665 // Note that Apple's kernel linker doesn't support symbol 2666 // coalescing, so we need to avoid linkonce and weak linkages there. 2667 // Normally, this means we just map to internal, but for explicit 2668 // instantiations we'll map to external. 2669 2670 // In C++, the compiler has to emit a definition in every translation unit 2671 // that references the function. We should use linkonce_odr because 2672 // a) if all references in this translation unit are optimized away, we 2673 // don't need to codegen it. b) if the function persists, it needs to be 2674 // merged with other definitions. c) C++ has the ODR, so we know the 2675 // definition is dependable. 2676 if (Linkage == GVA_DiscardableODR) 2677 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 2678 : llvm::Function::InternalLinkage; 2679 2680 // An explicit instantiation of a template has weak linkage, since 2681 // explicit instantiations can occur in multiple translation units 2682 // and must all be equivalent. However, we are not allowed to 2683 // throw away these explicit instantiations. 2684 if (Linkage == GVA_StrongODR) 2685 return !Context.getLangOpts().AppleKext ? llvm::Function::WeakODRLinkage 2686 : llvm::Function::ExternalLinkage; 2687 2688 // C++ doesn't have tentative definitions and thus cannot have common 2689 // linkage. 2690 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 2691 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 2692 CodeGenOpts.NoCommon)) 2693 return llvm::GlobalVariable::CommonLinkage; 2694 2695 // selectany symbols are externally visible, so use weak instead of 2696 // linkonce. MSVC optimizes away references to const selectany globals, so 2697 // all definitions should be the same and ODR linkage should be used. 2698 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 2699 if (D->hasAttr<SelectAnyAttr>()) 2700 return llvm::GlobalVariable::WeakODRLinkage; 2701 2702 // Otherwise, we have strong external linkage. 2703 assert(Linkage == GVA_StrongExternal); 2704 return llvm::GlobalVariable::ExternalLinkage; 2705 } 2706 2707 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 2708 const VarDecl *VD, bool IsConstant) { 2709 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 2710 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 2711 } 2712 2713 /// Replace the uses of a function that was declared with a non-proto type. 2714 /// We want to silently drop extra arguments from call sites 2715 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 2716 llvm::Function *newFn) { 2717 // Fast path. 2718 if (old->use_empty()) return; 2719 2720 llvm::Type *newRetTy = newFn->getReturnType(); 2721 SmallVector<llvm::Value*, 4> newArgs; 2722 SmallVector<llvm::OperandBundleDef, 1> newBundles; 2723 2724 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 2725 ui != ue; ) { 2726 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 2727 llvm::User *user = use->getUser(); 2728 2729 // Recognize and replace uses of bitcasts. Most calls to 2730 // unprototyped functions will use bitcasts. 2731 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 2732 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 2733 replaceUsesOfNonProtoConstant(bitcast, newFn); 2734 continue; 2735 } 2736 2737 // Recognize calls to the function. 2738 llvm::CallSite callSite(user); 2739 if (!callSite) continue; 2740 if (!callSite.isCallee(&*use)) continue; 2741 2742 // If the return types don't match exactly, then we can't 2743 // transform this call unless it's dead. 2744 if (callSite->getType() != newRetTy && !callSite->use_empty()) 2745 continue; 2746 2747 // Get the call site's attribute list. 2748 SmallVector<llvm::AttributeSet, 8> newAttrs; 2749 llvm::AttributeSet oldAttrs = callSite.getAttributes(); 2750 2751 // Collect any return attributes from the call. 2752 if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex)) 2753 newAttrs.push_back( 2754 llvm::AttributeSet::get(newFn->getContext(), 2755 oldAttrs.getRetAttributes())); 2756 2757 // If the function was passed too few arguments, don't transform. 2758 unsigned newNumArgs = newFn->arg_size(); 2759 if (callSite.arg_size() < newNumArgs) continue; 2760 2761 // If extra arguments were passed, we silently drop them. 2762 // If any of the types mismatch, we don't transform. 2763 unsigned argNo = 0; 2764 bool dontTransform = false; 2765 for (llvm::Function::arg_iterator ai = newFn->arg_begin(), 2766 ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) { 2767 if (callSite.getArgument(argNo)->getType() != ai->getType()) { 2768 dontTransform = true; 2769 break; 2770 } 2771 2772 // Add any parameter attributes. 2773 if (oldAttrs.hasAttributes(argNo + 1)) 2774 newAttrs. 2775 push_back(llvm:: 2776 AttributeSet::get(newFn->getContext(), 2777 oldAttrs.getParamAttributes(argNo + 1))); 2778 } 2779 if (dontTransform) 2780 continue; 2781 2782 if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) 2783 newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(), 2784 oldAttrs.getFnAttributes())); 2785 2786 // Okay, we can transform this. Create the new call instruction and copy 2787 // over the required information. 2788 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 2789 2790 // Copy over any operand bundles. 2791 callSite.getOperandBundlesAsDefs(newBundles); 2792 2793 llvm::CallSite newCall; 2794 if (callSite.isCall()) { 2795 newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "", 2796 callSite.getInstruction()); 2797 } else { 2798 auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction()); 2799 newCall = llvm::InvokeInst::Create(newFn, 2800 oldInvoke->getNormalDest(), 2801 oldInvoke->getUnwindDest(), 2802 newArgs, newBundles, "", 2803 callSite.getInstruction()); 2804 } 2805 newArgs.clear(); // for the next iteration 2806 2807 if (!newCall->getType()->isVoidTy()) 2808 newCall->takeName(callSite.getInstruction()); 2809 newCall.setAttributes( 2810 llvm::AttributeSet::get(newFn->getContext(), newAttrs)); 2811 newCall.setCallingConv(callSite.getCallingConv()); 2812 2813 // Finally, remove the old call, replacing any uses with the new one. 2814 if (!callSite->use_empty()) 2815 callSite->replaceAllUsesWith(newCall.getInstruction()); 2816 2817 // Copy debug location attached to CI. 2818 if (callSite->getDebugLoc()) 2819 newCall->setDebugLoc(callSite->getDebugLoc()); 2820 2821 callSite->eraseFromParent(); 2822 } 2823 } 2824 2825 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 2826 /// implement a function with no prototype, e.g. "int foo() {}". If there are 2827 /// existing call uses of the old function in the module, this adjusts them to 2828 /// call the new function directly. 2829 /// 2830 /// This is not just a cleanup: the always_inline pass requires direct calls to 2831 /// functions to be able to inline them. If there is a bitcast in the way, it 2832 /// won't inline them. Instcombine normally deletes these calls, but it isn't 2833 /// run at -O0. 2834 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2835 llvm::Function *NewFn) { 2836 // If we're redefining a global as a function, don't transform it. 2837 if (!isa<llvm::Function>(Old)) return; 2838 2839 replaceUsesOfNonProtoConstant(Old, NewFn); 2840 } 2841 2842 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 2843 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 2844 // If we have a definition, this might be a deferred decl. If the 2845 // instantiation is explicit, make sure we emit it at the end. 2846 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 2847 GetAddrOfGlobalVar(VD); 2848 2849 EmitTopLevelDecl(VD); 2850 } 2851 2852 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 2853 llvm::GlobalValue *GV) { 2854 const auto *D = cast<FunctionDecl>(GD.getDecl()); 2855 2856 // Compute the function info and LLVM type. 2857 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2858 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2859 2860 // Get or create the prototype for the function. 2861 if (!GV || (GV->getType()->getElementType() != Ty)) 2862 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 2863 /*DontDefer=*/true, 2864 /*IsForDefinition=*/true)); 2865 2866 // Already emitted. 2867 if (!GV->isDeclaration()) 2868 return; 2869 2870 // We need to set linkage and visibility on the function before 2871 // generating code for it because various parts of IR generation 2872 // want to propagate this information down (e.g. to local static 2873 // declarations). 2874 auto *Fn = cast<llvm::Function>(GV); 2875 setFunctionLinkage(GD, Fn); 2876 setFunctionDLLStorageClass(GD, Fn); 2877 2878 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 2879 setGlobalVisibility(Fn, D); 2880 2881 MaybeHandleStaticInExternC(D, Fn); 2882 2883 maybeSetTrivialComdat(*D, *Fn); 2884 2885 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 2886 2887 setFunctionDefinitionAttributes(D, Fn); 2888 SetLLVMFunctionAttributesForDefinition(D, Fn); 2889 2890 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 2891 AddGlobalCtor(Fn, CA->getPriority()); 2892 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 2893 AddGlobalDtor(Fn, DA->getPriority()); 2894 if (D->hasAttr<AnnotateAttr>()) 2895 AddGlobalAnnotations(D, Fn); 2896 } 2897 2898 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 2899 const auto *D = cast<ValueDecl>(GD.getDecl()); 2900 const AliasAttr *AA = D->getAttr<AliasAttr>(); 2901 assert(AA && "Not an alias?"); 2902 2903 StringRef MangledName = getMangledName(GD); 2904 2905 if (AA->getAliasee() == MangledName) { 2906 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 2907 return; 2908 } 2909 2910 // If there is a definition in the module, then it wins over the alias. 2911 // This is dubious, but allow it to be safe. Just ignore the alias. 2912 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2913 if (Entry && !Entry->isDeclaration()) 2914 return; 2915 2916 Aliases.push_back(GD); 2917 2918 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 2919 2920 // Create a reference to the named value. This ensures that it is emitted 2921 // if a deferred decl. 2922 llvm::Constant *Aliasee; 2923 if (isa<llvm::FunctionType>(DeclTy)) 2924 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 2925 /*ForVTable=*/false); 2926 else 2927 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2928 llvm::PointerType::getUnqual(DeclTy), 2929 /*D=*/nullptr); 2930 2931 // Create the new alias itself, but don't set a name yet. 2932 auto *GA = llvm::GlobalAlias::create( 2933 DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule()); 2934 2935 if (Entry) { 2936 if (GA->getAliasee() == Entry) { 2937 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 2938 return; 2939 } 2940 2941 assert(Entry->isDeclaration()); 2942 2943 // If there is a declaration in the module, then we had an extern followed 2944 // by the alias, as in: 2945 // extern int test6(); 2946 // ... 2947 // int test6() __attribute__((alias("test7"))); 2948 // 2949 // Remove it and replace uses of it with the alias. 2950 GA->takeName(Entry); 2951 2952 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 2953 Entry->getType())); 2954 Entry->eraseFromParent(); 2955 } else { 2956 GA->setName(MangledName); 2957 } 2958 2959 // Set attributes which are particular to an alias; this is a 2960 // specialization of the attributes which may be set on a global 2961 // variable/function. 2962 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 2963 D->isWeakImported()) { 2964 GA->setLinkage(llvm::Function::WeakAnyLinkage); 2965 } 2966 2967 if (const auto *VD = dyn_cast<VarDecl>(D)) 2968 if (VD->getTLSKind()) 2969 setTLSMode(GA, *VD); 2970 2971 setAliasAttributes(D, GA); 2972 } 2973 2974 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 2975 const auto *D = cast<ValueDecl>(GD.getDecl()); 2976 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 2977 assert(IFA && "Not an ifunc?"); 2978 2979 StringRef MangledName = getMangledName(GD); 2980 2981 if (IFA->getResolver() == MangledName) { 2982 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 2983 return; 2984 } 2985 2986 // Report an error if some definition overrides ifunc. 2987 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2988 if (Entry && !Entry->isDeclaration()) { 2989 GlobalDecl OtherGD; 2990 if (lookupRepresentativeDecl(MangledName, OtherGD) && 2991 DiagnosedConflictingDefinitions.insert(GD).second) { 2992 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name); 2993 Diags.Report(OtherGD.getDecl()->getLocation(), 2994 diag::note_previous_definition); 2995 } 2996 return; 2997 } 2998 2999 Aliases.push_back(GD); 3000 3001 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 3002 llvm::Constant *Resolver = 3003 GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD, 3004 /*ForVTable=*/false); 3005 llvm::GlobalIFunc *GIF = 3006 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 3007 "", Resolver, &getModule()); 3008 if (Entry) { 3009 if (GIF->getResolver() == Entry) { 3010 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 3011 return; 3012 } 3013 assert(Entry->isDeclaration()); 3014 3015 // If there is a declaration in the module, then we had an extern followed 3016 // by the ifunc, as in: 3017 // extern int test(); 3018 // ... 3019 // int test() __attribute__((ifunc("resolver"))); 3020 // 3021 // Remove it and replace uses of it with the ifunc. 3022 GIF->takeName(Entry); 3023 3024 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 3025 Entry->getType())); 3026 Entry->eraseFromParent(); 3027 } else 3028 GIF->setName(MangledName); 3029 3030 SetCommonAttributes(D, GIF); 3031 } 3032 3033 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 3034 ArrayRef<llvm::Type*> Tys) { 3035 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 3036 Tys); 3037 } 3038 3039 static llvm::StringMapEntry<llvm::GlobalVariable *> & 3040 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 3041 const StringLiteral *Literal, bool TargetIsLSB, 3042 bool &IsUTF16, unsigned &StringLength) { 3043 StringRef String = Literal->getString(); 3044 unsigned NumBytes = String.size(); 3045 3046 // Check for simple case. 3047 if (!Literal->containsNonAsciiOrNull()) { 3048 StringLength = NumBytes; 3049 return *Map.insert(std::make_pair(String, nullptr)).first; 3050 } 3051 3052 // Otherwise, convert the UTF8 literals into a string of shorts. 3053 IsUTF16 = true; 3054 3055 SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 3056 const UTF8 *FromPtr = (const UTF8 *)String.data(); 3057 UTF16 *ToPtr = &ToBuf[0]; 3058 3059 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 3060 &ToPtr, ToPtr + NumBytes, 3061 strictConversion); 3062 3063 // ConvertUTF8toUTF16 returns the length in ToPtr. 3064 StringLength = ToPtr - &ToBuf[0]; 3065 3066 // Add an explicit null. 3067 *ToPtr = 0; 3068 return *Map.insert(std::make_pair( 3069 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 3070 (StringLength + 1) * 2), 3071 nullptr)).first; 3072 } 3073 3074 static llvm::StringMapEntry<llvm::GlobalVariable *> & 3075 GetConstantStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 3076 const StringLiteral *Literal, unsigned &StringLength) { 3077 StringRef String = Literal->getString(); 3078 StringLength = String.size(); 3079 return *Map.insert(std::make_pair(String, nullptr)).first; 3080 } 3081 3082 ConstantAddress 3083 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 3084 unsigned StringLength = 0; 3085 bool isUTF16 = false; 3086 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 3087 GetConstantCFStringEntry(CFConstantStringMap, Literal, 3088 getDataLayout().isLittleEndian(), isUTF16, 3089 StringLength); 3090 3091 if (auto *C = Entry.second) 3092 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 3093 3094 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 3095 llvm::Constant *Zeros[] = { Zero, Zero }; 3096 llvm::Value *V; 3097 3098 // If we don't already have it, get __CFConstantStringClassReference. 3099 if (!CFConstantStringClassRef) { 3100 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 3101 Ty = llvm::ArrayType::get(Ty, 0); 3102 llvm::Constant *GV = CreateRuntimeVariable(Ty, 3103 "__CFConstantStringClassReference"); 3104 // Decay array -> ptr 3105 V = llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros); 3106 CFConstantStringClassRef = V; 3107 } 3108 else 3109 V = CFConstantStringClassRef; 3110 3111 QualType CFTy = getContext().getCFConstantStringType(); 3112 3113 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 3114 3115 llvm::Constant *Fields[4]; 3116 3117 // Class pointer. 3118 Fields[0] = cast<llvm::ConstantExpr>(V); 3119 3120 // Flags. 3121 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 3122 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 3123 llvm::ConstantInt::get(Ty, 0x07C8); 3124 3125 // String pointer. 3126 llvm::Constant *C = nullptr; 3127 if (isUTF16) { 3128 auto Arr = llvm::makeArrayRef( 3129 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 3130 Entry.first().size() / 2); 3131 C = llvm::ConstantDataArray::get(VMContext, Arr); 3132 } else { 3133 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 3134 } 3135 3136 // Note: -fwritable-strings doesn't make the backing store strings of 3137 // CFStrings writable. (See <rdar://problem/10657500>) 3138 auto *GV = 3139 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 3140 llvm::GlobalValue::PrivateLinkage, C, ".str"); 3141 GV->setUnnamedAddr(true); 3142 // Don't enforce the target's minimum global alignment, since the only use 3143 // of the string is via this class initializer. 3144 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. Without 3145 // it LLVM can merge the string with a non unnamed_addr one during LTO. Doing 3146 // that changes the section it ends in, which surprises ld64. 3147 if (isUTF16) { 3148 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 3149 GV->setAlignment(Align.getQuantity()); 3150 GV->setSection("__TEXT,__ustring"); 3151 } else { 3152 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 3153 GV->setAlignment(Align.getQuantity()); 3154 GV->setSection("__TEXT,__cstring,cstring_literals"); 3155 } 3156 3157 // String. 3158 Fields[2] = 3159 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 3160 3161 if (isUTF16) 3162 // Cast the UTF16 string to the correct type. 3163 Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy); 3164 3165 // String length. 3166 Ty = getTypes().ConvertType(getContext().LongTy); 3167 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 3168 3169 CharUnits Alignment = getPointerAlign(); 3170 3171 // The struct. 3172 C = llvm::ConstantStruct::get(STy, Fields); 3173 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 3174 llvm::GlobalVariable::PrivateLinkage, C, 3175 "_unnamed_cfstring_"); 3176 GV->setSection("__DATA,__cfstring"); 3177 GV->setAlignment(Alignment.getQuantity()); 3178 Entry.second = GV; 3179 3180 return ConstantAddress(GV, Alignment); 3181 } 3182 3183 ConstantAddress 3184 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) { 3185 unsigned StringLength = 0; 3186 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 3187 GetConstantStringEntry(CFConstantStringMap, Literal, StringLength); 3188 3189 if (auto *C = Entry.second) 3190 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 3191 3192 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 3193 llvm::Constant *Zeros[] = { Zero, Zero }; 3194 llvm::Value *V; 3195 // If we don't already have it, get _NSConstantStringClassReference. 3196 if (!ConstantStringClassRef) { 3197 std::string StringClass(getLangOpts().ObjCConstantStringClass); 3198 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 3199 llvm::Constant *GV; 3200 if (LangOpts.ObjCRuntime.isNonFragile()) { 3201 std::string str = 3202 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString" 3203 : "OBJC_CLASS_$_" + StringClass; 3204 GV = getObjCRuntime().GetClassGlobal(str); 3205 // Make sure the result is of the correct type. 3206 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 3207 V = llvm::ConstantExpr::getBitCast(GV, PTy); 3208 ConstantStringClassRef = V; 3209 } else { 3210 std::string str = 3211 StringClass.empty() ? "_NSConstantStringClassReference" 3212 : "_" + StringClass + "ClassReference"; 3213 llvm::Type *PTy = llvm::ArrayType::get(Ty, 0); 3214 GV = CreateRuntimeVariable(PTy, str); 3215 // Decay array -> ptr 3216 V = llvm::ConstantExpr::getGetElementPtr(PTy, GV, Zeros); 3217 ConstantStringClassRef = V; 3218 } 3219 } else 3220 V = ConstantStringClassRef; 3221 3222 if (!NSConstantStringType) { 3223 // Construct the type for a constant NSString. 3224 RecordDecl *D = Context.buildImplicitRecord("__builtin_NSString"); 3225 D->startDefinition(); 3226 3227 QualType FieldTypes[3]; 3228 3229 // const int *isa; 3230 FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst()); 3231 // const char *str; 3232 FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst()); 3233 // unsigned int length; 3234 FieldTypes[2] = Context.UnsignedIntTy; 3235 3236 // Create fields 3237 for (unsigned i = 0; i < 3; ++i) { 3238 FieldDecl *Field = FieldDecl::Create(Context, D, 3239 SourceLocation(), 3240 SourceLocation(), nullptr, 3241 FieldTypes[i], /*TInfo=*/nullptr, 3242 /*BitWidth=*/nullptr, 3243 /*Mutable=*/false, 3244 ICIS_NoInit); 3245 Field->setAccess(AS_public); 3246 D->addDecl(Field); 3247 } 3248 3249 D->completeDefinition(); 3250 QualType NSTy = Context.getTagDeclType(D); 3251 NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 3252 } 3253 3254 llvm::Constant *Fields[3]; 3255 3256 // Class pointer. 3257 Fields[0] = cast<llvm::ConstantExpr>(V); 3258 3259 // String pointer. 3260 llvm::Constant *C = 3261 llvm::ConstantDataArray::getString(VMContext, Entry.first()); 3262 3263 llvm::GlobalValue::LinkageTypes Linkage; 3264 bool isConstant; 3265 Linkage = llvm::GlobalValue::PrivateLinkage; 3266 isConstant = !LangOpts.WritableStrings; 3267 3268 auto *GV = new llvm::GlobalVariable(getModule(), C->getType(), isConstant, 3269 Linkage, C, ".str"); 3270 GV->setUnnamedAddr(true); 3271 // Don't enforce the target's minimum global alignment, since the only use 3272 // of the string is via this class initializer. 3273 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 3274 GV->setAlignment(Align.getQuantity()); 3275 Fields[1] = 3276 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 3277 3278 // String length. 3279 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 3280 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 3281 3282 // The struct. 3283 CharUnits Alignment = getPointerAlign(); 3284 C = llvm::ConstantStruct::get(NSConstantStringType, Fields); 3285 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 3286 llvm::GlobalVariable::PrivateLinkage, C, 3287 "_unnamed_nsstring_"); 3288 GV->setAlignment(Alignment.getQuantity()); 3289 const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip"; 3290 const char *NSStringNonFragileABISection = 3291 "__DATA,__objc_stringobj,regular,no_dead_strip"; 3292 // FIXME. Fix section. 3293 GV->setSection(LangOpts.ObjCRuntime.isNonFragile() 3294 ? NSStringNonFragileABISection 3295 : NSStringSection); 3296 Entry.second = GV; 3297 3298 return ConstantAddress(GV, Alignment); 3299 } 3300 3301 QualType CodeGenModule::getObjCFastEnumerationStateType() { 3302 if (ObjCFastEnumerationStateType.isNull()) { 3303 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 3304 D->startDefinition(); 3305 3306 QualType FieldTypes[] = { 3307 Context.UnsignedLongTy, 3308 Context.getPointerType(Context.getObjCIdType()), 3309 Context.getPointerType(Context.UnsignedLongTy), 3310 Context.getConstantArrayType(Context.UnsignedLongTy, 3311 llvm::APInt(32, 5), ArrayType::Normal, 0) 3312 }; 3313 3314 for (size_t i = 0; i < 4; ++i) { 3315 FieldDecl *Field = FieldDecl::Create(Context, 3316 D, 3317 SourceLocation(), 3318 SourceLocation(), nullptr, 3319 FieldTypes[i], /*TInfo=*/nullptr, 3320 /*BitWidth=*/nullptr, 3321 /*Mutable=*/false, 3322 ICIS_NoInit); 3323 Field->setAccess(AS_public); 3324 D->addDecl(Field); 3325 } 3326 3327 D->completeDefinition(); 3328 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 3329 } 3330 3331 return ObjCFastEnumerationStateType; 3332 } 3333 3334 llvm::Constant * 3335 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 3336 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 3337 3338 // Don't emit it as the address of the string, emit the string data itself 3339 // as an inline array. 3340 if (E->getCharByteWidth() == 1) { 3341 SmallString<64> Str(E->getString()); 3342 3343 // Resize the string to the right size, which is indicated by its type. 3344 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 3345 Str.resize(CAT->getSize().getZExtValue()); 3346 return llvm::ConstantDataArray::getString(VMContext, Str, false); 3347 } 3348 3349 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 3350 llvm::Type *ElemTy = AType->getElementType(); 3351 unsigned NumElements = AType->getNumElements(); 3352 3353 // Wide strings have either 2-byte or 4-byte elements. 3354 if (ElemTy->getPrimitiveSizeInBits() == 16) { 3355 SmallVector<uint16_t, 32> Elements; 3356 Elements.reserve(NumElements); 3357 3358 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3359 Elements.push_back(E->getCodeUnit(i)); 3360 Elements.resize(NumElements); 3361 return llvm::ConstantDataArray::get(VMContext, Elements); 3362 } 3363 3364 assert(ElemTy->getPrimitiveSizeInBits() == 32); 3365 SmallVector<uint32_t, 32> Elements; 3366 Elements.reserve(NumElements); 3367 3368 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3369 Elements.push_back(E->getCodeUnit(i)); 3370 Elements.resize(NumElements); 3371 return llvm::ConstantDataArray::get(VMContext, Elements); 3372 } 3373 3374 static llvm::GlobalVariable * 3375 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 3376 CodeGenModule &CGM, StringRef GlobalName, 3377 CharUnits Alignment) { 3378 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 3379 unsigned AddrSpace = 0; 3380 if (CGM.getLangOpts().OpenCL) 3381 AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant); 3382 3383 llvm::Module &M = CGM.getModule(); 3384 // Create a global variable for this string 3385 auto *GV = new llvm::GlobalVariable( 3386 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 3387 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 3388 GV->setAlignment(Alignment.getQuantity()); 3389 GV->setUnnamedAddr(true); 3390 if (GV->isWeakForLinker()) { 3391 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 3392 GV->setComdat(M.getOrInsertComdat(GV->getName())); 3393 } 3394 3395 return GV; 3396 } 3397 3398 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 3399 /// constant array for the given string literal. 3400 ConstantAddress 3401 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 3402 StringRef Name) { 3403 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 3404 3405 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 3406 llvm::GlobalVariable **Entry = nullptr; 3407 if (!LangOpts.WritableStrings) { 3408 Entry = &ConstantStringMap[C]; 3409 if (auto GV = *Entry) { 3410 if (Alignment.getQuantity() > GV->getAlignment()) 3411 GV->setAlignment(Alignment.getQuantity()); 3412 return ConstantAddress(GV, Alignment); 3413 } 3414 } 3415 3416 SmallString<256> MangledNameBuffer; 3417 StringRef GlobalVariableName; 3418 llvm::GlobalValue::LinkageTypes LT; 3419 3420 // Mangle the string literal if the ABI allows for it. However, we cannot 3421 // do this if we are compiling with ASan or -fwritable-strings because they 3422 // rely on strings having normal linkage. 3423 if (!LangOpts.WritableStrings && 3424 !LangOpts.Sanitize.has(SanitizerKind::Address) && 3425 getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) { 3426 llvm::raw_svector_ostream Out(MangledNameBuffer); 3427 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 3428 3429 LT = llvm::GlobalValue::LinkOnceODRLinkage; 3430 GlobalVariableName = MangledNameBuffer; 3431 } else { 3432 LT = llvm::GlobalValue::PrivateLinkage; 3433 GlobalVariableName = Name; 3434 } 3435 3436 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 3437 if (Entry) 3438 *Entry = GV; 3439 3440 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 3441 QualType()); 3442 return ConstantAddress(GV, Alignment); 3443 } 3444 3445 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 3446 /// array for the given ObjCEncodeExpr node. 3447 ConstantAddress 3448 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 3449 std::string Str; 3450 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 3451 3452 return GetAddrOfConstantCString(Str); 3453 } 3454 3455 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 3456 /// the literal and a terminating '\0' character. 3457 /// The result has pointer to array type. 3458 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 3459 const std::string &Str, const char *GlobalName) { 3460 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 3461 CharUnits Alignment = 3462 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 3463 3464 llvm::Constant *C = 3465 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 3466 3467 // Don't share any string literals if strings aren't constant. 3468 llvm::GlobalVariable **Entry = nullptr; 3469 if (!LangOpts.WritableStrings) { 3470 Entry = &ConstantStringMap[C]; 3471 if (auto GV = *Entry) { 3472 if (Alignment.getQuantity() > GV->getAlignment()) 3473 GV->setAlignment(Alignment.getQuantity()); 3474 return ConstantAddress(GV, Alignment); 3475 } 3476 } 3477 3478 // Get the default prefix if a name wasn't specified. 3479 if (!GlobalName) 3480 GlobalName = ".str"; 3481 // Create a global variable for this. 3482 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 3483 GlobalName, Alignment); 3484 if (Entry) 3485 *Entry = GV; 3486 return ConstantAddress(GV, Alignment); 3487 } 3488 3489 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 3490 const MaterializeTemporaryExpr *E, const Expr *Init) { 3491 assert((E->getStorageDuration() == SD_Static || 3492 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 3493 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 3494 3495 // If we're not materializing a subobject of the temporary, keep the 3496 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 3497 QualType MaterializedType = Init->getType(); 3498 if (Init == E->GetTemporaryExpr()) 3499 MaterializedType = E->getType(); 3500 3501 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 3502 3503 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E]) 3504 return ConstantAddress(Slot, Align); 3505 3506 // FIXME: If an externally-visible declaration extends multiple temporaries, 3507 // we need to give each temporary the same name in every translation unit (and 3508 // we also need to make the temporaries externally-visible). 3509 SmallString<256> Name; 3510 llvm::raw_svector_ostream Out(Name); 3511 getCXXABI().getMangleContext().mangleReferenceTemporary( 3512 VD, E->getManglingNumber(), Out); 3513 3514 APValue *Value = nullptr; 3515 if (E->getStorageDuration() == SD_Static) { 3516 // We might have a cached constant initializer for this temporary. Note 3517 // that this might have a different value from the value computed by 3518 // evaluating the initializer if the surrounding constant expression 3519 // modifies the temporary. 3520 Value = getContext().getMaterializedTemporaryValue(E, false); 3521 if (Value && Value->isUninit()) 3522 Value = nullptr; 3523 } 3524 3525 // Try evaluating it now, it might have a constant initializer. 3526 Expr::EvalResult EvalResult; 3527 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 3528 !EvalResult.hasSideEffects()) 3529 Value = &EvalResult.Val; 3530 3531 llvm::Constant *InitialValue = nullptr; 3532 bool Constant = false; 3533 llvm::Type *Type; 3534 if (Value) { 3535 // The temporary has a constant initializer, use it. 3536 InitialValue = EmitConstantValue(*Value, MaterializedType, nullptr); 3537 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 3538 Type = InitialValue->getType(); 3539 } else { 3540 // No initializer, the initialization will be provided when we 3541 // initialize the declaration which performed lifetime extension. 3542 Type = getTypes().ConvertTypeForMem(MaterializedType); 3543 } 3544 3545 // Create a global variable for this lifetime-extended temporary. 3546 llvm::GlobalValue::LinkageTypes Linkage = 3547 getLLVMLinkageVarDefinition(VD, Constant); 3548 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 3549 const VarDecl *InitVD; 3550 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 3551 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 3552 // Temporaries defined inside a class get linkonce_odr linkage because the 3553 // class can be defined in multipe translation units. 3554 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 3555 } else { 3556 // There is no need for this temporary to have external linkage if the 3557 // VarDecl has external linkage. 3558 Linkage = llvm::GlobalVariable::InternalLinkage; 3559 } 3560 } 3561 unsigned AddrSpace = GetGlobalVarAddressSpace( 3562 VD, getContext().getTargetAddressSpace(MaterializedType)); 3563 auto *GV = new llvm::GlobalVariable( 3564 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 3565 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, 3566 AddrSpace); 3567 setGlobalVisibility(GV, VD); 3568 GV->setAlignment(Align.getQuantity()); 3569 if (supportsCOMDAT() && GV->isWeakForLinker()) 3570 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3571 if (VD->getTLSKind()) 3572 setTLSMode(GV, *VD); 3573 MaterializedGlobalTemporaryMap[E] = GV; 3574 return ConstantAddress(GV, Align); 3575 } 3576 3577 /// EmitObjCPropertyImplementations - Emit information for synthesized 3578 /// properties for an implementation. 3579 void CodeGenModule::EmitObjCPropertyImplementations(const 3580 ObjCImplementationDecl *D) { 3581 for (const auto *PID : D->property_impls()) { 3582 // Dynamic is just for type-checking. 3583 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 3584 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 3585 3586 // Determine which methods need to be implemented, some may have 3587 // been overridden. Note that ::isPropertyAccessor is not the method 3588 // we want, that just indicates if the decl came from a 3589 // property. What we want to know is if the method is defined in 3590 // this implementation. 3591 if (!D->getInstanceMethod(PD->getGetterName())) 3592 CodeGenFunction(*this).GenerateObjCGetter( 3593 const_cast<ObjCImplementationDecl *>(D), PID); 3594 if (!PD->isReadOnly() && 3595 !D->getInstanceMethod(PD->getSetterName())) 3596 CodeGenFunction(*this).GenerateObjCSetter( 3597 const_cast<ObjCImplementationDecl *>(D), PID); 3598 } 3599 } 3600 } 3601 3602 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 3603 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 3604 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 3605 ivar; ivar = ivar->getNextIvar()) 3606 if (ivar->getType().isDestructedType()) 3607 return true; 3608 3609 return false; 3610 } 3611 3612 static bool AllTrivialInitializers(CodeGenModule &CGM, 3613 ObjCImplementationDecl *D) { 3614 CodeGenFunction CGF(CGM); 3615 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 3616 E = D->init_end(); B != E; ++B) { 3617 CXXCtorInitializer *CtorInitExp = *B; 3618 Expr *Init = CtorInitExp->getInit(); 3619 if (!CGF.isTrivialInitializer(Init)) 3620 return false; 3621 } 3622 return true; 3623 } 3624 3625 /// EmitObjCIvarInitializations - Emit information for ivar initialization 3626 /// for an implementation. 3627 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 3628 // We might need a .cxx_destruct even if we don't have any ivar initializers. 3629 if (needsDestructMethod(D)) { 3630 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 3631 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3632 ObjCMethodDecl *DTORMethod = 3633 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 3634 cxxSelector, getContext().VoidTy, nullptr, D, 3635 /*isInstance=*/true, /*isVariadic=*/false, 3636 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 3637 /*isDefined=*/false, ObjCMethodDecl::Required); 3638 D->addInstanceMethod(DTORMethod); 3639 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 3640 D->setHasDestructors(true); 3641 } 3642 3643 // If the implementation doesn't have any ivar initializers, we don't need 3644 // a .cxx_construct. 3645 if (D->getNumIvarInitializers() == 0 || 3646 AllTrivialInitializers(*this, D)) 3647 return; 3648 3649 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 3650 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3651 // The constructor returns 'self'. 3652 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 3653 D->getLocation(), 3654 D->getLocation(), 3655 cxxSelector, 3656 getContext().getObjCIdType(), 3657 nullptr, D, /*isInstance=*/true, 3658 /*isVariadic=*/false, 3659 /*isPropertyAccessor=*/true, 3660 /*isImplicitlyDeclared=*/true, 3661 /*isDefined=*/false, 3662 ObjCMethodDecl::Required); 3663 D->addInstanceMethod(CTORMethod); 3664 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 3665 D->setHasNonZeroConstructors(true); 3666 } 3667 3668 /// EmitNamespace - Emit all declarations in a namespace. 3669 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 3670 for (auto *I : ND->decls()) { 3671 if (const auto *VD = dyn_cast<VarDecl>(I)) 3672 if (VD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization && 3673 VD->getTemplateSpecializationKind() != TSK_Undeclared) 3674 continue; 3675 EmitTopLevelDecl(I); 3676 } 3677 } 3678 3679 // EmitLinkageSpec - Emit all declarations in a linkage spec. 3680 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 3681 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 3682 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 3683 ErrorUnsupported(LSD, "linkage spec"); 3684 return; 3685 } 3686 3687 for (auto *I : LSD->decls()) { 3688 // Meta-data for ObjC class includes references to implemented methods. 3689 // Generate class's method definitions first. 3690 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 3691 for (auto *M : OID->methods()) 3692 EmitTopLevelDecl(M); 3693 } 3694 EmitTopLevelDecl(I); 3695 } 3696 } 3697 3698 /// EmitTopLevelDecl - Emit code for a single top level declaration. 3699 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 3700 // Ignore dependent declarations. 3701 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 3702 return; 3703 3704 switch (D->getKind()) { 3705 case Decl::CXXConversion: 3706 case Decl::CXXMethod: 3707 case Decl::Function: 3708 // Skip function templates 3709 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3710 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3711 return; 3712 3713 EmitGlobal(cast<FunctionDecl>(D)); 3714 // Always provide some coverage mapping 3715 // even for the functions that aren't emitted. 3716 AddDeferredUnusedCoverageMapping(D); 3717 break; 3718 3719 case Decl::Var: 3720 // Skip variable templates 3721 if (cast<VarDecl>(D)->getDescribedVarTemplate()) 3722 return; 3723 case Decl::VarTemplateSpecialization: 3724 EmitGlobal(cast<VarDecl>(D)); 3725 break; 3726 3727 // Indirect fields from global anonymous structs and unions can be 3728 // ignored; only the actual variable requires IR gen support. 3729 case Decl::IndirectField: 3730 break; 3731 3732 // C++ Decls 3733 case Decl::Namespace: 3734 EmitNamespace(cast<NamespaceDecl>(D)); 3735 break; 3736 // No code generation needed. 3737 case Decl::UsingShadow: 3738 case Decl::ClassTemplate: 3739 case Decl::VarTemplate: 3740 case Decl::VarTemplatePartialSpecialization: 3741 case Decl::FunctionTemplate: 3742 case Decl::TypeAliasTemplate: 3743 case Decl::Block: 3744 case Decl::Empty: 3745 break; 3746 case Decl::Using: // using X; [C++] 3747 if (CGDebugInfo *DI = getModuleDebugInfo()) 3748 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 3749 return; 3750 case Decl::NamespaceAlias: 3751 if (CGDebugInfo *DI = getModuleDebugInfo()) 3752 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 3753 return; 3754 case Decl::UsingDirective: // using namespace X; [C++] 3755 if (CGDebugInfo *DI = getModuleDebugInfo()) 3756 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 3757 return; 3758 case Decl::CXXConstructor: 3759 // Skip function templates 3760 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3761 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3762 return; 3763 3764 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 3765 break; 3766 case Decl::CXXDestructor: 3767 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 3768 return; 3769 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 3770 break; 3771 3772 case Decl::StaticAssert: 3773 // Nothing to do. 3774 break; 3775 3776 // Objective-C Decls 3777 3778 // Forward declarations, no (immediate) code generation. 3779 case Decl::ObjCInterface: 3780 case Decl::ObjCCategory: 3781 break; 3782 3783 case Decl::ObjCProtocol: { 3784 auto *Proto = cast<ObjCProtocolDecl>(D); 3785 if (Proto->isThisDeclarationADefinition()) 3786 ObjCRuntime->GenerateProtocol(Proto); 3787 break; 3788 } 3789 3790 case Decl::ObjCCategoryImpl: 3791 // Categories have properties but don't support synthesize so we 3792 // can ignore them here. 3793 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 3794 break; 3795 3796 case Decl::ObjCImplementation: { 3797 auto *OMD = cast<ObjCImplementationDecl>(D); 3798 EmitObjCPropertyImplementations(OMD); 3799 EmitObjCIvarInitializations(OMD); 3800 ObjCRuntime->GenerateClass(OMD); 3801 // Emit global variable debug information. 3802 if (CGDebugInfo *DI = getModuleDebugInfo()) 3803 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 3804 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 3805 OMD->getClassInterface()), OMD->getLocation()); 3806 break; 3807 } 3808 case Decl::ObjCMethod: { 3809 auto *OMD = cast<ObjCMethodDecl>(D); 3810 // If this is not a prototype, emit the body. 3811 if (OMD->getBody()) 3812 CodeGenFunction(*this).GenerateObjCMethod(OMD); 3813 break; 3814 } 3815 case Decl::ObjCCompatibleAlias: 3816 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 3817 break; 3818 3819 case Decl::PragmaComment: { 3820 const auto *PCD = cast<PragmaCommentDecl>(D); 3821 switch (PCD->getCommentKind()) { 3822 case PCK_Unknown: 3823 llvm_unreachable("unexpected pragma comment kind"); 3824 case PCK_Linker: 3825 AppendLinkerOptions(PCD->getArg()); 3826 break; 3827 case PCK_Lib: 3828 AddDependentLib(PCD->getArg()); 3829 break; 3830 case PCK_Compiler: 3831 case PCK_ExeStr: 3832 case PCK_User: 3833 break; // We ignore all of these. 3834 } 3835 break; 3836 } 3837 3838 case Decl::PragmaDetectMismatch: { 3839 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 3840 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 3841 break; 3842 } 3843 3844 case Decl::LinkageSpec: 3845 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 3846 break; 3847 3848 case Decl::FileScopeAsm: { 3849 // File-scope asm is ignored during device-side CUDA compilation. 3850 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 3851 break; 3852 // File-scope asm is ignored during device-side OpenMP compilation. 3853 if (LangOpts.OpenMPIsDevice) 3854 break; 3855 auto *AD = cast<FileScopeAsmDecl>(D); 3856 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 3857 break; 3858 } 3859 3860 case Decl::Import: { 3861 auto *Import = cast<ImportDecl>(D); 3862 3863 // Ignore import declarations that come from imported modules. 3864 if (Import->getImportedOwningModule()) 3865 break; 3866 if (CGDebugInfo *DI = getModuleDebugInfo()) 3867 DI->EmitImportDecl(*Import); 3868 3869 ImportedModules.insert(Import->getImportedModule()); 3870 break; 3871 } 3872 3873 case Decl::OMPThreadPrivate: 3874 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 3875 break; 3876 3877 case Decl::ClassTemplateSpecialization: { 3878 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 3879 if (DebugInfo && 3880 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition && 3881 Spec->hasDefinition()) 3882 DebugInfo->completeTemplateDefinition(*Spec); 3883 break; 3884 } 3885 3886 case Decl::OMPDeclareReduction: 3887 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 3888 break; 3889 3890 default: 3891 // Make sure we handled everything we should, every other kind is a 3892 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 3893 // function. Need to recode Decl::Kind to do that easily. 3894 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 3895 break; 3896 } 3897 } 3898 3899 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 3900 // Do we need to generate coverage mapping? 3901 if (!CodeGenOpts.CoverageMapping) 3902 return; 3903 switch (D->getKind()) { 3904 case Decl::CXXConversion: 3905 case Decl::CXXMethod: 3906 case Decl::Function: 3907 case Decl::ObjCMethod: 3908 case Decl::CXXConstructor: 3909 case Decl::CXXDestructor: { 3910 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 3911 return; 3912 auto I = DeferredEmptyCoverageMappingDecls.find(D); 3913 if (I == DeferredEmptyCoverageMappingDecls.end()) 3914 DeferredEmptyCoverageMappingDecls[D] = true; 3915 break; 3916 } 3917 default: 3918 break; 3919 }; 3920 } 3921 3922 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 3923 // Do we need to generate coverage mapping? 3924 if (!CodeGenOpts.CoverageMapping) 3925 return; 3926 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 3927 if (Fn->isTemplateInstantiation()) 3928 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 3929 } 3930 auto I = DeferredEmptyCoverageMappingDecls.find(D); 3931 if (I == DeferredEmptyCoverageMappingDecls.end()) 3932 DeferredEmptyCoverageMappingDecls[D] = false; 3933 else 3934 I->second = false; 3935 } 3936 3937 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 3938 std::vector<const Decl *> DeferredDecls; 3939 for (const auto &I : DeferredEmptyCoverageMappingDecls) { 3940 if (!I.second) 3941 continue; 3942 DeferredDecls.push_back(I.first); 3943 } 3944 // Sort the declarations by their location to make sure that the tests get a 3945 // predictable order for the coverage mapping for the unused declarations. 3946 if (CodeGenOpts.DumpCoverageMapping) 3947 std::sort(DeferredDecls.begin(), DeferredDecls.end(), 3948 [] (const Decl *LHS, const Decl *RHS) { 3949 return LHS->getLocStart() < RHS->getLocStart(); 3950 }); 3951 for (const auto *D : DeferredDecls) { 3952 switch (D->getKind()) { 3953 case Decl::CXXConversion: 3954 case Decl::CXXMethod: 3955 case Decl::Function: 3956 case Decl::ObjCMethod: { 3957 CodeGenPGO PGO(*this); 3958 GlobalDecl GD(cast<FunctionDecl>(D)); 3959 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 3960 getFunctionLinkage(GD)); 3961 break; 3962 } 3963 case Decl::CXXConstructor: { 3964 CodeGenPGO PGO(*this); 3965 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 3966 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 3967 getFunctionLinkage(GD)); 3968 break; 3969 } 3970 case Decl::CXXDestructor: { 3971 CodeGenPGO PGO(*this); 3972 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 3973 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 3974 getFunctionLinkage(GD)); 3975 break; 3976 } 3977 default: 3978 break; 3979 }; 3980 } 3981 } 3982 3983 /// Turns the given pointer into a constant. 3984 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 3985 const void *Ptr) { 3986 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 3987 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 3988 return llvm::ConstantInt::get(i64, PtrInt); 3989 } 3990 3991 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 3992 llvm::NamedMDNode *&GlobalMetadata, 3993 GlobalDecl D, 3994 llvm::GlobalValue *Addr) { 3995 if (!GlobalMetadata) 3996 GlobalMetadata = 3997 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 3998 3999 // TODO: should we report variant information for ctors/dtors? 4000 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 4001 llvm::ConstantAsMetadata::get(GetPointerConstant( 4002 CGM.getLLVMContext(), D.getDecl()))}; 4003 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 4004 } 4005 4006 /// For each function which is declared within an extern "C" region and marked 4007 /// as 'used', but has internal linkage, create an alias from the unmangled 4008 /// name to the mangled name if possible. People expect to be able to refer 4009 /// to such functions with an unmangled name from inline assembly within the 4010 /// same translation unit. 4011 void CodeGenModule::EmitStaticExternCAliases() { 4012 // Don't do anything if we're generating CUDA device code -- the NVPTX 4013 // assembly target doesn't support aliases. 4014 if (Context.getTargetInfo().getTriple().isNVPTX()) 4015 return; 4016 for (auto &I : StaticExternCValues) { 4017 IdentifierInfo *Name = I.first; 4018 llvm::GlobalValue *Val = I.second; 4019 if (Val && !getModule().getNamedValue(Name->getName())) 4020 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 4021 } 4022 } 4023 4024 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 4025 GlobalDecl &Result) const { 4026 auto Res = Manglings.find(MangledName); 4027 if (Res == Manglings.end()) 4028 return false; 4029 Result = Res->getValue(); 4030 return true; 4031 } 4032 4033 /// Emits metadata nodes associating all the global values in the 4034 /// current module with the Decls they came from. This is useful for 4035 /// projects using IR gen as a subroutine. 4036 /// 4037 /// Since there's currently no way to associate an MDNode directly 4038 /// with an llvm::GlobalValue, we create a global named metadata 4039 /// with the name 'clang.global.decl.ptrs'. 4040 void CodeGenModule::EmitDeclMetadata() { 4041 llvm::NamedMDNode *GlobalMetadata = nullptr; 4042 4043 for (auto &I : MangledDeclNames) { 4044 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 4045 // Some mangled names don't necessarily have an associated GlobalValue 4046 // in this module, e.g. if we mangled it for DebugInfo. 4047 if (Addr) 4048 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 4049 } 4050 } 4051 4052 /// Emits metadata nodes for all the local variables in the current 4053 /// function. 4054 void CodeGenFunction::EmitDeclMetadata() { 4055 if (LocalDeclMap.empty()) return; 4056 4057 llvm::LLVMContext &Context = getLLVMContext(); 4058 4059 // Find the unique metadata ID for this name. 4060 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 4061 4062 llvm::NamedMDNode *GlobalMetadata = nullptr; 4063 4064 for (auto &I : LocalDeclMap) { 4065 const Decl *D = I.first; 4066 llvm::Value *Addr = I.second.getPointer(); 4067 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 4068 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 4069 Alloca->setMetadata( 4070 DeclPtrKind, llvm::MDNode::get( 4071 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 4072 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 4073 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 4074 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 4075 } 4076 } 4077 } 4078 4079 void CodeGenModule::EmitVersionIdentMetadata() { 4080 llvm::NamedMDNode *IdentMetadata = 4081 TheModule.getOrInsertNamedMetadata("llvm.ident"); 4082 std::string Version = getClangFullVersion(); 4083 llvm::LLVMContext &Ctx = TheModule.getContext(); 4084 4085 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 4086 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 4087 } 4088 4089 void CodeGenModule::EmitTargetMetadata() { 4090 // Warning, new MangledDeclNames may be appended within this loop. 4091 // We rely on MapVector insertions adding new elements to the end 4092 // of the container. 4093 // FIXME: Move this loop into the one target that needs it, and only 4094 // loop over those declarations for which we couldn't emit the target 4095 // metadata when we emitted the declaration. 4096 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 4097 auto Val = *(MangledDeclNames.begin() + I); 4098 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 4099 llvm::GlobalValue *GV = GetGlobalValue(Val.second); 4100 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 4101 } 4102 } 4103 4104 void CodeGenModule::EmitCoverageFile() { 4105 if (!getCodeGenOpts().CoverageFile.empty()) { 4106 if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) { 4107 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 4108 llvm::LLVMContext &Ctx = TheModule.getContext(); 4109 llvm::MDString *CoverageFile = 4110 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile); 4111 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 4112 llvm::MDNode *CU = CUNode->getOperand(i); 4113 llvm::Metadata *Elts[] = {CoverageFile, CU}; 4114 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 4115 } 4116 } 4117 } 4118 } 4119 4120 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) { 4121 // Sema has checked that all uuid strings are of the form 4122 // "12345678-1234-1234-1234-1234567890ab". 4123 assert(Uuid.size() == 36); 4124 for (unsigned i = 0; i < 36; ++i) { 4125 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 4126 else assert(isHexDigit(Uuid[i])); 4127 } 4128 4129 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab". 4130 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 4131 4132 llvm::Constant *Field3[8]; 4133 for (unsigned Idx = 0; Idx < 8; ++Idx) 4134 Field3[Idx] = llvm::ConstantInt::get( 4135 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 4136 4137 llvm::Constant *Fields[4] = { 4138 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 4139 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 4140 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 4141 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 4142 }; 4143 4144 return llvm::ConstantStruct::getAnon(Fields); 4145 } 4146 4147 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 4148 bool ForEH) { 4149 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 4150 // FIXME: should we even be calling this method if RTTI is disabled 4151 // and it's not for EH? 4152 if (!ForEH && !getLangOpts().RTTI) 4153 return llvm::Constant::getNullValue(Int8PtrTy); 4154 4155 if (ForEH && Ty->isObjCObjectPointerType() && 4156 LangOpts.ObjCRuntime.isGNUFamily()) 4157 return ObjCRuntime->GetEHType(Ty); 4158 4159 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 4160 } 4161 4162 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 4163 for (auto RefExpr : D->varlists()) { 4164 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 4165 bool PerformInit = 4166 VD->getAnyInitializer() && 4167 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 4168 /*ForRef=*/false); 4169 4170 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 4171 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 4172 VD, Addr, RefExpr->getLocStart(), PerformInit)) 4173 CXXGlobalInits.push_back(InitFunction); 4174 } 4175 } 4176 4177 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 4178 llvm::Metadata *&InternalId = MetadataIdMap[T.getCanonicalType()]; 4179 if (InternalId) 4180 return InternalId; 4181 4182 if (isExternallyVisible(T->getLinkage())) { 4183 std::string OutName; 4184 llvm::raw_string_ostream Out(OutName); 4185 getCXXABI().getMangleContext().mangleTypeName(T, Out); 4186 4187 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 4188 } else { 4189 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 4190 llvm::ArrayRef<llvm::Metadata *>()); 4191 } 4192 4193 return InternalId; 4194 } 4195 4196 /// Returns whether this module needs the "all-vtables" bitset. 4197 bool CodeGenModule::NeedAllVtablesBitSet() const { 4198 // Returns true if at least one of vtable-based CFI checkers is enabled and 4199 // is not in the trapping mode. 4200 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 4201 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 4202 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 4203 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 4204 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 4205 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 4206 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 4207 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 4208 } 4209 4210 void CodeGenModule::CreateVTableBitSetEntry(llvm::NamedMDNode *BitsetsMD, 4211 llvm::GlobalVariable *VTable, 4212 CharUnits Offset, 4213 const CXXRecordDecl *RD) { 4214 llvm::Metadata *MD = 4215 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 4216 llvm::Metadata *BitsetOps[] = { 4217 MD, llvm::ConstantAsMetadata::get(VTable), 4218 llvm::ConstantAsMetadata::get( 4219 llvm::ConstantInt::get(Int64Ty, Offset.getQuantity()))}; 4220 BitsetsMD->addOperand(llvm::MDTuple::get(getLLVMContext(), BitsetOps)); 4221 4222 if (CodeGenOpts.SanitizeCfiCrossDso) { 4223 if (auto TypeId = CreateCfiIdForTypeMetadata(MD)) { 4224 llvm::Metadata *BitsetOps2[] = { 4225 llvm::ConstantAsMetadata::get(TypeId), 4226 llvm::ConstantAsMetadata::get(VTable), 4227 llvm::ConstantAsMetadata::get( 4228 llvm::ConstantInt::get(Int64Ty, Offset.getQuantity()))}; 4229 BitsetsMD->addOperand(llvm::MDTuple::get(getLLVMContext(), BitsetOps2)); 4230 } 4231 } 4232 4233 if (NeedAllVtablesBitSet()) { 4234 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 4235 llvm::Metadata *BitsetOps[] = { 4236 MD, llvm::ConstantAsMetadata::get(VTable), 4237 llvm::ConstantAsMetadata::get( 4238 llvm::ConstantInt::get(Int64Ty, Offset.getQuantity()))}; 4239 // Avoid adding a node to BitsetsMD twice. 4240 if (!llvm::MDTuple::getIfExists(getLLVMContext(), BitsetOps)) 4241 BitsetsMD->addOperand(llvm::MDTuple::get(getLLVMContext(), BitsetOps)); 4242 } 4243 } 4244 4245 // Fills in the supplied string map with the set of target features for the 4246 // passed in function. 4247 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap, 4248 const FunctionDecl *FD) { 4249 StringRef TargetCPU = Target.getTargetOpts().CPU; 4250 if (const auto *TD = FD->getAttr<TargetAttr>()) { 4251 // If we have a TargetAttr build up the feature map based on that. 4252 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 4253 4254 // Make a copy of the features as passed on the command line into the 4255 // beginning of the additional features from the function to override. 4256 ParsedAttr.first.insert(ParsedAttr.first.begin(), 4257 Target.getTargetOpts().FeaturesAsWritten.begin(), 4258 Target.getTargetOpts().FeaturesAsWritten.end()); 4259 4260 if (ParsedAttr.second != "") 4261 TargetCPU = ParsedAttr.second; 4262 4263 // Now populate the feature map, first with the TargetCPU which is either 4264 // the default or a new one from the target attribute string. Then we'll use 4265 // the passed in features (FeaturesAsWritten) along with the new ones from 4266 // the attribute. 4267 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, ParsedAttr.first); 4268 } else { 4269 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 4270 Target.getTargetOpts().Features); 4271 } 4272 } 4273 4274 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 4275 if (!SanStats) 4276 SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule()); 4277 4278 return *SanStats; 4279 } 4280