xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 4f2ad15db535873dda9bfe248a2771023b64a43c)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-module state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenModule.h"
14 #include "CGBlocks.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGObjCRuntime.h"
20 #include "CGOpenCLRuntime.h"
21 #include "CGOpenMPRuntime.h"
22 #include "CGOpenMPRuntimeAMDGCN.h"
23 #include "CGOpenMPRuntimeNVPTX.h"
24 #include "CodeGenFunction.h"
25 #include "CodeGenPGO.h"
26 #include "ConstantEmitter.h"
27 #include "CoverageMappingGen.h"
28 #include "TargetInfo.h"
29 #include "clang/AST/ASTContext.h"
30 #include "clang/AST/CharUnits.h"
31 #include "clang/AST/DeclCXX.h"
32 #include "clang/AST/DeclObjC.h"
33 #include "clang/AST/DeclTemplate.h"
34 #include "clang/AST/Mangle.h"
35 #include "clang/AST/RecordLayout.h"
36 #include "clang/AST/RecursiveASTVisitor.h"
37 #include "clang/AST/StmtVisitor.h"
38 #include "clang/Basic/Builtins.h"
39 #include "clang/Basic/CharInfo.h"
40 #include "clang/Basic/CodeGenOptions.h"
41 #include "clang/Basic/Diagnostic.h"
42 #include "clang/Basic/FileManager.h"
43 #include "clang/Basic/Module.h"
44 #include "clang/Basic/SourceManager.h"
45 #include "clang/Basic/TargetInfo.h"
46 #include "clang/Basic/Version.h"
47 #include "clang/CodeGen/ConstantInitBuilder.h"
48 #include "clang/Frontend/FrontendDiagnostic.h"
49 #include "llvm/ADT/StringSwitch.h"
50 #include "llvm/ADT/Triple.h"
51 #include "llvm/Analysis/TargetLibraryInfo.h"
52 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
53 #include "llvm/IR/CallingConv.h"
54 #include "llvm/IR/DataLayout.h"
55 #include "llvm/IR/Intrinsics.h"
56 #include "llvm/IR/LLVMContext.h"
57 #include "llvm/IR/Module.h"
58 #include "llvm/IR/ProfileSummary.h"
59 #include "llvm/ProfileData/InstrProfReader.h"
60 #include "llvm/Support/CodeGen.h"
61 #include "llvm/Support/CommandLine.h"
62 #include "llvm/Support/ConvertUTF.h"
63 #include "llvm/Support/ErrorHandling.h"
64 #include "llvm/Support/MD5.h"
65 #include "llvm/Support/TimeProfiler.h"
66 
67 using namespace clang;
68 using namespace CodeGen;
69 
70 static llvm::cl::opt<bool> LimitedCoverage(
71     "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden,
72     llvm::cl::desc("Emit limited coverage mapping information (experimental)"),
73     llvm::cl::init(false));
74 
75 static const char AnnotationSection[] = "llvm.metadata";
76 
77 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
78   switch (CGM.getTarget().getCXXABI().getKind()) {
79   case TargetCXXABI::Fuchsia:
80   case TargetCXXABI::GenericAArch64:
81   case TargetCXXABI::GenericARM:
82   case TargetCXXABI::iOS:
83   case TargetCXXABI::iOS64:
84   case TargetCXXABI::WatchOS:
85   case TargetCXXABI::GenericMIPS:
86   case TargetCXXABI::GenericItanium:
87   case TargetCXXABI::WebAssembly:
88   case TargetCXXABI::XL:
89     return CreateItaniumCXXABI(CGM);
90   case TargetCXXABI::Microsoft:
91     return CreateMicrosoftCXXABI(CGM);
92   }
93 
94   llvm_unreachable("invalid C++ ABI kind");
95 }
96 
97 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
98                              const PreprocessorOptions &PPO,
99                              const CodeGenOptions &CGO, llvm::Module &M,
100                              DiagnosticsEngine &diags,
101                              CoverageSourceInfo *CoverageInfo)
102     : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
103       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
104       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
105       VMContext(M.getContext()), Types(*this), VTables(*this),
106       SanitizerMD(new SanitizerMetadata(*this)) {
107 
108   // Initialize the type cache.
109   llvm::LLVMContext &LLVMContext = M.getContext();
110   VoidTy = llvm::Type::getVoidTy(LLVMContext);
111   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
112   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
113   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
114   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
115   HalfTy = llvm::Type::getHalfTy(LLVMContext);
116   BFloatTy = llvm::Type::getBFloatTy(LLVMContext);
117   FloatTy = llvm::Type::getFloatTy(LLVMContext);
118   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
119   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
120   PointerAlignInBytes =
121     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
122   SizeSizeInBytes =
123     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
124   IntAlignInBytes =
125     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
126   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
127   IntPtrTy = llvm::IntegerType::get(LLVMContext,
128     C.getTargetInfo().getMaxPointerWidth());
129   Int8PtrTy = Int8Ty->getPointerTo(0);
130   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
131   AllocaInt8PtrTy = Int8Ty->getPointerTo(
132       M.getDataLayout().getAllocaAddrSpace());
133   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
134 
135   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
136 
137   if (LangOpts.ObjC)
138     createObjCRuntime();
139   if (LangOpts.OpenCL)
140     createOpenCLRuntime();
141   if (LangOpts.OpenMP)
142     createOpenMPRuntime();
143   if (LangOpts.CUDA)
144     createCUDARuntime();
145 
146   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
147   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
148       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
149     TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
150                                getCXXABI().getMangleContext()));
151 
152   // If debug info or coverage generation is enabled, create the CGDebugInfo
153   // object.
154   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
155       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
156     DebugInfo.reset(new CGDebugInfo(*this));
157 
158   Block.GlobalUniqueCount = 0;
159 
160   if (C.getLangOpts().ObjC)
161     ObjCData.reset(new ObjCEntrypoints());
162 
163   if (CodeGenOpts.hasProfileClangUse()) {
164     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
165         CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile);
166     if (auto E = ReaderOrErr.takeError()) {
167       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
168                                               "Could not read profile %0: %1");
169       llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
170         getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
171                                   << EI.message();
172       });
173     } else
174       PGOReader = std::move(ReaderOrErr.get());
175   }
176 
177   // If coverage mapping generation is enabled, create the
178   // CoverageMappingModuleGen object.
179   if (CodeGenOpts.CoverageMapping)
180     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
181 }
182 
183 CodeGenModule::~CodeGenModule() {}
184 
185 void CodeGenModule::createObjCRuntime() {
186   // This is just isGNUFamily(), but we want to force implementors of
187   // new ABIs to decide how best to do this.
188   switch (LangOpts.ObjCRuntime.getKind()) {
189   case ObjCRuntime::GNUstep:
190   case ObjCRuntime::GCC:
191   case ObjCRuntime::ObjFW:
192     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
193     return;
194 
195   case ObjCRuntime::FragileMacOSX:
196   case ObjCRuntime::MacOSX:
197   case ObjCRuntime::iOS:
198   case ObjCRuntime::WatchOS:
199     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
200     return;
201   }
202   llvm_unreachable("bad runtime kind");
203 }
204 
205 void CodeGenModule::createOpenCLRuntime() {
206   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
207 }
208 
209 void CodeGenModule::createOpenMPRuntime() {
210   // Select a specialized code generation class based on the target, if any.
211   // If it does not exist use the default implementation.
212   switch (getTriple().getArch()) {
213   case llvm::Triple::nvptx:
214   case llvm::Triple::nvptx64:
215     assert(getLangOpts().OpenMPIsDevice &&
216            "OpenMP NVPTX is only prepared to deal with device code.");
217     OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this));
218     break;
219   case llvm::Triple::amdgcn:
220     assert(getLangOpts().OpenMPIsDevice &&
221            "OpenMP AMDGCN is only prepared to deal with device code.");
222     OpenMPRuntime.reset(new CGOpenMPRuntimeAMDGCN(*this));
223     break;
224   default:
225     if (LangOpts.OpenMPSimd)
226       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
227     else
228       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
229     break;
230   }
231 }
232 
233 void CodeGenModule::createCUDARuntime() {
234   CUDARuntime.reset(CreateNVCUDARuntime(*this));
235 }
236 
237 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
238   Replacements[Name] = C;
239 }
240 
241 void CodeGenModule::applyReplacements() {
242   for (auto &I : Replacements) {
243     StringRef MangledName = I.first();
244     llvm::Constant *Replacement = I.second;
245     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
246     if (!Entry)
247       continue;
248     auto *OldF = cast<llvm::Function>(Entry);
249     auto *NewF = dyn_cast<llvm::Function>(Replacement);
250     if (!NewF) {
251       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
252         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
253       } else {
254         auto *CE = cast<llvm::ConstantExpr>(Replacement);
255         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
256                CE->getOpcode() == llvm::Instruction::GetElementPtr);
257         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
258       }
259     }
260 
261     // Replace old with new, but keep the old order.
262     OldF->replaceAllUsesWith(Replacement);
263     if (NewF) {
264       NewF->removeFromParent();
265       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
266                                                        NewF);
267     }
268     OldF->eraseFromParent();
269   }
270 }
271 
272 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
273   GlobalValReplacements.push_back(std::make_pair(GV, C));
274 }
275 
276 void CodeGenModule::applyGlobalValReplacements() {
277   for (auto &I : GlobalValReplacements) {
278     llvm::GlobalValue *GV = I.first;
279     llvm::Constant *C = I.second;
280 
281     GV->replaceAllUsesWith(C);
282     GV->eraseFromParent();
283   }
284 }
285 
286 // This is only used in aliases that we created and we know they have a
287 // linear structure.
288 static const llvm::GlobalObject *getAliasedGlobal(
289     const llvm::GlobalIndirectSymbol &GIS) {
290   llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited;
291   const llvm::Constant *C = &GIS;
292   for (;;) {
293     C = C->stripPointerCasts();
294     if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
295       return GO;
296     // stripPointerCasts will not walk over weak aliases.
297     auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C);
298     if (!GIS2)
299       return nullptr;
300     if (!Visited.insert(GIS2).second)
301       return nullptr;
302     C = GIS2->getIndirectSymbol();
303   }
304 }
305 
306 void CodeGenModule::checkAliases() {
307   // Check if the constructed aliases are well formed. It is really unfortunate
308   // that we have to do this in CodeGen, but we only construct mangled names
309   // and aliases during codegen.
310   bool Error = false;
311   DiagnosticsEngine &Diags = getDiags();
312   for (const GlobalDecl &GD : Aliases) {
313     const auto *D = cast<ValueDecl>(GD.getDecl());
314     SourceLocation Location;
315     bool IsIFunc = D->hasAttr<IFuncAttr>();
316     if (const Attr *A = D->getDefiningAttr())
317       Location = A->getLocation();
318     else
319       llvm_unreachable("Not an alias or ifunc?");
320     StringRef MangledName = getMangledName(GD);
321     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
322     auto *Alias  = cast<llvm::GlobalIndirectSymbol>(Entry);
323     const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
324     if (!GV) {
325       Error = true;
326       Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
327     } else if (GV->isDeclaration()) {
328       Error = true;
329       Diags.Report(Location, diag::err_alias_to_undefined)
330           << IsIFunc << IsIFunc;
331     } else if (IsIFunc) {
332       // Check resolver function type.
333       llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(
334           GV->getType()->getPointerElementType());
335       assert(FTy);
336       if (!FTy->getReturnType()->isPointerTy())
337         Diags.Report(Location, diag::err_ifunc_resolver_return);
338     }
339 
340     llvm::Constant *Aliasee = Alias->getIndirectSymbol();
341     llvm::GlobalValue *AliaseeGV;
342     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
343       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
344     else
345       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
346 
347     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
348       StringRef AliasSection = SA->getName();
349       if (AliasSection != AliaseeGV->getSection())
350         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
351             << AliasSection << IsIFunc << IsIFunc;
352     }
353 
354     // We have to handle alias to weak aliases in here. LLVM itself disallows
355     // this since the object semantics would not match the IL one. For
356     // compatibility with gcc we implement it by just pointing the alias
357     // to its aliasee's aliasee. We also warn, since the user is probably
358     // expecting the link to be weak.
359     if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) {
360       if (GA->isInterposable()) {
361         Diags.Report(Location, diag::warn_alias_to_weak_alias)
362             << GV->getName() << GA->getName() << IsIFunc;
363         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
364             GA->getIndirectSymbol(), Alias->getType());
365         Alias->setIndirectSymbol(Aliasee);
366       }
367     }
368   }
369   if (!Error)
370     return;
371 
372   for (const GlobalDecl &GD : Aliases) {
373     StringRef MangledName = getMangledName(GD);
374     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
375     auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry);
376     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
377     Alias->eraseFromParent();
378   }
379 }
380 
381 void CodeGenModule::clear() {
382   DeferredDeclsToEmit.clear();
383   if (OpenMPRuntime)
384     OpenMPRuntime->clear();
385 }
386 
387 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
388                                        StringRef MainFile) {
389   if (!hasDiagnostics())
390     return;
391   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
392     if (MainFile.empty())
393       MainFile = "<stdin>";
394     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
395   } else {
396     if (Mismatched > 0)
397       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
398 
399     if (Missing > 0)
400       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
401   }
402 }
403 
404 void CodeGenModule::Release() {
405   EmitDeferred();
406   EmitVTablesOpportunistically();
407   applyGlobalValReplacements();
408   applyReplacements();
409   checkAliases();
410   emitMultiVersionFunctions();
411   EmitCXXGlobalInitFunc();
412   EmitCXXGlobalCleanUpFunc();
413   registerGlobalDtorsWithAtExit();
414   EmitCXXThreadLocalInitFunc();
415   if (ObjCRuntime)
416     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
417       AddGlobalCtor(ObjCInitFunction);
418   if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice &&
419       CUDARuntime) {
420     if (llvm::Function *CudaCtorFunction =
421             CUDARuntime->makeModuleCtorFunction())
422       AddGlobalCtor(CudaCtorFunction);
423   }
424   if (OpenMPRuntime) {
425     if (llvm::Function *OpenMPRequiresDirectiveRegFun =
426             OpenMPRuntime->emitRequiresDirectiveRegFun()) {
427       AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0);
428     }
429     OpenMPRuntime->createOffloadEntriesAndInfoMetadata();
430     OpenMPRuntime->clear();
431   }
432   if (PGOReader) {
433     getModule().setProfileSummary(
434         PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
435         llvm::ProfileSummary::PSK_Instr);
436     if (PGOStats.hasDiagnostics())
437       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
438   }
439   EmitCtorList(GlobalCtors, "llvm.global_ctors");
440   EmitCtorList(GlobalDtors, "llvm.global_dtors");
441   EmitGlobalAnnotations();
442   EmitStaticExternCAliases();
443   EmitDeferredUnusedCoverageMappings();
444   if (CoverageMapping)
445     CoverageMapping->emit();
446   if (CodeGenOpts.SanitizeCfiCrossDso) {
447     CodeGenFunction(*this).EmitCfiCheckFail();
448     CodeGenFunction(*this).EmitCfiCheckStub();
449   }
450   emitAtAvailableLinkGuard();
451   if (Context.getTargetInfo().getTriple().isWasm() &&
452       !Context.getTargetInfo().getTriple().isOSEmscripten()) {
453     EmitMainVoidAlias();
454   }
455   emitLLVMUsed();
456   if (SanStats)
457     SanStats->finish();
458 
459   if (CodeGenOpts.Autolink &&
460       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
461     EmitModuleLinkOptions();
462   }
463 
464   // On ELF we pass the dependent library specifiers directly to the linker
465   // without manipulating them. This is in contrast to other platforms where
466   // they are mapped to a specific linker option by the compiler. This
467   // difference is a result of the greater variety of ELF linkers and the fact
468   // that ELF linkers tend to handle libraries in a more complicated fashion
469   // than on other platforms. This forces us to defer handling the dependent
470   // libs to the linker.
471   //
472   // CUDA/HIP device and host libraries are different. Currently there is no
473   // way to differentiate dependent libraries for host or device. Existing
474   // usage of #pragma comment(lib, *) is intended for host libraries on
475   // Windows. Therefore emit llvm.dependent-libraries only for host.
476   if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
477     auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
478     for (auto *MD : ELFDependentLibraries)
479       NMD->addOperand(MD);
480   }
481 
482   // Record mregparm value now so it is visible through rest of codegen.
483   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
484     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
485                               CodeGenOpts.NumRegisterParameters);
486 
487   if (CodeGenOpts.DwarfVersion) {
488     getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version",
489                               CodeGenOpts.DwarfVersion);
490   }
491 
492   if (Context.getLangOpts().SemanticInterposition)
493     // Require various optimization to respect semantic interposition.
494     getModule().setSemanticInterposition(1);
495   else if (Context.getLangOpts().ExplicitNoSemanticInterposition)
496     // Allow dso_local on applicable targets.
497     getModule().setSemanticInterposition(0);
498 
499   if (CodeGenOpts.EmitCodeView) {
500     // Indicate that we want CodeView in the metadata.
501     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
502   }
503   if (CodeGenOpts.CodeViewGHash) {
504     getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
505   }
506   if (CodeGenOpts.ControlFlowGuard) {
507     // Function ID tables and checks for Control Flow Guard (cfguard=2).
508     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2);
509   } else if (CodeGenOpts.ControlFlowGuardNoChecks) {
510     // Function ID tables for Control Flow Guard (cfguard=1).
511     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
512   }
513   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
514     // We don't support LTO with 2 with different StrictVTablePointers
515     // FIXME: we could support it by stripping all the information introduced
516     // by StrictVTablePointers.
517 
518     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
519 
520     llvm::Metadata *Ops[2] = {
521               llvm::MDString::get(VMContext, "StrictVTablePointers"),
522               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
523                   llvm::Type::getInt32Ty(VMContext), 1))};
524 
525     getModule().addModuleFlag(llvm::Module::Require,
526                               "StrictVTablePointersRequirement",
527                               llvm::MDNode::get(VMContext, Ops));
528   }
529   if (getModuleDebugInfo())
530     // We support a single version in the linked module. The LLVM
531     // parser will drop debug info with a different version number
532     // (and warn about it, too).
533     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
534                               llvm::DEBUG_METADATA_VERSION);
535 
536   // We need to record the widths of enums and wchar_t, so that we can generate
537   // the correct build attributes in the ARM backend. wchar_size is also used by
538   // TargetLibraryInfo.
539   uint64_t WCharWidth =
540       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
541   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
542 
543   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
544   if (   Arch == llvm::Triple::arm
545       || Arch == llvm::Triple::armeb
546       || Arch == llvm::Triple::thumb
547       || Arch == llvm::Triple::thumbeb) {
548     // The minimum width of an enum in bytes
549     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
550     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
551   }
552 
553   if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) {
554     StringRef ABIStr = Target.getABI();
555     llvm::LLVMContext &Ctx = TheModule.getContext();
556     getModule().addModuleFlag(llvm::Module::Error, "target-abi",
557                               llvm::MDString::get(Ctx, ABIStr));
558   }
559 
560   if (CodeGenOpts.SanitizeCfiCrossDso) {
561     // Indicate that we want cross-DSO control flow integrity checks.
562     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
563   }
564 
565   if (CodeGenOpts.WholeProgramVTables) {
566     // Indicate whether VFE was enabled for this module, so that the
567     // vcall_visibility metadata added under whole program vtables is handled
568     // appropriately in the optimizer.
569     getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim",
570                               CodeGenOpts.VirtualFunctionElimination);
571   }
572 
573   if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) {
574     getModule().addModuleFlag(llvm::Module::Override,
575                               "CFI Canonical Jump Tables",
576                               CodeGenOpts.SanitizeCfiCanonicalJumpTables);
577   }
578 
579   if (CodeGenOpts.CFProtectionReturn &&
580       Target.checkCFProtectionReturnSupported(getDiags())) {
581     // Indicate that we want to instrument return control flow protection.
582     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return",
583                               1);
584   }
585 
586   if (CodeGenOpts.CFProtectionBranch &&
587       Target.checkCFProtectionBranchSupported(getDiags())) {
588     // Indicate that we want to instrument branch control flow protection.
589     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch",
590                               1);
591   }
592 
593   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
594     // Indicate whether __nvvm_reflect should be configured to flush denormal
595     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
596     // property.)
597     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
598                               CodeGenOpts.FP32DenormalMode.Output !=
599                                   llvm::DenormalMode::IEEE);
600   }
601 
602   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
603   if (LangOpts.OpenCL) {
604     EmitOpenCLMetadata();
605     // Emit SPIR version.
606     if (getTriple().isSPIR()) {
607       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
608       // opencl.spir.version named metadata.
609       // C++ is backwards compatible with OpenCL v2.0.
610       auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion;
611       llvm::Metadata *SPIRVerElts[] = {
612           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
613               Int32Ty, Version / 100)),
614           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
615               Int32Ty, (Version / 100 > 1) ? 0 : 2))};
616       llvm::NamedMDNode *SPIRVerMD =
617           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
618       llvm::LLVMContext &Ctx = TheModule.getContext();
619       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
620     }
621   }
622 
623   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
624     assert(PLevel < 3 && "Invalid PIC Level");
625     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
626     if (Context.getLangOpts().PIE)
627       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
628   }
629 
630   if (getCodeGenOpts().CodeModel.size() > 0) {
631     unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
632                   .Case("tiny", llvm::CodeModel::Tiny)
633                   .Case("small", llvm::CodeModel::Small)
634                   .Case("kernel", llvm::CodeModel::Kernel)
635                   .Case("medium", llvm::CodeModel::Medium)
636                   .Case("large", llvm::CodeModel::Large)
637                   .Default(~0u);
638     if (CM != ~0u) {
639       llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
640       getModule().setCodeModel(codeModel);
641     }
642   }
643 
644   if (CodeGenOpts.NoPLT)
645     getModule().setRtLibUseGOT();
646 
647   SimplifyPersonality();
648 
649   if (getCodeGenOpts().EmitDeclMetadata)
650     EmitDeclMetadata();
651 
652   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
653     EmitCoverageFile();
654 
655   if (CGDebugInfo *DI = getModuleDebugInfo())
656     DI->finalize();
657 
658   if (getCodeGenOpts().EmitVersionIdentMetadata)
659     EmitVersionIdentMetadata();
660 
661   if (!getCodeGenOpts().RecordCommandLine.empty())
662     EmitCommandLineMetadata();
663 
664   getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames);
665 
666   EmitBackendOptionsMetadata(getCodeGenOpts());
667 }
668 
669 void CodeGenModule::EmitOpenCLMetadata() {
670   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
671   // opencl.ocl.version named metadata node.
672   // C++ is backwards compatible with OpenCL v2.0.
673   // FIXME: We might need to add CXX version at some point too?
674   auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion;
675   llvm::Metadata *OCLVerElts[] = {
676       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
677           Int32Ty, Version / 100)),
678       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
679           Int32Ty, (Version % 100) / 10))};
680   llvm::NamedMDNode *OCLVerMD =
681       TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
682   llvm::LLVMContext &Ctx = TheModule.getContext();
683   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
684 }
685 
686 void CodeGenModule::EmitBackendOptionsMetadata(
687     const CodeGenOptions CodeGenOpts) {
688   switch (getTriple().getArch()) {
689   default:
690     break;
691   case llvm::Triple::riscv32:
692   case llvm::Triple::riscv64:
693     getModule().addModuleFlag(llvm::Module::Error, "SmallDataLimit",
694                               CodeGenOpts.SmallDataLimit);
695     break;
696   }
697 }
698 
699 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
700   // Make sure that this type is translated.
701   Types.UpdateCompletedType(TD);
702 }
703 
704 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
705   // Make sure that this type is translated.
706   Types.RefreshTypeCacheForClass(RD);
707 }
708 
709 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
710   if (!TBAA)
711     return nullptr;
712   return TBAA->getTypeInfo(QTy);
713 }
714 
715 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
716   if (!TBAA)
717     return TBAAAccessInfo();
718   if (getLangOpts().CUDAIsDevice) {
719     // As CUDA builtin surface/texture types are replaced, skip generating TBAA
720     // access info.
721     if (AccessType->isCUDADeviceBuiltinSurfaceType()) {
722       if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() !=
723           nullptr)
724         return TBAAAccessInfo();
725     } else if (AccessType->isCUDADeviceBuiltinTextureType()) {
726       if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() !=
727           nullptr)
728         return TBAAAccessInfo();
729     }
730   }
731   return TBAA->getAccessInfo(AccessType);
732 }
733 
734 TBAAAccessInfo
735 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
736   if (!TBAA)
737     return TBAAAccessInfo();
738   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
739 }
740 
741 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
742   if (!TBAA)
743     return nullptr;
744   return TBAA->getTBAAStructInfo(QTy);
745 }
746 
747 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
748   if (!TBAA)
749     return nullptr;
750   return TBAA->getBaseTypeInfo(QTy);
751 }
752 
753 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
754   if (!TBAA)
755     return nullptr;
756   return TBAA->getAccessTagInfo(Info);
757 }
758 
759 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
760                                                    TBAAAccessInfo TargetInfo) {
761   if (!TBAA)
762     return TBAAAccessInfo();
763   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
764 }
765 
766 TBAAAccessInfo
767 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
768                                                    TBAAAccessInfo InfoB) {
769   if (!TBAA)
770     return TBAAAccessInfo();
771   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
772 }
773 
774 TBAAAccessInfo
775 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
776                                               TBAAAccessInfo SrcInfo) {
777   if (!TBAA)
778     return TBAAAccessInfo();
779   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
780 }
781 
782 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
783                                                 TBAAAccessInfo TBAAInfo) {
784   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
785     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
786 }
787 
788 void CodeGenModule::DecorateInstructionWithInvariantGroup(
789     llvm::Instruction *I, const CXXRecordDecl *RD) {
790   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
791                  llvm::MDNode::get(getLLVMContext(), {}));
792 }
793 
794 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
795   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
796   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
797 }
798 
799 /// ErrorUnsupported - Print out an error that codegen doesn't support the
800 /// specified stmt yet.
801 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
802   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
803                                                "cannot compile this %0 yet");
804   std::string Msg = Type;
805   getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
806       << Msg << S->getSourceRange();
807 }
808 
809 /// ErrorUnsupported - Print out an error that codegen doesn't support the
810 /// specified decl yet.
811 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
812   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
813                                                "cannot compile this %0 yet");
814   std::string Msg = Type;
815   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
816 }
817 
818 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
819   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
820 }
821 
822 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
823                                         const NamedDecl *D) const {
824   if (GV->hasDLLImportStorageClass())
825     return;
826   // Internal definitions always have default visibility.
827   if (GV->hasLocalLinkage()) {
828     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
829     return;
830   }
831   if (!D)
832     return;
833   // Set visibility for definitions, and for declarations if requested globally
834   // or set explicitly.
835   LinkageInfo LV = D->getLinkageAndVisibility();
836   if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
837       !GV->isDeclarationForLinker())
838     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
839 }
840 
841 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
842                                  llvm::GlobalValue *GV) {
843   if (GV->hasLocalLinkage())
844     return true;
845 
846   if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
847     return true;
848 
849   // DLLImport explicitly marks the GV as external.
850   if (GV->hasDLLImportStorageClass())
851     return false;
852 
853   const llvm::Triple &TT = CGM.getTriple();
854   if (TT.isWindowsGNUEnvironment()) {
855     // In MinGW, variables without DLLImport can still be automatically
856     // imported from a DLL by the linker; don't mark variables that
857     // potentially could come from another DLL as DSO local.
858     if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
859         !GV->isThreadLocal())
860       return false;
861   }
862 
863   // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
864   // remain unresolved in the link, they can be resolved to zero, which is
865   // outside the current DSO.
866   if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
867     return false;
868 
869   // Every other GV is local on COFF.
870   // Make an exception for windows OS in the triple: Some firmware builds use
871   // *-win32-macho triples. This (accidentally?) produced windows relocations
872   // without GOT tables in older clang versions; Keep this behaviour.
873   // FIXME: even thread local variables?
874   if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
875     return true;
876 
877   // Only handle COFF and ELF for now.
878   if (!TT.isOSBinFormatELF())
879     return false;
880 
881   // If this is not an executable, don't assume anything is local.
882   const auto &CGOpts = CGM.getCodeGenOpts();
883   llvm::Reloc::Model RM = CGOpts.RelocationModel;
884   const auto &LOpts = CGM.getLangOpts();
885   if (RM != llvm::Reloc::Static && !LOpts.PIE)
886     return false;
887 
888   // A definition cannot be preempted from an executable.
889   if (!GV->isDeclarationForLinker())
890     return true;
891 
892   // Most PIC code sequences that assume that a symbol is local cannot produce a
893   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
894   // depended, it seems worth it to handle it here.
895   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
896     return false;
897 
898   // PPC has no copy relocations and cannot use a plt entry as a symbol address.
899   llvm::Triple::ArchType Arch = TT.getArch();
900   if (Arch == llvm::Triple::ppc || Arch == llvm::Triple::ppc64 ||
901       Arch == llvm::Triple::ppc64le)
902     return false;
903 
904   // If we can use copy relocations we can assume it is local.
905   if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
906     if (!Var->isThreadLocal() &&
907         (RM == llvm::Reloc::Static || CGOpts.PIECopyRelocations))
908       return true;
909 
910   // If we can use a plt entry as the symbol address we can assume it
911   // is local.
912   // FIXME: This should work for PIE, but the gold linker doesn't support it.
913   if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
914     return true;
915 
916   // Otherwise don't assume it is local.
917   return false;
918 }
919 
920 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
921   GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
922 }
923 
924 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
925                                           GlobalDecl GD) const {
926   const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
927   // C++ destructors have a few C++ ABI specific special cases.
928   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
929     getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
930     return;
931   }
932   setDLLImportDLLExport(GV, D);
933 }
934 
935 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
936                                           const NamedDecl *D) const {
937   if (D && D->isExternallyVisible()) {
938     if (D->hasAttr<DLLImportAttr>())
939       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
940     else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker())
941       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
942   }
943 }
944 
945 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
946                                     GlobalDecl GD) const {
947   setDLLImportDLLExport(GV, GD);
948   setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl()));
949 }
950 
951 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
952                                     const NamedDecl *D) const {
953   setDLLImportDLLExport(GV, D);
954   setGVPropertiesAux(GV, D);
955 }
956 
957 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV,
958                                        const NamedDecl *D) const {
959   setGlobalVisibility(GV, D);
960   setDSOLocal(GV);
961   GV->setPartition(CodeGenOpts.SymbolPartition);
962 }
963 
964 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
965   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
966       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
967       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
968       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
969       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
970 }
971 
972 llvm::GlobalVariable::ThreadLocalMode
973 CodeGenModule::GetDefaultLLVMTLSModel() const {
974   switch (CodeGenOpts.getDefaultTLSModel()) {
975   case CodeGenOptions::GeneralDynamicTLSModel:
976     return llvm::GlobalVariable::GeneralDynamicTLSModel;
977   case CodeGenOptions::LocalDynamicTLSModel:
978     return llvm::GlobalVariable::LocalDynamicTLSModel;
979   case CodeGenOptions::InitialExecTLSModel:
980     return llvm::GlobalVariable::InitialExecTLSModel;
981   case CodeGenOptions::LocalExecTLSModel:
982     return llvm::GlobalVariable::LocalExecTLSModel;
983   }
984   llvm_unreachable("Invalid TLS model!");
985 }
986 
987 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
988   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
989 
990   llvm::GlobalValue::ThreadLocalMode TLM;
991   TLM = GetDefaultLLVMTLSModel();
992 
993   // Override the TLS model if it is explicitly specified.
994   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
995     TLM = GetLLVMTLSModel(Attr->getModel());
996   }
997 
998   GV->setThreadLocalMode(TLM);
999 }
1000 
1001 static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
1002                                           StringRef Name) {
1003   const TargetInfo &Target = CGM.getTarget();
1004   return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
1005 }
1006 
1007 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
1008                                                  const CPUSpecificAttr *Attr,
1009                                                  unsigned CPUIndex,
1010                                                  raw_ostream &Out) {
1011   // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
1012   // supported.
1013   if (Attr)
1014     Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
1015   else if (CGM.getTarget().supportsIFunc())
1016     Out << ".resolver";
1017 }
1018 
1019 static void AppendTargetMangling(const CodeGenModule &CGM,
1020                                  const TargetAttr *Attr, raw_ostream &Out) {
1021   if (Attr->isDefaultVersion())
1022     return;
1023 
1024   Out << '.';
1025   const TargetInfo &Target = CGM.getTarget();
1026   ParsedTargetAttr Info =
1027       Attr->parse([&Target](StringRef LHS, StringRef RHS) {
1028         // Multiversioning doesn't allow "no-${feature}", so we can
1029         // only have "+" prefixes here.
1030         assert(LHS.startswith("+") && RHS.startswith("+") &&
1031                "Features should always have a prefix.");
1032         return Target.multiVersionSortPriority(LHS.substr(1)) >
1033                Target.multiVersionSortPriority(RHS.substr(1));
1034       });
1035 
1036   bool IsFirst = true;
1037 
1038   if (!Info.Architecture.empty()) {
1039     IsFirst = false;
1040     Out << "arch_" << Info.Architecture;
1041   }
1042 
1043   for (StringRef Feat : Info.Features) {
1044     if (!IsFirst)
1045       Out << '_';
1046     IsFirst = false;
1047     Out << Feat.substr(1);
1048   }
1049 }
1050 
1051 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD,
1052                                       const NamedDecl *ND,
1053                                       bool OmitMultiVersionMangling = false) {
1054   SmallString<256> Buffer;
1055   llvm::raw_svector_ostream Out(Buffer);
1056   MangleContext &MC = CGM.getCXXABI().getMangleContext();
1057   if (MC.shouldMangleDeclName(ND))
1058     MC.mangleName(GD.getWithDecl(ND), Out);
1059   else {
1060     IdentifierInfo *II = ND->getIdentifier();
1061     assert(II && "Attempt to mangle unnamed decl.");
1062     const auto *FD = dyn_cast<FunctionDecl>(ND);
1063 
1064     if (FD &&
1065         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
1066       Out << "__regcall3__" << II->getName();
1067     } else if (FD && FD->hasAttr<CUDAGlobalAttr>() &&
1068                GD.getKernelReferenceKind() == KernelReferenceKind::Stub) {
1069       Out << "__device_stub__" << II->getName();
1070     } else {
1071       Out << II->getName();
1072     }
1073   }
1074 
1075   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1076     if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
1077       switch (FD->getMultiVersionKind()) {
1078       case MultiVersionKind::CPUDispatch:
1079       case MultiVersionKind::CPUSpecific:
1080         AppendCPUSpecificCPUDispatchMangling(CGM,
1081                                              FD->getAttr<CPUSpecificAttr>(),
1082                                              GD.getMultiVersionIndex(), Out);
1083         break;
1084       case MultiVersionKind::Target:
1085         AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
1086         break;
1087       case MultiVersionKind::None:
1088         llvm_unreachable("None multiversion type isn't valid here");
1089       }
1090     }
1091 
1092   return std::string(Out.str());
1093 }
1094 
1095 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
1096                                             const FunctionDecl *FD) {
1097   if (!FD->isMultiVersion())
1098     return;
1099 
1100   // Get the name of what this would be without the 'target' attribute.  This
1101   // allows us to lookup the version that was emitted when this wasn't a
1102   // multiversion function.
1103   std::string NonTargetName =
1104       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1105   GlobalDecl OtherGD;
1106   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1107     assert(OtherGD.getCanonicalDecl()
1108                .getDecl()
1109                ->getAsFunction()
1110                ->isMultiVersion() &&
1111            "Other GD should now be a multiversioned function");
1112     // OtherFD is the version of this function that was mangled BEFORE
1113     // becoming a MultiVersion function.  It potentially needs to be updated.
1114     const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1115                                       .getDecl()
1116                                       ->getAsFunction()
1117                                       ->getMostRecentDecl();
1118     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1119     // This is so that if the initial version was already the 'default'
1120     // version, we don't try to update it.
1121     if (OtherName != NonTargetName) {
1122       // Remove instead of erase, since others may have stored the StringRef
1123       // to this.
1124       const auto ExistingRecord = Manglings.find(NonTargetName);
1125       if (ExistingRecord != std::end(Manglings))
1126         Manglings.remove(&(*ExistingRecord));
1127       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1128       MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first();
1129       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
1130         Entry->setName(OtherName);
1131     }
1132   }
1133 }
1134 
1135 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
1136   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
1137 
1138   // Some ABIs don't have constructor variants.  Make sure that base and
1139   // complete constructors get mangled the same.
1140   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
1141     if (!getTarget().getCXXABI().hasConstructorVariants()) {
1142       CXXCtorType OrigCtorType = GD.getCtorType();
1143       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
1144       if (OrigCtorType == Ctor_Base)
1145         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
1146     }
1147   }
1148 
1149   auto FoundName = MangledDeclNames.find(CanonicalGD);
1150   if (FoundName != MangledDeclNames.end())
1151     return FoundName->second;
1152 
1153   // Keep the first result in the case of a mangling collision.
1154   const auto *ND = cast<NamedDecl>(GD.getDecl());
1155   std::string MangledName = getMangledNameImpl(*this, GD, ND);
1156 
1157   // Ensure either we have different ABIs between host and device compilations,
1158   // says host compilation following MSVC ABI but device compilation follows
1159   // Itanium C++ ABI or, if they follow the same ABI, kernel names after
1160   // mangling should be the same after name stubbing. The later checking is
1161   // very important as the device kernel name being mangled in host-compilation
1162   // is used to resolve the device binaries to be executed. Inconsistent naming
1163   // result in undefined behavior. Even though we cannot check that naming
1164   // directly between host- and device-compilations, the host- and
1165   // device-mangling in host compilation could help catching certain ones.
1166   assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() ||
1167          getLangOpts().CUDAIsDevice ||
1168          (getContext().getAuxTargetInfo() &&
1169           (getContext().getAuxTargetInfo()->getCXXABI() !=
1170            getContext().getTargetInfo().getCXXABI())) ||
1171          getCUDARuntime().getDeviceSideName(ND) ==
1172              getMangledNameImpl(
1173                  *this,
1174                  GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel),
1175                  ND));
1176 
1177   auto Result = Manglings.insert(std::make_pair(MangledName, GD));
1178   return MangledDeclNames[CanonicalGD] = Result.first->first();
1179 }
1180 
1181 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
1182                                              const BlockDecl *BD) {
1183   MangleContext &MangleCtx = getCXXABI().getMangleContext();
1184   const Decl *D = GD.getDecl();
1185 
1186   SmallString<256> Buffer;
1187   llvm::raw_svector_ostream Out(Buffer);
1188   if (!D)
1189     MangleCtx.mangleGlobalBlock(BD,
1190       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
1191   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
1192     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
1193   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
1194     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
1195   else
1196     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
1197 
1198   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
1199   return Result.first->first();
1200 }
1201 
1202 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
1203   return getModule().getNamedValue(Name);
1204 }
1205 
1206 /// AddGlobalCtor - Add a function to the list that will be called before
1207 /// main() runs.
1208 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
1209                                   llvm::Constant *AssociatedData) {
1210   // FIXME: Type coercion of void()* types.
1211   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
1212 }
1213 
1214 /// AddGlobalDtor - Add a function to the list that will be called
1215 /// when the module is unloaded.
1216 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) {
1217   if (CodeGenOpts.RegisterGlobalDtorsWithAtExit) {
1218     if (getCXXABI().useSinitAndSterm())
1219       llvm::report_fatal_error(
1220           "register global dtors with atexit() is not supported yet");
1221     DtorsUsingAtExit[Priority].push_back(Dtor);
1222     return;
1223   }
1224 
1225   // FIXME: Type coercion of void()* types.
1226   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
1227 }
1228 
1229 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
1230   if (Fns.empty()) return;
1231 
1232   // Ctor function type is void()*.
1233   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
1234   llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy,
1235       TheModule.getDataLayout().getProgramAddressSpace());
1236 
1237   // Get the type of a ctor entry, { i32, void ()*, i8* }.
1238   llvm::StructType *CtorStructTy = llvm::StructType::get(
1239       Int32Ty, CtorPFTy, VoidPtrTy);
1240 
1241   // Construct the constructor and destructor arrays.
1242   ConstantInitBuilder builder(*this);
1243   auto ctors = builder.beginArray(CtorStructTy);
1244   for (const auto &I : Fns) {
1245     auto ctor = ctors.beginStruct(CtorStructTy);
1246     ctor.addInt(Int32Ty, I.Priority);
1247     ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
1248     if (I.AssociatedData)
1249       ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
1250     else
1251       ctor.addNullPointer(VoidPtrTy);
1252     ctor.finishAndAddTo(ctors);
1253   }
1254 
1255   auto list =
1256     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
1257                                 /*constant*/ false,
1258                                 llvm::GlobalValue::AppendingLinkage);
1259 
1260   // The LTO linker doesn't seem to like it when we set an alignment
1261   // on appending variables.  Take it off as a workaround.
1262   list->setAlignment(llvm::None);
1263 
1264   Fns.clear();
1265 }
1266 
1267 llvm::GlobalValue::LinkageTypes
1268 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
1269   const auto *D = cast<FunctionDecl>(GD.getDecl());
1270 
1271   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
1272 
1273   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
1274     return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
1275 
1276   if (isa<CXXConstructorDecl>(D) &&
1277       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
1278       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1279     // Our approach to inheriting constructors is fundamentally different from
1280     // that used by the MS ABI, so keep our inheriting constructor thunks
1281     // internal rather than trying to pick an unambiguous mangling for them.
1282     return llvm::GlobalValue::InternalLinkage;
1283   }
1284 
1285   return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false);
1286 }
1287 
1288 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1289   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1290   if (!MDS) return nullptr;
1291 
1292   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1293 }
1294 
1295 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
1296                                               const CGFunctionInfo &Info,
1297                                               llvm::Function *F) {
1298   unsigned CallingConv;
1299   llvm::AttributeList PAL;
1300   ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, false);
1301   F->setAttributes(PAL);
1302   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
1303 }
1304 
1305 static void removeImageAccessQualifier(std::string& TyName) {
1306   std::string ReadOnlyQual("__read_only");
1307   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
1308   if (ReadOnlyPos != std::string::npos)
1309     // "+ 1" for the space after access qualifier.
1310     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
1311   else {
1312     std::string WriteOnlyQual("__write_only");
1313     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
1314     if (WriteOnlyPos != std::string::npos)
1315       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
1316     else {
1317       std::string ReadWriteQual("__read_write");
1318       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
1319       if (ReadWritePos != std::string::npos)
1320         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
1321     }
1322   }
1323 }
1324 
1325 // Returns the address space id that should be produced to the
1326 // kernel_arg_addr_space metadata. This is always fixed to the ids
1327 // as specified in the SPIR 2.0 specification in order to differentiate
1328 // for example in clGetKernelArgInfo() implementation between the address
1329 // spaces with targets without unique mapping to the OpenCL address spaces
1330 // (basically all single AS CPUs).
1331 static unsigned ArgInfoAddressSpace(LangAS AS) {
1332   switch (AS) {
1333   case LangAS::opencl_global:
1334     return 1;
1335   case LangAS::opencl_constant:
1336     return 2;
1337   case LangAS::opencl_local:
1338     return 3;
1339   case LangAS::opencl_generic:
1340     return 4; // Not in SPIR 2.0 specs.
1341   case LangAS::opencl_global_device:
1342     return 5;
1343   case LangAS::opencl_global_host:
1344     return 6;
1345   default:
1346     return 0; // Assume private.
1347   }
1348 }
1349 
1350 void CodeGenModule::GenOpenCLArgMetadata(llvm::Function *Fn,
1351                                          const FunctionDecl *FD,
1352                                          CodeGenFunction *CGF) {
1353   assert(((FD && CGF) || (!FD && !CGF)) &&
1354          "Incorrect use - FD and CGF should either be both null or not!");
1355   // Create MDNodes that represent the kernel arg metadata.
1356   // Each MDNode is a list in the form of "key", N number of values which is
1357   // the same number of values as their are kernel arguments.
1358 
1359   const PrintingPolicy &Policy = Context.getPrintingPolicy();
1360 
1361   // MDNode for the kernel argument address space qualifiers.
1362   SmallVector<llvm::Metadata *, 8> addressQuals;
1363 
1364   // MDNode for the kernel argument access qualifiers (images only).
1365   SmallVector<llvm::Metadata *, 8> accessQuals;
1366 
1367   // MDNode for the kernel argument type names.
1368   SmallVector<llvm::Metadata *, 8> argTypeNames;
1369 
1370   // MDNode for the kernel argument base type names.
1371   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
1372 
1373   // MDNode for the kernel argument type qualifiers.
1374   SmallVector<llvm::Metadata *, 8> argTypeQuals;
1375 
1376   // MDNode for the kernel argument names.
1377   SmallVector<llvm::Metadata *, 8> argNames;
1378 
1379   if (FD && CGF)
1380     for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
1381       const ParmVarDecl *parm = FD->getParamDecl(i);
1382       QualType ty = parm->getType();
1383       std::string typeQuals;
1384 
1385       if (ty->isPointerType()) {
1386         QualType pointeeTy = ty->getPointeeType();
1387 
1388         // Get address qualifier.
1389         addressQuals.push_back(
1390             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(
1391                 ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
1392 
1393         // Get argument type name.
1394         std::string typeName =
1395             pointeeTy.getUnqualifiedType().getAsString(Policy) + "*";
1396 
1397         // Turn "unsigned type" to "utype"
1398         std::string::size_type pos = typeName.find("unsigned");
1399         if (pointeeTy.isCanonical() && pos != std::string::npos)
1400           typeName.erase(pos + 1, 8);
1401 
1402         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1403 
1404         std::string baseTypeName =
1405             pointeeTy.getUnqualifiedType().getCanonicalType().getAsString(
1406                 Policy) +
1407             "*";
1408 
1409         // Turn "unsigned type" to "utype"
1410         pos = baseTypeName.find("unsigned");
1411         if (pos != std::string::npos)
1412           baseTypeName.erase(pos + 1, 8);
1413 
1414         argBaseTypeNames.push_back(
1415             llvm::MDString::get(VMContext, baseTypeName));
1416 
1417         // Get argument type qualifiers:
1418         if (ty.isRestrictQualified())
1419           typeQuals = "restrict";
1420         if (pointeeTy.isConstQualified() ||
1421             (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
1422           typeQuals += typeQuals.empty() ? "const" : " const";
1423         if (pointeeTy.isVolatileQualified())
1424           typeQuals += typeQuals.empty() ? "volatile" : " volatile";
1425       } else {
1426         uint32_t AddrSpc = 0;
1427         bool isPipe = ty->isPipeType();
1428         if (ty->isImageType() || isPipe)
1429           AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
1430 
1431         addressQuals.push_back(
1432             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc)));
1433 
1434         // Get argument type name.
1435         std::string typeName;
1436         if (isPipe)
1437           typeName = ty.getCanonicalType()
1438                          ->castAs<PipeType>()
1439                          ->getElementType()
1440                          .getAsString(Policy);
1441         else
1442           typeName = ty.getUnqualifiedType().getAsString(Policy);
1443 
1444         // Turn "unsigned type" to "utype"
1445         std::string::size_type pos = typeName.find("unsigned");
1446         if (ty.isCanonical() && pos != std::string::npos)
1447           typeName.erase(pos + 1, 8);
1448 
1449         std::string baseTypeName;
1450         if (isPipe)
1451           baseTypeName = ty.getCanonicalType()
1452                              ->castAs<PipeType>()
1453                              ->getElementType()
1454                              .getCanonicalType()
1455                              .getAsString(Policy);
1456         else
1457           baseTypeName =
1458               ty.getUnqualifiedType().getCanonicalType().getAsString(Policy);
1459 
1460         // Remove access qualifiers on images
1461         // (as they are inseparable from type in clang implementation,
1462         // but OpenCL spec provides a special query to get access qualifier
1463         // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
1464         if (ty->isImageType()) {
1465           removeImageAccessQualifier(typeName);
1466           removeImageAccessQualifier(baseTypeName);
1467         }
1468 
1469         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1470 
1471         // Turn "unsigned type" to "utype"
1472         pos = baseTypeName.find("unsigned");
1473         if (pos != std::string::npos)
1474           baseTypeName.erase(pos + 1, 8);
1475 
1476         argBaseTypeNames.push_back(
1477             llvm::MDString::get(VMContext, baseTypeName));
1478 
1479         if (isPipe)
1480           typeQuals = "pipe";
1481       }
1482 
1483       argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals));
1484 
1485       // Get image and pipe access qualifier:
1486       if (ty->isImageType() || ty->isPipeType()) {
1487         const Decl *PDecl = parm;
1488         if (auto *TD = dyn_cast<TypedefType>(ty))
1489           PDecl = TD->getDecl();
1490         const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
1491         if (A && A->isWriteOnly())
1492           accessQuals.push_back(llvm::MDString::get(VMContext, "write_only"));
1493         else if (A && A->isReadWrite())
1494           accessQuals.push_back(llvm::MDString::get(VMContext, "read_write"));
1495         else
1496           accessQuals.push_back(llvm::MDString::get(VMContext, "read_only"));
1497       } else
1498         accessQuals.push_back(llvm::MDString::get(VMContext, "none"));
1499 
1500       // Get argument name.
1501       argNames.push_back(llvm::MDString::get(VMContext, parm->getName()));
1502     }
1503 
1504   Fn->setMetadata("kernel_arg_addr_space",
1505                   llvm::MDNode::get(VMContext, addressQuals));
1506   Fn->setMetadata("kernel_arg_access_qual",
1507                   llvm::MDNode::get(VMContext, accessQuals));
1508   Fn->setMetadata("kernel_arg_type",
1509                   llvm::MDNode::get(VMContext, argTypeNames));
1510   Fn->setMetadata("kernel_arg_base_type",
1511                   llvm::MDNode::get(VMContext, argBaseTypeNames));
1512   Fn->setMetadata("kernel_arg_type_qual",
1513                   llvm::MDNode::get(VMContext, argTypeQuals));
1514   if (getCodeGenOpts().EmitOpenCLArgMetadata)
1515     Fn->setMetadata("kernel_arg_name",
1516                     llvm::MDNode::get(VMContext, argNames));
1517 }
1518 
1519 /// Determines whether the language options require us to model
1520 /// unwind exceptions.  We treat -fexceptions as mandating this
1521 /// except under the fragile ObjC ABI with only ObjC exceptions
1522 /// enabled.  This means, for example, that C with -fexceptions
1523 /// enables this.
1524 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
1525   // If exceptions are completely disabled, obviously this is false.
1526   if (!LangOpts.Exceptions) return false;
1527 
1528   // If C++ exceptions are enabled, this is true.
1529   if (LangOpts.CXXExceptions) return true;
1530 
1531   // If ObjC exceptions are enabled, this depends on the ABI.
1532   if (LangOpts.ObjCExceptions) {
1533     return LangOpts.ObjCRuntime.hasUnwindExceptions();
1534   }
1535 
1536   return true;
1537 }
1538 
1539 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
1540                                                       const CXXMethodDecl *MD) {
1541   // Check that the type metadata can ever actually be used by a call.
1542   if (!CGM.getCodeGenOpts().LTOUnit ||
1543       !CGM.HasHiddenLTOVisibility(MD->getParent()))
1544     return false;
1545 
1546   // Only functions whose address can be taken with a member function pointer
1547   // need this sort of type metadata.
1548   return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) &&
1549          !isa<CXXDestructorDecl>(MD);
1550 }
1551 
1552 std::vector<const CXXRecordDecl *>
1553 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
1554   llvm::SetVector<const CXXRecordDecl *> MostBases;
1555 
1556   std::function<void (const CXXRecordDecl *)> CollectMostBases;
1557   CollectMostBases = [&](const CXXRecordDecl *RD) {
1558     if (RD->getNumBases() == 0)
1559       MostBases.insert(RD);
1560     for (const CXXBaseSpecifier &B : RD->bases())
1561       CollectMostBases(B.getType()->getAsCXXRecordDecl());
1562   };
1563   CollectMostBases(RD);
1564   return MostBases.takeVector();
1565 }
1566 
1567 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
1568                                                            llvm::Function *F) {
1569   llvm::AttrBuilder B;
1570 
1571   if (CodeGenOpts.UnwindTables)
1572     B.addAttribute(llvm::Attribute::UWTable);
1573 
1574   if (CodeGenOpts.StackClashProtector)
1575     B.addAttribute("probe-stack", "inline-asm");
1576 
1577   if (!hasUnwindExceptions(LangOpts))
1578     B.addAttribute(llvm::Attribute::NoUnwind);
1579 
1580   if (!D || !D->hasAttr<NoStackProtectorAttr>()) {
1581     if (LangOpts.getStackProtector() == LangOptions::SSPOn)
1582       B.addAttribute(llvm::Attribute::StackProtect);
1583     else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
1584       B.addAttribute(llvm::Attribute::StackProtectStrong);
1585     else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
1586       B.addAttribute(llvm::Attribute::StackProtectReq);
1587   }
1588 
1589   if (!D) {
1590     // If we don't have a declaration to control inlining, the function isn't
1591     // explicitly marked as alwaysinline for semantic reasons, and inlining is
1592     // disabled, mark the function as noinline.
1593     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1594         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
1595       B.addAttribute(llvm::Attribute::NoInline);
1596 
1597     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1598     return;
1599   }
1600 
1601   // Track whether we need to add the optnone LLVM attribute,
1602   // starting with the default for this optimization level.
1603   bool ShouldAddOptNone =
1604       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
1605   // We can't add optnone in the following cases, it won't pass the verifier.
1606   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
1607   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
1608 
1609   // Add optnone, but do so only if the function isn't always_inline.
1610   if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) &&
1611       !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1612     B.addAttribute(llvm::Attribute::OptimizeNone);
1613 
1614     // OptimizeNone implies noinline; we should not be inlining such functions.
1615     B.addAttribute(llvm::Attribute::NoInline);
1616 
1617     // We still need to handle naked functions even though optnone subsumes
1618     // much of their semantics.
1619     if (D->hasAttr<NakedAttr>())
1620       B.addAttribute(llvm::Attribute::Naked);
1621 
1622     // OptimizeNone wins over OptimizeForSize and MinSize.
1623     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
1624     F->removeFnAttr(llvm::Attribute::MinSize);
1625   } else if (D->hasAttr<NakedAttr>()) {
1626     // Naked implies noinline: we should not be inlining such functions.
1627     B.addAttribute(llvm::Attribute::Naked);
1628     B.addAttribute(llvm::Attribute::NoInline);
1629   } else if (D->hasAttr<NoDuplicateAttr>()) {
1630     B.addAttribute(llvm::Attribute::NoDuplicate);
1631   } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1632     // Add noinline if the function isn't always_inline.
1633     B.addAttribute(llvm::Attribute::NoInline);
1634   } else if (D->hasAttr<AlwaysInlineAttr>() &&
1635              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
1636     // (noinline wins over always_inline, and we can't specify both in IR)
1637     B.addAttribute(llvm::Attribute::AlwaysInline);
1638   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
1639     // If we're not inlining, then force everything that isn't always_inline to
1640     // carry an explicit noinline attribute.
1641     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
1642       B.addAttribute(llvm::Attribute::NoInline);
1643   } else {
1644     // Otherwise, propagate the inline hint attribute and potentially use its
1645     // absence to mark things as noinline.
1646     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1647       // Search function and template pattern redeclarations for inline.
1648       auto CheckForInline = [](const FunctionDecl *FD) {
1649         auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
1650           return Redecl->isInlineSpecified();
1651         };
1652         if (any_of(FD->redecls(), CheckRedeclForInline))
1653           return true;
1654         const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
1655         if (!Pattern)
1656           return false;
1657         return any_of(Pattern->redecls(), CheckRedeclForInline);
1658       };
1659       if (CheckForInline(FD)) {
1660         B.addAttribute(llvm::Attribute::InlineHint);
1661       } else if (CodeGenOpts.getInlining() ==
1662                      CodeGenOptions::OnlyHintInlining &&
1663                  !FD->isInlined() &&
1664                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1665         B.addAttribute(llvm::Attribute::NoInline);
1666       }
1667     }
1668   }
1669 
1670   // Add other optimization related attributes if we are optimizing this
1671   // function.
1672   if (!D->hasAttr<OptimizeNoneAttr>()) {
1673     if (D->hasAttr<ColdAttr>()) {
1674       if (!ShouldAddOptNone)
1675         B.addAttribute(llvm::Attribute::OptimizeForSize);
1676       B.addAttribute(llvm::Attribute::Cold);
1677     }
1678 
1679     if (D->hasAttr<MinSizeAttr>())
1680       B.addAttribute(llvm::Attribute::MinSize);
1681   }
1682 
1683   F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1684 
1685   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
1686   if (alignment)
1687     F->setAlignment(llvm::Align(alignment));
1688 
1689   if (!D->hasAttr<AlignedAttr>())
1690     if (LangOpts.FunctionAlignment)
1691       F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment));
1692 
1693   // Some C++ ABIs require 2-byte alignment for member functions, in order to
1694   // reserve a bit for differentiating between virtual and non-virtual member
1695   // functions. If the current target's C++ ABI requires this and this is a
1696   // member function, set its alignment accordingly.
1697   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
1698     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
1699       F->setAlignment(llvm::Align(2));
1700   }
1701 
1702   // In the cross-dso CFI mode with canonical jump tables, we want !type
1703   // attributes on definitions only.
1704   if (CodeGenOpts.SanitizeCfiCrossDso &&
1705       CodeGenOpts.SanitizeCfiCanonicalJumpTables) {
1706     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1707       // Skip available_externally functions. They won't be codegen'ed in the
1708       // current module anyway.
1709       if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally)
1710         CreateFunctionTypeMetadataForIcall(FD, F);
1711     }
1712   }
1713 
1714   // Emit type metadata on member functions for member function pointer checks.
1715   // These are only ever necessary on definitions; we're guaranteed that the
1716   // definition will be present in the LTO unit as a result of LTO visibility.
1717   auto *MD = dyn_cast<CXXMethodDecl>(D);
1718   if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
1719     for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
1720       llvm::Metadata *Id =
1721           CreateMetadataIdentifierForType(Context.getMemberPointerType(
1722               MD->getType(), Context.getRecordType(Base).getTypePtr()));
1723       F->addTypeMetadata(0, Id);
1724     }
1725   }
1726 }
1727 
1728 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
1729   const Decl *D = GD.getDecl();
1730   if (dyn_cast_or_null<NamedDecl>(D))
1731     setGVProperties(GV, GD);
1732   else
1733     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1734 
1735   if (D && D->hasAttr<UsedAttr>())
1736     addUsedGlobal(GV);
1737 
1738   if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) {
1739     const auto *VD = cast<VarDecl>(D);
1740     if (VD->getType().isConstQualified() &&
1741         VD->getStorageDuration() == SD_Static)
1742       addUsedGlobal(GV);
1743   }
1744 }
1745 
1746 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
1747                                                 llvm::AttrBuilder &Attrs) {
1748   // Add target-cpu and target-features attributes to functions. If
1749   // we have a decl for the function and it has a target attribute then
1750   // parse that and add it to the feature set.
1751   StringRef TargetCPU = getTarget().getTargetOpts().CPU;
1752   std::vector<std::string> Features;
1753   const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
1754   FD = FD ? FD->getMostRecentDecl() : FD;
1755   const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
1756   const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
1757   bool AddedAttr = false;
1758   if (TD || SD) {
1759     llvm::StringMap<bool> FeatureMap;
1760     getContext().getFunctionFeatureMap(FeatureMap, GD);
1761 
1762     // Produce the canonical string for this set of features.
1763     for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
1764       Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
1765 
1766     // Now add the target-cpu and target-features to the function.
1767     // While we populated the feature map above, we still need to
1768     // get and parse the target attribute so we can get the cpu for
1769     // the function.
1770     if (TD) {
1771       ParsedTargetAttr ParsedAttr = TD->parse();
1772       if (ParsedAttr.Architecture != "" &&
1773           getTarget().isValidCPUName(ParsedAttr.Architecture))
1774         TargetCPU = ParsedAttr.Architecture;
1775     }
1776   } else {
1777     // Otherwise just add the existing target cpu and target features to the
1778     // function.
1779     Features = getTarget().getTargetOpts().Features;
1780   }
1781 
1782   if (TargetCPU != "") {
1783     Attrs.addAttribute("target-cpu", TargetCPU);
1784     AddedAttr = true;
1785   }
1786   if (!Features.empty()) {
1787     llvm::sort(Features);
1788     Attrs.addAttribute("target-features", llvm::join(Features, ","));
1789     AddedAttr = true;
1790   }
1791 
1792   return AddedAttr;
1793 }
1794 
1795 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
1796                                           llvm::GlobalObject *GO) {
1797   const Decl *D = GD.getDecl();
1798   SetCommonAttributes(GD, GO);
1799 
1800   if (D) {
1801     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
1802       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
1803         GV->addAttribute("bss-section", SA->getName());
1804       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
1805         GV->addAttribute("data-section", SA->getName());
1806       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
1807         GV->addAttribute("rodata-section", SA->getName());
1808       if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>())
1809         GV->addAttribute("relro-section", SA->getName());
1810     }
1811 
1812     if (auto *F = dyn_cast<llvm::Function>(GO)) {
1813       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
1814         if (!D->getAttr<SectionAttr>())
1815           F->addFnAttr("implicit-section-name", SA->getName());
1816 
1817       llvm::AttrBuilder Attrs;
1818       if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
1819         // We know that GetCPUAndFeaturesAttributes will always have the
1820         // newest set, since it has the newest possible FunctionDecl, so the
1821         // new ones should replace the old.
1822         F->removeFnAttr("target-cpu");
1823         F->removeFnAttr("target-features");
1824         F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs);
1825       }
1826     }
1827 
1828     if (const auto *CSA = D->getAttr<CodeSegAttr>())
1829       GO->setSection(CSA->getName());
1830     else if (const auto *SA = D->getAttr<SectionAttr>())
1831       GO->setSection(SA->getName());
1832   }
1833 
1834   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
1835 }
1836 
1837 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
1838                                                   llvm::Function *F,
1839                                                   const CGFunctionInfo &FI) {
1840   const Decl *D = GD.getDecl();
1841   SetLLVMFunctionAttributes(GD, FI, F);
1842   SetLLVMFunctionAttributesForDefinition(D, F);
1843 
1844   F->setLinkage(llvm::Function::InternalLinkage);
1845 
1846   setNonAliasAttributes(GD, F);
1847 }
1848 
1849 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
1850   // Set linkage and visibility in case we never see a definition.
1851   LinkageInfo LV = ND->getLinkageAndVisibility();
1852   // Don't set internal linkage on declarations.
1853   // "extern_weak" is overloaded in LLVM; we probably should have
1854   // separate linkage types for this.
1855   if (isExternallyVisible(LV.getLinkage()) &&
1856       (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
1857     GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1858 }
1859 
1860 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
1861                                                        llvm::Function *F) {
1862   // Only if we are checking indirect calls.
1863   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
1864     return;
1865 
1866   // Non-static class methods are handled via vtable or member function pointer
1867   // checks elsewhere.
1868   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
1869     return;
1870 
1871   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
1872   F->addTypeMetadata(0, MD);
1873   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
1874 
1875   // Emit a hash-based bit set entry for cross-DSO calls.
1876   if (CodeGenOpts.SanitizeCfiCrossDso)
1877     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
1878       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
1879 }
1880 
1881 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
1882                                           bool IsIncompleteFunction,
1883                                           bool IsThunk) {
1884 
1885   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
1886     // If this is an intrinsic function, set the function's attributes
1887     // to the intrinsic's attributes.
1888     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
1889     return;
1890   }
1891 
1892   const auto *FD = cast<FunctionDecl>(GD.getDecl());
1893 
1894   if (!IsIncompleteFunction)
1895     SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F);
1896 
1897   // Add the Returned attribute for "this", except for iOS 5 and earlier
1898   // where substantial code, including the libstdc++ dylib, was compiled with
1899   // GCC and does not actually return "this".
1900   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
1901       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
1902     assert(!F->arg_empty() &&
1903            F->arg_begin()->getType()
1904              ->canLosslesslyBitCastTo(F->getReturnType()) &&
1905            "unexpected this return");
1906     F->addAttribute(1, llvm::Attribute::Returned);
1907   }
1908 
1909   // Only a few attributes are set on declarations; these may later be
1910   // overridden by a definition.
1911 
1912   setLinkageForGV(F, FD);
1913   setGVProperties(F, FD);
1914 
1915   // Setup target-specific attributes.
1916   if (!IsIncompleteFunction && F->isDeclaration())
1917     getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
1918 
1919   if (const auto *CSA = FD->getAttr<CodeSegAttr>())
1920     F->setSection(CSA->getName());
1921   else if (const auto *SA = FD->getAttr<SectionAttr>())
1922      F->setSection(SA->getName());
1923 
1924   // If we plan on emitting this inline builtin, we can't treat it as a builtin.
1925   if (FD->isInlineBuiltinDeclaration()) {
1926     const FunctionDecl *FDBody;
1927     bool HasBody = FD->hasBody(FDBody);
1928     (void)HasBody;
1929     assert(HasBody && "Inline builtin declarations should always have an "
1930                       "available body!");
1931     if (shouldEmitFunction(FDBody))
1932       F->addAttribute(llvm::AttributeList::FunctionIndex,
1933                       llvm::Attribute::NoBuiltin);
1934   }
1935 
1936   if (FD->isReplaceableGlobalAllocationFunction()) {
1937     // A replaceable global allocation function does not act like a builtin by
1938     // default, only if it is invoked by a new-expression or delete-expression.
1939     F->addAttribute(llvm::AttributeList::FunctionIndex,
1940                     llvm::Attribute::NoBuiltin);
1941   }
1942 
1943   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
1944     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1945   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1946     if (MD->isVirtual())
1947       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1948 
1949   // Don't emit entries for function declarations in the cross-DSO mode. This
1950   // is handled with better precision by the receiving DSO. But if jump tables
1951   // are non-canonical then we need type metadata in order to produce the local
1952   // jump table.
1953   if (!CodeGenOpts.SanitizeCfiCrossDso ||
1954       !CodeGenOpts.SanitizeCfiCanonicalJumpTables)
1955     CreateFunctionTypeMetadataForIcall(FD, F);
1956 
1957   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
1958     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
1959 
1960   if (const auto *CB = FD->getAttr<CallbackAttr>()) {
1961     // Annotate the callback behavior as metadata:
1962     //  - The callback callee (as argument number).
1963     //  - The callback payloads (as argument numbers).
1964     llvm::LLVMContext &Ctx = F->getContext();
1965     llvm::MDBuilder MDB(Ctx);
1966 
1967     // The payload indices are all but the first one in the encoding. The first
1968     // identifies the callback callee.
1969     int CalleeIdx = *CB->encoding_begin();
1970     ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
1971     F->addMetadata(llvm::LLVMContext::MD_callback,
1972                    *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
1973                                                CalleeIdx, PayloadIndices,
1974                                                /* VarArgsArePassed */ false)}));
1975   }
1976 }
1977 
1978 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
1979   assert(!GV->isDeclaration() &&
1980          "Only globals with definition can force usage.");
1981   LLVMUsed.emplace_back(GV);
1982 }
1983 
1984 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
1985   assert(!GV->isDeclaration() &&
1986          "Only globals with definition can force usage.");
1987   LLVMCompilerUsed.emplace_back(GV);
1988 }
1989 
1990 static void emitUsed(CodeGenModule &CGM, StringRef Name,
1991                      std::vector<llvm::WeakTrackingVH> &List) {
1992   // Don't create llvm.used if there is no need.
1993   if (List.empty())
1994     return;
1995 
1996   // Convert List to what ConstantArray needs.
1997   SmallVector<llvm::Constant*, 8> UsedArray;
1998   UsedArray.resize(List.size());
1999   for (unsigned i = 0, e = List.size(); i != e; ++i) {
2000     UsedArray[i] =
2001         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
2002             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
2003   }
2004 
2005   if (UsedArray.empty())
2006     return;
2007   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
2008 
2009   auto *GV = new llvm::GlobalVariable(
2010       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
2011       llvm::ConstantArray::get(ATy, UsedArray), Name);
2012 
2013   GV->setSection("llvm.metadata");
2014 }
2015 
2016 void CodeGenModule::emitLLVMUsed() {
2017   emitUsed(*this, "llvm.used", LLVMUsed);
2018   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
2019 }
2020 
2021 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
2022   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
2023   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2024 }
2025 
2026 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
2027   llvm::SmallString<32> Opt;
2028   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
2029   if (Opt.empty())
2030     return;
2031   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2032   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2033 }
2034 
2035 void CodeGenModule::AddDependentLib(StringRef Lib) {
2036   auto &C = getLLVMContext();
2037   if (getTarget().getTriple().isOSBinFormatELF()) {
2038       ELFDependentLibraries.push_back(
2039         llvm::MDNode::get(C, llvm::MDString::get(C, Lib)));
2040     return;
2041   }
2042 
2043   llvm::SmallString<24> Opt;
2044   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
2045   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2046   LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts));
2047 }
2048 
2049 /// Add link options implied by the given module, including modules
2050 /// it depends on, using a postorder walk.
2051 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
2052                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
2053                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
2054   // Import this module's parent.
2055   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
2056     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
2057   }
2058 
2059   // Import this module's dependencies.
2060   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
2061     if (Visited.insert(Mod->Imports[I - 1]).second)
2062       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
2063   }
2064 
2065   // Add linker options to link against the libraries/frameworks
2066   // described by this module.
2067   llvm::LLVMContext &Context = CGM.getLLVMContext();
2068   bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
2069 
2070   // For modules that use export_as for linking, use that module
2071   // name instead.
2072   if (Mod->UseExportAsModuleLinkName)
2073     return;
2074 
2075   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
2076     // Link against a framework.  Frameworks are currently Darwin only, so we
2077     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
2078     if (Mod->LinkLibraries[I-1].IsFramework) {
2079       llvm::Metadata *Args[2] = {
2080           llvm::MDString::get(Context, "-framework"),
2081           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
2082 
2083       Metadata.push_back(llvm::MDNode::get(Context, Args));
2084       continue;
2085     }
2086 
2087     // Link against a library.
2088     if (IsELF) {
2089       llvm::Metadata *Args[2] = {
2090           llvm::MDString::get(Context, "lib"),
2091           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library),
2092       };
2093       Metadata.push_back(llvm::MDNode::get(Context, Args));
2094     } else {
2095       llvm::SmallString<24> Opt;
2096       CGM.getTargetCodeGenInfo().getDependentLibraryOption(
2097           Mod->LinkLibraries[I - 1].Library, Opt);
2098       auto *OptString = llvm::MDString::get(Context, Opt);
2099       Metadata.push_back(llvm::MDNode::get(Context, OptString));
2100     }
2101   }
2102 }
2103 
2104 void CodeGenModule::EmitModuleLinkOptions() {
2105   // Collect the set of all of the modules we want to visit to emit link
2106   // options, which is essentially the imported modules and all of their
2107   // non-explicit child modules.
2108   llvm::SetVector<clang::Module *> LinkModules;
2109   llvm::SmallPtrSet<clang::Module *, 16> Visited;
2110   SmallVector<clang::Module *, 16> Stack;
2111 
2112   // Seed the stack with imported modules.
2113   for (Module *M : ImportedModules) {
2114     // Do not add any link flags when an implementation TU of a module imports
2115     // a header of that same module.
2116     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
2117         !getLangOpts().isCompilingModule())
2118       continue;
2119     if (Visited.insert(M).second)
2120       Stack.push_back(M);
2121   }
2122 
2123   // Find all of the modules to import, making a little effort to prune
2124   // non-leaf modules.
2125   while (!Stack.empty()) {
2126     clang::Module *Mod = Stack.pop_back_val();
2127 
2128     bool AnyChildren = false;
2129 
2130     // Visit the submodules of this module.
2131     for (const auto &SM : Mod->submodules()) {
2132       // Skip explicit children; they need to be explicitly imported to be
2133       // linked against.
2134       if (SM->IsExplicit)
2135         continue;
2136 
2137       if (Visited.insert(SM).second) {
2138         Stack.push_back(SM);
2139         AnyChildren = true;
2140       }
2141     }
2142 
2143     // We didn't find any children, so add this module to the list of
2144     // modules to link against.
2145     if (!AnyChildren) {
2146       LinkModules.insert(Mod);
2147     }
2148   }
2149 
2150   // Add link options for all of the imported modules in reverse topological
2151   // order.  We don't do anything to try to order import link flags with respect
2152   // to linker options inserted by things like #pragma comment().
2153   SmallVector<llvm::MDNode *, 16> MetadataArgs;
2154   Visited.clear();
2155   for (Module *M : LinkModules)
2156     if (Visited.insert(M).second)
2157       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
2158   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
2159   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
2160 
2161   // Add the linker options metadata flag.
2162   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
2163   for (auto *MD : LinkerOptionsMetadata)
2164     NMD->addOperand(MD);
2165 }
2166 
2167 void CodeGenModule::EmitDeferred() {
2168   // Emit deferred declare target declarations.
2169   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
2170     getOpenMPRuntime().emitDeferredTargetDecls();
2171 
2172   // Emit code for any potentially referenced deferred decls.  Since a
2173   // previously unused static decl may become used during the generation of code
2174   // for a static function, iterate until no changes are made.
2175 
2176   if (!DeferredVTables.empty()) {
2177     EmitDeferredVTables();
2178 
2179     // Emitting a vtable doesn't directly cause more vtables to
2180     // become deferred, although it can cause functions to be
2181     // emitted that then need those vtables.
2182     assert(DeferredVTables.empty());
2183   }
2184 
2185   // Stop if we're out of both deferred vtables and deferred declarations.
2186   if (DeferredDeclsToEmit.empty())
2187     return;
2188 
2189   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
2190   // work, it will not interfere with this.
2191   std::vector<GlobalDecl> CurDeclsToEmit;
2192   CurDeclsToEmit.swap(DeferredDeclsToEmit);
2193 
2194   for (GlobalDecl &D : CurDeclsToEmit) {
2195     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
2196     // to get GlobalValue with exactly the type we need, not something that
2197     // might had been created for another decl with the same mangled name but
2198     // different type.
2199     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
2200         GetAddrOfGlobal(D, ForDefinition));
2201 
2202     // In case of different address spaces, we may still get a cast, even with
2203     // IsForDefinition equal to true. Query mangled names table to get
2204     // GlobalValue.
2205     if (!GV)
2206       GV = GetGlobalValue(getMangledName(D));
2207 
2208     // Make sure GetGlobalValue returned non-null.
2209     assert(GV);
2210 
2211     // Check to see if we've already emitted this.  This is necessary
2212     // for a couple of reasons: first, decls can end up in the
2213     // deferred-decls queue multiple times, and second, decls can end
2214     // up with definitions in unusual ways (e.g. by an extern inline
2215     // function acquiring a strong function redefinition).  Just
2216     // ignore these cases.
2217     if (!GV->isDeclaration())
2218       continue;
2219 
2220     // If this is OpenMP, check if it is legal to emit this global normally.
2221     if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D))
2222       continue;
2223 
2224     // Otherwise, emit the definition and move on to the next one.
2225     EmitGlobalDefinition(D, GV);
2226 
2227     // If we found out that we need to emit more decls, do that recursively.
2228     // This has the advantage that the decls are emitted in a DFS and related
2229     // ones are close together, which is convenient for testing.
2230     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
2231       EmitDeferred();
2232       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
2233     }
2234   }
2235 }
2236 
2237 void CodeGenModule::EmitVTablesOpportunistically() {
2238   // Try to emit external vtables as available_externally if they have emitted
2239   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
2240   // is not allowed to create new references to things that need to be emitted
2241   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
2242 
2243   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
2244          && "Only emit opportunistic vtables with optimizations");
2245 
2246   for (const CXXRecordDecl *RD : OpportunisticVTables) {
2247     assert(getVTables().isVTableExternal(RD) &&
2248            "This queue should only contain external vtables");
2249     if (getCXXABI().canSpeculativelyEmitVTable(RD))
2250       VTables.GenerateClassData(RD);
2251   }
2252   OpportunisticVTables.clear();
2253 }
2254 
2255 void CodeGenModule::EmitGlobalAnnotations() {
2256   if (Annotations.empty())
2257     return;
2258 
2259   // Create a new global variable for the ConstantStruct in the Module.
2260   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
2261     Annotations[0]->getType(), Annotations.size()), Annotations);
2262   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
2263                                       llvm::GlobalValue::AppendingLinkage,
2264                                       Array, "llvm.global.annotations");
2265   gv->setSection(AnnotationSection);
2266 }
2267 
2268 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
2269   llvm::Constant *&AStr = AnnotationStrings[Str];
2270   if (AStr)
2271     return AStr;
2272 
2273   // Not found yet, create a new global.
2274   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
2275   auto *gv =
2276       new llvm::GlobalVariable(getModule(), s->getType(), true,
2277                                llvm::GlobalValue::PrivateLinkage, s, ".str");
2278   gv->setSection(AnnotationSection);
2279   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2280   AStr = gv;
2281   return gv;
2282 }
2283 
2284 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
2285   SourceManager &SM = getContext().getSourceManager();
2286   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
2287   if (PLoc.isValid())
2288     return EmitAnnotationString(PLoc.getFilename());
2289   return EmitAnnotationString(SM.getBufferName(Loc));
2290 }
2291 
2292 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
2293   SourceManager &SM = getContext().getSourceManager();
2294   PresumedLoc PLoc = SM.getPresumedLoc(L);
2295   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
2296     SM.getExpansionLineNumber(L);
2297   return llvm::ConstantInt::get(Int32Ty, LineNo);
2298 }
2299 
2300 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
2301                                                 const AnnotateAttr *AA,
2302                                                 SourceLocation L) {
2303   // Get the globals for file name, annotation, and the line number.
2304   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
2305                  *UnitGV = EmitAnnotationUnit(L),
2306                  *LineNoCst = EmitAnnotationLineNo(L);
2307 
2308   llvm::Constant *ASZeroGV = GV;
2309   if (GV->getAddressSpace() != 0) {
2310     ASZeroGV = llvm::ConstantExpr::getAddrSpaceCast(
2311                    GV, GV->getValueType()->getPointerTo(0));
2312   }
2313 
2314   // Create the ConstantStruct for the global annotation.
2315   llvm::Constant *Fields[4] = {
2316     llvm::ConstantExpr::getBitCast(ASZeroGV, Int8PtrTy),
2317     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
2318     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
2319     LineNoCst
2320   };
2321   return llvm::ConstantStruct::getAnon(Fields);
2322 }
2323 
2324 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
2325                                          llvm::GlobalValue *GV) {
2326   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2327   // Get the struct elements for these annotations.
2328   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2329     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
2330 }
2331 
2332 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind,
2333                                            llvm::Function *Fn,
2334                                            SourceLocation Loc) const {
2335   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
2336   // Blacklist by function name.
2337   if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName()))
2338     return true;
2339   // Blacklist by location.
2340   if (Loc.isValid())
2341     return SanitizerBL.isBlacklistedLocation(Kind, Loc);
2342   // If location is unknown, this may be a compiler-generated function. Assume
2343   // it's located in the main file.
2344   auto &SM = Context.getSourceManager();
2345   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
2346     return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName());
2347   }
2348   return false;
2349 }
2350 
2351 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV,
2352                                            SourceLocation Loc, QualType Ty,
2353                                            StringRef Category) const {
2354   // For now globals can be blacklisted only in ASan and KASan.
2355   const SanitizerMask EnabledAsanMask =
2356       LangOpts.Sanitize.Mask &
2357       (SanitizerKind::Address | SanitizerKind::KernelAddress |
2358        SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress |
2359        SanitizerKind::MemTag);
2360   if (!EnabledAsanMask)
2361     return false;
2362   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
2363   if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category))
2364     return true;
2365   if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category))
2366     return true;
2367   // Check global type.
2368   if (!Ty.isNull()) {
2369     // Drill down the array types: if global variable of a fixed type is
2370     // blacklisted, we also don't instrument arrays of them.
2371     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
2372       Ty = AT->getElementType();
2373     Ty = Ty.getCanonicalType().getUnqualifiedType();
2374     // We allow to blacklist only record types (classes, structs etc.)
2375     if (Ty->isRecordType()) {
2376       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
2377       if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category))
2378         return true;
2379     }
2380   }
2381   return false;
2382 }
2383 
2384 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
2385                                    StringRef Category) const {
2386   const auto &XRayFilter = getContext().getXRayFilter();
2387   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
2388   auto Attr = ImbueAttr::NONE;
2389   if (Loc.isValid())
2390     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
2391   if (Attr == ImbueAttr::NONE)
2392     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
2393   switch (Attr) {
2394   case ImbueAttr::NONE:
2395     return false;
2396   case ImbueAttr::ALWAYS:
2397     Fn->addFnAttr("function-instrument", "xray-always");
2398     break;
2399   case ImbueAttr::ALWAYS_ARG1:
2400     Fn->addFnAttr("function-instrument", "xray-always");
2401     Fn->addFnAttr("xray-log-args", "1");
2402     break;
2403   case ImbueAttr::NEVER:
2404     Fn->addFnAttr("function-instrument", "xray-never");
2405     break;
2406   }
2407   return true;
2408 }
2409 
2410 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
2411   // Never defer when EmitAllDecls is specified.
2412   if (LangOpts.EmitAllDecls)
2413     return true;
2414 
2415   if (CodeGenOpts.KeepStaticConsts) {
2416     const auto *VD = dyn_cast<VarDecl>(Global);
2417     if (VD && VD->getType().isConstQualified() &&
2418         VD->getStorageDuration() == SD_Static)
2419       return true;
2420   }
2421 
2422   return getContext().DeclMustBeEmitted(Global);
2423 }
2424 
2425 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
2426   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2427     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
2428       // Implicit template instantiations may change linkage if they are later
2429       // explicitly instantiated, so they should not be emitted eagerly.
2430       return false;
2431     // In OpenMP 5.0 function may be marked as device_type(nohost) and we should
2432     // not emit them eagerly unless we sure that the function must be emitted on
2433     // the host.
2434     if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd &&
2435         !LangOpts.OpenMPIsDevice &&
2436         !OMPDeclareTargetDeclAttr::getDeviceType(FD) &&
2437         !FD->isUsed(/*CheckUsedAttr=*/false) && !FD->isReferenced())
2438       return false;
2439   }
2440   if (const auto *VD = dyn_cast<VarDecl>(Global))
2441     if (Context.getInlineVariableDefinitionKind(VD) ==
2442         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
2443       // A definition of an inline constexpr static data member may change
2444       // linkage later if it's redeclared outside the class.
2445       return false;
2446   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
2447   // codegen for global variables, because they may be marked as threadprivate.
2448   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
2449       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
2450       !isTypeConstant(Global->getType(), false) &&
2451       !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
2452     return false;
2453 
2454   return true;
2455 }
2456 
2457 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) {
2458   StringRef Name = getMangledName(GD);
2459 
2460   // The UUID descriptor should be pointer aligned.
2461   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
2462 
2463   // Look for an existing global.
2464   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
2465     return ConstantAddress(GV, Alignment);
2466 
2467   ConstantEmitter Emitter(*this);
2468   llvm::Constant *Init;
2469 
2470   APValue &V = GD->getAsAPValue();
2471   if (!V.isAbsent()) {
2472     // If possible, emit the APValue version of the initializer. In particular,
2473     // this gets the type of the constant right.
2474     Init = Emitter.emitForInitializer(
2475         GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType());
2476   } else {
2477     // As a fallback, directly construct the constant.
2478     // FIXME: This may get padding wrong under esoteric struct layout rules.
2479     // MSVC appears to create a complete type 'struct __s_GUID' that it
2480     // presumably uses to represent these constants.
2481     MSGuidDecl::Parts Parts = GD->getParts();
2482     llvm::Constant *Fields[4] = {
2483         llvm::ConstantInt::get(Int32Ty, Parts.Part1),
2484         llvm::ConstantInt::get(Int16Ty, Parts.Part2),
2485         llvm::ConstantInt::get(Int16Ty, Parts.Part3),
2486         llvm::ConstantDataArray::getRaw(
2487             StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8,
2488             Int8Ty)};
2489     Init = llvm::ConstantStruct::getAnon(Fields);
2490   }
2491 
2492   auto *GV = new llvm::GlobalVariable(
2493       getModule(), Init->getType(),
2494       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
2495   if (supportsCOMDAT())
2496     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2497   setDSOLocal(GV);
2498 
2499   llvm::Constant *Addr = GV;
2500   if (!V.isAbsent()) {
2501     Emitter.finalize(GV);
2502   } else {
2503     llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType());
2504     Addr = llvm::ConstantExpr::getBitCast(
2505         GV, Ty->getPointerTo(GV->getAddressSpace()));
2506   }
2507   return ConstantAddress(Addr, Alignment);
2508 }
2509 
2510 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
2511   const AliasAttr *AA = VD->getAttr<AliasAttr>();
2512   assert(AA && "No alias?");
2513 
2514   CharUnits Alignment = getContext().getDeclAlign(VD);
2515   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
2516 
2517   // See if there is already something with the target's name in the module.
2518   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
2519   if (Entry) {
2520     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
2521     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
2522     return ConstantAddress(Ptr, Alignment);
2523   }
2524 
2525   llvm::Constant *Aliasee;
2526   if (isa<llvm::FunctionType>(DeclTy))
2527     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
2528                                       GlobalDecl(cast<FunctionDecl>(VD)),
2529                                       /*ForVTable=*/false);
2530   else
2531     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2532                                     llvm::PointerType::getUnqual(DeclTy),
2533                                     nullptr);
2534 
2535   auto *F = cast<llvm::GlobalValue>(Aliasee);
2536   F->setLinkage(llvm::Function::ExternalWeakLinkage);
2537   WeakRefReferences.insert(F);
2538 
2539   return ConstantAddress(Aliasee, Alignment);
2540 }
2541 
2542 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
2543   const auto *Global = cast<ValueDecl>(GD.getDecl());
2544 
2545   // Weak references don't produce any output by themselves.
2546   if (Global->hasAttr<WeakRefAttr>())
2547     return;
2548 
2549   // If this is an alias definition (which otherwise looks like a declaration)
2550   // emit it now.
2551   if (Global->hasAttr<AliasAttr>())
2552     return EmitAliasDefinition(GD);
2553 
2554   // IFunc like an alias whose value is resolved at runtime by calling resolver.
2555   if (Global->hasAttr<IFuncAttr>())
2556     return emitIFuncDefinition(GD);
2557 
2558   // If this is a cpu_dispatch multiversion function, emit the resolver.
2559   if (Global->hasAttr<CPUDispatchAttr>())
2560     return emitCPUDispatchDefinition(GD);
2561 
2562   // If this is CUDA, be selective about which declarations we emit.
2563   if (LangOpts.CUDA) {
2564     if (LangOpts.CUDAIsDevice) {
2565       if (!Global->hasAttr<CUDADeviceAttr>() &&
2566           !Global->hasAttr<CUDAGlobalAttr>() &&
2567           !Global->hasAttr<CUDAConstantAttr>() &&
2568           !Global->hasAttr<CUDASharedAttr>() &&
2569           !Global->getType()->isCUDADeviceBuiltinSurfaceType() &&
2570           !Global->getType()->isCUDADeviceBuiltinTextureType())
2571         return;
2572     } else {
2573       // We need to emit host-side 'shadows' for all global
2574       // device-side variables because the CUDA runtime needs their
2575       // size and host-side address in order to provide access to
2576       // their device-side incarnations.
2577 
2578       // So device-only functions are the only things we skip.
2579       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
2580           Global->hasAttr<CUDADeviceAttr>())
2581         return;
2582 
2583       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
2584              "Expected Variable or Function");
2585     }
2586   }
2587 
2588   if (LangOpts.OpenMP) {
2589     // If this is OpenMP, check if it is legal to emit this global normally.
2590     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
2591       return;
2592     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
2593       if (MustBeEmitted(Global))
2594         EmitOMPDeclareReduction(DRD);
2595       return;
2596     } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
2597       if (MustBeEmitted(Global))
2598         EmitOMPDeclareMapper(DMD);
2599       return;
2600     }
2601   }
2602 
2603   // Ignore declarations, they will be emitted on their first use.
2604   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2605     // Forward declarations are emitted lazily on first use.
2606     if (!FD->doesThisDeclarationHaveABody()) {
2607       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
2608         return;
2609 
2610       StringRef MangledName = getMangledName(GD);
2611 
2612       // Compute the function info and LLVM type.
2613       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2614       llvm::Type *Ty = getTypes().GetFunctionType(FI);
2615 
2616       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
2617                               /*DontDefer=*/false);
2618       return;
2619     }
2620   } else {
2621     const auto *VD = cast<VarDecl>(Global);
2622     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
2623     if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
2624         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
2625       if (LangOpts.OpenMP) {
2626         // Emit declaration of the must-be-emitted declare target variable.
2627         if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
2628                 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
2629           bool UnifiedMemoryEnabled =
2630               getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
2631           if (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2632               !UnifiedMemoryEnabled) {
2633             (void)GetAddrOfGlobalVar(VD);
2634           } else {
2635             assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
2636                     (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2637                      UnifiedMemoryEnabled)) &&
2638                    "Link clause or to clause with unified memory expected.");
2639             (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
2640           }
2641 
2642           return;
2643         }
2644       }
2645       // If this declaration may have caused an inline variable definition to
2646       // change linkage, make sure that it's emitted.
2647       if (Context.getInlineVariableDefinitionKind(VD) ==
2648           ASTContext::InlineVariableDefinitionKind::Strong)
2649         GetAddrOfGlobalVar(VD);
2650       return;
2651     }
2652   }
2653 
2654   // Defer code generation to first use when possible, e.g. if this is an inline
2655   // function. If the global must always be emitted, do it eagerly if possible
2656   // to benefit from cache locality.
2657   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
2658     // Emit the definition if it can't be deferred.
2659     EmitGlobalDefinition(GD);
2660     return;
2661   }
2662 
2663   // If we're deferring emission of a C++ variable with an
2664   // initializer, remember the order in which it appeared in the file.
2665   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
2666       cast<VarDecl>(Global)->hasInit()) {
2667     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
2668     CXXGlobalInits.push_back(nullptr);
2669   }
2670 
2671   StringRef MangledName = getMangledName(GD);
2672   if (GetGlobalValue(MangledName) != nullptr) {
2673     // The value has already been used and should therefore be emitted.
2674     addDeferredDeclToEmit(GD);
2675   } else if (MustBeEmitted(Global)) {
2676     // The value must be emitted, but cannot be emitted eagerly.
2677     assert(!MayBeEmittedEagerly(Global));
2678     addDeferredDeclToEmit(GD);
2679   } else {
2680     // Otherwise, remember that we saw a deferred decl with this name.  The
2681     // first use of the mangled name will cause it to move into
2682     // DeferredDeclsToEmit.
2683     DeferredDecls[MangledName] = GD;
2684   }
2685 }
2686 
2687 // Check if T is a class type with a destructor that's not dllimport.
2688 static bool HasNonDllImportDtor(QualType T) {
2689   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
2690     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2691       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
2692         return true;
2693 
2694   return false;
2695 }
2696 
2697 namespace {
2698   struct FunctionIsDirectlyRecursive
2699       : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
2700     const StringRef Name;
2701     const Builtin::Context &BI;
2702     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
2703         : Name(N), BI(C) {}
2704 
2705     bool VisitCallExpr(const CallExpr *E) {
2706       const FunctionDecl *FD = E->getDirectCallee();
2707       if (!FD)
2708         return false;
2709       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2710       if (Attr && Name == Attr->getLabel())
2711         return true;
2712       unsigned BuiltinID = FD->getBuiltinID();
2713       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
2714         return false;
2715       StringRef BuiltinName = BI.getName(BuiltinID);
2716       if (BuiltinName.startswith("__builtin_") &&
2717           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
2718         return true;
2719       }
2720       return false;
2721     }
2722 
2723     bool VisitStmt(const Stmt *S) {
2724       for (const Stmt *Child : S->children())
2725         if (Child && this->Visit(Child))
2726           return true;
2727       return false;
2728     }
2729   };
2730 
2731   // Make sure we're not referencing non-imported vars or functions.
2732   struct DLLImportFunctionVisitor
2733       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
2734     bool SafeToInline = true;
2735 
2736     bool shouldVisitImplicitCode() const { return true; }
2737 
2738     bool VisitVarDecl(VarDecl *VD) {
2739       if (VD->getTLSKind()) {
2740         // A thread-local variable cannot be imported.
2741         SafeToInline = false;
2742         return SafeToInline;
2743       }
2744 
2745       // A variable definition might imply a destructor call.
2746       if (VD->isThisDeclarationADefinition())
2747         SafeToInline = !HasNonDllImportDtor(VD->getType());
2748 
2749       return SafeToInline;
2750     }
2751 
2752     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
2753       if (const auto *D = E->getTemporary()->getDestructor())
2754         SafeToInline = D->hasAttr<DLLImportAttr>();
2755       return SafeToInline;
2756     }
2757 
2758     bool VisitDeclRefExpr(DeclRefExpr *E) {
2759       ValueDecl *VD = E->getDecl();
2760       if (isa<FunctionDecl>(VD))
2761         SafeToInline = VD->hasAttr<DLLImportAttr>();
2762       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
2763         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
2764       return SafeToInline;
2765     }
2766 
2767     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
2768       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
2769       return SafeToInline;
2770     }
2771 
2772     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
2773       CXXMethodDecl *M = E->getMethodDecl();
2774       if (!M) {
2775         // Call through a pointer to member function. This is safe to inline.
2776         SafeToInline = true;
2777       } else {
2778         SafeToInline = M->hasAttr<DLLImportAttr>();
2779       }
2780       return SafeToInline;
2781     }
2782 
2783     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
2784       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
2785       return SafeToInline;
2786     }
2787 
2788     bool VisitCXXNewExpr(CXXNewExpr *E) {
2789       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
2790       return SafeToInline;
2791     }
2792   };
2793 }
2794 
2795 // isTriviallyRecursive - Check if this function calls another
2796 // decl that, because of the asm attribute or the other decl being a builtin,
2797 // ends up pointing to itself.
2798 bool
2799 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
2800   StringRef Name;
2801   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
2802     // asm labels are a special kind of mangling we have to support.
2803     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2804     if (!Attr)
2805       return false;
2806     Name = Attr->getLabel();
2807   } else {
2808     Name = FD->getName();
2809   }
2810 
2811   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
2812   const Stmt *Body = FD->getBody();
2813   return Body ? Walker.Visit(Body) : false;
2814 }
2815 
2816 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
2817   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
2818     return true;
2819   const auto *F = cast<FunctionDecl>(GD.getDecl());
2820   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
2821     return false;
2822 
2823   if (F->hasAttr<DLLImportAttr>()) {
2824     // Check whether it would be safe to inline this dllimport function.
2825     DLLImportFunctionVisitor Visitor;
2826     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
2827     if (!Visitor.SafeToInline)
2828       return false;
2829 
2830     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
2831       // Implicit destructor invocations aren't captured in the AST, so the
2832       // check above can't see them. Check for them manually here.
2833       for (const Decl *Member : Dtor->getParent()->decls())
2834         if (isa<FieldDecl>(Member))
2835           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
2836             return false;
2837       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
2838         if (HasNonDllImportDtor(B.getType()))
2839           return false;
2840     }
2841   }
2842 
2843   // PR9614. Avoid cases where the source code is lying to us. An available
2844   // externally function should have an equivalent function somewhere else,
2845   // but a function that calls itself through asm label/`__builtin_` trickery is
2846   // clearly not equivalent to the real implementation.
2847   // This happens in glibc's btowc and in some configure checks.
2848   return !isTriviallyRecursive(F);
2849 }
2850 
2851 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
2852   return CodeGenOpts.OptimizationLevel > 0;
2853 }
2854 
2855 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
2856                                                        llvm::GlobalValue *GV) {
2857   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2858 
2859   if (FD->isCPUSpecificMultiVersion()) {
2860     auto *Spec = FD->getAttr<CPUSpecificAttr>();
2861     for (unsigned I = 0; I < Spec->cpus_size(); ++I)
2862       EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
2863     // Requires multiple emits.
2864   } else
2865     EmitGlobalFunctionDefinition(GD, GV);
2866 }
2867 
2868 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
2869   const auto *D = cast<ValueDecl>(GD.getDecl());
2870 
2871   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
2872                                  Context.getSourceManager(),
2873                                  "Generating code for declaration");
2874 
2875   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
2876     // At -O0, don't generate IR for functions with available_externally
2877     // linkage.
2878     if (!shouldEmitFunction(GD))
2879       return;
2880 
2881     llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
2882       std::string Name;
2883       llvm::raw_string_ostream OS(Name);
2884       FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(),
2885                                /*Qualified=*/true);
2886       return Name;
2887     });
2888 
2889     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
2890       // Make sure to emit the definition(s) before we emit the thunks.
2891       // This is necessary for the generation of certain thunks.
2892       if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method))
2893         ABI->emitCXXStructor(GD);
2894       else if (FD->isMultiVersion())
2895         EmitMultiVersionFunctionDefinition(GD, GV);
2896       else
2897         EmitGlobalFunctionDefinition(GD, GV);
2898 
2899       if (Method->isVirtual())
2900         getVTables().EmitThunks(GD);
2901 
2902       return;
2903     }
2904 
2905     if (FD->isMultiVersion())
2906       return EmitMultiVersionFunctionDefinition(GD, GV);
2907     return EmitGlobalFunctionDefinition(GD, GV);
2908   }
2909 
2910   if (const auto *VD = dyn_cast<VarDecl>(D))
2911     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
2912 
2913   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
2914 }
2915 
2916 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2917                                                       llvm::Function *NewFn);
2918 
2919 static unsigned
2920 TargetMVPriority(const TargetInfo &TI,
2921                  const CodeGenFunction::MultiVersionResolverOption &RO) {
2922   unsigned Priority = 0;
2923   for (StringRef Feat : RO.Conditions.Features)
2924     Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
2925 
2926   if (!RO.Conditions.Architecture.empty())
2927     Priority = std::max(
2928         Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
2929   return Priority;
2930 }
2931 
2932 void CodeGenModule::emitMultiVersionFunctions() {
2933   for (GlobalDecl GD : MultiVersionFuncs) {
2934     SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
2935     const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
2936     getContext().forEachMultiversionedFunctionVersion(
2937         FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
2938           GlobalDecl CurGD{
2939               (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
2940           StringRef MangledName = getMangledName(CurGD);
2941           llvm::Constant *Func = GetGlobalValue(MangledName);
2942           if (!Func) {
2943             if (CurFD->isDefined()) {
2944               EmitGlobalFunctionDefinition(CurGD, nullptr);
2945               Func = GetGlobalValue(MangledName);
2946             } else {
2947               const CGFunctionInfo &FI =
2948                   getTypes().arrangeGlobalDeclaration(GD);
2949               llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2950               Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
2951                                        /*DontDefer=*/false, ForDefinition);
2952             }
2953             assert(Func && "This should have just been created");
2954           }
2955 
2956           const auto *TA = CurFD->getAttr<TargetAttr>();
2957           llvm::SmallVector<StringRef, 8> Feats;
2958           TA->getAddedFeatures(Feats);
2959 
2960           Options.emplace_back(cast<llvm::Function>(Func),
2961                                TA->getArchitecture(), Feats);
2962         });
2963 
2964     llvm::Function *ResolverFunc;
2965     const TargetInfo &TI = getTarget();
2966 
2967     if (TI.supportsIFunc() || FD->isTargetMultiVersion()) {
2968       ResolverFunc = cast<llvm::Function>(
2969           GetGlobalValue((getMangledName(GD) + ".resolver").str()));
2970       ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage);
2971     } else {
2972       ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD)));
2973     }
2974 
2975     if (supportsCOMDAT())
2976       ResolverFunc->setComdat(
2977           getModule().getOrInsertComdat(ResolverFunc->getName()));
2978 
2979     llvm::stable_sort(
2980         Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
2981                        const CodeGenFunction::MultiVersionResolverOption &RHS) {
2982           return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
2983         });
2984     CodeGenFunction CGF(*this);
2985     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
2986   }
2987 }
2988 
2989 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
2990   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2991   assert(FD && "Not a FunctionDecl?");
2992   const auto *DD = FD->getAttr<CPUDispatchAttr>();
2993   assert(DD && "Not a cpu_dispatch Function?");
2994   llvm::Type *DeclTy = getTypes().ConvertType(FD->getType());
2995 
2996   if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) {
2997     const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD);
2998     DeclTy = getTypes().GetFunctionType(FInfo);
2999   }
3000 
3001   StringRef ResolverName = getMangledName(GD);
3002 
3003   llvm::Type *ResolverType;
3004   GlobalDecl ResolverGD;
3005   if (getTarget().supportsIFunc())
3006     ResolverType = llvm::FunctionType::get(
3007         llvm::PointerType::get(DeclTy,
3008                                Context.getTargetAddressSpace(FD->getType())),
3009         false);
3010   else {
3011     ResolverType = DeclTy;
3012     ResolverGD = GD;
3013   }
3014 
3015   auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
3016       ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
3017   ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage);
3018   if (supportsCOMDAT())
3019     ResolverFunc->setComdat(
3020         getModule().getOrInsertComdat(ResolverFunc->getName()));
3021 
3022   SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3023   const TargetInfo &Target = getTarget();
3024   unsigned Index = 0;
3025   for (const IdentifierInfo *II : DD->cpus()) {
3026     // Get the name of the target function so we can look it up/create it.
3027     std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
3028                               getCPUSpecificMangling(*this, II->getName());
3029 
3030     llvm::Constant *Func = GetGlobalValue(MangledName);
3031 
3032     if (!Func) {
3033       GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
3034       if (ExistingDecl.getDecl() &&
3035           ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
3036         EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
3037         Func = GetGlobalValue(MangledName);
3038       } else {
3039         if (!ExistingDecl.getDecl())
3040           ExistingDecl = GD.getWithMultiVersionIndex(Index);
3041 
3042       Func = GetOrCreateLLVMFunction(
3043           MangledName, DeclTy, ExistingDecl,
3044           /*ForVTable=*/false, /*DontDefer=*/true,
3045           /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
3046       }
3047     }
3048 
3049     llvm::SmallVector<StringRef, 32> Features;
3050     Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
3051     llvm::transform(Features, Features.begin(),
3052                     [](StringRef Str) { return Str.substr(1); });
3053     Features.erase(std::remove_if(
3054         Features.begin(), Features.end(), [&Target](StringRef Feat) {
3055           return !Target.validateCpuSupports(Feat);
3056         }), Features.end());
3057     Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
3058     ++Index;
3059   }
3060 
3061   llvm::sort(
3062       Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
3063                   const CodeGenFunction::MultiVersionResolverOption &RHS) {
3064         return CodeGenFunction::GetX86CpuSupportsMask(LHS.Conditions.Features) >
3065                CodeGenFunction::GetX86CpuSupportsMask(RHS.Conditions.Features);
3066       });
3067 
3068   // If the list contains multiple 'default' versions, such as when it contains
3069   // 'pentium' and 'generic', don't emit the call to the generic one (since we
3070   // always run on at least a 'pentium'). We do this by deleting the 'least
3071   // advanced' (read, lowest mangling letter).
3072   while (Options.size() > 1 &&
3073          CodeGenFunction::GetX86CpuSupportsMask(
3074              (Options.end() - 2)->Conditions.Features) == 0) {
3075     StringRef LHSName = (Options.end() - 2)->Function->getName();
3076     StringRef RHSName = (Options.end() - 1)->Function->getName();
3077     if (LHSName.compare(RHSName) < 0)
3078       Options.erase(Options.end() - 2);
3079     else
3080       Options.erase(Options.end() - 1);
3081   }
3082 
3083   CodeGenFunction CGF(*this);
3084   CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3085 
3086   if (getTarget().supportsIFunc()) {
3087     std::string AliasName = getMangledNameImpl(
3088         *this, GD, FD, /*OmitMultiVersionMangling=*/true);
3089     llvm::Constant *AliasFunc = GetGlobalValue(AliasName);
3090     if (!AliasFunc) {
3091       auto *IFunc = cast<llvm::GlobalIFunc>(GetOrCreateLLVMFunction(
3092           AliasName, DeclTy, GD, /*ForVTable=*/false, /*DontDefer=*/true,
3093           /*IsThunk=*/false, llvm::AttributeList(), NotForDefinition));
3094       auto *GA = llvm::GlobalAlias::create(
3095          DeclTy, 0, getFunctionLinkage(GD), AliasName, IFunc, &getModule());
3096       GA->setLinkage(llvm::Function::WeakODRLinkage);
3097       SetCommonAttributes(GD, GA);
3098     }
3099   }
3100 }
3101 
3102 /// If a dispatcher for the specified mangled name is not in the module, create
3103 /// and return an llvm Function with the specified type.
3104 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(
3105     GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) {
3106   std::string MangledName =
3107       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
3108 
3109   // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
3110   // a separate resolver).
3111   std::string ResolverName = MangledName;
3112   if (getTarget().supportsIFunc())
3113     ResolverName += ".ifunc";
3114   else if (FD->isTargetMultiVersion())
3115     ResolverName += ".resolver";
3116 
3117   // If this already exists, just return that one.
3118   if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName))
3119     return ResolverGV;
3120 
3121   // Since this is the first time we've created this IFunc, make sure
3122   // that we put this multiversioned function into the list to be
3123   // replaced later if necessary (target multiversioning only).
3124   if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion())
3125     MultiVersionFuncs.push_back(GD);
3126 
3127   if (getTarget().supportsIFunc()) {
3128     llvm::Type *ResolverType = llvm::FunctionType::get(
3129         llvm::PointerType::get(
3130             DeclTy, getContext().getTargetAddressSpace(FD->getType())),
3131         false);
3132     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3133         MangledName + ".resolver", ResolverType, GlobalDecl{},
3134         /*ForVTable=*/false);
3135     llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create(
3136         DeclTy, 0, llvm::Function::WeakODRLinkage, "", Resolver, &getModule());
3137     GIF->setName(ResolverName);
3138     SetCommonAttributes(FD, GIF);
3139 
3140     return GIF;
3141   }
3142 
3143   llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3144       ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
3145   assert(isa<llvm::GlobalValue>(Resolver) &&
3146          "Resolver should be created for the first time");
3147   SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
3148   return Resolver;
3149 }
3150 
3151 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
3152 /// module, create and return an llvm Function with the specified type. If there
3153 /// is something in the module with the specified name, return it potentially
3154 /// bitcasted to the right type.
3155 ///
3156 /// If D is non-null, it specifies a decl that correspond to this.  This is used
3157 /// to set the attributes on the function when it is first created.
3158 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
3159     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
3160     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
3161     ForDefinition_t IsForDefinition) {
3162   const Decl *D = GD.getDecl();
3163 
3164   // Any attempts to use a MultiVersion function should result in retrieving
3165   // the iFunc instead. Name Mangling will handle the rest of the changes.
3166   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
3167     // For the device mark the function as one that should be emitted.
3168     if (getLangOpts().OpenMPIsDevice && OpenMPRuntime &&
3169         !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
3170         !DontDefer && !IsForDefinition) {
3171       if (const FunctionDecl *FDDef = FD->getDefinition()) {
3172         GlobalDecl GDDef;
3173         if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
3174           GDDef = GlobalDecl(CD, GD.getCtorType());
3175         else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
3176           GDDef = GlobalDecl(DD, GD.getDtorType());
3177         else
3178           GDDef = GlobalDecl(FDDef);
3179         EmitGlobal(GDDef);
3180       }
3181     }
3182 
3183     if (FD->isMultiVersion()) {
3184       if (FD->hasAttr<TargetAttr>())
3185         UpdateMultiVersionNames(GD, FD);
3186       if (!IsForDefinition)
3187         return GetOrCreateMultiVersionResolver(GD, Ty, FD);
3188     }
3189   }
3190 
3191   // Lookup the entry, lazily creating it if necessary.
3192   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3193   if (Entry) {
3194     if (WeakRefReferences.erase(Entry)) {
3195       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
3196       if (FD && !FD->hasAttr<WeakAttr>())
3197         Entry->setLinkage(llvm::Function::ExternalLinkage);
3198     }
3199 
3200     // Handle dropped DLL attributes.
3201     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) {
3202       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3203       setDSOLocal(Entry);
3204     }
3205 
3206     // If there are two attempts to define the same mangled name, issue an
3207     // error.
3208     if (IsForDefinition && !Entry->isDeclaration()) {
3209       GlobalDecl OtherGD;
3210       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
3211       // to make sure that we issue an error only once.
3212       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3213           (GD.getCanonicalDecl().getDecl() !=
3214            OtherGD.getCanonicalDecl().getDecl()) &&
3215           DiagnosedConflictingDefinitions.insert(GD).second) {
3216         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3217             << MangledName;
3218         getDiags().Report(OtherGD.getDecl()->getLocation(),
3219                           diag::note_previous_definition);
3220       }
3221     }
3222 
3223     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
3224         (Entry->getValueType() == Ty)) {
3225       return Entry;
3226     }
3227 
3228     // Make sure the result is of the correct type.
3229     // (If function is requested for a definition, we always need to create a new
3230     // function, not just return a bitcast.)
3231     if (!IsForDefinition)
3232       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
3233   }
3234 
3235   // This function doesn't have a complete type (for example, the return
3236   // type is an incomplete struct). Use a fake type instead, and make
3237   // sure not to try to set attributes.
3238   bool IsIncompleteFunction = false;
3239 
3240   llvm::FunctionType *FTy;
3241   if (isa<llvm::FunctionType>(Ty)) {
3242     FTy = cast<llvm::FunctionType>(Ty);
3243   } else {
3244     FTy = llvm::FunctionType::get(VoidTy, false);
3245     IsIncompleteFunction = true;
3246   }
3247 
3248   llvm::Function *F =
3249       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
3250                              Entry ? StringRef() : MangledName, &getModule());
3251 
3252   // If we already created a function with the same mangled name (but different
3253   // type) before, take its name and add it to the list of functions to be
3254   // replaced with F at the end of CodeGen.
3255   //
3256   // This happens if there is a prototype for a function (e.g. "int f()") and
3257   // then a definition of a different type (e.g. "int f(int x)").
3258   if (Entry) {
3259     F->takeName(Entry);
3260 
3261     // This might be an implementation of a function without a prototype, in
3262     // which case, try to do special replacement of calls which match the new
3263     // prototype.  The really key thing here is that we also potentially drop
3264     // arguments from the call site so as to make a direct call, which makes the
3265     // inliner happier and suppresses a number of optimizer warnings (!) about
3266     // dropping arguments.
3267     if (!Entry->use_empty()) {
3268       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
3269       Entry->removeDeadConstantUsers();
3270     }
3271 
3272     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
3273         F, Entry->getValueType()->getPointerTo());
3274     addGlobalValReplacement(Entry, BC);
3275   }
3276 
3277   assert(F->getName() == MangledName && "name was uniqued!");
3278   if (D)
3279     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
3280   if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) {
3281     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex);
3282     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
3283   }
3284 
3285   if (!DontDefer) {
3286     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
3287     // each other bottoming out with the base dtor.  Therefore we emit non-base
3288     // dtors on usage, even if there is no dtor definition in the TU.
3289     if (D && isa<CXXDestructorDecl>(D) &&
3290         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
3291                                            GD.getDtorType()))
3292       addDeferredDeclToEmit(GD);
3293 
3294     // This is the first use or definition of a mangled name.  If there is a
3295     // deferred decl with this name, remember that we need to emit it at the end
3296     // of the file.
3297     auto DDI = DeferredDecls.find(MangledName);
3298     if (DDI != DeferredDecls.end()) {
3299       // Move the potentially referenced deferred decl to the
3300       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
3301       // don't need it anymore).
3302       addDeferredDeclToEmit(DDI->second);
3303       DeferredDecls.erase(DDI);
3304 
3305       // Otherwise, there are cases we have to worry about where we're
3306       // using a declaration for which we must emit a definition but where
3307       // we might not find a top-level definition:
3308       //   - member functions defined inline in their classes
3309       //   - friend functions defined inline in some class
3310       //   - special member functions with implicit definitions
3311       // If we ever change our AST traversal to walk into class methods,
3312       // this will be unnecessary.
3313       //
3314       // We also don't emit a definition for a function if it's going to be an
3315       // entry in a vtable, unless it's already marked as used.
3316     } else if (getLangOpts().CPlusPlus && D) {
3317       // Look for a declaration that's lexically in a record.
3318       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
3319            FD = FD->getPreviousDecl()) {
3320         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
3321           if (FD->doesThisDeclarationHaveABody()) {
3322             addDeferredDeclToEmit(GD.getWithDecl(FD));
3323             break;
3324           }
3325         }
3326       }
3327     }
3328   }
3329 
3330   // Make sure the result is of the requested type.
3331   if (!IsIncompleteFunction) {
3332     assert(F->getFunctionType() == Ty);
3333     return F;
3334   }
3335 
3336   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
3337   return llvm::ConstantExpr::getBitCast(F, PTy);
3338 }
3339 
3340 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
3341 /// non-null, then this function will use the specified type if it has to
3342 /// create it (this occurs when we see a definition of the function).
3343 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
3344                                                  llvm::Type *Ty,
3345                                                  bool ForVTable,
3346                                                  bool DontDefer,
3347                                               ForDefinition_t IsForDefinition) {
3348   assert(!cast<FunctionDecl>(GD.getDecl())->isConsteval() &&
3349          "consteval function should never be emitted");
3350   // If there was no specific requested type, just convert it now.
3351   if (!Ty) {
3352     const auto *FD = cast<FunctionDecl>(GD.getDecl());
3353     Ty = getTypes().ConvertType(FD->getType());
3354   }
3355 
3356   // Devirtualized destructor calls may come through here instead of via
3357   // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
3358   // of the complete destructor when necessary.
3359   if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
3360     if (getTarget().getCXXABI().isMicrosoft() &&
3361         GD.getDtorType() == Dtor_Complete &&
3362         DD->getParent()->getNumVBases() == 0)
3363       GD = GlobalDecl(DD, Dtor_Base);
3364   }
3365 
3366   StringRef MangledName = getMangledName(GD);
3367   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
3368                                  /*IsThunk=*/false, llvm::AttributeList(),
3369                                  IsForDefinition);
3370 }
3371 
3372 static const FunctionDecl *
3373 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
3374   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
3375   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
3376 
3377   IdentifierInfo &CII = C.Idents.get(Name);
3378   for (const auto &Result : DC->lookup(&CII))
3379     if (const auto FD = dyn_cast<FunctionDecl>(Result))
3380       return FD;
3381 
3382   if (!C.getLangOpts().CPlusPlus)
3383     return nullptr;
3384 
3385   // Demangle the premangled name from getTerminateFn()
3386   IdentifierInfo &CXXII =
3387       (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
3388           ? C.Idents.get("terminate")
3389           : C.Idents.get(Name);
3390 
3391   for (const auto &N : {"__cxxabiv1", "std"}) {
3392     IdentifierInfo &NS = C.Idents.get(N);
3393     for (const auto &Result : DC->lookup(&NS)) {
3394       NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
3395       if (auto LSD = dyn_cast<LinkageSpecDecl>(Result))
3396         for (const auto &Result : LSD->lookup(&NS))
3397           if ((ND = dyn_cast<NamespaceDecl>(Result)))
3398             break;
3399 
3400       if (ND)
3401         for (const auto &Result : ND->lookup(&CXXII))
3402           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
3403             return FD;
3404     }
3405   }
3406 
3407   return nullptr;
3408 }
3409 
3410 /// CreateRuntimeFunction - Create a new runtime function with the specified
3411 /// type and name.
3412 llvm::FunctionCallee
3413 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
3414                                      llvm::AttributeList ExtraAttrs, bool Local,
3415                                      bool AssumeConvergent) {
3416   if (AssumeConvergent) {
3417     ExtraAttrs =
3418         ExtraAttrs.addAttribute(VMContext, llvm::AttributeList::FunctionIndex,
3419                                 llvm::Attribute::Convergent);
3420   }
3421 
3422   llvm::Constant *C =
3423       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
3424                               /*DontDefer=*/false, /*IsThunk=*/false,
3425                               ExtraAttrs);
3426 
3427   if (auto *F = dyn_cast<llvm::Function>(C)) {
3428     if (F->empty()) {
3429       F->setCallingConv(getRuntimeCC());
3430 
3431       // In Windows Itanium environments, try to mark runtime functions
3432       // dllimport. For Mingw and MSVC, don't. We don't really know if the user
3433       // will link their standard library statically or dynamically. Marking
3434       // functions imported when they are not imported can cause linker errors
3435       // and warnings.
3436       if (!Local && getTriple().isWindowsItaniumEnvironment() &&
3437           !getCodeGenOpts().LTOVisibilityPublicStd) {
3438         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
3439         if (!FD || FD->hasAttr<DLLImportAttr>()) {
3440           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
3441           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
3442         }
3443       }
3444       setDSOLocal(F);
3445     }
3446   }
3447 
3448   return {FTy, C};
3449 }
3450 
3451 /// isTypeConstant - Determine whether an object of this type can be emitted
3452 /// as a constant.
3453 ///
3454 /// If ExcludeCtor is true, the duration when the object's constructor runs
3455 /// will not be considered. The caller will need to verify that the object is
3456 /// not written to during its construction.
3457 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
3458   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
3459     return false;
3460 
3461   if (Context.getLangOpts().CPlusPlus) {
3462     if (const CXXRecordDecl *Record
3463           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
3464       return ExcludeCtor && !Record->hasMutableFields() &&
3465              Record->hasTrivialDestructor();
3466   }
3467 
3468   return true;
3469 }
3470 
3471 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
3472 /// create and return an llvm GlobalVariable with the specified type.  If there
3473 /// is something in the module with the specified name, return it potentially
3474 /// bitcasted to the right type.
3475 ///
3476 /// If D is non-null, it specifies a decl that correspond to this.  This is used
3477 /// to set the attributes on the global when it is first created.
3478 ///
3479 /// If IsForDefinition is true, it is guaranteed that an actual global with
3480 /// type Ty will be returned, not conversion of a variable with the same
3481 /// mangled name but some other type.
3482 llvm::Constant *
3483 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
3484                                      llvm::PointerType *Ty,
3485                                      const VarDecl *D,
3486                                      ForDefinition_t IsForDefinition) {
3487   // Lookup the entry, lazily creating it if necessary.
3488   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3489   if (Entry) {
3490     if (WeakRefReferences.erase(Entry)) {
3491       if (D && !D->hasAttr<WeakAttr>())
3492         Entry->setLinkage(llvm::Function::ExternalLinkage);
3493     }
3494 
3495     // Handle dropped DLL attributes.
3496     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
3497       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3498 
3499     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
3500       getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
3501 
3502     if (Entry->getType() == Ty)
3503       return Entry;
3504 
3505     // If there are two attempts to define the same mangled name, issue an
3506     // error.
3507     if (IsForDefinition && !Entry->isDeclaration()) {
3508       GlobalDecl OtherGD;
3509       const VarDecl *OtherD;
3510 
3511       // Check that D is not yet in DiagnosedConflictingDefinitions is required
3512       // to make sure that we issue an error only once.
3513       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
3514           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
3515           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
3516           OtherD->hasInit() &&
3517           DiagnosedConflictingDefinitions.insert(D).second) {
3518         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3519             << MangledName;
3520         getDiags().Report(OtherGD.getDecl()->getLocation(),
3521                           diag::note_previous_definition);
3522       }
3523     }
3524 
3525     // Make sure the result is of the correct type.
3526     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
3527       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
3528 
3529     // (If global is requested for a definition, we always need to create a new
3530     // global, not just return a bitcast.)
3531     if (!IsForDefinition)
3532       return llvm::ConstantExpr::getBitCast(Entry, Ty);
3533   }
3534 
3535   auto AddrSpace = GetGlobalVarAddressSpace(D);
3536   auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace);
3537 
3538   auto *GV = new llvm::GlobalVariable(
3539       getModule(), Ty->getElementType(), false,
3540       llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
3541       llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace);
3542 
3543   // If we already created a global with the same mangled name (but different
3544   // type) before, take its name and remove it from its parent.
3545   if (Entry) {
3546     GV->takeName(Entry);
3547 
3548     if (!Entry->use_empty()) {
3549       llvm::Constant *NewPtrForOldDecl =
3550           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
3551       Entry->replaceAllUsesWith(NewPtrForOldDecl);
3552     }
3553 
3554     Entry->eraseFromParent();
3555   }
3556 
3557   // This is the first use or definition of a mangled name.  If there is a
3558   // deferred decl with this name, remember that we need to emit it at the end
3559   // of the file.
3560   auto DDI = DeferredDecls.find(MangledName);
3561   if (DDI != DeferredDecls.end()) {
3562     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
3563     // list, and remove it from DeferredDecls (since we don't need it anymore).
3564     addDeferredDeclToEmit(DDI->second);
3565     DeferredDecls.erase(DDI);
3566   }
3567 
3568   // Handle things which are present even on external declarations.
3569   if (D) {
3570     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
3571       getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
3572 
3573     // FIXME: This code is overly simple and should be merged with other global
3574     // handling.
3575     GV->setConstant(isTypeConstant(D->getType(), false));
3576 
3577     GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
3578 
3579     setLinkageForGV(GV, D);
3580 
3581     if (D->getTLSKind()) {
3582       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
3583         CXXThreadLocals.push_back(D);
3584       setTLSMode(GV, *D);
3585     }
3586 
3587     setGVProperties(GV, D);
3588 
3589     // If required by the ABI, treat declarations of static data members with
3590     // inline initializers as definitions.
3591     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
3592       EmitGlobalVarDefinition(D);
3593     }
3594 
3595     // Emit section information for extern variables.
3596     if (D->hasExternalStorage()) {
3597       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
3598         GV->setSection(SA->getName());
3599     }
3600 
3601     // Handle XCore specific ABI requirements.
3602     if (getTriple().getArch() == llvm::Triple::xcore &&
3603         D->getLanguageLinkage() == CLanguageLinkage &&
3604         D->getType().isConstant(Context) &&
3605         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
3606       GV->setSection(".cp.rodata");
3607 
3608     // Check if we a have a const declaration with an initializer, we may be
3609     // able to emit it as available_externally to expose it's value to the
3610     // optimizer.
3611     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
3612         D->getType().isConstQualified() && !GV->hasInitializer() &&
3613         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
3614       const auto *Record =
3615           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
3616       bool HasMutableFields = Record && Record->hasMutableFields();
3617       if (!HasMutableFields) {
3618         const VarDecl *InitDecl;
3619         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
3620         if (InitExpr) {
3621           ConstantEmitter emitter(*this);
3622           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
3623           if (Init) {
3624             auto *InitType = Init->getType();
3625             if (GV->getValueType() != InitType) {
3626               // The type of the initializer does not match the definition.
3627               // This happens when an initializer has a different type from
3628               // the type of the global (because of padding at the end of a
3629               // structure for instance).
3630               GV->setName(StringRef());
3631               // Make a new global with the correct type, this is now guaranteed
3632               // to work.
3633               auto *NewGV = cast<llvm::GlobalVariable>(
3634                   GetAddrOfGlobalVar(D, InitType, IsForDefinition)
3635                       ->stripPointerCasts());
3636 
3637               // Erase the old global, since it is no longer used.
3638               GV->eraseFromParent();
3639               GV = NewGV;
3640             } else {
3641               GV->setInitializer(Init);
3642               GV->setConstant(true);
3643               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
3644             }
3645             emitter.finalize(GV);
3646           }
3647         }
3648       }
3649     }
3650   }
3651 
3652   if (GV->isDeclaration())
3653     getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
3654 
3655   LangAS ExpectedAS =
3656       D ? D->getType().getAddressSpace()
3657         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
3658   assert(getContext().getTargetAddressSpace(ExpectedAS) ==
3659          Ty->getPointerAddressSpace());
3660   if (AddrSpace != ExpectedAS)
3661     return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace,
3662                                                        ExpectedAS, Ty);
3663 
3664   return GV;
3665 }
3666 
3667 llvm::Constant *
3668 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) {
3669   const Decl *D = GD.getDecl();
3670 
3671   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
3672     return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
3673                                 /*DontDefer=*/false, IsForDefinition);
3674 
3675   if (isa<CXXMethodDecl>(D)) {
3676     auto FInfo =
3677         &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D));
3678     auto Ty = getTypes().GetFunctionType(*FInfo);
3679     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
3680                              IsForDefinition);
3681   }
3682 
3683   if (isa<FunctionDecl>(D)) {
3684     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3685     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3686     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
3687                              IsForDefinition);
3688   }
3689 
3690   return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition);
3691 }
3692 
3693 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
3694     StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
3695     unsigned Alignment) {
3696   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
3697   llvm::GlobalVariable *OldGV = nullptr;
3698 
3699   if (GV) {
3700     // Check if the variable has the right type.
3701     if (GV->getValueType() == Ty)
3702       return GV;
3703 
3704     // Because C++ name mangling, the only way we can end up with an already
3705     // existing global with the same name is if it has been declared extern "C".
3706     assert(GV->isDeclaration() && "Declaration has wrong type!");
3707     OldGV = GV;
3708   }
3709 
3710   // Create a new variable.
3711   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
3712                                 Linkage, nullptr, Name);
3713 
3714   if (OldGV) {
3715     // Replace occurrences of the old variable if needed.
3716     GV->takeName(OldGV);
3717 
3718     if (!OldGV->use_empty()) {
3719       llvm::Constant *NewPtrForOldDecl =
3720       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
3721       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
3722     }
3723 
3724     OldGV->eraseFromParent();
3725   }
3726 
3727   if (supportsCOMDAT() && GV->isWeakForLinker() &&
3728       !GV->hasAvailableExternallyLinkage())
3729     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3730 
3731   GV->setAlignment(llvm::MaybeAlign(Alignment));
3732 
3733   return GV;
3734 }
3735 
3736 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
3737 /// given global variable.  If Ty is non-null and if the global doesn't exist,
3738 /// then it will be created with the specified type instead of whatever the
3739 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
3740 /// that an actual global with type Ty will be returned, not conversion of a
3741 /// variable with the same mangled name but some other type.
3742 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
3743                                                   llvm::Type *Ty,
3744                                            ForDefinition_t IsForDefinition) {
3745   assert(D->hasGlobalStorage() && "Not a global variable");
3746   QualType ASTTy = D->getType();
3747   if (!Ty)
3748     Ty = getTypes().ConvertTypeForMem(ASTTy);
3749 
3750   llvm::PointerType *PTy =
3751     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
3752 
3753   StringRef MangledName = getMangledName(D);
3754   return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition);
3755 }
3756 
3757 /// CreateRuntimeVariable - Create a new runtime global variable with the
3758 /// specified type and name.
3759 llvm::Constant *
3760 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
3761                                      StringRef Name) {
3762   auto PtrTy =
3763       getContext().getLangOpts().OpenCL
3764           ? llvm::PointerType::get(
3765                 Ty, getContext().getTargetAddressSpace(LangAS::opencl_global))
3766           : llvm::PointerType::getUnqual(Ty);
3767   auto *Ret = GetOrCreateLLVMGlobal(Name, PtrTy, nullptr);
3768   setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
3769   return Ret;
3770 }
3771 
3772 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
3773   assert(!D->getInit() && "Cannot emit definite definitions here!");
3774 
3775   StringRef MangledName = getMangledName(D);
3776   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
3777 
3778   // We already have a definition, not declaration, with the same mangled name.
3779   // Emitting of declaration is not required (and actually overwrites emitted
3780   // definition).
3781   if (GV && !GV->isDeclaration())
3782     return;
3783 
3784   // If we have not seen a reference to this variable yet, place it into the
3785   // deferred declarations table to be emitted if needed later.
3786   if (!MustBeEmitted(D) && !GV) {
3787       DeferredDecls[MangledName] = D;
3788       return;
3789   }
3790 
3791   // The tentative definition is the only definition.
3792   EmitGlobalVarDefinition(D);
3793 }
3794 
3795 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) {
3796   EmitExternalVarDeclaration(D);
3797 }
3798 
3799 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
3800   return Context.toCharUnitsFromBits(
3801       getDataLayout().getTypeStoreSizeInBits(Ty));
3802 }
3803 
3804 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
3805   LangAS AddrSpace = LangAS::Default;
3806   if (LangOpts.OpenCL) {
3807     AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
3808     assert(AddrSpace == LangAS::opencl_global ||
3809            AddrSpace == LangAS::opencl_global_device ||
3810            AddrSpace == LangAS::opencl_global_host ||
3811            AddrSpace == LangAS::opencl_constant ||
3812            AddrSpace == LangAS::opencl_local ||
3813            AddrSpace >= LangAS::FirstTargetAddressSpace);
3814     return AddrSpace;
3815   }
3816 
3817   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
3818     if (D && D->hasAttr<CUDAConstantAttr>())
3819       return LangAS::cuda_constant;
3820     else if (D && D->hasAttr<CUDASharedAttr>())
3821       return LangAS::cuda_shared;
3822     else if (D && D->hasAttr<CUDADeviceAttr>())
3823       return LangAS::cuda_device;
3824     else if (D && D->getType().isConstQualified())
3825       return LangAS::cuda_constant;
3826     else
3827       return LangAS::cuda_device;
3828   }
3829 
3830   if (LangOpts.OpenMP) {
3831     LangAS AS;
3832     if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS))
3833       return AS;
3834   }
3835   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
3836 }
3837 
3838 LangAS CodeGenModule::getStringLiteralAddressSpace() const {
3839   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
3840   if (LangOpts.OpenCL)
3841     return LangAS::opencl_constant;
3842   if (auto AS = getTarget().getConstantAddressSpace())
3843     return AS.getValue();
3844   return LangAS::Default;
3845 }
3846 
3847 // In address space agnostic languages, string literals are in default address
3848 // space in AST. However, certain targets (e.g. amdgcn) request them to be
3849 // emitted in constant address space in LLVM IR. To be consistent with other
3850 // parts of AST, string literal global variables in constant address space
3851 // need to be casted to default address space before being put into address
3852 // map and referenced by other part of CodeGen.
3853 // In OpenCL, string literals are in constant address space in AST, therefore
3854 // they should not be casted to default address space.
3855 static llvm::Constant *
3856 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
3857                                        llvm::GlobalVariable *GV) {
3858   llvm::Constant *Cast = GV;
3859   if (!CGM.getLangOpts().OpenCL) {
3860     if (auto AS = CGM.getTarget().getConstantAddressSpace()) {
3861       if (AS != LangAS::Default)
3862         Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
3863             CGM, GV, AS.getValue(), LangAS::Default,
3864             GV->getValueType()->getPointerTo(
3865                 CGM.getContext().getTargetAddressSpace(LangAS::Default)));
3866     }
3867   }
3868   return Cast;
3869 }
3870 
3871 template<typename SomeDecl>
3872 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
3873                                                llvm::GlobalValue *GV) {
3874   if (!getLangOpts().CPlusPlus)
3875     return;
3876 
3877   // Must have 'used' attribute, or else inline assembly can't rely on
3878   // the name existing.
3879   if (!D->template hasAttr<UsedAttr>())
3880     return;
3881 
3882   // Must have internal linkage and an ordinary name.
3883   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
3884     return;
3885 
3886   // Must be in an extern "C" context. Entities declared directly within
3887   // a record are not extern "C" even if the record is in such a context.
3888   const SomeDecl *First = D->getFirstDecl();
3889   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
3890     return;
3891 
3892   // OK, this is an internal linkage entity inside an extern "C" linkage
3893   // specification. Make a note of that so we can give it the "expected"
3894   // mangled name if nothing else is using that name.
3895   std::pair<StaticExternCMap::iterator, bool> R =
3896       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
3897 
3898   // If we have multiple internal linkage entities with the same name
3899   // in extern "C" regions, none of them gets that name.
3900   if (!R.second)
3901     R.first->second = nullptr;
3902 }
3903 
3904 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
3905   if (!CGM.supportsCOMDAT())
3906     return false;
3907 
3908   // Do not set COMDAT attribute for CUDA/HIP stub functions to prevent
3909   // them being "merged" by the COMDAT Folding linker optimization.
3910   if (D.hasAttr<CUDAGlobalAttr>())
3911     return false;
3912 
3913   if (D.hasAttr<SelectAnyAttr>())
3914     return true;
3915 
3916   GVALinkage Linkage;
3917   if (auto *VD = dyn_cast<VarDecl>(&D))
3918     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
3919   else
3920     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
3921 
3922   switch (Linkage) {
3923   case GVA_Internal:
3924   case GVA_AvailableExternally:
3925   case GVA_StrongExternal:
3926     return false;
3927   case GVA_DiscardableODR:
3928   case GVA_StrongODR:
3929     return true;
3930   }
3931   llvm_unreachable("No such linkage");
3932 }
3933 
3934 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
3935                                           llvm::GlobalObject &GO) {
3936   if (!shouldBeInCOMDAT(*this, D))
3937     return;
3938   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
3939 }
3940 
3941 /// Pass IsTentative as true if you want to create a tentative definition.
3942 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
3943                                             bool IsTentative) {
3944   // OpenCL global variables of sampler type are translated to function calls,
3945   // therefore no need to be translated.
3946   QualType ASTTy = D->getType();
3947   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
3948     return;
3949 
3950   // If this is OpenMP device, check if it is legal to emit this global
3951   // normally.
3952   if (LangOpts.OpenMPIsDevice && OpenMPRuntime &&
3953       OpenMPRuntime->emitTargetGlobalVariable(D))
3954     return;
3955 
3956   llvm::Constant *Init = nullptr;
3957   bool NeedsGlobalCtor = false;
3958   bool NeedsGlobalDtor =
3959       D->needsDestruction(getContext()) == QualType::DK_cxx_destructor;
3960 
3961   const VarDecl *InitDecl;
3962   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
3963 
3964   Optional<ConstantEmitter> emitter;
3965 
3966   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
3967   // as part of their declaration."  Sema has already checked for
3968   // error cases, so we just need to set Init to UndefValue.
3969   bool IsCUDASharedVar =
3970       getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
3971   // Shadows of initialized device-side global variables are also left
3972   // undefined.
3973   bool IsCUDAShadowVar =
3974       !getLangOpts().CUDAIsDevice &&
3975       (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
3976        D->hasAttr<CUDASharedAttr>());
3977   bool IsCUDADeviceShadowVar =
3978       getLangOpts().CUDAIsDevice &&
3979       (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
3980        D->getType()->isCUDADeviceBuiltinTextureType());
3981   // HIP pinned shadow of initialized host-side global variables are also
3982   // left undefined.
3983   if (getLangOpts().CUDA &&
3984       (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar))
3985     Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
3986   else if (D->hasAttr<LoaderUninitializedAttr>())
3987     Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
3988   else if (!InitExpr) {
3989     // This is a tentative definition; tentative definitions are
3990     // implicitly initialized with { 0 }.
3991     //
3992     // Note that tentative definitions are only emitted at the end of
3993     // a translation unit, so they should never have incomplete
3994     // type. In addition, EmitTentativeDefinition makes sure that we
3995     // never attempt to emit a tentative definition if a real one
3996     // exists. A use may still exists, however, so we still may need
3997     // to do a RAUW.
3998     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
3999     Init = EmitNullConstant(D->getType());
4000   } else {
4001     initializedGlobalDecl = GlobalDecl(D);
4002     emitter.emplace(*this);
4003     Init = emitter->tryEmitForInitializer(*InitDecl);
4004 
4005     if (!Init) {
4006       QualType T = InitExpr->getType();
4007       if (D->getType()->isReferenceType())
4008         T = D->getType();
4009 
4010       if (getLangOpts().CPlusPlus) {
4011         Init = EmitNullConstant(T);
4012         NeedsGlobalCtor = true;
4013       } else {
4014         ErrorUnsupported(D, "static initializer");
4015         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
4016       }
4017     } else {
4018       // We don't need an initializer, so remove the entry for the delayed
4019       // initializer position (just in case this entry was delayed) if we
4020       // also don't need to register a destructor.
4021       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
4022         DelayedCXXInitPosition.erase(D);
4023     }
4024   }
4025 
4026   llvm::Type* InitType = Init->getType();
4027   llvm::Constant *Entry =
4028       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
4029 
4030   // Strip off pointer casts if we got them.
4031   Entry = Entry->stripPointerCasts();
4032 
4033   // Entry is now either a Function or GlobalVariable.
4034   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
4035 
4036   // We have a definition after a declaration with the wrong type.
4037   // We must make a new GlobalVariable* and update everything that used OldGV
4038   // (a declaration or tentative definition) with the new GlobalVariable*
4039   // (which will be a definition).
4040   //
4041   // This happens if there is a prototype for a global (e.g.
4042   // "extern int x[];") and then a definition of a different type (e.g.
4043   // "int x[10];"). This also happens when an initializer has a different type
4044   // from the type of the global (this happens with unions).
4045   if (!GV || GV->getValueType() != InitType ||
4046       GV->getType()->getAddressSpace() !=
4047           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
4048 
4049     // Move the old entry aside so that we'll create a new one.
4050     Entry->setName(StringRef());
4051 
4052     // Make a new global with the correct type, this is now guaranteed to work.
4053     GV = cast<llvm::GlobalVariable>(
4054         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))
4055             ->stripPointerCasts());
4056 
4057     // Replace all uses of the old global with the new global
4058     llvm::Constant *NewPtrForOldDecl =
4059         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
4060     Entry->replaceAllUsesWith(NewPtrForOldDecl);
4061 
4062     // Erase the old global, since it is no longer used.
4063     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
4064   }
4065 
4066   MaybeHandleStaticInExternC(D, GV);
4067 
4068   if (D->hasAttr<AnnotateAttr>())
4069     AddGlobalAnnotations(D, GV);
4070 
4071   // Set the llvm linkage type as appropriate.
4072   llvm::GlobalValue::LinkageTypes Linkage =
4073       getLLVMLinkageVarDefinition(D, GV->isConstant());
4074 
4075   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
4076   // the device. [...]"
4077   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
4078   // __device__, declares a variable that: [...]
4079   // Is accessible from all the threads within the grid and from the host
4080   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
4081   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
4082   if (GV && LangOpts.CUDA) {
4083     if (LangOpts.CUDAIsDevice) {
4084       if (Linkage != llvm::GlobalValue::InternalLinkage &&
4085           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()))
4086         GV->setExternallyInitialized(true);
4087     } else {
4088       // Host-side shadows of external declarations of device-side
4089       // global variables become internal definitions. These have to
4090       // be internal in order to prevent name conflicts with global
4091       // host variables with the same name in a different TUs.
4092       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) {
4093         Linkage = llvm::GlobalValue::InternalLinkage;
4094         // Shadow variables and their properties must be registered with CUDA
4095         // runtime. Skip Extern global variables, which will be registered in
4096         // the TU where they are defined.
4097         if (!D->hasExternalStorage())
4098           getCUDARuntime().registerDeviceVar(D, *GV, !D->hasDefinition(),
4099                                              D->hasAttr<CUDAConstantAttr>());
4100       } else if (D->hasAttr<CUDASharedAttr>()) {
4101         // __shared__ variables are odd. Shadows do get created, but
4102         // they are not registered with the CUDA runtime, so they
4103         // can't really be used to access their device-side
4104         // counterparts. It's not clear yet whether it's nvcc's bug or
4105         // a feature, but we've got to do the same for compatibility.
4106         Linkage = llvm::GlobalValue::InternalLinkage;
4107       } else if (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
4108                  D->getType()->isCUDADeviceBuiltinTextureType()) {
4109         // Builtin surfaces and textures and their template arguments are
4110         // also registered with CUDA runtime.
4111         Linkage = llvm::GlobalValue::InternalLinkage;
4112         const ClassTemplateSpecializationDecl *TD =
4113             cast<ClassTemplateSpecializationDecl>(
4114                 D->getType()->getAs<RecordType>()->getDecl());
4115         const TemplateArgumentList &Args = TD->getTemplateArgs();
4116         if (TD->hasAttr<CUDADeviceBuiltinSurfaceTypeAttr>()) {
4117           assert(Args.size() == 2 &&
4118                  "Unexpected number of template arguments of CUDA device "
4119                  "builtin surface type.");
4120           auto SurfType = Args[1].getAsIntegral();
4121           if (!D->hasExternalStorage())
4122             getCUDARuntime().registerDeviceSurf(D, *GV, !D->hasDefinition(),
4123                                                 SurfType.getSExtValue());
4124         } else {
4125           assert(Args.size() == 3 &&
4126                  "Unexpected number of template arguments of CUDA device "
4127                  "builtin texture type.");
4128           auto TexType = Args[1].getAsIntegral();
4129           auto Normalized = Args[2].getAsIntegral();
4130           if (!D->hasExternalStorage())
4131             getCUDARuntime().registerDeviceTex(D, *GV, !D->hasDefinition(),
4132                                                TexType.getSExtValue(),
4133                                                Normalized.getZExtValue());
4134         }
4135       }
4136     }
4137   }
4138 
4139   GV->setInitializer(Init);
4140   if (emitter)
4141     emitter->finalize(GV);
4142 
4143   // If it is safe to mark the global 'constant', do so now.
4144   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
4145                   isTypeConstant(D->getType(), true));
4146 
4147   // If it is in a read-only section, mark it 'constant'.
4148   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
4149     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
4150     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
4151       GV->setConstant(true);
4152   }
4153 
4154   GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
4155 
4156   // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper
4157   // function is only defined alongside the variable, not also alongside
4158   // callers. Normally, all accesses to a thread_local go through the
4159   // thread-wrapper in order to ensure initialization has occurred, underlying
4160   // variable will never be used other than the thread-wrapper, so it can be
4161   // converted to internal linkage.
4162   //
4163   // However, if the variable has the 'constinit' attribute, it _can_ be
4164   // referenced directly, without calling the thread-wrapper, so the linkage
4165   // must not be changed.
4166   //
4167   // Additionally, if the variable isn't plain external linkage, e.g. if it's
4168   // weak or linkonce, the de-duplication semantics are important to preserve,
4169   // so we don't change the linkage.
4170   if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
4171       Linkage == llvm::GlobalValue::ExternalLinkage &&
4172       Context.getTargetInfo().getTriple().isOSDarwin() &&
4173       !D->hasAttr<ConstInitAttr>())
4174     Linkage = llvm::GlobalValue::InternalLinkage;
4175 
4176   GV->setLinkage(Linkage);
4177   if (D->hasAttr<DLLImportAttr>())
4178     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
4179   else if (D->hasAttr<DLLExportAttr>())
4180     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
4181   else
4182     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
4183 
4184   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
4185     // common vars aren't constant even if declared const.
4186     GV->setConstant(false);
4187     // Tentative definition of global variables may be initialized with
4188     // non-zero null pointers. In this case they should have weak linkage
4189     // since common linkage must have zero initializer and must not have
4190     // explicit section therefore cannot have non-zero initial value.
4191     if (!GV->getInitializer()->isNullValue())
4192       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
4193   }
4194 
4195   setNonAliasAttributes(D, GV);
4196 
4197   if (D->getTLSKind() && !GV->isThreadLocal()) {
4198     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4199       CXXThreadLocals.push_back(D);
4200     setTLSMode(GV, *D);
4201   }
4202 
4203   maybeSetTrivialComdat(*D, *GV);
4204 
4205   // Emit the initializer function if necessary.
4206   if (NeedsGlobalCtor || NeedsGlobalDtor)
4207     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
4208 
4209   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
4210 
4211   // Emit global variable debug information.
4212   if (CGDebugInfo *DI = getModuleDebugInfo())
4213     if (getCodeGenOpts().hasReducedDebugInfo())
4214       DI->EmitGlobalVariable(GV, D);
4215 }
4216 
4217 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) {
4218   if (CGDebugInfo *DI = getModuleDebugInfo())
4219     if (getCodeGenOpts().hasReducedDebugInfo()) {
4220       QualType ASTTy = D->getType();
4221       llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType());
4222       llvm::PointerType *PTy =
4223           llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
4224       llvm::Constant *GV = GetOrCreateLLVMGlobal(D->getName(), PTy, D);
4225       DI->EmitExternalVariable(
4226           cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D);
4227     }
4228 }
4229 
4230 static bool isVarDeclStrongDefinition(const ASTContext &Context,
4231                                       CodeGenModule &CGM, const VarDecl *D,
4232                                       bool NoCommon) {
4233   // Don't give variables common linkage if -fno-common was specified unless it
4234   // was overridden by a NoCommon attribute.
4235   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
4236     return true;
4237 
4238   // C11 6.9.2/2:
4239   //   A declaration of an identifier for an object that has file scope without
4240   //   an initializer, and without a storage-class specifier or with the
4241   //   storage-class specifier static, constitutes a tentative definition.
4242   if (D->getInit() || D->hasExternalStorage())
4243     return true;
4244 
4245   // A variable cannot be both common and exist in a section.
4246   if (D->hasAttr<SectionAttr>())
4247     return true;
4248 
4249   // A variable cannot be both common and exist in a section.
4250   // We don't try to determine which is the right section in the front-end.
4251   // If no specialized section name is applicable, it will resort to default.
4252   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
4253       D->hasAttr<PragmaClangDataSectionAttr>() ||
4254       D->hasAttr<PragmaClangRelroSectionAttr>() ||
4255       D->hasAttr<PragmaClangRodataSectionAttr>())
4256     return true;
4257 
4258   // Thread local vars aren't considered common linkage.
4259   if (D->getTLSKind())
4260     return true;
4261 
4262   // Tentative definitions marked with WeakImportAttr are true definitions.
4263   if (D->hasAttr<WeakImportAttr>())
4264     return true;
4265 
4266   // A variable cannot be both common and exist in a comdat.
4267   if (shouldBeInCOMDAT(CGM, *D))
4268     return true;
4269 
4270   // Declarations with a required alignment do not have common linkage in MSVC
4271   // mode.
4272   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
4273     if (D->hasAttr<AlignedAttr>())
4274       return true;
4275     QualType VarType = D->getType();
4276     if (Context.isAlignmentRequired(VarType))
4277       return true;
4278 
4279     if (const auto *RT = VarType->getAs<RecordType>()) {
4280       const RecordDecl *RD = RT->getDecl();
4281       for (const FieldDecl *FD : RD->fields()) {
4282         if (FD->isBitField())
4283           continue;
4284         if (FD->hasAttr<AlignedAttr>())
4285           return true;
4286         if (Context.isAlignmentRequired(FD->getType()))
4287           return true;
4288       }
4289     }
4290   }
4291 
4292   // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
4293   // common symbols, so symbols with greater alignment requirements cannot be
4294   // common.
4295   // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
4296   // alignments for common symbols via the aligncomm directive, so this
4297   // restriction only applies to MSVC environments.
4298   if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
4299       Context.getTypeAlignIfKnown(D->getType()) >
4300           Context.toBits(CharUnits::fromQuantity(32)))
4301     return true;
4302 
4303   return false;
4304 }
4305 
4306 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
4307     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
4308   if (Linkage == GVA_Internal)
4309     return llvm::Function::InternalLinkage;
4310 
4311   if (D->hasAttr<WeakAttr>()) {
4312     if (IsConstantVariable)
4313       return llvm::GlobalVariable::WeakODRLinkage;
4314     else
4315       return llvm::GlobalVariable::WeakAnyLinkage;
4316   }
4317 
4318   if (const auto *FD = D->getAsFunction())
4319     if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
4320       return llvm::GlobalVariable::LinkOnceAnyLinkage;
4321 
4322   // We are guaranteed to have a strong definition somewhere else,
4323   // so we can use available_externally linkage.
4324   if (Linkage == GVA_AvailableExternally)
4325     return llvm::GlobalValue::AvailableExternallyLinkage;
4326 
4327   // Note that Apple's kernel linker doesn't support symbol
4328   // coalescing, so we need to avoid linkonce and weak linkages there.
4329   // Normally, this means we just map to internal, but for explicit
4330   // instantiations we'll map to external.
4331 
4332   // In C++, the compiler has to emit a definition in every translation unit
4333   // that references the function.  We should use linkonce_odr because
4334   // a) if all references in this translation unit are optimized away, we
4335   // don't need to codegen it.  b) if the function persists, it needs to be
4336   // merged with other definitions. c) C++ has the ODR, so we know the
4337   // definition is dependable.
4338   if (Linkage == GVA_DiscardableODR)
4339     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
4340                                             : llvm::Function::InternalLinkage;
4341 
4342   // An explicit instantiation of a template has weak linkage, since
4343   // explicit instantiations can occur in multiple translation units
4344   // and must all be equivalent. However, we are not allowed to
4345   // throw away these explicit instantiations.
4346   //
4347   // We don't currently support CUDA device code spread out across multiple TUs,
4348   // so say that CUDA templates are either external (for kernels) or internal.
4349   // This lets llvm perform aggressive inter-procedural optimizations.
4350   if (Linkage == GVA_StrongODR) {
4351     if (Context.getLangOpts().AppleKext)
4352       return llvm::Function::ExternalLinkage;
4353     if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice)
4354       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
4355                                           : llvm::Function::InternalLinkage;
4356     return llvm::Function::WeakODRLinkage;
4357   }
4358 
4359   // C++ doesn't have tentative definitions and thus cannot have common
4360   // linkage.
4361   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
4362       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
4363                                  CodeGenOpts.NoCommon))
4364     return llvm::GlobalVariable::CommonLinkage;
4365 
4366   // selectany symbols are externally visible, so use weak instead of
4367   // linkonce.  MSVC optimizes away references to const selectany globals, so
4368   // all definitions should be the same and ODR linkage should be used.
4369   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
4370   if (D->hasAttr<SelectAnyAttr>())
4371     return llvm::GlobalVariable::WeakODRLinkage;
4372 
4373   // Otherwise, we have strong external linkage.
4374   assert(Linkage == GVA_StrongExternal);
4375   return llvm::GlobalVariable::ExternalLinkage;
4376 }
4377 
4378 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
4379     const VarDecl *VD, bool IsConstant) {
4380   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
4381   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
4382 }
4383 
4384 /// Replace the uses of a function that was declared with a non-proto type.
4385 /// We want to silently drop extra arguments from call sites
4386 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
4387                                           llvm::Function *newFn) {
4388   // Fast path.
4389   if (old->use_empty()) return;
4390 
4391   llvm::Type *newRetTy = newFn->getReturnType();
4392   SmallVector<llvm::Value*, 4> newArgs;
4393   SmallVector<llvm::OperandBundleDef, 1> newBundles;
4394 
4395   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
4396          ui != ue; ) {
4397     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
4398     llvm::User *user = use->getUser();
4399 
4400     // Recognize and replace uses of bitcasts.  Most calls to
4401     // unprototyped functions will use bitcasts.
4402     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
4403       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
4404         replaceUsesOfNonProtoConstant(bitcast, newFn);
4405       continue;
4406     }
4407 
4408     // Recognize calls to the function.
4409     llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
4410     if (!callSite) continue;
4411     if (!callSite->isCallee(&*use))
4412       continue;
4413 
4414     // If the return types don't match exactly, then we can't
4415     // transform this call unless it's dead.
4416     if (callSite->getType() != newRetTy && !callSite->use_empty())
4417       continue;
4418 
4419     // Get the call site's attribute list.
4420     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
4421     llvm::AttributeList oldAttrs = callSite->getAttributes();
4422 
4423     // If the function was passed too few arguments, don't transform.
4424     unsigned newNumArgs = newFn->arg_size();
4425     if (callSite->arg_size() < newNumArgs)
4426       continue;
4427 
4428     // If extra arguments were passed, we silently drop them.
4429     // If any of the types mismatch, we don't transform.
4430     unsigned argNo = 0;
4431     bool dontTransform = false;
4432     for (llvm::Argument &A : newFn->args()) {
4433       if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
4434         dontTransform = true;
4435         break;
4436       }
4437 
4438       // Add any parameter attributes.
4439       newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo));
4440       argNo++;
4441     }
4442     if (dontTransform)
4443       continue;
4444 
4445     // Okay, we can transform this.  Create the new call instruction and copy
4446     // over the required information.
4447     newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
4448 
4449     // Copy over any operand bundles.
4450     callSite->getOperandBundlesAsDefs(newBundles);
4451 
4452     llvm::CallBase *newCall;
4453     if (dyn_cast<llvm::CallInst>(callSite)) {
4454       newCall =
4455           llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite);
4456     } else {
4457       auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
4458       newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(),
4459                                          oldInvoke->getUnwindDest(), newArgs,
4460                                          newBundles, "", callSite);
4461     }
4462     newArgs.clear(); // for the next iteration
4463 
4464     if (!newCall->getType()->isVoidTy())
4465       newCall->takeName(callSite);
4466     newCall->setAttributes(llvm::AttributeList::get(
4467         newFn->getContext(), oldAttrs.getFnAttributes(),
4468         oldAttrs.getRetAttributes(), newArgAttrs));
4469     newCall->setCallingConv(callSite->getCallingConv());
4470 
4471     // Finally, remove the old call, replacing any uses with the new one.
4472     if (!callSite->use_empty())
4473       callSite->replaceAllUsesWith(newCall);
4474 
4475     // Copy debug location attached to CI.
4476     if (callSite->getDebugLoc())
4477       newCall->setDebugLoc(callSite->getDebugLoc());
4478 
4479     callSite->eraseFromParent();
4480   }
4481 }
4482 
4483 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
4484 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
4485 /// existing call uses of the old function in the module, this adjusts them to
4486 /// call the new function directly.
4487 ///
4488 /// This is not just a cleanup: the always_inline pass requires direct calls to
4489 /// functions to be able to inline them.  If there is a bitcast in the way, it
4490 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
4491 /// run at -O0.
4492 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
4493                                                       llvm::Function *NewFn) {
4494   // If we're redefining a global as a function, don't transform it.
4495   if (!isa<llvm::Function>(Old)) return;
4496 
4497   replaceUsesOfNonProtoConstant(Old, NewFn);
4498 }
4499 
4500 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
4501   auto DK = VD->isThisDeclarationADefinition();
4502   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
4503     return;
4504 
4505   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
4506   // If we have a definition, this might be a deferred decl. If the
4507   // instantiation is explicit, make sure we emit it at the end.
4508   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
4509     GetAddrOfGlobalVar(VD);
4510 
4511   EmitTopLevelDecl(VD);
4512 }
4513 
4514 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
4515                                                  llvm::GlobalValue *GV) {
4516   const auto *D = cast<FunctionDecl>(GD.getDecl());
4517 
4518   // Compute the function info and LLVM type.
4519   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4520   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4521 
4522   // Get or create the prototype for the function.
4523   if (!GV || (GV->getValueType() != Ty))
4524     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
4525                                                    /*DontDefer=*/true,
4526                                                    ForDefinition));
4527 
4528   // Already emitted.
4529   if (!GV->isDeclaration())
4530     return;
4531 
4532   // We need to set linkage and visibility on the function before
4533   // generating code for it because various parts of IR generation
4534   // want to propagate this information down (e.g. to local static
4535   // declarations).
4536   auto *Fn = cast<llvm::Function>(GV);
4537   setFunctionLinkage(GD, Fn);
4538 
4539   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
4540   setGVProperties(Fn, GD);
4541 
4542   MaybeHandleStaticInExternC(D, Fn);
4543 
4544 
4545   maybeSetTrivialComdat(*D, *Fn);
4546 
4547   CodeGenFunction(*this).GenerateCode(GD, Fn, FI);
4548 
4549   setNonAliasAttributes(GD, Fn);
4550   SetLLVMFunctionAttributesForDefinition(D, Fn);
4551 
4552   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
4553     AddGlobalCtor(Fn, CA->getPriority());
4554   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
4555     AddGlobalDtor(Fn, DA->getPriority());
4556   if (D->hasAttr<AnnotateAttr>())
4557     AddGlobalAnnotations(D, Fn);
4558 }
4559 
4560 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
4561   const auto *D = cast<ValueDecl>(GD.getDecl());
4562   const AliasAttr *AA = D->getAttr<AliasAttr>();
4563   assert(AA && "Not an alias?");
4564 
4565   StringRef MangledName = getMangledName(GD);
4566 
4567   if (AA->getAliasee() == MangledName) {
4568     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
4569     return;
4570   }
4571 
4572   // If there is a definition in the module, then it wins over the alias.
4573   // This is dubious, but allow it to be safe.  Just ignore the alias.
4574   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4575   if (Entry && !Entry->isDeclaration())
4576     return;
4577 
4578   Aliases.push_back(GD);
4579 
4580   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
4581 
4582   // Create a reference to the named value.  This ensures that it is emitted
4583   // if a deferred decl.
4584   llvm::Constant *Aliasee;
4585   llvm::GlobalValue::LinkageTypes LT;
4586   if (isa<llvm::FunctionType>(DeclTy)) {
4587     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
4588                                       /*ForVTable=*/false);
4589     LT = getFunctionLinkage(GD);
4590   } else {
4591     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
4592                                     llvm::PointerType::getUnqual(DeclTy),
4593                                     /*D=*/nullptr);
4594     LT = getLLVMLinkageVarDefinition(cast<VarDecl>(GD.getDecl()),
4595                                      D->getType().isConstQualified());
4596   }
4597 
4598   // Create the new alias itself, but don't set a name yet.
4599   unsigned AS = Aliasee->getType()->getPointerAddressSpace();
4600   auto *GA =
4601       llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule());
4602 
4603   if (Entry) {
4604     if (GA->getAliasee() == Entry) {
4605       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
4606       return;
4607     }
4608 
4609     assert(Entry->isDeclaration());
4610 
4611     // If there is a declaration in the module, then we had an extern followed
4612     // by the alias, as in:
4613     //   extern int test6();
4614     //   ...
4615     //   int test6() __attribute__((alias("test7")));
4616     //
4617     // Remove it and replace uses of it with the alias.
4618     GA->takeName(Entry);
4619 
4620     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
4621                                                           Entry->getType()));
4622     Entry->eraseFromParent();
4623   } else {
4624     GA->setName(MangledName);
4625   }
4626 
4627   // Set attributes which are particular to an alias; this is a
4628   // specialization of the attributes which may be set on a global
4629   // variable/function.
4630   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
4631       D->isWeakImported()) {
4632     GA->setLinkage(llvm::Function::WeakAnyLinkage);
4633   }
4634 
4635   if (const auto *VD = dyn_cast<VarDecl>(D))
4636     if (VD->getTLSKind())
4637       setTLSMode(GA, *VD);
4638 
4639   SetCommonAttributes(GD, GA);
4640 }
4641 
4642 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
4643   const auto *D = cast<ValueDecl>(GD.getDecl());
4644   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
4645   assert(IFA && "Not an ifunc?");
4646 
4647   StringRef MangledName = getMangledName(GD);
4648 
4649   if (IFA->getResolver() == MangledName) {
4650     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
4651     return;
4652   }
4653 
4654   // Report an error if some definition overrides ifunc.
4655   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4656   if (Entry && !Entry->isDeclaration()) {
4657     GlobalDecl OtherGD;
4658     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
4659         DiagnosedConflictingDefinitions.insert(GD).second) {
4660       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
4661           << MangledName;
4662       Diags.Report(OtherGD.getDecl()->getLocation(),
4663                    diag::note_previous_definition);
4664     }
4665     return;
4666   }
4667 
4668   Aliases.push_back(GD);
4669 
4670   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
4671   llvm::Constant *Resolver =
4672       GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD,
4673                               /*ForVTable=*/false);
4674   llvm::GlobalIFunc *GIF =
4675       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
4676                                 "", Resolver, &getModule());
4677   if (Entry) {
4678     if (GIF->getResolver() == Entry) {
4679       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
4680       return;
4681     }
4682     assert(Entry->isDeclaration());
4683 
4684     // If there is a declaration in the module, then we had an extern followed
4685     // by the ifunc, as in:
4686     //   extern int test();
4687     //   ...
4688     //   int test() __attribute__((ifunc("resolver")));
4689     //
4690     // Remove it and replace uses of it with the ifunc.
4691     GIF->takeName(Entry);
4692 
4693     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
4694                                                           Entry->getType()));
4695     Entry->eraseFromParent();
4696   } else
4697     GIF->setName(MangledName);
4698 
4699   SetCommonAttributes(GD, GIF);
4700 }
4701 
4702 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
4703                                             ArrayRef<llvm::Type*> Tys) {
4704   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
4705                                          Tys);
4706 }
4707 
4708 static llvm::StringMapEntry<llvm::GlobalVariable *> &
4709 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
4710                          const StringLiteral *Literal, bool TargetIsLSB,
4711                          bool &IsUTF16, unsigned &StringLength) {
4712   StringRef String = Literal->getString();
4713   unsigned NumBytes = String.size();
4714 
4715   // Check for simple case.
4716   if (!Literal->containsNonAsciiOrNull()) {
4717     StringLength = NumBytes;
4718     return *Map.insert(std::make_pair(String, nullptr)).first;
4719   }
4720 
4721   // Otherwise, convert the UTF8 literals into a string of shorts.
4722   IsUTF16 = true;
4723 
4724   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
4725   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
4726   llvm::UTF16 *ToPtr = &ToBuf[0];
4727 
4728   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
4729                                  ToPtr + NumBytes, llvm::strictConversion);
4730 
4731   // ConvertUTF8toUTF16 returns the length in ToPtr.
4732   StringLength = ToPtr - &ToBuf[0];
4733 
4734   // Add an explicit null.
4735   *ToPtr = 0;
4736   return *Map.insert(std::make_pair(
4737                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
4738                                    (StringLength + 1) * 2),
4739                          nullptr)).first;
4740 }
4741 
4742 ConstantAddress
4743 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
4744   unsigned StringLength = 0;
4745   bool isUTF16 = false;
4746   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
4747       GetConstantCFStringEntry(CFConstantStringMap, Literal,
4748                                getDataLayout().isLittleEndian(), isUTF16,
4749                                StringLength);
4750 
4751   if (auto *C = Entry.second)
4752     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
4753 
4754   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
4755   llvm::Constant *Zeros[] = { Zero, Zero };
4756 
4757   const ASTContext &Context = getContext();
4758   const llvm::Triple &Triple = getTriple();
4759 
4760   const auto CFRuntime = getLangOpts().CFRuntime;
4761   const bool IsSwiftABI =
4762       static_cast<unsigned>(CFRuntime) >=
4763       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
4764   const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
4765 
4766   // If we don't already have it, get __CFConstantStringClassReference.
4767   if (!CFConstantStringClassRef) {
4768     const char *CFConstantStringClassName = "__CFConstantStringClassReference";
4769     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
4770     Ty = llvm::ArrayType::get(Ty, 0);
4771 
4772     switch (CFRuntime) {
4773     default: break;
4774     case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH;
4775     case LangOptions::CoreFoundationABI::Swift5_0:
4776       CFConstantStringClassName =
4777           Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
4778                               : "$s10Foundation19_NSCFConstantStringCN";
4779       Ty = IntPtrTy;
4780       break;
4781     case LangOptions::CoreFoundationABI::Swift4_2:
4782       CFConstantStringClassName =
4783           Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
4784                               : "$S10Foundation19_NSCFConstantStringCN";
4785       Ty = IntPtrTy;
4786       break;
4787     case LangOptions::CoreFoundationABI::Swift4_1:
4788       CFConstantStringClassName =
4789           Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
4790                               : "__T010Foundation19_NSCFConstantStringCN";
4791       Ty = IntPtrTy;
4792       break;
4793     }
4794 
4795     llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
4796 
4797     if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
4798       llvm::GlobalValue *GV = nullptr;
4799 
4800       if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
4801         IdentifierInfo &II = Context.Idents.get(GV->getName());
4802         TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
4803         DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
4804 
4805         const VarDecl *VD = nullptr;
4806         for (const auto &Result : DC->lookup(&II))
4807           if ((VD = dyn_cast<VarDecl>(Result)))
4808             break;
4809 
4810         if (Triple.isOSBinFormatELF()) {
4811           if (!VD)
4812             GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
4813         } else {
4814           GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
4815           if (!VD || !VD->hasAttr<DLLExportAttr>())
4816             GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
4817           else
4818             GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
4819         }
4820 
4821         setDSOLocal(GV);
4822       }
4823     }
4824 
4825     // Decay array -> ptr
4826     CFConstantStringClassRef =
4827         IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty)
4828                    : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros);
4829   }
4830 
4831   QualType CFTy = Context.getCFConstantStringType();
4832 
4833   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
4834 
4835   ConstantInitBuilder Builder(*this);
4836   auto Fields = Builder.beginStruct(STy);
4837 
4838   // Class pointer.
4839   Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef));
4840 
4841   // Flags.
4842   if (IsSwiftABI) {
4843     Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
4844     Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
4845   } else {
4846     Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
4847   }
4848 
4849   // String pointer.
4850   llvm::Constant *C = nullptr;
4851   if (isUTF16) {
4852     auto Arr = llvm::makeArrayRef(
4853         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
4854         Entry.first().size() / 2);
4855     C = llvm::ConstantDataArray::get(VMContext, Arr);
4856   } else {
4857     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
4858   }
4859 
4860   // Note: -fwritable-strings doesn't make the backing store strings of
4861   // CFStrings writable. (See <rdar://problem/10657500>)
4862   auto *GV =
4863       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
4864                                llvm::GlobalValue::PrivateLinkage, C, ".str");
4865   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
4866   // Don't enforce the target's minimum global alignment, since the only use
4867   // of the string is via this class initializer.
4868   CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
4869                             : Context.getTypeAlignInChars(Context.CharTy);
4870   GV->setAlignment(Align.getAsAlign());
4871 
4872   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
4873   // Without it LLVM can merge the string with a non unnamed_addr one during
4874   // LTO.  Doing that changes the section it ends in, which surprises ld64.
4875   if (Triple.isOSBinFormatMachO())
4876     GV->setSection(isUTF16 ? "__TEXT,__ustring"
4877                            : "__TEXT,__cstring,cstring_literals");
4878   // Make sure the literal ends up in .rodata to allow for safe ICF and for
4879   // the static linker to adjust permissions to read-only later on.
4880   else if (Triple.isOSBinFormatELF())
4881     GV->setSection(".rodata");
4882 
4883   // String.
4884   llvm::Constant *Str =
4885       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
4886 
4887   if (isUTF16)
4888     // Cast the UTF16 string to the correct type.
4889     Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
4890   Fields.add(Str);
4891 
4892   // String length.
4893   llvm::IntegerType *LengthTy =
4894       llvm::IntegerType::get(getModule().getContext(),
4895                              Context.getTargetInfo().getLongWidth());
4896   if (IsSwiftABI) {
4897     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
4898         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
4899       LengthTy = Int32Ty;
4900     else
4901       LengthTy = IntPtrTy;
4902   }
4903   Fields.addInt(LengthTy, StringLength);
4904 
4905   // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is
4906   // properly aligned on 32-bit platforms.
4907   CharUnits Alignment =
4908       IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign();
4909 
4910   // The struct.
4911   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
4912                                     /*isConstant=*/false,
4913                                     llvm::GlobalVariable::PrivateLinkage);
4914   GV->addAttribute("objc_arc_inert");
4915   switch (Triple.getObjectFormat()) {
4916   case llvm::Triple::UnknownObjectFormat:
4917     llvm_unreachable("unknown file format");
4918   case llvm::Triple::XCOFF:
4919     llvm_unreachable("XCOFF is not yet implemented");
4920   case llvm::Triple::COFF:
4921   case llvm::Triple::ELF:
4922   case llvm::Triple::Wasm:
4923     GV->setSection("cfstring");
4924     break;
4925   case llvm::Triple::MachO:
4926     GV->setSection("__DATA,__cfstring");
4927     break;
4928   }
4929   Entry.second = GV;
4930 
4931   return ConstantAddress(GV, Alignment);
4932 }
4933 
4934 bool CodeGenModule::getExpressionLocationsEnabled() const {
4935   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
4936 }
4937 
4938 QualType CodeGenModule::getObjCFastEnumerationStateType() {
4939   if (ObjCFastEnumerationStateType.isNull()) {
4940     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
4941     D->startDefinition();
4942 
4943     QualType FieldTypes[] = {
4944       Context.UnsignedLongTy,
4945       Context.getPointerType(Context.getObjCIdType()),
4946       Context.getPointerType(Context.UnsignedLongTy),
4947       Context.getConstantArrayType(Context.UnsignedLongTy,
4948                            llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0)
4949     };
4950 
4951     for (size_t i = 0; i < 4; ++i) {
4952       FieldDecl *Field = FieldDecl::Create(Context,
4953                                            D,
4954                                            SourceLocation(),
4955                                            SourceLocation(), nullptr,
4956                                            FieldTypes[i], /*TInfo=*/nullptr,
4957                                            /*BitWidth=*/nullptr,
4958                                            /*Mutable=*/false,
4959                                            ICIS_NoInit);
4960       Field->setAccess(AS_public);
4961       D->addDecl(Field);
4962     }
4963 
4964     D->completeDefinition();
4965     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
4966   }
4967 
4968   return ObjCFastEnumerationStateType;
4969 }
4970 
4971 llvm::Constant *
4972 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
4973   assert(!E->getType()->isPointerType() && "Strings are always arrays");
4974 
4975   // Don't emit it as the address of the string, emit the string data itself
4976   // as an inline array.
4977   if (E->getCharByteWidth() == 1) {
4978     SmallString<64> Str(E->getString());
4979 
4980     // Resize the string to the right size, which is indicated by its type.
4981     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
4982     Str.resize(CAT->getSize().getZExtValue());
4983     return llvm::ConstantDataArray::getString(VMContext, Str, false);
4984   }
4985 
4986   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
4987   llvm::Type *ElemTy = AType->getElementType();
4988   unsigned NumElements = AType->getNumElements();
4989 
4990   // Wide strings have either 2-byte or 4-byte elements.
4991   if (ElemTy->getPrimitiveSizeInBits() == 16) {
4992     SmallVector<uint16_t, 32> Elements;
4993     Elements.reserve(NumElements);
4994 
4995     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
4996       Elements.push_back(E->getCodeUnit(i));
4997     Elements.resize(NumElements);
4998     return llvm::ConstantDataArray::get(VMContext, Elements);
4999   }
5000 
5001   assert(ElemTy->getPrimitiveSizeInBits() == 32);
5002   SmallVector<uint32_t, 32> Elements;
5003   Elements.reserve(NumElements);
5004 
5005   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
5006     Elements.push_back(E->getCodeUnit(i));
5007   Elements.resize(NumElements);
5008   return llvm::ConstantDataArray::get(VMContext, Elements);
5009 }
5010 
5011 static llvm::GlobalVariable *
5012 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
5013                       CodeGenModule &CGM, StringRef GlobalName,
5014                       CharUnits Alignment) {
5015   unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
5016       CGM.getStringLiteralAddressSpace());
5017 
5018   llvm::Module &M = CGM.getModule();
5019   // Create a global variable for this string
5020   auto *GV = new llvm::GlobalVariable(
5021       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
5022       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
5023   GV->setAlignment(Alignment.getAsAlign());
5024   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5025   if (GV->isWeakForLinker()) {
5026     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
5027     GV->setComdat(M.getOrInsertComdat(GV->getName()));
5028   }
5029   CGM.setDSOLocal(GV);
5030 
5031   return GV;
5032 }
5033 
5034 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
5035 /// constant array for the given string literal.
5036 ConstantAddress
5037 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
5038                                                   StringRef Name) {
5039   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
5040 
5041   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
5042   llvm::GlobalVariable **Entry = nullptr;
5043   if (!LangOpts.WritableStrings) {
5044     Entry = &ConstantStringMap[C];
5045     if (auto GV = *Entry) {
5046       if (Alignment.getQuantity() > GV->getAlignment())
5047         GV->setAlignment(Alignment.getAsAlign());
5048       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5049                              Alignment);
5050     }
5051   }
5052 
5053   SmallString<256> MangledNameBuffer;
5054   StringRef GlobalVariableName;
5055   llvm::GlobalValue::LinkageTypes LT;
5056 
5057   // Mangle the string literal if that's how the ABI merges duplicate strings.
5058   // Don't do it if they are writable, since we don't want writes in one TU to
5059   // affect strings in another.
5060   if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
5061       !LangOpts.WritableStrings) {
5062     llvm::raw_svector_ostream Out(MangledNameBuffer);
5063     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
5064     LT = llvm::GlobalValue::LinkOnceODRLinkage;
5065     GlobalVariableName = MangledNameBuffer;
5066   } else {
5067     LT = llvm::GlobalValue::PrivateLinkage;
5068     GlobalVariableName = Name;
5069   }
5070 
5071   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
5072   if (Entry)
5073     *Entry = GV;
5074 
5075   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
5076                                   QualType());
5077 
5078   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5079                          Alignment);
5080 }
5081 
5082 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
5083 /// array for the given ObjCEncodeExpr node.
5084 ConstantAddress
5085 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
5086   std::string Str;
5087   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
5088 
5089   return GetAddrOfConstantCString(Str);
5090 }
5091 
5092 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
5093 /// the literal and a terminating '\0' character.
5094 /// The result has pointer to array type.
5095 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
5096     const std::string &Str, const char *GlobalName) {
5097   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
5098   CharUnits Alignment =
5099     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
5100 
5101   llvm::Constant *C =
5102       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
5103 
5104   // Don't share any string literals if strings aren't constant.
5105   llvm::GlobalVariable **Entry = nullptr;
5106   if (!LangOpts.WritableStrings) {
5107     Entry = &ConstantStringMap[C];
5108     if (auto GV = *Entry) {
5109       if (Alignment.getQuantity() > GV->getAlignment())
5110         GV->setAlignment(Alignment.getAsAlign());
5111       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5112                              Alignment);
5113     }
5114   }
5115 
5116   // Get the default prefix if a name wasn't specified.
5117   if (!GlobalName)
5118     GlobalName = ".str";
5119   // Create a global variable for this.
5120   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
5121                                   GlobalName, Alignment);
5122   if (Entry)
5123     *Entry = GV;
5124 
5125   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5126                          Alignment);
5127 }
5128 
5129 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
5130     const MaterializeTemporaryExpr *E, const Expr *Init) {
5131   assert((E->getStorageDuration() == SD_Static ||
5132           E->getStorageDuration() == SD_Thread) && "not a global temporary");
5133   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
5134 
5135   // If we're not materializing a subobject of the temporary, keep the
5136   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
5137   QualType MaterializedType = Init->getType();
5138   if (Init == E->getSubExpr())
5139     MaterializedType = E->getType();
5140 
5141   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
5142 
5143   if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E])
5144     return ConstantAddress(Slot, Align);
5145 
5146   // FIXME: If an externally-visible declaration extends multiple temporaries,
5147   // we need to give each temporary the same name in every translation unit (and
5148   // we also need to make the temporaries externally-visible).
5149   SmallString<256> Name;
5150   llvm::raw_svector_ostream Out(Name);
5151   getCXXABI().getMangleContext().mangleReferenceTemporary(
5152       VD, E->getManglingNumber(), Out);
5153 
5154   APValue *Value = nullptr;
5155   if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) {
5156     // If the initializer of the extending declaration is a constant
5157     // initializer, we should have a cached constant initializer for this
5158     // temporary. Note that this might have a different value from the value
5159     // computed by evaluating the initializer if the surrounding constant
5160     // expression modifies the temporary.
5161     Value = E->getOrCreateValue(false);
5162   }
5163 
5164   // Try evaluating it now, it might have a constant initializer.
5165   Expr::EvalResult EvalResult;
5166   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
5167       !EvalResult.hasSideEffects())
5168     Value = &EvalResult.Val;
5169 
5170   LangAS AddrSpace =
5171       VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
5172 
5173   Optional<ConstantEmitter> emitter;
5174   llvm::Constant *InitialValue = nullptr;
5175   bool Constant = false;
5176   llvm::Type *Type;
5177   if (Value) {
5178     // The temporary has a constant initializer, use it.
5179     emitter.emplace(*this);
5180     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
5181                                                MaterializedType);
5182     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
5183     Type = InitialValue->getType();
5184   } else {
5185     // No initializer, the initialization will be provided when we
5186     // initialize the declaration which performed lifetime extension.
5187     Type = getTypes().ConvertTypeForMem(MaterializedType);
5188   }
5189 
5190   // Create a global variable for this lifetime-extended temporary.
5191   llvm::GlobalValue::LinkageTypes Linkage =
5192       getLLVMLinkageVarDefinition(VD, Constant);
5193   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
5194     const VarDecl *InitVD;
5195     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
5196         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
5197       // Temporaries defined inside a class get linkonce_odr linkage because the
5198       // class can be defined in multiple translation units.
5199       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
5200     } else {
5201       // There is no need for this temporary to have external linkage if the
5202       // VarDecl has external linkage.
5203       Linkage = llvm::GlobalVariable::InternalLinkage;
5204     }
5205   }
5206   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
5207   auto *GV = new llvm::GlobalVariable(
5208       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
5209       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
5210   if (emitter) emitter->finalize(GV);
5211   setGVProperties(GV, VD);
5212   GV->setAlignment(Align.getAsAlign());
5213   if (supportsCOMDAT() && GV->isWeakForLinker())
5214     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
5215   if (VD->getTLSKind())
5216     setTLSMode(GV, *VD);
5217   llvm::Constant *CV = GV;
5218   if (AddrSpace != LangAS::Default)
5219     CV = getTargetCodeGenInfo().performAddrSpaceCast(
5220         *this, GV, AddrSpace, LangAS::Default,
5221         Type->getPointerTo(
5222             getContext().getTargetAddressSpace(LangAS::Default)));
5223   MaterializedGlobalTemporaryMap[E] = CV;
5224   return ConstantAddress(CV, Align);
5225 }
5226 
5227 /// EmitObjCPropertyImplementations - Emit information for synthesized
5228 /// properties for an implementation.
5229 void CodeGenModule::EmitObjCPropertyImplementations(const
5230                                                     ObjCImplementationDecl *D) {
5231   for (const auto *PID : D->property_impls()) {
5232     // Dynamic is just for type-checking.
5233     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
5234       ObjCPropertyDecl *PD = PID->getPropertyDecl();
5235 
5236       // Determine which methods need to be implemented, some may have
5237       // been overridden. Note that ::isPropertyAccessor is not the method
5238       // we want, that just indicates if the decl came from a
5239       // property. What we want to know is if the method is defined in
5240       // this implementation.
5241       auto *Getter = PID->getGetterMethodDecl();
5242       if (!Getter || Getter->isSynthesizedAccessorStub())
5243         CodeGenFunction(*this).GenerateObjCGetter(
5244             const_cast<ObjCImplementationDecl *>(D), PID);
5245       auto *Setter = PID->getSetterMethodDecl();
5246       if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub()))
5247         CodeGenFunction(*this).GenerateObjCSetter(
5248                                  const_cast<ObjCImplementationDecl *>(D), PID);
5249     }
5250   }
5251 }
5252 
5253 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
5254   const ObjCInterfaceDecl *iface = impl->getClassInterface();
5255   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
5256        ivar; ivar = ivar->getNextIvar())
5257     if (ivar->getType().isDestructedType())
5258       return true;
5259 
5260   return false;
5261 }
5262 
5263 static bool AllTrivialInitializers(CodeGenModule &CGM,
5264                                    ObjCImplementationDecl *D) {
5265   CodeGenFunction CGF(CGM);
5266   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
5267        E = D->init_end(); B != E; ++B) {
5268     CXXCtorInitializer *CtorInitExp = *B;
5269     Expr *Init = CtorInitExp->getInit();
5270     if (!CGF.isTrivialInitializer(Init))
5271       return false;
5272   }
5273   return true;
5274 }
5275 
5276 /// EmitObjCIvarInitializations - Emit information for ivar initialization
5277 /// for an implementation.
5278 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
5279   // We might need a .cxx_destruct even if we don't have any ivar initializers.
5280   if (needsDestructMethod(D)) {
5281     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
5282     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5283     ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(
5284         getContext(), D->getLocation(), D->getLocation(), cxxSelector,
5285         getContext().VoidTy, nullptr, D,
5286         /*isInstance=*/true, /*isVariadic=*/false,
5287         /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
5288         /*isImplicitlyDeclared=*/true,
5289         /*isDefined=*/false, ObjCMethodDecl::Required);
5290     D->addInstanceMethod(DTORMethod);
5291     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
5292     D->setHasDestructors(true);
5293   }
5294 
5295   // If the implementation doesn't have any ivar initializers, we don't need
5296   // a .cxx_construct.
5297   if (D->getNumIvarInitializers() == 0 ||
5298       AllTrivialInitializers(*this, D))
5299     return;
5300 
5301   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
5302   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5303   // The constructor returns 'self'.
5304   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(
5305       getContext(), D->getLocation(), D->getLocation(), cxxSelector,
5306       getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true,
5307       /*isVariadic=*/false,
5308       /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
5309       /*isImplicitlyDeclared=*/true,
5310       /*isDefined=*/false, ObjCMethodDecl::Required);
5311   D->addInstanceMethod(CTORMethod);
5312   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
5313   D->setHasNonZeroConstructors(true);
5314 }
5315 
5316 // EmitLinkageSpec - Emit all declarations in a linkage spec.
5317 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
5318   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
5319       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
5320     ErrorUnsupported(LSD, "linkage spec");
5321     return;
5322   }
5323 
5324   EmitDeclContext(LSD);
5325 }
5326 
5327 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
5328   for (auto *I : DC->decls()) {
5329     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
5330     // are themselves considered "top-level", so EmitTopLevelDecl on an
5331     // ObjCImplDecl does not recursively visit them. We need to do that in
5332     // case they're nested inside another construct (LinkageSpecDecl /
5333     // ExportDecl) that does stop them from being considered "top-level".
5334     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
5335       for (auto *M : OID->methods())
5336         EmitTopLevelDecl(M);
5337     }
5338 
5339     EmitTopLevelDecl(I);
5340   }
5341 }
5342 
5343 /// EmitTopLevelDecl - Emit code for a single top level declaration.
5344 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
5345   // Ignore dependent declarations.
5346   if (D->isTemplated())
5347     return;
5348 
5349   // Consteval function shouldn't be emitted.
5350   if (auto *FD = dyn_cast<FunctionDecl>(D))
5351     if (FD->isConsteval())
5352       return;
5353 
5354   switch (D->getKind()) {
5355   case Decl::CXXConversion:
5356   case Decl::CXXMethod:
5357   case Decl::Function:
5358     EmitGlobal(cast<FunctionDecl>(D));
5359     // Always provide some coverage mapping
5360     // even for the functions that aren't emitted.
5361     AddDeferredUnusedCoverageMapping(D);
5362     break;
5363 
5364   case Decl::CXXDeductionGuide:
5365     // Function-like, but does not result in code emission.
5366     break;
5367 
5368   case Decl::Var:
5369   case Decl::Decomposition:
5370   case Decl::VarTemplateSpecialization:
5371     EmitGlobal(cast<VarDecl>(D));
5372     if (auto *DD = dyn_cast<DecompositionDecl>(D))
5373       for (auto *B : DD->bindings())
5374         if (auto *HD = B->getHoldingVar())
5375           EmitGlobal(HD);
5376     break;
5377 
5378   // Indirect fields from global anonymous structs and unions can be
5379   // ignored; only the actual variable requires IR gen support.
5380   case Decl::IndirectField:
5381     break;
5382 
5383   // C++ Decls
5384   case Decl::Namespace:
5385     EmitDeclContext(cast<NamespaceDecl>(D));
5386     break;
5387   case Decl::ClassTemplateSpecialization: {
5388     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
5389     if (CGDebugInfo *DI = getModuleDebugInfo())
5390       if (Spec->getSpecializationKind() ==
5391               TSK_ExplicitInstantiationDefinition &&
5392           Spec->hasDefinition())
5393         DI->completeTemplateDefinition(*Spec);
5394   } LLVM_FALLTHROUGH;
5395   case Decl::CXXRecord: {
5396     CXXRecordDecl *CRD = cast<CXXRecordDecl>(D);
5397     if (CGDebugInfo *DI = getModuleDebugInfo()) {
5398       if (CRD->hasDefinition())
5399         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
5400       if (auto *ES = D->getASTContext().getExternalSource())
5401         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
5402           DI->completeUnusedClass(*CRD);
5403     }
5404     // Emit any static data members, they may be definitions.
5405     for (auto *I : CRD->decls())
5406       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
5407         EmitTopLevelDecl(I);
5408     break;
5409   }
5410     // No code generation needed.
5411   case Decl::UsingShadow:
5412   case Decl::ClassTemplate:
5413   case Decl::VarTemplate:
5414   case Decl::Concept:
5415   case Decl::VarTemplatePartialSpecialization:
5416   case Decl::FunctionTemplate:
5417   case Decl::TypeAliasTemplate:
5418   case Decl::Block:
5419   case Decl::Empty:
5420   case Decl::Binding:
5421     break;
5422   case Decl::Using:          // using X; [C++]
5423     if (CGDebugInfo *DI = getModuleDebugInfo())
5424         DI->EmitUsingDecl(cast<UsingDecl>(*D));
5425     break;
5426   case Decl::NamespaceAlias:
5427     if (CGDebugInfo *DI = getModuleDebugInfo())
5428         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
5429     break;
5430   case Decl::UsingDirective: // using namespace X; [C++]
5431     if (CGDebugInfo *DI = getModuleDebugInfo())
5432       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
5433     break;
5434   case Decl::CXXConstructor:
5435     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
5436     break;
5437   case Decl::CXXDestructor:
5438     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
5439     break;
5440 
5441   case Decl::StaticAssert:
5442     // Nothing to do.
5443     break;
5444 
5445   // Objective-C Decls
5446 
5447   // Forward declarations, no (immediate) code generation.
5448   case Decl::ObjCInterface:
5449   case Decl::ObjCCategory:
5450     break;
5451 
5452   case Decl::ObjCProtocol: {
5453     auto *Proto = cast<ObjCProtocolDecl>(D);
5454     if (Proto->isThisDeclarationADefinition())
5455       ObjCRuntime->GenerateProtocol(Proto);
5456     break;
5457   }
5458 
5459   case Decl::ObjCCategoryImpl:
5460     // Categories have properties but don't support synthesize so we
5461     // can ignore them here.
5462     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
5463     break;
5464 
5465   case Decl::ObjCImplementation: {
5466     auto *OMD = cast<ObjCImplementationDecl>(D);
5467     EmitObjCPropertyImplementations(OMD);
5468     EmitObjCIvarInitializations(OMD);
5469     ObjCRuntime->GenerateClass(OMD);
5470     // Emit global variable debug information.
5471     if (CGDebugInfo *DI = getModuleDebugInfo())
5472       if (getCodeGenOpts().hasReducedDebugInfo())
5473         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
5474             OMD->getClassInterface()), OMD->getLocation());
5475     break;
5476   }
5477   case Decl::ObjCMethod: {
5478     auto *OMD = cast<ObjCMethodDecl>(D);
5479     // If this is not a prototype, emit the body.
5480     if (OMD->getBody())
5481       CodeGenFunction(*this).GenerateObjCMethod(OMD);
5482     break;
5483   }
5484   case Decl::ObjCCompatibleAlias:
5485     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
5486     break;
5487 
5488   case Decl::PragmaComment: {
5489     const auto *PCD = cast<PragmaCommentDecl>(D);
5490     switch (PCD->getCommentKind()) {
5491     case PCK_Unknown:
5492       llvm_unreachable("unexpected pragma comment kind");
5493     case PCK_Linker:
5494       AppendLinkerOptions(PCD->getArg());
5495       break;
5496     case PCK_Lib:
5497         AddDependentLib(PCD->getArg());
5498       break;
5499     case PCK_Compiler:
5500     case PCK_ExeStr:
5501     case PCK_User:
5502       break; // We ignore all of these.
5503     }
5504     break;
5505   }
5506 
5507   case Decl::PragmaDetectMismatch: {
5508     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
5509     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
5510     break;
5511   }
5512 
5513   case Decl::LinkageSpec:
5514     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
5515     break;
5516 
5517   case Decl::FileScopeAsm: {
5518     // File-scope asm is ignored during device-side CUDA compilation.
5519     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
5520       break;
5521     // File-scope asm is ignored during device-side OpenMP compilation.
5522     if (LangOpts.OpenMPIsDevice)
5523       break;
5524     auto *AD = cast<FileScopeAsmDecl>(D);
5525     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
5526     break;
5527   }
5528 
5529   case Decl::Import: {
5530     auto *Import = cast<ImportDecl>(D);
5531 
5532     // If we've already imported this module, we're done.
5533     if (!ImportedModules.insert(Import->getImportedModule()))
5534       break;
5535 
5536     // Emit debug information for direct imports.
5537     if (!Import->getImportedOwningModule()) {
5538       if (CGDebugInfo *DI = getModuleDebugInfo())
5539         DI->EmitImportDecl(*Import);
5540     }
5541 
5542     // Find all of the submodules and emit the module initializers.
5543     llvm::SmallPtrSet<clang::Module *, 16> Visited;
5544     SmallVector<clang::Module *, 16> Stack;
5545     Visited.insert(Import->getImportedModule());
5546     Stack.push_back(Import->getImportedModule());
5547 
5548     while (!Stack.empty()) {
5549       clang::Module *Mod = Stack.pop_back_val();
5550       if (!EmittedModuleInitializers.insert(Mod).second)
5551         continue;
5552 
5553       for (auto *D : Context.getModuleInitializers(Mod))
5554         EmitTopLevelDecl(D);
5555 
5556       // Visit the submodules of this module.
5557       for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
5558                                              SubEnd = Mod->submodule_end();
5559            Sub != SubEnd; ++Sub) {
5560         // Skip explicit children; they need to be explicitly imported to emit
5561         // the initializers.
5562         if ((*Sub)->IsExplicit)
5563           continue;
5564 
5565         if (Visited.insert(*Sub).second)
5566           Stack.push_back(*Sub);
5567       }
5568     }
5569     break;
5570   }
5571 
5572   case Decl::Export:
5573     EmitDeclContext(cast<ExportDecl>(D));
5574     break;
5575 
5576   case Decl::OMPThreadPrivate:
5577     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
5578     break;
5579 
5580   case Decl::OMPAllocate:
5581     break;
5582 
5583   case Decl::OMPDeclareReduction:
5584     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
5585     break;
5586 
5587   case Decl::OMPDeclareMapper:
5588     EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
5589     break;
5590 
5591   case Decl::OMPRequires:
5592     EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
5593     break;
5594 
5595   case Decl::Typedef:
5596   case Decl::TypeAlias: // using foo = bar; [C++11]
5597     if (CGDebugInfo *DI = getModuleDebugInfo())
5598       DI->EmitAndRetainType(
5599           getContext().getTypedefType(cast<TypedefNameDecl>(D)));
5600     break;
5601 
5602   case Decl::Record:
5603     if (CGDebugInfo *DI = getModuleDebugInfo())
5604       if (cast<RecordDecl>(D)->getDefinition())
5605         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
5606     break;
5607 
5608   case Decl::Enum:
5609     if (CGDebugInfo *DI = getModuleDebugInfo())
5610       if (cast<EnumDecl>(D)->getDefinition())
5611         DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D)));
5612     break;
5613 
5614   default:
5615     // Make sure we handled everything we should, every other kind is a
5616     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
5617     // function. Need to recode Decl::Kind to do that easily.
5618     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
5619     break;
5620   }
5621 }
5622 
5623 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
5624   // Do we need to generate coverage mapping?
5625   if (!CodeGenOpts.CoverageMapping)
5626     return;
5627   switch (D->getKind()) {
5628   case Decl::CXXConversion:
5629   case Decl::CXXMethod:
5630   case Decl::Function:
5631   case Decl::ObjCMethod:
5632   case Decl::CXXConstructor:
5633   case Decl::CXXDestructor: {
5634     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
5635       break;
5636     SourceManager &SM = getContext().getSourceManager();
5637     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
5638       break;
5639     auto I = DeferredEmptyCoverageMappingDecls.find(D);
5640     if (I == DeferredEmptyCoverageMappingDecls.end())
5641       DeferredEmptyCoverageMappingDecls[D] = true;
5642     break;
5643   }
5644   default:
5645     break;
5646   };
5647 }
5648 
5649 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
5650   // Do we need to generate coverage mapping?
5651   if (!CodeGenOpts.CoverageMapping)
5652     return;
5653   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
5654     if (Fn->isTemplateInstantiation())
5655       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
5656   }
5657   auto I = DeferredEmptyCoverageMappingDecls.find(D);
5658   if (I == DeferredEmptyCoverageMappingDecls.end())
5659     DeferredEmptyCoverageMappingDecls[D] = false;
5660   else
5661     I->second = false;
5662 }
5663 
5664 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
5665   // We call takeVector() here to avoid use-after-free.
5666   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
5667   // we deserialize function bodies to emit coverage info for them, and that
5668   // deserializes more declarations. How should we handle that case?
5669   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
5670     if (!Entry.second)
5671       continue;
5672     const Decl *D = Entry.first;
5673     switch (D->getKind()) {
5674     case Decl::CXXConversion:
5675     case Decl::CXXMethod:
5676     case Decl::Function:
5677     case Decl::ObjCMethod: {
5678       CodeGenPGO PGO(*this);
5679       GlobalDecl GD(cast<FunctionDecl>(D));
5680       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5681                                   getFunctionLinkage(GD));
5682       break;
5683     }
5684     case Decl::CXXConstructor: {
5685       CodeGenPGO PGO(*this);
5686       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
5687       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5688                                   getFunctionLinkage(GD));
5689       break;
5690     }
5691     case Decl::CXXDestructor: {
5692       CodeGenPGO PGO(*this);
5693       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
5694       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5695                                   getFunctionLinkage(GD));
5696       break;
5697     }
5698     default:
5699       break;
5700     };
5701   }
5702 }
5703 
5704 void CodeGenModule::EmitMainVoidAlias() {
5705   // In order to transition away from "__original_main" gracefully, emit an
5706   // alias for "main" in the no-argument case so that libc can detect when
5707   // new-style no-argument main is in used.
5708   if (llvm::Function *F = getModule().getFunction("main")) {
5709     if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() &&
5710         F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth()))
5711       addUsedGlobal(llvm::GlobalAlias::create("__main_void", F));
5712   }
5713 }
5714 
5715 /// Turns the given pointer into a constant.
5716 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
5717                                           const void *Ptr) {
5718   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
5719   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
5720   return llvm::ConstantInt::get(i64, PtrInt);
5721 }
5722 
5723 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
5724                                    llvm::NamedMDNode *&GlobalMetadata,
5725                                    GlobalDecl D,
5726                                    llvm::GlobalValue *Addr) {
5727   if (!GlobalMetadata)
5728     GlobalMetadata =
5729       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
5730 
5731   // TODO: should we report variant information for ctors/dtors?
5732   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
5733                            llvm::ConstantAsMetadata::get(GetPointerConstant(
5734                                CGM.getLLVMContext(), D.getDecl()))};
5735   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
5736 }
5737 
5738 /// For each function which is declared within an extern "C" region and marked
5739 /// as 'used', but has internal linkage, create an alias from the unmangled
5740 /// name to the mangled name if possible. People expect to be able to refer
5741 /// to such functions with an unmangled name from inline assembly within the
5742 /// same translation unit.
5743 void CodeGenModule::EmitStaticExternCAliases() {
5744   if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
5745     return;
5746   for (auto &I : StaticExternCValues) {
5747     IdentifierInfo *Name = I.first;
5748     llvm::GlobalValue *Val = I.second;
5749     if (Val && !getModule().getNamedValue(Name->getName()))
5750       addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
5751   }
5752 }
5753 
5754 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
5755                                              GlobalDecl &Result) const {
5756   auto Res = Manglings.find(MangledName);
5757   if (Res == Manglings.end())
5758     return false;
5759   Result = Res->getValue();
5760   return true;
5761 }
5762 
5763 /// Emits metadata nodes associating all the global values in the
5764 /// current module with the Decls they came from.  This is useful for
5765 /// projects using IR gen as a subroutine.
5766 ///
5767 /// Since there's currently no way to associate an MDNode directly
5768 /// with an llvm::GlobalValue, we create a global named metadata
5769 /// with the name 'clang.global.decl.ptrs'.
5770 void CodeGenModule::EmitDeclMetadata() {
5771   llvm::NamedMDNode *GlobalMetadata = nullptr;
5772 
5773   for (auto &I : MangledDeclNames) {
5774     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
5775     // Some mangled names don't necessarily have an associated GlobalValue
5776     // in this module, e.g. if we mangled it for DebugInfo.
5777     if (Addr)
5778       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
5779   }
5780 }
5781 
5782 /// Emits metadata nodes for all the local variables in the current
5783 /// function.
5784 void CodeGenFunction::EmitDeclMetadata() {
5785   if (LocalDeclMap.empty()) return;
5786 
5787   llvm::LLVMContext &Context = getLLVMContext();
5788 
5789   // Find the unique metadata ID for this name.
5790   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
5791 
5792   llvm::NamedMDNode *GlobalMetadata = nullptr;
5793 
5794   for (auto &I : LocalDeclMap) {
5795     const Decl *D = I.first;
5796     llvm::Value *Addr = I.second.getPointer();
5797     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
5798       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
5799       Alloca->setMetadata(
5800           DeclPtrKind, llvm::MDNode::get(
5801                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
5802     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
5803       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
5804       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
5805     }
5806   }
5807 }
5808 
5809 void CodeGenModule::EmitVersionIdentMetadata() {
5810   llvm::NamedMDNode *IdentMetadata =
5811     TheModule.getOrInsertNamedMetadata("llvm.ident");
5812   std::string Version = getClangFullVersion();
5813   llvm::LLVMContext &Ctx = TheModule.getContext();
5814 
5815   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
5816   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
5817 }
5818 
5819 void CodeGenModule::EmitCommandLineMetadata() {
5820   llvm::NamedMDNode *CommandLineMetadata =
5821     TheModule.getOrInsertNamedMetadata("llvm.commandline");
5822   std::string CommandLine = getCodeGenOpts().RecordCommandLine;
5823   llvm::LLVMContext &Ctx = TheModule.getContext();
5824 
5825   llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
5826   CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
5827 }
5828 
5829 void CodeGenModule::EmitCoverageFile() {
5830   if (getCodeGenOpts().CoverageDataFile.empty() &&
5831       getCodeGenOpts().CoverageNotesFile.empty())
5832     return;
5833 
5834   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
5835   if (!CUNode)
5836     return;
5837 
5838   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
5839   llvm::LLVMContext &Ctx = TheModule.getContext();
5840   auto *CoverageDataFile =
5841       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
5842   auto *CoverageNotesFile =
5843       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
5844   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
5845     llvm::MDNode *CU = CUNode->getOperand(i);
5846     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
5847     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
5848   }
5849 }
5850 
5851 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
5852                                                        bool ForEH) {
5853   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
5854   // FIXME: should we even be calling this method if RTTI is disabled
5855   // and it's not for EH?
5856   if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice ||
5857       (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
5858        getTriple().isNVPTX()))
5859     return llvm::Constant::getNullValue(Int8PtrTy);
5860 
5861   if (ForEH && Ty->isObjCObjectPointerType() &&
5862       LangOpts.ObjCRuntime.isGNUFamily())
5863     return ObjCRuntime->GetEHType(Ty);
5864 
5865   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
5866 }
5867 
5868 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
5869   // Do not emit threadprivates in simd-only mode.
5870   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
5871     return;
5872   for (auto RefExpr : D->varlists()) {
5873     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
5874     bool PerformInit =
5875         VD->getAnyInitializer() &&
5876         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
5877                                                         /*ForRef=*/false);
5878 
5879     Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
5880     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
5881             VD, Addr, RefExpr->getBeginLoc(), PerformInit))
5882       CXXGlobalInits.push_back(InitFunction);
5883   }
5884 }
5885 
5886 llvm::Metadata *
5887 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
5888                                             StringRef Suffix) {
5889   llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
5890   if (InternalId)
5891     return InternalId;
5892 
5893   if (isExternallyVisible(T->getLinkage())) {
5894     std::string OutName;
5895     llvm::raw_string_ostream Out(OutName);
5896     getCXXABI().getMangleContext().mangleTypeName(T, Out);
5897     Out << Suffix;
5898 
5899     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
5900   } else {
5901     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
5902                                            llvm::ArrayRef<llvm::Metadata *>());
5903   }
5904 
5905   return InternalId;
5906 }
5907 
5908 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
5909   return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
5910 }
5911 
5912 llvm::Metadata *
5913 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
5914   return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
5915 }
5916 
5917 // Generalize pointer types to a void pointer with the qualifiers of the
5918 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
5919 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
5920 // 'void *'.
5921 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
5922   if (!Ty->isPointerType())
5923     return Ty;
5924 
5925   return Ctx.getPointerType(
5926       QualType(Ctx.VoidTy).withCVRQualifiers(
5927           Ty->getPointeeType().getCVRQualifiers()));
5928 }
5929 
5930 // Apply type generalization to a FunctionType's return and argument types
5931 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
5932   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
5933     SmallVector<QualType, 8> GeneralizedParams;
5934     for (auto &Param : FnType->param_types())
5935       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
5936 
5937     return Ctx.getFunctionType(
5938         GeneralizeType(Ctx, FnType->getReturnType()),
5939         GeneralizedParams, FnType->getExtProtoInfo());
5940   }
5941 
5942   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
5943     return Ctx.getFunctionNoProtoType(
5944         GeneralizeType(Ctx, FnType->getReturnType()));
5945 
5946   llvm_unreachable("Encountered unknown FunctionType");
5947 }
5948 
5949 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
5950   return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
5951                                       GeneralizedMetadataIdMap, ".generalized");
5952 }
5953 
5954 /// Returns whether this module needs the "all-vtables" type identifier.
5955 bool CodeGenModule::NeedAllVtablesTypeId() const {
5956   // Returns true if at least one of vtable-based CFI checkers is enabled and
5957   // is not in the trapping mode.
5958   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
5959            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
5960           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
5961            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
5962           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
5963            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
5964           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
5965            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
5966 }
5967 
5968 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
5969                                           CharUnits Offset,
5970                                           const CXXRecordDecl *RD) {
5971   llvm::Metadata *MD =
5972       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
5973   VTable->addTypeMetadata(Offset.getQuantity(), MD);
5974 
5975   if (CodeGenOpts.SanitizeCfiCrossDso)
5976     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
5977       VTable->addTypeMetadata(Offset.getQuantity(),
5978                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
5979 
5980   if (NeedAllVtablesTypeId()) {
5981     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
5982     VTable->addTypeMetadata(Offset.getQuantity(), MD);
5983   }
5984 }
5985 
5986 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
5987   if (!SanStats)
5988     SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule());
5989 
5990   return *SanStats;
5991 }
5992 llvm::Value *
5993 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
5994                                                   CodeGenFunction &CGF) {
5995   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
5996   auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
5997   auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
5998   return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy,
5999                                 "__translate_sampler_initializer"),
6000                                 {C});
6001 }
6002 
6003 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment(
6004     QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) {
6005   return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
6006                                  /* forPointeeType= */ true);
6007 }
6008 
6009 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T,
6010                                                  LValueBaseInfo *BaseInfo,
6011                                                  TBAAAccessInfo *TBAAInfo,
6012                                                  bool forPointeeType) {
6013   if (TBAAInfo)
6014     *TBAAInfo = getTBAAAccessInfo(T);
6015 
6016   // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But
6017   // that doesn't return the information we need to compute BaseInfo.
6018 
6019   // Honor alignment typedef attributes even on incomplete types.
6020   // We also honor them straight for C++ class types, even as pointees;
6021   // there's an expressivity gap here.
6022   if (auto TT = T->getAs<TypedefType>()) {
6023     if (auto Align = TT->getDecl()->getMaxAlignment()) {
6024       if (BaseInfo)
6025         *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
6026       return getContext().toCharUnitsFromBits(Align);
6027     }
6028   }
6029 
6030   bool AlignForArray = T->isArrayType();
6031 
6032   // Analyze the base element type, so we don't get confused by incomplete
6033   // array types.
6034   T = getContext().getBaseElementType(T);
6035 
6036   if (T->isIncompleteType()) {
6037     // We could try to replicate the logic from
6038     // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the
6039     // type is incomplete, so it's impossible to test. We could try to reuse
6040     // getTypeAlignIfKnown, but that doesn't return the information we need
6041     // to set BaseInfo.  So just ignore the possibility that the alignment is
6042     // greater than one.
6043     if (BaseInfo)
6044       *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
6045     return CharUnits::One();
6046   }
6047 
6048   if (BaseInfo)
6049     *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
6050 
6051   CharUnits Alignment;
6052   // For C++ class pointees, we don't know whether we're pointing at a
6053   // base or a complete object, so we generally need to use the
6054   // non-virtual alignment.
6055   const CXXRecordDecl *RD;
6056   if (forPointeeType && !AlignForArray && (RD = T->getAsCXXRecordDecl())) {
6057     Alignment = getClassPointerAlignment(RD);
6058   } else {
6059     Alignment = getContext().getTypeAlignInChars(T);
6060     if (T.getQualifiers().hasUnaligned())
6061       Alignment = CharUnits::One();
6062   }
6063 
6064   // Cap to the global maximum type alignment unless the alignment
6065   // was somehow explicit on the type.
6066   if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
6067     if (Alignment.getQuantity() > MaxAlign &&
6068         !getContext().isAlignmentRequired(T))
6069       Alignment = CharUnits::fromQuantity(MaxAlign);
6070   }
6071   return Alignment;
6072 }
6073 
6074 bool CodeGenModule::stopAutoInit() {
6075   unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter;
6076   if (StopAfter) {
6077     // This number is positive only when -ftrivial-auto-var-init-stop-after=* is
6078     // used
6079     if (NumAutoVarInit >= StopAfter) {
6080       return true;
6081     }
6082     if (!NumAutoVarInit) {
6083       unsigned DiagID = getDiags().getCustomDiagID(
6084           DiagnosticsEngine::Warning,
6085           "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the "
6086           "number of times ftrivial-auto-var-init=%1 gets applied.");
6087       getDiags().Report(DiagID)
6088           << StopAfter
6089           << (getContext().getLangOpts().getTrivialAutoVarInit() ==
6090                       LangOptions::TrivialAutoVarInitKind::Zero
6091                   ? "zero"
6092                   : "pattern");
6093     }
6094     ++NumAutoVarInit;
6095   }
6096   return false;
6097 }
6098