xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 4cbceb74bb5676d0181d4d0cab5194d90a42c2ec)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-module state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenModule.h"
14 #include "CGBlocks.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGObjCRuntime.h"
20 #include "CGOpenCLRuntime.h"
21 #include "CGOpenMPRuntime.h"
22 #include "CGOpenMPRuntimeAMDGCN.h"
23 #include "CGOpenMPRuntimeNVPTX.h"
24 #include "CodeGenFunction.h"
25 #include "CodeGenPGO.h"
26 #include "ConstantEmitter.h"
27 #include "CoverageMappingGen.h"
28 #include "TargetInfo.h"
29 #include "clang/AST/ASTContext.h"
30 #include "clang/AST/CharUnits.h"
31 #include "clang/AST/DeclCXX.h"
32 #include "clang/AST/DeclObjC.h"
33 #include "clang/AST/DeclTemplate.h"
34 #include "clang/AST/Mangle.h"
35 #include "clang/AST/RecordLayout.h"
36 #include "clang/AST/RecursiveASTVisitor.h"
37 #include "clang/AST/StmtVisitor.h"
38 #include "clang/Basic/Builtins.h"
39 #include "clang/Basic/CharInfo.h"
40 #include "clang/Basic/CodeGenOptions.h"
41 #include "clang/Basic/Diagnostic.h"
42 #include "clang/Basic/FileManager.h"
43 #include "clang/Basic/Module.h"
44 #include "clang/Basic/SourceManager.h"
45 #include "clang/Basic/TargetInfo.h"
46 #include "clang/Basic/Version.h"
47 #include "clang/CodeGen/ConstantInitBuilder.h"
48 #include "clang/Frontend/FrontendDiagnostic.h"
49 #include "llvm/ADT/StringSwitch.h"
50 #include "llvm/ADT/Triple.h"
51 #include "llvm/Analysis/TargetLibraryInfo.h"
52 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
53 #include "llvm/IR/CallingConv.h"
54 #include "llvm/IR/DataLayout.h"
55 #include "llvm/IR/Intrinsics.h"
56 #include "llvm/IR/LLVMContext.h"
57 #include "llvm/IR/Module.h"
58 #include "llvm/IR/ProfileSummary.h"
59 #include "llvm/ProfileData/InstrProfReader.h"
60 #include "llvm/Support/CodeGen.h"
61 #include "llvm/Support/CommandLine.h"
62 #include "llvm/Support/ConvertUTF.h"
63 #include "llvm/Support/ErrorHandling.h"
64 #include "llvm/Support/MD5.h"
65 #include "llvm/Support/TimeProfiler.h"
66 
67 using namespace clang;
68 using namespace CodeGen;
69 
70 static llvm::cl::opt<bool> LimitedCoverage(
71     "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden,
72     llvm::cl::desc("Emit limited coverage mapping information (experimental)"),
73     llvm::cl::init(false));
74 
75 static const char AnnotationSection[] = "llvm.metadata";
76 
77 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
78   switch (CGM.getTarget().getCXXABI().getKind()) {
79   case TargetCXXABI::Fuchsia:
80   case TargetCXXABI::GenericAArch64:
81   case TargetCXXABI::GenericARM:
82   case TargetCXXABI::iOS:
83   case TargetCXXABI::iOS64:
84   case TargetCXXABI::WatchOS:
85   case TargetCXXABI::GenericMIPS:
86   case TargetCXXABI::GenericItanium:
87   case TargetCXXABI::WebAssembly:
88   case TargetCXXABI::XL:
89     return CreateItaniumCXXABI(CGM);
90   case TargetCXXABI::Microsoft:
91     return CreateMicrosoftCXXABI(CGM);
92   }
93 
94   llvm_unreachable("invalid C++ ABI kind");
95 }
96 
97 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
98                              const PreprocessorOptions &PPO,
99                              const CodeGenOptions &CGO, llvm::Module &M,
100                              DiagnosticsEngine &diags,
101                              CoverageSourceInfo *CoverageInfo)
102     : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
103       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
104       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
105       VMContext(M.getContext()), Types(*this), VTables(*this),
106       SanitizerMD(new SanitizerMetadata(*this)) {
107 
108   // Initialize the type cache.
109   llvm::LLVMContext &LLVMContext = M.getContext();
110   VoidTy = llvm::Type::getVoidTy(LLVMContext);
111   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
112   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
113   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
114   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
115   HalfTy = llvm::Type::getHalfTy(LLVMContext);
116   BFloatTy = llvm::Type::getBFloatTy(LLVMContext);
117   FloatTy = llvm::Type::getFloatTy(LLVMContext);
118   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
119   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
120   PointerAlignInBytes =
121     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
122   SizeSizeInBytes =
123     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
124   IntAlignInBytes =
125     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
126   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
127   IntPtrTy = llvm::IntegerType::get(LLVMContext,
128     C.getTargetInfo().getMaxPointerWidth());
129   Int8PtrTy = Int8Ty->getPointerTo(0);
130   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
131   AllocaInt8PtrTy = Int8Ty->getPointerTo(
132       M.getDataLayout().getAllocaAddrSpace());
133   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
134 
135   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
136 
137   if (LangOpts.ObjC)
138     createObjCRuntime();
139   if (LangOpts.OpenCL)
140     createOpenCLRuntime();
141   if (LangOpts.OpenMP)
142     createOpenMPRuntime();
143   if (LangOpts.CUDA)
144     createCUDARuntime();
145 
146   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
147   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
148       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
149     TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
150                                getCXXABI().getMangleContext()));
151 
152   // If debug info or coverage generation is enabled, create the CGDebugInfo
153   // object.
154   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
155       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
156     DebugInfo.reset(new CGDebugInfo(*this));
157 
158   Block.GlobalUniqueCount = 0;
159 
160   if (C.getLangOpts().ObjC)
161     ObjCData.reset(new ObjCEntrypoints());
162 
163   if (CodeGenOpts.hasProfileClangUse()) {
164     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
165         CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile);
166     if (auto E = ReaderOrErr.takeError()) {
167       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
168                                               "Could not read profile %0: %1");
169       llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
170         getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
171                                   << EI.message();
172       });
173     } else
174       PGOReader = std::move(ReaderOrErr.get());
175   }
176 
177   // If coverage mapping generation is enabled, create the
178   // CoverageMappingModuleGen object.
179   if (CodeGenOpts.CoverageMapping)
180     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
181 }
182 
183 CodeGenModule::~CodeGenModule() {}
184 
185 void CodeGenModule::createObjCRuntime() {
186   // This is just isGNUFamily(), but we want to force implementors of
187   // new ABIs to decide how best to do this.
188   switch (LangOpts.ObjCRuntime.getKind()) {
189   case ObjCRuntime::GNUstep:
190   case ObjCRuntime::GCC:
191   case ObjCRuntime::ObjFW:
192     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
193     return;
194 
195   case ObjCRuntime::FragileMacOSX:
196   case ObjCRuntime::MacOSX:
197   case ObjCRuntime::iOS:
198   case ObjCRuntime::WatchOS:
199     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
200     return;
201   }
202   llvm_unreachable("bad runtime kind");
203 }
204 
205 void CodeGenModule::createOpenCLRuntime() {
206   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
207 }
208 
209 void CodeGenModule::createOpenMPRuntime() {
210   // Select a specialized code generation class based on the target, if any.
211   // If it does not exist use the default implementation.
212   switch (getTriple().getArch()) {
213   case llvm::Triple::nvptx:
214   case llvm::Triple::nvptx64:
215     assert(getLangOpts().OpenMPIsDevice &&
216            "OpenMP NVPTX is only prepared to deal with device code.");
217     OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this));
218     break;
219   case llvm::Triple::amdgcn:
220     assert(getLangOpts().OpenMPIsDevice &&
221            "OpenMP AMDGCN is only prepared to deal with device code.");
222     OpenMPRuntime.reset(new CGOpenMPRuntimeAMDGCN(*this));
223     break;
224   default:
225     if (LangOpts.OpenMPSimd)
226       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
227     else
228       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
229     break;
230   }
231 }
232 
233 void CodeGenModule::createCUDARuntime() {
234   CUDARuntime.reset(CreateNVCUDARuntime(*this));
235 }
236 
237 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
238   Replacements[Name] = C;
239 }
240 
241 void CodeGenModule::applyReplacements() {
242   for (auto &I : Replacements) {
243     StringRef MangledName = I.first();
244     llvm::Constant *Replacement = I.second;
245     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
246     if (!Entry)
247       continue;
248     auto *OldF = cast<llvm::Function>(Entry);
249     auto *NewF = dyn_cast<llvm::Function>(Replacement);
250     if (!NewF) {
251       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
252         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
253       } else {
254         auto *CE = cast<llvm::ConstantExpr>(Replacement);
255         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
256                CE->getOpcode() == llvm::Instruction::GetElementPtr);
257         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
258       }
259     }
260 
261     // Replace old with new, but keep the old order.
262     OldF->replaceAllUsesWith(Replacement);
263     if (NewF) {
264       NewF->removeFromParent();
265       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
266                                                        NewF);
267     }
268     OldF->eraseFromParent();
269   }
270 }
271 
272 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
273   GlobalValReplacements.push_back(std::make_pair(GV, C));
274 }
275 
276 void CodeGenModule::applyGlobalValReplacements() {
277   for (auto &I : GlobalValReplacements) {
278     llvm::GlobalValue *GV = I.first;
279     llvm::Constant *C = I.second;
280 
281     GV->replaceAllUsesWith(C);
282     GV->eraseFromParent();
283   }
284 }
285 
286 // This is only used in aliases that we created and we know they have a
287 // linear structure.
288 static const llvm::GlobalObject *getAliasedGlobal(
289     const llvm::GlobalIndirectSymbol &GIS) {
290   llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited;
291   const llvm::Constant *C = &GIS;
292   for (;;) {
293     C = C->stripPointerCasts();
294     if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
295       return GO;
296     // stripPointerCasts will not walk over weak aliases.
297     auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C);
298     if (!GIS2)
299       return nullptr;
300     if (!Visited.insert(GIS2).second)
301       return nullptr;
302     C = GIS2->getIndirectSymbol();
303   }
304 }
305 
306 void CodeGenModule::checkAliases() {
307   // Check if the constructed aliases are well formed. It is really unfortunate
308   // that we have to do this in CodeGen, but we only construct mangled names
309   // and aliases during codegen.
310   bool Error = false;
311   DiagnosticsEngine &Diags = getDiags();
312   for (const GlobalDecl &GD : Aliases) {
313     const auto *D = cast<ValueDecl>(GD.getDecl());
314     SourceLocation Location;
315     bool IsIFunc = D->hasAttr<IFuncAttr>();
316     if (const Attr *A = D->getDefiningAttr())
317       Location = A->getLocation();
318     else
319       llvm_unreachable("Not an alias or ifunc?");
320     StringRef MangledName = getMangledName(GD);
321     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
322     auto *Alias  = cast<llvm::GlobalIndirectSymbol>(Entry);
323     const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
324     if (!GV) {
325       Error = true;
326       Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
327     } else if (GV->isDeclaration()) {
328       Error = true;
329       Diags.Report(Location, diag::err_alias_to_undefined)
330           << IsIFunc << IsIFunc;
331     } else if (IsIFunc) {
332       // Check resolver function type.
333       llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(
334           GV->getType()->getPointerElementType());
335       assert(FTy);
336       if (!FTy->getReturnType()->isPointerTy())
337         Diags.Report(Location, diag::err_ifunc_resolver_return);
338     }
339 
340     llvm::Constant *Aliasee = Alias->getIndirectSymbol();
341     llvm::GlobalValue *AliaseeGV;
342     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
343       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
344     else
345       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
346 
347     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
348       StringRef AliasSection = SA->getName();
349       if (AliasSection != AliaseeGV->getSection())
350         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
351             << AliasSection << IsIFunc << IsIFunc;
352     }
353 
354     // We have to handle alias to weak aliases in here. LLVM itself disallows
355     // this since the object semantics would not match the IL one. For
356     // compatibility with gcc we implement it by just pointing the alias
357     // to its aliasee's aliasee. We also warn, since the user is probably
358     // expecting the link to be weak.
359     if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) {
360       if (GA->isInterposable()) {
361         Diags.Report(Location, diag::warn_alias_to_weak_alias)
362             << GV->getName() << GA->getName() << IsIFunc;
363         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
364             GA->getIndirectSymbol(), Alias->getType());
365         Alias->setIndirectSymbol(Aliasee);
366       }
367     }
368   }
369   if (!Error)
370     return;
371 
372   for (const GlobalDecl &GD : Aliases) {
373     StringRef MangledName = getMangledName(GD);
374     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
375     auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry);
376     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
377     Alias->eraseFromParent();
378   }
379 }
380 
381 void CodeGenModule::clear() {
382   DeferredDeclsToEmit.clear();
383   if (OpenMPRuntime)
384     OpenMPRuntime->clear();
385 }
386 
387 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
388                                        StringRef MainFile) {
389   if (!hasDiagnostics())
390     return;
391   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
392     if (MainFile.empty())
393       MainFile = "<stdin>";
394     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
395   } else {
396     if (Mismatched > 0)
397       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
398 
399     if (Missing > 0)
400       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
401   }
402 }
403 
404 void CodeGenModule::Release() {
405   EmitDeferred();
406   EmitVTablesOpportunistically();
407   applyGlobalValReplacements();
408   applyReplacements();
409   checkAliases();
410   emitMultiVersionFunctions();
411   EmitCXXGlobalInitFunc();
412   EmitCXXGlobalCleanUpFunc();
413   registerGlobalDtorsWithAtExit();
414   EmitCXXThreadLocalInitFunc();
415   if (ObjCRuntime)
416     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
417       AddGlobalCtor(ObjCInitFunction);
418   if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice &&
419       CUDARuntime) {
420     if (llvm::Function *CudaCtorFunction =
421             CUDARuntime->makeModuleCtorFunction())
422       AddGlobalCtor(CudaCtorFunction);
423   }
424   if (OpenMPRuntime) {
425     if (llvm::Function *OpenMPRequiresDirectiveRegFun =
426             OpenMPRuntime->emitRequiresDirectiveRegFun()) {
427       AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0);
428     }
429     OpenMPRuntime->createOffloadEntriesAndInfoMetadata();
430     OpenMPRuntime->clear();
431   }
432   if (PGOReader) {
433     getModule().setProfileSummary(
434         PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
435         llvm::ProfileSummary::PSK_Instr);
436     if (PGOStats.hasDiagnostics())
437       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
438   }
439   EmitCtorList(GlobalCtors, "llvm.global_ctors");
440   EmitCtorList(GlobalDtors, "llvm.global_dtors");
441   EmitGlobalAnnotations();
442   EmitStaticExternCAliases();
443   EmitDeferredUnusedCoverageMappings();
444   if (CoverageMapping)
445     CoverageMapping->emit();
446   if (CodeGenOpts.SanitizeCfiCrossDso) {
447     CodeGenFunction(*this).EmitCfiCheckFail();
448     CodeGenFunction(*this).EmitCfiCheckStub();
449   }
450   emitAtAvailableLinkGuard();
451   if (Context.getTargetInfo().getTriple().isWasm() &&
452       !Context.getTargetInfo().getTriple().isOSEmscripten()) {
453     EmitMainVoidAlias();
454   }
455   emitLLVMUsed();
456   if (SanStats)
457     SanStats->finish();
458 
459   if (CodeGenOpts.Autolink &&
460       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
461     EmitModuleLinkOptions();
462   }
463 
464   // On ELF we pass the dependent library specifiers directly to the linker
465   // without manipulating them. This is in contrast to other platforms where
466   // they are mapped to a specific linker option by the compiler. This
467   // difference is a result of the greater variety of ELF linkers and the fact
468   // that ELF linkers tend to handle libraries in a more complicated fashion
469   // than on other platforms. This forces us to defer handling the dependent
470   // libs to the linker.
471   //
472   // CUDA/HIP device and host libraries are different. Currently there is no
473   // way to differentiate dependent libraries for host or device. Existing
474   // usage of #pragma comment(lib, *) is intended for host libraries on
475   // Windows. Therefore emit llvm.dependent-libraries only for host.
476   if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
477     auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
478     for (auto *MD : ELFDependentLibraries)
479       NMD->addOperand(MD);
480   }
481 
482   // Record mregparm value now so it is visible through rest of codegen.
483   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
484     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
485                               CodeGenOpts.NumRegisterParameters);
486 
487   if (CodeGenOpts.DwarfVersion) {
488     getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version",
489                               CodeGenOpts.DwarfVersion);
490   }
491 
492   if (Context.getLangOpts().SemanticInterposition)
493     // Require various optimization to respect semantic interposition.
494     getModule().setSemanticInterposition(1);
495   else if (Context.getLangOpts().ExplicitNoSemanticInterposition)
496     // Allow dso_local on applicable targets.
497     getModule().setSemanticInterposition(0);
498 
499   if (CodeGenOpts.EmitCodeView) {
500     // Indicate that we want CodeView in the metadata.
501     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
502   }
503   if (CodeGenOpts.CodeViewGHash) {
504     getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
505   }
506   if (CodeGenOpts.ControlFlowGuard) {
507     // Function ID tables and checks for Control Flow Guard (cfguard=2).
508     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2);
509   } else if (CodeGenOpts.ControlFlowGuardNoChecks) {
510     // Function ID tables for Control Flow Guard (cfguard=1).
511     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
512   }
513   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
514     // We don't support LTO with 2 with different StrictVTablePointers
515     // FIXME: we could support it by stripping all the information introduced
516     // by StrictVTablePointers.
517 
518     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
519 
520     llvm::Metadata *Ops[2] = {
521               llvm::MDString::get(VMContext, "StrictVTablePointers"),
522               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
523                   llvm::Type::getInt32Ty(VMContext), 1))};
524 
525     getModule().addModuleFlag(llvm::Module::Require,
526                               "StrictVTablePointersRequirement",
527                               llvm::MDNode::get(VMContext, Ops));
528   }
529   if (getModuleDebugInfo())
530     // We support a single version in the linked module. The LLVM
531     // parser will drop debug info with a different version number
532     // (and warn about it, too).
533     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
534                               llvm::DEBUG_METADATA_VERSION);
535 
536   // We need to record the widths of enums and wchar_t, so that we can generate
537   // the correct build attributes in the ARM backend. wchar_size is also used by
538   // TargetLibraryInfo.
539   uint64_t WCharWidth =
540       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
541   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
542 
543   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
544   if (   Arch == llvm::Triple::arm
545       || Arch == llvm::Triple::armeb
546       || Arch == llvm::Triple::thumb
547       || Arch == llvm::Triple::thumbeb) {
548     // The minimum width of an enum in bytes
549     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
550     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
551   }
552 
553   if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) {
554     StringRef ABIStr = Target.getABI();
555     llvm::LLVMContext &Ctx = TheModule.getContext();
556     getModule().addModuleFlag(llvm::Module::Error, "target-abi",
557                               llvm::MDString::get(Ctx, ABIStr));
558   }
559 
560   if (CodeGenOpts.SanitizeCfiCrossDso) {
561     // Indicate that we want cross-DSO control flow integrity checks.
562     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
563   }
564 
565   if (CodeGenOpts.WholeProgramVTables) {
566     // Indicate whether VFE was enabled for this module, so that the
567     // vcall_visibility metadata added under whole program vtables is handled
568     // appropriately in the optimizer.
569     getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim",
570                               CodeGenOpts.VirtualFunctionElimination);
571   }
572 
573   if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) {
574     getModule().addModuleFlag(llvm::Module::Override,
575                               "CFI Canonical Jump Tables",
576                               CodeGenOpts.SanitizeCfiCanonicalJumpTables);
577   }
578 
579   if (CodeGenOpts.CFProtectionReturn &&
580       Target.checkCFProtectionReturnSupported(getDiags())) {
581     // Indicate that we want to instrument return control flow protection.
582     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return",
583                               1);
584   }
585 
586   if (CodeGenOpts.CFProtectionBranch &&
587       Target.checkCFProtectionBranchSupported(getDiags())) {
588     // Indicate that we want to instrument branch control flow protection.
589     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch",
590                               1);
591   }
592 
593   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
594     // Indicate whether __nvvm_reflect should be configured to flush denormal
595     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
596     // property.)
597     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
598                               CodeGenOpts.FP32DenormalMode.Output !=
599                                   llvm::DenormalMode::IEEE);
600   }
601 
602   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
603   if (LangOpts.OpenCL) {
604     EmitOpenCLMetadata();
605     // Emit SPIR version.
606     if (getTriple().isSPIR()) {
607       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
608       // opencl.spir.version named metadata.
609       // C++ is backwards compatible with OpenCL v2.0.
610       auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion;
611       llvm::Metadata *SPIRVerElts[] = {
612           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
613               Int32Ty, Version / 100)),
614           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
615               Int32Ty, (Version / 100 > 1) ? 0 : 2))};
616       llvm::NamedMDNode *SPIRVerMD =
617           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
618       llvm::LLVMContext &Ctx = TheModule.getContext();
619       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
620     }
621   }
622 
623   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
624     assert(PLevel < 3 && "Invalid PIC Level");
625     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
626     if (Context.getLangOpts().PIE)
627       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
628   }
629 
630   if (getCodeGenOpts().CodeModel.size() > 0) {
631     unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
632                   .Case("tiny", llvm::CodeModel::Tiny)
633                   .Case("small", llvm::CodeModel::Small)
634                   .Case("kernel", llvm::CodeModel::Kernel)
635                   .Case("medium", llvm::CodeModel::Medium)
636                   .Case("large", llvm::CodeModel::Large)
637                   .Default(~0u);
638     if (CM != ~0u) {
639       llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
640       getModule().setCodeModel(codeModel);
641     }
642   }
643 
644   if (CodeGenOpts.NoPLT)
645     getModule().setRtLibUseGOT();
646 
647   SimplifyPersonality();
648 
649   if (getCodeGenOpts().EmitDeclMetadata)
650     EmitDeclMetadata();
651 
652   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
653     EmitCoverageFile();
654 
655   if (CGDebugInfo *DI = getModuleDebugInfo())
656     DI->finalize();
657 
658   if (getCodeGenOpts().EmitVersionIdentMetadata)
659     EmitVersionIdentMetadata();
660 
661   if (!getCodeGenOpts().RecordCommandLine.empty())
662     EmitCommandLineMetadata();
663 
664   getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames);
665 
666   EmitBackendOptionsMetadata(getCodeGenOpts());
667 }
668 
669 void CodeGenModule::EmitOpenCLMetadata() {
670   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
671   // opencl.ocl.version named metadata node.
672   // C++ is backwards compatible with OpenCL v2.0.
673   // FIXME: We might need to add CXX version at some point too?
674   auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion;
675   llvm::Metadata *OCLVerElts[] = {
676       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
677           Int32Ty, Version / 100)),
678       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
679           Int32Ty, (Version % 100) / 10))};
680   llvm::NamedMDNode *OCLVerMD =
681       TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
682   llvm::LLVMContext &Ctx = TheModule.getContext();
683   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
684 }
685 
686 void CodeGenModule::EmitBackendOptionsMetadata(
687     const CodeGenOptions CodeGenOpts) {
688   switch (getTriple().getArch()) {
689   default:
690     break;
691   case llvm::Triple::riscv32:
692   case llvm::Triple::riscv64:
693     getModule().addModuleFlag(llvm::Module::Error, "SmallDataLimit",
694                               CodeGenOpts.SmallDataLimit);
695     break;
696   }
697 }
698 
699 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
700   // Make sure that this type is translated.
701   Types.UpdateCompletedType(TD);
702 }
703 
704 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
705   // Make sure that this type is translated.
706   Types.RefreshTypeCacheForClass(RD);
707 }
708 
709 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
710   if (!TBAA)
711     return nullptr;
712   return TBAA->getTypeInfo(QTy);
713 }
714 
715 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
716   if (!TBAA)
717     return TBAAAccessInfo();
718   if (getLangOpts().CUDAIsDevice) {
719     // As CUDA builtin surface/texture types are replaced, skip generating TBAA
720     // access info.
721     if (AccessType->isCUDADeviceBuiltinSurfaceType()) {
722       if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() !=
723           nullptr)
724         return TBAAAccessInfo();
725     } else if (AccessType->isCUDADeviceBuiltinTextureType()) {
726       if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() !=
727           nullptr)
728         return TBAAAccessInfo();
729     }
730   }
731   return TBAA->getAccessInfo(AccessType);
732 }
733 
734 TBAAAccessInfo
735 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
736   if (!TBAA)
737     return TBAAAccessInfo();
738   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
739 }
740 
741 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
742   if (!TBAA)
743     return nullptr;
744   return TBAA->getTBAAStructInfo(QTy);
745 }
746 
747 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
748   if (!TBAA)
749     return nullptr;
750   return TBAA->getBaseTypeInfo(QTy);
751 }
752 
753 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
754   if (!TBAA)
755     return nullptr;
756   return TBAA->getAccessTagInfo(Info);
757 }
758 
759 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
760                                                    TBAAAccessInfo TargetInfo) {
761   if (!TBAA)
762     return TBAAAccessInfo();
763   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
764 }
765 
766 TBAAAccessInfo
767 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
768                                                    TBAAAccessInfo InfoB) {
769   if (!TBAA)
770     return TBAAAccessInfo();
771   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
772 }
773 
774 TBAAAccessInfo
775 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
776                                               TBAAAccessInfo SrcInfo) {
777   if (!TBAA)
778     return TBAAAccessInfo();
779   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
780 }
781 
782 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
783                                                 TBAAAccessInfo TBAAInfo) {
784   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
785     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
786 }
787 
788 void CodeGenModule::DecorateInstructionWithInvariantGroup(
789     llvm::Instruction *I, const CXXRecordDecl *RD) {
790   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
791                  llvm::MDNode::get(getLLVMContext(), {}));
792 }
793 
794 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
795   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
796   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
797 }
798 
799 /// ErrorUnsupported - Print out an error that codegen doesn't support the
800 /// specified stmt yet.
801 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
802   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
803                                                "cannot compile this %0 yet");
804   std::string Msg = Type;
805   getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
806       << Msg << S->getSourceRange();
807 }
808 
809 /// ErrorUnsupported - Print out an error that codegen doesn't support the
810 /// specified decl yet.
811 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
812   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
813                                                "cannot compile this %0 yet");
814   std::string Msg = Type;
815   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
816 }
817 
818 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
819   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
820 }
821 
822 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
823                                         const NamedDecl *D) const {
824   if (GV->hasDLLImportStorageClass())
825     return;
826   // Internal definitions always have default visibility.
827   if (GV->hasLocalLinkage()) {
828     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
829     return;
830   }
831   if (!D)
832     return;
833   // Set visibility for definitions, and for declarations if requested globally
834   // or set explicitly.
835   LinkageInfo LV = D->getLinkageAndVisibility();
836   if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
837       !GV->isDeclarationForLinker())
838     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
839 }
840 
841 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
842                                  llvm::GlobalValue *GV) {
843   if (GV->hasLocalLinkage())
844     return true;
845 
846   if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
847     return true;
848 
849   // DLLImport explicitly marks the GV as external.
850   if (GV->hasDLLImportStorageClass())
851     return false;
852 
853   const llvm::Triple &TT = CGM.getTriple();
854   if (TT.isWindowsGNUEnvironment()) {
855     // In MinGW, variables without DLLImport can still be automatically
856     // imported from a DLL by the linker; don't mark variables that
857     // potentially could come from another DLL as DSO local.
858     if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
859         !GV->isThreadLocal())
860       return false;
861   }
862 
863   // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
864   // remain unresolved in the link, they can be resolved to zero, which is
865   // outside the current DSO.
866   if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
867     return false;
868 
869   // Every other GV is local on COFF.
870   // Make an exception for windows OS in the triple: Some firmware builds use
871   // *-win32-macho triples. This (accidentally?) produced windows relocations
872   // without GOT tables in older clang versions; Keep this behaviour.
873   // FIXME: even thread local variables?
874   if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
875     return true;
876 
877   // Only handle COFF and ELF for now.
878   if (!TT.isOSBinFormatELF())
879     return false;
880 
881   // If this is not an executable, don't assume anything is local.
882   const auto &CGOpts = CGM.getCodeGenOpts();
883   llvm::Reloc::Model RM = CGOpts.RelocationModel;
884   const auto &LOpts = CGM.getLangOpts();
885   if (RM != llvm::Reloc::Static && !LOpts.PIE)
886     return false;
887 
888   // A definition cannot be preempted from an executable.
889   if (!GV->isDeclarationForLinker())
890     return true;
891 
892   // Most PIC code sequences that assume that a symbol is local cannot produce a
893   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
894   // depended, it seems worth it to handle it here.
895   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
896     return false;
897 
898   // PPC has no copy relocations and cannot use a plt entry as a symbol address.
899   llvm::Triple::ArchType Arch = TT.getArch();
900   if (Arch == llvm::Triple::ppc || Arch == llvm::Triple::ppc64 ||
901       Arch == llvm::Triple::ppc64le)
902     return false;
903 
904   // If we can use copy relocations we can assume it is local.
905   if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
906     if (!Var->isThreadLocal() &&
907         (RM == llvm::Reloc::Static || CGOpts.PIECopyRelocations))
908       return true;
909 
910   // If we can use a plt entry as the symbol address we can assume it
911   // is local.
912   // FIXME: This should work for PIE, but the gold linker doesn't support it.
913   if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
914     return true;
915 
916   // Otherwise don't assume it is local.
917   return false;
918 }
919 
920 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
921   GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
922 }
923 
924 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
925                                           GlobalDecl GD) const {
926   const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
927   // C++ destructors have a few C++ ABI specific special cases.
928   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
929     getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
930     return;
931   }
932   setDLLImportDLLExport(GV, D);
933 }
934 
935 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
936                                           const NamedDecl *D) const {
937   if (D && D->isExternallyVisible()) {
938     if (D->hasAttr<DLLImportAttr>())
939       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
940     else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker())
941       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
942   }
943 }
944 
945 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
946                                     GlobalDecl GD) const {
947   setDLLImportDLLExport(GV, GD);
948   setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl()));
949 }
950 
951 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
952                                     const NamedDecl *D) const {
953   setDLLImportDLLExport(GV, D);
954   setGVPropertiesAux(GV, D);
955 }
956 
957 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV,
958                                        const NamedDecl *D) const {
959   setGlobalVisibility(GV, D);
960   setDSOLocal(GV);
961   GV->setPartition(CodeGenOpts.SymbolPartition);
962 }
963 
964 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
965   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
966       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
967       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
968       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
969       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
970 }
971 
972 llvm::GlobalVariable::ThreadLocalMode
973 CodeGenModule::GetDefaultLLVMTLSModel() const {
974   switch (CodeGenOpts.getDefaultTLSModel()) {
975   case CodeGenOptions::GeneralDynamicTLSModel:
976     return llvm::GlobalVariable::GeneralDynamicTLSModel;
977   case CodeGenOptions::LocalDynamicTLSModel:
978     return llvm::GlobalVariable::LocalDynamicTLSModel;
979   case CodeGenOptions::InitialExecTLSModel:
980     return llvm::GlobalVariable::InitialExecTLSModel;
981   case CodeGenOptions::LocalExecTLSModel:
982     return llvm::GlobalVariable::LocalExecTLSModel;
983   }
984   llvm_unreachable("Invalid TLS model!");
985 }
986 
987 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
988   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
989 
990   llvm::GlobalValue::ThreadLocalMode TLM;
991   TLM = GetDefaultLLVMTLSModel();
992 
993   // Override the TLS model if it is explicitly specified.
994   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
995     TLM = GetLLVMTLSModel(Attr->getModel());
996   }
997 
998   GV->setThreadLocalMode(TLM);
999 }
1000 
1001 static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
1002                                           StringRef Name) {
1003   const TargetInfo &Target = CGM.getTarget();
1004   return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
1005 }
1006 
1007 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
1008                                                  const CPUSpecificAttr *Attr,
1009                                                  unsigned CPUIndex,
1010                                                  raw_ostream &Out) {
1011   // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
1012   // supported.
1013   if (Attr)
1014     Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
1015   else if (CGM.getTarget().supportsIFunc())
1016     Out << ".resolver";
1017 }
1018 
1019 static void AppendTargetMangling(const CodeGenModule &CGM,
1020                                  const TargetAttr *Attr, raw_ostream &Out) {
1021   if (Attr->isDefaultVersion())
1022     return;
1023 
1024   Out << '.';
1025   const TargetInfo &Target = CGM.getTarget();
1026   ParsedTargetAttr Info =
1027       Attr->parse([&Target](StringRef LHS, StringRef RHS) {
1028         // Multiversioning doesn't allow "no-${feature}", so we can
1029         // only have "+" prefixes here.
1030         assert(LHS.startswith("+") && RHS.startswith("+") &&
1031                "Features should always have a prefix.");
1032         return Target.multiVersionSortPriority(LHS.substr(1)) >
1033                Target.multiVersionSortPriority(RHS.substr(1));
1034       });
1035 
1036   bool IsFirst = true;
1037 
1038   if (!Info.Architecture.empty()) {
1039     IsFirst = false;
1040     Out << "arch_" << Info.Architecture;
1041   }
1042 
1043   for (StringRef Feat : Info.Features) {
1044     if (!IsFirst)
1045       Out << '_';
1046     IsFirst = false;
1047     Out << Feat.substr(1);
1048   }
1049 }
1050 
1051 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD,
1052                                       const NamedDecl *ND,
1053                                       bool OmitMultiVersionMangling = false) {
1054   SmallString<256> Buffer;
1055   llvm::raw_svector_ostream Out(Buffer);
1056   MangleContext &MC = CGM.getCXXABI().getMangleContext();
1057   if (MC.shouldMangleDeclName(ND))
1058     MC.mangleName(GD.getWithDecl(ND), Out);
1059   else {
1060     IdentifierInfo *II = ND->getIdentifier();
1061     assert(II && "Attempt to mangle unnamed decl.");
1062     const auto *FD = dyn_cast<FunctionDecl>(ND);
1063 
1064     if (FD &&
1065         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
1066       Out << "__regcall3__" << II->getName();
1067     } else if (FD && FD->hasAttr<CUDAGlobalAttr>() &&
1068                GD.getKernelReferenceKind() == KernelReferenceKind::Stub) {
1069       Out << "__device_stub__" << II->getName();
1070     } else {
1071       Out << II->getName();
1072     }
1073   }
1074 
1075   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1076     if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
1077       switch (FD->getMultiVersionKind()) {
1078       case MultiVersionKind::CPUDispatch:
1079       case MultiVersionKind::CPUSpecific:
1080         AppendCPUSpecificCPUDispatchMangling(CGM,
1081                                              FD->getAttr<CPUSpecificAttr>(),
1082                                              GD.getMultiVersionIndex(), Out);
1083         break;
1084       case MultiVersionKind::Target:
1085         AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
1086         break;
1087       case MultiVersionKind::None:
1088         llvm_unreachable("None multiversion type isn't valid here");
1089       }
1090     }
1091 
1092   return std::string(Out.str());
1093 }
1094 
1095 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
1096                                             const FunctionDecl *FD) {
1097   if (!FD->isMultiVersion())
1098     return;
1099 
1100   // Get the name of what this would be without the 'target' attribute.  This
1101   // allows us to lookup the version that was emitted when this wasn't a
1102   // multiversion function.
1103   std::string NonTargetName =
1104       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1105   GlobalDecl OtherGD;
1106   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1107     assert(OtherGD.getCanonicalDecl()
1108                .getDecl()
1109                ->getAsFunction()
1110                ->isMultiVersion() &&
1111            "Other GD should now be a multiversioned function");
1112     // OtherFD is the version of this function that was mangled BEFORE
1113     // becoming a MultiVersion function.  It potentially needs to be updated.
1114     const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1115                                       .getDecl()
1116                                       ->getAsFunction()
1117                                       ->getMostRecentDecl();
1118     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1119     // This is so that if the initial version was already the 'default'
1120     // version, we don't try to update it.
1121     if (OtherName != NonTargetName) {
1122       // Remove instead of erase, since others may have stored the StringRef
1123       // to this.
1124       const auto ExistingRecord = Manglings.find(NonTargetName);
1125       if (ExistingRecord != std::end(Manglings))
1126         Manglings.remove(&(*ExistingRecord));
1127       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1128       MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first();
1129       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
1130         Entry->setName(OtherName);
1131     }
1132   }
1133 }
1134 
1135 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
1136   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
1137 
1138   // Some ABIs don't have constructor variants.  Make sure that base and
1139   // complete constructors get mangled the same.
1140   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
1141     if (!getTarget().getCXXABI().hasConstructorVariants()) {
1142       CXXCtorType OrigCtorType = GD.getCtorType();
1143       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
1144       if (OrigCtorType == Ctor_Base)
1145         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
1146     }
1147   }
1148 
1149   auto FoundName = MangledDeclNames.find(CanonicalGD);
1150   if (FoundName != MangledDeclNames.end())
1151     return FoundName->second;
1152 
1153   // Keep the first result in the case of a mangling collision.
1154   const auto *ND = cast<NamedDecl>(GD.getDecl());
1155   std::string MangledName = getMangledNameImpl(*this, GD, ND);
1156 
1157   // Ensure either we have different ABIs between host and device compilations,
1158   // says host compilation following MSVC ABI but device compilation follows
1159   // Itanium C++ ABI or, if they follow the same ABI, kernel names after
1160   // mangling should be the same after name stubbing. The later checking is
1161   // very important as the device kernel name being mangled in host-compilation
1162   // is used to resolve the device binaries to be executed. Inconsistent naming
1163   // result in undefined behavior. Even though we cannot check that naming
1164   // directly between host- and device-compilations, the host- and
1165   // device-mangling in host compilation could help catching certain ones.
1166   assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() ||
1167          getLangOpts().CUDAIsDevice ||
1168          (getContext().getAuxTargetInfo() &&
1169           (getContext().getAuxTargetInfo()->getCXXABI() !=
1170            getContext().getTargetInfo().getCXXABI())) ||
1171          getCUDARuntime().getDeviceSideName(ND) ==
1172              getMangledNameImpl(
1173                  *this,
1174                  GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel),
1175                  ND));
1176 
1177   auto Result = Manglings.insert(std::make_pair(MangledName, GD));
1178   return MangledDeclNames[CanonicalGD] = Result.first->first();
1179 }
1180 
1181 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
1182                                              const BlockDecl *BD) {
1183   MangleContext &MangleCtx = getCXXABI().getMangleContext();
1184   const Decl *D = GD.getDecl();
1185 
1186   SmallString<256> Buffer;
1187   llvm::raw_svector_ostream Out(Buffer);
1188   if (!D)
1189     MangleCtx.mangleGlobalBlock(BD,
1190       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
1191   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
1192     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
1193   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
1194     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
1195   else
1196     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
1197 
1198   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
1199   return Result.first->first();
1200 }
1201 
1202 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
1203   return getModule().getNamedValue(Name);
1204 }
1205 
1206 /// AddGlobalCtor - Add a function to the list that will be called before
1207 /// main() runs.
1208 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
1209                                   llvm::Constant *AssociatedData) {
1210   // FIXME: Type coercion of void()* types.
1211   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
1212 }
1213 
1214 /// AddGlobalDtor - Add a function to the list that will be called
1215 /// when the module is unloaded.
1216 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) {
1217   if (CodeGenOpts.RegisterGlobalDtorsWithAtExit) {
1218     if (getCXXABI().useSinitAndSterm())
1219       llvm::report_fatal_error(
1220           "register global dtors with atexit() is not supported yet");
1221     DtorsUsingAtExit[Priority].push_back(Dtor);
1222     return;
1223   }
1224 
1225   // FIXME: Type coercion of void()* types.
1226   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
1227 }
1228 
1229 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
1230   if (Fns.empty()) return;
1231 
1232   // Ctor function type is void()*.
1233   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
1234   llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy,
1235       TheModule.getDataLayout().getProgramAddressSpace());
1236 
1237   // Get the type of a ctor entry, { i32, void ()*, i8* }.
1238   llvm::StructType *CtorStructTy = llvm::StructType::get(
1239       Int32Ty, CtorPFTy, VoidPtrTy);
1240 
1241   // Construct the constructor and destructor arrays.
1242   ConstantInitBuilder builder(*this);
1243   auto ctors = builder.beginArray(CtorStructTy);
1244   for (const auto &I : Fns) {
1245     auto ctor = ctors.beginStruct(CtorStructTy);
1246     ctor.addInt(Int32Ty, I.Priority);
1247     ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
1248     if (I.AssociatedData)
1249       ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
1250     else
1251       ctor.addNullPointer(VoidPtrTy);
1252     ctor.finishAndAddTo(ctors);
1253   }
1254 
1255   auto list =
1256     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
1257                                 /*constant*/ false,
1258                                 llvm::GlobalValue::AppendingLinkage);
1259 
1260   // The LTO linker doesn't seem to like it when we set an alignment
1261   // on appending variables.  Take it off as a workaround.
1262   list->setAlignment(llvm::None);
1263 
1264   Fns.clear();
1265 }
1266 
1267 llvm::GlobalValue::LinkageTypes
1268 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
1269   const auto *D = cast<FunctionDecl>(GD.getDecl());
1270 
1271   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
1272 
1273   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
1274     return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
1275 
1276   if (isa<CXXConstructorDecl>(D) &&
1277       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
1278       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1279     // Our approach to inheriting constructors is fundamentally different from
1280     // that used by the MS ABI, so keep our inheriting constructor thunks
1281     // internal rather than trying to pick an unambiguous mangling for them.
1282     return llvm::GlobalValue::InternalLinkage;
1283   }
1284 
1285   return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false);
1286 }
1287 
1288 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1289   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1290   if (!MDS) return nullptr;
1291 
1292   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1293 }
1294 
1295 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
1296                                               const CGFunctionInfo &Info,
1297                                               llvm::Function *F) {
1298   unsigned CallingConv;
1299   llvm::AttributeList PAL;
1300   ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, false);
1301   F->setAttributes(PAL);
1302   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
1303 }
1304 
1305 static void removeImageAccessQualifier(std::string& TyName) {
1306   std::string ReadOnlyQual("__read_only");
1307   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
1308   if (ReadOnlyPos != std::string::npos)
1309     // "+ 1" for the space after access qualifier.
1310     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
1311   else {
1312     std::string WriteOnlyQual("__write_only");
1313     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
1314     if (WriteOnlyPos != std::string::npos)
1315       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
1316     else {
1317       std::string ReadWriteQual("__read_write");
1318       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
1319       if (ReadWritePos != std::string::npos)
1320         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
1321     }
1322   }
1323 }
1324 
1325 // Returns the address space id that should be produced to the
1326 // kernel_arg_addr_space metadata. This is always fixed to the ids
1327 // as specified in the SPIR 2.0 specification in order to differentiate
1328 // for example in clGetKernelArgInfo() implementation between the address
1329 // spaces with targets without unique mapping to the OpenCL address spaces
1330 // (basically all single AS CPUs).
1331 static unsigned ArgInfoAddressSpace(LangAS AS) {
1332   switch (AS) {
1333   case LangAS::opencl_global:
1334     return 1;
1335   case LangAS::opencl_constant:
1336     return 2;
1337   case LangAS::opencl_local:
1338     return 3;
1339   case LangAS::opencl_generic:
1340     return 4; // Not in SPIR 2.0 specs.
1341   case LangAS::opencl_global_device:
1342     return 5;
1343   case LangAS::opencl_global_host:
1344     return 6;
1345   default:
1346     return 0; // Assume private.
1347   }
1348 }
1349 
1350 void CodeGenModule::GenOpenCLArgMetadata(llvm::Function *Fn,
1351                                          const FunctionDecl *FD,
1352                                          CodeGenFunction *CGF) {
1353   assert(((FD && CGF) || (!FD && !CGF)) &&
1354          "Incorrect use - FD and CGF should either be both null or not!");
1355   // Create MDNodes that represent the kernel arg metadata.
1356   // Each MDNode is a list in the form of "key", N number of values which is
1357   // the same number of values as their are kernel arguments.
1358 
1359   const PrintingPolicy &Policy = Context.getPrintingPolicy();
1360 
1361   // MDNode for the kernel argument address space qualifiers.
1362   SmallVector<llvm::Metadata *, 8> addressQuals;
1363 
1364   // MDNode for the kernel argument access qualifiers (images only).
1365   SmallVector<llvm::Metadata *, 8> accessQuals;
1366 
1367   // MDNode for the kernel argument type names.
1368   SmallVector<llvm::Metadata *, 8> argTypeNames;
1369 
1370   // MDNode for the kernel argument base type names.
1371   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
1372 
1373   // MDNode for the kernel argument type qualifiers.
1374   SmallVector<llvm::Metadata *, 8> argTypeQuals;
1375 
1376   // MDNode for the kernel argument names.
1377   SmallVector<llvm::Metadata *, 8> argNames;
1378 
1379   if (FD && CGF)
1380     for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
1381       const ParmVarDecl *parm = FD->getParamDecl(i);
1382       QualType ty = parm->getType();
1383       std::string typeQuals;
1384 
1385       if (ty->isPointerType()) {
1386         QualType pointeeTy = ty->getPointeeType();
1387 
1388         // Get address qualifier.
1389         addressQuals.push_back(
1390             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(
1391                 ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
1392 
1393         // Get argument type name.
1394         std::string typeName =
1395             pointeeTy.getUnqualifiedType().getAsString(Policy) + "*";
1396 
1397         // Turn "unsigned type" to "utype"
1398         std::string::size_type pos = typeName.find("unsigned");
1399         if (pointeeTy.isCanonical() && pos != std::string::npos)
1400           typeName.erase(pos + 1, 8);
1401 
1402         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1403 
1404         std::string baseTypeName =
1405             pointeeTy.getUnqualifiedType().getCanonicalType().getAsString(
1406                 Policy) +
1407             "*";
1408 
1409         // Turn "unsigned type" to "utype"
1410         pos = baseTypeName.find("unsigned");
1411         if (pos != std::string::npos)
1412           baseTypeName.erase(pos + 1, 8);
1413 
1414         argBaseTypeNames.push_back(
1415             llvm::MDString::get(VMContext, baseTypeName));
1416 
1417         // Get argument type qualifiers:
1418         if (ty.isRestrictQualified())
1419           typeQuals = "restrict";
1420         if (pointeeTy.isConstQualified() ||
1421             (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
1422           typeQuals += typeQuals.empty() ? "const" : " const";
1423         if (pointeeTy.isVolatileQualified())
1424           typeQuals += typeQuals.empty() ? "volatile" : " volatile";
1425       } else {
1426         uint32_t AddrSpc = 0;
1427         bool isPipe = ty->isPipeType();
1428         if (ty->isImageType() || isPipe)
1429           AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
1430 
1431         addressQuals.push_back(
1432             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc)));
1433 
1434         // Get argument type name.
1435         std::string typeName;
1436         if (isPipe)
1437           typeName = ty.getCanonicalType()
1438                          ->castAs<PipeType>()
1439                          ->getElementType()
1440                          .getAsString(Policy);
1441         else
1442           typeName = ty.getUnqualifiedType().getAsString(Policy);
1443 
1444         // Turn "unsigned type" to "utype"
1445         std::string::size_type pos = typeName.find("unsigned");
1446         if (ty.isCanonical() && pos != std::string::npos)
1447           typeName.erase(pos + 1, 8);
1448 
1449         std::string baseTypeName;
1450         if (isPipe)
1451           baseTypeName = ty.getCanonicalType()
1452                              ->castAs<PipeType>()
1453                              ->getElementType()
1454                              .getCanonicalType()
1455                              .getAsString(Policy);
1456         else
1457           baseTypeName =
1458               ty.getUnqualifiedType().getCanonicalType().getAsString(Policy);
1459 
1460         // Remove access qualifiers on images
1461         // (as they are inseparable from type in clang implementation,
1462         // but OpenCL spec provides a special query to get access qualifier
1463         // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
1464         if (ty->isImageType()) {
1465           removeImageAccessQualifier(typeName);
1466           removeImageAccessQualifier(baseTypeName);
1467         }
1468 
1469         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1470 
1471         // Turn "unsigned type" to "utype"
1472         pos = baseTypeName.find("unsigned");
1473         if (pos != std::string::npos)
1474           baseTypeName.erase(pos + 1, 8);
1475 
1476         argBaseTypeNames.push_back(
1477             llvm::MDString::get(VMContext, baseTypeName));
1478 
1479         if (isPipe)
1480           typeQuals = "pipe";
1481       }
1482 
1483       argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals));
1484 
1485       // Get image and pipe access qualifier:
1486       if (ty->isImageType() || ty->isPipeType()) {
1487         const Decl *PDecl = parm;
1488         if (auto *TD = dyn_cast<TypedefType>(ty))
1489           PDecl = TD->getDecl();
1490         const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
1491         if (A && A->isWriteOnly())
1492           accessQuals.push_back(llvm::MDString::get(VMContext, "write_only"));
1493         else if (A && A->isReadWrite())
1494           accessQuals.push_back(llvm::MDString::get(VMContext, "read_write"));
1495         else
1496           accessQuals.push_back(llvm::MDString::get(VMContext, "read_only"));
1497       } else
1498         accessQuals.push_back(llvm::MDString::get(VMContext, "none"));
1499 
1500       // Get argument name.
1501       argNames.push_back(llvm::MDString::get(VMContext, parm->getName()));
1502     }
1503 
1504   Fn->setMetadata("kernel_arg_addr_space",
1505                   llvm::MDNode::get(VMContext, addressQuals));
1506   Fn->setMetadata("kernel_arg_access_qual",
1507                   llvm::MDNode::get(VMContext, accessQuals));
1508   Fn->setMetadata("kernel_arg_type",
1509                   llvm::MDNode::get(VMContext, argTypeNames));
1510   Fn->setMetadata("kernel_arg_base_type",
1511                   llvm::MDNode::get(VMContext, argBaseTypeNames));
1512   Fn->setMetadata("kernel_arg_type_qual",
1513                   llvm::MDNode::get(VMContext, argTypeQuals));
1514   if (getCodeGenOpts().EmitOpenCLArgMetadata)
1515     Fn->setMetadata("kernel_arg_name",
1516                     llvm::MDNode::get(VMContext, argNames));
1517 }
1518 
1519 /// Determines whether the language options require us to model
1520 /// unwind exceptions.  We treat -fexceptions as mandating this
1521 /// except under the fragile ObjC ABI with only ObjC exceptions
1522 /// enabled.  This means, for example, that C with -fexceptions
1523 /// enables this.
1524 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
1525   // If exceptions are completely disabled, obviously this is false.
1526   if (!LangOpts.Exceptions) return false;
1527 
1528   // If C++ exceptions are enabled, this is true.
1529   if (LangOpts.CXXExceptions) return true;
1530 
1531   // If ObjC exceptions are enabled, this depends on the ABI.
1532   if (LangOpts.ObjCExceptions) {
1533     return LangOpts.ObjCRuntime.hasUnwindExceptions();
1534   }
1535 
1536   return true;
1537 }
1538 
1539 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
1540                                                       const CXXMethodDecl *MD) {
1541   // Check that the type metadata can ever actually be used by a call.
1542   if (!CGM.getCodeGenOpts().LTOUnit ||
1543       !CGM.HasHiddenLTOVisibility(MD->getParent()))
1544     return false;
1545 
1546   // Only functions whose address can be taken with a member function pointer
1547   // need this sort of type metadata.
1548   return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) &&
1549          !isa<CXXDestructorDecl>(MD);
1550 }
1551 
1552 std::vector<const CXXRecordDecl *>
1553 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
1554   llvm::SetVector<const CXXRecordDecl *> MostBases;
1555 
1556   std::function<void (const CXXRecordDecl *)> CollectMostBases;
1557   CollectMostBases = [&](const CXXRecordDecl *RD) {
1558     if (RD->getNumBases() == 0)
1559       MostBases.insert(RD);
1560     for (const CXXBaseSpecifier &B : RD->bases())
1561       CollectMostBases(B.getType()->getAsCXXRecordDecl());
1562   };
1563   CollectMostBases(RD);
1564   return MostBases.takeVector();
1565 }
1566 
1567 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
1568                                                            llvm::Function *F) {
1569   llvm::AttrBuilder B;
1570 
1571   if (CodeGenOpts.UnwindTables)
1572     B.addAttribute(llvm::Attribute::UWTable);
1573 
1574   if (CodeGenOpts.StackClashProtector)
1575     B.addAttribute("probe-stack", "inline-asm");
1576 
1577   if (!hasUnwindExceptions(LangOpts))
1578     B.addAttribute(llvm::Attribute::NoUnwind);
1579 
1580   if (!D || !D->hasAttr<NoStackProtectorAttr>()) {
1581     if (LangOpts.getStackProtector() == LangOptions::SSPOn)
1582       B.addAttribute(llvm::Attribute::StackProtect);
1583     else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
1584       B.addAttribute(llvm::Attribute::StackProtectStrong);
1585     else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
1586       B.addAttribute(llvm::Attribute::StackProtectReq);
1587   }
1588 
1589   if (!D) {
1590     // If we don't have a declaration to control inlining, the function isn't
1591     // explicitly marked as alwaysinline for semantic reasons, and inlining is
1592     // disabled, mark the function as noinline.
1593     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1594         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
1595       B.addAttribute(llvm::Attribute::NoInline);
1596 
1597     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1598     return;
1599   }
1600 
1601   // Track whether we need to add the optnone LLVM attribute,
1602   // starting with the default for this optimization level.
1603   bool ShouldAddOptNone =
1604       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
1605   // We can't add optnone in the following cases, it won't pass the verifier.
1606   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
1607   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
1608 
1609   // Add optnone, but do so only if the function isn't always_inline.
1610   if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) &&
1611       !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1612     B.addAttribute(llvm::Attribute::OptimizeNone);
1613 
1614     // OptimizeNone implies noinline; we should not be inlining such functions.
1615     B.addAttribute(llvm::Attribute::NoInline);
1616 
1617     // We still need to handle naked functions even though optnone subsumes
1618     // much of their semantics.
1619     if (D->hasAttr<NakedAttr>())
1620       B.addAttribute(llvm::Attribute::Naked);
1621 
1622     // OptimizeNone wins over OptimizeForSize and MinSize.
1623     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
1624     F->removeFnAttr(llvm::Attribute::MinSize);
1625   } else if (D->hasAttr<NakedAttr>()) {
1626     // Naked implies noinline: we should not be inlining such functions.
1627     B.addAttribute(llvm::Attribute::Naked);
1628     B.addAttribute(llvm::Attribute::NoInline);
1629   } else if (D->hasAttr<NoDuplicateAttr>()) {
1630     B.addAttribute(llvm::Attribute::NoDuplicate);
1631   } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1632     // Add noinline if the function isn't always_inline.
1633     B.addAttribute(llvm::Attribute::NoInline);
1634   } else if (D->hasAttr<AlwaysInlineAttr>() &&
1635              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
1636     // (noinline wins over always_inline, and we can't specify both in IR)
1637     B.addAttribute(llvm::Attribute::AlwaysInline);
1638   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
1639     // If we're not inlining, then force everything that isn't always_inline to
1640     // carry an explicit noinline attribute.
1641     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
1642       B.addAttribute(llvm::Attribute::NoInline);
1643   } else {
1644     // Otherwise, propagate the inline hint attribute and potentially use its
1645     // absence to mark things as noinline.
1646     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1647       // Search function and template pattern redeclarations for inline.
1648       auto CheckForInline = [](const FunctionDecl *FD) {
1649         auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
1650           return Redecl->isInlineSpecified();
1651         };
1652         if (any_of(FD->redecls(), CheckRedeclForInline))
1653           return true;
1654         const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
1655         if (!Pattern)
1656           return false;
1657         return any_of(Pattern->redecls(), CheckRedeclForInline);
1658       };
1659       if (CheckForInline(FD)) {
1660         B.addAttribute(llvm::Attribute::InlineHint);
1661       } else if (CodeGenOpts.getInlining() ==
1662                      CodeGenOptions::OnlyHintInlining &&
1663                  !FD->isInlined() &&
1664                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1665         B.addAttribute(llvm::Attribute::NoInline);
1666       }
1667     }
1668   }
1669 
1670   // Add other optimization related attributes if we are optimizing this
1671   // function.
1672   if (!D->hasAttr<OptimizeNoneAttr>()) {
1673     if (D->hasAttr<ColdAttr>()) {
1674       if (!ShouldAddOptNone)
1675         B.addAttribute(llvm::Attribute::OptimizeForSize);
1676       B.addAttribute(llvm::Attribute::Cold);
1677     }
1678 
1679     if (D->hasAttr<MinSizeAttr>())
1680       B.addAttribute(llvm::Attribute::MinSize);
1681   }
1682 
1683   F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1684 
1685   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
1686   if (alignment)
1687     F->setAlignment(llvm::Align(alignment));
1688 
1689   if (!D->hasAttr<AlignedAttr>())
1690     if (LangOpts.FunctionAlignment)
1691       F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment));
1692 
1693   // Some C++ ABIs require 2-byte alignment for member functions, in order to
1694   // reserve a bit for differentiating between virtual and non-virtual member
1695   // functions. If the current target's C++ ABI requires this and this is a
1696   // member function, set its alignment accordingly.
1697   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
1698     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
1699       F->setAlignment(llvm::Align(2));
1700   }
1701 
1702   // In the cross-dso CFI mode with canonical jump tables, we want !type
1703   // attributes on definitions only.
1704   if (CodeGenOpts.SanitizeCfiCrossDso &&
1705       CodeGenOpts.SanitizeCfiCanonicalJumpTables) {
1706     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1707       // Skip available_externally functions. They won't be codegen'ed in the
1708       // current module anyway.
1709       if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally)
1710         CreateFunctionTypeMetadataForIcall(FD, F);
1711     }
1712   }
1713 
1714   // Emit type metadata on member functions for member function pointer checks.
1715   // These are only ever necessary on definitions; we're guaranteed that the
1716   // definition will be present in the LTO unit as a result of LTO visibility.
1717   auto *MD = dyn_cast<CXXMethodDecl>(D);
1718   if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
1719     for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
1720       llvm::Metadata *Id =
1721           CreateMetadataIdentifierForType(Context.getMemberPointerType(
1722               MD->getType(), Context.getRecordType(Base).getTypePtr()));
1723       F->addTypeMetadata(0, Id);
1724     }
1725   }
1726 }
1727 
1728 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
1729   const Decl *D = GD.getDecl();
1730   if (dyn_cast_or_null<NamedDecl>(D))
1731     setGVProperties(GV, GD);
1732   else
1733     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1734 
1735   if (D && D->hasAttr<UsedAttr>())
1736     addUsedGlobal(GV);
1737 
1738   if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) {
1739     const auto *VD = cast<VarDecl>(D);
1740     if (VD->getType().isConstQualified() &&
1741         VD->getStorageDuration() == SD_Static)
1742       addUsedGlobal(GV);
1743   }
1744 }
1745 
1746 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
1747                                                 llvm::AttrBuilder &Attrs) {
1748   // Add target-cpu and target-features attributes to functions. If
1749   // we have a decl for the function and it has a target attribute then
1750   // parse that and add it to the feature set.
1751   StringRef TargetCPU = getTarget().getTargetOpts().CPU;
1752   StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU;
1753   std::vector<std::string> Features;
1754   const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
1755   FD = FD ? FD->getMostRecentDecl() : FD;
1756   const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
1757   const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
1758   bool AddedAttr = false;
1759   if (TD || SD) {
1760     llvm::StringMap<bool> FeatureMap;
1761     getContext().getFunctionFeatureMap(FeatureMap, GD);
1762 
1763     // Produce the canonical string for this set of features.
1764     for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
1765       Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
1766 
1767     // Now add the target-cpu and target-features to the function.
1768     // While we populated the feature map above, we still need to
1769     // get and parse the target attribute so we can get the cpu for
1770     // the function.
1771     if (TD) {
1772       ParsedTargetAttr ParsedAttr = TD->parse();
1773       if (ParsedAttr.Architecture != "" &&
1774           getTarget().isValidCPUName(ParsedAttr.Architecture))
1775         TargetCPU = ParsedAttr.Architecture;
1776     }
1777   } else {
1778     // Otherwise just add the existing target cpu and target features to the
1779     // function.
1780     Features = getTarget().getTargetOpts().Features;
1781   }
1782 
1783   if (TargetCPU != "") {
1784     Attrs.addAttribute("target-cpu", TargetCPU);
1785     AddedAttr = true;
1786   }
1787   if (TuneCPU != "") {
1788     Attrs.addAttribute("tune-cpu", TuneCPU);
1789     AddedAttr = true;
1790   }
1791   if (!Features.empty()) {
1792     llvm::sort(Features);
1793     Attrs.addAttribute("target-features", llvm::join(Features, ","));
1794     AddedAttr = true;
1795   }
1796 
1797   return AddedAttr;
1798 }
1799 
1800 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
1801                                           llvm::GlobalObject *GO) {
1802   const Decl *D = GD.getDecl();
1803   SetCommonAttributes(GD, GO);
1804 
1805   if (D) {
1806     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
1807       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
1808         GV->addAttribute("bss-section", SA->getName());
1809       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
1810         GV->addAttribute("data-section", SA->getName());
1811       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
1812         GV->addAttribute("rodata-section", SA->getName());
1813       if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>())
1814         GV->addAttribute("relro-section", SA->getName());
1815     }
1816 
1817     if (auto *F = dyn_cast<llvm::Function>(GO)) {
1818       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
1819         if (!D->getAttr<SectionAttr>())
1820           F->addFnAttr("implicit-section-name", SA->getName());
1821 
1822       llvm::AttrBuilder Attrs;
1823       if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
1824         // We know that GetCPUAndFeaturesAttributes will always have the
1825         // newest set, since it has the newest possible FunctionDecl, so the
1826         // new ones should replace the old.
1827         F->removeFnAttr("target-cpu");
1828         F->removeFnAttr("target-features");
1829         F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs);
1830       }
1831     }
1832 
1833     if (const auto *CSA = D->getAttr<CodeSegAttr>())
1834       GO->setSection(CSA->getName());
1835     else if (const auto *SA = D->getAttr<SectionAttr>())
1836       GO->setSection(SA->getName());
1837   }
1838 
1839   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
1840 }
1841 
1842 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
1843                                                   llvm::Function *F,
1844                                                   const CGFunctionInfo &FI) {
1845   const Decl *D = GD.getDecl();
1846   SetLLVMFunctionAttributes(GD, FI, F);
1847   SetLLVMFunctionAttributesForDefinition(D, F);
1848 
1849   F->setLinkage(llvm::Function::InternalLinkage);
1850 
1851   setNonAliasAttributes(GD, F);
1852 }
1853 
1854 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
1855   // Set linkage and visibility in case we never see a definition.
1856   LinkageInfo LV = ND->getLinkageAndVisibility();
1857   // Don't set internal linkage on declarations.
1858   // "extern_weak" is overloaded in LLVM; we probably should have
1859   // separate linkage types for this.
1860   if (isExternallyVisible(LV.getLinkage()) &&
1861       (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
1862     GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1863 }
1864 
1865 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
1866                                                        llvm::Function *F) {
1867   // Only if we are checking indirect calls.
1868   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
1869     return;
1870 
1871   // Non-static class methods are handled via vtable or member function pointer
1872   // checks elsewhere.
1873   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
1874     return;
1875 
1876   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
1877   F->addTypeMetadata(0, MD);
1878   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
1879 
1880   // Emit a hash-based bit set entry for cross-DSO calls.
1881   if (CodeGenOpts.SanitizeCfiCrossDso)
1882     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
1883       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
1884 }
1885 
1886 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
1887                                           bool IsIncompleteFunction,
1888                                           bool IsThunk) {
1889 
1890   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
1891     // If this is an intrinsic function, set the function's attributes
1892     // to the intrinsic's attributes.
1893     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
1894     return;
1895   }
1896 
1897   const auto *FD = cast<FunctionDecl>(GD.getDecl());
1898 
1899   if (!IsIncompleteFunction)
1900     SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F);
1901 
1902   // Add the Returned attribute for "this", except for iOS 5 and earlier
1903   // where substantial code, including the libstdc++ dylib, was compiled with
1904   // GCC and does not actually return "this".
1905   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
1906       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
1907     assert(!F->arg_empty() &&
1908            F->arg_begin()->getType()
1909              ->canLosslesslyBitCastTo(F->getReturnType()) &&
1910            "unexpected this return");
1911     F->addAttribute(1, llvm::Attribute::Returned);
1912   }
1913 
1914   // Only a few attributes are set on declarations; these may later be
1915   // overridden by a definition.
1916 
1917   setLinkageForGV(F, FD);
1918   setGVProperties(F, FD);
1919 
1920   // Setup target-specific attributes.
1921   if (!IsIncompleteFunction && F->isDeclaration())
1922     getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
1923 
1924   if (const auto *CSA = FD->getAttr<CodeSegAttr>())
1925     F->setSection(CSA->getName());
1926   else if (const auto *SA = FD->getAttr<SectionAttr>())
1927      F->setSection(SA->getName());
1928 
1929   // If we plan on emitting this inline builtin, we can't treat it as a builtin.
1930   if (FD->isInlineBuiltinDeclaration()) {
1931     const FunctionDecl *FDBody;
1932     bool HasBody = FD->hasBody(FDBody);
1933     (void)HasBody;
1934     assert(HasBody && "Inline builtin declarations should always have an "
1935                       "available body!");
1936     if (shouldEmitFunction(FDBody))
1937       F->addAttribute(llvm::AttributeList::FunctionIndex,
1938                       llvm::Attribute::NoBuiltin);
1939   }
1940 
1941   if (FD->isReplaceableGlobalAllocationFunction()) {
1942     // A replaceable global allocation function does not act like a builtin by
1943     // default, only if it is invoked by a new-expression or delete-expression.
1944     F->addAttribute(llvm::AttributeList::FunctionIndex,
1945                     llvm::Attribute::NoBuiltin);
1946   }
1947 
1948   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
1949     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1950   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1951     if (MD->isVirtual())
1952       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1953 
1954   // Don't emit entries for function declarations in the cross-DSO mode. This
1955   // is handled with better precision by the receiving DSO. But if jump tables
1956   // are non-canonical then we need type metadata in order to produce the local
1957   // jump table.
1958   if (!CodeGenOpts.SanitizeCfiCrossDso ||
1959       !CodeGenOpts.SanitizeCfiCanonicalJumpTables)
1960     CreateFunctionTypeMetadataForIcall(FD, F);
1961 
1962   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
1963     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
1964 
1965   if (const auto *CB = FD->getAttr<CallbackAttr>()) {
1966     // Annotate the callback behavior as metadata:
1967     //  - The callback callee (as argument number).
1968     //  - The callback payloads (as argument numbers).
1969     llvm::LLVMContext &Ctx = F->getContext();
1970     llvm::MDBuilder MDB(Ctx);
1971 
1972     // The payload indices are all but the first one in the encoding. The first
1973     // identifies the callback callee.
1974     int CalleeIdx = *CB->encoding_begin();
1975     ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
1976     F->addMetadata(llvm::LLVMContext::MD_callback,
1977                    *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
1978                                                CalleeIdx, PayloadIndices,
1979                                                /* VarArgsArePassed */ false)}));
1980   }
1981 }
1982 
1983 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
1984   assert(!GV->isDeclaration() &&
1985          "Only globals with definition can force usage.");
1986   LLVMUsed.emplace_back(GV);
1987 }
1988 
1989 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
1990   assert(!GV->isDeclaration() &&
1991          "Only globals with definition can force usage.");
1992   LLVMCompilerUsed.emplace_back(GV);
1993 }
1994 
1995 static void emitUsed(CodeGenModule &CGM, StringRef Name,
1996                      std::vector<llvm::WeakTrackingVH> &List) {
1997   // Don't create llvm.used if there is no need.
1998   if (List.empty())
1999     return;
2000 
2001   // Convert List to what ConstantArray needs.
2002   SmallVector<llvm::Constant*, 8> UsedArray;
2003   UsedArray.resize(List.size());
2004   for (unsigned i = 0, e = List.size(); i != e; ++i) {
2005     UsedArray[i] =
2006         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
2007             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
2008   }
2009 
2010   if (UsedArray.empty())
2011     return;
2012   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
2013 
2014   auto *GV = new llvm::GlobalVariable(
2015       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
2016       llvm::ConstantArray::get(ATy, UsedArray), Name);
2017 
2018   GV->setSection("llvm.metadata");
2019 }
2020 
2021 void CodeGenModule::emitLLVMUsed() {
2022   emitUsed(*this, "llvm.used", LLVMUsed);
2023   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
2024 }
2025 
2026 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
2027   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
2028   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2029 }
2030 
2031 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
2032   llvm::SmallString<32> Opt;
2033   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
2034   if (Opt.empty())
2035     return;
2036   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2037   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2038 }
2039 
2040 void CodeGenModule::AddDependentLib(StringRef Lib) {
2041   auto &C = getLLVMContext();
2042   if (getTarget().getTriple().isOSBinFormatELF()) {
2043       ELFDependentLibraries.push_back(
2044         llvm::MDNode::get(C, llvm::MDString::get(C, Lib)));
2045     return;
2046   }
2047 
2048   llvm::SmallString<24> Opt;
2049   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
2050   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2051   LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts));
2052 }
2053 
2054 /// Add link options implied by the given module, including modules
2055 /// it depends on, using a postorder walk.
2056 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
2057                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
2058                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
2059   // Import this module's parent.
2060   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
2061     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
2062   }
2063 
2064   // Import this module's dependencies.
2065   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
2066     if (Visited.insert(Mod->Imports[I - 1]).second)
2067       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
2068   }
2069 
2070   // Add linker options to link against the libraries/frameworks
2071   // described by this module.
2072   llvm::LLVMContext &Context = CGM.getLLVMContext();
2073   bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
2074 
2075   // For modules that use export_as for linking, use that module
2076   // name instead.
2077   if (Mod->UseExportAsModuleLinkName)
2078     return;
2079 
2080   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
2081     // Link against a framework.  Frameworks are currently Darwin only, so we
2082     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
2083     if (Mod->LinkLibraries[I-1].IsFramework) {
2084       llvm::Metadata *Args[2] = {
2085           llvm::MDString::get(Context, "-framework"),
2086           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
2087 
2088       Metadata.push_back(llvm::MDNode::get(Context, Args));
2089       continue;
2090     }
2091 
2092     // Link against a library.
2093     if (IsELF) {
2094       llvm::Metadata *Args[2] = {
2095           llvm::MDString::get(Context, "lib"),
2096           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library),
2097       };
2098       Metadata.push_back(llvm::MDNode::get(Context, Args));
2099     } else {
2100       llvm::SmallString<24> Opt;
2101       CGM.getTargetCodeGenInfo().getDependentLibraryOption(
2102           Mod->LinkLibraries[I - 1].Library, Opt);
2103       auto *OptString = llvm::MDString::get(Context, Opt);
2104       Metadata.push_back(llvm::MDNode::get(Context, OptString));
2105     }
2106   }
2107 }
2108 
2109 void CodeGenModule::EmitModuleLinkOptions() {
2110   // Collect the set of all of the modules we want to visit to emit link
2111   // options, which is essentially the imported modules and all of their
2112   // non-explicit child modules.
2113   llvm::SetVector<clang::Module *> LinkModules;
2114   llvm::SmallPtrSet<clang::Module *, 16> Visited;
2115   SmallVector<clang::Module *, 16> Stack;
2116 
2117   // Seed the stack with imported modules.
2118   for (Module *M : ImportedModules) {
2119     // Do not add any link flags when an implementation TU of a module imports
2120     // a header of that same module.
2121     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
2122         !getLangOpts().isCompilingModule())
2123       continue;
2124     if (Visited.insert(M).second)
2125       Stack.push_back(M);
2126   }
2127 
2128   // Find all of the modules to import, making a little effort to prune
2129   // non-leaf modules.
2130   while (!Stack.empty()) {
2131     clang::Module *Mod = Stack.pop_back_val();
2132 
2133     bool AnyChildren = false;
2134 
2135     // Visit the submodules of this module.
2136     for (const auto &SM : Mod->submodules()) {
2137       // Skip explicit children; they need to be explicitly imported to be
2138       // linked against.
2139       if (SM->IsExplicit)
2140         continue;
2141 
2142       if (Visited.insert(SM).second) {
2143         Stack.push_back(SM);
2144         AnyChildren = true;
2145       }
2146     }
2147 
2148     // We didn't find any children, so add this module to the list of
2149     // modules to link against.
2150     if (!AnyChildren) {
2151       LinkModules.insert(Mod);
2152     }
2153   }
2154 
2155   // Add link options for all of the imported modules in reverse topological
2156   // order.  We don't do anything to try to order import link flags with respect
2157   // to linker options inserted by things like #pragma comment().
2158   SmallVector<llvm::MDNode *, 16> MetadataArgs;
2159   Visited.clear();
2160   for (Module *M : LinkModules)
2161     if (Visited.insert(M).second)
2162       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
2163   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
2164   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
2165 
2166   // Add the linker options metadata flag.
2167   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
2168   for (auto *MD : LinkerOptionsMetadata)
2169     NMD->addOperand(MD);
2170 }
2171 
2172 void CodeGenModule::EmitDeferred() {
2173   // Emit deferred declare target declarations.
2174   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
2175     getOpenMPRuntime().emitDeferredTargetDecls();
2176 
2177   // Emit code for any potentially referenced deferred decls.  Since a
2178   // previously unused static decl may become used during the generation of code
2179   // for a static function, iterate until no changes are made.
2180 
2181   if (!DeferredVTables.empty()) {
2182     EmitDeferredVTables();
2183 
2184     // Emitting a vtable doesn't directly cause more vtables to
2185     // become deferred, although it can cause functions to be
2186     // emitted that then need those vtables.
2187     assert(DeferredVTables.empty());
2188   }
2189 
2190   // Stop if we're out of both deferred vtables and deferred declarations.
2191   if (DeferredDeclsToEmit.empty())
2192     return;
2193 
2194   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
2195   // work, it will not interfere with this.
2196   std::vector<GlobalDecl> CurDeclsToEmit;
2197   CurDeclsToEmit.swap(DeferredDeclsToEmit);
2198 
2199   for (GlobalDecl &D : CurDeclsToEmit) {
2200     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
2201     // to get GlobalValue with exactly the type we need, not something that
2202     // might had been created for another decl with the same mangled name but
2203     // different type.
2204     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
2205         GetAddrOfGlobal(D, ForDefinition));
2206 
2207     // In case of different address spaces, we may still get a cast, even with
2208     // IsForDefinition equal to true. Query mangled names table to get
2209     // GlobalValue.
2210     if (!GV)
2211       GV = GetGlobalValue(getMangledName(D));
2212 
2213     // Make sure GetGlobalValue returned non-null.
2214     assert(GV);
2215 
2216     // Check to see if we've already emitted this.  This is necessary
2217     // for a couple of reasons: first, decls can end up in the
2218     // deferred-decls queue multiple times, and second, decls can end
2219     // up with definitions in unusual ways (e.g. by an extern inline
2220     // function acquiring a strong function redefinition).  Just
2221     // ignore these cases.
2222     if (!GV->isDeclaration())
2223       continue;
2224 
2225     // If this is OpenMP, check if it is legal to emit this global normally.
2226     if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D))
2227       continue;
2228 
2229     // Otherwise, emit the definition and move on to the next one.
2230     EmitGlobalDefinition(D, GV);
2231 
2232     // If we found out that we need to emit more decls, do that recursively.
2233     // This has the advantage that the decls are emitted in a DFS and related
2234     // ones are close together, which is convenient for testing.
2235     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
2236       EmitDeferred();
2237       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
2238     }
2239   }
2240 }
2241 
2242 void CodeGenModule::EmitVTablesOpportunistically() {
2243   // Try to emit external vtables as available_externally if they have emitted
2244   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
2245   // is not allowed to create new references to things that need to be emitted
2246   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
2247 
2248   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
2249          && "Only emit opportunistic vtables with optimizations");
2250 
2251   for (const CXXRecordDecl *RD : OpportunisticVTables) {
2252     assert(getVTables().isVTableExternal(RD) &&
2253            "This queue should only contain external vtables");
2254     if (getCXXABI().canSpeculativelyEmitVTable(RD))
2255       VTables.GenerateClassData(RD);
2256   }
2257   OpportunisticVTables.clear();
2258 }
2259 
2260 void CodeGenModule::EmitGlobalAnnotations() {
2261   if (Annotations.empty())
2262     return;
2263 
2264   // Create a new global variable for the ConstantStruct in the Module.
2265   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
2266     Annotations[0]->getType(), Annotations.size()), Annotations);
2267   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
2268                                       llvm::GlobalValue::AppendingLinkage,
2269                                       Array, "llvm.global.annotations");
2270   gv->setSection(AnnotationSection);
2271 }
2272 
2273 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
2274   llvm::Constant *&AStr = AnnotationStrings[Str];
2275   if (AStr)
2276     return AStr;
2277 
2278   // Not found yet, create a new global.
2279   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
2280   auto *gv =
2281       new llvm::GlobalVariable(getModule(), s->getType(), true,
2282                                llvm::GlobalValue::PrivateLinkage, s, ".str");
2283   gv->setSection(AnnotationSection);
2284   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2285   AStr = gv;
2286   return gv;
2287 }
2288 
2289 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
2290   SourceManager &SM = getContext().getSourceManager();
2291   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
2292   if (PLoc.isValid())
2293     return EmitAnnotationString(PLoc.getFilename());
2294   return EmitAnnotationString(SM.getBufferName(Loc));
2295 }
2296 
2297 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
2298   SourceManager &SM = getContext().getSourceManager();
2299   PresumedLoc PLoc = SM.getPresumedLoc(L);
2300   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
2301     SM.getExpansionLineNumber(L);
2302   return llvm::ConstantInt::get(Int32Ty, LineNo);
2303 }
2304 
2305 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
2306                                                 const AnnotateAttr *AA,
2307                                                 SourceLocation L) {
2308   // Get the globals for file name, annotation, and the line number.
2309   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
2310                  *UnitGV = EmitAnnotationUnit(L),
2311                  *LineNoCst = EmitAnnotationLineNo(L);
2312 
2313   llvm::Constant *ASZeroGV = GV;
2314   if (GV->getAddressSpace() != 0) {
2315     ASZeroGV = llvm::ConstantExpr::getAddrSpaceCast(
2316                    GV, GV->getValueType()->getPointerTo(0));
2317   }
2318 
2319   // Create the ConstantStruct for the global annotation.
2320   llvm::Constant *Fields[4] = {
2321     llvm::ConstantExpr::getBitCast(ASZeroGV, Int8PtrTy),
2322     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
2323     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
2324     LineNoCst
2325   };
2326   return llvm::ConstantStruct::getAnon(Fields);
2327 }
2328 
2329 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
2330                                          llvm::GlobalValue *GV) {
2331   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2332   // Get the struct elements for these annotations.
2333   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2334     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
2335 }
2336 
2337 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind,
2338                                            llvm::Function *Fn,
2339                                            SourceLocation Loc) const {
2340   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
2341   // Blacklist by function name.
2342   if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName()))
2343     return true;
2344   // Blacklist by location.
2345   if (Loc.isValid())
2346     return SanitizerBL.isBlacklistedLocation(Kind, Loc);
2347   // If location is unknown, this may be a compiler-generated function. Assume
2348   // it's located in the main file.
2349   auto &SM = Context.getSourceManager();
2350   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
2351     return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName());
2352   }
2353   return false;
2354 }
2355 
2356 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV,
2357                                            SourceLocation Loc, QualType Ty,
2358                                            StringRef Category) const {
2359   // For now globals can be blacklisted only in ASan and KASan.
2360   const SanitizerMask EnabledAsanMask =
2361       LangOpts.Sanitize.Mask &
2362       (SanitizerKind::Address | SanitizerKind::KernelAddress |
2363        SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress |
2364        SanitizerKind::MemTag);
2365   if (!EnabledAsanMask)
2366     return false;
2367   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
2368   if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category))
2369     return true;
2370   if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category))
2371     return true;
2372   // Check global type.
2373   if (!Ty.isNull()) {
2374     // Drill down the array types: if global variable of a fixed type is
2375     // blacklisted, we also don't instrument arrays of them.
2376     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
2377       Ty = AT->getElementType();
2378     Ty = Ty.getCanonicalType().getUnqualifiedType();
2379     // We allow to blacklist only record types (classes, structs etc.)
2380     if (Ty->isRecordType()) {
2381       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
2382       if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category))
2383         return true;
2384     }
2385   }
2386   return false;
2387 }
2388 
2389 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
2390                                    StringRef Category) const {
2391   const auto &XRayFilter = getContext().getXRayFilter();
2392   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
2393   auto Attr = ImbueAttr::NONE;
2394   if (Loc.isValid())
2395     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
2396   if (Attr == ImbueAttr::NONE)
2397     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
2398   switch (Attr) {
2399   case ImbueAttr::NONE:
2400     return false;
2401   case ImbueAttr::ALWAYS:
2402     Fn->addFnAttr("function-instrument", "xray-always");
2403     break;
2404   case ImbueAttr::ALWAYS_ARG1:
2405     Fn->addFnAttr("function-instrument", "xray-always");
2406     Fn->addFnAttr("xray-log-args", "1");
2407     break;
2408   case ImbueAttr::NEVER:
2409     Fn->addFnAttr("function-instrument", "xray-never");
2410     break;
2411   }
2412   return true;
2413 }
2414 
2415 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
2416   // Never defer when EmitAllDecls is specified.
2417   if (LangOpts.EmitAllDecls)
2418     return true;
2419 
2420   if (CodeGenOpts.KeepStaticConsts) {
2421     const auto *VD = dyn_cast<VarDecl>(Global);
2422     if (VD && VD->getType().isConstQualified() &&
2423         VD->getStorageDuration() == SD_Static)
2424       return true;
2425   }
2426 
2427   return getContext().DeclMustBeEmitted(Global);
2428 }
2429 
2430 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
2431   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2432     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
2433       // Implicit template instantiations may change linkage if they are later
2434       // explicitly instantiated, so they should not be emitted eagerly.
2435       return false;
2436     // In OpenMP 5.0 function may be marked as device_type(nohost) and we should
2437     // not emit them eagerly unless we sure that the function must be emitted on
2438     // the host.
2439     if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd &&
2440         !LangOpts.OpenMPIsDevice &&
2441         !OMPDeclareTargetDeclAttr::getDeviceType(FD) &&
2442         !FD->isUsed(/*CheckUsedAttr=*/false) && !FD->isReferenced())
2443       return false;
2444   }
2445   if (const auto *VD = dyn_cast<VarDecl>(Global))
2446     if (Context.getInlineVariableDefinitionKind(VD) ==
2447         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
2448       // A definition of an inline constexpr static data member may change
2449       // linkage later if it's redeclared outside the class.
2450       return false;
2451   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
2452   // codegen for global variables, because they may be marked as threadprivate.
2453   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
2454       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
2455       !isTypeConstant(Global->getType(), false) &&
2456       !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
2457     return false;
2458 
2459   return true;
2460 }
2461 
2462 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) {
2463   StringRef Name = getMangledName(GD);
2464 
2465   // The UUID descriptor should be pointer aligned.
2466   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
2467 
2468   // Look for an existing global.
2469   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
2470     return ConstantAddress(GV, Alignment);
2471 
2472   ConstantEmitter Emitter(*this);
2473   llvm::Constant *Init;
2474 
2475   APValue &V = GD->getAsAPValue();
2476   if (!V.isAbsent()) {
2477     // If possible, emit the APValue version of the initializer. In particular,
2478     // this gets the type of the constant right.
2479     Init = Emitter.emitForInitializer(
2480         GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType());
2481   } else {
2482     // As a fallback, directly construct the constant.
2483     // FIXME: This may get padding wrong under esoteric struct layout rules.
2484     // MSVC appears to create a complete type 'struct __s_GUID' that it
2485     // presumably uses to represent these constants.
2486     MSGuidDecl::Parts Parts = GD->getParts();
2487     llvm::Constant *Fields[4] = {
2488         llvm::ConstantInt::get(Int32Ty, Parts.Part1),
2489         llvm::ConstantInt::get(Int16Ty, Parts.Part2),
2490         llvm::ConstantInt::get(Int16Ty, Parts.Part3),
2491         llvm::ConstantDataArray::getRaw(
2492             StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8,
2493             Int8Ty)};
2494     Init = llvm::ConstantStruct::getAnon(Fields);
2495   }
2496 
2497   auto *GV = new llvm::GlobalVariable(
2498       getModule(), Init->getType(),
2499       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
2500   if (supportsCOMDAT())
2501     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2502   setDSOLocal(GV);
2503 
2504   llvm::Constant *Addr = GV;
2505   if (!V.isAbsent()) {
2506     Emitter.finalize(GV);
2507   } else {
2508     llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType());
2509     Addr = llvm::ConstantExpr::getBitCast(
2510         GV, Ty->getPointerTo(GV->getAddressSpace()));
2511   }
2512   return ConstantAddress(Addr, Alignment);
2513 }
2514 
2515 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
2516   const AliasAttr *AA = VD->getAttr<AliasAttr>();
2517   assert(AA && "No alias?");
2518 
2519   CharUnits Alignment = getContext().getDeclAlign(VD);
2520   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
2521 
2522   // See if there is already something with the target's name in the module.
2523   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
2524   if (Entry) {
2525     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
2526     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
2527     return ConstantAddress(Ptr, Alignment);
2528   }
2529 
2530   llvm::Constant *Aliasee;
2531   if (isa<llvm::FunctionType>(DeclTy))
2532     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
2533                                       GlobalDecl(cast<FunctionDecl>(VD)),
2534                                       /*ForVTable=*/false);
2535   else
2536     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2537                                     llvm::PointerType::getUnqual(DeclTy),
2538                                     nullptr);
2539 
2540   auto *F = cast<llvm::GlobalValue>(Aliasee);
2541   F->setLinkage(llvm::Function::ExternalWeakLinkage);
2542   WeakRefReferences.insert(F);
2543 
2544   return ConstantAddress(Aliasee, Alignment);
2545 }
2546 
2547 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
2548   const auto *Global = cast<ValueDecl>(GD.getDecl());
2549 
2550   // Weak references don't produce any output by themselves.
2551   if (Global->hasAttr<WeakRefAttr>())
2552     return;
2553 
2554   // If this is an alias definition (which otherwise looks like a declaration)
2555   // emit it now.
2556   if (Global->hasAttr<AliasAttr>())
2557     return EmitAliasDefinition(GD);
2558 
2559   // IFunc like an alias whose value is resolved at runtime by calling resolver.
2560   if (Global->hasAttr<IFuncAttr>())
2561     return emitIFuncDefinition(GD);
2562 
2563   // If this is a cpu_dispatch multiversion function, emit the resolver.
2564   if (Global->hasAttr<CPUDispatchAttr>())
2565     return emitCPUDispatchDefinition(GD);
2566 
2567   // If this is CUDA, be selective about which declarations we emit.
2568   if (LangOpts.CUDA) {
2569     if (LangOpts.CUDAIsDevice) {
2570       if (!Global->hasAttr<CUDADeviceAttr>() &&
2571           !Global->hasAttr<CUDAGlobalAttr>() &&
2572           !Global->hasAttr<CUDAConstantAttr>() &&
2573           !Global->hasAttr<CUDASharedAttr>() &&
2574           !Global->getType()->isCUDADeviceBuiltinSurfaceType() &&
2575           !Global->getType()->isCUDADeviceBuiltinTextureType())
2576         return;
2577     } else {
2578       // We need to emit host-side 'shadows' for all global
2579       // device-side variables because the CUDA runtime needs their
2580       // size and host-side address in order to provide access to
2581       // their device-side incarnations.
2582 
2583       // So device-only functions are the only things we skip.
2584       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
2585           Global->hasAttr<CUDADeviceAttr>())
2586         return;
2587 
2588       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
2589              "Expected Variable or Function");
2590     }
2591   }
2592 
2593   if (LangOpts.OpenMP) {
2594     // If this is OpenMP, check if it is legal to emit this global normally.
2595     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
2596       return;
2597     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
2598       if (MustBeEmitted(Global))
2599         EmitOMPDeclareReduction(DRD);
2600       return;
2601     } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
2602       if (MustBeEmitted(Global))
2603         EmitOMPDeclareMapper(DMD);
2604       return;
2605     }
2606   }
2607 
2608   // Ignore declarations, they will be emitted on their first use.
2609   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2610     // Forward declarations are emitted lazily on first use.
2611     if (!FD->doesThisDeclarationHaveABody()) {
2612       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
2613         return;
2614 
2615       StringRef MangledName = getMangledName(GD);
2616 
2617       // Compute the function info and LLVM type.
2618       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2619       llvm::Type *Ty = getTypes().GetFunctionType(FI);
2620 
2621       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
2622                               /*DontDefer=*/false);
2623       return;
2624     }
2625   } else {
2626     const auto *VD = cast<VarDecl>(Global);
2627     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
2628     if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
2629         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
2630       if (LangOpts.OpenMP) {
2631         // Emit declaration of the must-be-emitted declare target variable.
2632         if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
2633                 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
2634           bool UnifiedMemoryEnabled =
2635               getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
2636           if (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2637               !UnifiedMemoryEnabled) {
2638             (void)GetAddrOfGlobalVar(VD);
2639           } else {
2640             assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
2641                     (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2642                      UnifiedMemoryEnabled)) &&
2643                    "Link clause or to clause with unified memory expected.");
2644             (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
2645           }
2646 
2647           return;
2648         }
2649       }
2650       // If this declaration may have caused an inline variable definition to
2651       // change linkage, make sure that it's emitted.
2652       if (Context.getInlineVariableDefinitionKind(VD) ==
2653           ASTContext::InlineVariableDefinitionKind::Strong)
2654         GetAddrOfGlobalVar(VD);
2655       return;
2656     }
2657   }
2658 
2659   // Defer code generation to first use when possible, e.g. if this is an inline
2660   // function. If the global must always be emitted, do it eagerly if possible
2661   // to benefit from cache locality.
2662   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
2663     // Emit the definition if it can't be deferred.
2664     EmitGlobalDefinition(GD);
2665     return;
2666   }
2667 
2668   // If we're deferring emission of a C++ variable with an
2669   // initializer, remember the order in which it appeared in the file.
2670   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
2671       cast<VarDecl>(Global)->hasInit()) {
2672     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
2673     CXXGlobalInits.push_back(nullptr);
2674   }
2675 
2676   StringRef MangledName = getMangledName(GD);
2677   if (GetGlobalValue(MangledName) != nullptr) {
2678     // The value has already been used and should therefore be emitted.
2679     addDeferredDeclToEmit(GD);
2680   } else if (MustBeEmitted(Global)) {
2681     // The value must be emitted, but cannot be emitted eagerly.
2682     assert(!MayBeEmittedEagerly(Global));
2683     addDeferredDeclToEmit(GD);
2684   } else {
2685     // Otherwise, remember that we saw a deferred decl with this name.  The
2686     // first use of the mangled name will cause it to move into
2687     // DeferredDeclsToEmit.
2688     DeferredDecls[MangledName] = GD;
2689   }
2690 }
2691 
2692 // Check if T is a class type with a destructor that's not dllimport.
2693 static bool HasNonDllImportDtor(QualType T) {
2694   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
2695     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2696       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
2697         return true;
2698 
2699   return false;
2700 }
2701 
2702 namespace {
2703   struct FunctionIsDirectlyRecursive
2704       : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
2705     const StringRef Name;
2706     const Builtin::Context &BI;
2707     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
2708         : Name(N), BI(C) {}
2709 
2710     bool VisitCallExpr(const CallExpr *E) {
2711       const FunctionDecl *FD = E->getDirectCallee();
2712       if (!FD)
2713         return false;
2714       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2715       if (Attr && Name == Attr->getLabel())
2716         return true;
2717       unsigned BuiltinID = FD->getBuiltinID();
2718       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
2719         return false;
2720       StringRef BuiltinName = BI.getName(BuiltinID);
2721       if (BuiltinName.startswith("__builtin_") &&
2722           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
2723         return true;
2724       }
2725       return false;
2726     }
2727 
2728     bool VisitStmt(const Stmt *S) {
2729       for (const Stmt *Child : S->children())
2730         if (Child && this->Visit(Child))
2731           return true;
2732       return false;
2733     }
2734   };
2735 
2736   // Make sure we're not referencing non-imported vars or functions.
2737   struct DLLImportFunctionVisitor
2738       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
2739     bool SafeToInline = true;
2740 
2741     bool shouldVisitImplicitCode() const { return true; }
2742 
2743     bool VisitVarDecl(VarDecl *VD) {
2744       if (VD->getTLSKind()) {
2745         // A thread-local variable cannot be imported.
2746         SafeToInline = false;
2747         return SafeToInline;
2748       }
2749 
2750       // A variable definition might imply a destructor call.
2751       if (VD->isThisDeclarationADefinition())
2752         SafeToInline = !HasNonDllImportDtor(VD->getType());
2753 
2754       return SafeToInline;
2755     }
2756 
2757     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
2758       if (const auto *D = E->getTemporary()->getDestructor())
2759         SafeToInline = D->hasAttr<DLLImportAttr>();
2760       return SafeToInline;
2761     }
2762 
2763     bool VisitDeclRefExpr(DeclRefExpr *E) {
2764       ValueDecl *VD = E->getDecl();
2765       if (isa<FunctionDecl>(VD))
2766         SafeToInline = VD->hasAttr<DLLImportAttr>();
2767       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
2768         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
2769       return SafeToInline;
2770     }
2771 
2772     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
2773       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
2774       return SafeToInline;
2775     }
2776 
2777     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
2778       CXXMethodDecl *M = E->getMethodDecl();
2779       if (!M) {
2780         // Call through a pointer to member function. This is safe to inline.
2781         SafeToInline = true;
2782       } else {
2783         SafeToInline = M->hasAttr<DLLImportAttr>();
2784       }
2785       return SafeToInline;
2786     }
2787 
2788     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
2789       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
2790       return SafeToInline;
2791     }
2792 
2793     bool VisitCXXNewExpr(CXXNewExpr *E) {
2794       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
2795       return SafeToInline;
2796     }
2797   };
2798 }
2799 
2800 // isTriviallyRecursive - Check if this function calls another
2801 // decl that, because of the asm attribute or the other decl being a builtin,
2802 // ends up pointing to itself.
2803 bool
2804 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
2805   StringRef Name;
2806   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
2807     // asm labels are a special kind of mangling we have to support.
2808     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2809     if (!Attr)
2810       return false;
2811     Name = Attr->getLabel();
2812   } else {
2813     Name = FD->getName();
2814   }
2815 
2816   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
2817   const Stmt *Body = FD->getBody();
2818   return Body ? Walker.Visit(Body) : false;
2819 }
2820 
2821 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
2822   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
2823     return true;
2824   const auto *F = cast<FunctionDecl>(GD.getDecl());
2825   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
2826     return false;
2827 
2828   if (F->hasAttr<DLLImportAttr>()) {
2829     // Check whether it would be safe to inline this dllimport function.
2830     DLLImportFunctionVisitor Visitor;
2831     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
2832     if (!Visitor.SafeToInline)
2833       return false;
2834 
2835     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
2836       // Implicit destructor invocations aren't captured in the AST, so the
2837       // check above can't see them. Check for them manually here.
2838       for (const Decl *Member : Dtor->getParent()->decls())
2839         if (isa<FieldDecl>(Member))
2840           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
2841             return false;
2842       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
2843         if (HasNonDllImportDtor(B.getType()))
2844           return false;
2845     }
2846   }
2847 
2848   // PR9614. Avoid cases where the source code is lying to us. An available
2849   // externally function should have an equivalent function somewhere else,
2850   // but a function that calls itself through asm label/`__builtin_` trickery is
2851   // clearly not equivalent to the real implementation.
2852   // This happens in glibc's btowc and in some configure checks.
2853   return !isTriviallyRecursive(F);
2854 }
2855 
2856 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
2857   return CodeGenOpts.OptimizationLevel > 0;
2858 }
2859 
2860 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
2861                                                        llvm::GlobalValue *GV) {
2862   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2863 
2864   if (FD->isCPUSpecificMultiVersion()) {
2865     auto *Spec = FD->getAttr<CPUSpecificAttr>();
2866     for (unsigned I = 0; I < Spec->cpus_size(); ++I)
2867       EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
2868     // Requires multiple emits.
2869   } else
2870     EmitGlobalFunctionDefinition(GD, GV);
2871 }
2872 
2873 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
2874   const auto *D = cast<ValueDecl>(GD.getDecl());
2875 
2876   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
2877                                  Context.getSourceManager(),
2878                                  "Generating code for declaration");
2879 
2880   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
2881     // At -O0, don't generate IR for functions with available_externally
2882     // linkage.
2883     if (!shouldEmitFunction(GD))
2884       return;
2885 
2886     llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
2887       std::string Name;
2888       llvm::raw_string_ostream OS(Name);
2889       FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(),
2890                                /*Qualified=*/true);
2891       return Name;
2892     });
2893 
2894     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
2895       // Make sure to emit the definition(s) before we emit the thunks.
2896       // This is necessary for the generation of certain thunks.
2897       if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method))
2898         ABI->emitCXXStructor(GD);
2899       else if (FD->isMultiVersion())
2900         EmitMultiVersionFunctionDefinition(GD, GV);
2901       else
2902         EmitGlobalFunctionDefinition(GD, GV);
2903 
2904       if (Method->isVirtual())
2905         getVTables().EmitThunks(GD);
2906 
2907       return;
2908     }
2909 
2910     if (FD->isMultiVersion())
2911       return EmitMultiVersionFunctionDefinition(GD, GV);
2912     return EmitGlobalFunctionDefinition(GD, GV);
2913   }
2914 
2915   if (const auto *VD = dyn_cast<VarDecl>(D))
2916     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
2917 
2918   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
2919 }
2920 
2921 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2922                                                       llvm::Function *NewFn);
2923 
2924 static unsigned
2925 TargetMVPriority(const TargetInfo &TI,
2926                  const CodeGenFunction::MultiVersionResolverOption &RO) {
2927   unsigned Priority = 0;
2928   for (StringRef Feat : RO.Conditions.Features)
2929     Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
2930 
2931   if (!RO.Conditions.Architecture.empty())
2932     Priority = std::max(
2933         Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
2934   return Priority;
2935 }
2936 
2937 void CodeGenModule::emitMultiVersionFunctions() {
2938   for (GlobalDecl GD : MultiVersionFuncs) {
2939     SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
2940     const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
2941     getContext().forEachMultiversionedFunctionVersion(
2942         FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
2943           GlobalDecl CurGD{
2944               (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
2945           StringRef MangledName = getMangledName(CurGD);
2946           llvm::Constant *Func = GetGlobalValue(MangledName);
2947           if (!Func) {
2948             if (CurFD->isDefined()) {
2949               EmitGlobalFunctionDefinition(CurGD, nullptr);
2950               Func = GetGlobalValue(MangledName);
2951             } else {
2952               const CGFunctionInfo &FI =
2953                   getTypes().arrangeGlobalDeclaration(GD);
2954               llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2955               Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
2956                                        /*DontDefer=*/false, ForDefinition);
2957             }
2958             assert(Func && "This should have just been created");
2959           }
2960 
2961           const auto *TA = CurFD->getAttr<TargetAttr>();
2962           llvm::SmallVector<StringRef, 8> Feats;
2963           TA->getAddedFeatures(Feats);
2964 
2965           Options.emplace_back(cast<llvm::Function>(Func),
2966                                TA->getArchitecture(), Feats);
2967         });
2968 
2969     llvm::Function *ResolverFunc;
2970     const TargetInfo &TI = getTarget();
2971 
2972     if (TI.supportsIFunc() || FD->isTargetMultiVersion()) {
2973       ResolverFunc = cast<llvm::Function>(
2974           GetGlobalValue((getMangledName(GD) + ".resolver").str()));
2975       ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage);
2976     } else {
2977       ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD)));
2978     }
2979 
2980     if (supportsCOMDAT())
2981       ResolverFunc->setComdat(
2982           getModule().getOrInsertComdat(ResolverFunc->getName()));
2983 
2984     llvm::stable_sort(
2985         Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
2986                        const CodeGenFunction::MultiVersionResolverOption &RHS) {
2987           return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
2988         });
2989     CodeGenFunction CGF(*this);
2990     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
2991   }
2992 }
2993 
2994 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
2995   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2996   assert(FD && "Not a FunctionDecl?");
2997   const auto *DD = FD->getAttr<CPUDispatchAttr>();
2998   assert(DD && "Not a cpu_dispatch Function?");
2999   llvm::Type *DeclTy = getTypes().ConvertType(FD->getType());
3000 
3001   if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) {
3002     const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD);
3003     DeclTy = getTypes().GetFunctionType(FInfo);
3004   }
3005 
3006   StringRef ResolverName = getMangledName(GD);
3007 
3008   llvm::Type *ResolverType;
3009   GlobalDecl ResolverGD;
3010   if (getTarget().supportsIFunc())
3011     ResolverType = llvm::FunctionType::get(
3012         llvm::PointerType::get(DeclTy,
3013                                Context.getTargetAddressSpace(FD->getType())),
3014         false);
3015   else {
3016     ResolverType = DeclTy;
3017     ResolverGD = GD;
3018   }
3019 
3020   auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
3021       ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
3022   ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage);
3023   if (supportsCOMDAT())
3024     ResolverFunc->setComdat(
3025         getModule().getOrInsertComdat(ResolverFunc->getName()));
3026 
3027   SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3028   const TargetInfo &Target = getTarget();
3029   unsigned Index = 0;
3030   for (const IdentifierInfo *II : DD->cpus()) {
3031     // Get the name of the target function so we can look it up/create it.
3032     std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
3033                               getCPUSpecificMangling(*this, II->getName());
3034 
3035     llvm::Constant *Func = GetGlobalValue(MangledName);
3036 
3037     if (!Func) {
3038       GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
3039       if (ExistingDecl.getDecl() &&
3040           ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
3041         EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
3042         Func = GetGlobalValue(MangledName);
3043       } else {
3044         if (!ExistingDecl.getDecl())
3045           ExistingDecl = GD.getWithMultiVersionIndex(Index);
3046 
3047       Func = GetOrCreateLLVMFunction(
3048           MangledName, DeclTy, ExistingDecl,
3049           /*ForVTable=*/false, /*DontDefer=*/true,
3050           /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
3051       }
3052     }
3053 
3054     llvm::SmallVector<StringRef, 32> Features;
3055     Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
3056     llvm::transform(Features, Features.begin(),
3057                     [](StringRef Str) { return Str.substr(1); });
3058     Features.erase(std::remove_if(
3059         Features.begin(), Features.end(), [&Target](StringRef Feat) {
3060           return !Target.validateCpuSupports(Feat);
3061         }), Features.end());
3062     Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
3063     ++Index;
3064   }
3065 
3066   llvm::sort(
3067       Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
3068                   const CodeGenFunction::MultiVersionResolverOption &RHS) {
3069         return CodeGenFunction::GetX86CpuSupportsMask(LHS.Conditions.Features) >
3070                CodeGenFunction::GetX86CpuSupportsMask(RHS.Conditions.Features);
3071       });
3072 
3073   // If the list contains multiple 'default' versions, such as when it contains
3074   // 'pentium' and 'generic', don't emit the call to the generic one (since we
3075   // always run on at least a 'pentium'). We do this by deleting the 'least
3076   // advanced' (read, lowest mangling letter).
3077   while (Options.size() > 1 &&
3078          CodeGenFunction::GetX86CpuSupportsMask(
3079              (Options.end() - 2)->Conditions.Features) == 0) {
3080     StringRef LHSName = (Options.end() - 2)->Function->getName();
3081     StringRef RHSName = (Options.end() - 1)->Function->getName();
3082     if (LHSName.compare(RHSName) < 0)
3083       Options.erase(Options.end() - 2);
3084     else
3085       Options.erase(Options.end() - 1);
3086   }
3087 
3088   CodeGenFunction CGF(*this);
3089   CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3090 
3091   if (getTarget().supportsIFunc()) {
3092     std::string AliasName = getMangledNameImpl(
3093         *this, GD, FD, /*OmitMultiVersionMangling=*/true);
3094     llvm::Constant *AliasFunc = GetGlobalValue(AliasName);
3095     if (!AliasFunc) {
3096       auto *IFunc = cast<llvm::GlobalIFunc>(GetOrCreateLLVMFunction(
3097           AliasName, DeclTy, GD, /*ForVTable=*/false, /*DontDefer=*/true,
3098           /*IsThunk=*/false, llvm::AttributeList(), NotForDefinition));
3099       auto *GA = llvm::GlobalAlias::create(
3100          DeclTy, 0, getFunctionLinkage(GD), AliasName, IFunc, &getModule());
3101       GA->setLinkage(llvm::Function::WeakODRLinkage);
3102       SetCommonAttributes(GD, GA);
3103     }
3104   }
3105 }
3106 
3107 /// If a dispatcher for the specified mangled name is not in the module, create
3108 /// and return an llvm Function with the specified type.
3109 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(
3110     GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) {
3111   std::string MangledName =
3112       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
3113 
3114   // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
3115   // a separate resolver).
3116   std::string ResolverName = MangledName;
3117   if (getTarget().supportsIFunc())
3118     ResolverName += ".ifunc";
3119   else if (FD->isTargetMultiVersion())
3120     ResolverName += ".resolver";
3121 
3122   // If this already exists, just return that one.
3123   if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName))
3124     return ResolverGV;
3125 
3126   // Since this is the first time we've created this IFunc, make sure
3127   // that we put this multiversioned function into the list to be
3128   // replaced later if necessary (target multiversioning only).
3129   if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion())
3130     MultiVersionFuncs.push_back(GD);
3131 
3132   if (getTarget().supportsIFunc()) {
3133     llvm::Type *ResolverType = llvm::FunctionType::get(
3134         llvm::PointerType::get(
3135             DeclTy, getContext().getTargetAddressSpace(FD->getType())),
3136         false);
3137     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3138         MangledName + ".resolver", ResolverType, GlobalDecl{},
3139         /*ForVTable=*/false);
3140     llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create(
3141         DeclTy, 0, llvm::Function::WeakODRLinkage, "", Resolver, &getModule());
3142     GIF->setName(ResolverName);
3143     SetCommonAttributes(FD, GIF);
3144 
3145     return GIF;
3146   }
3147 
3148   llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3149       ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
3150   assert(isa<llvm::GlobalValue>(Resolver) &&
3151          "Resolver should be created for the first time");
3152   SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
3153   return Resolver;
3154 }
3155 
3156 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
3157 /// module, create and return an llvm Function with the specified type. If there
3158 /// is something in the module with the specified name, return it potentially
3159 /// bitcasted to the right type.
3160 ///
3161 /// If D is non-null, it specifies a decl that correspond to this.  This is used
3162 /// to set the attributes on the function when it is first created.
3163 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
3164     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
3165     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
3166     ForDefinition_t IsForDefinition) {
3167   const Decl *D = GD.getDecl();
3168 
3169   // Any attempts to use a MultiVersion function should result in retrieving
3170   // the iFunc instead. Name Mangling will handle the rest of the changes.
3171   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
3172     // For the device mark the function as one that should be emitted.
3173     if (getLangOpts().OpenMPIsDevice && OpenMPRuntime &&
3174         !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
3175         !DontDefer && !IsForDefinition) {
3176       if (const FunctionDecl *FDDef = FD->getDefinition()) {
3177         GlobalDecl GDDef;
3178         if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
3179           GDDef = GlobalDecl(CD, GD.getCtorType());
3180         else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
3181           GDDef = GlobalDecl(DD, GD.getDtorType());
3182         else
3183           GDDef = GlobalDecl(FDDef);
3184         EmitGlobal(GDDef);
3185       }
3186     }
3187 
3188     if (FD->isMultiVersion()) {
3189       if (FD->hasAttr<TargetAttr>())
3190         UpdateMultiVersionNames(GD, FD);
3191       if (!IsForDefinition)
3192         return GetOrCreateMultiVersionResolver(GD, Ty, FD);
3193     }
3194   }
3195 
3196   // Lookup the entry, lazily creating it if necessary.
3197   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3198   if (Entry) {
3199     if (WeakRefReferences.erase(Entry)) {
3200       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
3201       if (FD && !FD->hasAttr<WeakAttr>())
3202         Entry->setLinkage(llvm::Function::ExternalLinkage);
3203     }
3204 
3205     // Handle dropped DLL attributes.
3206     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) {
3207       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3208       setDSOLocal(Entry);
3209     }
3210 
3211     // If there are two attempts to define the same mangled name, issue an
3212     // error.
3213     if (IsForDefinition && !Entry->isDeclaration()) {
3214       GlobalDecl OtherGD;
3215       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
3216       // to make sure that we issue an error only once.
3217       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3218           (GD.getCanonicalDecl().getDecl() !=
3219            OtherGD.getCanonicalDecl().getDecl()) &&
3220           DiagnosedConflictingDefinitions.insert(GD).second) {
3221         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3222             << MangledName;
3223         getDiags().Report(OtherGD.getDecl()->getLocation(),
3224                           diag::note_previous_definition);
3225       }
3226     }
3227 
3228     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
3229         (Entry->getValueType() == Ty)) {
3230       return Entry;
3231     }
3232 
3233     // Make sure the result is of the correct type.
3234     // (If function is requested for a definition, we always need to create a new
3235     // function, not just return a bitcast.)
3236     if (!IsForDefinition)
3237       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
3238   }
3239 
3240   // This function doesn't have a complete type (for example, the return
3241   // type is an incomplete struct). Use a fake type instead, and make
3242   // sure not to try to set attributes.
3243   bool IsIncompleteFunction = false;
3244 
3245   llvm::FunctionType *FTy;
3246   if (isa<llvm::FunctionType>(Ty)) {
3247     FTy = cast<llvm::FunctionType>(Ty);
3248   } else {
3249     FTy = llvm::FunctionType::get(VoidTy, false);
3250     IsIncompleteFunction = true;
3251   }
3252 
3253   llvm::Function *F =
3254       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
3255                              Entry ? StringRef() : MangledName, &getModule());
3256 
3257   // If we already created a function with the same mangled name (but different
3258   // type) before, take its name and add it to the list of functions to be
3259   // replaced with F at the end of CodeGen.
3260   //
3261   // This happens if there is a prototype for a function (e.g. "int f()") and
3262   // then a definition of a different type (e.g. "int f(int x)").
3263   if (Entry) {
3264     F->takeName(Entry);
3265 
3266     // This might be an implementation of a function without a prototype, in
3267     // which case, try to do special replacement of calls which match the new
3268     // prototype.  The really key thing here is that we also potentially drop
3269     // arguments from the call site so as to make a direct call, which makes the
3270     // inliner happier and suppresses a number of optimizer warnings (!) about
3271     // dropping arguments.
3272     if (!Entry->use_empty()) {
3273       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
3274       Entry->removeDeadConstantUsers();
3275     }
3276 
3277     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
3278         F, Entry->getValueType()->getPointerTo());
3279     addGlobalValReplacement(Entry, BC);
3280   }
3281 
3282   assert(F->getName() == MangledName && "name was uniqued!");
3283   if (D)
3284     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
3285   if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) {
3286     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex);
3287     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
3288   }
3289 
3290   if (!DontDefer) {
3291     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
3292     // each other bottoming out with the base dtor.  Therefore we emit non-base
3293     // dtors on usage, even if there is no dtor definition in the TU.
3294     if (D && isa<CXXDestructorDecl>(D) &&
3295         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
3296                                            GD.getDtorType()))
3297       addDeferredDeclToEmit(GD);
3298 
3299     // This is the first use or definition of a mangled name.  If there is a
3300     // deferred decl with this name, remember that we need to emit it at the end
3301     // of the file.
3302     auto DDI = DeferredDecls.find(MangledName);
3303     if (DDI != DeferredDecls.end()) {
3304       // Move the potentially referenced deferred decl to the
3305       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
3306       // don't need it anymore).
3307       addDeferredDeclToEmit(DDI->second);
3308       DeferredDecls.erase(DDI);
3309 
3310       // Otherwise, there are cases we have to worry about where we're
3311       // using a declaration for which we must emit a definition but where
3312       // we might not find a top-level definition:
3313       //   - member functions defined inline in their classes
3314       //   - friend functions defined inline in some class
3315       //   - special member functions with implicit definitions
3316       // If we ever change our AST traversal to walk into class methods,
3317       // this will be unnecessary.
3318       //
3319       // We also don't emit a definition for a function if it's going to be an
3320       // entry in a vtable, unless it's already marked as used.
3321     } else if (getLangOpts().CPlusPlus && D) {
3322       // Look for a declaration that's lexically in a record.
3323       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
3324            FD = FD->getPreviousDecl()) {
3325         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
3326           if (FD->doesThisDeclarationHaveABody()) {
3327             addDeferredDeclToEmit(GD.getWithDecl(FD));
3328             break;
3329           }
3330         }
3331       }
3332     }
3333   }
3334 
3335   // Make sure the result is of the requested type.
3336   if (!IsIncompleteFunction) {
3337     assert(F->getFunctionType() == Ty);
3338     return F;
3339   }
3340 
3341   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
3342   return llvm::ConstantExpr::getBitCast(F, PTy);
3343 }
3344 
3345 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
3346 /// non-null, then this function will use the specified type if it has to
3347 /// create it (this occurs when we see a definition of the function).
3348 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
3349                                                  llvm::Type *Ty,
3350                                                  bool ForVTable,
3351                                                  bool DontDefer,
3352                                               ForDefinition_t IsForDefinition) {
3353   assert(!cast<FunctionDecl>(GD.getDecl())->isConsteval() &&
3354          "consteval function should never be emitted");
3355   // If there was no specific requested type, just convert it now.
3356   if (!Ty) {
3357     const auto *FD = cast<FunctionDecl>(GD.getDecl());
3358     Ty = getTypes().ConvertType(FD->getType());
3359   }
3360 
3361   // Devirtualized destructor calls may come through here instead of via
3362   // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
3363   // of the complete destructor when necessary.
3364   if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
3365     if (getTarget().getCXXABI().isMicrosoft() &&
3366         GD.getDtorType() == Dtor_Complete &&
3367         DD->getParent()->getNumVBases() == 0)
3368       GD = GlobalDecl(DD, Dtor_Base);
3369   }
3370 
3371   StringRef MangledName = getMangledName(GD);
3372   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
3373                                  /*IsThunk=*/false, llvm::AttributeList(),
3374                                  IsForDefinition);
3375 }
3376 
3377 static const FunctionDecl *
3378 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
3379   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
3380   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
3381 
3382   IdentifierInfo &CII = C.Idents.get(Name);
3383   for (const auto &Result : DC->lookup(&CII))
3384     if (const auto FD = dyn_cast<FunctionDecl>(Result))
3385       return FD;
3386 
3387   if (!C.getLangOpts().CPlusPlus)
3388     return nullptr;
3389 
3390   // Demangle the premangled name from getTerminateFn()
3391   IdentifierInfo &CXXII =
3392       (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
3393           ? C.Idents.get("terminate")
3394           : C.Idents.get(Name);
3395 
3396   for (const auto &N : {"__cxxabiv1", "std"}) {
3397     IdentifierInfo &NS = C.Idents.get(N);
3398     for (const auto &Result : DC->lookup(&NS)) {
3399       NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
3400       if (auto LSD = dyn_cast<LinkageSpecDecl>(Result))
3401         for (const auto &Result : LSD->lookup(&NS))
3402           if ((ND = dyn_cast<NamespaceDecl>(Result)))
3403             break;
3404 
3405       if (ND)
3406         for (const auto &Result : ND->lookup(&CXXII))
3407           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
3408             return FD;
3409     }
3410   }
3411 
3412   return nullptr;
3413 }
3414 
3415 /// CreateRuntimeFunction - Create a new runtime function with the specified
3416 /// type and name.
3417 llvm::FunctionCallee
3418 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
3419                                      llvm::AttributeList ExtraAttrs, bool Local,
3420                                      bool AssumeConvergent) {
3421   if (AssumeConvergent) {
3422     ExtraAttrs =
3423         ExtraAttrs.addAttribute(VMContext, llvm::AttributeList::FunctionIndex,
3424                                 llvm::Attribute::Convergent);
3425   }
3426 
3427   llvm::Constant *C =
3428       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
3429                               /*DontDefer=*/false, /*IsThunk=*/false,
3430                               ExtraAttrs);
3431 
3432   if (auto *F = dyn_cast<llvm::Function>(C)) {
3433     if (F->empty()) {
3434       F->setCallingConv(getRuntimeCC());
3435 
3436       // In Windows Itanium environments, try to mark runtime functions
3437       // dllimport. For Mingw and MSVC, don't. We don't really know if the user
3438       // will link their standard library statically or dynamically. Marking
3439       // functions imported when they are not imported can cause linker errors
3440       // and warnings.
3441       if (!Local && getTriple().isWindowsItaniumEnvironment() &&
3442           !getCodeGenOpts().LTOVisibilityPublicStd) {
3443         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
3444         if (!FD || FD->hasAttr<DLLImportAttr>()) {
3445           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
3446           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
3447         }
3448       }
3449       setDSOLocal(F);
3450     }
3451   }
3452 
3453   return {FTy, C};
3454 }
3455 
3456 /// isTypeConstant - Determine whether an object of this type can be emitted
3457 /// as a constant.
3458 ///
3459 /// If ExcludeCtor is true, the duration when the object's constructor runs
3460 /// will not be considered. The caller will need to verify that the object is
3461 /// not written to during its construction.
3462 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
3463   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
3464     return false;
3465 
3466   if (Context.getLangOpts().CPlusPlus) {
3467     if (const CXXRecordDecl *Record
3468           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
3469       return ExcludeCtor && !Record->hasMutableFields() &&
3470              Record->hasTrivialDestructor();
3471   }
3472 
3473   return true;
3474 }
3475 
3476 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
3477 /// create and return an llvm GlobalVariable with the specified type.  If there
3478 /// is something in the module with the specified name, return it potentially
3479 /// bitcasted to the right type.
3480 ///
3481 /// If D is non-null, it specifies a decl that correspond to this.  This is used
3482 /// to set the attributes on the global when it is first created.
3483 ///
3484 /// If IsForDefinition is true, it is guaranteed that an actual global with
3485 /// type Ty will be returned, not conversion of a variable with the same
3486 /// mangled name but some other type.
3487 llvm::Constant *
3488 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
3489                                      llvm::PointerType *Ty,
3490                                      const VarDecl *D,
3491                                      ForDefinition_t IsForDefinition) {
3492   // Lookup the entry, lazily creating it if necessary.
3493   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3494   if (Entry) {
3495     if (WeakRefReferences.erase(Entry)) {
3496       if (D && !D->hasAttr<WeakAttr>())
3497         Entry->setLinkage(llvm::Function::ExternalLinkage);
3498     }
3499 
3500     // Handle dropped DLL attributes.
3501     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
3502       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3503 
3504     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
3505       getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
3506 
3507     if (Entry->getType() == Ty)
3508       return Entry;
3509 
3510     // If there are two attempts to define the same mangled name, issue an
3511     // error.
3512     if (IsForDefinition && !Entry->isDeclaration()) {
3513       GlobalDecl OtherGD;
3514       const VarDecl *OtherD;
3515 
3516       // Check that D is not yet in DiagnosedConflictingDefinitions is required
3517       // to make sure that we issue an error only once.
3518       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
3519           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
3520           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
3521           OtherD->hasInit() &&
3522           DiagnosedConflictingDefinitions.insert(D).second) {
3523         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3524             << MangledName;
3525         getDiags().Report(OtherGD.getDecl()->getLocation(),
3526                           diag::note_previous_definition);
3527       }
3528     }
3529 
3530     // Make sure the result is of the correct type.
3531     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
3532       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
3533 
3534     // (If global is requested for a definition, we always need to create a new
3535     // global, not just return a bitcast.)
3536     if (!IsForDefinition)
3537       return llvm::ConstantExpr::getBitCast(Entry, Ty);
3538   }
3539 
3540   auto AddrSpace = GetGlobalVarAddressSpace(D);
3541   auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace);
3542 
3543   auto *GV = new llvm::GlobalVariable(
3544       getModule(), Ty->getElementType(), false,
3545       llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
3546       llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace);
3547 
3548   // If we already created a global with the same mangled name (but different
3549   // type) before, take its name and remove it from its parent.
3550   if (Entry) {
3551     GV->takeName(Entry);
3552 
3553     if (!Entry->use_empty()) {
3554       llvm::Constant *NewPtrForOldDecl =
3555           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
3556       Entry->replaceAllUsesWith(NewPtrForOldDecl);
3557     }
3558 
3559     Entry->eraseFromParent();
3560   }
3561 
3562   // This is the first use or definition of a mangled name.  If there is a
3563   // deferred decl with this name, remember that we need to emit it at the end
3564   // of the file.
3565   auto DDI = DeferredDecls.find(MangledName);
3566   if (DDI != DeferredDecls.end()) {
3567     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
3568     // list, and remove it from DeferredDecls (since we don't need it anymore).
3569     addDeferredDeclToEmit(DDI->second);
3570     DeferredDecls.erase(DDI);
3571   }
3572 
3573   // Handle things which are present even on external declarations.
3574   if (D) {
3575     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
3576       getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
3577 
3578     // FIXME: This code is overly simple and should be merged with other global
3579     // handling.
3580     GV->setConstant(isTypeConstant(D->getType(), false));
3581 
3582     GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
3583 
3584     setLinkageForGV(GV, D);
3585 
3586     if (D->getTLSKind()) {
3587       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
3588         CXXThreadLocals.push_back(D);
3589       setTLSMode(GV, *D);
3590     }
3591 
3592     setGVProperties(GV, D);
3593 
3594     // If required by the ABI, treat declarations of static data members with
3595     // inline initializers as definitions.
3596     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
3597       EmitGlobalVarDefinition(D);
3598     }
3599 
3600     // Emit section information for extern variables.
3601     if (D->hasExternalStorage()) {
3602       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
3603         GV->setSection(SA->getName());
3604     }
3605 
3606     // Handle XCore specific ABI requirements.
3607     if (getTriple().getArch() == llvm::Triple::xcore &&
3608         D->getLanguageLinkage() == CLanguageLinkage &&
3609         D->getType().isConstant(Context) &&
3610         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
3611       GV->setSection(".cp.rodata");
3612 
3613     // Check if we a have a const declaration with an initializer, we may be
3614     // able to emit it as available_externally to expose it's value to the
3615     // optimizer.
3616     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
3617         D->getType().isConstQualified() && !GV->hasInitializer() &&
3618         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
3619       const auto *Record =
3620           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
3621       bool HasMutableFields = Record && Record->hasMutableFields();
3622       if (!HasMutableFields) {
3623         const VarDecl *InitDecl;
3624         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
3625         if (InitExpr) {
3626           ConstantEmitter emitter(*this);
3627           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
3628           if (Init) {
3629             auto *InitType = Init->getType();
3630             if (GV->getValueType() != InitType) {
3631               // The type of the initializer does not match the definition.
3632               // This happens when an initializer has a different type from
3633               // the type of the global (because of padding at the end of a
3634               // structure for instance).
3635               GV->setName(StringRef());
3636               // Make a new global with the correct type, this is now guaranteed
3637               // to work.
3638               auto *NewGV = cast<llvm::GlobalVariable>(
3639                   GetAddrOfGlobalVar(D, InitType, IsForDefinition)
3640                       ->stripPointerCasts());
3641 
3642               // Erase the old global, since it is no longer used.
3643               GV->eraseFromParent();
3644               GV = NewGV;
3645             } else {
3646               GV->setInitializer(Init);
3647               GV->setConstant(true);
3648               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
3649             }
3650             emitter.finalize(GV);
3651           }
3652         }
3653       }
3654     }
3655   }
3656 
3657   if (GV->isDeclaration())
3658     getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
3659 
3660   LangAS ExpectedAS =
3661       D ? D->getType().getAddressSpace()
3662         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
3663   assert(getContext().getTargetAddressSpace(ExpectedAS) ==
3664          Ty->getPointerAddressSpace());
3665   if (AddrSpace != ExpectedAS)
3666     return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace,
3667                                                        ExpectedAS, Ty);
3668 
3669   return GV;
3670 }
3671 
3672 llvm::Constant *
3673 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) {
3674   const Decl *D = GD.getDecl();
3675 
3676   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
3677     return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
3678                                 /*DontDefer=*/false, IsForDefinition);
3679 
3680   if (isa<CXXMethodDecl>(D)) {
3681     auto FInfo =
3682         &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D));
3683     auto Ty = getTypes().GetFunctionType(*FInfo);
3684     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
3685                              IsForDefinition);
3686   }
3687 
3688   if (isa<FunctionDecl>(D)) {
3689     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3690     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3691     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
3692                              IsForDefinition);
3693   }
3694 
3695   return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition);
3696 }
3697 
3698 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
3699     StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
3700     unsigned Alignment) {
3701   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
3702   llvm::GlobalVariable *OldGV = nullptr;
3703 
3704   if (GV) {
3705     // Check if the variable has the right type.
3706     if (GV->getValueType() == Ty)
3707       return GV;
3708 
3709     // Because C++ name mangling, the only way we can end up with an already
3710     // existing global with the same name is if it has been declared extern "C".
3711     assert(GV->isDeclaration() && "Declaration has wrong type!");
3712     OldGV = GV;
3713   }
3714 
3715   // Create a new variable.
3716   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
3717                                 Linkage, nullptr, Name);
3718 
3719   if (OldGV) {
3720     // Replace occurrences of the old variable if needed.
3721     GV->takeName(OldGV);
3722 
3723     if (!OldGV->use_empty()) {
3724       llvm::Constant *NewPtrForOldDecl =
3725       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
3726       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
3727     }
3728 
3729     OldGV->eraseFromParent();
3730   }
3731 
3732   if (supportsCOMDAT() && GV->isWeakForLinker() &&
3733       !GV->hasAvailableExternallyLinkage())
3734     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3735 
3736   GV->setAlignment(llvm::MaybeAlign(Alignment));
3737 
3738   return GV;
3739 }
3740 
3741 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
3742 /// given global variable.  If Ty is non-null and if the global doesn't exist,
3743 /// then it will be created with the specified type instead of whatever the
3744 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
3745 /// that an actual global with type Ty will be returned, not conversion of a
3746 /// variable with the same mangled name but some other type.
3747 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
3748                                                   llvm::Type *Ty,
3749                                            ForDefinition_t IsForDefinition) {
3750   assert(D->hasGlobalStorage() && "Not a global variable");
3751   QualType ASTTy = D->getType();
3752   if (!Ty)
3753     Ty = getTypes().ConvertTypeForMem(ASTTy);
3754 
3755   llvm::PointerType *PTy =
3756     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
3757 
3758   StringRef MangledName = getMangledName(D);
3759   return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition);
3760 }
3761 
3762 /// CreateRuntimeVariable - Create a new runtime global variable with the
3763 /// specified type and name.
3764 llvm::Constant *
3765 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
3766                                      StringRef Name) {
3767   auto PtrTy =
3768       getContext().getLangOpts().OpenCL
3769           ? llvm::PointerType::get(
3770                 Ty, getContext().getTargetAddressSpace(LangAS::opencl_global))
3771           : llvm::PointerType::getUnqual(Ty);
3772   auto *Ret = GetOrCreateLLVMGlobal(Name, PtrTy, nullptr);
3773   setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
3774   return Ret;
3775 }
3776 
3777 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
3778   assert(!D->getInit() && "Cannot emit definite definitions here!");
3779 
3780   StringRef MangledName = getMangledName(D);
3781   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
3782 
3783   // We already have a definition, not declaration, with the same mangled name.
3784   // Emitting of declaration is not required (and actually overwrites emitted
3785   // definition).
3786   if (GV && !GV->isDeclaration())
3787     return;
3788 
3789   // If we have not seen a reference to this variable yet, place it into the
3790   // deferred declarations table to be emitted if needed later.
3791   if (!MustBeEmitted(D) && !GV) {
3792       DeferredDecls[MangledName] = D;
3793       return;
3794   }
3795 
3796   // The tentative definition is the only definition.
3797   EmitGlobalVarDefinition(D);
3798 }
3799 
3800 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) {
3801   EmitExternalVarDeclaration(D);
3802 }
3803 
3804 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
3805   return Context.toCharUnitsFromBits(
3806       getDataLayout().getTypeStoreSizeInBits(Ty));
3807 }
3808 
3809 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
3810   LangAS AddrSpace = LangAS::Default;
3811   if (LangOpts.OpenCL) {
3812     AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
3813     assert(AddrSpace == LangAS::opencl_global ||
3814            AddrSpace == LangAS::opencl_global_device ||
3815            AddrSpace == LangAS::opencl_global_host ||
3816            AddrSpace == LangAS::opencl_constant ||
3817            AddrSpace == LangAS::opencl_local ||
3818            AddrSpace >= LangAS::FirstTargetAddressSpace);
3819     return AddrSpace;
3820   }
3821 
3822   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
3823     if (D && D->hasAttr<CUDAConstantAttr>())
3824       return LangAS::cuda_constant;
3825     else if (D && D->hasAttr<CUDASharedAttr>())
3826       return LangAS::cuda_shared;
3827     else if (D && D->hasAttr<CUDADeviceAttr>())
3828       return LangAS::cuda_device;
3829     else if (D && D->getType().isConstQualified())
3830       return LangAS::cuda_constant;
3831     else
3832       return LangAS::cuda_device;
3833   }
3834 
3835   if (LangOpts.OpenMP) {
3836     LangAS AS;
3837     if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS))
3838       return AS;
3839   }
3840   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
3841 }
3842 
3843 LangAS CodeGenModule::getStringLiteralAddressSpace() const {
3844   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
3845   if (LangOpts.OpenCL)
3846     return LangAS::opencl_constant;
3847   if (auto AS = getTarget().getConstantAddressSpace())
3848     return AS.getValue();
3849   return LangAS::Default;
3850 }
3851 
3852 // In address space agnostic languages, string literals are in default address
3853 // space in AST. However, certain targets (e.g. amdgcn) request them to be
3854 // emitted in constant address space in LLVM IR. To be consistent with other
3855 // parts of AST, string literal global variables in constant address space
3856 // need to be casted to default address space before being put into address
3857 // map and referenced by other part of CodeGen.
3858 // In OpenCL, string literals are in constant address space in AST, therefore
3859 // they should not be casted to default address space.
3860 static llvm::Constant *
3861 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
3862                                        llvm::GlobalVariable *GV) {
3863   llvm::Constant *Cast = GV;
3864   if (!CGM.getLangOpts().OpenCL) {
3865     if (auto AS = CGM.getTarget().getConstantAddressSpace()) {
3866       if (AS != LangAS::Default)
3867         Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
3868             CGM, GV, AS.getValue(), LangAS::Default,
3869             GV->getValueType()->getPointerTo(
3870                 CGM.getContext().getTargetAddressSpace(LangAS::Default)));
3871     }
3872   }
3873   return Cast;
3874 }
3875 
3876 template<typename SomeDecl>
3877 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
3878                                                llvm::GlobalValue *GV) {
3879   if (!getLangOpts().CPlusPlus)
3880     return;
3881 
3882   // Must have 'used' attribute, or else inline assembly can't rely on
3883   // the name existing.
3884   if (!D->template hasAttr<UsedAttr>())
3885     return;
3886 
3887   // Must have internal linkage and an ordinary name.
3888   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
3889     return;
3890 
3891   // Must be in an extern "C" context. Entities declared directly within
3892   // a record are not extern "C" even if the record is in such a context.
3893   const SomeDecl *First = D->getFirstDecl();
3894   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
3895     return;
3896 
3897   // OK, this is an internal linkage entity inside an extern "C" linkage
3898   // specification. Make a note of that so we can give it the "expected"
3899   // mangled name if nothing else is using that name.
3900   std::pair<StaticExternCMap::iterator, bool> R =
3901       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
3902 
3903   // If we have multiple internal linkage entities with the same name
3904   // in extern "C" regions, none of them gets that name.
3905   if (!R.second)
3906     R.first->second = nullptr;
3907 }
3908 
3909 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
3910   if (!CGM.supportsCOMDAT())
3911     return false;
3912 
3913   // Do not set COMDAT attribute for CUDA/HIP stub functions to prevent
3914   // them being "merged" by the COMDAT Folding linker optimization.
3915   if (D.hasAttr<CUDAGlobalAttr>())
3916     return false;
3917 
3918   if (D.hasAttr<SelectAnyAttr>())
3919     return true;
3920 
3921   GVALinkage Linkage;
3922   if (auto *VD = dyn_cast<VarDecl>(&D))
3923     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
3924   else
3925     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
3926 
3927   switch (Linkage) {
3928   case GVA_Internal:
3929   case GVA_AvailableExternally:
3930   case GVA_StrongExternal:
3931     return false;
3932   case GVA_DiscardableODR:
3933   case GVA_StrongODR:
3934     return true;
3935   }
3936   llvm_unreachable("No such linkage");
3937 }
3938 
3939 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
3940                                           llvm::GlobalObject &GO) {
3941   if (!shouldBeInCOMDAT(*this, D))
3942     return;
3943   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
3944 }
3945 
3946 /// Pass IsTentative as true if you want to create a tentative definition.
3947 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
3948                                             bool IsTentative) {
3949   // OpenCL global variables of sampler type are translated to function calls,
3950   // therefore no need to be translated.
3951   QualType ASTTy = D->getType();
3952   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
3953     return;
3954 
3955   // If this is OpenMP device, check if it is legal to emit this global
3956   // normally.
3957   if (LangOpts.OpenMPIsDevice && OpenMPRuntime &&
3958       OpenMPRuntime->emitTargetGlobalVariable(D))
3959     return;
3960 
3961   llvm::Constant *Init = nullptr;
3962   bool NeedsGlobalCtor = false;
3963   bool NeedsGlobalDtor =
3964       D->needsDestruction(getContext()) == QualType::DK_cxx_destructor;
3965 
3966   const VarDecl *InitDecl;
3967   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
3968 
3969   Optional<ConstantEmitter> emitter;
3970 
3971   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
3972   // as part of their declaration."  Sema has already checked for
3973   // error cases, so we just need to set Init to UndefValue.
3974   bool IsCUDASharedVar =
3975       getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
3976   // Shadows of initialized device-side global variables are also left
3977   // undefined.
3978   bool IsCUDAShadowVar =
3979       !getLangOpts().CUDAIsDevice &&
3980       (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
3981        D->hasAttr<CUDASharedAttr>());
3982   bool IsCUDADeviceShadowVar =
3983       getLangOpts().CUDAIsDevice &&
3984       (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
3985        D->getType()->isCUDADeviceBuiltinTextureType());
3986   // HIP pinned shadow of initialized host-side global variables are also
3987   // left undefined.
3988   if (getLangOpts().CUDA &&
3989       (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar))
3990     Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
3991   else if (D->hasAttr<LoaderUninitializedAttr>())
3992     Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
3993   else if (!InitExpr) {
3994     // This is a tentative definition; tentative definitions are
3995     // implicitly initialized with { 0 }.
3996     //
3997     // Note that tentative definitions are only emitted at the end of
3998     // a translation unit, so they should never have incomplete
3999     // type. In addition, EmitTentativeDefinition makes sure that we
4000     // never attempt to emit a tentative definition if a real one
4001     // exists. A use may still exists, however, so we still may need
4002     // to do a RAUW.
4003     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
4004     Init = EmitNullConstant(D->getType());
4005   } else {
4006     initializedGlobalDecl = GlobalDecl(D);
4007     emitter.emplace(*this);
4008     Init = emitter->tryEmitForInitializer(*InitDecl);
4009 
4010     if (!Init) {
4011       QualType T = InitExpr->getType();
4012       if (D->getType()->isReferenceType())
4013         T = D->getType();
4014 
4015       if (getLangOpts().CPlusPlus) {
4016         Init = EmitNullConstant(T);
4017         NeedsGlobalCtor = true;
4018       } else {
4019         ErrorUnsupported(D, "static initializer");
4020         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
4021       }
4022     } else {
4023       // We don't need an initializer, so remove the entry for the delayed
4024       // initializer position (just in case this entry was delayed) if we
4025       // also don't need to register a destructor.
4026       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
4027         DelayedCXXInitPosition.erase(D);
4028     }
4029   }
4030 
4031   llvm::Type* InitType = Init->getType();
4032   llvm::Constant *Entry =
4033       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
4034 
4035   // Strip off pointer casts if we got them.
4036   Entry = Entry->stripPointerCasts();
4037 
4038   // Entry is now either a Function or GlobalVariable.
4039   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
4040 
4041   // We have a definition after a declaration with the wrong type.
4042   // We must make a new GlobalVariable* and update everything that used OldGV
4043   // (a declaration or tentative definition) with the new GlobalVariable*
4044   // (which will be a definition).
4045   //
4046   // This happens if there is a prototype for a global (e.g.
4047   // "extern int x[];") and then a definition of a different type (e.g.
4048   // "int x[10];"). This also happens when an initializer has a different type
4049   // from the type of the global (this happens with unions).
4050   if (!GV || GV->getValueType() != InitType ||
4051       GV->getType()->getAddressSpace() !=
4052           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
4053 
4054     // Move the old entry aside so that we'll create a new one.
4055     Entry->setName(StringRef());
4056 
4057     // Make a new global with the correct type, this is now guaranteed to work.
4058     GV = cast<llvm::GlobalVariable>(
4059         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))
4060             ->stripPointerCasts());
4061 
4062     // Replace all uses of the old global with the new global
4063     llvm::Constant *NewPtrForOldDecl =
4064         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
4065     Entry->replaceAllUsesWith(NewPtrForOldDecl);
4066 
4067     // Erase the old global, since it is no longer used.
4068     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
4069   }
4070 
4071   MaybeHandleStaticInExternC(D, GV);
4072 
4073   if (D->hasAttr<AnnotateAttr>())
4074     AddGlobalAnnotations(D, GV);
4075 
4076   // Set the llvm linkage type as appropriate.
4077   llvm::GlobalValue::LinkageTypes Linkage =
4078       getLLVMLinkageVarDefinition(D, GV->isConstant());
4079 
4080   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
4081   // the device. [...]"
4082   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
4083   // __device__, declares a variable that: [...]
4084   // Is accessible from all the threads within the grid and from the host
4085   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
4086   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
4087   if (GV && LangOpts.CUDA) {
4088     if (LangOpts.CUDAIsDevice) {
4089       if (Linkage != llvm::GlobalValue::InternalLinkage &&
4090           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()))
4091         GV->setExternallyInitialized(true);
4092     } else {
4093       // Host-side shadows of external declarations of device-side
4094       // global variables become internal definitions. These have to
4095       // be internal in order to prevent name conflicts with global
4096       // host variables with the same name in a different TUs.
4097       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) {
4098         Linkage = llvm::GlobalValue::InternalLinkage;
4099         // Shadow variables and their properties must be registered with CUDA
4100         // runtime. Skip Extern global variables, which will be registered in
4101         // the TU where they are defined.
4102         if (!D->hasExternalStorage())
4103           getCUDARuntime().registerDeviceVar(D, *GV, !D->hasDefinition(),
4104                                              D->hasAttr<CUDAConstantAttr>());
4105       } else if (D->hasAttr<CUDASharedAttr>()) {
4106         // __shared__ variables are odd. Shadows do get created, but
4107         // they are not registered with the CUDA runtime, so they
4108         // can't really be used to access their device-side
4109         // counterparts. It's not clear yet whether it's nvcc's bug or
4110         // a feature, but we've got to do the same for compatibility.
4111         Linkage = llvm::GlobalValue::InternalLinkage;
4112       } else if (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
4113                  D->getType()->isCUDADeviceBuiltinTextureType()) {
4114         // Builtin surfaces and textures and their template arguments are
4115         // also registered with CUDA runtime.
4116         Linkage = llvm::GlobalValue::InternalLinkage;
4117         const ClassTemplateSpecializationDecl *TD =
4118             cast<ClassTemplateSpecializationDecl>(
4119                 D->getType()->getAs<RecordType>()->getDecl());
4120         const TemplateArgumentList &Args = TD->getTemplateArgs();
4121         if (TD->hasAttr<CUDADeviceBuiltinSurfaceTypeAttr>()) {
4122           assert(Args.size() == 2 &&
4123                  "Unexpected number of template arguments of CUDA device "
4124                  "builtin surface type.");
4125           auto SurfType = Args[1].getAsIntegral();
4126           if (!D->hasExternalStorage())
4127             getCUDARuntime().registerDeviceSurf(D, *GV, !D->hasDefinition(),
4128                                                 SurfType.getSExtValue());
4129         } else {
4130           assert(Args.size() == 3 &&
4131                  "Unexpected number of template arguments of CUDA device "
4132                  "builtin texture type.");
4133           auto TexType = Args[1].getAsIntegral();
4134           auto Normalized = Args[2].getAsIntegral();
4135           if (!D->hasExternalStorage())
4136             getCUDARuntime().registerDeviceTex(D, *GV, !D->hasDefinition(),
4137                                                TexType.getSExtValue(),
4138                                                Normalized.getZExtValue());
4139         }
4140       }
4141     }
4142   }
4143 
4144   GV->setInitializer(Init);
4145   if (emitter)
4146     emitter->finalize(GV);
4147 
4148   // If it is safe to mark the global 'constant', do so now.
4149   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
4150                   isTypeConstant(D->getType(), true));
4151 
4152   // If it is in a read-only section, mark it 'constant'.
4153   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
4154     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
4155     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
4156       GV->setConstant(true);
4157   }
4158 
4159   GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
4160 
4161   // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper
4162   // function is only defined alongside the variable, not also alongside
4163   // callers. Normally, all accesses to a thread_local go through the
4164   // thread-wrapper in order to ensure initialization has occurred, underlying
4165   // variable will never be used other than the thread-wrapper, so it can be
4166   // converted to internal linkage.
4167   //
4168   // However, if the variable has the 'constinit' attribute, it _can_ be
4169   // referenced directly, without calling the thread-wrapper, so the linkage
4170   // must not be changed.
4171   //
4172   // Additionally, if the variable isn't plain external linkage, e.g. if it's
4173   // weak or linkonce, the de-duplication semantics are important to preserve,
4174   // so we don't change the linkage.
4175   if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
4176       Linkage == llvm::GlobalValue::ExternalLinkage &&
4177       Context.getTargetInfo().getTriple().isOSDarwin() &&
4178       !D->hasAttr<ConstInitAttr>())
4179     Linkage = llvm::GlobalValue::InternalLinkage;
4180 
4181   GV->setLinkage(Linkage);
4182   if (D->hasAttr<DLLImportAttr>())
4183     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
4184   else if (D->hasAttr<DLLExportAttr>())
4185     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
4186   else
4187     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
4188 
4189   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
4190     // common vars aren't constant even if declared const.
4191     GV->setConstant(false);
4192     // Tentative definition of global variables may be initialized with
4193     // non-zero null pointers. In this case they should have weak linkage
4194     // since common linkage must have zero initializer and must not have
4195     // explicit section therefore cannot have non-zero initial value.
4196     if (!GV->getInitializer()->isNullValue())
4197       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
4198   }
4199 
4200   setNonAliasAttributes(D, GV);
4201 
4202   if (D->getTLSKind() && !GV->isThreadLocal()) {
4203     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4204       CXXThreadLocals.push_back(D);
4205     setTLSMode(GV, *D);
4206   }
4207 
4208   maybeSetTrivialComdat(*D, *GV);
4209 
4210   // Emit the initializer function if necessary.
4211   if (NeedsGlobalCtor || NeedsGlobalDtor)
4212     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
4213 
4214   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
4215 
4216   // Emit global variable debug information.
4217   if (CGDebugInfo *DI = getModuleDebugInfo())
4218     if (getCodeGenOpts().hasReducedDebugInfo())
4219       DI->EmitGlobalVariable(GV, D);
4220 }
4221 
4222 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) {
4223   if (CGDebugInfo *DI = getModuleDebugInfo())
4224     if (getCodeGenOpts().hasReducedDebugInfo()) {
4225       QualType ASTTy = D->getType();
4226       llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType());
4227       llvm::PointerType *PTy =
4228           llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
4229       llvm::Constant *GV = GetOrCreateLLVMGlobal(D->getName(), PTy, D);
4230       DI->EmitExternalVariable(
4231           cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D);
4232     }
4233 }
4234 
4235 static bool isVarDeclStrongDefinition(const ASTContext &Context,
4236                                       CodeGenModule &CGM, const VarDecl *D,
4237                                       bool NoCommon) {
4238   // Don't give variables common linkage if -fno-common was specified unless it
4239   // was overridden by a NoCommon attribute.
4240   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
4241     return true;
4242 
4243   // C11 6.9.2/2:
4244   //   A declaration of an identifier for an object that has file scope without
4245   //   an initializer, and without a storage-class specifier or with the
4246   //   storage-class specifier static, constitutes a tentative definition.
4247   if (D->getInit() || D->hasExternalStorage())
4248     return true;
4249 
4250   // A variable cannot be both common and exist in a section.
4251   if (D->hasAttr<SectionAttr>())
4252     return true;
4253 
4254   // A variable cannot be both common and exist in a section.
4255   // We don't try to determine which is the right section in the front-end.
4256   // If no specialized section name is applicable, it will resort to default.
4257   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
4258       D->hasAttr<PragmaClangDataSectionAttr>() ||
4259       D->hasAttr<PragmaClangRelroSectionAttr>() ||
4260       D->hasAttr<PragmaClangRodataSectionAttr>())
4261     return true;
4262 
4263   // Thread local vars aren't considered common linkage.
4264   if (D->getTLSKind())
4265     return true;
4266 
4267   // Tentative definitions marked with WeakImportAttr are true definitions.
4268   if (D->hasAttr<WeakImportAttr>())
4269     return true;
4270 
4271   // A variable cannot be both common and exist in a comdat.
4272   if (shouldBeInCOMDAT(CGM, *D))
4273     return true;
4274 
4275   // Declarations with a required alignment do not have common linkage in MSVC
4276   // mode.
4277   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
4278     if (D->hasAttr<AlignedAttr>())
4279       return true;
4280     QualType VarType = D->getType();
4281     if (Context.isAlignmentRequired(VarType))
4282       return true;
4283 
4284     if (const auto *RT = VarType->getAs<RecordType>()) {
4285       const RecordDecl *RD = RT->getDecl();
4286       for (const FieldDecl *FD : RD->fields()) {
4287         if (FD->isBitField())
4288           continue;
4289         if (FD->hasAttr<AlignedAttr>())
4290           return true;
4291         if (Context.isAlignmentRequired(FD->getType()))
4292           return true;
4293       }
4294     }
4295   }
4296 
4297   // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
4298   // common symbols, so symbols with greater alignment requirements cannot be
4299   // common.
4300   // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
4301   // alignments for common symbols via the aligncomm directive, so this
4302   // restriction only applies to MSVC environments.
4303   if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
4304       Context.getTypeAlignIfKnown(D->getType()) >
4305           Context.toBits(CharUnits::fromQuantity(32)))
4306     return true;
4307 
4308   return false;
4309 }
4310 
4311 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
4312     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
4313   if (Linkage == GVA_Internal)
4314     return llvm::Function::InternalLinkage;
4315 
4316   if (D->hasAttr<WeakAttr>()) {
4317     if (IsConstantVariable)
4318       return llvm::GlobalVariable::WeakODRLinkage;
4319     else
4320       return llvm::GlobalVariable::WeakAnyLinkage;
4321   }
4322 
4323   if (const auto *FD = D->getAsFunction())
4324     if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
4325       return llvm::GlobalVariable::LinkOnceAnyLinkage;
4326 
4327   // We are guaranteed to have a strong definition somewhere else,
4328   // so we can use available_externally linkage.
4329   if (Linkage == GVA_AvailableExternally)
4330     return llvm::GlobalValue::AvailableExternallyLinkage;
4331 
4332   // Note that Apple's kernel linker doesn't support symbol
4333   // coalescing, so we need to avoid linkonce and weak linkages there.
4334   // Normally, this means we just map to internal, but for explicit
4335   // instantiations we'll map to external.
4336 
4337   // In C++, the compiler has to emit a definition in every translation unit
4338   // that references the function.  We should use linkonce_odr because
4339   // a) if all references in this translation unit are optimized away, we
4340   // don't need to codegen it.  b) if the function persists, it needs to be
4341   // merged with other definitions. c) C++ has the ODR, so we know the
4342   // definition is dependable.
4343   if (Linkage == GVA_DiscardableODR)
4344     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
4345                                             : llvm::Function::InternalLinkage;
4346 
4347   // An explicit instantiation of a template has weak linkage, since
4348   // explicit instantiations can occur in multiple translation units
4349   // and must all be equivalent. However, we are not allowed to
4350   // throw away these explicit instantiations.
4351   //
4352   // We don't currently support CUDA device code spread out across multiple TUs,
4353   // so say that CUDA templates are either external (for kernels) or internal.
4354   // This lets llvm perform aggressive inter-procedural optimizations.
4355   if (Linkage == GVA_StrongODR) {
4356     if (Context.getLangOpts().AppleKext)
4357       return llvm::Function::ExternalLinkage;
4358     if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice)
4359       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
4360                                           : llvm::Function::InternalLinkage;
4361     return llvm::Function::WeakODRLinkage;
4362   }
4363 
4364   // C++ doesn't have tentative definitions and thus cannot have common
4365   // linkage.
4366   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
4367       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
4368                                  CodeGenOpts.NoCommon))
4369     return llvm::GlobalVariable::CommonLinkage;
4370 
4371   // selectany symbols are externally visible, so use weak instead of
4372   // linkonce.  MSVC optimizes away references to const selectany globals, so
4373   // all definitions should be the same and ODR linkage should be used.
4374   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
4375   if (D->hasAttr<SelectAnyAttr>())
4376     return llvm::GlobalVariable::WeakODRLinkage;
4377 
4378   // Otherwise, we have strong external linkage.
4379   assert(Linkage == GVA_StrongExternal);
4380   return llvm::GlobalVariable::ExternalLinkage;
4381 }
4382 
4383 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
4384     const VarDecl *VD, bool IsConstant) {
4385   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
4386   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
4387 }
4388 
4389 /// Replace the uses of a function that was declared with a non-proto type.
4390 /// We want to silently drop extra arguments from call sites
4391 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
4392                                           llvm::Function *newFn) {
4393   // Fast path.
4394   if (old->use_empty()) return;
4395 
4396   llvm::Type *newRetTy = newFn->getReturnType();
4397   SmallVector<llvm::Value*, 4> newArgs;
4398   SmallVector<llvm::OperandBundleDef, 1> newBundles;
4399 
4400   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
4401          ui != ue; ) {
4402     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
4403     llvm::User *user = use->getUser();
4404 
4405     // Recognize and replace uses of bitcasts.  Most calls to
4406     // unprototyped functions will use bitcasts.
4407     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
4408       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
4409         replaceUsesOfNonProtoConstant(bitcast, newFn);
4410       continue;
4411     }
4412 
4413     // Recognize calls to the function.
4414     llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
4415     if (!callSite) continue;
4416     if (!callSite->isCallee(&*use))
4417       continue;
4418 
4419     // If the return types don't match exactly, then we can't
4420     // transform this call unless it's dead.
4421     if (callSite->getType() != newRetTy && !callSite->use_empty())
4422       continue;
4423 
4424     // Get the call site's attribute list.
4425     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
4426     llvm::AttributeList oldAttrs = callSite->getAttributes();
4427 
4428     // If the function was passed too few arguments, don't transform.
4429     unsigned newNumArgs = newFn->arg_size();
4430     if (callSite->arg_size() < newNumArgs)
4431       continue;
4432 
4433     // If extra arguments were passed, we silently drop them.
4434     // If any of the types mismatch, we don't transform.
4435     unsigned argNo = 0;
4436     bool dontTransform = false;
4437     for (llvm::Argument &A : newFn->args()) {
4438       if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
4439         dontTransform = true;
4440         break;
4441       }
4442 
4443       // Add any parameter attributes.
4444       newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo));
4445       argNo++;
4446     }
4447     if (dontTransform)
4448       continue;
4449 
4450     // Okay, we can transform this.  Create the new call instruction and copy
4451     // over the required information.
4452     newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
4453 
4454     // Copy over any operand bundles.
4455     callSite->getOperandBundlesAsDefs(newBundles);
4456 
4457     llvm::CallBase *newCall;
4458     if (dyn_cast<llvm::CallInst>(callSite)) {
4459       newCall =
4460           llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite);
4461     } else {
4462       auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
4463       newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(),
4464                                          oldInvoke->getUnwindDest(), newArgs,
4465                                          newBundles, "", callSite);
4466     }
4467     newArgs.clear(); // for the next iteration
4468 
4469     if (!newCall->getType()->isVoidTy())
4470       newCall->takeName(callSite);
4471     newCall->setAttributes(llvm::AttributeList::get(
4472         newFn->getContext(), oldAttrs.getFnAttributes(),
4473         oldAttrs.getRetAttributes(), newArgAttrs));
4474     newCall->setCallingConv(callSite->getCallingConv());
4475 
4476     // Finally, remove the old call, replacing any uses with the new one.
4477     if (!callSite->use_empty())
4478       callSite->replaceAllUsesWith(newCall);
4479 
4480     // Copy debug location attached to CI.
4481     if (callSite->getDebugLoc())
4482       newCall->setDebugLoc(callSite->getDebugLoc());
4483 
4484     callSite->eraseFromParent();
4485   }
4486 }
4487 
4488 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
4489 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
4490 /// existing call uses of the old function in the module, this adjusts them to
4491 /// call the new function directly.
4492 ///
4493 /// This is not just a cleanup: the always_inline pass requires direct calls to
4494 /// functions to be able to inline them.  If there is a bitcast in the way, it
4495 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
4496 /// run at -O0.
4497 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
4498                                                       llvm::Function *NewFn) {
4499   // If we're redefining a global as a function, don't transform it.
4500   if (!isa<llvm::Function>(Old)) return;
4501 
4502   replaceUsesOfNonProtoConstant(Old, NewFn);
4503 }
4504 
4505 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
4506   auto DK = VD->isThisDeclarationADefinition();
4507   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
4508     return;
4509 
4510   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
4511   // If we have a definition, this might be a deferred decl. If the
4512   // instantiation is explicit, make sure we emit it at the end.
4513   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
4514     GetAddrOfGlobalVar(VD);
4515 
4516   EmitTopLevelDecl(VD);
4517 }
4518 
4519 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
4520                                                  llvm::GlobalValue *GV) {
4521   const auto *D = cast<FunctionDecl>(GD.getDecl());
4522 
4523   // Compute the function info and LLVM type.
4524   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4525   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4526 
4527   // Get or create the prototype for the function.
4528   if (!GV || (GV->getValueType() != Ty))
4529     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
4530                                                    /*DontDefer=*/true,
4531                                                    ForDefinition));
4532 
4533   // Already emitted.
4534   if (!GV->isDeclaration())
4535     return;
4536 
4537   // We need to set linkage and visibility on the function before
4538   // generating code for it because various parts of IR generation
4539   // want to propagate this information down (e.g. to local static
4540   // declarations).
4541   auto *Fn = cast<llvm::Function>(GV);
4542   setFunctionLinkage(GD, Fn);
4543 
4544   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
4545   setGVProperties(Fn, GD);
4546 
4547   MaybeHandleStaticInExternC(D, Fn);
4548 
4549 
4550   maybeSetTrivialComdat(*D, *Fn);
4551 
4552   CodeGenFunction(*this).GenerateCode(GD, Fn, FI);
4553 
4554   setNonAliasAttributes(GD, Fn);
4555   SetLLVMFunctionAttributesForDefinition(D, Fn);
4556 
4557   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
4558     AddGlobalCtor(Fn, CA->getPriority());
4559   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
4560     AddGlobalDtor(Fn, DA->getPriority());
4561   if (D->hasAttr<AnnotateAttr>())
4562     AddGlobalAnnotations(D, Fn);
4563 }
4564 
4565 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
4566   const auto *D = cast<ValueDecl>(GD.getDecl());
4567   const AliasAttr *AA = D->getAttr<AliasAttr>();
4568   assert(AA && "Not an alias?");
4569 
4570   StringRef MangledName = getMangledName(GD);
4571 
4572   if (AA->getAliasee() == MangledName) {
4573     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
4574     return;
4575   }
4576 
4577   // If there is a definition in the module, then it wins over the alias.
4578   // This is dubious, but allow it to be safe.  Just ignore the alias.
4579   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4580   if (Entry && !Entry->isDeclaration())
4581     return;
4582 
4583   Aliases.push_back(GD);
4584 
4585   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
4586 
4587   // Create a reference to the named value.  This ensures that it is emitted
4588   // if a deferred decl.
4589   llvm::Constant *Aliasee;
4590   llvm::GlobalValue::LinkageTypes LT;
4591   if (isa<llvm::FunctionType>(DeclTy)) {
4592     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
4593                                       /*ForVTable=*/false);
4594     LT = getFunctionLinkage(GD);
4595   } else {
4596     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
4597                                     llvm::PointerType::getUnqual(DeclTy),
4598                                     /*D=*/nullptr);
4599     LT = getLLVMLinkageVarDefinition(cast<VarDecl>(GD.getDecl()),
4600                                      D->getType().isConstQualified());
4601   }
4602 
4603   // Create the new alias itself, but don't set a name yet.
4604   unsigned AS = Aliasee->getType()->getPointerAddressSpace();
4605   auto *GA =
4606       llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule());
4607 
4608   if (Entry) {
4609     if (GA->getAliasee() == Entry) {
4610       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
4611       return;
4612     }
4613 
4614     assert(Entry->isDeclaration());
4615 
4616     // If there is a declaration in the module, then we had an extern followed
4617     // by the alias, as in:
4618     //   extern int test6();
4619     //   ...
4620     //   int test6() __attribute__((alias("test7")));
4621     //
4622     // Remove it and replace uses of it with the alias.
4623     GA->takeName(Entry);
4624 
4625     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
4626                                                           Entry->getType()));
4627     Entry->eraseFromParent();
4628   } else {
4629     GA->setName(MangledName);
4630   }
4631 
4632   // Set attributes which are particular to an alias; this is a
4633   // specialization of the attributes which may be set on a global
4634   // variable/function.
4635   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
4636       D->isWeakImported()) {
4637     GA->setLinkage(llvm::Function::WeakAnyLinkage);
4638   }
4639 
4640   if (const auto *VD = dyn_cast<VarDecl>(D))
4641     if (VD->getTLSKind())
4642       setTLSMode(GA, *VD);
4643 
4644   SetCommonAttributes(GD, GA);
4645 }
4646 
4647 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
4648   const auto *D = cast<ValueDecl>(GD.getDecl());
4649   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
4650   assert(IFA && "Not an ifunc?");
4651 
4652   StringRef MangledName = getMangledName(GD);
4653 
4654   if (IFA->getResolver() == MangledName) {
4655     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
4656     return;
4657   }
4658 
4659   // Report an error if some definition overrides ifunc.
4660   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4661   if (Entry && !Entry->isDeclaration()) {
4662     GlobalDecl OtherGD;
4663     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
4664         DiagnosedConflictingDefinitions.insert(GD).second) {
4665       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
4666           << MangledName;
4667       Diags.Report(OtherGD.getDecl()->getLocation(),
4668                    diag::note_previous_definition);
4669     }
4670     return;
4671   }
4672 
4673   Aliases.push_back(GD);
4674 
4675   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
4676   llvm::Constant *Resolver =
4677       GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD,
4678                               /*ForVTable=*/false);
4679   llvm::GlobalIFunc *GIF =
4680       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
4681                                 "", Resolver, &getModule());
4682   if (Entry) {
4683     if (GIF->getResolver() == Entry) {
4684       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
4685       return;
4686     }
4687     assert(Entry->isDeclaration());
4688 
4689     // If there is a declaration in the module, then we had an extern followed
4690     // by the ifunc, as in:
4691     //   extern int test();
4692     //   ...
4693     //   int test() __attribute__((ifunc("resolver")));
4694     //
4695     // Remove it and replace uses of it with the ifunc.
4696     GIF->takeName(Entry);
4697 
4698     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
4699                                                           Entry->getType()));
4700     Entry->eraseFromParent();
4701   } else
4702     GIF->setName(MangledName);
4703 
4704   SetCommonAttributes(GD, GIF);
4705 }
4706 
4707 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
4708                                             ArrayRef<llvm::Type*> Tys) {
4709   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
4710                                          Tys);
4711 }
4712 
4713 static llvm::StringMapEntry<llvm::GlobalVariable *> &
4714 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
4715                          const StringLiteral *Literal, bool TargetIsLSB,
4716                          bool &IsUTF16, unsigned &StringLength) {
4717   StringRef String = Literal->getString();
4718   unsigned NumBytes = String.size();
4719 
4720   // Check for simple case.
4721   if (!Literal->containsNonAsciiOrNull()) {
4722     StringLength = NumBytes;
4723     return *Map.insert(std::make_pair(String, nullptr)).first;
4724   }
4725 
4726   // Otherwise, convert the UTF8 literals into a string of shorts.
4727   IsUTF16 = true;
4728 
4729   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
4730   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
4731   llvm::UTF16 *ToPtr = &ToBuf[0];
4732 
4733   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
4734                                  ToPtr + NumBytes, llvm::strictConversion);
4735 
4736   // ConvertUTF8toUTF16 returns the length in ToPtr.
4737   StringLength = ToPtr - &ToBuf[0];
4738 
4739   // Add an explicit null.
4740   *ToPtr = 0;
4741   return *Map.insert(std::make_pair(
4742                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
4743                                    (StringLength + 1) * 2),
4744                          nullptr)).first;
4745 }
4746 
4747 ConstantAddress
4748 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
4749   unsigned StringLength = 0;
4750   bool isUTF16 = false;
4751   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
4752       GetConstantCFStringEntry(CFConstantStringMap, Literal,
4753                                getDataLayout().isLittleEndian(), isUTF16,
4754                                StringLength);
4755 
4756   if (auto *C = Entry.second)
4757     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
4758 
4759   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
4760   llvm::Constant *Zeros[] = { Zero, Zero };
4761 
4762   const ASTContext &Context = getContext();
4763   const llvm::Triple &Triple = getTriple();
4764 
4765   const auto CFRuntime = getLangOpts().CFRuntime;
4766   const bool IsSwiftABI =
4767       static_cast<unsigned>(CFRuntime) >=
4768       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
4769   const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
4770 
4771   // If we don't already have it, get __CFConstantStringClassReference.
4772   if (!CFConstantStringClassRef) {
4773     const char *CFConstantStringClassName = "__CFConstantStringClassReference";
4774     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
4775     Ty = llvm::ArrayType::get(Ty, 0);
4776 
4777     switch (CFRuntime) {
4778     default: break;
4779     case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH;
4780     case LangOptions::CoreFoundationABI::Swift5_0:
4781       CFConstantStringClassName =
4782           Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
4783                               : "$s10Foundation19_NSCFConstantStringCN";
4784       Ty = IntPtrTy;
4785       break;
4786     case LangOptions::CoreFoundationABI::Swift4_2:
4787       CFConstantStringClassName =
4788           Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
4789                               : "$S10Foundation19_NSCFConstantStringCN";
4790       Ty = IntPtrTy;
4791       break;
4792     case LangOptions::CoreFoundationABI::Swift4_1:
4793       CFConstantStringClassName =
4794           Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
4795                               : "__T010Foundation19_NSCFConstantStringCN";
4796       Ty = IntPtrTy;
4797       break;
4798     }
4799 
4800     llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
4801 
4802     if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
4803       llvm::GlobalValue *GV = nullptr;
4804 
4805       if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
4806         IdentifierInfo &II = Context.Idents.get(GV->getName());
4807         TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
4808         DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
4809 
4810         const VarDecl *VD = nullptr;
4811         for (const auto &Result : DC->lookup(&II))
4812           if ((VD = dyn_cast<VarDecl>(Result)))
4813             break;
4814 
4815         if (Triple.isOSBinFormatELF()) {
4816           if (!VD)
4817             GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
4818         } else {
4819           GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
4820           if (!VD || !VD->hasAttr<DLLExportAttr>())
4821             GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
4822           else
4823             GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
4824         }
4825 
4826         setDSOLocal(GV);
4827       }
4828     }
4829 
4830     // Decay array -> ptr
4831     CFConstantStringClassRef =
4832         IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty)
4833                    : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros);
4834   }
4835 
4836   QualType CFTy = Context.getCFConstantStringType();
4837 
4838   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
4839 
4840   ConstantInitBuilder Builder(*this);
4841   auto Fields = Builder.beginStruct(STy);
4842 
4843   // Class pointer.
4844   Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef));
4845 
4846   // Flags.
4847   if (IsSwiftABI) {
4848     Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
4849     Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
4850   } else {
4851     Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
4852   }
4853 
4854   // String pointer.
4855   llvm::Constant *C = nullptr;
4856   if (isUTF16) {
4857     auto Arr = llvm::makeArrayRef(
4858         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
4859         Entry.first().size() / 2);
4860     C = llvm::ConstantDataArray::get(VMContext, Arr);
4861   } else {
4862     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
4863   }
4864 
4865   // Note: -fwritable-strings doesn't make the backing store strings of
4866   // CFStrings writable. (See <rdar://problem/10657500>)
4867   auto *GV =
4868       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
4869                                llvm::GlobalValue::PrivateLinkage, C, ".str");
4870   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
4871   // Don't enforce the target's minimum global alignment, since the only use
4872   // of the string is via this class initializer.
4873   CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
4874                             : Context.getTypeAlignInChars(Context.CharTy);
4875   GV->setAlignment(Align.getAsAlign());
4876 
4877   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
4878   // Without it LLVM can merge the string with a non unnamed_addr one during
4879   // LTO.  Doing that changes the section it ends in, which surprises ld64.
4880   if (Triple.isOSBinFormatMachO())
4881     GV->setSection(isUTF16 ? "__TEXT,__ustring"
4882                            : "__TEXT,__cstring,cstring_literals");
4883   // Make sure the literal ends up in .rodata to allow for safe ICF and for
4884   // the static linker to adjust permissions to read-only later on.
4885   else if (Triple.isOSBinFormatELF())
4886     GV->setSection(".rodata");
4887 
4888   // String.
4889   llvm::Constant *Str =
4890       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
4891 
4892   if (isUTF16)
4893     // Cast the UTF16 string to the correct type.
4894     Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
4895   Fields.add(Str);
4896 
4897   // String length.
4898   llvm::IntegerType *LengthTy =
4899       llvm::IntegerType::get(getModule().getContext(),
4900                              Context.getTargetInfo().getLongWidth());
4901   if (IsSwiftABI) {
4902     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
4903         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
4904       LengthTy = Int32Ty;
4905     else
4906       LengthTy = IntPtrTy;
4907   }
4908   Fields.addInt(LengthTy, StringLength);
4909 
4910   // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is
4911   // properly aligned on 32-bit platforms.
4912   CharUnits Alignment =
4913       IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign();
4914 
4915   // The struct.
4916   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
4917                                     /*isConstant=*/false,
4918                                     llvm::GlobalVariable::PrivateLinkage);
4919   GV->addAttribute("objc_arc_inert");
4920   switch (Triple.getObjectFormat()) {
4921   case llvm::Triple::UnknownObjectFormat:
4922     llvm_unreachable("unknown file format");
4923   case llvm::Triple::GOFF:
4924     llvm_unreachable("GOFF is not yet implemented");
4925   case llvm::Triple::XCOFF:
4926     llvm_unreachable("XCOFF is not yet implemented");
4927   case llvm::Triple::COFF:
4928   case llvm::Triple::ELF:
4929   case llvm::Triple::Wasm:
4930     GV->setSection("cfstring");
4931     break;
4932   case llvm::Triple::MachO:
4933     GV->setSection("__DATA,__cfstring");
4934     break;
4935   }
4936   Entry.second = GV;
4937 
4938   return ConstantAddress(GV, Alignment);
4939 }
4940 
4941 bool CodeGenModule::getExpressionLocationsEnabled() const {
4942   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
4943 }
4944 
4945 QualType CodeGenModule::getObjCFastEnumerationStateType() {
4946   if (ObjCFastEnumerationStateType.isNull()) {
4947     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
4948     D->startDefinition();
4949 
4950     QualType FieldTypes[] = {
4951       Context.UnsignedLongTy,
4952       Context.getPointerType(Context.getObjCIdType()),
4953       Context.getPointerType(Context.UnsignedLongTy),
4954       Context.getConstantArrayType(Context.UnsignedLongTy,
4955                            llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0)
4956     };
4957 
4958     for (size_t i = 0; i < 4; ++i) {
4959       FieldDecl *Field = FieldDecl::Create(Context,
4960                                            D,
4961                                            SourceLocation(),
4962                                            SourceLocation(), nullptr,
4963                                            FieldTypes[i], /*TInfo=*/nullptr,
4964                                            /*BitWidth=*/nullptr,
4965                                            /*Mutable=*/false,
4966                                            ICIS_NoInit);
4967       Field->setAccess(AS_public);
4968       D->addDecl(Field);
4969     }
4970 
4971     D->completeDefinition();
4972     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
4973   }
4974 
4975   return ObjCFastEnumerationStateType;
4976 }
4977 
4978 llvm::Constant *
4979 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
4980   assert(!E->getType()->isPointerType() && "Strings are always arrays");
4981 
4982   // Don't emit it as the address of the string, emit the string data itself
4983   // as an inline array.
4984   if (E->getCharByteWidth() == 1) {
4985     SmallString<64> Str(E->getString());
4986 
4987     // Resize the string to the right size, which is indicated by its type.
4988     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
4989     Str.resize(CAT->getSize().getZExtValue());
4990     return llvm::ConstantDataArray::getString(VMContext, Str, false);
4991   }
4992 
4993   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
4994   llvm::Type *ElemTy = AType->getElementType();
4995   unsigned NumElements = AType->getNumElements();
4996 
4997   // Wide strings have either 2-byte or 4-byte elements.
4998   if (ElemTy->getPrimitiveSizeInBits() == 16) {
4999     SmallVector<uint16_t, 32> Elements;
5000     Elements.reserve(NumElements);
5001 
5002     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
5003       Elements.push_back(E->getCodeUnit(i));
5004     Elements.resize(NumElements);
5005     return llvm::ConstantDataArray::get(VMContext, Elements);
5006   }
5007 
5008   assert(ElemTy->getPrimitiveSizeInBits() == 32);
5009   SmallVector<uint32_t, 32> Elements;
5010   Elements.reserve(NumElements);
5011 
5012   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
5013     Elements.push_back(E->getCodeUnit(i));
5014   Elements.resize(NumElements);
5015   return llvm::ConstantDataArray::get(VMContext, Elements);
5016 }
5017 
5018 static llvm::GlobalVariable *
5019 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
5020                       CodeGenModule &CGM, StringRef GlobalName,
5021                       CharUnits Alignment) {
5022   unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
5023       CGM.getStringLiteralAddressSpace());
5024 
5025   llvm::Module &M = CGM.getModule();
5026   // Create a global variable for this string
5027   auto *GV = new llvm::GlobalVariable(
5028       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
5029       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
5030   GV->setAlignment(Alignment.getAsAlign());
5031   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5032   if (GV->isWeakForLinker()) {
5033     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
5034     GV->setComdat(M.getOrInsertComdat(GV->getName()));
5035   }
5036   CGM.setDSOLocal(GV);
5037 
5038   return GV;
5039 }
5040 
5041 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
5042 /// constant array for the given string literal.
5043 ConstantAddress
5044 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
5045                                                   StringRef Name) {
5046   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
5047 
5048   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
5049   llvm::GlobalVariable **Entry = nullptr;
5050   if (!LangOpts.WritableStrings) {
5051     Entry = &ConstantStringMap[C];
5052     if (auto GV = *Entry) {
5053       if (Alignment.getQuantity() > GV->getAlignment())
5054         GV->setAlignment(Alignment.getAsAlign());
5055       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5056                              Alignment);
5057     }
5058   }
5059 
5060   SmallString<256> MangledNameBuffer;
5061   StringRef GlobalVariableName;
5062   llvm::GlobalValue::LinkageTypes LT;
5063 
5064   // Mangle the string literal if that's how the ABI merges duplicate strings.
5065   // Don't do it if they are writable, since we don't want writes in one TU to
5066   // affect strings in another.
5067   if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
5068       !LangOpts.WritableStrings) {
5069     llvm::raw_svector_ostream Out(MangledNameBuffer);
5070     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
5071     LT = llvm::GlobalValue::LinkOnceODRLinkage;
5072     GlobalVariableName = MangledNameBuffer;
5073   } else {
5074     LT = llvm::GlobalValue::PrivateLinkage;
5075     GlobalVariableName = Name;
5076   }
5077 
5078   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
5079   if (Entry)
5080     *Entry = GV;
5081 
5082   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
5083                                   QualType());
5084 
5085   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5086                          Alignment);
5087 }
5088 
5089 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
5090 /// array for the given ObjCEncodeExpr node.
5091 ConstantAddress
5092 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
5093   std::string Str;
5094   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
5095 
5096   return GetAddrOfConstantCString(Str);
5097 }
5098 
5099 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
5100 /// the literal and a terminating '\0' character.
5101 /// The result has pointer to array type.
5102 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
5103     const std::string &Str, const char *GlobalName) {
5104   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
5105   CharUnits Alignment =
5106     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
5107 
5108   llvm::Constant *C =
5109       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
5110 
5111   // Don't share any string literals if strings aren't constant.
5112   llvm::GlobalVariable **Entry = nullptr;
5113   if (!LangOpts.WritableStrings) {
5114     Entry = &ConstantStringMap[C];
5115     if (auto GV = *Entry) {
5116       if (Alignment.getQuantity() > GV->getAlignment())
5117         GV->setAlignment(Alignment.getAsAlign());
5118       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5119                              Alignment);
5120     }
5121   }
5122 
5123   // Get the default prefix if a name wasn't specified.
5124   if (!GlobalName)
5125     GlobalName = ".str";
5126   // Create a global variable for this.
5127   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
5128                                   GlobalName, Alignment);
5129   if (Entry)
5130     *Entry = GV;
5131 
5132   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5133                          Alignment);
5134 }
5135 
5136 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
5137     const MaterializeTemporaryExpr *E, const Expr *Init) {
5138   assert((E->getStorageDuration() == SD_Static ||
5139           E->getStorageDuration() == SD_Thread) && "not a global temporary");
5140   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
5141 
5142   // If we're not materializing a subobject of the temporary, keep the
5143   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
5144   QualType MaterializedType = Init->getType();
5145   if (Init == E->getSubExpr())
5146     MaterializedType = E->getType();
5147 
5148   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
5149 
5150   if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E])
5151     return ConstantAddress(Slot, Align);
5152 
5153   // FIXME: If an externally-visible declaration extends multiple temporaries,
5154   // we need to give each temporary the same name in every translation unit (and
5155   // we also need to make the temporaries externally-visible).
5156   SmallString<256> Name;
5157   llvm::raw_svector_ostream Out(Name);
5158   getCXXABI().getMangleContext().mangleReferenceTemporary(
5159       VD, E->getManglingNumber(), Out);
5160 
5161   APValue *Value = nullptr;
5162   if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) {
5163     // If the initializer of the extending declaration is a constant
5164     // initializer, we should have a cached constant initializer for this
5165     // temporary. Note that this might have a different value from the value
5166     // computed by evaluating the initializer if the surrounding constant
5167     // expression modifies the temporary.
5168     Value = E->getOrCreateValue(false);
5169   }
5170 
5171   // Try evaluating it now, it might have a constant initializer.
5172   Expr::EvalResult EvalResult;
5173   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
5174       !EvalResult.hasSideEffects())
5175     Value = &EvalResult.Val;
5176 
5177   LangAS AddrSpace =
5178       VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
5179 
5180   Optional<ConstantEmitter> emitter;
5181   llvm::Constant *InitialValue = nullptr;
5182   bool Constant = false;
5183   llvm::Type *Type;
5184   if (Value) {
5185     // The temporary has a constant initializer, use it.
5186     emitter.emplace(*this);
5187     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
5188                                                MaterializedType);
5189     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
5190     Type = InitialValue->getType();
5191   } else {
5192     // No initializer, the initialization will be provided when we
5193     // initialize the declaration which performed lifetime extension.
5194     Type = getTypes().ConvertTypeForMem(MaterializedType);
5195   }
5196 
5197   // Create a global variable for this lifetime-extended temporary.
5198   llvm::GlobalValue::LinkageTypes Linkage =
5199       getLLVMLinkageVarDefinition(VD, Constant);
5200   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
5201     const VarDecl *InitVD;
5202     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
5203         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
5204       // Temporaries defined inside a class get linkonce_odr linkage because the
5205       // class can be defined in multiple translation units.
5206       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
5207     } else {
5208       // There is no need for this temporary to have external linkage if the
5209       // VarDecl has external linkage.
5210       Linkage = llvm::GlobalVariable::InternalLinkage;
5211     }
5212   }
5213   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
5214   auto *GV = new llvm::GlobalVariable(
5215       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
5216       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
5217   if (emitter) emitter->finalize(GV);
5218   setGVProperties(GV, VD);
5219   GV->setAlignment(Align.getAsAlign());
5220   if (supportsCOMDAT() && GV->isWeakForLinker())
5221     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
5222   if (VD->getTLSKind())
5223     setTLSMode(GV, *VD);
5224   llvm::Constant *CV = GV;
5225   if (AddrSpace != LangAS::Default)
5226     CV = getTargetCodeGenInfo().performAddrSpaceCast(
5227         *this, GV, AddrSpace, LangAS::Default,
5228         Type->getPointerTo(
5229             getContext().getTargetAddressSpace(LangAS::Default)));
5230   MaterializedGlobalTemporaryMap[E] = CV;
5231   return ConstantAddress(CV, Align);
5232 }
5233 
5234 /// EmitObjCPropertyImplementations - Emit information for synthesized
5235 /// properties for an implementation.
5236 void CodeGenModule::EmitObjCPropertyImplementations(const
5237                                                     ObjCImplementationDecl *D) {
5238   for (const auto *PID : D->property_impls()) {
5239     // Dynamic is just for type-checking.
5240     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
5241       ObjCPropertyDecl *PD = PID->getPropertyDecl();
5242 
5243       // Determine which methods need to be implemented, some may have
5244       // been overridden. Note that ::isPropertyAccessor is not the method
5245       // we want, that just indicates if the decl came from a
5246       // property. What we want to know is if the method is defined in
5247       // this implementation.
5248       auto *Getter = PID->getGetterMethodDecl();
5249       if (!Getter || Getter->isSynthesizedAccessorStub())
5250         CodeGenFunction(*this).GenerateObjCGetter(
5251             const_cast<ObjCImplementationDecl *>(D), PID);
5252       auto *Setter = PID->getSetterMethodDecl();
5253       if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub()))
5254         CodeGenFunction(*this).GenerateObjCSetter(
5255                                  const_cast<ObjCImplementationDecl *>(D), PID);
5256     }
5257   }
5258 }
5259 
5260 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
5261   const ObjCInterfaceDecl *iface = impl->getClassInterface();
5262   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
5263        ivar; ivar = ivar->getNextIvar())
5264     if (ivar->getType().isDestructedType())
5265       return true;
5266 
5267   return false;
5268 }
5269 
5270 static bool AllTrivialInitializers(CodeGenModule &CGM,
5271                                    ObjCImplementationDecl *D) {
5272   CodeGenFunction CGF(CGM);
5273   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
5274        E = D->init_end(); B != E; ++B) {
5275     CXXCtorInitializer *CtorInitExp = *B;
5276     Expr *Init = CtorInitExp->getInit();
5277     if (!CGF.isTrivialInitializer(Init))
5278       return false;
5279   }
5280   return true;
5281 }
5282 
5283 /// EmitObjCIvarInitializations - Emit information for ivar initialization
5284 /// for an implementation.
5285 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
5286   // We might need a .cxx_destruct even if we don't have any ivar initializers.
5287   if (needsDestructMethod(D)) {
5288     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
5289     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5290     ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(
5291         getContext(), D->getLocation(), D->getLocation(), cxxSelector,
5292         getContext().VoidTy, nullptr, D,
5293         /*isInstance=*/true, /*isVariadic=*/false,
5294         /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
5295         /*isImplicitlyDeclared=*/true,
5296         /*isDefined=*/false, ObjCMethodDecl::Required);
5297     D->addInstanceMethod(DTORMethod);
5298     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
5299     D->setHasDestructors(true);
5300   }
5301 
5302   // If the implementation doesn't have any ivar initializers, we don't need
5303   // a .cxx_construct.
5304   if (D->getNumIvarInitializers() == 0 ||
5305       AllTrivialInitializers(*this, D))
5306     return;
5307 
5308   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
5309   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5310   // The constructor returns 'self'.
5311   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(
5312       getContext(), D->getLocation(), D->getLocation(), cxxSelector,
5313       getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true,
5314       /*isVariadic=*/false,
5315       /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
5316       /*isImplicitlyDeclared=*/true,
5317       /*isDefined=*/false, ObjCMethodDecl::Required);
5318   D->addInstanceMethod(CTORMethod);
5319   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
5320   D->setHasNonZeroConstructors(true);
5321 }
5322 
5323 // EmitLinkageSpec - Emit all declarations in a linkage spec.
5324 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
5325   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
5326       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
5327     ErrorUnsupported(LSD, "linkage spec");
5328     return;
5329   }
5330 
5331   EmitDeclContext(LSD);
5332 }
5333 
5334 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
5335   for (auto *I : DC->decls()) {
5336     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
5337     // are themselves considered "top-level", so EmitTopLevelDecl on an
5338     // ObjCImplDecl does not recursively visit them. We need to do that in
5339     // case they're nested inside another construct (LinkageSpecDecl /
5340     // ExportDecl) that does stop them from being considered "top-level".
5341     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
5342       for (auto *M : OID->methods())
5343         EmitTopLevelDecl(M);
5344     }
5345 
5346     EmitTopLevelDecl(I);
5347   }
5348 }
5349 
5350 /// EmitTopLevelDecl - Emit code for a single top level declaration.
5351 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
5352   // Ignore dependent declarations.
5353   if (D->isTemplated())
5354     return;
5355 
5356   // Consteval function shouldn't be emitted.
5357   if (auto *FD = dyn_cast<FunctionDecl>(D))
5358     if (FD->isConsteval())
5359       return;
5360 
5361   switch (D->getKind()) {
5362   case Decl::CXXConversion:
5363   case Decl::CXXMethod:
5364   case Decl::Function:
5365     EmitGlobal(cast<FunctionDecl>(D));
5366     // Always provide some coverage mapping
5367     // even for the functions that aren't emitted.
5368     AddDeferredUnusedCoverageMapping(D);
5369     break;
5370 
5371   case Decl::CXXDeductionGuide:
5372     // Function-like, but does not result in code emission.
5373     break;
5374 
5375   case Decl::Var:
5376   case Decl::Decomposition:
5377   case Decl::VarTemplateSpecialization:
5378     EmitGlobal(cast<VarDecl>(D));
5379     if (auto *DD = dyn_cast<DecompositionDecl>(D))
5380       for (auto *B : DD->bindings())
5381         if (auto *HD = B->getHoldingVar())
5382           EmitGlobal(HD);
5383     break;
5384 
5385   // Indirect fields from global anonymous structs and unions can be
5386   // ignored; only the actual variable requires IR gen support.
5387   case Decl::IndirectField:
5388     break;
5389 
5390   // C++ Decls
5391   case Decl::Namespace:
5392     EmitDeclContext(cast<NamespaceDecl>(D));
5393     break;
5394   case Decl::ClassTemplateSpecialization: {
5395     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
5396     if (CGDebugInfo *DI = getModuleDebugInfo())
5397       if (Spec->getSpecializationKind() ==
5398               TSK_ExplicitInstantiationDefinition &&
5399           Spec->hasDefinition())
5400         DI->completeTemplateDefinition(*Spec);
5401   } LLVM_FALLTHROUGH;
5402   case Decl::CXXRecord: {
5403     CXXRecordDecl *CRD = cast<CXXRecordDecl>(D);
5404     if (CGDebugInfo *DI = getModuleDebugInfo()) {
5405       if (CRD->hasDefinition())
5406         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
5407       if (auto *ES = D->getASTContext().getExternalSource())
5408         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
5409           DI->completeUnusedClass(*CRD);
5410     }
5411     // Emit any static data members, they may be definitions.
5412     for (auto *I : CRD->decls())
5413       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
5414         EmitTopLevelDecl(I);
5415     break;
5416   }
5417     // No code generation needed.
5418   case Decl::UsingShadow:
5419   case Decl::ClassTemplate:
5420   case Decl::VarTemplate:
5421   case Decl::Concept:
5422   case Decl::VarTemplatePartialSpecialization:
5423   case Decl::FunctionTemplate:
5424   case Decl::TypeAliasTemplate:
5425   case Decl::Block:
5426   case Decl::Empty:
5427   case Decl::Binding:
5428     break;
5429   case Decl::Using:          // using X; [C++]
5430     if (CGDebugInfo *DI = getModuleDebugInfo())
5431         DI->EmitUsingDecl(cast<UsingDecl>(*D));
5432     break;
5433   case Decl::NamespaceAlias:
5434     if (CGDebugInfo *DI = getModuleDebugInfo())
5435         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
5436     break;
5437   case Decl::UsingDirective: // using namespace X; [C++]
5438     if (CGDebugInfo *DI = getModuleDebugInfo())
5439       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
5440     break;
5441   case Decl::CXXConstructor:
5442     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
5443     break;
5444   case Decl::CXXDestructor:
5445     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
5446     break;
5447 
5448   case Decl::StaticAssert:
5449     // Nothing to do.
5450     break;
5451 
5452   // Objective-C Decls
5453 
5454   // Forward declarations, no (immediate) code generation.
5455   case Decl::ObjCInterface:
5456   case Decl::ObjCCategory:
5457     break;
5458 
5459   case Decl::ObjCProtocol: {
5460     auto *Proto = cast<ObjCProtocolDecl>(D);
5461     if (Proto->isThisDeclarationADefinition())
5462       ObjCRuntime->GenerateProtocol(Proto);
5463     break;
5464   }
5465 
5466   case Decl::ObjCCategoryImpl:
5467     // Categories have properties but don't support synthesize so we
5468     // can ignore them here.
5469     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
5470     break;
5471 
5472   case Decl::ObjCImplementation: {
5473     auto *OMD = cast<ObjCImplementationDecl>(D);
5474     EmitObjCPropertyImplementations(OMD);
5475     EmitObjCIvarInitializations(OMD);
5476     ObjCRuntime->GenerateClass(OMD);
5477     // Emit global variable debug information.
5478     if (CGDebugInfo *DI = getModuleDebugInfo())
5479       if (getCodeGenOpts().hasReducedDebugInfo())
5480         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
5481             OMD->getClassInterface()), OMD->getLocation());
5482     break;
5483   }
5484   case Decl::ObjCMethod: {
5485     auto *OMD = cast<ObjCMethodDecl>(D);
5486     // If this is not a prototype, emit the body.
5487     if (OMD->getBody())
5488       CodeGenFunction(*this).GenerateObjCMethod(OMD);
5489     break;
5490   }
5491   case Decl::ObjCCompatibleAlias:
5492     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
5493     break;
5494 
5495   case Decl::PragmaComment: {
5496     const auto *PCD = cast<PragmaCommentDecl>(D);
5497     switch (PCD->getCommentKind()) {
5498     case PCK_Unknown:
5499       llvm_unreachable("unexpected pragma comment kind");
5500     case PCK_Linker:
5501       AppendLinkerOptions(PCD->getArg());
5502       break;
5503     case PCK_Lib:
5504         AddDependentLib(PCD->getArg());
5505       break;
5506     case PCK_Compiler:
5507     case PCK_ExeStr:
5508     case PCK_User:
5509       break; // We ignore all of these.
5510     }
5511     break;
5512   }
5513 
5514   case Decl::PragmaDetectMismatch: {
5515     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
5516     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
5517     break;
5518   }
5519 
5520   case Decl::LinkageSpec:
5521     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
5522     break;
5523 
5524   case Decl::FileScopeAsm: {
5525     // File-scope asm is ignored during device-side CUDA compilation.
5526     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
5527       break;
5528     // File-scope asm is ignored during device-side OpenMP compilation.
5529     if (LangOpts.OpenMPIsDevice)
5530       break;
5531     auto *AD = cast<FileScopeAsmDecl>(D);
5532     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
5533     break;
5534   }
5535 
5536   case Decl::Import: {
5537     auto *Import = cast<ImportDecl>(D);
5538 
5539     // If we've already imported this module, we're done.
5540     if (!ImportedModules.insert(Import->getImportedModule()))
5541       break;
5542 
5543     // Emit debug information for direct imports.
5544     if (!Import->getImportedOwningModule()) {
5545       if (CGDebugInfo *DI = getModuleDebugInfo())
5546         DI->EmitImportDecl(*Import);
5547     }
5548 
5549     // Find all of the submodules and emit the module initializers.
5550     llvm::SmallPtrSet<clang::Module *, 16> Visited;
5551     SmallVector<clang::Module *, 16> Stack;
5552     Visited.insert(Import->getImportedModule());
5553     Stack.push_back(Import->getImportedModule());
5554 
5555     while (!Stack.empty()) {
5556       clang::Module *Mod = Stack.pop_back_val();
5557       if (!EmittedModuleInitializers.insert(Mod).second)
5558         continue;
5559 
5560       for (auto *D : Context.getModuleInitializers(Mod))
5561         EmitTopLevelDecl(D);
5562 
5563       // Visit the submodules of this module.
5564       for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
5565                                              SubEnd = Mod->submodule_end();
5566            Sub != SubEnd; ++Sub) {
5567         // Skip explicit children; they need to be explicitly imported to emit
5568         // the initializers.
5569         if ((*Sub)->IsExplicit)
5570           continue;
5571 
5572         if (Visited.insert(*Sub).second)
5573           Stack.push_back(*Sub);
5574       }
5575     }
5576     break;
5577   }
5578 
5579   case Decl::Export:
5580     EmitDeclContext(cast<ExportDecl>(D));
5581     break;
5582 
5583   case Decl::OMPThreadPrivate:
5584     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
5585     break;
5586 
5587   case Decl::OMPAllocate:
5588     break;
5589 
5590   case Decl::OMPDeclareReduction:
5591     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
5592     break;
5593 
5594   case Decl::OMPDeclareMapper:
5595     EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
5596     break;
5597 
5598   case Decl::OMPRequires:
5599     EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
5600     break;
5601 
5602   case Decl::Typedef:
5603   case Decl::TypeAlias: // using foo = bar; [C++11]
5604     if (CGDebugInfo *DI = getModuleDebugInfo())
5605       DI->EmitAndRetainType(
5606           getContext().getTypedefType(cast<TypedefNameDecl>(D)));
5607     break;
5608 
5609   case Decl::Record:
5610     if (CGDebugInfo *DI = getModuleDebugInfo())
5611       if (cast<RecordDecl>(D)->getDefinition())
5612         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
5613     break;
5614 
5615   case Decl::Enum:
5616     if (CGDebugInfo *DI = getModuleDebugInfo())
5617       if (cast<EnumDecl>(D)->getDefinition())
5618         DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D)));
5619     break;
5620 
5621   default:
5622     // Make sure we handled everything we should, every other kind is a
5623     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
5624     // function. Need to recode Decl::Kind to do that easily.
5625     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
5626     break;
5627   }
5628 }
5629 
5630 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
5631   // Do we need to generate coverage mapping?
5632   if (!CodeGenOpts.CoverageMapping)
5633     return;
5634   switch (D->getKind()) {
5635   case Decl::CXXConversion:
5636   case Decl::CXXMethod:
5637   case Decl::Function:
5638   case Decl::ObjCMethod:
5639   case Decl::CXXConstructor:
5640   case Decl::CXXDestructor: {
5641     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
5642       break;
5643     SourceManager &SM = getContext().getSourceManager();
5644     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
5645       break;
5646     auto I = DeferredEmptyCoverageMappingDecls.find(D);
5647     if (I == DeferredEmptyCoverageMappingDecls.end())
5648       DeferredEmptyCoverageMappingDecls[D] = true;
5649     break;
5650   }
5651   default:
5652     break;
5653   };
5654 }
5655 
5656 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
5657   // Do we need to generate coverage mapping?
5658   if (!CodeGenOpts.CoverageMapping)
5659     return;
5660   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
5661     if (Fn->isTemplateInstantiation())
5662       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
5663   }
5664   auto I = DeferredEmptyCoverageMappingDecls.find(D);
5665   if (I == DeferredEmptyCoverageMappingDecls.end())
5666     DeferredEmptyCoverageMappingDecls[D] = false;
5667   else
5668     I->second = false;
5669 }
5670 
5671 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
5672   // We call takeVector() here to avoid use-after-free.
5673   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
5674   // we deserialize function bodies to emit coverage info for them, and that
5675   // deserializes more declarations. How should we handle that case?
5676   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
5677     if (!Entry.second)
5678       continue;
5679     const Decl *D = Entry.first;
5680     switch (D->getKind()) {
5681     case Decl::CXXConversion:
5682     case Decl::CXXMethod:
5683     case Decl::Function:
5684     case Decl::ObjCMethod: {
5685       CodeGenPGO PGO(*this);
5686       GlobalDecl GD(cast<FunctionDecl>(D));
5687       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5688                                   getFunctionLinkage(GD));
5689       break;
5690     }
5691     case Decl::CXXConstructor: {
5692       CodeGenPGO PGO(*this);
5693       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
5694       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5695                                   getFunctionLinkage(GD));
5696       break;
5697     }
5698     case Decl::CXXDestructor: {
5699       CodeGenPGO PGO(*this);
5700       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
5701       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5702                                   getFunctionLinkage(GD));
5703       break;
5704     }
5705     default:
5706       break;
5707     };
5708   }
5709 }
5710 
5711 void CodeGenModule::EmitMainVoidAlias() {
5712   // In order to transition away from "__original_main" gracefully, emit an
5713   // alias for "main" in the no-argument case so that libc can detect when
5714   // new-style no-argument main is in used.
5715   if (llvm::Function *F = getModule().getFunction("main")) {
5716     if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() &&
5717         F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth()))
5718       addUsedGlobal(llvm::GlobalAlias::create("__main_void", F));
5719   }
5720 }
5721 
5722 /// Turns the given pointer into a constant.
5723 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
5724                                           const void *Ptr) {
5725   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
5726   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
5727   return llvm::ConstantInt::get(i64, PtrInt);
5728 }
5729 
5730 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
5731                                    llvm::NamedMDNode *&GlobalMetadata,
5732                                    GlobalDecl D,
5733                                    llvm::GlobalValue *Addr) {
5734   if (!GlobalMetadata)
5735     GlobalMetadata =
5736       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
5737 
5738   // TODO: should we report variant information for ctors/dtors?
5739   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
5740                            llvm::ConstantAsMetadata::get(GetPointerConstant(
5741                                CGM.getLLVMContext(), D.getDecl()))};
5742   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
5743 }
5744 
5745 /// For each function which is declared within an extern "C" region and marked
5746 /// as 'used', but has internal linkage, create an alias from the unmangled
5747 /// name to the mangled name if possible. People expect to be able to refer
5748 /// to such functions with an unmangled name from inline assembly within the
5749 /// same translation unit.
5750 void CodeGenModule::EmitStaticExternCAliases() {
5751   if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
5752     return;
5753   for (auto &I : StaticExternCValues) {
5754     IdentifierInfo *Name = I.first;
5755     llvm::GlobalValue *Val = I.second;
5756     if (Val && !getModule().getNamedValue(Name->getName()))
5757       addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
5758   }
5759 }
5760 
5761 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
5762                                              GlobalDecl &Result) const {
5763   auto Res = Manglings.find(MangledName);
5764   if (Res == Manglings.end())
5765     return false;
5766   Result = Res->getValue();
5767   return true;
5768 }
5769 
5770 /// Emits metadata nodes associating all the global values in the
5771 /// current module with the Decls they came from.  This is useful for
5772 /// projects using IR gen as a subroutine.
5773 ///
5774 /// Since there's currently no way to associate an MDNode directly
5775 /// with an llvm::GlobalValue, we create a global named metadata
5776 /// with the name 'clang.global.decl.ptrs'.
5777 void CodeGenModule::EmitDeclMetadata() {
5778   llvm::NamedMDNode *GlobalMetadata = nullptr;
5779 
5780   for (auto &I : MangledDeclNames) {
5781     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
5782     // Some mangled names don't necessarily have an associated GlobalValue
5783     // in this module, e.g. if we mangled it for DebugInfo.
5784     if (Addr)
5785       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
5786   }
5787 }
5788 
5789 /// Emits metadata nodes for all the local variables in the current
5790 /// function.
5791 void CodeGenFunction::EmitDeclMetadata() {
5792   if (LocalDeclMap.empty()) return;
5793 
5794   llvm::LLVMContext &Context = getLLVMContext();
5795 
5796   // Find the unique metadata ID for this name.
5797   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
5798 
5799   llvm::NamedMDNode *GlobalMetadata = nullptr;
5800 
5801   for (auto &I : LocalDeclMap) {
5802     const Decl *D = I.first;
5803     llvm::Value *Addr = I.second.getPointer();
5804     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
5805       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
5806       Alloca->setMetadata(
5807           DeclPtrKind, llvm::MDNode::get(
5808                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
5809     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
5810       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
5811       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
5812     }
5813   }
5814 }
5815 
5816 void CodeGenModule::EmitVersionIdentMetadata() {
5817   llvm::NamedMDNode *IdentMetadata =
5818     TheModule.getOrInsertNamedMetadata("llvm.ident");
5819   std::string Version = getClangFullVersion();
5820   llvm::LLVMContext &Ctx = TheModule.getContext();
5821 
5822   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
5823   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
5824 }
5825 
5826 void CodeGenModule::EmitCommandLineMetadata() {
5827   llvm::NamedMDNode *CommandLineMetadata =
5828     TheModule.getOrInsertNamedMetadata("llvm.commandline");
5829   std::string CommandLine = getCodeGenOpts().RecordCommandLine;
5830   llvm::LLVMContext &Ctx = TheModule.getContext();
5831 
5832   llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
5833   CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
5834 }
5835 
5836 void CodeGenModule::EmitCoverageFile() {
5837   if (getCodeGenOpts().CoverageDataFile.empty() &&
5838       getCodeGenOpts().CoverageNotesFile.empty())
5839     return;
5840 
5841   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
5842   if (!CUNode)
5843     return;
5844 
5845   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
5846   llvm::LLVMContext &Ctx = TheModule.getContext();
5847   auto *CoverageDataFile =
5848       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
5849   auto *CoverageNotesFile =
5850       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
5851   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
5852     llvm::MDNode *CU = CUNode->getOperand(i);
5853     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
5854     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
5855   }
5856 }
5857 
5858 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
5859                                                        bool ForEH) {
5860   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
5861   // FIXME: should we even be calling this method if RTTI is disabled
5862   // and it's not for EH?
5863   if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice ||
5864       (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
5865        getTriple().isNVPTX()))
5866     return llvm::Constant::getNullValue(Int8PtrTy);
5867 
5868   if (ForEH && Ty->isObjCObjectPointerType() &&
5869       LangOpts.ObjCRuntime.isGNUFamily())
5870     return ObjCRuntime->GetEHType(Ty);
5871 
5872   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
5873 }
5874 
5875 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
5876   // Do not emit threadprivates in simd-only mode.
5877   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
5878     return;
5879   for (auto RefExpr : D->varlists()) {
5880     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
5881     bool PerformInit =
5882         VD->getAnyInitializer() &&
5883         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
5884                                                         /*ForRef=*/false);
5885 
5886     Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
5887     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
5888             VD, Addr, RefExpr->getBeginLoc(), PerformInit))
5889       CXXGlobalInits.push_back(InitFunction);
5890   }
5891 }
5892 
5893 llvm::Metadata *
5894 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
5895                                             StringRef Suffix) {
5896   llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
5897   if (InternalId)
5898     return InternalId;
5899 
5900   if (isExternallyVisible(T->getLinkage())) {
5901     std::string OutName;
5902     llvm::raw_string_ostream Out(OutName);
5903     getCXXABI().getMangleContext().mangleTypeName(T, Out);
5904     Out << Suffix;
5905 
5906     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
5907   } else {
5908     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
5909                                            llvm::ArrayRef<llvm::Metadata *>());
5910   }
5911 
5912   return InternalId;
5913 }
5914 
5915 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
5916   return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
5917 }
5918 
5919 llvm::Metadata *
5920 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
5921   return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
5922 }
5923 
5924 // Generalize pointer types to a void pointer with the qualifiers of the
5925 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
5926 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
5927 // 'void *'.
5928 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
5929   if (!Ty->isPointerType())
5930     return Ty;
5931 
5932   return Ctx.getPointerType(
5933       QualType(Ctx.VoidTy).withCVRQualifiers(
5934           Ty->getPointeeType().getCVRQualifiers()));
5935 }
5936 
5937 // Apply type generalization to a FunctionType's return and argument types
5938 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
5939   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
5940     SmallVector<QualType, 8> GeneralizedParams;
5941     for (auto &Param : FnType->param_types())
5942       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
5943 
5944     return Ctx.getFunctionType(
5945         GeneralizeType(Ctx, FnType->getReturnType()),
5946         GeneralizedParams, FnType->getExtProtoInfo());
5947   }
5948 
5949   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
5950     return Ctx.getFunctionNoProtoType(
5951         GeneralizeType(Ctx, FnType->getReturnType()));
5952 
5953   llvm_unreachable("Encountered unknown FunctionType");
5954 }
5955 
5956 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
5957   return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
5958                                       GeneralizedMetadataIdMap, ".generalized");
5959 }
5960 
5961 /// Returns whether this module needs the "all-vtables" type identifier.
5962 bool CodeGenModule::NeedAllVtablesTypeId() const {
5963   // Returns true if at least one of vtable-based CFI checkers is enabled and
5964   // is not in the trapping mode.
5965   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
5966            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
5967           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
5968            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
5969           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
5970            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
5971           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
5972            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
5973 }
5974 
5975 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
5976                                           CharUnits Offset,
5977                                           const CXXRecordDecl *RD) {
5978   llvm::Metadata *MD =
5979       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
5980   VTable->addTypeMetadata(Offset.getQuantity(), MD);
5981 
5982   if (CodeGenOpts.SanitizeCfiCrossDso)
5983     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
5984       VTable->addTypeMetadata(Offset.getQuantity(),
5985                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
5986 
5987   if (NeedAllVtablesTypeId()) {
5988     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
5989     VTable->addTypeMetadata(Offset.getQuantity(), MD);
5990   }
5991 }
5992 
5993 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
5994   if (!SanStats)
5995     SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule());
5996 
5997   return *SanStats;
5998 }
5999 llvm::Value *
6000 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
6001                                                   CodeGenFunction &CGF) {
6002   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
6003   auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
6004   auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
6005   return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy,
6006                                 "__translate_sampler_initializer"),
6007                                 {C});
6008 }
6009 
6010 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment(
6011     QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) {
6012   return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
6013                                  /* forPointeeType= */ true);
6014 }
6015 
6016 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T,
6017                                                  LValueBaseInfo *BaseInfo,
6018                                                  TBAAAccessInfo *TBAAInfo,
6019                                                  bool forPointeeType) {
6020   if (TBAAInfo)
6021     *TBAAInfo = getTBAAAccessInfo(T);
6022 
6023   // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But
6024   // that doesn't return the information we need to compute BaseInfo.
6025 
6026   // Honor alignment typedef attributes even on incomplete types.
6027   // We also honor them straight for C++ class types, even as pointees;
6028   // there's an expressivity gap here.
6029   if (auto TT = T->getAs<TypedefType>()) {
6030     if (auto Align = TT->getDecl()->getMaxAlignment()) {
6031       if (BaseInfo)
6032         *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
6033       return getContext().toCharUnitsFromBits(Align);
6034     }
6035   }
6036 
6037   bool AlignForArray = T->isArrayType();
6038 
6039   // Analyze the base element type, so we don't get confused by incomplete
6040   // array types.
6041   T = getContext().getBaseElementType(T);
6042 
6043   if (T->isIncompleteType()) {
6044     // We could try to replicate the logic from
6045     // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the
6046     // type is incomplete, so it's impossible to test. We could try to reuse
6047     // getTypeAlignIfKnown, but that doesn't return the information we need
6048     // to set BaseInfo.  So just ignore the possibility that the alignment is
6049     // greater than one.
6050     if (BaseInfo)
6051       *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
6052     return CharUnits::One();
6053   }
6054 
6055   if (BaseInfo)
6056     *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
6057 
6058   CharUnits Alignment;
6059   // For C++ class pointees, we don't know whether we're pointing at a
6060   // base or a complete object, so we generally need to use the
6061   // non-virtual alignment.
6062   const CXXRecordDecl *RD;
6063   if (forPointeeType && !AlignForArray && (RD = T->getAsCXXRecordDecl())) {
6064     Alignment = getClassPointerAlignment(RD);
6065   } else {
6066     Alignment = getContext().getTypeAlignInChars(T);
6067     if (T.getQualifiers().hasUnaligned())
6068       Alignment = CharUnits::One();
6069   }
6070 
6071   // Cap to the global maximum type alignment unless the alignment
6072   // was somehow explicit on the type.
6073   if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
6074     if (Alignment.getQuantity() > MaxAlign &&
6075         !getContext().isAlignmentRequired(T))
6076       Alignment = CharUnits::fromQuantity(MaxAlign);
6077   }
6078   return Alignment;
6079 }
6080 
6081 bool CodeGenModule::stopAutoInit() {
6082   unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter;
6083   if (StopAfter) {
6084     // This number is positive only when -ftrivial-auto-var-init-stop-after=* is
6085     // used
6086     if (NumAutoVarInit >= StopAfter) {
6087       return true;
6088     }
6089     if (!NumAutoVarInit) {
6090       unsigned DiagID = getDiags().getCustomDiagID(
6091           DiagnosticsEngine::Warning,
6092           "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the "
6093           "number of times ftrivial-auto-var-init=%1 gets applied.");
6094       getDiags().Report(DiagID)
6095           << StopAfter
6096           << (getContext().getLangOpts().getTrivialAutoVarInit() ==
6097                       LangOptions::TrivialAutoVarInitKind::Zero
6098                   ? "zero"
6099                   : "pattern");
6100     }
6101     ++NumAutoVarInit;
6102   }
6103   return false;
6104 }
6105