1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CGCall.h" 18 #include "CGObjCRuntime.h" 19 #include "Mangle.h" 20 #include "clang/CodeGen/CodeGenOptions.h" 21 #include "clang/AST/ASTContext.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/AST/DeclCXX.h" 24 #include "clang/Basic/Builtins.h" 25 #include "clang/Basic/Diagnostic.h" 26 #include "clang/Basic/SourceManager.h" 27 #include "clang/Basic/TargetInfo.h" 28 #include "clang/Basic/ConvertUTF.h" 29 #include "llvm/CallingConv.h" 30 #include "llvm/Module.h" 31 #include "llvm/Intrinsics.h" 32 #include "llvm/Target/TargetData.h" 33 #include "llvm/Support/ErrorHandling.h" 34 using namespace clang; 35 using namespace CodeGen; 36 37 38 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 39 llvm::Module &M, const llvm::TargetData &TD, 40 Diagnostic &diags) 41 : BlockModule(C, M, TD, Types, *this), Context(C), 42 Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M), 43 TheTargetData(TD), Diags(diags), Types(C, M, TD), MangleCtx(C), 44 VtableInfo(*this), Runtime(0), 45 MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0), 46 VMContext(M.getContext()) { 47 48 if (!Features.ObjC1) 49 Runtime = 0; 50 else if (!Features.NeXTRuntime) 51 Runtime = CreateGNUObjCRuntime(*this); 52 else if (Features.ObjCNonFragileABI) 53 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 54 else 55 Runtime = CreateMacObjCRuntime(*this); 56 57 // If debug info generation is enabled, create the CGDebugInfo object. 58 DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(this) : 0; 59 } 60 61 CodeGenModule::~CodeGenModule() { 62 delete Runtime; 63 delete DebugInfo; 64 } 65 66 void CodeGenModule::Release() { 67 // We need to call this first because it can add deferred declarations. 68 EmitCXXGlobalInitFunc(); 69 70 EmitDeferred(); 71 if (Runtime) 72 if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction()) 73 AddGlobalCtor(ObjCInitFunction); 74 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 75 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 76 EmitAnnotations(); 77 EmitLLVMUsed(); 78 } 79 80 /// ErrorUnsupported - Print out an error that codegen doesn't support the 81 /// specified stmt yet. 82 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 83 bool OmitOnError) { 84 if (OmitOnError && getDiags().hasErrorOccurred()) 85 return; 86 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 87 "cannot compile this %0 yet"); 88 std::string Msg = Type; 89 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 90 << Msg << S->getSourceRange(); 91 } 92 93 /// ErrorUnsupported - Print out an error that codegen doesn't support the 94 /// specified decl yet. 95 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 96 bool OmitOnError) { 97 if (OmitOnError && getDiags().hasErrorOccurred()) 98 return; 99 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 100 "cannot compile this %0 yet"); 101 std::string Msg = Type; 102 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 103 } 104 105 LangOptions::VisibilityMode 106 CodeGenModule::getDeclVisibilityMode(const Decl *D) const { 107 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 108 if (VD->getStorageClass() == VarDecl::PrivateExtern) 109 return LangOptions::Hidden; 110 111 if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) { 112 switch (attr->getVisibility()) { 113 default: assert(0 && "Unknown visibility!"); 114 case VisibilityAttr::DefaultVisibility: 115 return LangOptions::Default; 116 case VisibilityAttr::HiddenVisibility: 117 return LangOptions::Hidden; 118 case VisibilityAttr::ProtectedVisibility: 119 return LangOptions::Protected; 120 } 121 } 122 123 return getLangOptions().getVisibilityMode(); 124 } 125 126 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 127 const Decl *D) const { 128 // Internal definitions always have default visibility. 129 if (GV->hasLocalLinkage()) { 130 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 131 return; 132 } 133 134 switch (getDeclVisibilityMode(D)) { 135 default: assert(0 && "Unknown visibility!"); 136 case LangOptions::Default: 137 return GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 138 case LangOptions::Hidden: 139 return GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 140 case LangOptions::Protected: 141 return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 142 } 143 } 144 145 const char *CodeGenModule::getMangledName(const GlobalDecl &GD) { 146 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 147 148 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 149 return getMangledCXXCtorName(D, GD.getCtorType()); 150 if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 151 return getMangledCXXDtorName(D, GD.getDtorType()); 152 153 return getMangledName(ND); 154 } 155 156 /// \brief Retrieves the mangled name for the given declaration. 157 /// 158 /// If the given declaration requires a mangled name, returns an 159 /// const char* containing the mangled name. Otherwise, returns 160 /// the unmangled name. 161 /// 162 const char *CodeGenModule::getMangledName(const NamedDecl *ND) { 163 // In C, functions with no attributes never need to be mangled. Fastpath them. 164 if (!getLangOptions().CPlusPlus && !ND->hasAttrs()) { 165 assert(ND->getIdentifier() && "Attempt to mangle unnamed decl."); 166 return ND->getNameAsCString(); 167 } 168 169 llvm::SmallString<256> Name; 170 llvm::raw_svector_ostream Out(Name); 171 if (!mangleName(getMangleContext(), ND, Out)) { 172 assert(ND->getIdentifier() && "Attempt to mangle unnamed decl."); 173 return ND->getNameAsCString(); 174 } 175 176 Name += '\0'; 177 return UniqueMangledName(Name.begin(), Name.end()); 178 } 179 180 const char *CodeGenModule::UniqueMangledName(const char *NameStart, 181 const char *NameEnd) { 182 assert(*(NameEnd - 1) == '\0' && "Mangled name must be null terminated!"); 183 184 return MangledNames.GetOrCreateValue(NameStart, NameEnd).getKeyData(); 185 } 186 187 /// AddGlobalCtor - Add a function to the list that will be called before 188 /// main() runs. 189 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 190 // FIXME: Type coercion of void()* types. 191 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 192 } 193 194 /// AddGlobalDtor - Add a function to the list that will be called 195 /// when the module is unloaded. 196 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 197 // FIXME: Type coercion of void()* types. 198 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 199 } 200 201 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 202 // Ctor function type is void()*. 203 llvm::FunctionType* CtorFTy = 204 llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), 205 std::vector<const llvm::Type*>(), 206 false); 207 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 208 209 // Get the type of a ctor entry, { i32, void ()* }. 210 llvm::StructType* CtorStructTy = 211 llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext), 212 llvm::PointerType::getUnqual(CtorFTy), NULL); 213 214 // Construct the constructor and destructor arrays. 215 std::vector<llvm::Constant*> Ctors; 216 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 217 std::vector<llvm::Constant*> S; 218 S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 219 I->second, false)); 220 S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)); 221 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 222 } 223 224 if (!Ctors.empty()) { 225 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 226 new llvm::GlobalVariable(TheModule, AT, false, 227 llvm::GlobalValue::AppendingLinkage, 228 llvm::ConstantArray::get(AT, Ctors), 229 GlobalName); 230 } 231 } 232 233 void CodeGenModule::EmitAnnotations() { 234 if (Annotations.empty()) 235 return; 236 237 // Create a new global variable for the ConstantStruct in the Module. 238 llvm::Constant *Array = 239 llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(), 240 Annotations.size()), 241 Annotations); 242 llvm::GlobalValue *gv = 243 new llvm::GlobalVariable(TheModule, Array->getType(), false, 244 llvm::GlobalValue::AppendingLinkage, Array, 245 "llvm.global.annotations"); 246 gv->setSection("llvm.metadata"); 247 } 248 249 static CodeGenModule::GVALinkage 250 GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD, 251 const LangOptions &Features) { 252 // Everything located semantically within an anonymous namespace is 253 // always internal. 254 if (FD->isInAnonymousNamespace()) 255 return CodeGenModule::GVA_Internal; 256 257 // "static" functions get internal linkage. 258 if (FD->getStorageClass() == FunctionDecl::Static && !isa<CXXMethodDecl>(FD)) 259 return CodeGenModule::GVA_Internal; 260 261 // The kind of external linkage this function will have, if it is not 262 // inline or static. 263 CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal; 264 if (Context.getLangOptions().CPlusPlus && 265 FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 266 External = CodeGenModule::GVA_TemplateInstantiation; 267 268 if (!FD->isInlined()) 269 return External; 270 271 if (!Features.CPlusPlus || FD->hasAttr<GNUInlineAttr>()) { 272 // GNU or C99 inline semantics. Determine whether this symbol should be 273 // externally visible. 274 if (FD->isInlineDefinitionExternallyVisible()) 275 return External; 276 277 // C99 inline semantics, where the symbol is not externally visible. 278 return CodeGenModule::GVA_C99Inline; 279 } 280 281 // C++0x [temp.explicit]p9: 282 // [ Note: The intent is that an inline function that is the subject of 283 // an explicit instantiation declaration will still be implicitly 284 // instantiated when used so that the body can be considered for 285 // inlining, but that no out-of-line copy of the inline function would be 286 // generated in the translation unit. -- end note ] 287 if (FD->getTemplateSpecializationKind() 288 == TSK_ExplicitInstantiationDeclaration) 289 return CodeGenModule::GVA_C99Inline; 290 291 return CodeGenModule::GVA_CXXInline; 292 } 293 294 /// SetFunctionDefinitionAttributes - Set attributes for a global. 295 /// 296 /// FIXME: This is currently only done for aliases and functions, but not for 297 /// variables (these details are set in EmitGlobalVarDefinition for variables). 298 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 299 llvm::GlobalValue *GV) { 300 GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features); 301 302 if (Linkage == GVA_Internal) { 303 GV->setLinkage(llvm::Function::InternalLinkage); 304 } else if (D->hasAttr<DLLExportAttr>()) { 305 GV->setLinkage(llvm::Function::DLLExportLinkage); 306 } else if (D->hasAttr<WeakAttr>()) { 307 GV->setLinkage(llvm::Function::WeakAnyLinkage); 308 } else if (Linkage == GVA_C99Inline) { 309 // In C99 mode, 'inline' functions are guaranteed to have a strong 310 // definition somewhere else, so we can use available_externally linkage. 311 GV->setLinkage(llvm::Function::AvailableExternallyLinkage); 312 } else if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) { 313 // In C++, the compiler has to emit a definition in every translation unit 314 // that references the function. We should use linkonce_odr because 315 // a) if all references in this translation unit are optimized away, we 316 // don't need to codegen it. b) if the function persists, it needs to be 317 // merged with other definitions. c) C++ has the ODR, so we know the 318 // definition is dependable. 319 GV->setLinkage(llvm::Function::LinkOnceODRLinkage); 320 } else { 321 assert(Linkage == GVA_StrongExternal); 322 // Otherwise, we have strong external linkage. 323 GV->setLinkage(llvm::Function::ExternalLinkage); 324 } 325 326 SetCommonAttributes(D, GV); 327 } 328 329 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 330 const CGFunctionInfo &Info, 331 llvm::Function *F) { 332 unsigned CallingConv; 333 AttributeListType AttributeList; 334 ConstructAttributeList(Info, D, AttributeList, CallingConv); 335 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), 336 AttributeList.size())); 337 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 338 } 339 340 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 341 llvm::Function *F) { 342 if (!Features.Exceptions && !Features.ObjCNonFragileABI) 343 F->addFnAttr(llvm::Attribute::NoUnwind); 344 345 if (D->hasAttr<AlwaysInlineAttr>()) 346 F->addFnAttr(llvm::Attribute::AlwaysInline); 347 348 if (D->hasAttr<NoInlineAttr>()) 349 F->addFnAttr(llvm::Attribute::NoInline); 350 351 if (const AlignedAttr *AA = D->getAttr<AlignedAttr>()) 352 F->setAlignment(AA->getAlignment()/8); 353 // C++ ABI requires 2-byte alignment for member functions. 354 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 355 F->setAlignment(2); 356 } 357 358 void CodeGenModule::SetCommonAttributes(const Decl *D, 359 llvm::GlobalValue *GV) { 360 setGlobalVisibility(GV, D); 361 362 if (D->hasAttr<UsedAttr>()) 363 AddUsedGlobal(GV); 364 365 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 366 GV->setSection(SA->getName()); 367 } 368 369 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 370 llvm::Function *F, 371 const CGFunctionInfo &FI) { 372 SetLLVMFunctionAttributes(D, FI, F); 373 SetLLVMFunctionAttributesForDefinition(D, F); 374 375 F->setLinkage(llvm::Function::InternalLinkage); 376 377 SetCommonAttributes(D, F); 378 } 379 380 void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD, 381 llvm::Function *F, 382 bool IsIncompleteFunction) { 383 if (!IsIncompleteFunction) 384 SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F); 385 386 // Only a few attributes are set on declarations; these may later be 387 // overridden by a definition. 388 389 if (FD->hasAttr<DLLImportAttr>()) { 390 F->setLinkage(llvm::Function::DLLImportLinkage); 391 } else if (FD->hasAttr<WeakAttr>() || 392 FD->hasAttr<WeakImportAttr>()) { 393 // "extern_weak" is overloaded in LLVM; we probably should have 394 // separate linkage types for this. 395 F->setLinkage(llvm::Function::ExternalWeakLinkage); 396 } else { 397 F->setLinkage(llvm::Function::ExternalLinkage); 398 } 399 400 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 401 F->setSection(SA->getName()); 402 } 403 404 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 405 assert(!GV->isDeclaration() && 406 "Only globals with definition can force usage."); 407 LLVMUsed.push_back(GV); 408 } 409 410 void CodeGenModule::EmitLLVMUsed() { 411 // Don't create llvm.used if there is no need. 412 if (LLVMUsed.empty()) 413 return; 414 415 const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext); 416 417 // Convert LLVMUsed to what ConstantArray needs. 418 std::vector<llvm::Constant*> UsedArray; 419 UsedArray.resize(LLVMUsed.size()); 420 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 421 UsedArray[i] = 422 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), 423 i8PTy); 424 } 425 426 if (UsedArray.empty()) 427 return; 428 llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size()); 429 430 llvm::GlobalVariable *GV = 431 new llvm::GlobalVariable(getModule(), ATy, false, 432 llvm::GlobalValue::AppendingLinkage, 433 llvm::ConstantArray::get(ATy, UsedArray), 434 "llvm.used"); 435 436 GV->setSection("llvm.metadata"); 437 } 438 439 void CodeGenModule::EmitDeferred() { 440 // Emit code for any potentially referenced deferred decls. Since a 441 // previously unused static decl may become used during the generation of code 442 // for a static function, iterate until no changes are made. 443 while (!DeferredDeclsToEmit.empty()) { 444 GlobalDecl D = DeferredDeclsToEmit.back(); 445 DeferredDeclsToEmit.pop_back(); 446 447 // The mangled name for the decl must have been emitted in GlobalDeclMap. 448 // Look it up to see if it was defined with a stronger definition (e.g. an 449 // extern inline function with a strong function redefinition). If so, 450 // just ignore the deferred decl. 451 llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)]; 452 assert(CGRef && "Deferred decl wasn't referenced?"); 453 454 if (!CGRef->isDeclaration()) 455 continue; 456 457 // Otherwise, emit the definition and move on to the next one. 458 EmitGlobalDefinition(D); 459 } 460 } 461 462 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the 463 /// annotation information for a given GlobalValue. The annotation struct is 464 /// {i8 *, i8 *, i8 *, i32}. The first field is a constant expression, the 465 /// GlobalValue being annotated. The second field is the constant string 466 /// created from the AnnotateAttr's annotation. The third field is a constant 467 /// string containing the name of the translation unit. The fourth field is 468 /// the line number in the file of the annotated value declaration. 469 /// 470 /// FIXME: this does not unique the annotation string constants, as llvm-gcc 471 /// appears to. 472 /// 473 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 474 const AnnotateAttr *AA, 475 unsigned LineNo) { 476 llvm::Module *M = &getModule(); 477 478 // get [N x i8] constants for the annotation string, and the filename string 479 // which are the 2nd and 3rd elements of the global annotation structure. 480 const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext); 481 llvm::Constant *anno = llvm::ConstantArray::get(VMContext, 482 AA->getAnnotation(), true); 483 llvm::Constant *unit = llvm::ConstantArray::get(VMContext, 484 M->getModuleIdentifier(), 485 true); 486 487 // Get the two global values corresponding to the ConstantArrays we just 488 // created to hold the bytes of the strings. 489 llvm::GlobalValue *annoGV = 490 new llvm::GlobalVariable(*M, anno->getType(), false, 491 llvm::GlobalValue::PrivateLinkage, anno, 492 GV->getName()); 493 // translation unit name string, emitted into the llvm.metadata section. 494 llvm::GlobalValue *unitGV = 495 new llvm::GlobalVariable(*M, unit->getType(), false, 496 llvm::GlobalValue::PrivateLinkage, unit, 497 ".str"); 498 499 // Create the ConstantStruct for the global annotation. 500 llvm::Constant *Fields[4] = { 501 llvm::ConstantExpr::getBitCast(GV, SBP), 502 llvm::ConstantExpr::getBitCast(annoGV, SBP), 503 llvm::ConstantExpr::getBitCast(unitGV, SBP), 504 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo) 505 }; 506 return llvm::ConstantStruct::get(VMContext, Fields, 4, false); 507 } 508 509 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 510 // Never defer when EmitAllDecls is specified or the decl has 511 // attribute used. 512 if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>()) 513 return false; 514 515 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 516 // Constructors and destructors should never be deferred. 517 if (FD->hasAttr<ConstructorAttr>() || 518 FD->hasAttr<DestructorAttr>()) 519 return false; 520 521 GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features); 522 523 // static, static inline, always_inline, and extern inline functions can 524 // always be deferred. Normal inline functions can be deferred in C99/C++. 525 if (Linkage == GVA_Internal || Linkage == GVA_C99Inline || 526 Linkage == GVA_CXXInline) 527 return true; 528 return false; 529 } 530 531 const VarDecl *VD = cast<VarDecl>(Global); 532 assert(VD->isFileVarDecl() && "Invalid decl"); 533 534 // We never want to defer structs that have non-trivial constructors or 535 // destructors. 536 537 // FIXME: Handle references. 538 if (const RecordType *RT = VD->getType()->getAs<RecordType>()) { 539 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 540 if (!RD->hasTrivialConstructor() || !RD->hasTrivialDestructor()) 541 return false; 542 } 543 } 544 545 // Static data may be deferred, but out-of-line static data members 546 // cannot be. 547 if (VD->isInAnonymousNamespace()) 548 return true; 549 if (VD->getStorageClass() == VarDecl::Static) { 550 // Initializer has side effects? 551 if (VD->getInit() && VD->getInit()->HasSideEffects(Context)) 552 return false; 553 return !(VD->isStaticDataMember() && VD->isOutOfLine()); 554 } 555 return false; 556 } 557 558 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 559 const ValueDecl *Global = cast<ValueDecl>(GD.getDecl()); 560 561 // If this is an alias definition (which otherwise looks like a declaration) 562 // emit it now. 563 if (Global->hasAttr<AliasAttr>()) 564 return EmitAliasDefinition(Global); 565 566 // Ignore declarations, they will be emitted on their first use. 567 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 568 // Forward declarations are emitted lazily on first use. 569 if (!FD->isThisDeclarationADefinition()) 570 return; 571 } else { 572 const VarDecl *VD = cast<VarDecl>(Global); 573 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 574 575 // In C++, if this is marked "extern", defer code generation. 576 if (getLangOptions().CPlusPlus && !VD->getInit() && 577 (VD->getStorageClass() == VarDecl::Extern || 578 VD->isExternC())) 579 return; 580 581 // In C, if this isn't a definition, defer code generation. 582 if (!getLangOptions().CPlusPlus && !VD->getInit()) 583 return; 584 } 585 586 // Defer code generation when possible if this is a static definition, inline 587 // function etc. These we only want to emit if they are used. 588 if (MayDeferGeneration(Global)) { 589 // If the value has already been used, add it directly to the 590 // DeferredDeclsToEmit list. 591 const char *MangledName = getMangledName(GD); 592 if (GlobalDeclMap.count(MangledName)) 593 DeferredDeclsToEmit.push_back(GD); 594 else { 595 // Otherwise, remember that we saw a deferred decl with this name. The 596 // first use of the mangled name will cause it to move into 597 // DeferredDeclsToEmit. 598 DeferredDecls[MangledName] = GD; 599 } 600 return; 601 } 602 603 // Otherwise emit the definition. 604 EmitGlobalDefinition(GD); 605 } 606 607 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { 608 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 609 610 PrettyStackTraceDecl CrashInfo((ValueDecl *)D, D->getLocation(), 611 Context.getSourceManager(), 612 "Generating code for declaration"); 613 614 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) 615 EmitCXXConstructor(CD, GD.getCtorType()); 616 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) 617 EmitCXXDestructor(DD, GD.getDtorType()); 618 else if (isa<FunctionDecl>(D)) 619 EmitGlobalFunctionDefinition(GD); 620 else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 621 EmitGlobalVarDefinition(VD); 622 else { 623 assert(0 && "Invalid argument to EmitGlobalDefinition()"); 624 } 625 } 626 627 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 628 /// module, create and return an llvm Function with the specified type. If there 629 /// is something in the module with the specified name, return it potentially 630 /// bitcasted to the right type. 631 /// 632 /// If D is non-null, it specifies a decl that correspond to this. This is used 633 /// to set the attributes on the function when it is first created. 634 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName, 635 const llvm::Type *Ty, 636 GlobalDecl D) { 637 // Lookup the entry, lazily creating it if necessary. 638 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 639 if (Entry) { 640 if (Entry->getType()->getElementType() == Ty) 641 return Entry; 642 643 // Make sure the result is of the correct type. 644 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 645 return llvm::ConstantExpr::getBitCast(Entry, PTy); 646 } 647 648 // This function doesn't have a complete type (for example, the return 649 // type is an incomplete struct). Use a fake type instead, and make 650 // sure not to try to set attributes. 651 bool IsIncompleteFunction = false; 652 if (!isa<llvm::FunctionType>(Ty)) { 653 Ty = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), 654 std::vector<const llvm::Type*>(), false); 655 IsIncompleteFunction = true; 656 } 657 llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty), 658 llvm::Function::ExternalLinkage, 659 "", &getModule()); 660 F->setName(MangledName); 661 if (D.getDecl()) 662 SetFunctionAttributes(cast<FunctionDecl>(D.getDecl()), F, 663 IsIncompleteFunction); 664 Entry = F; 665 666 // This is the first use or definition of a mangled name. If there is a 667 // deferred decl with this name, remember that we need to emit it at the end 668 // of the file. 669 llvm::DenseMap<const char*, GlobalDecl>::iterator DDI = 670 DeferredDecls.find(MangledName); 671 if (DDI != DeferredDecls.end()) { 672 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 673 // list, and remove it from DeferredDecls (since we don't need it anymore). 674 DeferredDeclsToEmit.push_back(DDI->second); 675 DeferredDecls.erase(DDI); 676 } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) { 677 // If this the first reference to a C++ inline function in a class, queue up 678 // the deferred function body for emission. These are not seen as 679 // top-level declarations. 680 if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD)) 681 DeferredDeclsToEmit.push_back(D); 682 // A called constructor which has no definition or declaration need be 683 // synthesized. 684 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) { 685 const CXXRecordDecl *ClassDecl = 686 cast<CXXRecordDecl>(CD->getDeclContext()); 687 if (CD->isCopyConstructor(getContext())) 688 DeferredCopyConstructorToEmit(D); 689 else if (!ClassDecl->hasUserDeclaredConstructor()) 690 DeferredDeclsToEmit.push_back(D); 691 } 692 else if (isa<CXXDestructorDecl>(FD)) 693 DeferredDestructorToEmit(D); 694 else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) 695 if (MD->isCopyAssignment()) 696 DeferredCopyAssignmentToEmit(D); 697 } 698 699 return F; 700 } 701 702 /// Defer definition of copy constructor(s) which need be implicitly defined. 703 void CodeGenModule::DeferredCopyConstructorToEmit(GlobalDecl CopyCtorDecl) { 704 const CXXConstructorDecl *CD = 705 cast<CXXConstructorDecl>(CopyCtorDecl.getDecl()); 706 const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(CD->getDeclContext()); 707 if (ClassDecl->hasTrivialCopyConstructor() || 708 ClassDecl->hasUserDeclaredCopyConstructor()) 709 return; 710 711 // First make sure all direct base classes and virtual bases and non-static 712 // data mebers which need to have their copy constructors implicitly defined 713 // are defined. 12.8.p7 714 for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(); 715 Base != ClassDecl->bases_end(); ++Base) { 716 CXXRecordDecl *BaseClassDecl 717 = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl()); 718 if (CXXConstructorDecl *BaseCopyCtor = 719 BaseClassDecl->getCopyConstructor(Context, 0)) 720 GetAddrOfCXXConstructor(BaseCopyCtor, Ctor_Complete); 721 } 722 723 for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(), 724 FieldEnd = ClassDecl->field_end(); 725 Field != FieldEnd; ++Field) { 726 QualType FieldType = Context.getCanonicalType((*Field)->getType()); 727 if (const ArrayType *Array = Context.getAsArrayType(FieldType)) 728 FieldType = Array->getElementType(); 729 if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) { 730 if ((*Field)->isAnonymousStructOrUnion()) 731 continue; 732 CXXRecordDecl *FieldClassDecl 733 = cast<CXXRecordDecl>(FieldClassType->getDecl()); 734 if (CXXConstructorDecl *FieldCopyCtor = 735 FieldClassDecl->getCopyConstructor(Context, 0)) 736 GetAddrOfCXXConstructor(FieldCopyCtor, Ctor_Complete); 737 } 738 } 739 DeferredDeclsToEmit.push_back(CopyCtorDecl); 740 } 741 742 /// Defer definition of copy assignments which need be implicitly defined. 743 void CodeGenModule::DeferredCopyAssignmentToEmit(GlobalDecl CopyAssignDecl) { 744 const CXXMethodDecl *CD = cast<CXXMethodDecl>(CopyAssignDecl.getDecl()); 745 const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(CD->getDeclContext()); 746 747 if (ClassDecl->hasTrivialCopyAssignment() || 748 ClassDecl->hasUserDeclaredCopyAssignment()) 749 return; 750 751 // First make sure all direct base classes and virtual bases and non-static 752 // data mebers which need to have their copy assignments implicitly defined 753 // are defined. 12.8.p12 754 for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(); 755 Base != ClassDecl->bases_end(); ++Base) { 756 CXXRecordDecl *BaseClassDecl 757 = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl()); 758 const CXXMethodDecl *MD = 0; 759 if (!BaseClassDecl->hasTrivialCopyAssignment() && 760 !BaseClassDecl->hasUserDeclaredCopyAssignment() && 761 BaseClassDecl->hasConstCopyAssignment(getContext(), MD)) 762 GetAddrOfFunction(MD, 0); 763 } 764 765 for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(), 766 FieldEnd = ClassDecl->field_end(); 767 Field != FieldEnd; ++Field) { 768 QualType FieldType = Context.getCanonicalType((*Field)->getType()); 769 if (const ArrayType *Array = Context.getAsArrayType(FieldType)) 770 FieldType = Array->getElementType(); 771 if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) { 772 if ((*Field)->isAnonymousStructOrUnion()) 773 continue; 774 CXXRecordDecl *FieldClassDecl 775 = cast<CXXRecordDecl>(FieldClassType->getDecl()); 776 const CXXMethodDecl *MD = 0; 777 if (!FieldClassDecl->hasTrivialCopyAssignment() && 778 !FieldClassDecl->hasUserDeclaredCopyAssignment() && 779 FieldClassDecl->hasConstCopyAssignment(getContext(), MD)) 780 GetAddrOfFunction(MD, 0); 781 } 782 } 783 DeferredDeclsToEmit.push_back(CopyAssignDecl); 784 } 785 786 void CodeGenModule::DeferredDestructorToEmit(GlobalDecl DtorDecl) { 787 const CXXDestructorDecl *DD = cast<CXXDestructorDecl>(DtorDecl.getDecl()); 788 const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(DD->getDeclContext()); 789 if (ClassDecl->hasTrivialDestructor() || 790 ClassDecl->hasUserDeclaredDestructor()) 791 return; 792 793 for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(); 794 Base != ClassDecl->bases_end(); ++Base) { 795 CXXRecordDecl *BaseClassDecl 796 = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl()); 797 if (const CXXDestructorDecl *BaseDtor = 798 BaseClassDecl->getDestructor(Context)) 799 GetAddrOfCXXDestructor(BaseDtor, Dtor_Complete); 800 } 801 802 for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(), 803 FieldEnd = ClassDecl->field_end(); 804 Field != FieldEnd; ++Field) { 805 QualType FieldType = Context.getCanonicalType((*Field)->getType()); 806 if (const ArrayType *Array = Context.getAsArrayType(FieldType)) 807 FieldType = Array->getElementType(); 808 if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) { 809 if ((*Field)->isAnonymousStructOrUnion()) 810 continue; 811 CXXRecordDecl *FieldClassDecl 812 = cast<CXXRecordDecl>(FieldClassType->getDecl()); 813 if (const CXXDestructorDecl *FieldDtor = 814 FieldClassDecl->getDestructor(Context)) 815 GetAddrOfCXXDestructor(FieldDtor, Dtor_Complete); 816 } 817 } 818 DeferredDeclsToEmit.push_back(DtorDecl); 819 } 820 821 822 /// GetAddrOfFunction - Return the address of the given function. If Ty is 823 /// non-null, then this function will use the specified type if it has to 824 /// create it (this occurs when we see a definition of the function). 825 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 826 const llvm::Type *Ty) { 827 // If there was no specific requested type, just convert it now. 828 if (!Ty) 829 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 830 return GetOrCreateLLVMFunction(getMangledName(GD), Ty, GD); 831 } 832 833 /// CreateRuntimeFunction - Create a new runtime function with the specified 834 /// type and name. 835 llvm::Constant * 836 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy, 837 const char *Name) { 838 // Convert Name to be a uniqued string from the IdentifierInfo table. 839 Name = getContext().Idents.get(Name).getNameStart(); 840 return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl()); 841 } 842 843 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 844 /// create and return an llvm GlobalVariable with the specified type. If there 845 /// is something in the module with the specified name, return it potentially 846 /// bitcasted to the right type. 847 /// 848 /// If D is non-null, it specifies a decl that correspond to this. This is used 849 /// to set the attributes on the global when it is first created. 850 llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName, 851 const llvm::PointerType*Ty, 852 const VarDecl *D) { 853 // Lookup the entry, lazily creating it if necessary. 854 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 855 if (Entry) { 856 if (Entry->getType() == Ty) 857 return Entry; 858 859 // Make sure the result is of the correct type. 860 return llvm::ConstantExpr::getBitCast(Entry, Ty); 861 } 862 863 // This is the first use or definition of a mangled name. If there is a 864 // deferred decl with this name, remember that we need to emit it at the end 865 // of the file. 866 llvm::DenseMap<const char*, GlobalDecl>::iterator DDI = 867 DeferredDecls.find(MangledName); 868 if (DDI != DeferredDecls.end()) { 869 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 870 // list, and remove it from DeferredDecls (since we don't need it anymore). 871 DeferredDeclsToEmit.push_back(DDI->second); 872 DeferredDecls.erase(DDI); 873 } 874 875 llvm::GlobalVariable *GV = 876 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 877 llvm::GlobalValue::ExternalLinkage, 878 0, "", 0, 879 false, Ty->getAddressSpace()); 880 GV->setName(MangledName); 881 882 // Handle things which are present even on external declarations. 883 if (D) { 884 // FIXME: This code is overly simple and should be merged with other global 885 // handling. 886 GV->setConstant(D->getType().isConstant(Context)); 887 888 // FIXME: Merge with other attribute handling code. 889 if (D->getStorageClass() == VarDecl::PrivateExtern) 890 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 891 892 if (D->hasAttr<WeakAttr>() || 893 D->hasAttr<WeakImportAttr>()) 894 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 895 896 GV->setThreadLocal(D->isThreadSpecified()); 897 } 898 899 return Entry = GV; 900 } 901 902 903 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 904 /// given global variable. If Ty is non-null and if the global doesn't exist, 905 /// then it will be greated with the specified type instead of whatever the 906 /// normal requested type would be. 907 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 908 const llvm::Type *Ty) { 909 assert(D->hasGlobalStorage() && "Not a global variable"); 910 QualType ASTTy = D->getType(); 911 if (Ty == 0) 912 Ty = getTypes().ConvertTypeForMem(ASTTy); 913 914 const llvm::PointerType *PTy = 915 llvm::PointerType::get(Ty, ASTTy.getAddressSpace()); 916 return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D); 917 } 918 919 /// CreateRuntimeVariable - Create a new runtime global variable with the 920 /// specified type and name. 921 llvm::Constant * 922 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty, 923 const char *Name) { 924 // Convert Name to be a uniqued string from the IdentifierInfo table. 925 Name = getContext().Idents.get(Name).getNameStart(); 926 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0); 927 } 928 929 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 930 assert(!D->getInit() && "Cannot emit definite definitions here!"); 931 932 if (MayDeferGeneration(D)) { 933 // If we have not seen a reference to this variable yet, place it 934 // into the deferred declarations table to be emitted if needed 935 // later. 936 const char *MangledName = getMangledName(D); 937 if (GlobalDeclMap.count(MangledName) == 0) { 938 DeferredDecls[MangledName] = D; 939 return; 940 } 941 } 942 943 // The tentative definition is the only definition. 944 EmitGlobalVarDefinition(D); 945 } 946 947 static CodeGenModule::GVALinkage 948 GetLinkageForVariable(ASTContext &Context, const VarDecl *VD) { 949 // Everything located semantically within an anonymous namespace is 950 // always internal. 951 if (VD->isInAnonymousNamespace()) 952 return CodeGenModule::GVA_Internal; 953 954 // Handle linkage for static data members. 955 if (VD->isStaticDataMember()) { 956 switch (VD->getTemplateSpecializationKind()) { 957 case TSK_Undeclared: 958 case TSK_ExplicitSpecialization: 959 case TSK_ExplicitInstantiationDefinition: 960 return CodeGenModule::GVA_StrongExternal; 961 962 case TSK_ExplicitInstantiationDeclaration: 963 llvm::llvm_unreachable("Variable should not be instantiated"); 964 // Fall through to treat this like any other instantiation. 965 966 case TSK_ImplicitInstantiation: 967 return CodeGenModule::GVA_TemplateInstantiation; 968 } 969 } 970 971 // Static variables get internal linkage. 972 if (VD->getStorageClass() == VarDecl::Static) 973 return CodeGenModule::GVA_Internal; 974 975 return CodeGenModule::GVA_StrongExternal; 976 } 977 978 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 979 llvm::Constant *Init = 0; 980 QualType ASTTy = D->getType(); 981 982 if (D->getInit() == 0) { 983 // This is a tentative definition; tentative definitions are 984 // implicitly initialized with { 0 }. 985 // 986 // Note that tentative definitions are only emitted at the end of 987 // a translation unit, so they should never have incomplete 988 // type. In addition, EmitTentativeDefinition makes sure that we 989 // never attempt to emit a tentative definition if a real one 990 // exists. A use may still exists, however, so we still may need 991 // to do a RAUW. 992 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 993 Init = EmitNullConstant(D->getType()); 994 } else { 995 Init = EmitConstantExpr(D->getInit(), D->getType()); 996 997 if (!Init) { 998 QualType T = D->getInit()->getType(); 999 if (getLangOptions().CPlusPlus) { 1000 CXXGlobalInits.push_back(D); 1001 Init = EmitNullConstant(T); 1002 } else { 1003 ErrorUnsupported(D, "static initializer"); 1004 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 1005 } 1006 } 1007 } 1008 1009 const llvm::Type* InitType = Init->getType(); 1010 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 1011 1012 // Strip off a bitcast if we got one back. 1013 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1014 assert(CE->getOpcode() == llvm::Instruction::BitCast || 1015 // all zero index gep. 1016 CE->getOpcode() == llvm::Instruction::GetElementPtr); 1017 Entry = CE->getOperand(0); 1018 } 1019 1020 // Entry is now either a Function or GlobalVariable. 1021 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 1022 1023 // We have a definition after a declaration with the wrong type. 1024 // We must make a new GlobalVariable* and update everything that used OldGV 1025 // (a declaration or tentative definition) with the new GlobalVariable* 1026 // (which will be a definition). 1027 // 1028 // This happens if there is a prototype for a global (e.g. 1029 // "extern int x[];") and then a definition of a different type (e.g. 1030 // "int x[10];"). This also happens when an initializer has a different type 1031 // from the type of the global (this happens with unions). 1032 if (GV == 0 || 1033 GV->getType()->getElementType() != InitType || 1034 GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) { 1035 1036 // Remove the old entry from GlobalDeclMap so that we'll create a new one. 1037 GlobalDeclMap.erase(getMangledName(D)); 1038 1039 // Make a new global with the correct type, this is now guaranteed to work. 1040 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 1041 GV->takeName(cast<llvm::GlobalValue>(Entry)); 1042 1043 // Replace all uses of the old global with the new global 1044 llvm::Constant *NewPtrForOldDecl = 1045 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 1046 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1047 1048 // Erase the old global, since it is no longer used. 1049 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 1050 } 1051 1052 if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) { 1053 SourceManager &SM = Context.getSourceManager(); 1054 AddAnnotation(EmitAnnotateAttr(GV, AA, 1055 SM.getInstantiationLineNumber(D->getLocation()))); 1056 } 1057 1058 GV->setInitializer(Init); 1059 1060 // If it is safe to mark the global 'constant', do so now. 1061 GV->setConstant(false); 1062 if (D->getType().isConstant(Context)) { 1063 // FIXME: In C++, if the variable has a non-trivial ctor/dtor or any mutable 1064 // members, it cannot be declared "LLVM const". 1065 GV->setConstant(true); 1066 } 1067 1068 GV->setAlignment(getContext().getDeclAlignInBytes(D)); 1069 1070 // Set the llvm linkage type as appropriate. 1071 GVALinkage Linkage = GetLinkageForVariable(getContext(), D); 1072 if (Linkage == GVA_Internal) 1073 GV->setLinkage(llvm::Function::InternalLinkage); 1074 else if (D->hasAttr<DLLImportAttr>()) 1075 GV->setLinkage(llvm::Function::DLLImportLinkage); 1076 else if (D->hasAttr<DLLExportAttr>()) 1077 GV->setLinkage(llvm::Function::DLLExportLinkage); 1078 else if (D->hasAttr<WeakAttr>()) { 1079 if (GV->isConstant()) 1080 GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage); 1081 else 1082 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 1083 } else if (Linkage == GVA_TemplateInstantiation) 1084 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 1085 else if (!CodeGenOpts.NoCommon && 1086 !D->hasExternalStorage() && !D->getInit() && 1087 !D->getAttr<SectionAttr>()) { 1088 GV->setLinkage(llvm::GlobalVariable::CommonLinkage); 1089 // common vars aren't constant even if declared const. 1090 GV->setConstant(false); 1091 } else 1092 GV->setLinkage(llvm::GlobalVariable::ExternalLinkage); 1093 1094 SetCommonAttributes(D, GV); 1095 1096 // Emit global variable debug information. 1097 if (CGDebugInfo *DI = getDebugInfo()) { 1098 DI->setLocation(D->getLocation()); 1099 DI->EmitGlobalVariable(GV, D); 1100 } 1101 } 1102 1103 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 1104 /// implement a function with no prototype, e.g. "int foo() {}". If there are 1105 /// existing call uses of the old function in the module, this adjusts them to 1106 /// call the new function directly. 1107 /// 1108 /// This is not just a cleanup: the always_inline pass requires direct calls to 1109 /// functions to be able to inline them. If there is a bitcast in the way, it 1110 /// won't inline them. Instcombine normally deletes these calls, but it isn't 1111 /// run at -O0. 1112 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1113 llvm::Function *NewFn) { 1114 // If we're redefining a global as a function, don't transform it. 1115 llvm::Function *OldFn = dyn_cast<llvm::Function>(Old); 1116 if (OldFn == 0) return; 1117 1118 const llvm::Type *NewRetTy = NewFn->getReturnType(); 1119 llvm::SmallVector<llvm::Value*, 4> ArgList; 1120 1121 for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end(); 1122 UI != E; ) { 1123 // TODO: Do invokes ever occur in C code? If so, we should handle them too. 1124 unsigned OpNo = UI.getOperandNo(); 1125 llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*UI++); 1126 if (!CI || OpNo != 0) continue; 1127 1128 // If the return types don't match exactly, and if the call isn't dead, then 1129 // we can't transform this call. 1130 if (CI->getType() != NewRetTy && !CI->use_empty()) 1131 continue; 1132 1133 // If the function was passed too few arguments, don't transform. If extra 1134 // arguments were passed, we silently drop them. If any of the types 1135 // mismatch, we don't transform. 1136 unsigned ArgNo = 0; 1137 bool DontTransform = false; 1138 for (llvm::Function::arg_iterator AI = NewFn->arg_begin(), 1139 E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) { 1140 if (CI->getNumOperands()-1 == ArgNo || 1141 CI->getOperand(ArgNo+1)->getType() != AI->getType()) { 1142 DontTransform = true; 1143 break; 1144 } 1145 } 1146 if (DontTransform) 1147 continue; 1148 1149 // Okay, we can transform this. Create the new call instruction and copy 1150 // over the required information. 1151 ArgList.append(CI->op_begin()+1, CI->op_begin()+1+ArgNo); 1152 llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(), 1153 ArgList.end(), "", CI); 1154 ArgList.clear(); 1155 if (!NewCall->getType()->isVoidTy()) 1156 NewCall->takeName(CI); 1157 NewCall->setAttributes(CI->getAttributes()); 1158 NewCall->setCallingConv(CI->getCallingConv()); 1159 1160 // Finally, remove the old call, replacing any uses with the new one. 1161 if (!CI->use_empty()) 1162 CI->replaceAllUsesWith(NewCall); 1163 1164 // Copy any custom metadata attached with CI. 1165 llvm::MetadataContext &TheMetadata = CI->getContext().getMetadata(); 1166 TheMetadata.copyMD(CI, NewCall); 1167 1168 CI->eraseFromParent(); 1169 } 1170 } 1171 1172 1173 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { 1174 const llvm::FunctionType *Ty; 1175 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 1176 1177 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) { 1178 bool isVariadic = D->getType()->getAs<FunctionProtoType>()->isVariadic(); 1179 1180 Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic); 1181 } else { 1182 Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType())); 1183 1184 // As a special case, make sure that definitions of K&R function 1185 // "type foo()" aren't declared as varargs (which forces the backend 1186 // to do unnecessary work). 1187 if (D->getType()->isFunctionNoProtoType()) { 1188 assert(Ty->isVarArg() && "Didn't lower type as expected"); 1189 // Due to stret, the lowered function could have arguments. 1190 // Just create the same type as was lowered by ConvertType 1191 // but strip off the varargs bit. 1192 std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end()); 1193 Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false); 1194 } 1195 } 1196 1197 // Get or create the prototype for the function. 1198 llvm::Constant *Entry = GetAddrOfFunction(GD, Ty); 1199 1200 // Strip off a bitcast if we got one back. 1201 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1202 assert(CE->getOpcode() == llvm::Instruction::BitCast); 1203 Entry = CE->getOperand(0); 1204 } 1205 1206 1207 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 1208 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 1209 1210 // If the types mismatch then we have to rewrite the definition. 1211 assert(OldFn->isDeclaration() && 1212 "Shouldn't replace non-declaration"); 1213 1214 // F is the Function* for the one with the wrong type, we must make a new 1215 // Function* and update everything that used F (a declaration) with the new 1216 // Function* (which will be a definition). 1217 // 1218 // This happens if there is a prototype for a function 1219 // (e.g. "int f()") and then a definition of a different type 1220 // (e.g. "int f(int x)"). Start by making a new function of the 1221 // correct type, RAUW, then steal the name. 1222 GlobalDeclMap.erase(getMangledName(D)); 1223 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 1224 NewFn->takeName(OldFn); 1225 1226 // If this is an implementation of a function without a prototype, try to 1227 // replace any existing uses of the function (which may be calls) with uses 1228 // of the new function 1229 if (D->getType()->isFunctionNoProtoType()) { 1230 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 1231 OldFn->removeDeadConstantUsers(); 1232 } 1233 1234 // Replace uses of F with the Function we will endow with a body. 1235 if (!Entry->use_empty()) { 1236 llvm::Constant *NewPtrForOldDecl = 1237 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 1238 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1239 } 1240 1241 // Ok, delete the old function now, which is dead. 1242 OldFn->eraseFromParent(); 1243 1244 Entry = NewFn; 1245 } 1246 1247 llvm::Function *Fn = cast<llvm::Function>(Entry); 1248 1249 CodeGenFunction(*this).GenerateCode(D, Fn); 1250 1251 SetFunctionDefinitionAttributes(D, Fn); 1252 SetLLVMFunctionAttributesForDefinition(D, Fn); 1253 1254 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 1255 AddGlobalCtor(Fn, CA->getPriority()); 1256 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 1257 AddGlobalDtor(Fn, DA->getPriority()); 1258 } 1259 1260 void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) { 1261 const AliasAttr *AA = D->getAttr<AliasAttr>(); 1262 assert(AA && "Not an alias?"); 1263 1264 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 1265 1266 // Unique the name through the identifier table. 1267 const char *AliaseeName = AA->getAliasee().c_str(); 1268 AliaseeName = getContext().Idents.get(AliaseeName).getNameStart(); 1269 1270 // Create a reference to the named value. This ensures that it is emitted 1271 // if a deferred decl. 1272 llvm::Constant *Aliasee; 1273 if (isa<llvm::FunctionType>(DeclTy)) 1274 Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, GlobalDecl()); 1275 else 1276 Aliasee = GetOrCreateLLVMGlobal(AliaseeName, 1277 llvm::PointerType::getUnqual(DeclTy), 0); 1278 1279 // Create the new alias itself, but don't set a name yet. 1280 llvm::GlobalValue *GA = 1281 new llvm::GlobalAlias(Aliasee->getType(), 1282 llvm::Function::ExternalLinkage, 1283 "", Aliasee, &getModule()); 1284 1285 // See if there is already something with the alias' name in the module. 1286 const char *MangledName = getMangledName(D); 1287 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 1288 1289 if (Entry && !Entry->isDeclaration()) { 1290 // If there is a definition in the module, then it wins over the alias. 1291 // This is dubious, but allow it to be safe. Just ignore the alias. 1292 GA->eraseFromParent(); 1293 return; 1294 } 1295 1296 if (Entry) { 1297 // If there is a declaration in the module, then we had an extern followed 1298 // by the alias, as in: 1299 // extern int test6(); 1300 // ... 1301 // int test6() __attribute__((alias("test7"))); 1302 // 1303 // Remove it and replace uses of it with the alias. 1304 1305 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 1306 Entry->getType())); 1307 Entry->eraseFromParent(); 1308 } 1309 1310 // Now we know that there is no conflict, set the name. 1311 Entry = GA; 1312 GA->setName(MangledName); 1313 1314 // Set attributes which are particular to an alias; this is a 1315 // specialization of the attributes which may be set on a global 1316 // variable/function. 1317 if (D->hasAttr<DLLExportAttr>()) { 1318 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1319 // The dllexport attribute is ignored for undefined symbols. 1320 if (FD->getBody()) 1321 GA->setLinkage(llvm::Function::DLLExportLinkage); 1322 } else { 1323 GA->setLinkage(llvm::Function::DLLExportLinkage); 1324 } 1325 } else if (D->hasAttr<WeakAttr>() || 1326 D->hasAttr<WeakImportAttr>()) { 1327 GA->setLinkage(llvm::Function::WeakAnyLinkage); 1328 } 1329 1330 SetCommonAttributes(D, GA); 1331 } 1332 1333 /// getBuiltinLibFunction - Given a builtin id for a function like 1334 /// "__builtin_fabsf", return a Function* for "fabsf". 1335 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD, 1336 unsigned BuiltinID) { 1337 assert((Context.BuiltinInfo.isLibFunction(BuiltinID) || 1338 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) && 1339 "isn't a lib fn"); 1340 1341 // Get the name, skip over the __builtin_ prefix (if necessary). 1342 const char *Name = Context.BuiltinInfo.GetName(BuiltinID); 1343 if (Context.BuiltinInfo.isLibFunction(BuiltinID)) 1344 Name += 10; 1345 1346 // Get the type for the builtin. 1347 ASTContext::GetBuiltinTypeError Error; 1348 QualType Type = Context.GetBuiltinType(BuiltinID, Error); 1349 assert(Error == ASTContext::GE_None && "Can't get builtin type"); 1350 1351 const llvm::FunctionType *Ty = 1352 cast<llvm::FunctionType>(getTypes().ConvertType(Type)); 1353 1354 // Unique the name through the identifier table. 1355 Name = getContext().Idents.get(Name).getNameStart(); 1356 return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD)); 1357 } 1358 1359 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys, 1360 unsigned NumTys) { 1361 return llvm::Intrinsic::getDeclaration(&getModule(), 1362 (llvm::Intrinsic::ID)IID, Tys, NumTys); 1363 } 1364 1365 llvm::Function *CodeGenModule::getMemCpyFn() { 1366 if (MemCpyFn) return MemCpyFn; 1367 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext); 1368 return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1); 1369 } 1370 1371 llvm::Function *CodeGenModule::getMemMoveFn() { 1372 if (MemMoveFn) return MemMoveFn; 1373 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext); 1374 return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1); 1375 } 1376 1377 llvm::Function *CodeGenModule::getMemSetFn() { 1378 if (MemSetFn) return MemSetFn; 1379 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext); 1380 return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1); 1381 } 1382 1383 static llvm::StringMapEntry<llvm::Constant*> & 1384 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1385 const StringLiteral *Literal, 1386 bool TargetIsLSB, 1387 bool &IsUTF16, 1388 unsigned &StringLength) { 1389 unsigned NumBytes = Literal->getByteLength(); 1390 1391 // Check for simple case. 1392 if (!Literal->containsNonAsciiOrNull()) { 1393 StringLength = NumBytes; 1394 return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(), 1395 StringLength)); 1396 } 1397 1398 // Otherwise, convert the UTF8 literals into a byte string. 1399 llvm::SmallVector<UTF16, 128> ToBuf(NumBytes); 1400 const UTF8 *FromPtr = (UTF8 *)Literal->getStrData(); 1401 UTF16 *ToPtr = &ToBuf[0]; 1402 1403 ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 1404 &ToPtr, ToPtr + NumBytes, 1405 strictConversion); 1406 1407 // Check for conversion failure. 1408 if (Result != conversionOK) { 1409 // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove 1410 // this duplicate code. 1411 assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed"); 1412 StringLength = NumBytes; 1413 return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(), 1414 StringLength)); 1415 } 1416 1417 // ConvertUTF8toUTF16 returns the length in ToPtr. 1418 StringLength = ToPtr - &ToBuf[0]; 1419 1420 // Render the UTF-16 string into a byte array and convert to the target byte 1421 // order. 1422 // 1423 // FIXME: This isn't something we should need to do here. 1424 llvm::SmallString<128> AsBytes; 1425 AsBytes.reserve(StringLength * 2); 1426 for (unsigned i = 0; i != StringLength; ++i) { 1427 unsigned short Val = ToBuf[i]; 1428 if (TargetIsLSB) { 1429 AsBytes.push_back(Val & 0xFF); 1430 AsBytes.push_back(Val >> 8); 1431 } else { 1432 AsBytes.push_back(Val >> 8); 1433 AsBytes.push_back(Val & 0xFF); 1434 } 1435 } 1436 // Append one extra null character, the second is automatically added by our 1437 // caller. 1438 AsBytes.push_back(0); 1439 1440 IsUTF16 = true; 1441 return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size())); 1442 } 1443 1444 llvm::Constant * 1445 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 1446 unsigned StringLength = 0; 1447 bool isUTF16 = false; 1448 llvm::StringMapEntry<llvm::Constant*> &Entry = 1449 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1450 getTargetData().isLittleEndian(), 1451 isUTF16, StringLength); 1452 1453 if (llvm::Constant *C = Entry.getValue()) 1454 return C; 1455 1456 llvm::Constant *Zero = 1457 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1458 llvm::Constant *Zeros[] = { Zero, Zero }; 1459 1460 // If we don't already have it, get __CFConstantStringClassReference. 1461 if (!CFConstantStringClassRef) { 1462 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1463 Ty = llvm::ArrayType::get(Ty, 0); 1464 llvm::Constant *GV = CreateRuntimeVariable(Ty, 1465 "__CFConstantStringClassReference"); 1466 // Decay array -> ptr 1467 CFConstantStringClassRef = 1468 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1469 } 1470 1471 QualType CFTy = getContext().getCFConstantStringType(); 1472 1473 const llvm::StructType *STy = 1474 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 1475 1476 std::vector<llvm::Constant*> Fields(4); 1477 1478 // Class pointer. 1479 Fields[0] = CFConstantStringClassRef; 1480 1481 // Flags. 1482 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1483 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 1484 llvm::ConstantInt::get(Ty, 0x07C8); 1485 1486 // String pointer. 1487 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1488 1489 const char *Sect = 0; 1490 llvm::GlobalValue::LinkageTypes Linkage; 1491 bool isConstant; 1492 if (isUTF16) { 1493 Sect = getContext().Target.getUnicodeStringSection(); 1494 // FIXME: why do utf strings get "_" labels instead of "L" labels? 1495 Linkage = llvm::GlobalValue::InternalLinkage; 1496 // Note: -fwritable-strings doesn't make unicode CFStrings writable, but 1497 // does make plain ascii ones writable. 1498 isConstant = true; 1499 } else { 1500 Linkage = llvm::GlobalValue::PrivateLinkage; 1501 isConstant = !Features.WritableStrings; 1502 } 1503 1504 llvm::GlobalVariable *GV = 1505 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 1506 ".str"); 1507 if (Sect) 1508 GV->setSection(Sect); 1509 if (isUTF16) { 1510 unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8; 1511 GV->setAlignment(Align); 1512 } 1513 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1514 1515 // String length. 1516 Ty = getTypes().ConvertType(getContext().LongTy); 1517 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 1518 1519 // The struct. 1520 C = llvm::ConstantStruct::get(STy, Fields); 1521 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1522 llvm::GlobalVariable::PrivateLinkage, C, 1523 "_unnamed_cfstring_"); 1524 if (const char *Sect = getContext().Target.getCFStringSection()) 1525 GV->setSection(Sect); 1526 Entry.setValue(GV); 1527 1528 return GV; 1529 } 1530 1531 /// GetStringForStringLiteral - Return the appropriate bytes for a 1532 /// string literal, properly padded to match the literal type. 1533 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) { 1534 const char *StrData = E->getStrData(); 1535 unsigned Len = E->getByteLength(); 1536 1537 const ConstantArrayType *CAT = 1538 getContext().getAsConstantArrayType(E->getType()); 1539 assert(CAT && "String isn't pointer or array!"); 1540 1541 // Resize the string to the right size. 1542 std::string Str(StrData, StrData+Len); 1543 uint64_t RealLen = CAT->getSize().getZExtValue(); 1544 1545 if (E->isWide()) 1546 RealLen *= getContext().Target.getWCharWidth()/8; 1547 1548 Str.resize(RealLen, '\0'); 1549 1550 return Str; 1551 } 1552 1553 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 1554 /// constant array for the given string literal. 1555 llvm::Constant * 1556 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 1557 // FIXME: This can be more efficient. 1558 // FIXME: We shouldn't need to bitcast the constant in the wide string case. 1559 llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S)); 1560 if (S->isWide()) { 1561 llvm::Type *DestTy = 1562 llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType())); 1563 C = llvm::ConstantExpr::getBitCast(C, DestTy); 1564 } 1565 return C; 1566 } 1567 1568 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 1569 /// array for the given ObjCEncodeExpr node. 1570 llvm::Constant * 1571 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 1572 std::string Str; 1573 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 1574 1575 return GetAddrOfConstantCString(Str); 1576 } 1577 1578 1579 /// GenerateWritableString -- Creates storage for a string literal. 1580 static llvm::Constant *GenerateStringLiteral(const std::string &str, 1581 bool constant, 1582 CodeGenModule &CGM, 1583 const char *GlobalName) { 1584 // Create Constant for this string literal. Don't add a '\0'. 1585 llvm::Constant *C = 1586 llvm::ConstantArray::get(CGM.getLLVMContext(), str, false); 1587 1588 // Create a global variable for this string 1589 return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant, 1590 llvm::GlobalValue::PrivateLinkage, 1591 C, GlobalName); 1592 } 1593 1594 /// GetAddrOfConstantString - Returns a pointer to a character array 1595 /// containing the literal. This contents are exactly that of the 1596 /// given string, i.e. it will not be null terminated automatically; 1597 /// see GetAddrOfConstantCString. Note that whether the result is 1598 /// actually a pointer to an LLVM constant depends on 1599 /// Feature.WriteableStrings. 1600 /// 1601 /// The result has pointer to array type. 1602 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str, 1603 const char *GlobalName) { 1604 bool IsConstant = !Features.WritableStrings; 1605 1606 // Get the default prefix if a name wasn't specified. 1607 if (!GlobalName) 1608 GlobalName = ".str"; 1609 1610 // Don't share any string literals if strings aren't constant. 1611 if (!IsConstant) 1612 return GenerateStringLiteral(str, false, *this, GlobalName); 1613 1614 llvm::StringMapEntry<llvm::Constant *> &Entry = 1615 ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 1616 1617 if (Entry.getValue()) 1618 return Entry.getValue(); 1619 1620 // Create a global variable for this. 1621 llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName); 1622 Entry.setValue(C); 1623 return C; 1624 } 1625 1626 /// GetAddrOfConstantCString - Returns a pointer to a character 1627 /// array containing the literal and a terminating '\-' 1628 /// character. The result has pointer to array type. 1629 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str, 1630 const char *GlobalName){ 1631 return GetAddrOfConstantString(str + '\0', GlobalName); 1632 } 1633 1634 /// EmitObjCPropertyImplementations - Emit information for synthesized 1635 /// properties for an implementation. 1636 void CodeGenModule::EmitObjCPropertyImplementations(const 1637 ObjCImplementationDecl *D) { 1638 for (ObjCImplementationDecl::propimpl_iterator 1639 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { 1640 ObjCPropertyImplDecl *PID = *i; 1641 1642 // Dynamic is just for type-checking. 1643 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 1644 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1645 1646 // Determine which methods need to be implemented, some may have 1647 // been overridden. Note that ::isSynthesized is not the method 1648 // we want, that just indicates if the decl came from a 1649 // property. What we want to know is if the method is defined in 1650 // this implementation. 1651 if (!D->getInstanceMethod(PD->getGetterName())) 1652 CodeGenFunction(*this).GenerateObjCGetter( 1653 const_cast<ObjCImplementationDecl *>(D), PID); 1654 if (!PD->isReadOnly() && 1655 !D->getInstanceMethod(PD->getSetterName())) 1656 CodeGenFunction(*this).GenerateObjCSetter( 1657 const_cast<ObjCImplementationDecl *>(D), PID); 1658 } 1659 } 1660 } 1661 1662 /// EmitNamespace - Emit all declarations in a namespace. 1663 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 1664 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); 1665 I != E; ++I) 1666 EmitTopLevelDecl(*I); 1667 } 1668 1669 // EmitLinkageSpec - Emit all declarations in a linkage spec. 1670 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 1671 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 1672 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 1673 ErrorUnsupported(LSD, "linkage spec"); 1674 return; 1675 } 1676 1677 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); 1678 I != E; ++I) 1679 EmitTopLevelDecl(*I); 1680 } 1681 1682 /// EmitTopLevelDecl - Emit code for a single top level declaration. 1683 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 1684 // If an error has occurred, stop code generation, but continue 1685 // parsing and semantic analysis (to ensure all warnings and errors 1686 // are emitted). 1687 if (Diags.hasErrorOccurred()) 1688 return; 1689 1690 // Ignore dependent declarations. 1691 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 1692 return; 1693 1694 switch (D->getKind()) { 1695 case Decl::CXXConversion: 1696 case Decl::CXXMethod: 1697 case Decl::Function: 1698 // Skip function templates 1699 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 1700 return; 1701 1702 EmitGlobal(cast<FunctionDecl>(D)); 1703 break; 1704 1705 case Decl::Var: 1706 EmitGlobal(cast<VarDecl>(D)); 1707 break; 1708 1709 // C++ Decls 1710 case Decl::Namespace: 1711 EmitNamespace(cast<NamespaceDecl>(D)); 1712 break; 1713 // No code generation needed. 1714 case Decl::Using: 1715 case Decl::UsingDirective: 1716 case Decl::ClassTemplate: 1717 case Decl::FunctionTemplate: 1718 case Decl::NamespaceAlias: 1719 break; 1720 case Decl::CXXConstructor: 1721 EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 1722 break; 1723 case Decl::CXXDestructor: 1724 EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 1725 break; 1726 1727 case Decl::StaticAssert: 1728 // Nothing to do. 1729 break; 1730 1731 // Objective-C Decls 1732 1733 // Forward declarations, no (immediate) code generation. 1734 case Decl::ObjCClass: 1735 case Decl::ObjCForwardProtocol: 1736 case Decl::ObjCCategory: 1737 case Decl::ObjCInterface: 1738 break; 1739 1740 case Decl::ObjCProtocol: 1741 Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D)); 1742 break; 1743 1744 case Decl::ObjCCategoryImpl: 1745 // Categories have properties but don't support synthesize so we 1746 // can ignore them here. 1747 Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 1748 break; 1749 1750 case Decl::ObjCImplementation: { 1751 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 1752 EmitObjCPropertyImplementations(OMD); 1753 Runtime->GenerateClass(OMD); 1754 break; 1755 } 1756 case Decl::ObjCMethod: { 1757 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 1758 // If this is not a prototype, emit the body. 1759 if (OMD->getBody()) 1760 CodeGenFunction(*this).GenerateObjCMethod(OMD); 1761 break; 1762 } 1763 case Decl::ObjCCompatibleAlias: 1764 // compatibility-alias is a directive and has no code gen. 1765 break; 1766 1767 case Decl::LinkageSpec: 1768 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 1769 break; 1770 1771 case Decl::FileScopeAsm: { 1772 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 1773 std::string AsmString(AD->getAsmString()->getStrData(), 1774 AD->getAsmString()->getByteLength()); 1775 1776 const std::string &S = getModule().getModuleInlineAsm(); 1777 if (S.empty()) 1778 getModule().setModuleInlineAsm(AsmString); 1779 else 1780 getModule().setModuleInlineAsm(S + '\n' + AsmString); 1781 break; 1782 } 1783 1784 default: 1785 // Make sure we handled everything we should, every other kind is a 1786 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 1787 // function. Need to recode Decl::Kind to do that easily. 1788 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 1789 } 1790 } 1791