1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-module state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenModule.h" 14 #include "CGBlocks.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCall.h" 18 #include "CGDebugInfo.h" 19 #include "CGObjCRuntime.h" 20 #include "CGOpenCLRuntime.h" 21 #include "CGOpenMPRuntime.h" 22 #include "CGOpenMPRuntimeNVPTX.h" 23 #include "CodeGenFunction.h" 24 #include "CodeGenPGO.h" 25 #include "ConstantEmitter.h" 26 #include "CoverageMappingGen.h" 27 #include "TargetInfo.h" 28 #include "clang/AST/ASTContext.h" 29 #include "clang/AST/CharUnits.h" 30 #include "clang/AST/DeclCXX.h" 31 #include "clang/AST/DeclObjC.h" 32 #include "clang/AST/DeclTemplate.h" 33 #include "clang/AST/Mangle.h" 34 #include "clang/AST/RecordLayout.h" 35 #include "clang/AST/RecursiveASTVisitor.h" 36 #include "clang/AST/StmtVisitor.h" 37 #include "clang/Basic/Builtins.h" 38 #include "clang/Basic/CharInfo.h" 39 #include "clang/Basic/CodeGenOptions.h" 40 #include "clang/Basic/Diagnostic.h" 41 #include "clang/Basic/Module.h" 42 #include "clang/Basic/SourceManager.h" 43 #include "clang/Basic/TargetInfo.h" 44 #include "clang/Basic/Version.h" 45 #include "clang/CodeGen/ConstantInitBuilder.h" 46 #include "clang/Frontend/FrontendDiagnostic.h" 47 #include "llvm/ADT/StringSwitch.h" 48 #include "llvm/ADT/Triple.h" 49 #include "llvm/Analysis/TargetLibraryInfo.h" 50 #include "llvm/IR/CallingConv.h" 51 #include "llvm/IR/DataLayout.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/Module.h" 55 #include "llvm/IR/ProfileSummary.h" 56 #include "llvm/ProfileData/InstrProfReader.h" 57 #include "llvm/Support/CodeGen.h" 58 #include "llvm/Support/ConvertUTF.h" 59 #include "llvm/Support/ErrorHandling.h" 60 #include "llvm/Support/MD5.h" 61 #include "llvm/Support/TimeProfiler.h" 62 63 using namespace clang; 64 using namespace CodeGen; 65 66 static llvm::cl::opt<bool> LimitedCoverage( 67 "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden, 68 llvm::cl::desc("Emit limited coverage mapping information (experimental)"), 69 llvm::cl::init(false)); 70 71 static const char AnnotationSection[] = "llvm.metadata"; 72 73 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 74 switch (CGM.getTarget().getCXXABI().getKind()) { 75 case TargetCXXABI::GenericAArch64: 76 case TargetCXXABI::GenericARM: 77 case TargetCXXABI::iOS: 78 case TargetCXXABI::iOS64: 79 case TargetCXXABI::WatchOS: 80 case TargetCXXABI::GenericMIPS: 81 case TargetCXXABI::GenericItanium: 82 case TargetCXXABI::WebAssembly: 83 return CreateItaniumCXXABI(CGM); 84 case TargetCXXABI::Microsoft: 85 return CreateMicrosoftCXXABI(CGM); 86 } 87 88 llvm_unreachable("invalid C++ ABI kind"); 89 } 90 91 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 92 const PreprocessorOptions &PPO, 93 const CodeGenOptions &CGO, llvm::Module &M, 94 DiagnosticsEngine &diags, 95 CoverageSourceInfo *CoverageInfo) 96 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 97 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 98 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 99 VMContext(M.getContext()), Types(*this), VTables(*this), 100 SanitizerMD(new SanitizerMetadata(*this)) { 101 102 // Initialize the type cache. 103 llvm::LLVMContext &LLVMContext = M.getContext(); 104 VoidTy = llvm::Type::getVoidTy(LLVMContext); 105 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 106 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 107 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 108 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 109 HalfTy = llvm::Type::getHalfTy(LLVMContext); 110 FloatTy = llvm::Type::getFloatTy(LLVMContext); 111 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 112 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 113 PointerAlignInBytes = 114 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 115 SizeSizeInBytes = 116 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 117 IntAlignInBytes = 118 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 119 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 120 IntPtrTy = llvm::IntegerType::get(LLVMContext, 121 C.getTargetInfo().getMaxPointerWidth()); 122 Int8PtrTy = Int8Ty->getPointerTo(0); 123 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 124 AllocaInt8PtrTy = Int8Ty->getPointerTo( 125 M.getDataLayout().getAllocaAddrSpace()); 126 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 127 128 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 129 130 if (LangOpts.ObjC) 131 createObjCRuntime(); 132 if (LangOpts.OpenCL) 133 createOpenCLRuntime(); 134 if (LangOpts.OpenMP) 135 createOpenMPRuntime(); 136 if (LangOpts.CUDA) 137 createCUDARuntime(); 138 139 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 140 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 141 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 142 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(), 143 getCXXABI().getMangleContext())); 144 145 // If debug info or coverage generation is enabled, create the CGDebugInfo 146 // object. 147 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 148 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 149 DebugInfo.reset(new CGDebugInfo(*this)); 150 151 Block.GlobalUniqueCount = 0; 152 153 if (C.getLangOpts().ObjC) 154 ObjCData.reset(new ObjCEntrypoints()); 155 156 if (CodeGenOpts.hasProfileClangUse()) { 157 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 158 CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile); 159 if (auto E = ReaderOrErr.takeError()) { 160 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 161 "Could not read profile %0: %1"); 162 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) { 163 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 164 << EI.message(); 165 }); 166 } else 167 PGOReader = std::move(ReaderOrErr.get()); 168 } 169 170 // If coverage mapping generation is enabled, create the 171 // CoverageMappingModuleGen object. 172 if (CodeGenOpts.CoverageMapping) 173 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 174 } 175 176 CodeGenModule::~CodeGenModule() {} 177 178 void CodeGenModule::createObjCRuntime() { 179 // This is just isGNUFamily(), but we want to force implementors of 180 // new ABIs to decide how best to do this. 181 switch (LangOpts.ObjCRuntime.getKind()) { 182 case ObjCRuntime::GNUstep: 183 case ObjCRuntime::GCC: 184 case ObjCRuntime::ObjFW: 185 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 186 return; 187 188 case ObjCRuntime::FragileMacOSX: 189 case ObjCRuntime::MacOSX: 190 case ObjCRuntime::iOS: 191 case ObjCRuntime::WatchOS: 192 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 193 return; 194 } 195 llvm_unreachable("bad runtime kind"); 196 } 197 198 void CodeGenModule::createOpenCLRuntime() { 199 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 200 } 201 202 void CodeGenModule::createOpenMPRuntime() { 203 // Select a specialized code generation class based on the target, if any. 204 // If it does not exist use the default implementation. 205 switch (getTriple().getArch()) { 206 case llvm::Triple::nvptx: 207 case llvm::Triple::nvptx64: 208 assert(getLangOpts().OpenMPIsDevice && 209 "OpenMP NVPTX is only prepared to deal with device code."); 210 OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this)); 211 break; 212 default: 213 if (LangOpts.OpenMPSimd) 214 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 215 else 216 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 217 break; 218 } 219 } 220 221 void CodeGenModule::createCUDARuntime() { 222 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 223 } 224 225 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 226 Replacements[Name] = C; 227 } 228 229 void CodeGenModule::applyReplacements() { 230 for (auto &I : Replacements) { 231 StringRef MangledName = I.first(); 232 llvm::Constant *Replacement = I.second; 233 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 234 if (!Entry) 235 continue; 236 auto *OldF = cast<llvm::Function>(Entry); 237 auto *NewF = dyn_cast<llvm::Function>(Replacement); 238 if (!NewF) { 239 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 240 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 241 } else { 242 auto *CE = cast<llvm::ConstantExpr>(Replacement); 243 assert(CE->getOpcode() == llvm::Instruction::BitCast || 244 CE->getOpcode() == llvm::Instruction::GetElementPtr); 245 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 246 } 247 } 248 249 // Replace old with new, but keep the old order. 250 OldF->replaceAllUsesWith(Replacement); 251 if (NewF) { 252 NewF->removeFromParent(); 253 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 254 NewF); 255 } 256 OldF->eraseFromParent(); 257 } 258 } 259 260 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 261 GlobalValReplacements.push_back(std::make_pair(GV, C)); 262 } 263 264 void CodeGenModule::applyGlobalValReplacements() { 265 for (auto &I : GlobalValReplacements) { 266 llvm::GlobalValue *GV = I.first; 267 llvm::Constant *C = I.second; 268 269 GV->replaceAllUsesWith(C); 270 GV->eraseFromParent(); 271 } 272 } 273 274 // This is only used in aliases that we created and we know they have a 275 // linear structure. 276 static const llvm::GlobalObject *getAliasedGlobal( 277 const llvm::GlobalIndirectSymbol &GIS) { 278 llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited; 279 const llvm::Constant *C = &GIS; 280 for (;;) { 281 C = C->stripPointerCasts(); 282 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 283 return GO; 284 // stripPointerCasts will not walk over weak aliases. 285 auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C); 286 if (!GIS2) 287 return nullptr; 288 if (!Visited.insert(GIS2).second) 289 return nullptr; 290 C = GIS2->getIndirectSymbol(); 291 } 292 } 293 294 void CodeGenModule::checkAliases() { 295 // Check if the constructed aliases are well formed. It is really unfortunate 296 // that we have to do this in CodeGen, but we only construct mangled names 297 // and aliases during codegen. 298 bool Error = false; 299 DiagnosticsEngine &Diags = getDiags(); 300 for (const GlobalDecl &GD : Aliases) { 301 const auto *D = cast<ValueDecl>(GD.getDecl()); 302 SourceLocation Location; 303 bool IsIFunc = D->hasAttr<IFuncAttr>(); 304 if (const Attr *A = D->getDefiningAttr()) 305 Location = A->getLocation(); 306 else 307 llvm_unreachable("Not an alias or ifunc?"); 308 StringRef MangledName = getMangledName(GD); 309 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 310 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry); 311 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 312 if (!GV) { 313 Error = true; 314 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 315 } else if (GV->isDeclaration()) { 316 Error = true; 317 Diags.Report(Location, diag::err_alias_to_undefined) 318 << IsIFunc << IsIFunc; 319 } else if (IsIFunc) { 320 // Check resolver function type. 321 llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>( 322 GV->getType()->getPointerElementType()); 323 assert(FTy); 324 if (!FTy->getReturnType()->isPointerTy()) 325 Diags.Report(Location, diag::err_ifunc_resolver_return); 326 } 327 328 llvm::Constant *Aliasee = Alias->getIndirectSymbol(); 329 llvm::GlobalValue *AliaseeGV; 330 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 331 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 332 else 333 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 334 335 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 336 StringRef AliasSection = SA->getName(); 337 if (AliasSection != AliaseeGV->getSection()) 338 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 339 << AliasSection << IsIFunc << IsIFunc; 340 } 341 342 // We have to handle alias to weak aliases in here. LLVM itself disallows 343 // this since the object semantics would not match the IL one. For 344 // compatibility with gcc we implement it by just pointing the alias 345 // to its aliasee's aliasee. We also warn, since the user is probably 346 // expecting the link to be weak. 347 if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) { 348 if (GA->isInterposable()) { 349 Diags.Report(Location, diag::warn_alias_to_weak_alias) 350 << GV->getName() << GA->getName() << IsIFunc; 351 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 352 GA->getIndirectSymbol(), Alias->getType()); 353 Alias->setIndirectSymbol(Aliasee); 354 } 355 } 356 } 357 if (!Error) 358 return; 359 360 for (const GlobalDecl &GD : Aliases) { 361 StringRef MangledName = getMangledName(GD); 362 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 363 auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry); 364 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 365 Alias->eraseFromParent(); 366 } 367 } 368 369 void CodeGenModule::clear() { 370 DeferredDeclsToEmit.clear(); 371 if (OpenMPRuntime) 372 OpenMPRuntime->clear(); 373 } 374 375 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 376 StringRef MainFile) { 377 if (!hasDiagnostics()) 378 return; 379 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 380 if (MainFile.empty()) 381 MainFile = "<stdin>"; 382 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 383 } else { 384 if (Mismatched > 0) 385 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 386 387 if (Missing > 0) 388 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 389 } 390 } 391 392 void CodeGenModule::Release() { 393 EmitDeferred(); 394 EmitVTablesOpportunistically(); 395 applyGlobalValReplacements(); 396 applyReplacements(); 397 checkAliases(); 398 emitMultiVersionFunctions(); 399 EmitCXXGlobalInitFunc(); 400 EmitCXXGlobalDtorFunc(); 401 registerGlobalDtorsWithAtExit(); 402 EmitCXXThreadLocalInitFunc(); 403 if (ObjCRuntime) 404 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 405 AddGlobalCtor(ObjCInitFunction); 406 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice && 407 CUDARuntime) { 408 if (llvm::Function *CudaCtorFunction = 409 CUDARuntime->makeModuleCtorFunction()) 410 AddGlobalCtor(CudaCtorFunction); 411 } 412 if (OpenMPRuntime) { 413 if (llvm::Function *OpenMPRequiresDirectiveRegFun = 414 OpenMPRuntime->emitRequiresDirectiveRegFun()) { 415 AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0); 416 } 417 OpenMPRuntime->createOffloadEntriesAndInfoMetadata(); 418 OpenMPRuntime->clear(); 419 } 420 if (PGOReader) { 421 getModule().setProfileSummary( 422 PGOReader->getSummary(/* UseCS */ false).getMD(VMContext), 423 llvm::ProfileSummary::PSK_Instr); 424 if (PGOStats.hasDiagnostics()) 425 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 426 } 427 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 428 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 429 EmitGlobalAnnotations(); 430 EmitStaticExternCAliases(); 431 EmitDeferredUnusedCoverageMappings(); 432 if (CoverageMapping) 433 CoverageMapping->emit(); 434 if (CodeGenOpts.SanitizeCfiCrossDso) { 435 CodeGenFunction(*this).EmitCfiCheckFail(); 436 CodeGenFunction(*this).EmitCfiCheckStub(); 437 } 438 emitAtAvailableLinkGuard(); 439 emitLLVMUsed(); 440 if (SanStats) 441 SanStats->finish(); 442 443 if (CodeGenOpts.Autolink && 444 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 445 EmitModuleLinkOptions(); 446 } 447 448 // On ELF we pass the dependent library specifiers directly to the linker 449 // without manipulating them. This is in contrast to other platforms where 450 // they are mapped to a specific linker option by the compiler. This 451 // difference is a result of the greater variety of ELF linkers and the fact 452 // that ELF linkers tend to handle libraries in a more complicated fashion 453 // than on other platforms. This forces us to defer handling the dependent 454 // libs to the linker. 455 // 456 // CUDA/HIP device and host libraries are different. Currently there is no 457 // way to differentiate dependent libraries for host or device. Existing 458 // usage of #pragma comment(lib, *) is intended for host libraries on 459 // Windows. Therefore emit llvm.dependent-libraries only for host. 460 if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) { 461 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries"); 462 for (auto *MD : ELFDependentLibraries) 463 NMD->addOperand(MD); 464 } 465 466 // Record mregparm value now so it is visible through rest of codegen. 467 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 468 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 469 CodeGenOpts.NumRegisterParameters); 470 471 if (CodeGenOpts.DwarfVersion) { 472 // We actually want the latest version when there are conflicts. 473 // We can change from Warning to Latest if such mode is supported. 474 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 475 CodeGenOpts.DwarfVersion); 476 } 477 if (CodeGenOpts.EmitCodeView) { 478 // Indicate that we want CodeView in the metadata. 479 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 480 } 481 if (CodeGenOpts.CodeViewGHash) { 482 getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1); 483 } 484 if (CodeGenOpts.ControlFlowGuard) { 485 // We want function ID tables for Control Flow Guard. 486 getModule().addModuleFlag(llvm::Module::Warning, "cfguardtable", 1); 487 } 488 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 489 // We don't support LTO with 2 with different StrictVTablePointers 490 // FIXME: we could support it by stripping all the information introduced 491 // by StrictVTablePointers. 492 493 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 494 495 llvm::Metadata *Ops[2] = { 496 llvm::MDString::get(VMContext, "StrictVTablePointers"), 497 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 498 llvm::Type::getInt32Ty(VMContext), 1))}; 499 500 getModule().addModuleFlag(llvm::Module::Require, 501 "StrictVTablePointersRequirement", 502 llvm::MDNode::get(VMContext, Ops)); 503 } 504 if (DebugInfo) 505 // We support a single version in the linked module. The LLVM 506 // parser will drop debug info with a different version number 507 // (and warn about it, too). 508 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 509 llvm::DEBUG_METADATA_VERSION); 510 511 // We need to record the widths of enums and wchar_t, so that we can generate 512 // the correct build attributes in the ARM backend. wchar_size is also used by 513 // TargetLibraryInfo. 514 uint64_t WCharWidth = 515 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 516 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 517 518 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 519 if ( Arch == llvm::Triple::arm 520 || Arch == llvm::Triple::armeb 521 || Arch == llvm::Triple::thumb 522 || Arch == llvm::Triple::thumbeb) { 523 // The minimum width of an enum in bytes 524 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 525 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 526 } 527 528 if (CodeGenOpts.SanitizeCfiCrossDso) { 529 // Indicate that we want cross-DSO control flow integrity checks. 530 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 531 } 532 533 if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) { 534 getModule().addModuleFlag(llvm::Module::Override, 535 "CFI Canonical Jump Tables", 536 CodeGenOpts.SanitizeCfiCanonicalJumpTables); 537 } 538 539 if (CodeGenOpts.CFProtectionReturn && 540 Target.checkCFProtectionReturnSupported(getDiags())) { 541 // Indicate that we want to instrument return control flow protection. 542 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return", 543 1); 544 } 545 546 if (CodeGenOpts.CFProtectionBranch && 547 Target.checkCFProtectionBranchSupported(getDiags())) { 548 // Indicate that we want to instrument branch control flow protection. 549 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch", 550 1); 551 } 552 553 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 554 // Indicate whether __nvvm_reflect should be configured to flush denormal 555 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 556 // property.) 557 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 558 CodeGenOpts.FlushDenorm ? 1 : 0); 559 } 560 561 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 562 if (LangOpts.OpenCL) { 563 EmitOpenCLMetadata(); 564 // Emit SPIR version. 565 if (getTriple().isSPIR()) { 566 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 567 // opencl.spir.version named metadata. 568 // C++ is backwards compatible with OpenCL v2.0. 569 auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion; 570 llvm::Metadata *SPIRVerElts[] = { 571 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 572 Int32Ty, Version / 100)), 573 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 574 Int32Ty, (Version / 100 > 1) ? 0 : 2))}; 575 llvm::NamedMDNode *SPIRVerMD = 576 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 577 llvm::LLVMContext &Ctx = TheModule.getContext(); 578 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 579 } 580 } 581 582 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 583 assert(PLevel < 3 && "Invalid PIC Level"); 584 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 585 if (Context.getLangOpts().PIE) 586 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 587 } 588 589 if (getCodeGenOpts().CodeModel.size() > 0) { 590 unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel) 591 .Case("tiny", llvm::CodeModel::Tiny) 592 .Case("small", llvm::CodeModel::Small) 593 .Case("kernel", llvm::CodeModel::Kernel) 594 .Case("medium", llvm::CodeModel::Medium) 595 .Case("large", llvm::CodeModel::Large) 596 .Default(~0u); 597 if (CM != ~0u) { 598 llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM); 599 getModule().setCodeModel(codeModel); 600 } 601 } 602 603 if (CodeGenOpts.NoPLT) 604 getModule().setRtLibUseGOT(); 605 606 SimplifyPersonality(); 607 608 if (getCodeGenOpts().EmitDeclMetadata) 609 EmitDeclMetadata(); 610 611 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 612 EmitCoverageFile(); 613 614 if (DebugInfo) 615 DebugInfo->finalize(); 616 617 if (getCodeGenOpts().EmitVersionIdentMetadata) 618 EmitVersionIdentMetadata(); 619 620 if (!getCodeGenOpts().RecordCommandLine.empty()) 621 EmitCommandLineMetadata(); 622 623 EmitTargetMetadata(); 624 } 625 626 void CodeGenModule::EmitOpenCLMetadata() { 627 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 628 // opencl.ocl.version named metadata node. 629 // C++ is backwards compatible with OpenCL v2.0. 630 // FIXME: We might need to add CXX version at some point too? 631 auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion; 632 llvm::Metadata *OCLVerElts[] = { 633 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 634 Int32Ty, Version / 100)), 635 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 636 Int32Ty, (Version % 100) / 10))}; 637 llvm::NamedMDNode *OCLVerMD = 638 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 639 llvm::LLVMContext &Ctx = TheModule.getContext(); 640 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 641 } 642 643 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 644 // Make sure that this type is translated. 645 Types.UpdateCompletedType(TD); 646 } 647 648 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 649 // Make sure that this type is translated. 650 Types.RefreshTypeCacheForClass(RD); 651 } 652 653 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 654 if (!TBAA) 655 return nullptr; 656 return TBAA->getTypeInfo(QTy); 657 } 658 659 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 660 if (!TBAA) 661 return TBAAAccessInfo(); 662 return TBAA->getAccessInfo(AccessType); 663 } 664 665 TBAAAccessInfo 666 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 667 if (!TBAA) 668 return TBAAAccessInfo(); 669 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 670 } 671 672 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 673 if (!TBAA) 674 return nullptr; 675 return TBAA->getTBAAStructInfo(QTy); 676 } 677 678 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 679 if (!TBAA) 680 return nullptr; 681 return TBAA->getBaseTypeInfo(QTy); 682 } 683 684 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 685 if (!TBAA) 686 return nullptr; 687 return TBAA->getAccessTagInfo(Info); 688 } 689 690 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 691 TBAAAccessInfo TargetInfo) { 692 if (!TBAA) 693 return TBAAAccessInfo(); 694 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 695 } 696 697 TBAAAccessInfo 698 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 699 TBAAAccessInfo InfoB) { 700 if (!TBAA) 701 return TBAAAccessInfo(); 702 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 703 } 704 705 TBAAAccessInfo 706 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, 707 TBAAAccessInfo SrcInfo) { 708 if (!TBAA) 709 return TBAAAccessInfo(); 710 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); 711 } 712 713 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 714 TBAAAccessInfo TBAAInfo) { 715 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 716 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 717 } 718 719 void CodeGenModule::DecorateInstructionWithInvariantGroup( 720 llvm::Instruction *I, const CXXRecordDecl *RD) { 721 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 722 llvm::MDNode::get(getLLVMContext(), {})); 723 } 724 725 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 726 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 727 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 728 } 729 730 /// ErrorUnsupported - Print out an error that codegen doesn't support the 731 /// specified stmt yet. 732 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 733 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 734 "cannot compile this %0 yet"); 735 std::string Msg = Type; 736 getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID) 737 << Msg << S->getSourceRange(); 738 } 739 740 /// ErrorUnsupported - Print out an error that codegen doesn't support the 741 /// specified decl yet. 742 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 743 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 744 "cannot compile this %0 yet"); 745 std::string Msg = Type; 746 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 747 } 748 749 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 750 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 751 } 752 753 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 754 const NamedDecl *D) const { 755 if (GV->hasDLLImportStorageClass()) 756 return; 757 // Internal definitions always have default visibility. 758 if (GV->hasLocalLinkage()) { 759 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 760 return; 761 } 762 if (!D) 763 return; 764 // Set visibility for definitions, and for declarations if requested globally 765 // or set explicitly. 766 LinkageInfo LV = D->getLinkageAndVisibility(); 767 if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls || 768 !GV->isDeclarationForLinker()) 769 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 770 } 771 772 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, 773 llvm::GlobalValue *GV) { 774 if (GV->hasLocalLinkage()) 775 return true; 776 777 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()) 778 return true; 779 780 // DLLImport explicitly marks the GV as external. 781 if (GV->hasDLLImportStorageClass()) 782 return false; 783 784 const llvm::Triple &TT = CGM.getTriple(); 785 if (TT.isWindowsGNUEnvironment()) { 786 // In MinGW, variables without DLLImport can still be automatically 787 // imported from a DLL by the linker; don't mark variables that 788 // potentially could come from another DLL as DSO local. 789 if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) && 790 !GV->isThreadLocal()) 791 return false; 792 } 793 794 // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols 795 // remain unresolved in the link, they can be resolved to zero, which is 796 // outside the current DSO. 797 if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage()) 798 return false; 799 800 // Every other GV is local on COFF. 801 // Make an exception for windows OS in the triple: Some firmware builds use 802 // *-win32-macho triples. This (accidentally?) produced windows relocations 803 // without GOT tables in older clang versions; Keep this behaviour. 804 // FIXME: even thread local variables? 805 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) 806 return true; 807 808 // Only handle COFF and ELF for now. 809 if (!TT.isOSBinFormatELF()) 810 return false; 811 812 // If this is not an executable, don't assume anything is local. 813 const auto &CGOpts = CGM.getCodeGenOpts(); 814 llvm::Reloc::Model RM = CGOpts.RelocationModel; 815 const auto &LOpts = CGM.getLangOpts(); 816 if (RM != llvm::Reloc::Static && !LOpts.PIE && !LOpts.OpenMPIsDevice) 817 return false; 818 819 // A definition cannot be preempted from an executable. 820 if (!GV->isDeclarationForLinker()) 821 return true; 822 823 // Most PIC code sequences that assume that a symbol is local cannot produce a 824 // 0 if it turns out the symbol is undefined. While this is ABI and relocation 825 // depended, it seems worth it to handle it here. 826 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) 827 return false; 828 829 // PPC has no copy relocations and cannot use a plt entry as a symbol address. 830 llvm::Triple::ArchType Arch = TT.getArch(); 831 if (Arch == llvm::Triple::ppc || Arch == llvm::Triple::ppc64 || 832 Arch == llvm::Triple::ppc64le) 833 return false; 834 835 // If we can use copy relocations we can assume it is local. 836 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV)) 837 if (!Var->isThreadLocal() && 838 (RM == llvm::Reloc::Static || CGOpts.PIECopyRelocations)) 839 return true; 840 841 // If we can use a plt entry as the symbol address we can assume it 842 // is local. 843 // FIXME: This should work for PIE, but the gold linker doesn't support it. 844 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) 845 return true; 846 847 // Otherwise don't assue it is local. 848 return false; 849 } 850 851 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { 852 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV)); 853 } 854 855 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 856 GlobalDecl GD) const { 857 const auto *D = dyn_cast<NamedDecl>(GD.getDecl()); 858 // C++ destructors have a few C++ ABI specific special cases. 859 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) { 860 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType()); 861 return; 862 } 863 setDLLImportDLLExport(GV, D); 864 } 865 866 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 867 const NamedDecl *D) const { 868 if (D && D->isExternallyVisible()) { 869 if (D->hasAttr<DLLImportAttr>()) 870 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 871 else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker()) 872 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 873 } 874 } 875 876 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 877 GlobalDecl GD) const { 878 setDLLImportDLLExport(GV, GD); 879 setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl())); 880 } 881 882 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 883 const NamedDecl *D) const { 884 setDLLImportDLLExport(GV, D); 885 setGVPropertiesAux(GV, D); 886 } 887 888 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV, 889 const NamedDecl *D) const { 890 setGlobalVisibility(GV, D); 891 setDSOLocal(GV); 892 GV->setPartition(CodeGenOpts.SymbolPartition); 893 } 894 895 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 896 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 897 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 898 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 899 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 900 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 901 } 902 903 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 904 CodeGenOptions::TLSModel M) { 905 switch (M) { 906 case CodeGenOptions::GeneralDynamicTLSModel: 907 return llvm::GlobalVariable::GeneralDynamicTLSModel; 908 case CodeGenOptions::LocalDynamicTLSModel: 909 return llvm::GlobalVariable::LocalDynamicTLSModel; 910 case CodeGenOptions::InitialExecTLSModel: 911 return llvm::GlobalVariable::InitialExecTLSModel; 912 case CodeGenOptions::LocalExecTLSModel: 913 return llvm::GlobalVariable::LocalExecTLSModel; 914 } 915 llvm_unreachable("Invalid TLS model!"); 916 } 917 918 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 919 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 920 921 llvm::GlobalValue::ThreadLocalMode TLM; 922 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 923 924 // Override the TLS model if it is explicitly specified. 925 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 926 TLM = GetLLVMTLSModel(Attr->getModel()); 927 } 928 929 GV->setThreadLocalMode(TLM); 930 } 931 932 static std::string getCPUSpecificMangling(const CodeGenModule &CGM, 933 StringRef Name) { 934 const TargetInfo &Target = CGM.getTarget(); 935 return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str(); 936 } 937 938 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM, 939 const CPUSpecificAttr *Attr, 940 unsigned CPUIndex, 941 raw_ostream &Out) { 942 // cpu_specific gets the current name, dispatch gets the resolver if IFunc is 943 // supported. 944 if (Attr) 945 Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName()); 946 else if (CGM.getTarget().supportsIFunc()) 947 Out << ".resolver"; 948 } 949 950 static void AppendTargetMangling(const CodeGenModule &CGM, 951 const TargetAttr *Attr, raw_ostream &Out) { 952 if (Attr->isDefaultVersion()) 953 return; 954 955 Out << '.'; 956 const TargetInfo &Target = CGM.getTarget(); 957 TargetAttr::ParsedTargetAttr Info = 958 Attr->parse([&Target](StringRef LHS, StringRef RHS) { 959 // Multiversioning doesn't allow "no-${feature}", so we can 960 // only have "+" prefixes here. 961 assert(LHS.startswith("+") && RHS.startswith("+") && 962 "Features should always have a prefix."); 963 return Target.multiVersionSortPriority(LHS.substr(1)) > 964 Target.multiVersionSortPriority(RHS.substr(1)); 965 }); 966 967 bool IsFirst = true; 968 969 if (!Info.Architecture.empty()) { 970 IsFirst = false; 971 Out << "arch_" << Info.Architecture; 972 } 973 974 for (StringRef Feat : Info.Features) { 975 if (!IsFirst) 976 Out << '_'; 977 IsFirst = false; 978 Out << Feat.substr(1); 979 } 980 } 981 982 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD, 983 const NamedDecl *ND, 984 bool OmitMultiVersionMangling = false) { 985 SmallString<256> Buffer; 986 llvm::raw_svector_ostream Out(Buffer); 987 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 988 if (MC.shouldMangleDeclName(ND)) { 989 llvm::raw_svector_ostream Out(Buffer); 990 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) 991 MC.mangleCXXCtor(D, GD.getCtorType(), Out); 992 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) 993 MC.mangleCXXDtor(D, GD.getDtorType(), Out); 994 else 995 MC.mangleName(ND, Out); 996 } else { 997 IdentifierInfo *II = ND->getIdentifier(); 998 assert(II && "Attempt to mangle unnamed decl."); 999 const auto *FD = dyn_cast<FunctionDecl>(ND); 1000 1001 if (FD && 1002 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 1003 llvm::raw_svector_ostream Out(Buffer); 1004 Out << "__regcall3__" << II->getName(); 1005 } else { 1006 Out << II->getName(); 1007 } 1008 } 1009 1010 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 1011 if (FD->isMultiVersion() && !OmitMultiVersionMangling) { 1012 switch (FD->getMultiVersionKind()) { 1013 case MultiVersionKind::CPUDispatch: 1014 case MultiVersionKind::CPUSpecific: 1015 AppendCPUSpecificCPUDispatchMangling(CGM, 1016 FD->getAttr<CPUSpecificAttr>(), 1017 GD.getMultiVersionIndex(), Out); 1018 break; 1019 case MultiVersionKind::Target: 1020 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out); 1021 break; 1022 case MultiVersionKind::None: 1023 llvm_unreachable("None multiversion type isn't valid here"); 1024 } 1025 } 1026 1027 return Out.str(); 1028 } 1029 1030 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 1031 const FunctionDecl *FD) { 1032 if (!FD->isMultiVersion()) 1033 return; 1034 1035 // Get the name of what this would be without the 'target' attribute. This 1036 // allows us to lookup the version that was emitted when this wasn't a 1037 // multiversion function. 1038 std::string NonTargetName = 1039 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 1040 GlobalDecl OtherGD; 1041 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 1042 assert(OtherGD.getCanonicalDecl() 1043 .getDecl() 1044 ->getAsFunction() 1045 ->isMultiVersion() && 1046 "Other GD should now be a multiversioned function"); 1047 // OtherFD is the version of this function that was mangled BEFORE 1048 // becoming a MultiVersion function. It potentially needs to be updated. 1049 const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl() 1050 .getDecl() 1051 ->getAsFunction() 1052 ->getMostRecentDecl(); 1053 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 1054 // This is so that if the initial version was already the 'default' 1055 // version, we don't try to update it. 1056 if (OtherName != NonTargetName) { 1057 // Remove instead of erase, since others may have stored the StringRef 1058 // to this. 1059 const auto ExistingRecord = Manglings.find(NonTargetName); 1060 if (ExistingRecord != std::end(Manglings)) 1061 Manglings.remove(&(*ExistingRecord)); 1062 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 1063 MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first(); 1064 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 1065 Entry->setName(OtherName); 1066 } 1067 } 1068 } 1069 1070 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 1071 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 1072 1073 // Some ABIs don't have constructor variants. Make sure that base and 1074 // complete constructors get mangled the same. 1075 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 1076 if (!getTarget().getCXXABI().hasConstructorVariants()) { 1077 CXXCtorType OrigCtorType = GD.getCtorType(); 1078 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 1079 if (OrigCtorType == Ctor_Base) 1080 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 1081 } 1082 } 1083 1084 auto FoundName = MangledDeclNames.find(CanonicalGD); 1085 if (FoundName != MangledDeclNames.end()) 1086 return FoundName->second; 1087 1088 // Keep the first result in the case of a mangling collision. 1089 const auto *ND = cast<NamedDecl>(GD.getDecl()); 1090 std::string MangledName = getMangledNameImpl(*this, GD, ND); 1091 1092 // Adjust kernel stub mangling as we may need to be able to differentiate 1093 // them from the kernel itself (e.g., for HIP). 1094 if (auto *FD = dyn_cast<FunctionDecl>(GD.getDecl())) 1095 if (!getLangOpts().CUDAIsDevice && FD->hasAttr<CUDAGlobalAttr>()) 1096 MangledName = getCUDARuntime().getDeviceStubName(MangledName); 1097 1098 auto Result = Manglings.insert(std::make_pair(MangledName, GD)); 1099 return MangledDeclNames[CanonicalGD] = Result.first->first(); 1100 } 1101 1102 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 1103 const BlockDecl *BD) { 1104 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 1105 const Decl *D = GD.getDecl(); 1106 1107 SmallString<256> Buffer; 1108 llvm::raw_svector_ostream Out(Buffer); 1109 if (!D) 1110 MangleCtx.mangleGlobalBlock(BD, 1111 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 1112 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 1113 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 1114 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 1115 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 1116 else 1117 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 1118 1119 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 1120 return Result.first->first(); 1121 } 1122 1123 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 1124 return getModule().getNamedValue(Name); 1125 } 1126 1127 /// AddGlobalCtor - Add a function to the list that will be called before 1128 /// main() runs. 1129 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 1130 llvm::Constant *AssociatedData) { 1131 // FIXME: Type coercion of void()* types. 1132 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 1133 } 1134 1135 /// AddGlobalDtor - Add a function to the list that will be called 1136 /// when the module is unloaded. 1137 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 1138 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit) { 1139 DtorsUsingAtExit[Priority].push_back(Dtor); 1140 return; 1141 } 1142 1143 // FIXME: Type coercion of void()* types. 1144 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 1145 } 1146 1147 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 1148 if (Fns.empty()) return; 1149 1150 // Ctor function type is void()*. 1151 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 1152 llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy, 1153 TheModule.getDataLayout().getProgramAddressSpace()); 1154 1155 // Get the type of a ctor entry, { i32, void ()*, i8* }. 1156 llvm::StructType *CtorStructTy = llvm::StructType::get( 1157 Int32Ty, CtorPFTy, VoidPtrTy); 1158 1159 // Construct the constructor and destructor arrays. 1160 ConstantInitBuilder builder(*this); 1161 auto ctors = builder.beginArray(CtorStructTy); 1162 for (const auto &I : Fns) { 1163 auto ctor = ctors.beginStruct(CtorStructTy); 1164 ctor.addInt(Int32Ty, I.Priority); 1165 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 1166 if (I.AssociatedData) 1167 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 1168 else 1169 ctor.addNullPointer(VoidPtrTy); 1170 ctor.finishAndAddTo(ctors); 1171 } 1172 1173 auto list = 1174 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 1175 /*constant*/ false, 1176 llvm::GlobalValue::AppendingLinkage); 1177 1178 // The LTO linker doesn't seem to like it when we set an alignment 1179 // on appending variables. Take it off as a workaround. 1180 list->setAlignment(llvm::None); 1181 1182 Fns.clear(); 1183 } 1184 1185 llvm::GlobalValue::LinkageTypes 1186 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 1187 const auto *D = cast<FunctionDecl>(GD.getDecl()); 1188 1189 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 1190 1191 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D)) 1192 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType()); 1193 1194 if (isa<CXXConstructorDecl>(D) && 1195 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 1196 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 1197 // Our approach to inheriting constructors is fundamentally different from 1198 // that used by the MS ABI, so keep our inheriting constructor thunks 1199 // internal rather than trying to pick an unambiguous mangling for them. 1200 return llvm::GlobalValue::InternalLinkage; 1201 } 1202 1203 return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false); 1204 } 1205 1206 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 1207 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 1208 if (!MDS) return nullptr; 1209 1210 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 1211 } 1212 1213 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD, 1214 const CGFunctionInfo &Info, 1215 llvm::Function *F) { 1216 unsigned CallingConv; 1217 llvm::AttributeList PAL; 1218 ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, false); 1219 F->setAttributes(PAL); 1220 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 1221 } 1222 1223 static void removeImageAccessQualifier(std::string& TyName) { 1224 std::string ReadOnlyQual("__read_only"); 1225 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 1226 if (ReadOnlyPos != std::string::npos) 1227 // "+ 1" for the space after access qualifier. 1228 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 1229 else { 1230 std::string WriteOnlyQual("__write_only"); 1231 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 1232 if (WriteOnlyPos != std::string::npos) 1233 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 1234 else { 1235 std::string ReadWriteQual("__read_write"); 1236 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 1237 if (ReadWritePos != std::string::npos) 1238 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 1239 } 1240 } 1241 } 1242 1243 // Returns the address space id that should be produced to the 1244 // kernel_arg_addr_space metadata. This is always fixed to the ids 1245 // as specified in the SPIR 2.0 specification in order to differentiate 1246 // for example in clGetKernelArgInfo() implementation between the address 1247 // spaces with targets without unique mapping to the OpenCL address spaces 1248 // (basically all single AS CPUs). 1249 static unsigned ArgInfoAddressSpace(LangAS AS) { 1250 switch (AS) { 1251 case LangAS::opencl_global: return 1; 1252 case LangAS::opencl_constant: return 2; 1253 case LangAS::opencl_local: return 3; 1254 case LangAS::opencl_generic: return 4; // Not in SPIR 2.0 specs. 1255 default: 1256 return 0; // Assume private. 1257 } 1258 } 1259 1260 void CodeGenModule::GenOpenCLArgMetadata(llvm::Function *Fn, 1261 const FunctionDecl *FD, 1262 CodeGenFunction *CGF) { 1263 assert(((FD && CGF) || (!FD && !CGF)) && 1264 "Incorrect use - FD and CGF should either be both null or not!"); 1265 // Create MDNodes that represent the kernel arg metadata. 1266 // Each MDNode is a list in the form of "key", N number of values which is 1267 // the same number of values as their are kernel arguments. 1268 1269 const PrintingPolicy &Policy = Context.getPrintingPolicy(); 1270 1271 // MDNode for the kernel argument address space qualifiers. 1272 SmallVector<llvm::Metadata *, 8> addressQuals; 1273 1274 // MDNode for the kernel argument access qualifiers (images only). 1275 SmallVector<llvm::Metadata *, 8> accessQuals; 1276 1277 // MDNode for the kernel argument type names. 1278 SmallVector<llvm::Metadata *, 8> argTypeNames; 1279 1280 // MDNode for the kernel argument base type names. 1281 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 1282 1283 // MDNode for the kernel argument type qualifiers. 1284 SmallVector<llvm::Metadata *, 8> argTypeQuals; 1285 1286 // MDNode for the kernel argument names. 1287 SmallVector<llvm::Metadata *, 8> argNames; 1288 1289 if (FD && CGF) 1290 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 1291 const ParmVarDecl *parm = FD->getParamDecl(i); 1292 QualType ty = parm->getType(); 1293 std::string typeQuals; 1294 1295 if (ty->isPointerType()) { 1296 QualType pointeeTy = ty->getPointeeType(); 1297 1298 // Get address qualifier. 1299 addressQuals.push_back( 1300 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32( 1301 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 1302 1303 // Get argument type name. 1304 std::string typeName = 1305 pointeeTy.getUnqualifiedType().getAsString(Policy) + "*"; 1306 1307 // Turn "unsigned type" to "utype" 1308 std::string::size_type pos = typeName.find("unsigned"); 1309 if (pointeeTy.isCanonical() && pos != std::string::npos) 1310 typeName.erase(pos + 1, 8); 1311 1312 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 1313 1314 std::string baseTypeName = 1315 pointeeTy.getUnqualifiedType().getCanonicalType().getAsString( 1316 Policy) + 1317 "*"; 1318 1319 // Turn "unsigned type" to "utype" 1320 pos = baseTypeName.find("unsigned"); 1321 if (pos != std::string::npos) 1322 baseTypeName.erase(pos + 1, 8); 1323 1324 argBaseTypeNames.push_back( 1325 llvm::MDString::get(VMContext, baseTypeName)); 1326 1327 // Get argument type qualifiers: 1328 if (ty.isRestrictQualified()) 1329 typeQuals = "restrict"; 1330 if (pointeeTy.isConstQualified() || 1331 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 1332 typeQuals += typeQuals.empty() ? "const" : " const"; 1333 if (pointeeTy.isVolatileQualified()) 1334 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 1335 } else { 1336 uint32_t AddrSpc = 0; 1337 bool isPipe = ty->isPipeType(); 1338 if (ty->isImageType() || isPipe) 1339 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 1340 1341 addressQuals.push_back( 1342 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc))); 1343 1344 // Get argument type name. 1345 std::string typeName; 1346 if (isPipe) 1347 typeName = ty.getCanonicalType() 1348 ->getAs<PipeType>() 1349 ->getElementType() 1350 .getAsString(Policy); 1351 else 1352 typeName = ty.getUnqualifiedType().getAsString(Policy); 1353 1354 // Turn "unsigned type" to "utype" 1355 std::string::size_type pos = typeName.find("unsigned"); 1356 if (ty.isCanonical() && pos != std::string::npos) 1357 typeName.erase(pos + 1, 8); 1358 1359 std::string baseTypeName; 1360 if (isPipe) 1361 baseTypeName = ty.getCanonicalType() 1362 ->getAs<PipeType>() 1363 ->getElementType() 1364 .getCanonicalType() 1365 .getAsString(Policy); 1366 else 1367 baseTypeName = 1368 ty.getUnqualifiedType().getCanonicalType().getAsString(Policy); 1369 1370 // Remove access qualifiers on images 1371 // (as they are inseparable from type in clang implementation, 1372 // but OpenCL spec provides a special query to get access qualifier 1373 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 1374 if (ty->isImageType()) { 1375 removeImageAccessQualifier(typeName); 1376 removeImageAccessQualifier(baseTypeName); 1377 } 1378 1379 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 1380 1381 // Turn "unsigned type" to "utype" 1382 pos = baseTypeName.find("unsigned"); 1383 if (pos != std::string::npos) 1384 baseTypeName.erase(pos + 1, 8); 1385 1386 argBaseTypeNames.push_back( 1387 llvm::MDString::get(VMContext, baseTypeName)); 1388 1389 if (isPipe) 1390 typeQuals = "pipe"; 1391 } 1392 1393 argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals)); 1394 1395 // Get image and pipe access qualifier: 1396 if (ty->isImageType() || ty->isPipeType()) { 1397 const Decl *PDecl = parm; 1398 if (auto *TD = dyn_cast<TypedefType>(ty)) 1399 PDecl = TD->getDecl(); 1400 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>(); 1401 if (A && A->isWriteOnly()) 1402 accessQuals.push_back(llvm::MDString::get(VMContext, "write_only")); 1403 else if (A && A->isReadWrite()) 1404 accessQuals.push_back(llvm::MDString::get(VMContext, "read_write")); 1405 else 1406 accessQuals.push_back(llvm::MDString::get(VMContext, "read_only")); 1407 } else 1408 accessQuals.push_back(llvm::MDString::get(VMContext, "none")); 1409 1410 // Get argument name. 1411 argNames.push_back(llvm::MDString::get(VMContext, parm->getName())); 1412 } 1413 1414 Fn->setMetadata("kernel_arg_addr_space", 1415 llvm::MDNode::get(VMContext, addressQuals)); 1416 Fn->setMetadata("kernel_arg_access_qual", 1417 llvm::MDNode::get(VMContext, accessQuals)); 1418 Fn->setMetadata("kernel_arg_type", 1419 llvm::MDNode::get(VMContext, argTypeNames)); 1420 Fn->setMetadata("kernel_arg_base_type", 1421 llvm::MDNode::get(VMContext, argBaseTypeNames)); 1422 Fn->setMetadata("kernel_arg_type_qual", 1423 llvm::MDNode::get(VMContext, argTypeQuals)); 1424 if (getCodeGenOpts().EmitOpenCLArgMetadata) 1425 Fn->setMetadata("kernel_arg_name", 1426 llvm::MDNode::get(VMContext, argNames)); 1427 } 1428 1429 /// Determines whether the language options require us to model 1430 /// unwind exceptions. We treat -fexceptions as mandating this 1431 /// except under the fragile ObjC ABI with only ObjC exceptions 1432 /// enabled. This means, for example, that C with -fexceptions 1433 /// enables this. 1434 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 1435 // If exceptions are completely disabled, obviously this is false. 1436 if (!LangOpts.Exceptions) return false; 1437 1438 // If C++ exceptions are enabled, this is true. 1439 if (LangOpts.CXXExceptions) return true; 1440 1441 // If ObjC exceptions are enabled, this depends on the ABI. 1442 if (LangOpts.ObjCExceptions) { 1443 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 1444 } 1445 1446 return true; 1447 } 1448 1449 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM, 1450 const CXXMethodDecl *MD) { 1451 // Check that the type metadata can ever actually be used by a call. 1452 if (!CGM.getCodeGenOpts().LTOUnit || 1453 !CGM.HasHiddenLTOVisibility(MD->getParent())) 1454 return false; 1455 1456 // Only functions whose address can be taken with a member function pointer 1457 // need this sort of type metadata. 1458 return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) && 1459 !isa<CXXDestructorDecl>(MD); 1460 } 1461 1462 std::vector<const CXXRecordDecl *> 1463 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) { 1464 llvm::SetVector<const CXXRecordDecl *> MostBases; 1465 1466 std::function<void (const CXXRecordDecl *)> CollectMostBases; 1467 CollectMostBases = [&](const CXXRecordDecl *RD) { 1468 if (RD->getNumBases() == 0) 1469 MostBases.insert(RD); 1470 for (const CXXBaseSpecifier &B : RD->bases()) 1471 CollectMostBases(B.getType()->getAsCXXRecordDecl()); 1472 }; 1473 CollectMostBases(RD); 1474 return MostBases.takeVector(); 1475 } 1476 1477 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 1478 llvm::Function *F) { 1479 llvm::AttrBuilder B; 1480 1481 if (CodeGenOpts.UnwindTables) 1482 B.addAttribute(llvm::Attribute::UWTable); 1483 1484 if (!hasUnwindExceptions(LangOpts)) 1485 B.addAttribute(llvm::Attribute::NoUnwind); 1486 1487 if (!D || !D->hasAttr<NoStackProtectorAttr>()) { 1488 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 1489 B.addAttribute(llvm::Attribute::StackProtect); 1490 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 1491 B.addAttribute(llvm::Attribute::StackProtectStrong); 1492 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 1493 B.addAttribute(llvm::Attribute::StackProtectReq); 1494 } 1495 1496 if (!D) { 1497 // If we don't have a declaration to control inlining, the function isn't 1498 // explicitly marked as alwaysinline for semantic reasons, and inlining is 1499 // disabled, mark the function as noinline. 1500 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1501 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 1502 B.addAttribute(llvm::Attribute::NoInline); 1503 1504 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1505 return; 1506 } 1507 1508 // Track whether we need to add the optnone LLVM attribute, 1509 // starting with the default for this optimization level. 1510 bool ShouldAddOptNone = 1511 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 1512 // We can't add optnone in the following cases, it won't pass the verifier. 1513 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 1514 ShouldAddOptNone &= !F->hasFnAttribute(llvm::Attribute::AlwaysInline); 1515 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 1516 1517 if (ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) { 1518 B.addAttribute(llvm::Attribute::OptimizeNone); 1519 1520 // OptimizeNone implies noinline; we should not be inlining such functions. 1521 B.addAttribute(llvm::Attribute::NoInline); 1522 assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1523 "OptimizeNone and AlwaysInline on same function!"); 1524 1525 // We still need to handle naked functions even though optnone subsumes 1526 // much of their semantics. 1527 if (D->hasAttr<NakedAttr>()) 1528 B.addAttribute(llvm::Attribute::Naked); 1529 1530 // OptimizeNone wins over OptimizeForSize and MinSize. 1531 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 1532 F->removeFnAttr(llvm::Attribute::MinSize); 1533 } else if (D->hasAttr<NakedAttr>()) { 1534 // Naked implies noinline: we should not be inlining such functions. 1535 B.addAttribute(llvm::Attribute::Naked); 1536 B.addAttribute(llvm::Attribute::NoInline); 1537 } else if (D->hasAttr<NoDuplicateAttr>()) { 1538 B.addAttribute(llvm::Attribute::NoDuplicate); 1539 } else if (D->hasAttr<NoInlineAttr>()) { 1540 B.addAttribute(llvm::Attribute::NoInline); 1541 } else if (D->hasAttr<AlwaysInlineAttr>() && 1542 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 1543 // (noinline wins over always_inline, and we can't specify both in IR) 1544 B.addAttribute(llvm::Attribute::AlwaysInline); 1545 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 1546 // If we're not inlining, then force everything that isn't always_inline to 1547 // carry an explicit noinline attribute. 1548 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 1549 B.addAttribute(llvm::Attribute::NoInline); 1550 } else { 1551 // Otherwise, propagate the inline hint attribute and potentially use its 1552 // absence to mark things as noinline. 1553 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1554 // Search function and template pattern redeclarations for inline. 1555 auto CheckForInline = [](const FunctionDecl *FD) { 1556 auto CheckRedeclForInline = [](const FunctionDecl *Redecl) { 1557 return Redecl->isInlineSpecified(); 1558 }; 1559 if (any_of(FD->redecls(), CheckRedeclForInline)) 1560 return true; 1561 const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern(); 1562 if (!Pattern) 1563 return false; 1564 return any_of(Pattern->redecls(), CheckRedeclForInline); 1565 }; 1566 if (CheckForInline(FD)) { 1567 B.addAttribute(llvm::Attribute::InlineHint); 1568 } else if (CodeGenOpts.getInlining() == 1569 CodeGenOptions::OnlyHintInlining && 1570 !FD->isInlined() && 1571 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1572 B.addAttribute(llvm::Attribute::NoInline); 1573 } 1574 } 1575 } 1576 1577 // Add other optimization related attributes if we are optimizing this 1578 // function. 1579 if (!D->hasAttr<OptimizeNoneAttr>()) { 1580 if (D->hasAttr<ColdAttr>()) { 1581 if (!ShouldAddOptNone) 1582 B.addAttribute(llvm::Attribute::OptimizeForSize); 1583 B.addAttribute(llvm::Attribute::Cold); 1584 } 1585 1586 if (D->hasAttr<MinSizeAttr>()) 1587 B.addAttribute(llvm::Attribute::MinSize); 1588 } 1589 1590 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1591 1592 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 1593 if (alignment) 1594 F->setAlignment(llvm::Align(alignment)); 1595 1596 if (!D->hasAttr<AlignedAttr>()) 1597 if (LangOpts.FunctionAlignment) 1598 F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment)); 1599 1600 // Some C++ ABIs require 2-byte alignment for member functions, in order to 1601 // reserve a bit for differentiating between virtual and non-virtual member 1602 // functions. If the current target's C++ ABI requires this and this is a 1603 // member function, set its alignment accordingly. 1604 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 1605 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 1606 F->setAlignment(llvm::Align(2)); 1607 } 1608 1609 // In the cross-dso CFI mode with canonical jump tables, we want !type 1610 // attributes on definitions only. 1611 if (CodeGenOpts.SanitizeCfiCrossDso && 1612 CodeGenOpts.SanitizeCfiCanonicalJumpTables) { 1613 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1614 // Skip available_externally functions. They won't be codegen'ed in the 1615 // current module anyway. 1616 if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally) 1617 CreateFunctionTypeMetadataForIcall(FD, F); 1618 } 1619 } 1620 1621 // Emit type metadata on member functions for member function pointer checks. 1622 // These are only ever necessary on definitions; we're guaranteed that the 1623 // definition will be present in the LTO unit as a result of LTO visibility. 1624 auto *MD = dyn_cast<CXXMethodDecl>(D); 1625 if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) { 1626 for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) { 1627 llvm::Metadata *Id = 1628 CreateMetadataIdentifierForType(Context.getMemberPointerType( 1629 MD->getType(), Context.getRecordType(Base).getTypePtr())); 1630 F->addTypeMetadata(0, Id); 1631 } 1632 } 1633 } 1634 1635 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { 1636 const Decl *D = GD.getDecl(); 1637 if (dyn_cast_or_null<NamedDecl>(D)) 1638 setGVProperties(GV, GD); 1639 else 1640 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1641 1642 if (D && D->hasAttr<UsedAttr>()) 1643 addUsedGlobal(GV); 1644 1645 if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) { 1646 const auto *VD = cast<VarDecl>(D); 1647 if (VD->getType().isConstQualified() && 1648 VD->getStorageDuration() == SD_Static) 1649 addUsedGlobal(GV); 1650 } 1651 } 1652 1653 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD, 1654 llvm::AttrBuilder &Attrs) { 1655 // Add target-cpu and target-features attributes to functions. If 1656 // we have a decl for the function and it has a target attribute then 1657 // parse that and add it to the feature set. 1658 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 1659 std::vector<std::string> Features; 1660 const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl()); 1661 FD = FD ? FD->getMostRecentDecl() : FD; 1662 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; 1663 const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr; 1664 bool AddedAttr = false; 1665 if (TD || SD) { 1666 llvm::StringMap<bool> FeatureMap; 1667 getFunctionFeatureMap(FeatureMap, GD); 1668 1669 // Produce the canonical string for this set of features. 1670 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) 1671 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); 1672 1673 // Now add the target-cpu and target-features to the function. 1674 // While we populated the feature map above, we still need to 1675 // get and parse the target attribute so we can get the cpu for 1676 // the function. 1677 if (TD) { 1678 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 1679 if (ParsedAttr.Architecture != "" && 1680 getTarget().isValidCPUName(ParsedAttr.Architecture)) 1681 TargetCPU = ParsedAttr.Architecture; 1682 } 1683 } else { 1684 // Otherwise just add the existing target cpu and target features to the 1685 // function. 1686 Features = getTarget().getTargetOpts().Features; 1687 } 1688 1689 if (TargetCPU != "") { 1690 Attrs.addAttribute("target-cpu", TargetCPU); 1691 AddedAttr = true; 1692 } 1693 if (!Features.empty()) { 1694 llvm::sort(Features); 1695 Attrs.addAttribute("target-features", llvm::join(Features, ",")); 1696 AddedAttr = true; 1697 } 1698 1699 return AddedAttr; 1700 } 1701 1702 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD, 1703 llvm::GlobalObject *GO) { 1704 const Decl *D = GD.getDecl(); 1705 SetCommonAttributes(GD, GO); 1706 1707 if (D) { 1708 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 1709 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 1710 GV->addAttribute("bss-section", SA->getName()); 1711 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 1712 GV->addAttribute("data-section", SA->getName()); 1713 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 1714 GV->addAttribute("rodata-section", SA->getName()); 1715 if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>()) 1716 GV->addAttribute("relro-section", SA->getName()); 1717 } 1718 1719 if (auto *F = dyn_cast<llvm::Function>(GO)) { 1720 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 1721 if (!D->getAttr<SectionAttr>()) 1722 F->addFnAttr("implicit-section-name", SA->getName()); 1723 1724 llvm::AttrBuilder Attrs; 1725 if (GetCPUAndFeaturesAttributes(GD, Attrs)) { 1726 // We know that GetCPUAndFeaturesAttributes will always have the 1727 // newest set, since it has the newest possible FunctionDecl, so the 1728 // new ones should replace the old. 1729 F->removeFnAttr("target-cpu"); 1730 F->removeFnAttr("target-features"); 1731 F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs); 1732 } 1733 } 1734 1735 if (const auto *CSA = D->getAttr<CodeSegAttr>()) 1736 GO->setSection(CSA->getName()); 1737 else if (const auto *SA = D->getAttr<SectionAttr>()) 1738 GO->setSection(SA->getName()); 1739 } 1740 1741 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 1742 } 1743 1744 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD, 1745 llvm::Function *F, 1746 const CGFunctionInfo &FI) { 1747 const Decl *D = GD.getDecl(); 1748 SetLLVMFunctionAttributes(GD, FI, F); 1749 SetLLVMFunctionAttributesForDefinition(D, F); 1750 1751 F->setLinkage(llvm::Function::InternalLinkage); 1752 1753 setNonAliasAttributes(GD, F); 1754 } 1755 1756 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) { 1757 // Set linkage and visibility in case we never see a definition. 1758 LinkageInfo LV = ND->getLinkageAndVisibility(); 1759 // Don't set internal linkage on declarations. 1760 // "extern_weak" is overloaded in LLVM; we probably should have 1761 // separate linkage types for this. 1762 if (isExternallyVisible(LV.getLinkage()) && 1763 (ND->hasAttr<WeakAttr>() || ND->isWeakImported())) 1764 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1765 } 1766 1767 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD, 1768 llvm::Function *F) { 1769 // Only if we are checking indirect calls. 1770 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 1771 return; 1772 1773 // Non-static class methods are handled via vtable or member function pointer 1774 // checks elsewhere. 1775 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 1776 return; 1777 1778 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 1779 F->addTypeMetadata(0, MD); 1780 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 1781 1782 // Emit a hash-based bit set entry for cross-DSO calls. 1783 if (CodeGenOpts.SanitizeCfiCrossDso) 1784 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 1785 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 1786 } 1787 1788 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 1789 bool IsIncompleteFunction, 1790 bool IsThunk) { 1791 1792 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 1793 // If this is an intrinsic function, set the function's attributes 1794 // to the intrinsic's attributes. 1795 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 1796 return; 1797 } 1798 1799 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 1800 1801 if (!IsIncompleteFunction) 1802 SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F); 1803 1804 // Add the Returned attribute for "this", except for iOS 5 and earlier 1805 // where substantial code, including the libstdc++ dylib, was compiled with 1806 // GCC and does not actually return "this". 1807 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 1808 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 1809 assert(!F->arg_empty() && 1810 F->arg_begin()->getType() 1811 ->canLosslesslyBitCastTo(F->getReturnType()) && 1812 "unexpected this return"); 1813 F->addAttribute(1, llvm::Attribute::Returned); 1814 } 1815 1816 // Only a few attributes are set on declarations; these may later be 1817 // overridden by a definition. 1818 1819 setLinkageForGV(F, FD); 1820 setGVProperties(F, FD); 1821 1822 // Setup target-specific attributes. 1823 if (!IsIncompleteFunction && F->isDeclaration()) 1824 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); 1825 1826 if (const auto *CSA = FD->getAttr<CodeSegAttr>()) 1827 F->setSection(CSA->getName()); 1828 else if (const auto *SA = FD->getAttr<SectionAttr>()) 1829 F->setSection(SA->getName()); 1830 1831 if (FD->isReplaceableGlobalAllocationFunction()) { 1832 // A replaceable global allocation function does not act like a builtin by 1833 // default, only if it is invoked by a new-expression or delete-expression. 1834 F->addAttribute(llvm::AttributeList::FunctionIndex, 1835 llvm::Attribute::NoBuiltin); 1836 1837 // A sane operator new returns a non-aliasing pointer. 1838 // FIXME: Also add NonNull attribute to the return value 1839 // for the non-nothrow forms? 1840 auto Kind = FD->getDeclName().getCXXOverloadedOperator(); 1841 if (getCodeGenOpts().AssumeSaneOperatorNew && 1842 (Kind == OO_New || Kind == OO_Array_New)) 1843 F->addAttribute(llvm::AttributeList::ReturnIndex, 1844 llvm::Attribute::NoAlias); 1845 } 1846 1847 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 1848 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1849 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 1850 if (MD->isVirtual()) 1851 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1852 1853 // Don't emit entries for function declarations in the cross-DSO mode. This 1854 // is handled with better precision by the receiving DSO. But if jump tables 1855 // are non-canonical then we need type metadata in order to produce the local 1856 // jump table. 1857 if (!CodeGenOpts.SanitizeCfiCrossDso || 1858 !CodeGenOpts.SanitizeCfiCanonicalJumpTables) 1859 CreateFunctionTypeMetadataForIcall(FD, F); 1860 1861 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 1862 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 1863 1864 if (const auto *CB = FD->getAttr<CallbackAttr>()) { 1865 // Annotate the callback behavior as metadata: 1866 // - The callback callee (as argument number). 1867 // - The callback payloads (as argument numbers). 1868 llvm::LLVMContext &Ctx = F->getContext(); 1869 llvm::MDBuilder MDB(Ctx); 1870 1871 // The payload indices are all but the first one in the encoding. The first 1872 // identifies the callback callee. 1873 int CalleeIdx = *CB->encoding_begin(); 1874 ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end()); 1875 F->addMetadata(llvm::LLVMContext::MD_callback, 1876 *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding( 1877 CalleeIdx, PayloadIndices, 1878 /* VarArgsArePassed */ false)})); 1879 } 1880 } 1881 1882 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 1883 assert(!GV->isDeclaration() && 1884 "Only globals with definition can force usage."); 1885 LLVMUsed.emplace_back(GV); 1886 } 1887 1888 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 1889 assert(!GV->isDeclaration() && 1890 "Only globals with definition can force usage."); 1891 LLVMCompilerUsed.emplace_back(GV); 1892 } 1893 1894 static void emitUsed(CodeGenModule &CGM, StringRef Name, 1895 std::vector<llvm::WeakTrackingVH> &List) { 1896 // Don't create llvm.used if there is no need. 1897 if (List.empty()) 1898 return; 1899 1900 // Convert List to what ConstantArray needs. 1901 SmallVector<llvm::Constant*, 8> UsedArray; 1902 UsedArray.resize(List.size()); 1903 for (unsigned i = 0, e = List.size(); i != e; ++i) { 1904 UsedArray[i] = 1905 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 1906 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 1907 } 1908 1909 if (UsedArray.empty()) 1910 return; 1911 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 1912 1913 auto *GV = new llvm::GlobalVariable( 1914 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 1915 llvm::ConstantArray::get(ATy, UsedArray), Name); 1916 1917 GV->setSection("llvm.metadata"); 1918 } 1919 1920 void CodeGenModule::emitLLVMUsed() { 1921 emitUsed(*this, "llvm.used", LLVMUsed); 1922 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 1923 } 1924 1925 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 1926 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 1927 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1928 } 1929 1930 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 1931 llvm::SmallString<32> Opt; 1932 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 1933 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1934 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1935 } 1936 1937 void CodeGenModule::AddDependentLib(StringRef Lib) { 1938 auto &C = getLLVMContext(); 1939 if (getTarget().getTriple().isOSBinFormatELF()) { 1940 ELFDependentLibraries.push_back( 1941 llvm::MDNode::get(C, llvm::MDString::get(C, Lib))); 1942 return; 1943 } 1944 1945 llvm::SmallString<24> Opt; 1946 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 1947 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1948 LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts)); 1949 } 1950 1951 /// Add link options implied by the given module, including modules 1952 /// it depends on, using a postorder walk. 1953 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 1954 SmallVectorImpl<llvm::MDNode *> &Metadata, 1955 llvm::SmallPtrSet<Module *, 16> &Visited) { 1956 // Import this module's parent. 1957 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 1958 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 1959 } 1960 1961 // Import this module's dependencies. 1962 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 1963 if (Visited.insert(Mod->Imports[I - 1]).second) 1964 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 1965 } 1966 1967 // Add linker options to link against the libraries/frameworks 1968 // described by this module. 1969 llvm::LLVMContext &Context = CGM.getLLVMContext(); 1970 bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF(); 1971 1972 // For modules that use export_as for linking, use that module 1973 // name instead. 1974 if (Mod->UseExportAsModuleLinkName) 1975 return; 1976 1977 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 1978 // Link against a framework. Frameworks are currently Darwin only, so we 1979 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 1980 if (Mod->LinkLibraries[I-1].IsFramework) { 1981 llvm::Metadata *Args[2] = { 1982 llvm::MDString::get(Context, "-framework"), 1983 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 1984 1985 Metadata.push_back(llvm::MDNode::get(Context, Args)); 1986 continue; 1987 } 1988 1989 // Link against a library. 1990 if (IsELF) { 1991 llvm::Metadata *Args[2] = { 1992 llvm::MDString::get(Context, "lib"), 1993 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library), 1994 }; 1995 Metadata.push_back(llvm::MDNode::get(Context, Args)); 1996 } else { 1997 llvm::SmallString<24> Opt; 1998 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 1999 Mod->LinkLibraries[I - 1].Library, Opt); 2000 auto *OptString = llvm::MDString::get(Context, Opt); 2001 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 2002 } 2003 } 2004 } 2005 2006 void CodeGenModule::EmitModuleLinkOptions() { 2007 // Collect the set of all of the modules we want to visit to emit link 2008 // options, which is essentially the imported modules and all of their 2009 // non-explicit child modules. 2010 llvm::SetVector<clang::Module *> LinkModules; 2011 llvm::SmallPtrSet<clang::Module *, 16> Visited; 2012 SmallVector<clang::Module *, 16> Stack; 2013 2014 // Seed the stack with imported modules. 2015 for (Module *M : ImportedModules) { 2016 // Do not add any link flags when an implementation TU of a module imports 2017 // a header of that same module. 2018 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 2019 !getLangOpts().isCompilingModule()) 2020 continue; 2021 if (Visited.insert(M).second) 2022 Stack.push_back(M); 2023 } 2024 2025 // Find all of the modules to import, making a little effort to prune 2026 // non-leaf modules. 2027 while (!Stack.empty()) { 2028 clang::Module *Mod = Stack.pop_back_val(); 2029 2030 bool AnyChildren = false; 2031 2032 // Visit the submodules of this module. 2033 for (const auto &SM : Mod->submodules()) { 2034 // Skip explicit children; they need to be explicitly imported to be 2035 // linked against. 2036 if (SM->IsExplicit) 2037 continue; 2038 2039 if (Visited.insert(SM).second) { 2040 Stack.push_back(SM); 2041 AnyChildren = true; 2042 } 2043 } 2044 2045 // We didn't find any children, so add this module to the list of 2046 // modules to link against. 2047 if (!AnyChildren) { 2048 LinkModules.insert(Mod); 2049 } 2050 } 2051 2052 // Add link options for all of the imported modules in reverse topological 2053 // order. We don't do anything to try to order import link flags with respect 2054 // to linker options inserted by things like #pragma comment(). 2055 SmallVector<llvm::MDNode *, 16> MetadataArgs; 2056 Visited.clear(); 2057 for (Module *M : LinkModules) 2058 if (Visited.insert(M).second) 2059 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 2060 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 2061 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 2062 2063 // Add the linker options metadata flag. 2064 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 2065 for (auto *MD : LinkerOptionsMetadata) 2066 NMD->addOperand(MD); 2067 } 2068 2069 void CodeGenModule::EmitDeferred() { 2070 // Emit deferred declare target declarations. 2071 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 2072 getOpenMPRuntime().emitDeferredTargetDecls(); 2073 2074 // Emit code for any potentially referenced deferred decls. Since a 2075 // previously unused static decl may become used during the generation of code 2076 // for a static function, iterate until no changes are made. 2077 2078 if (!DeferredVTables.empty()) { 2079 EmitDeferredVTables(); 2080 2081 // Emitting a vtable doesn't directly cause more vtables to 2082 // become deferred, although it can cause functions to be 2083 // emitted that then need those vtables. 2084 assert(DeferredVTables.empty()); 2085 } 2086 2087 // Stop if we're out of both deferred vtables and deferred declarations. 2088 if (DeferredDeclsToEmit.empty()) 2089 return; 2090 2091 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 2092 // work, it will not interfere with this. 2093 std::vector<GlobalDecl> CurDeclsToEmit; 2094 CurDeclsToEmit.swap(DeferredDeclsToEmit); 2095 2096 for (GlobalDecl &D : CurDeclsToEmit) { 2097 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 2098 // to get GlobalValue with exactly the type we need, not something that 2099 // might had been created for another decl with the same mangled name but 2100 // different type. 2101 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 2102 GetAddrOfGlobal(D, ForDefinition)); 2103 2104 // In case of different address spaces, we may still get a cast, even with 2105 // IsForDefinition equal to true. Query mangled names table to get 2106 // GlobalValue. 2107 if (!GV) 2108 GV = GetGlobalValue(getMangledName(D)); 2109 2110 // Make sure GetGlobalValue returned non-null. 2111 assert(GV); 2112 2113 // Check to see if we've already emitted this. This is necessary 2114 // for a couple of reasons: first, decls can end up in the 2115 // deferred-decls queue multiple times, and second, decls can end 2116 // up with definitions in unusual ways (e.g. by an extern inline 2117 // function acquiring a strong function redefinition). Just 2118 // ignore these cases. 2119 if (!GV->isDeclaration()) 2120 continue; 2121 2122 // If this is OpenMP, check if it is legal to emit this global normally. 2123 if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D)) 2124 continue; 2125 2126 // Otherwise, emit the definition and move on to the next one. 2127 EmitGlobalDefinition(D, GV); 2128 2129 // If we found out that we need to emit more decls, do that recursively. 2130 // This has the advantage that the decls are emitted in a DFS and related 2131 // ones are close together, which is convenient for testing. 2132 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 2133 EmitDeferred(); 2134 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 2135 } 2136 } 2137 } 2138 2139 void CodeGenModule::EmitVTablesOpportunistically() { 2140 // Try to emit external vtables as available_externally if they have emitted 2141 // all inlined virtual functions. It runs after EmitDeferred() and therefore 2142 // is not allowed to create new references to things that need to be emitted 2143 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 2144 2145 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 2146 && "Only emit opportunistic vtables with optimizations"); 2147 2148 for (const CXXRecordDecl *RD : OpportunisticVTables) { 2149 assert(getVTables().isVTableExternal(RD) && 2150 "This queue should only contain external vtables"); 2151 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 2152 VTables.GenerateClassData(RD); 2153 } 2154 OpportunisticVTables.clear(); 2155 } 2156 2157 void CodeGenModule::EmitGlobalAnnotations() { 2158 if (Annotations.empty()) 2159 return; 2160 2161 // Create a new global variable for the ConstantStruct in the Module. 2162 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 2163 Annotations[0]->getType(), Annotations.size()), Annotations); 2164 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 2165 llvm::GlobalValue::AppendingLinkage, 2166 Array, "llvm.global.annotations"); 2167 gv->setSection(AnnotationSection); 2168 } 2169 2170 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 2171 llvm::Constant *&AStr = AnnotationStrings[Str]; 2172 if (AStr) 2173 return AStr; 2174 2175 // Not found yet, create a new global. 2176 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 2177 auto *gv = 2178 new llvm::GlobalVariable(getModule(), s->getType(), true, 2179 llvm::GlobalValue::PrivateLinkage, s, ".str"); 2180 gv->setSection(AnnotationSection); 2181 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2182 AStr = gv; 2183 return gv; 2184 } 2185 2186 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 2187 SourceManager &SM = getContext().getSourceManager(); 2188 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 2189 if (PLoc.isValid()) 2190 return EmitAnnotationString(PLoc.getFilename()); 2191 return EmitAnnotationString(SM.getBufferName(Loc)); 2192 } 2193 2194 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 2195 SourceManager &SM = getContext().getSourceManager(); 2196 PresumedLoc PLoc = SM.getPresumedLoc(L); 2197 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 2198 SM.getExpansionLineNumber(L); 2199 return llvm::ConstantInt::get(Int32Ty, LineNo); 2200 } 2201 2202 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 2203 const AnnotateAttr *AA, 2204 SourceLocation L) { 2205 // Get the globals for file name, annotation, and the line number. 2206 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 2207 *UnitGV = EmitAnnotationUnit(L), 2208 *LineNoCst = EmitAnnotationLineNo(L); 2209 2210 // Create the ConstantStruct for the global annotation. 2211 llvm::Constant *Fields[4] = { 2212 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 2213 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 2214 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 2215 LineNoCst 2216 }; 2217 return llvm::ConstantStruct::getAnon(Fields); 2218 } 2219 2220 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 2221 llvm::GlobalValue *GV) { 2222 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2223 // Get the struct elements for these annotations. 2224 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2225 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 2226 } 2227 2228 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind, 2229 llvm::Function *Fn, 2230 SourceLocation Loc) const { 2231 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 2232 // Blacklist by function name. 2233 if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName())) 2234 return true; 2235 // Blacklist by location. 2236 if (Loc.isValid()) 2237 return SanitizerBL.isBlacklistedLocation(Kind, Loc); 2238 // If location is unknown, this may be a compiler-generated function. Assume 2239 // it's located in the main file. 2240 auto &SM = Context.getSourceManager(); 2241 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 2242 return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName()); 2243 } 2244 return false; 2245 } 2246 2247 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 2248 SourceLocation Loc, QualType Ty, 2249 StringRef Category) const { 2250 // For now globals can be blacklisted only in ASan and KASan. 2251 const SanitizerMask EnabledAsanMask = 2252 LangOpts.Sanitize.Mask & 2253 (SanitizerKind::Address | SanitizerKind::KernelAddress | 2254 SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress | 2255 SanitizerKind::MemTag); 2256 if (!EnabledAsanMask) 2257 return false; 2258 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 2259 if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category)) 2260 return true; 2261 if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category)) 2262 return true; 2263 // Check global type. 2264 if (!Ty.isNull()) { 2265 // Drill down the array types: if global variable of a fixed type is 2266 // blacklisted, we also don't instrument arrays of them. 2267 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 2268 Ty = AT->getElementType(); 2269 Ty = Ty.getCanonicalType().getUnqualifiedType(); 2270 // We allow to blacklist only record types (classes, structs etc.) 2271 if (Ty->isRecordType()) { 2272 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 2273 if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category)) 2274 return true; 2275 } 2276 } 2277 return false; 2278 } 2279 2280 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 2281 StringRef Category) const { 2282 const auto &XRayFilter = getContext().getXRayFilter(); 2283 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 2284 auto Attr = ImbueAttr::NONE; 2285 if (Loc.isValid()) 2286 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 2287 if (Attr == ImbueAttr::NONE) 2288 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 2289 switch (Attr) { 2290 case ImbueAttr::NONE: 2291 return false; 2292 case ImbueAttr::ALWAYS: 2293 Fn->addFnAttr("function-instrument", "xray-always"); 2294 break; 2295 case ImbueAttr::ALWAYS_ARG1: 2296 Fn->addFnAttr("function-instrument", "xray-always"); 2297 Fn->addFnAttr("xray-log-args", "1"); 2298 break; 2299 case ImbueAttr::NEVER: 2300 Fn->addFnAttr("function-instrument", "xray-never"); 2301 break; 2302 } 2303 return true; 2304 } 2305 2306 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 2307 // Never defer when EmitAllDecls is specified. 2308 if (LangOpts.EmitAllDecls) 2309 return true; 2310 2311 if (CodeGenOpts.KeepStaticConsts) { 2312 const auto *VD = dyn_cast<VarDecl>(Global); 2313 if (VD && VD->getType().isConstQualified() && 2314 VD->getStorageDuration() == SD_Static) 2315 return true; 2316 } 2317 2318 return getContext().DeclMustBeEmitted(Global); 2319 } 2320 2321 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 2322 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 2323 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 2324 // Implicit template instantiations may change linkage if they are later 2325 // explicitly instantiated, so they should not be emitted eagerly. 2326 return false; 2327 // In OpenMP 5.0 function may be marked as device_type(nohost) and we should 2328 // not emit them eagerly unless we sure that the function must be emitted on 2329 // the host. 2330 if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd && 2331 !LangOpts.OpenMPIsDevice && 2332 !OMPDeclareTargetDeclAttr::getDeviceType(FD) && 2333 !FD->isUsed(/*CheckUsedAttr=*/false) && !FD->isReferenced()) 2334 return false; 2335 } 2336 if (const auto *VD = dyn_cast<VarDecl>(Global)) 2337 if (Context.getInlineVariableDefinitionKind(VD) == 2338 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 2339 // A definition of an inline constexpr static data member may change 2340 // linkage later if it's redeclared outside the class. 2341 return false; 2342 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 2343 // codegen for global variables, because they may be marked as threadprivate. 2344 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 2345 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) && 2346 !isTypeConstant(Global->getType(), false) && 2347 !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global)) 2348 return false; 2349 2350 return true; 2351 } 2352 2353 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor( 2354 const CXXUuidofExpr* E) { 2355 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 2356 // well-formed. 2357 StringRef Uuid = E->getUuidStr(); 2358 std::string Name = "_GUID_" + Uuid.lower(); 2359 std::replace(Name.begin(), Name.end(), '-', '_'); 2360 2361 // The UUID descriptor should be pointer aligned. 2362 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 2363 2364 // Look for an existing global. 2365 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 2366 return ConstantAddress(GV, Alignment); 2367 2368 llvm::Constant *Init = EmitUuidofInitializer(Uuid); 2369 assert(Init && "failed to initialize as constant"); 2370 2371 auto *GV = new llvm::GlobalVariable( 2372 getModule(), Init->getType(), 2373 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 2374 if (supportsCOMDAT()) 2375 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2376 setDSOLocal(GV); 2377 return ConstantAddress(GV, Alignment); 2378 } 2379 2380 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 2381 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 2382 assert(AA && "No alias?"); 2383 2384 CharUnits Alignment = getContext().getDeclAlign(VD); 2385 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 2386 2387 // See if there is already something with the target's name in the module. 2388 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 2389 if (Entry) { 2390 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 2391 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 2392 return ConstantAddress(Ptr, Alignment); 2393 } 2394 2395 llvm::Constant *Aliasee; 2396 if (isa<llvm::FunctionType>(DeclTy)) 2397 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 2398 GlobalDecl(cast<FunctionDecl>(VD)), 2399 /*ForVTable=*/false); 2400 else 2401 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2402 llvm::PointerType::getUnqual(DeclTy), 2403 nullptr); 2404 2405 auto *F = cast<llvm::GlobalValue>(Aliasee); 2406 F->setLinkage(llvm::Function::ExternalWeakLinkage); 2407 WeakRefReferences.insert(F); 2408 2409 return ConstantAddress(Aliasee, Alignment); 2410 } 2411 2412 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 2413 const auto *Global = cast<ValueDecl>(GD.getDecl()); 2414 2415 // Weak references don't produce any output by themselves. 2416 if (Global->hasAttr<WeakRefAttr>()) 2417 return; 2418 2419 // If this is an alias definition (which otherwise looks like a declaration) 2420 // emit it now. 2421 if (Global->hasAttr<AliasAttr>()) 2422 return EmitAliasDefinition(GD); 2423 2424 // IFunc like an alias whose value is resolved at runtime by calling resolver. 2425 if (Global->hasAttr<IFuncAttr>()) 2426 return emitIFuncDefinition(GD); 2427 2428 // If this is a cpu_dispatch multiversion function, emit the resolver. 2429 if (Global->hasAttr<CPUDispatchAttr>()) 2430 return emitCPUDispatchDefinition(GD); 2431 2432 // If this is CUDA, be selective about which declarations we emit. 2433 if (LangOpts.CUDA) { 2434 if (LangOpts.CUDAIsDevice) { 2435 if (!Global->hasAttr<CUDADeviceAttr>() && 2436 !Global->hasAttr<CUDAGlobalAttr>() && 2437 !Global->hasAttr<CUDAConstantAttr>() && 2438 !Global->hasAttr<CUDASharedAttr>() && 2439 !(LangOpts.HIP && Global->hasAttr<HIPPinnedShadowAttr>())) 2440 return; 2441 } else { 2442 // We need to emit host-side 'shadows' for all global 2443 // device-side variables because the CUDA runtime needs their 2444 // size and host-side address in order to provide access to 2445 // their device-side incarnations. 2446 2447 // So device-only functions are the only things we skip. 2448 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 2449 Global->hasAttr<CUDADeviceAttr>()) 2450 return; 2451 2452 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 2453 "Expected Variable or Function"); 2454 } 2455 } 2456 2457 if (LangOpts.OpenMP) { 2458 // If this is OpenMP, check if it is legal to emit this global normally. 2459 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 2460 return; 2461 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 2462 if (MustBeEmitted(Global)) 2463 EmitOMPDeclareReduction(DRD); 2464 return; 2465 } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) { 2466 if (MustBeEmitted(Global)) 2467 EmitOMPDeclareMapper(DMD); 2468 return; 2469 } 2470 } 2471 2472 // Ignore declarations, they will be emitted on their first use. 2473 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 2474 // Forward declarations are emitted lazily on first use. 2475 if (!FD->doesThisDeclarationHaveABody()) { 2476 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 2477 return; 2478 2479 StringRef MangledName = getMangledName(GD); 2480 2481 // Compute the function info and LLVM type. 2482 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2483 llvm::Type *Ty = getTypes().GetFunctionType(FI); 2484 2485 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 2486 /*DontDefer=*/false); 2487 return; 2488 } 2489 } else { 2490 const auto *VD = cast<VarDecl>(Global); 2491 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 2492 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 2493 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 2494 if (LangOpts.OpenMP) { 2495 // Emit declaration of the must-be-emitted declare target variable. 2496 if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 2497 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) { 2498 bool UnifiedMemoryEnabled = 2499 getOpenMPRuntime().hasRequiresUnifiedSharedMemory(); 2500 if (*Res == OMPDeclareTargetDeclAttr::MT_To && 2501 !UnifiedMemoryEnabled) { 2502 (void)GetAddrOfGlobalVar(VD); 2503 } else { 2504 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) || 2505 (*Res == OMPDeclareTargetDeclAttr::MT_To && 2506 UnifiedMemoryEnabled)) && 2507 "Link clause or to clause with unified memory expected."); 2508 (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD); 2509 } 2510 2511 return; 2512 } 2513 } 2514 // If this declaration may have caused an inline variable definition to 2515 // change linkage, make sure that it's emitted. 2516 if (Context.getInlineVariableDefinitionKind(VD) == 2517 ASTContext::InlineVariableDefinitionKind::Strong) 2518 GetAddrOfGlobalVar(VD); 2519 return; 2520 } 2521 } 2522 2523 // Defer code generation to first use when possible, e.g. if this is an inline 2524 // function. If the global must always be emitted, do it eagerly if possible 2525 // to benefit from cache locality. 2526 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 2527 // Emit the definition if it can't be deferred. 2528 EmitGlobalDefinition(GD); 2529 return; 2530 } 2531 2532 // Check if this must be emitted as declare variant. 2533 if (LangOpts.OpenMP && isa<FunctionDecl>(Global) && OpenMPRuntime && 2534 OpenMPRuntime->emitDeclareVariant(GD, /*IsForDefinition=*/false)) 2535 return; 2536 2537 // If we're deferring emission of a C++ variable with an 2538 // initializer, remember the order in which it appeared in the file. 2539 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 2540 cast<VarDecl>(Global)->hasInit()) { 2541 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 2542 CXXGlobalInits.push_back(nullptr); 2543 } 2544 2545 StringRef MangledName = getMangledName(GD); 2546 if (GetGlobalValue(MangledName) != nullptr) { 2547 // The value has already been used and should therefore be emitted. 2548 addDeferredDeclToEmit(GD); 2549 } else if (MustBeEmitted(Global)) { 2550 // The value must be emitted, but cannot be emitted eagerly. 2551 assert(!MayBeEmittedEagerly(Global)); 2552 addDeferredDeclToEmit(GD); 2553 } else { 2554 // Otherwise, remember that we saw a deferred decl with this name. The 2555 // first use of the mangled name will cause it to move into 2556 // DeferredDeclsToEmit. 2557 DeferredDecls[MangledName] = GD; 2558 } 2559 } 2560 2561 // Check if T is a class type with a destructor that's not dllimport. 2562 static bool HasNonDllImportDtor(QualType T) { 2563 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 2564 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 2565 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 2566 return true; 2567 2568 return false; 2569 } 2570 2571 namespace { 2572 struct FunctionIsDirectlyRecursive 2573 : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> { 2574 const StringRef Name; 2575 const Builtin::Context &BI; 2576 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) 2577 : Name(N), BI(C) {} 2578 2579 bool VisitCallExpr(const CallExpr *E) { 2580 const FunctionDecl *FD = E->getDirectCallee(); 2581 if (!FD) 2582 return false; 2583 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2584 if (Attr && Name == Attr->getLabel()) 2585 return true; 2586 unsigned BuiltinID = FD->getBuiltinID(); 2587 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 2588 return false; 2589 StringRef BuiltinName = BI.getName(BuiltinID); 2590 if (BuiltinName.startswith("__builtin_") && 2591 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 2592 return true; 2593 } 2594 return false; 2595 } 2596 2597 bool VisitStmt(const Stmt *S) { 2598 for (const Stmt *Child : S->children()) 2599 if (Child && this->Visit(Child)) 2600 return true; 2601 return false; 2602 } 2603 }; 2604 2605 // Make sure we're not referencing non-imported vars or functions. 2606 struct DLLImportFunctionVisitor 2607 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 2608 bool SafeToInline = true; 2609 2610 bool shouldVisitImplicitCode() const { return true; } 2611 2612 bool VisitVarDecl(VarDecl *VD) { 2613 if (VD->getTLSKind()) { 2614 // A thread-local variable cannot be imported. 2615 SafeToInline = false; 2616 return SafeToInline; 2617 } 2618 2619 // A variable definition might imply a destructor call. 2620 if (VD->isThisDeclarationADefinition()) 2621 SafeToInline = !HasNonDllImportDtor(VD->getType()); 2622 2623 return SafeToInline; 2624 } 2625 2626 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 2627 if (const auto *D = E->getTemporary()->getDestructor()) 2628 SafeToInline = D->hasAttr<DLLImportAttr>(); 2629 return SafeToInline; 2630 } 2631 2632 bool VisitDeclRefExpr(DeclRefExpr *E) { 2633 ValueDecl *VD = E->getDecl(); 2634 if (isa<FunctionDecl>(VD)) 2635 SafeToInline = VD->hasAttr<DLLImportAttr>(); 2636 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 2637 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 2638 return SafeToInline; 2639 } 2640 2641 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 2642 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 2643 return SafeToInline; 2644 } 2645 2646 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 2647 CXXMethodDecl *M = E->getMethodDecl(); 2648 if (!M) { 2649 // Call through a pointer to member function. This is safe to inline. 2650 SafeToInline = true; 2651 } else { 2652 SafeToInline = M->hasAttr<DLLImportAttr>(); 2653 } 2654 return SafeToInline; 2655 } 2656 2657 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 2658 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 2659 return SafeToInline; 2660 } 2661 2662 bool VisitCXXNewExpr(CXXNewExpr *E) { 2663 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 2664 return SafeToInline; 2665 } 2666 }; 2667 } 2668 2669 // isTriviallyRecursive - Check if this function calls another 2670 // decl that, because of the asm attribute or the other decl being a builtin, 2671 // ends up pointing to itself. 2672 bool 2673 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 2674 StringRef Name; 2675 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 2676 // asm labels are a special kind of mangling we have to support. 2677 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2678 if (!Attr) 2679 return false; 2680 Name = Attr->getLabel(); 2681 } else { 2682 Name = FD->getName(); 2683 } 2684 2685 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 2686 const Stmt *Body = FD->getBody(); 2687 return Body ? Walker.Visit(Body) : false; 2688 } 2689 2690 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 2691 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 2692 return true; 2693 const auto *F = cast<FunctionDecl>(GD.getDecl()); 2694 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 2695 return false; 2696 2697 if (F->hasAttr<DLLImportAttr>()) { 2698 // Check whether it would be safe to inline this dllimport function. 2699 DLLImportFunctionVisitor Visitor; 2700 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 2701 if (!Visitor.SafeToInline) 2702 return false; 2703 2704 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 2705 // Implicit destructor invocations aren't captured in the AST, so the 2706 // check above can't see them. Check for them manually here. 2707 for (const Decl *Member : Dtor->getParent()->decls()) 2708 if (isa<FieldDecl>(Member)) 2709 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 2710 return false; 2711 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 2712 if (HasNonDllImportDtor(B.getType())) 2713 return false; 2714 } 2715 } 2716 2717 // PR9614. Avoid cases where the source code is lying to us. An available 2718 // externally function should have an equivalent function somewhere else, 2719 // but a function that calls itself is clearly not equivalent to the real 2720 // implementation. 2721 // This happens in glibc's btowc and in some configure checks. 2722 return !isTriviallyRecursive(F); 2723 } 2724 2725 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 2726 return CodeGenOpts.OptimizationLevel > 0; 2727 } 2728 2729 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD, 2730 llvm::GlobalValue *GV) { 2731 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2732 2733 if (FD->isCPUSpecificMultiVersion()) { 2734 auto *Spec = FD->getAttr<CPUSpecificAttr>(); 2735 for (unsigned I = 0; I < Spec->cpus_size(); ++I) 2736 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 2737 // Requires multiple emits. 2738 } else 2739 EmitGlobalFunctionDefinition(GD, GV); 2740 } 2741 2742 void CodeGenModule::emitOpenMPDeviceFunctionRedefinition( 2743 GlobalDecl OldGD, GlobalDecl NewGD, llvm::GlobalValue *GV) { 2744 assert(getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice && 2745 OpenMPRuntime && "Expected OpenMP device mode."); 2746 const auto *D = cast<FunctionDecl>(OldGD.getDecl()); 2747 2748 // Compute the function info and LLVM type. 2749 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(OldGD); 2750 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2751 2752 // Get or create the prototype for the function. 2753 if (!GV || (GV->getType()->getElementType() != Ty)) { 2754 GV = cast<llvm::GlobalValue>(GetOrCreateLLVMFunction( 2755 getMangledName(OldGD), Ty, GlobalDecl(), /*ForVTable=*/false, 2756 /*DontDefer=*/true, /*IsThunk=*/false, llvm::AttributeList(), 2757 ForDefinition)); 2758 SetFunctionAttributes(OldGD, cast<llvm::Function>(GV), 2759 /*IsIncompleteFunction=*/false, 2760 /*IsThunk=*/false); 2761 } 2762 // We need to set linkage and visibility on the function before 2763 // generating code for it because various parts of IR generation 2764 // want to propagate this information down (e.g. to local static 2765 // declarations). 2766 auto *Fn = cast<llvm::Function>(GV); 2767 setFunctionLinkage(OldGD, Fn); 2768 2769 // FIXME: this is redundant with part of 2770 // setFunctionDefinitionAttributes 2771 setGVProperties(Fn, OldGD); 2772 2773 MaybeHandleStaticInExternC(D, Fn); 2774 2775 maybeSetTrivialComdat(*D, *Fn); 2776 2777 CodeGenFunction(*this).GenerateCode(NewGD, Fn, FI); 2778 2779 setNonAliasAttributes(OldGD, Fn); 2780 SetLLVMFunctionAttributesForDefinition(D, Fn); 2781 2782 if (D->hasAttr<AnnotateAttr>()) 2783 AddGlobalAnnotations(D, Fn); 2784 } 2785 2786 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 2787 const auto *D = cast<ValueDecl>(GD.getDecl()); 2788 2789 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 2790 Context.getSourceManager(), 2791 "Generating code for declaration"); 2792 2793 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 2794 // At -O0, don't generate IR for functions with available_externally 2795 // linkage. 2796 if (!shouldEmitFunction(GD)) 2797 return; 2798 2799 llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() { 2800 std::string Name; 2801 llvm::raw_string_ostream OS(Name); 2802 FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(), 2803 /*Qualified=*/true); 2804 return Name; 2805 }); 2806 2807 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 2808 // Make sure to emit the definition(s) before we emit the thunks. 2809 // This is necessary for the generation of certain thunks. 2810 if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method)) 2811 ABI->emitCXXStructor(GD); 2812 else if (FD->isMultiVersion()) 2813 EmitMultiVersionFunctionDefinition(GD, GV); 2814 else 2815 EmitGlobalFunctionDefinition(GD, GV); 2816 2817 if (Method->isVirtual()) 2818 getVTables().EmitThunks(GD); 2819 2820 return; 2821 } 2822 2823 if (FD->isMultiVersion()) 2824 return EmitMultiVersionFunctionDefinition(GD, GV); 2825 return EmitGlobalFunctionDefinition(GD, GV); 2826 } 2827 2828 if (const auto *VD = dyn_cast<VarDecl>(D)) 2829 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 2830 2831 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 2832 } 2833 2834 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2835 llvm::Function *NewFn); 2836 2837 static unsigned 2838 TargetMVPriority(const TargetInfo &TI, 2839 const CodeGenFunction::MultiVersionResolverOption &RO) { 2840 unsigned Priority = 0; 2841 for (StringRef Feat : RO.Conditions.Features) 2842 Priority = std::max(Priority, TI.multiVersionSortPriority(Feat)); 2843 2844 if (!RO.Conditions.Architecture.empty()) 2845 Priority = std::max( 2846 Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture)); 2847 return Priority; 2848 } 2849 2850 void CodeGenModule::emitMultiVersionFunctions() { 2851 for (GlobalDecl GD : MultiVersionFuncs) { 2852 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 2853 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 2854 getContext().forEachMultiversionedFunctionVersion( 2855 FD, [this, &GD, &Options](const FunctionDecl *CurFD) { 2856 GlobalDecl CurGD{ 2857 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)}; 2858 StringRef MangledName = getMangledName(CurGD); 2859 llvm::Constant *Func = GetGlobalValue(MangledName); 2860 if (!Func) { 2861 if (CurFD->isDefined()) { 2862 EmitGlobalFunctionDefinition(CurGD, nullptr); 2863 Func = GetGlobalValue(MangledName); 2864 } else { 2865 const CGFunctionInfo &FI = 2866 getTypes().arrangeGlobalDeclaration(GD); 2867 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2868 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 2869 /*DontDefer=*/false, ForDefinition); 2870 } 2871 assert(Func && "This should have just been created"); 2872 } 2873 2874 const auto *TA = CurFD->getAttr<TargetAttr>(); 2875 llvm::SmallVector<StringRef, 8> Feats; 2876 TA->getAddedFeatures(Feats); 2877 2878 Options.emplace_back(cast<llvm::Function>(Func), 2879 TA->getArchitecture(), Feats); 2880 }); 2881 2882 llvm::Function *ResolverFunc; 2883 const TargetInfo &TI = getTarget(); 2884 2885 if (TI.supportsIFunc() || FD->isTargetMultiVersion()) { 2886 ResolverFunc = cast<llvm::Function>( 2887 GetGlobalValue((getMangledName(GD) + ".resolver").str())); 2888 ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage); 2889 } else { 2890 ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD))); 2891 } 2892 2893 if (supportsCOMDAT()) 2894 ResolverFunc->setComdat( 2895 getModule().getOrInsertComdat(ResolverFunc->getName())); 2896 2897 llvm::stable_sort( 2898 Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS, 2899 const CodeGenFunction::MultiVersionResolverOption &RHS) { 2900 return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS); 2901 }); 2902 CodeGenFunction CGF(*this); 2903 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 2904 } 2905 } 2906 2907 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) { 2908 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2909 assert(FD && "Not a FunctionDecl?"); 2910 const auto *DD = FD->getAttr<CPUDispatchAttr>(); 2911 assert(DD && "Not a cpu_dispatch Function?"); 2912 llvm::Type *DeclTy = getTypes().ConvertType(FD->getType()); 2913 2914 if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) { 2915 const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD); 2916 DeclTy = getTypes().GetFunctionType(FInfo); 2917 } 2918 2919 StringRef ResolverName = getMangledName(GD); 2920 2921 llvm::Type *ResolverType; 2922 GlobalDecl ResolverGD; 2923 if (getTarget().supportsIFunc()) 2924 ResolverType = llvm::FunctionType::get( 2925 llvm::PointerType::get(DeclTy, 2926 Context.getTargetAddressSpace(FD->getType())), 2927 false); 2928 else { 2929 ResolverType = DeclTy; 2930 ResolverGD = GD; 2931 } 2932 2933 auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction( 2934 ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false)); 2935 ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage); 2936 if (supportsCOMDAT()) 2937 ResolverFunc->setComdat( 2938 getModule().getOrInsertComdat(ResolverFunc->getName())); 2939 2940 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 2941 const TargetInfo &Target = getTarget(); 2942 unsigned Index = 0; 2943 for (const IdentifierInfo *II : DD->cpus()) { 2944 // Get the name of the target function so we can look it up/create it. 2945 std::string MangledName = getMangledNameImpl(*this, GD, FD, true) + 2946 getCPUSpecificMangling(*this, II->getName()); 2947 2948 llvm::Constant *Func = GetGlobalValue(MangledName); 2949 2950 if (!Func) { 2951 GlobalDecl ExistingDecl = Manglings.lookup(MangledName); 2952 if (ExistingDecl.getDecl() && 2953 ExistingDecl.getDecl()->getAsFunction()->isDefined()) { 2954 EmitGlobalFunctionDefinition(ExistingDecl, nullptr); 2955 Func = GetGlobalValue(MangledName); 2956 } else { 2957 if (!ExistingDecl.getDecl()) 2958 ExistingDecl = GD.getWithMultiVersionIndex(Index); 2959 2960 Func = GetOrCreateLLVMFunction( 2961 MangledName, DeclTy, ExistingDecl, 2962 /*ForVTable=*/false, /*DontDefer=*/true, 2963 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition); 2964 } 2965 } 2966 2967 llvm::SmallVector<StringRef, 32> Features; 2968 Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features); 2969 llvm::transform(Features, Features.begin(), 2970 [](StringRef Str) { return Str.substr(1); }); 2971 Features.erase(std::remove_if( 2972 Features.begin(), Features.end(), [&Target](StringRef Feat) { 2973 return !Target.validateCpuSupports(Feat); 2974 }), Features.end()); 2975 Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features); 2976 ++Index; 2977 } 2978 2979 llvm::sort( 2980 Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS, 2981 const CodeGenFunction::MultiVersionResolverOption &RHS) { 2982 return CodeGenFunction::GetX86CpuSupportsMask(LHS.Conditions.Features) > 2983 CodeGenFunction::GetX86CpuSupportsMask(RHS.Conditions.Features); 2984 }); 2985 2986 // If the list contains multiple 'default' versions, such as when it contains 2987 // 'pentium' and 'generic', don't emit the call to the generic one (since we 2988 // always run on at least a 'pentium'). We do this by deleting the 'least 2989 // advanced' (read, lowest mangling letter). 2990 while (Options.size() > 1 && 2991 CodeGenFunction::GetX86CpuSupportsMask( 2992 (Options.end() - 2)->Conditions.Features) == 0) { 2993 StringRef LHSName = (Options.end() - 2)->Function->getName(); 2994 StringRef RHSName = (Options.end() - 1)->Function->getName(); 2995 if (LHSName.compare(RHSName) < 0) 2996 Options.erase(Options.end() - 2); 2997 else 2998 Options.erase(Options.end() - 1); 2999 } 3000 3001 CodeGenFunction CGF(*this); 3002 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 3003 3004 if (getTarget().supportsIFunc()) { 3005 std::string AliasName = getMangledNameImpl( 3006 *this, GD, FD, /*OmitMultiVersionMangling=*/true); 3007 llvm::Constant *AliasFunc = GetGlobalValue(AliasName); 3008 if (!AliasFunc) { 3009 auto *IFunc = cast<llvm::GlobalIFunc>(GetOrCreateLLVMFunction( 3010 AliasName, DeclTy, GD, /*ForVTable=*/false, /*DontDefer=*/true, 3011 /*IsThunk=*/false, llvm::AttributeList(), NotForDefinition)); 3012 auto *GA = llvm::GlobalAlias::create( 3013 DeclTy, 0, getFunctionLinkage(GD), AliasName, IFunc, &getModule()); 3014 GA->setLinkage(llvm::Function::WeakODRLinkage); 3015 SetCommonAttributes(GD, GA); 3016 } 3017 } 3018 } 3019 3020 /// If a dispatcher for the specified mangled name is not in the module, create 3021 /// and return an llvm Function with the specified type. 3022 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver( 3023 GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) { 3024 std::string MangledName = 3025 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 3026 3027 // Holds the name of the resolver, in ifunc mode this is the ifunc (which has 3028 // a separate resolver). 3029 std::string ResolverName = MangledName; 3030 if (getTarget().supportsIFunc()) 3031 ResolverName += ".ifunc"; 3032 else if (FD->isTargetMultiVersion()) 3033 ResolverName += ".resolver"; 3034 3035 // If this already exists, just return that one. 3036 if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName)) 3037 return ResolverGV; 3038 3039 // Since this is the first time we've created this IFunc, make sure 3040 // that we put this multiversioned function into the list to be 3041 // replaced later if necessary (target multiversioning only). 3042 if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion()) 3043 MultiVersionFuncs.push_back(GD); 3044 3045 if (getTarget().supportsIFunc()) { 3046 llvm::Type *ResolverType = llvm::FunctionType::get( 3047 llvm::PointerType::get( 3048 DeclTy, getContext().getTargetAddressSpace(FD->getType())), 3049 false); 3050 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 3051 MangledName + ".resolver", ResolverType, GlobalDecl{}, 3052 /*ForVTable=*/false); 3053 llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create( 3054 DeclTy, 0, llvm::Function::WeakODRLinkage, "", Resolver, &getModule()); 3055 GIF->setName(ResolverName); 3056 SetCommonAttributes(FD, GIF); 3057 3058 return GIF; 3059 } 3060 3061 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 3062 ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false); 3063 assert(isa<llvm::GlobalValue>(Resolver) && 3064 "Resolver should be created for the first time"); 3065 SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver)); 3066 return Resolver; 3067 } 3068 3069 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 3070 /// module, create and return an llvm Function with the specified type. If there 3071 /// is something in the module with the specified name, return it potentially 3072 /// bitcasted to the right type. 3073 /// 3074 /// If D is non-null, it specifies a decl that correspond to this. This is used 3075 /// to set the attributes on the function when it is first created. 3076 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 3077 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 3078 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 3079 ForDefinition_t IsForDefinition) { 3080 const Decl *D = GD.getDecl(); 3081 3082 // Any attempts to use a MultiVersion function should result in retrieving 3083 // the iFunc instead. Name Mangling will handle the rest of the changes. 3084 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 3085 // For the device mark the function as one that should be emitted. 3086 if (getLangOpts().OpenMPIsDevice && OpenMPRuntime && 3087 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() && 3088 !DontDefer && !IsForDefinition) { 3089 if (const FunctionDecl *FDDef = FD->getDefinition()) { 3090 GlobalDecl GDDef; 3091 if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef)) 3092 GDDef = GlobalDecl(CD, GD.getCtorType()); 3093 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef)) 3094 GDDef = GlobalDecl(DD, GD.getDtorType()); 3095 else 3096 GDDef = GlobalDecl(FDDef); 3097 EmitGlobal(GDDef); 3098 } 3099 } 3100 // Check if this must be emitted as declare variant and emit reference to 3101 // the the declare variant function. 3102 if (LangOpts.OpenMP && OpenMPRuntime) 3103 (void)OpenMPRuntime->emitDeclareVariant(GD, /*IsForDefinition=*/true); 3104 3105 if (FD->isMultiVersion()) { 3106 const auto *TA = FD->getAttr<TargetAttr>(); 3107 if (TA && TA->isDefaultVersion()) 3108 UpdateMultiVersionNames(GD, FD); 3109 if (!IsForDefinition) 3110 return GetOrCreateMultiVersionResolver(GD, Ty, FD); 3111 } 3112 } 3113 3114 // Lookup the entry, lazily creating it if necessary. 3115 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3116 if (Entry) { 3117 if (WeakRefReferences.erase(Entry)) { 3118 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 3119 if (FD && !FD->hasAttr<WeakAttr>()) 3120 Entry->setLinkage(llvm::Function::ExternalLinkage); 3121 } 3122 3123 // Handle dropped DLL attributes. 3124 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) { 3125 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 3126 setDSOLocal(Entry); 3127 } 3128 3129 // If there are two attempts to define the same mangled name, issue an 3130 // error. 3131 if (IsForDefinition && !Entry->isDeclaration()) { 3132 GlobalDecl OtherGD; 3133 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 3134 // to make sure that we issue an error only once. 3135 if (lookupRepresentativeDecl(MangledName, OtherGD) && 3136 (GD.getCanonicalDecl().getDecl() != 3137 OtherGD.getCanonicalDecl().getDecl()) && 3138 DiagnosedConflictingDefinitions.insert(GD).second) { 3139 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 3140 << MangledName; 3141 getDiags().Report(OtherGD.getDecl()->getLocation(), 3142 diag::note_previous_definition); 3143 } 3144 } 3145 3146 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 3147 (Entry->getType()->getElementType() == Ty)) { 3148 return Entry; 3149 } 3150 3151 // Make sure the result is of the correct type. 3152 // (If function is requested for a definition, we always need to create a new 3153 // function, not just return a bitcast.) 3154 if (!IsForDefinition) 3155 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 3156 } 3157 3158 // This function doesn't have a complete type (for example, the return 3159 // type is an incomplete struct). Use a fake type instead, and make 3160 // sure not to try to set attributes. 3161 bool IsIncompleteFunction = false; 3162 3163 llvm::FunctionType *FTy; 3164 if (isa<llvm::FunctionType>(Ty)) { 3165 FTy = cast<llvm::FunctionType>(Ty); 3166 } else { 3167 FTy = llvm::FunctionType::get(VoidTy, false); 3168 IsIncompleteFunction = true; 3169 } 3170 3171 llvm::Function *F = 3172 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 3173 Entry ? StringRef() : MangledName, &getModule()); 3174 3175 // If we already created a function with the same mangled name (but different 3176 // type) before, take its name and add it to the list of functions to be 3177 // replaced with F at the end of CodeGen. 3178 // 3179 // This happens if there is a prototype for a function (e.g. "int f()") and 3180 // then a definition of a different type (e.g. "int f(int x)"). 3181 if (Entry) { 3182 F->takeName(Entry); 3183 3184 // This might be an implementation of a function without a prototype, in 3185 // which case, try to do special replacement of calls which match the new 3186 // prototype. The really key thing here is that we also potentially drop 3187 // arguments from the call site so as to make a direct call, which makes the 3188 // inliner happier and suppresses a number of optimizer warnings (!) about 3189 // dropping arguments. 3190 if (!Entry->use_empty()) { 3191 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 3192 Entry->removeDeadConstantUsers(); 3193 } 3194 3195 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 3196 F, Entry->getType()->getElementType()->getPointerTo()); 3197 addGlobalValReplacement(Entry, BC); 3198 } 3199 3200 assert(F->getName() == MangledName && "name was uniqued!"); 3201 if (D) 3202 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 3203 if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) { 3204 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex); 3205 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 3206 } 3207 3208 if (!DontDefer) { 3209 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 3210 // each other bottoming out with the base dtor. Therefore we emit non-base 3211 // dtors on usage, even if there is no dtor definition in the TU. 3212 if (D && isa<CXXDestructorDecl>(D) && 3213 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 3214 GD.getDtorType())) 3215 addDeferredDeclToEmit(GD); 3216 3217 // This is the first use or definition of a mangled name. If there is a 3218 // deferred decl with this name, remember that we need to emit it at the end 3219 // of the file. 3220 auto DDI = DeferredDecls.find(MangledName); 3221 if (DDI != DeferredDecls.end()) { 3222 // Move the potentially referenced deferred decl to the 3223 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 3224 // don't need it anymore). 3225 addDeferredDeclToEmit(DDI->second); 3226 DeferredDecls.erase(DDI); 3227 3228 // Otherwise, there are cases we have to worry about where we're 3229 // using a declaration for which we must emit a definition but where 3230 // we might not find a top-level definition: 3231 // - member functions defined inline in their classes 3232 // - friend functions defined inline in some class 3233 // - special member functions with implicit definitions 3234 // If we ever change our AST traversal to walk into class methods, 3235 // this will be unnecessary. 3236 // 3237 // We also don't emit a definition for a function if it's going to be an 3238 // entry in a vtable, unless it's already marked as used. 3239 } else if (getLangOpts().CPlusPlus && D) { 3240 // Look for a declaration that's lexically in a record. 3241 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 3242 FD = FD->getPreviousDecl()) { 3243 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 3244 if (FD->doesThisDeclarationHaveABody()) { 3245 addDeferredDeclToEmit(GD.getWithDecl(FD)); 3246 break; 3247 } 3248 } 3249 } 3250 } 3251 } 3252 3253 // Make sure the result is of the requested type. 3254 if (!IsIncompleteFunction) { 3255 assert(F->getType()->getElementType() == Ty); 3256 return F; 3257 } 3258 3259 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 3260 return llvm::ConstantExpr::getBitCast(F, PTy); 3261 } 3262 3263 /// GetAddrOfFunction - Return the address of the given function. If Ty is 3264 /// non-null, then this function will use the specified type if it has to 3265 /// create it (this occurs when we see a definition of the function). 3266 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 3267 llvm::Type *Ty, 3268 bool ForVTable, 3269 bool DontDefer, 3270 ForDefinition_t IsForDefinition) { 3271 // If there was no specific requested type, just convert it now. 3272 if (!Ty) { 3273 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3274 Ty = getTypes().ConvertType(FD->getType()); 3275 } 3276 3277 // Devirtualized destructor calls may come through here instead of via 3278 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead 3279 // of the complete destructor when necessary. 3280 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) { 3281 if (getTarget().getCXXABI().isMicrosoft() && 3282 GD.getDtorType() == Dtor_Complete && 3283 DD->getParent()->getNumVBases() == 0) 3284 GD = GlobalDecl(DD, Dtor_Base); 3285 } 3286 3287 StringRef MangledName = getMangledName(GD); 3288 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 3289 /*IsThunk=*/false, llvm::AttributeList(), 3290 IsForDefinition); 3291 } 3292 3293 static const FunctionDecl * 3294 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 3295 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 3296 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 3297 3298 IdentifierInfo &CII = C.Idents.get(Name); 3299 for (const auto &Result : DC->lookup(&CII)) 3300 if (const auto FD = dyn_cast<FunctionDecl>(Result)) 3301 return FD; 3302 3303 if (!C.getLangOpts().CPlusPlus) 3304 return nullptr; 3305 3306 // Demangle the premangled name from getTerminateFn() 3307 IdentifierInfo &CXXII = 3308 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ") 3309 ? C.Idents.get("terminate") 3310 : C.Idents.get(Name); 3311 3312 for (const auto &N : {"__cxxabiv1", "std"}) { 3313 IdentifierInfo &NS = C.Idents.get(N); 3314 for (const auto &Result : DC->lookup(&NS)) { 3315 NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 3316 if (auto LSD = dyn_cast<LinkageSpecDecl>(Result)) 3317 for (const auto &Result : LSD->lookup(&NS)) 3318 if ((ND = dyn_cast<NamespaceDecl>(Result))) 3319 break; 3320 3321 if (ND) 3322 for (const auto &Result : ND->lookup(&CXXII)) 3323 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 3324 return FD; 3325 } 3326 } 3327 3328 return nullptr; 3329 } 3330 3331 /// CreateRuntimeFunction - Create a new runtime function with the specified 3332 /// type and name. 3333 llvm::FunctionCallee 3334 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 3335 llvm::AttributeList ExtraAttrs, bool Local, 3336 bool AssumeConvergent) { 3337 if (AssumeConvergent) { 3338 ExtraAttrs = 3339 ExtraAttrs.addAttribute(VMContext, llvm::AttributeList::FunctionIndex, 3340 llvm::Attribute::Convergent); 3341 } 3342 3343 llvm::Constant *C = 3344 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 3345 /*DontDefer=*/false, /*IsThunk=*/false, 3346 ExtraAttrs); 3347 3348 if (auto *F = dyn_cast<llvm::Function>(C)) { 3349 if (F->empty()) { 3350 F->setCallingConv(getRuntimeCC()); 3351 3352 // In Windows Itanium environments, try to mark runtime functions 3353 // dllimport. For Mingw and MSVC, don't. We don't really know if the user 3354 // will link their standard library statically or dynamically. Marking 3355 // functions imported when they are not imported can cause linker errors 3356 // and warnings. 3357 if (!Local && getTriple().isWindowsItaniumEnvironment() && 3358 !getCodeGenOpts().LTOVisibilityPublicStd) { 3359 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 3360 if (!FD || FD->hasAttr<DLLImportAttr>()) { 3361 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 3362 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 3363 } 3364 } 3365 setDSOLocal(F); 3366 } 3367 } 3368 3369 return {FTy, C}; 3370 } 3371 3372 /// isTypeConstant - Determine whether an object of this type can be emitted 3373 /// as a constant. 3374 /// 3375 /// If ExcludeCtor is true, the duration when the object's constructor runs 3376 /// will not be considered. The caller will need to verify that the object is 3377 /// not written to during its construction. 3378 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 3379 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 3380 return false; 3381 3382 if (Context.getLangOpts().CPlusPlus) { 3383 if (const CXXRecordDecl *Record 3384 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 3385 return ExcludeCtor && !Record->hasMutableFields() && 3386 Record->hasTrivialDestructor(); 3387 } 3388 3389 return true; 3390 } 3391 3392 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 3393 /// create and return an llvm GlobalVariable with the specified type. If there 3394 /// is something in the module with the specified name, return it potentially 3395 /// bitcasted to the right type. 3396 /// 3397 /// If D is non-null, it specifies a decl that correspond to this. This is used 3398 /// to set the attributes on the global when it is first created. 3399 /// 3400 /// If IsForDefinition is true, it is guaranteed that an actual global with 3401 /// type Ty will be returned, not conversion of a variable with the same 3402 /// mangled name but some other type. 3403 llvm::Constant * 3404 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 3405 llvm::PointerType *Ty, 3406 const VarDecl *D, 3407 ForDefinition_t IsForDefinition) { 3408 // Lookup the entry, lazily creating it if necessary. 3409 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3410 if (Entry) { 3411 if (WeakRefReferences.erase(Entry)) { 3412 if (D && !D->hasAttr<WeakAttr>()) 3413 Entry->setLinkage(llvm::Function::ExternalLinkage); 3414 } 3415 3416 // Handle dropped DLL attributes. 3417 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 3418 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 3419 3420 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D) 3421 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry); 3422 3423 if (Entry->getType() == Ty) 3424 return Entry; 3425 3426 // If there are two attempts to define the same mangled name, issue an 3427 // error. 3428 if (IsForDefinition && !Entry->isDeclaration()) { 3429 GlobalDecl OtherGD; 3430 const VarDecl *OtherD; 3431 3432 // Check that D is not yet in DiagnosedConflictingDefinitions is required 3433 // to make sure that we issue an error only once. 3434 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 3435 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 3436 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 3437 OtherD->hasInit() && 3438 DiagnosedConflictingDefinitions.insert(D).second) { 3439 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 3440 << MangledName; 3441 getDiags().Report(OtherGD.getDecl()->getLocation(), 3442 diag::note_previous_definition); 3443 } 3444 } 3445 3446 // Make sure the result is of the correct type. 3447 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 3448 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 3449 3450 // (If global is requested for a definition, we always need to create a new 3451 // global, not just return a bitcast.) 3452 if (!IsForDefinition) 3453 return llvm::ConstantExpr::getBitCast(Entry, Ty); 3454 } 3455 3456 auto AddrSpace = GetGlobalVarAddressSpace(D); 3457 auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace); 3458 3459 auto *GV = new llvm::GlobalVariable( 3460 getModule(), Ty->getElementType(), false, 3461 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 3462 llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace); 3463 3464 // If we already created a global with the same mangled name (but different 3465 // type) before, take its name and remove it from its parent. 3466 if (Entry) { 3467 GV->takeName(Entry); 3468 3469 if (!Entry->use_empty()) { 3470 llvm::Constant *NewPtrForOldDecl = 3471 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 3472 Entry->replaceAllUsesWith(NewPtrForOldDecl); 3473 } 3474 3475 Entry->eraseFromParent(); 3476 } 3477 3478 // This is the first use or definition of a mangled name. If there is a 3479 // deferred decl with this name, remember that we need to emit it at the end 3480 // of the file. 3481 auto DDI = DeferredDecls.find(MangledName); 3482 if (DDI != DeferredDecls.end()) { 3483 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 3484 // list, and remove it from DeferredDecls (since we don't need it anymore). 3485 addDeferredDeclToEmit(DDI->second); 3486 DeferredDecls.erase(DDI); 3487 } 3488 3489 // Handle things which are present even on external declarations. 3490 if (D) { 3491 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd) 3492 getOpenMPRuntime().registerTargetGlobalVariable(D, GV); 3493 3494 // FIXME: This code is overly simple and should be merged with other global 3495 // handling. 3496 GV->setConstant(isTypeConstant(D->getType(), false)); 3497 3498 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 3499 3500 setLinkageForGV(GV, D); 3501 3502 if (D->getTLSKind()) { 3503 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 3504 CXXThreadLocals.push_back(D); 3505 setTLSMode(GV, *D); 3506 } 3507 3508 setGVProperties(GV, D); 3509 3510 // If required by the ABI, treat declarations of static data members with 3511 // inline initializers as definitions. 3512 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 3513 EmitGlobalVarDefinition(D); 3514 } 3515 3516 // Emit section information for extern variables. 3517 if (D->hasExternalStorage()) { 3518 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 3519 GV->setSection(SA->getName()); 3520 } 3521 3522 // Handle XCore specific ABI requirements. 3523 if (getTriple().getArch() == llvm::Triple::xcore && 3524 D->getLanguageLinkage() == CLanguageLinkage && 3525 D->getType().isConstant(Context) && 3526 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 3527 GV->setSection(".cp.rodata"); 3528 3529 // Check if we a have a const declaration with an initializer, we may be 3530 // able to emit it as available_externally to expose it's value to the 3531 // optimizer. 3532 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 3533 D->getType().isConstQualified() && !GV->hasInitializer() && 3534 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 3535 const auto *Record = 3536 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 3537 bool HasMutableFields = Record && Record->hasMutableFields(); 3538 if (!HasMutableFields) { 3539 const VarDecl *InitDecl; 3540 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 3541 if (InitExpr) { 3542 ConstantEmitter emitter(*this); 3543 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 3544 if (Init) { 3545 auto *InitType = Init->getType(); 3546 if (GV->getType()->getElementType() != InitType) { 3547 // The type of the initializer does not match the definition. 3548 // This happens when an initializer has a different type from 3549 // the type of the global (because of padding at the end of a 3550 // structure for instance). 3551 GV->setName(StringRef()); 3552 // Make a new global with the correct type, this is now guaranteed 3553 // to work. 3554 auto *NewGV = cast<llvm::GlobalVariable>( 3555 GetAddrOfGlobalVar(D, InitType, IsForDefinition) 3556 ->stripPointerCasts()); 3557 3558 // Erase the old global, since it is no longer used. 3559 GV->eraseFromParent(); 3560 GV = NewGV; 3561 } else { 3562 GV->setInitializer(Init); 3563 GV->setConstant(true); 3564 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 3565 } 3566 emitter.finalize(GV); 3567 } 3568 } 3569 } 3570 } 3571 } 3572 3573 LangAS ExpectedAS = 3574 D ? D->getType().getAddressSpace() 3575 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 3576 assert(getContext().getTargetAddressSpace(ExpectedAS) == 3577 Ty->getPointerAddressSpace()); 3578 if (AddrSpace != ExpectedAS) 3579 return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace, 3580 ExpectedAS, Ty); 3581 3582 if (GV->isDeclaration()) 3583 getTargetCodeGenInfo().setTargetAttributes(D, GV, *this); 3584 3585 return GV; 3586 } 3587 3588 llvm::Constant * 3589 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, 3590 ForDefinition_t IsForDefinition) { 3591 const Decl *D = GD.getDecl(); 3592 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 3593 return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr, 3594 /*DontDefer=*/false, IsForDefinition); 3595 else if (isa<CXXMethodDecl>(D)) { 3596 auto FInfo = &getTypes().arrangeCXXMethodDeclaration( 3597 cast<CXXMethodDecl>(D)); 3598 auto Ty = getTypes().GetFunctionType(*FInfo); 3599 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 3600 IsForDefinition); 3601 } else if (isa<FunctionDecl>(D)) { 3602 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3603 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3604 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 3605 IsForDefinition); 3606 } else 3607 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, 3608 IsForDefinition); 3609 } 3610 3611 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable( 3612 StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage, 3613 unsigned Alignment) { 3614 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 3615 llvm::GlobalVariable *OldGV = nullptr; 3616 3617 if (GV) { 3618 // Check if the variable has the right type. 3619 if (GV->getType()->getElementType() == Ty) 3620 return GV; 3621 3622 // Because C++ name mangling, the only way we can end up with an already 3623 // existing global with the same name is if it has been declared extern "C". 3624 assert(GV->isDeclaration() && "Declaration has wrong type!"); 3625 OldGV = GV; 3626 } 3627 3628 // Create a new variable. 3629 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 3630 Linkage, nullptr, Name); 3631 3632 if (OldGV) { 3633 // Replace occurrences of the old variable if needed. 3634 GV->takeName(OldGV); 3635 3636 if (!OldGV->use_empty()) { 3637 llvm::Constant *NewPtrForOldDecl = 3638 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 3639 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 3640 } 3641 3642 OldGV->eraseFromParent(); 3643 } 3644 3645 if (supportsCOMDAT() && GV->isWeakForLinker() && 3646 !GV->hasAvailableExternallyLinkage()) 3647 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3648 3649 GV->setAlignment(llvm::MaybeAlign(Alignment)); 3650 3651 return GV; 3652 } 3653 3654 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 3655 /// given global variable. If Ty is non-null and if the global doesn't exist, 3656 /// then it will be created with the specified type instead of whatever the 3657 /// normal requested type would be. If IsForDefinition is true, it is guaranteed 3658 /// that an actual global with type Ty will be returned, not conversion of a 3659 /// variable with the same mangled name but some other type. 3660 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 3661 llvm::Type *Ty, 3662 ForDefinition_t IsForDefinition) { 3663 assert(D->hasGlobalStorage() && "Not a global variable"); 3664 QualType ASTTy = D->getType(); 3665 if (!Ty) 3666 Ty = getTypes().ConvertTypeForMem(ASTTy); 3667 3668 llvm::PointerType *PTy = 3669 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 3670 3671 StringRef MangledName = getMangledName(D); 3672 return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition); 3673 } 3674 3675 /// CreateRuntimeVariable - Create a new runtime global variable with the 3676 /// specified type and name. 3677 llvm::Constant * 3678 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 3679 StringRef Name) { 3680 auto PtrTy = 3681 getContext().getLangOpts().OpenCL 3682 ? llvm::PointerType::get( 3683 Ty, getContext().getTargetAddressSpace(LangAS::opencl_global)) 3684 : llvm::PointerType::getUnqual(Ty); 3685 auto *Ret = GetOrCreateLLVMGlobal(Name, PtrTy, nullptr); 3686 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts())); 3687 return Ret; 3688 } 3689 3690 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 3691 assert(!D->getInit() && "Cannot emit definite definitions here!"); 3692 3693 StringRef MangledName = getMangledName(D); 3694 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 3695 3696 // We already have a definition, not declaration, with the same mangled name. 3697 // Emitting of declaration is not required (and actually overwrites emitted 3698 // definition). 3699 if (GV && !GV->isDeclaration()) 3700 return; 3701 3702 // If we have not seen a reference to this variable yet, place it into the 3703 // deferred declarations table to be emitted if needed later. 3704 if (!MustBeEmitted(D) && !GV) { 3705 DeferredDecls[MangledName] = D; 3706 return; 3707 } 3708 3709 // The tentative definition is the only definition. 3710 EmitGlobalVarDefinition(D); 3711 } 3712 3713 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 3714 return Context.toCharUnitsFromBits( 3715 getDataLayout().getTypeStoreSizeInBits(Ty)); 3716 } 3717 3718 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 3719 LangAS AddrSpace = LangAS::Default; 3720 if (LangOpts.OpenCL) { 3721 AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 3722 assert(AddrSpace == LangAS::opencl_global || 3723 AddrSpace == LangAS::opencl_constant || 3724 AddrSpace == LangAS::opencl_local || 3725 AddrSpace >= LangAS::FirstTargetAddressSpace); 3726 return AddrSpace; 3727 } 3728 3729 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 3730 if (D && D->hasAttr<CUDAConstantAttr>()) 3731 return LangAS::cuda_constant; 3732 else if (D && D->hasAttr<CUDASharedAttr>()) 3733 return LangAS::cuda_shared; 3734 else if (D && D->hasAttr<CUDADeviceAttr>()) 3735 return LangAS::cuda_device; 3736 else if (D && D->getType().isConstQualified()) 3737 return LangAS::cuda_constant; 3738 else 3739 return LangAS::cuda_device; 3740 } 3741 3742 if (LangOpts.OpenMP) { 3743 LangAS AS; 3744 if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS)) 3745 return AS; 3746 } 3747 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 3748 } 3749 3750 LangAS CodeGenModule::getStringLiteralAddressSpace() const { 3751 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 3752 if (LangOpts.OpenCL) 3753 return LangAS::opencl_constant; 3754 if (auto AS = getTarget().getConstantAddressSpace()) 3755 return AS.getValue(); 3756 return LangAS::Default; 3757 } 3758 3759 // In address space agnostic languages, string literals are in default address 3760 // space in AST. However, certain targets (e.g. amdgcn) request them to be 3761 // emitted in constant address space in LLVM IR. To be consistent with other 3762 // parts of AST, string literal global variables in constant address space 3763 // need to be casted to default address space before being put into address 3764 // map and referenced by other part of CodeGen. 3765 // In OpenCL, string literals are in constant address space in AST, therefore 3766 // they should not be casted to default address space. 3767 static llvm::Constant * 3768 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM, 3769 llvm::GlobalVariable *GV) { 3770 llvm::Constant *Cast = GV; 3771 if (!CGM.getLangOpts().OpenCL) { 3772 if (auto AS = CGM.getTarget().getConstantAddressSpace()) { 3773 if (AS != LangAS::Default) 3774 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast( 3775 CGM, GV, AS.getValue(), LangAS::Default, 3776 GV->getValueType()->getPointerTo( 3777 CGM.getContext().getTargetAddressSpace(LangAS::Default))); 3778 } 3779 } 3780 return Cast; 3781 } 3782 3783 template<typename SomeDecl> 3784 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 3785 llvm::GlobalValue *GV) { 3786 if (!getLangOpts().CPlusPlus) 3787 return; 3788 3789 // Must have 'used' attribute, or else inline assembly can't rely on 3790 // the name existing. 3791 if (!D->template hasAttr<UsedAttr>()) 3792 return; 3793 3794 // Must have internal linkage and an ordinary name. 3795 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 3796 return; 3797 3798 // Must be in an extern "C" context. Entities declared directly within 3799 // a record are not extern "C" even if the record is in such a context. 3800 const SomeDecl *First = D->getFirstDecl(); 3801 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 3802 return; 3803 3804 // OK, this is an internal linkage entity inside an extern "C" linkage 3805 // specification. Make a note of that so we can give it the "expected" 3806 // mangled name if nothing else is using that name. 3807 std::pair<StaticExternCMap::iterator, bool> R = 3808 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 3809 3810 // If we have multiple internal linkage entities with the same name 3811 // in extern "C" regions, none of them gets that name. 3812 if (!R.second) 3813 R.first->second = nullptr; 3814 } 3815 3816 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 3817 if (!CGM.supportsCOMDAT()) 3818 return false; 3819 3820 // Do not set COMDAT attribute for CUDA/HIP stub functions to prevent 3821 // them being "merged" by the COMDAT Folding linker optimization. 3822 if (D.hasAttr<CUDAGlobalAttr>()) 3823 return false; 3824 3825 if (D.hasAttr<SelectAnyAttr>()) 3826 return true; 3827 3828 GVALinkage Linkage; 3829 if (auto *VD = dyn_cast<VarDecl>(&D)) 3830 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 3831 else 3832 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 3833 3834 switch (Linkage) { 3835 case GVA_Internal: 3836 case GVA_AvailableExternally: 3837 case GVA_StrongExternal: 3838 return false; 3839 case GVA_DiscardableODR: 3840 case GVA_StrongODR: 3841 return true; 3842 } 3843 llvm_unreachable("No such linkage"); 3844 } 3845 3846 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 3847 llvm::GlobalObject &GO) { 3848 if (!shouldBeInCOMDAT(*this, D)) 3849 return; 3850 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 3851 } 3852 3853 /// Pass IsTentative as true if you want to create a tentative definition. 3854 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 3855 bool IsTentative) { 3856 // OpenCL global variables of sampler type are translated to function calls, 3857 // therefore no need to be translated. 3858 QualType ASTTy = D->getType(); 3859 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 3860 return; 3861 3862 // If this is OpenMP device, check if it is legal to emit this global 3863 // normally. 3864 if (LangOpts.OpenMPIsDevice && OpenMPRuntime && 3865 OpenMPRuntime->emitTargetGlobalVariable(D)) 3866 return; 3867 3868 llvm::Constant *Init = nullptr; 3869 bool NeedsGlobalCtor = false; 3870 bool NeedsGlobalDtor = 3871 D->needsDestruction(getContext()) == QualType::DK_cxx_destructor; 3872 3873 const VarDecl *InitDecl; 3874 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 3875 3876 Optional<ConstantEmitter> emitter; 3877 3878 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 3879 // as part of their declaration." Sema has already checked for 3880 // error cases, so we just need to set Init to UndefValue. 3881 bool IsCUDASharedVar = 3882 getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>(); 3883 // Shadows of initialized device-side global variables are also left 3884 // undefined. 3885 bool IsCUDAShadowVar = 3886 !getLangOpts().CUDAIsDevice && 3887 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() || 3888 D->hasAttr<CUDASharedAttr>()); 3889 // HIP pinned shadow of initialized host-side global variables are also 3890 // left undefined. 3891 bool IsHIPPinnedShadowVar = 3892 getLangOpts().CUDAIsDevice && D->hasAttr<HIPPinnedShadowAttr>(); 3893 if (getLangOpts().CUDA && 3894 (IsCUDASharedVar || IsCUDAShadowVar || IsHIPPinnedShadowVar)) 3895 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 3896 else if (!InitExpr) { 3897 // This is a tentative definition; tentative definitions are 3898 // implicitly initialized with { 0 }. 3899 // 3900 // Note that tentative definitions are only emitted at the end of 3901 // a translation unit, so they should never have incomplete 3902 // type. In addition, EmitTentativeDefinition makes sure that we 3903 // never attempt to emit a tentative definition if a real one 3904 // exists. A use may still exists, however, so we still may need 3905 // to do a RAUW. 3906 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 3907 Init = EmitNullConstant(D->getType()); 3908 } else { 3909 initializedGlobalDecl = GlobalDecl(D); 3910 emitter.emplace(*this); 3911 Init = emitter->tryEmitForInitializer(*InitDecl); 3912 3913 if (!Init) { 3914 QualType T = InitExpr->getType(); 3915 if (D->getType()->isReferenceType()) 3916 T = D->getType(); 3917 3918 if (getLangOpts().CPlusPlus) { 3919 Init = EmitNullConstant(T); 3920 NeedsGlobalCtor = true; 3921 } else { 3922 ErrorUnsupported(D, "static initializer"); 3923 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 3924 } 3925 } else { 3926 // We don't need an initializer, so remove the entry for the delayed 3927 // initializer position (just in case this entry was delayed) if we 3928 // also don't need to register a destructor. 3929 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 3930 DelayedCXXInitPosition.erase(D); 3931 } 3932 } 3933 3934 llvm::Type* InitType = Init->getType(); 3935 llvm::Constant *Entry = 3936 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 3937 3938 // Strip off pointer casts if we got them. 3939 Entry = Entry->stripPointerCasts(); 3940 3941 // Entry is now either a Function or GlobalVariable. 3942 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 3943 3944 // We have a definition after a declaration with the wrong type. 3945 // We must make a new GlobalVariable* and update everything that used OldGV 3946 // (a declaration or tentative definition) with the new GlobalVariable* 3947 // (which will be a definition). 3948 // 3949 // This happens if there is a prototype for a global (e.g. 3950 // "extern int x[];") and then a definition of a different type (e.g. 3951 // "int x[10];"). This also happens when an initializer has a different type 3952 // from the type of the global (this happens with unions). 3953 if (!GV || GV->getType()->getElementType() != InitType || 3954 GV->getType()->getAddressSpace() != 3955 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 3956 3957 // Move the old entry aside so that we'll create a new one. 3958 Entry->setName(StringRef()); 3959 3960 // Make a new global with the correct type, this is now guaranteed to work. 3961 GV = cast<llvm::GlobalVariable>( 3962 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)) 3963 ->stripPointerCasts()); 3964 3965 // Replace all uses of the old global with the new global 3966 llvm::Constant *NewPtrForOldDecl = 3967 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 3968 Entry->replaceAllUsesWith(NewPtrForOldDecl); 3969 3970 // Erase the old global, since it is no longer used. 3971 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 3972 } 3973 3974 MaybeHandleStaticInExternC(D, GV); 3975 3976 if (D->hasAttr<AnnotateAttr>()) 3977 AddGlobalAnnotations(D, GV); 3978 3979 // Set the llvm linkage type as appropriate. 3980 llvm::GlobalValue::LinkageTypes Linkage = 3981 getLLVMLinkageVarDefinition(D, GV->isConstant()); 3982 3983 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 3984 // the device. [...]" 3985 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 3986 // __device__, declares a variable that: [...] 3987 // Is accessible from all the threads within the grid and from the host 3988 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 3989 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 3990 if (GV && LangOpts.CUDA) { 3991 if (LangOpts.CUDAIsDevice) { 3992 if (Linkage != llvm::GlobalValue::InternalLinkage && 3993 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>())) 3994 GV->setExternallyInitialized(true); 3995 } else { 3996 // Host-side shadows of external declarations of device-side 3997 // global variables become internal definitions. These have to 3998 // be internal in order to prevent name conflicts with global 3999 // host variables with the same name in a different TUs. 4000 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() || 4001 D->hasAttr<HIPPinnedShadowAttr>()) { 4002 Linkage = llvm::GlobalValue::InternalLinkage; 4003 4004 // Shadow variables and their properties must be registered 4005 // with CUDA runtime. 4006 unsigned Flags = 0; 4007 if (!D->hasDefinition()) 4008 Flags |= CGCUDARuntime::ExternDeviceVar; 4009 if (D->hasAttr<CUDAConstantAttr>()) 4010 Flags |= CGCUDARuntime::ConstantDeviceVar; 4011 // Extern global variables will be registered in the TU where they are 4012 // defined. 4013 if (!D->hasExternalStorage()) 4014 getCUDARuntime().registerDeviceVar(D, *GV, Flags); 4015 } else if (D->hasAttr<CUDASharedAttr>()) 4016 // __shared__ variables are odd. Shadows do get created, but 4017 // they are not registered with the CUDA runtime, so they 4018 // can't really be used to access their device-side 4019 // counterparts. It's not clear yet whether it's nvcc's bug or 4020 // a feature, but we've got to do the same for compatibility. 4021 Linkage = llvm::GlobalValue::InternalLinkage; 4022 } 4023 } 4024 4025 if (!IsHIPPinnedShadowVar) 4026 GV->setInitializer(Init); 4027 if (emitter) emitter->finalize(GV); 4028 4029 // If it is safe to mark the global 'constant', do so now. 4030 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 4031 isTypeConstant(D->getType(), true)); 4032 4033 // If it is in a read-only section, mark it 'constant'. 4034 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 4035 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 4036 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 4037 GV->setConstant(true); 4038 } 4039 4040 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 4041 4042 // On Darwin, if the normal linkage of a C++ thread_local variable is 4043 // LinkOnce or Weak, we keep the normal linkage to prevent multiple 4044 // copies within a linkage unit; otherwise, the backing variable has 4045 // internal linkage and all accesses should just be calls to the 4046 // Itanium-specified entry point, which has the normal linkage of the 4047 // variable. This is to preserve the ability to change the implementation 4048 // behind the scenes. 4049 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic && 4050 Context.getTargetInfo().getTriple().isOSDarwin() && 4051 !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) && 4052 !llvm::GlobalVariable::isWeakLinkage(Linkage)) 4053 Linkage = llvm::GlobalValue::InternalLinkage; 4054 4055 GV->setLinkage(Linkage); 4056 if (D->hasAttr<DLLImportAttr>()) 4057 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 4058 else if (D->hasAttr<DLLExportAttr>()) 4059 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 4060 else 4061 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 4062 4063 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 4064 // common vars aren't constant even if declared const. 4065 GV->setConstant(false); 4066 // Tentative definition of global variables may be initialized with 4067 // non-zero null pointers. In this case they should have weak linkage 4068 // since common linkage must have zero initializer and must not have 4069 // explicit section therefore cannot have non-zero initial value. 4070 if (!GV->getInitializer()->isNullValue()) 4071 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 4072 } 4073 4074 setNonAliasAttributes(D, GV); 4075 4076 if (D->getTLSKind() && !GV->isThreadLocal()) { 4077 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 4078 CXXThreadLocals.push_back(D); 4079 setTLSMode(GV, *D); 4080 } 4081 4082 maybeSetTrivialComdat(*D, *GV); 4083 4084 // Emit the initializer function if necessary. 4085 if (NeedsGlobalCtor || NeedsGlobalDtor) 4086 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 4087 4088 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 4089 4090 // Emit global variable debug information. 4091 if (CGDebugInfo *DI = getModuleDebugInfo()) 4092 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 4093 DI->EmitGlobalVariable(GV, D); 4094 } 4095 4096 static bool isVarDeclStrongDefinition(const ASTContext &Context, 4097 CodeGenModule &CGM, const VarDecl *D, 4098 bool NoCommon) { 4099 // Don't give variables common linkage if -fno-common was specified unless it 4100 // was overridden by a NoCommon attribute. 4101 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 4102 return true; 4103 4104 // C11 6.9.2/2: 4105 // A declaration of an identifier for an object that has file scope without 4106 // an initializer, and without a storage-class specifier or with the 4107 // storage-class specifier static, constitutes a tentative definition. 4108 if (D->getInit() || D->hasExternalStorage()) 4109 return true; 4110 4111 // A variable cannot be both common and exist in a section. 4112 if (D->hasAttr<SectionAttr>()) 4113 return true; 4114 4115 // A variable cannot be both common and exist in a section. 4116 // We don't try to determine which is the right section in the front-end. 4117 // If no specialized section name is applicable, it will resort to default. 4118 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 4119 D->hasAttr<PragmaClangDataSectionAttr>() || 4120 D->hasAttr<PragmaClangRelroSectionAttr>() || 4121 D->hasAttr<PragmaClangRodataSectionAttr>()) 4122 return true; 4123 4124 // Thread local vars aren't considered common linkage. 4125 if (D->getTLSKind()) 4126 return true; 4127 4128 // Tentative definitions marked with WeakImportAttr are true definitions. 4129 if (D->hasAttr<WeakImportAttr>()) 4130 return true; 4131 4132 // A variable cannot be both common and exist in a comdat. 4133 if (shouldBeInCOMDAT(CGM, *D)) 4134 return true; 4135 4136 // Declarations with a required alignment do not have common linkage in MSVC 4137 // mode. 4138 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 4139 if (D->hasAttr<AlignedAttr>()) 4140 return true; 4141 QualType VarType = D->getType(); 4142 if (Context.isAlignmentRequired(VarType)) 4143 return true; 4144 4145 if (const auto *RT = VarType->getAs<RecordType>()) { 4146 const RecordDecl *RD = RT->getDecl(); 4147 for (const FieldDecl *FD : RD->fields()) { 4148 if (FD->isBitField()) 4149 continue; 4150 if (FD->hasAttr<AlignedAttr>()) 4151 return true; 4152 if (Context.isAlignmentRequired(FD->getType())) 4153 return true; 4154 } 4155 } 4156 } 4157 4158 // Microsoft's link.exe doesn't support alignments greater than 32 bytes for 4159 // common symbols, so symbols with greater alignment requirements cannot be 4160 // common. 4161 // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two 4162 // alignments for common symbols via the aligncomm directive, so this 4163 // restriction only applies to MSVC environments. 4164 if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() && 4165 Context.getTypeAlignIfKnown(D->getType()) > 4166 Context.toBits(CharUnits::fromQuantity(32))) 4167 return true; 4168 4169 return false; 4170 } 4171 4172 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 4173 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 4174 if (Linkage == GVA_Internal) 4175 return llvm::Function::InternalLinkage; 4176 4177 if (D->hasAttr<WeakAttr>()) { 4178 if (IsConstantVariable) 4179 return llvm::GlobalVariable::WeakODRLinkage; 4180 else 4181 return llvm::GlobalVariable::WeakAnyLinkage; 4182 } 4183 4184 if (const auto *FD = D->getAsFunction()) 4185 if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally) 4186 return llvm::GlobalVariable::LinkOnceAnyLinkage; 4187 4188 // We are guaranteed to have a strong definition somewhere else, 4189 // so we can use available_externally linkage. 4190 if (Linkage == GVA_AvailableExternally) 4191 return llvm::GlobalValue::AvailableExternallyLinkage; 4192 4193 // Note that Apple's kernel linker doesn't support symbol 4194 // coalescing, so we need to avoid linkonce and weak linkages there. 4195 // Normally, this means we just map to internal, but for explicit 4196 // instantiations we'll map to external. 4197 4198 // In C++, the compiler has to emit a definition in every translation unit 4199 // that references the function. We should use linkonce_odr because 4200 // a) if all references in this translation unit are optimized away, we 4201 // don't need to codegen it. b) if the function persists, it needs to be 4202 // merged with other definitions. c) C++ has the ODR, so we know the 4203 // definition is dependable. 4204 if (Linkage == GVA_DiscardableODR) 4205 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 4206 : llvm::Function::InternalLinkage; 4207 4208 // An explicit instantiation of a template has weak linkage, since 4209 // explicit instantiations can occur in multiple translation units 4210 // and must all be equivalent. However, we are not allowed to 4211 // throw away these explicit instantiations. 4212 // 4213 // We don't currently support CUDA device code spread out across multiple TUs, 4214 // so say that CUDA templates are either external (for kernels) or internal. 4215 // This lets llvm perform aggressive inter-procedural optimizations. 4216 if (Linkage == GVA_StrongODR) { 4217 if (Context.getLangOpts().AppleKext) 4218 return llvm::Function::ExternalLinkage; 4219 if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice) 4220 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 4221 : llvm::Function::InternalLinkage; 4222 return llvm::Function::WeakODRLinkage; 4223 } 4224 4225 // C++ doesn't have tentative definitions and thus cannot have common 4226 // linkage. 4227 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 4228 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 4229 CodeGenOpts.NoCommon)) 4230 return llvm::GlobalVariable::CommonLinkage; 4231 4232 // selectany symbols are externally visible, so use weak instead of 4233 // linkonce. MSVC optimizes away references to const selectany globals, so 4234 // all definitions should be the same and ODR linkage should be used. 4235 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 4236 if (D->hasAttr<SelectAnyAttr>()) 4237 return llvm::GlobalVariable::WeakODRLinkage; 4238 4239 // Otherwise, we have strong external linkage. 4240 assert(Linkage == GVA_StrongExternal); 4241 return llvm::GlobalVariable::ExternalLinkage; 4242 } 4243 4244 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 4245 const VarDecl *VD, bool IsConstant) { 4246 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 4247 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 4248 } 4249 4250 /// Replace the uses of a function that was declared with a non-proto type. 4251 /// We want to silently drop extra arguments from call sites 4252 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 4253 llvm::Function *newFn) { 4254 // Fast path. 4255 if (old->use_empty()) return; 4256 4257 llvm::Type *newRetTy = newFn->getReturnType(); 4258 SmallVector<llvm::Value*, 4> newArgs; 4259 SmallVector<llvm::OperandBundleDef, 1> newBundles; 4260 4261 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 4262 ui != ue; ) { 4263 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 4264 llvm::User *user = use->getUser(); 4265 4266 // Recognize and replace uses of bitcasts. Most calls to 4267 // unprototyped functions will use bitcasts. 4268 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 4269 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 4270 replaceUsesOfNonProtoConstant(bitcast, newFn); 4271 continue; 4272 } 4273 4274 // Recognize calls to the function. 4275 llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user); 4276 if (!callSite) continue; 4277 if (!callSite->isCallee(&*use)) 4278 continue; 4279 4280 // If the return types don't match exactly, then we can't 4281 // transform this call unless it's dead. 4282 if (callSite->getType() != newRetTy && !callSite->use_empty()) 4283 continue; 4284 4285 // Get the call site's attribute list. 4286 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 4287 llvm::AttributeList oldAttrs = callSite->getAttributes(); 4288 4289 // If the function was passed too few arguments, don't transform. 4290 unsigned newNumArgs = newFn->arg_size(); 4291 if (callSite->arg_size() < newNumArgs) 4292 continue; 4293 4294 // If extra arguments were passed, we silently drop them. 4295 // If any of the types mismatch, we don't transform. 4296 unsigned argNo = 0; 4297 bool dontTransform = false; 4298 for (llvm::Argument &A : newFn->args()) { 4299 if (callSite->getArgOperand(argNo)->getType() != A.getType()) { 4300 dontTransform = true; 4301 break; 4302 } 4303 4304 // Add any parameter attributes. 4305 newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo)); 4306 argNo++; 4307 } 4308 if (dontTransform) 4309 continue; 4310 4311 // Okay, we can transform this. Create the new call instruction and copy 4312 // over the required information. 4313 newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo); 4314 4315 // Copy over any operand bundles. 4316 callSite->getOperandBundlesAsDefs(newBundles); 4317 4318 llvm::CallBase *newCall; 4319 if (dyn_cast<llvm::CallInst>(callSite)) { 4320 newCall = 4321 llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite); 4322 } else { 4323 auto *oldInvoke = cast<llvm::InvokeInst>(callSite); 4324 newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(), 4325 oldInvoke->getUnwindDest(), newArgs, 4326 newBundles, "", callSite); 4327 } 4328 newArgs.clear(); // for the next iteration 4329 4330 if (!newCall->getType()->isVoidTy()) 4331 newCall->takeName(callSite); 4332 newCall->setAttributes(llvm::AttributeList::get( 4333 newFn->getContext(), oldAttrs.getFnAttributes(), 4334 oldAttrs.getRetAttributes(), newArgAttrs)); 4335 newCall->setCallingConv(callSite->getCallingConv()); 4336 4337 // Finally, remove the old call, replacing any uses with the new one. 4338 if (!callSite->use_empty()) 4339 callSite->replaceAllUsesWith(newCall); 4340 4341 // Copy debug location attached to CI. 4342 if (callSite->getDebugLoc()) 4343 newCall->setDebugLoc(callSite->getDebugLoc()); 4344 4345 callSite->eraseFromParent(); 4346 } 4347 } 4348 4349 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 4350 /// implement a function with no prototype, e.g. "int foo() {}". If there are 4351 /// existing call uses of the old function in the module, this adjusts them to 4352 /// call the new function directly. 4353 /// 4354 /// This is not just a cleanup: the always_inline pass requires direct calls to 4355 /// functions to be able to inline them. If there is a bitcast in the way, it 4356 /// won't inline them. Instcombine normally deletes these calls, but it isn't 4357 /// run at -O0. 4358 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 4359 llvm::Function *NewFn) { 4360 // If we're redefining a global as a function, don't transform it. 4361 if (!isa<llvm::Function>(Old)) return; 4362 4363 replaceUsesOfNonProtoConstant(Old, NewFn); 4364 } 4365 4366 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 4367 auto DK = VD->isThisDeclarationADefinition(); 4368 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 4369 return; 4370 4371 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 4372 // If we have a definition, this might be a deferred decl. If the 4373 // instantiation is explicit, make sure we emit it at the end. 4374 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 4375 GetAddrOfGlobalVar(VD); 4376 4377 EmitTopLevelDecl(VD); 4378 } 4379 4380 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 4381 llvm::GlobalValue *GV) { 4382 // Check if this must be emitted as declare variant. 4383 if (LangOpts.OpenMP && OpenMPRuntime && 4384 OpenMPRuntime->emitDeclareVariant(GD, /*IsForDefinition=*/true)) 4385 return; 4386 4387 const auto *D = cast<FunctionDecl>(GD.getDecl()); 4388 4389 // Compute the function info and LLVM type. 4390 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4391 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4392 4393 // Get or create the prototype for the function. 4394 if (!GV || (GV->getType()->getElementType() != Ty)) 4395 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 4396 /*DontDefer=*/true, 4397 ForDefinition)); 4398 4399 // Already emitted. 4400 if (!GV->isDeclaration()) 4401 return; 4402 4403 // We need to set linkage and visibility on the function before 4404 // generating code for it because various parts of IR generation 4405 // want to propagate this information down (e.g. to local static 4406 // declarations). 4407 auto *Fn = cast<llvm::Function>(GV); 4408 setFunctionLinkage(GD, Fn); 4409 4410 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 4411 setGVProperties(Fn, GD); 4412 4413 MaybeHandleStaticInExternC(D, Fn); 4414 4415 4416 maybeSetTrivialComdat(*D, *Fn); 4417 4418 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 4419 4420 setNonAliasAttributes(GD, Fn); 4421 SetLLVMFunctionAttributesForDefinition(D, Fn); 4422 4423 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 4424 AddGlobalCtor(Fn, CA->getPriority()); 4425 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 4426 AddGlobalDtor(Fn, DA->getPriority()); 4427 if (D->hasAttr<AnnotateAttr>()) 4428 AddGlobalAnnotations(D, Fn); 4429 } 4430 4431 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 4432 const auto *D = cast<ValueDecl>(GD.getDecl()); 4433 const AliasAttr *AA = D->getAttr<AliasAttr>(); 4434 assert(AA && "Not an alias?"); 4435 4436 StringRef MangledName = getMangledName(GD); 4437 4438 if (AA->getAliasee() == MangledName) { 4439 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 4440 return; 4441 } 4442 4443 // If there is a definition in the module, then it wins over the alias. 4444 // This is dubious, but allow it to be safe. Just ignore the alias. 4445 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4446 if (Entry && !Entry->isDeclaration()) 4447 return; 4448 4449 Aliases.push_back(GD); 4450 4451 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 4452 4453 // Create a reference to the named value. This ensures that it is emitted 4454 // if a deferred decl. 4455 llvm::Constant *Aliasee; 4456 llvm::GlobalValue::LinkageTypes LT; 4457 if (isa<llvm::FunctionType>(DeclTy)) { 4458 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 4459 /*ForVTable=*/false); 4460 LT = getFunctionLinkage(GD); 4461 } else { 4462 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 4463 llvm::PointerType::getUnqual(DeclTy), 4464 /*D=*/nullptr); 4465 LT = getLLVMLinkageVarDefinition(cast<VarDecl>(GD.getDecl()), 4466 D->getType().isConstQualified()); 4467 } 4468 4469 // Create the new alias itself, but don't set a name yet. 4470 auto *GA = 4471 llvm::GlobalAlias::create(DeclTy, 0, LT, "", Aliasee, &getModule()); 4472 4473 if (Entry) { 4474 if (GA->getAliasee() == Entry) { 4475 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 4476 return; 4477 } 4478 4479 assert(Entry->isDeclaration()); 4480 4481 // If there is a declaration in the module, then we had an extern followed 4482 // by the alias, as in: 4483 // extern int test6(); 4484 // ... 4485 // int test6() __attribute__((alias("test7"))); 4486 // 4487 // Remove it and replace uses of it with the alias. 4488 GA->takeName(Entry); 4489 4490 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 4491 Entry->getType())); 4492 Entry->eraseFromParent(); 4493 } else { 4494 GA->setName(MangledName); 4495 } 4496 4497 // Set attributes which are particular to an alias; this is a 4498 // specialization of the attributes which may be set on a global 4499 // variable/function. 4500 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 4501 D->isWeakImported()) { 4502 GA->setLinkage(llvm::Function::WeakAnyLinkage); 4503 } 4504 4505 if (const auto *VD = dyn_cast<VarDecl>(D)) 4506 if (VD->getTLSKind()) 4507 setTLSMode(GA, *VD); 4508 4509 SetCommonAttributes(GD, GA); 4510 } 4511 4512 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 4513 const auto *D = cast<ValueDecl>(GD.getDecl()); 4514 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 4515 assert(IFA && "Not an ifunc?"); 4516 4517 StringRef MangledName = getMangledName(GD); 4518 4519 if (IFA->getResolver() == MangledName) { 4520 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 4521 return; 4522 } 4523 4524 // Report an error if some definition overrides ifunc. 4525 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4526 if (Entry && !Entry->isDeclaration()) { 4527 GlobalDecl OtherGD; 4528 if (lookupRepresentativeDecl(MangledName, OtherGD) && 4529 DiagnosedConflictingDefinitions.insert(GD).second) { 4530 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name) 4531 << MangledName; 4532 Diags.Report(OtherGD.getDecl()->getLocation(), 4533 diag::note_previous_definition); 4534 } 4535 return; 4536 } 4537 4538 Aliases.push_back(GD); 4539 4540 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 4541 llvm::Constant *Resolver = 4542 GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD, 4543 /*ForVTable=*/false); 4544 llvm::GlobalIFunc *GIF = 4545 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 4546 "", Resolver, &getModule()); 4547 if (Entry) { 4548 if (GIF->getResolver() == Entry) { 4549 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 4550 return; 4551 } 4552 assert(Entry->isDeclaration()); 4553 4554 // If there is a declaration in the module, then we had an extern followed 4555 // by the ifunc, as in: 4556 // extern int test(); 4557 // ... 4558 // int test() __attribute__((ifunc("resolver"))); 4559 // 4560 // Remove it and replace uses of it with the ifunc. 4561 GIF->takeName(Entry); 4562 4563 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 4564 Entry->getType())); 4565 Entry->eraseFromParent(); 4566 } else 4567 GIF->setName(MangledName); 4568 4569 SetCommonAttributes(GD, GIF); 4570 } 4571 4572 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 4573 ArrayRef<llvm::Type*> Tys) { 4574 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 4575 Tys); 4576 } 4577 4578 static llvm::StringMapEntry<llvm::GlobalVariable *> & 4579 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 4580 const StringLiteral *Literal, bool TargetIsLSB, 4581 bool &IsUTF16, unsigned &StringLength) { 4582 StringRef String = Literal->getString(); 4583 unsigned NumBytes = String.size(); 4584 4585 // Check for simple case. 4586 if (!Literal->containsNonAsciiOrNull()) { 4587 StringLength = NumBytes; 4588 return *Map.insert(std::make_pair(String, nullptr)).first; 4589 } 4590 4591 // Otherwise, convert the UTF8 literals into a string of shorts. 4592 IsUTF16 = true; 4593 4594 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 4595 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 4596 llvm::UTF16 *ToPtr = &ToBuf[0]; 4597 4598 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 4599 ToPtr + NumBytes, llvm::strictConversion); 4600 4601 // ConvertUTF8toUTF16 returns the length in ToPtr. 4602 StringLength = ToPtr - &ToBuf[0]; 4603 4604 // Add an explicit null. 4605 *ToPtr = 0; 4606 return *Map.insert(std::make_pair( 4607 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 4608 (StringLength + 1) * 2), 4609 nullptr)).first; 4610 } 4611 4612 ConstantAddress 4613 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 4614 unsigned StringLength = 0; 4615 bool isUTF16 = false; 4616 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 4617 GetConstantCFStringEntry(CFConstantStringMap, Literal, 4618 getDataLayout().isLittleEndian(), isUTF16, 4619 StringLength); 4620 4621 if (auto *C = Entry.second) 4622 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 4623 4624 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 4625 llvm::Constant *Zeros[] = { Zero, Zero }; 4626 4627 const ASTContext &Context = getContext(); 4628 const llvm::Triple &Triple = getTriple(); 4629 4630 const auto CFRuntime = getLangOpts().CFRuntime; 4631 const bool IsSwiftABI = 4632 static_cast<unsigned>(CFRuntime) >= 4633 static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift); 4634 const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1; 4635 4636 // If we don't already have it, get __CFConstantStringClassReference. 4637 if (!CFConstantStringClassRef) { 4638 const char *CFConstantStringClassName = "__CFConstantStringClassReference"; 4639 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 4640 Ty = llvm::ArrayType::get(Ty, 0); 4641 4642 switch (CFRuntime) { 4643 default: break; 4644 case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH; 4645 case LangOptions::CoreFoundationABI::Swift5_0: 4646 CFConstantStringClassName = 4647 Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN" 4648 : "$s10Foundation19_NSCFConstantStringCN"; 4649 Ty = IntPtrTy; 4650 break; 4651 case LangOptions::CoreFoundationABI::Swift4_2: 4652 CFConstantStringClassName = 4653 Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN" 4654 : "$S10Foundation19_NSCFConstantStringCN"; 4655 Ty = IntPtrTy; 4656 break; 4657 case LangOptions::CoreFoundationABI::Swift4_1: 4658 CFConstantStringClassName = 4659 Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN" 4660 : "__T010Foundation19_NSCFConstantStringCN"; 4661 Ty = IntPtrTy; 4662 break; 4663 } 4664 4665 llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName); 4666 4667 if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) { 4668 llvm::GlobalValue *GV = nullptr; 4669 4670 if ((GV = dyn_cast<llvm::GlobalValue>(C))) { 4671 IdentifierInfo &II = Context.Idents.get(GV->getName()); 4672 TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl(); 4673 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 4674 4675 const VarDecl *VD = nullptr; 4676 for (const auto &Result : DC->lookup(&II)) 4677 if ((VD = dyn_cast<VarDecl>(Result))) 4678 break; 4679 4680 if (Triple.isOSBinFormatELF()) { 4681 if (!VD) 4682 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 4683 } else { 4684 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 4685 if (!VD || !VD->hasAttr<DLLExportAttr>()) 4686 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 4687 else 4688 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 4689 } 4690 4691 setDSOLocal(GV); 4692 } 4693 } 4694 4695 // Decay array -> ptr 4696 CFConstantStringClassRef = 4697 IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) 4698 : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros); 4699 } 4700 4701 QualType CFTy = Context.getCFConstantStringType(); 4702 4703 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 4704 4705 ConstantInitBuilder Builder(*this); 4706 auto Fields = Builder.beginStruct(STy); 4707 4708 // Class pointer. 4709 Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef)); 4710 4711 // Flags. 4712 if (IsSwiftABI) { 4713 Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01); 4714 Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8); 4715 } else { 4716 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 4717 } 4718 4719 // String pointer. 4720 llvm::Constant *C = nullptr; 4721 if (isUTF16) { 4722 auto Arr = llvm::makeArrayRef( 4723 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 4724 Entry.first().size() / 2); 4725 C = llvm::ConstantDataArray::get(VMContext, Arr); 4726 } else { 4727 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 4728 } 4729 4730 // Note: -fwritable-strings doesn't make the backing store strings of 4731 // CFStrings writable. (See <rdar://problem/10657500>) 4732 auto *GV = 4733 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 4734 llvm::GlobalValue::PrivateLinkage, C, ".str"); 4735 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 4736 // Don't enforce the target's minimum global alignment, since the only use 4737 // of the string is via this class initializer. 4738 CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy) 4739 : Context.getTypeAlignInChars(Context.CharTy); 4740 GV->setAlignment(Align.getAsAlign()); 4741 4742 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 4743 // Without it LLVM can merge the string with a non unnamed_addr one during 4744 // LTO. Doing that changes the section it ends in, which surprises ld64. 4745 if (Triple.isOSBinFormatMachO()) 4746 GV->setSection(isUTF16 ? "__TEXT,__ustring" 4747 : "__TEXT,__cstring,cstring_literals"); 4748 // Make sure the literal ends up in .rodata to allow for safe ICF and for 4749 // the static linker to adjust permissions to read-only later on. 4750 else if (Triple.isOSBinFormatELF()) 4751 GV->setSection(".rodata"); 4752 4753 // String. 4754 llvm::Constant *Str = 4755 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 4756 4757 if (isUTF16) 4758 // Cast the UTF16 string to the correct type. 4759 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 4760 Fields.add(Str); 4761 4762 // String length. 4763 llvm::IntegerType *LengthTy = 4764 llvm::IntegerType::get(getModule().getContext(), 4765 Context.getTargetInfo().getLongWidth()); 4766 if (IsSwiftABI) { 4767 if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 || 4768 CFRuntime == LangOptions::CoreFoundationABI::Swift4_2) 4769 LengthTy = Int32Ty; 4770 else 4771 LengthTy = IntPtrTy; 4772 } 4773 Fields.addInt(LengthTy, StringLength); 4774 4775 // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is 4776 // properly aligned on 32-bit platforms. 4777 CharUnits Alignment = 4778 IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign(); 4779 4780 // The struct. 4781 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 4782 /*isConstant=*/false, 4783 llvm::GlobalVariable::PrivateLinkage); 4784 GV->addAttribute("objc_arc_inert"); 4785 switch (Triple.getObjectFormat()) { 4786 case llvm::Triple::UnknownObjectFormat: 4787 llvm_unreachable("unknown file format"); 4788 case llvm::Triple::XCOFF: 4789 llvm_unreachable("XCOFF is not yet implemented"); 4790 case llvm::Triple::COFF: 4791 case llvm::Triple::ELF: 4792 case llvm::Triple::Wasm: 4793 GV->setSection("cfstring"); 4794 break; 4795 case llvm::Triple::MachO: 4796 GV->setSection("__DATA,__cfstring"); 4797 break; 4798 } 4799 Entry.second = GV; 4800 4801 return ConstantAddress(GV, Alignment); 4802 } 4803 4804 bool CodeGenModule::getExpressionLocationsEnabled() const { 4805 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 4806 } 4807 4808 QualType CodeGenModule::getObjCFastEnumerationStateType() { 4809 if (ObjCFastEnumerationStateType.isNull()) { 4810 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 4811 D->startDefinition(); 4812 4813 QualType FieldTypes[] = { 4814 Context.UnsignedLongTy, 4815 Context.getPointerType(Context.getObjCIdType()), 4816 Context.getPointerType(Context.UnsignedLongTy), 4817 Context.getConstantArrayType(Context.UnsignedLongTy, 4818 llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0) 4819 }; 4820 4821 for (size_t i = 0; i < 4; ++i) { 4822 FieldDecl *Field = FieldDecl::Create(Context, 4823 D, 4824 SourceLocation(), 4825 SourceLocation(), nullptr, 4826 FieldTypes[i], /*TInfo=*/nullptr, 4827 /*BitWidth=*/nullptr, 4828 /*Mutable=*/false, 4829 ICIS_NoInit); 4830 Field->setAccess(AS_public); 4831 D->addDecl(Field); 4832 } 4833 4834 D->completeDefinition(); 4835 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 4836 } 4837 4838 return ObjCFastEnumerationStateType; 4839 } 4840 4841 llvm::Constant * 4842 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 4843 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 4844 4845 // Don't emit it as the address of the string, emit the string data itself 4846 // as an inline array. 4847 if (E->getCharByteWidth() == 1) { 4848 SmallString<64> Str(E->getString()); 4849 4850 // Resize the string to the right size, which is indicated by its type. 4851 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 4852 Str.resize(CAT->getSize().getZExtValue()); 4853 return llvm::ConstantDataArray::getString(VMContext, Str, false); 4854 } 4855 4856 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 4857 llvm::Type *ElemTy = AType->getElementType(); 4858 unsigned NumElements = AType->getNumElements(); 4859 4860 // Wide strings have either 2-byte or 4-byte elements. 4861 if (ElemTy->getPrimitiveSizeInBits() == 16) { 4862 SmallVector<uint16_t, 32> Elements; 4863 Elements.reserve(NumElements); 4864 4865 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 4866 Elements.push_back(E->getCodeUnit(i)); 4867 Elements.resize(NumElements); 4868 return llvm::ConstantDataArray::get(VMContext, Elements); 4869 } 4870 4871 assert(ElemTy->getPrimitiveSizeInBits() == 32); 4872 SmallVector<uint32_t, 32> Elements; 4873 Elements.reserve(NumElements); 4874 4875 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 4876 Elements.push_back(E->getCodeUnit(i)); 4877 Elements.resize(NumElements); 4878 return llvm::ConstantDataArray::get(VMContext, Elements); 4879 } 4880 4881 static llvm::GlobalVariable * 4882 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 4883 CodeGenModule &CGM, StringRef GlobalName, 4884 CharUnits Alignment) { 4885 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace( 4886 CGM.getStringLiteralAddressSpace()); 4887 4888 llvm::Module &M = CGM.getModule(); 4889 // Create a global variable for this string 4890 auto *GV = new llvm::GlobalVariable( 4891 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 4892 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 4893 GV->setAlignment(Alignment.getAsAlign()); 4894 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 4895 if (GV->isWeakForLinker()) { 4896 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 4897 GV->setComdat(M.getOrInsertComdat(GV->getName())); 4898 } 4899 CGM.setDSOLocal(GV); 4900 4901 return GV; 4902 } 4903 4904 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 4905 /// constant array for the given string literal. 4906 ConstantAddress 4907 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 4908 StringRef Name) { 4909 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 4910 4911 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 4912 llvm::GlobalVariable **Entry = nullptr; 4913 if (!LangOpts.WritableStrings) { 4914 Entry = &ConstantStringMap[C]; 4915 if (auto GV = *Entry) { 4916 if (Alignment.getQuantity() > GV->getAlignment()) 4917 GV->setAlignment(Alignment.getAsAlign()); 4918 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 4919 Alignment); 4920 } 4921 } 4922 4923 SmallString<256> MangledNameBuffer; 4924 StringRef GlobalVariableName; 4925 llvm::GlobalValue::LinkageTypes LT; 4926 4927 // Mangle the string literal if that's how the ABI merges duplicate strings. 4928 // Don't do it if they are writable, since we don't want writes in one TU to 4929 // affect strings in another. 4930 if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) && 4931 !LangOpts.WritableStrings) { 4932 llvm::raw_svector_ostream Out(MangledNameBuffer); 4933 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 4934 LT = llvm::GlobalValue::LinkOnceODRLinkage; 4935 GlobalVariableName = MangledNameBuffer; 4936 } else { 4937 LT = llvm::GlobalValue::PrivateLinkage; 4938 GlobalVariableName = Name; 4939 } 4940 4941 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 4942 if (Entry) 4943 *Entry = GV; 4944 4945 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 4946 QualType()); 4947 4948 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 4949 Alignment); 4950 } 4951 4952 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 4953 /// array for the given ObjCEncodeExpr node. 4954 ConstantAddress 4955 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 4956 std::string Str; 4957 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 4958 4959 return GetAddrOfConstantCString(Str); 4960 } 4961 4962 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 4963 /// the literal and a terminating '\0' character. 4964 /// The result has pointer to array type. 4965 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 4966 const std::string &Str, const char *GlobalName) { 4967 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 4968 CharUnits Alignment = 4969 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 4970 4971 llvm::Constant *C = 4972 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 4973 4974 // Don't share any string literals if strings aren't constant. 4975 llvm::GlobalVariable **Entry = nullptr; 4976 if (!LangOpts.WritableStrings) { 4977 Entry = &ConstantStringMap[C]; 4978 if (auto GV = *Entry) { 4979 if (Alignment.getQuantity() > GV->getAlignment()) 4980 GV->setAlignment(Alignment.getAsAlign()); 4981 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 4982 Alignment); 4983 } 4984 } 4985 4986 // Get the default prefix if a name wasn't specified. 4987 if (!GlobalName) 4988 GlobalName = ".str"; 4989 // Create a global variable for this. 4990 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 4991 GlobalName, Alignment); 4992 if (Entry) 4993 *Entry = GV; 4994 4995 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 4996 Alignment); 4997 } 4998 4999 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 5000 const MaterializeTemporaryExpr *E, const Expr *Init) { 5001 assert((E->getStorageDuration() == SD_Static || 5002 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 5003 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 5004 5005 // If we're not materializing a subobject of the temporary, keep the 5006 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 5007 QualType MaterializedType = Init->getType(); 5008 if (Init == E->GetTemporaryExpr()) 5009 MaterializedType = E->getType(); 5010 5011 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 5012 5013 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E]) 5014 return ConstantAddress(Slot, Align); 5015 5016 // FIXME: If an externally-visible declaration extends multiple temporaries, 5017 // we need to give each temporary the same name in every translation unit (and 5018 // we also need to make the temporaries externally-visible). 5019 SmallString<256> Name; 5020 llvm::raw_svector_ostream Out(Name); 5021 getCXXABI().getMangleContext().mangleReferenceTemporary( 5022 VD, E->getManglingNumber(), Out); 5023 5024 APValue *Value = nullptr; 5025 if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) { 5026 // If the initializer of the extending declaration is a constant 5027 // initializer, we should have a cached constant initializer for this 5028 // temporary. Note that this might have a different value from the value 5029 // computed by evaluating the initializer if the surrounding constant 5030 // expression modifies the temporary. 5031 Value = getContext().getMaterializedTemporaryValue(E, false); 5032 } 5033 5034 // Try evaluating it now, it might have a constant initializer. 5035 Expr::EvalResult EvalResult; 5036 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 5037 !EvalResult.hasSideEffects()) 5038 Value = &EvalResult.Val; 5039 5040 LangAS AddrSpace = 5041 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace(); 5042 5043 Optional<ConstantEmitter> emitter; 5044 llvm::Constant *InitialValue = nullptr; 5045 bool Constant = false; 5046 llvm::Type *Type; 5047 if (Value) { 5048 // The temporary has a constant initializer, use it. 5049 emitter.emplace(*this); 5050 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 5051 MaterializedType); 5052 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 5053 Type = InitialValue->getType(); 5054 } else { 5055 // No initializer, the initialization will be provided when we 5056 // initialize the declaration which performed lifetime extension. 5057 Type = getTypes().ConvertTypeForMem(MaterializedType); 5058 } 5059 5060 // Create a global variable for this lifetime-extended temporary. 5061 llvm::GlobalValue::LinkageTypes Linkage = 5062 getLLVMLinkageVarDefinition(VD, Constant); 5063 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 5064 const VarDecl *InitVD; 5065 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 5066 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 5067 // Temporaries defined inside a class get linkonce_odr linkage because the 5068 // class can be defined in multiple translation units. 5069 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 5070 } else { 5071 // There is no need for this temporary to have external linkage if the 5072 // VarDecl has external linkage. 5073 Linkage = llvm::GlobalVariable::InternalLinkage; 5074 } 5075 } 5076 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 5077 auto *GV = new llvm::GlobalVariable( 5078 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 5079 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 5080 if (emitter) emitter->finalize(GV); 5081 setGVProperties(GV, VD); 5082 GV->setAlignment(Align.getAsAlign()); 5083 if (supportsCOMDAT() && GV->isWeakForLinker()) 5084 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 5085 if (VD->getTLSKind()) 5086 setTLSMode(GV, *VD); 5087 llvm::Constant *CV = GV; 5088 if (AddrSpace != LangAS::Default) 5089 CV = getTargetCodeGenInfo().performAddrSpaceCast( 5090 *this, GV, AddrSpace, LangAS::Default, 5091 Type->getPointerTo( 5092 getContext().getTargetAddressSpace(LangAS::Default))); 5093 MaterializedGlobalTemporaryMap[E] = CV; 5094 return ConstantAddress(CV, Align); 5095 } 5096 5097 /// EmitObjCPropertyImplementations - Emit information for synthesized 5098 /// properties for an implementation. 5099 void CodeGenModule::EmitObjCPropertyImplementations(const 5100 ObjCImplementationDecl *D) { 5101 for (const auto *PID : D->property_impls()) { 5102 // Dynamic is just for type-checking. 5103 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 5104 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 5105 5106 // Determine which methods need to be implemented, some may have 5107 // been overridden. Note that ::isPropertyAccessor is not the method 5108 // we want, that just indicates if the decl came from a 5109 // property. What we want to know is if the method is defined in 5110 // this implementation. 5111 if (!D->getInstanceMethod(PD->getGetterName())) 5112 CodeGenFunction(*this).GenerateObjCGetter( 5113 const_cast<ObjCImplementationDecl *>(D), PID); 5114 if (!PD->isReadOnly() && 5115 !D->getInstanceMethod(PD->getSetterName())) 5116 CodeGenFunction(*this).GenerateObjCSetter( 5117 const_cast<ObjCImplementationDecl *>(D), PID); 5118 } 5119 } 5120 } 5121 5122 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 5123 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 5124 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 5125 ivar; ivar = ivar->getNextIvar()) 5126 if (ivar->getType().isDestructedType()) 5127 return true; 5128 5129 return false; 5130 } 5131 5132 static bool AllTrivialInitializers(CodeGenModule &CGM, 5133 ObjCImplementationDecl *D) { 5134 CodeGenFunction CGF(CGM); 5135 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 5136 E = D->init_end(); B != E; ++B) { 5137 CXXCtorInitializer *CtorInitExp = *B; 5138 Expr *Init = CtorInitExp->getInit(); 5139 if (!CGF.isTrivialInitializer(Init)) 5140 return false; 5141 } 5142 return true; 5143 } 5144 5145 /// EmitObjCIvarInitializations - Emit information for ivar initialization 5146 /// for an implementation. 5147 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 5148 // We might need a .cxx_destruct even if we don't have any ivar initializers. 5149 if (needsDestructMethod(D)) { 5150 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 5151 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 5152 ObjCMethodDecl *DTORMethod = 5153 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 5154 cxxSelector, getContext().VoidTy, nullptr, D, 5155 /*isInstance=*/true, /*isVariadic=*/false, 5156 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 5157 /*isDefined=*/false, ObjCMethodDecl::Required); 5158 D->addInstanceMethod(DTORMethod); 5159 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 5160 D->setHasDestructors(true); 5161 } 5162 5163 // If the implementation doesn't have any ivar initializers, we don't need 5164 // a .cxx_construct. 5165 if (D->getNumIvarInitializers() == 0 || 5166 AllTrivialInitializers(*this, D)) 5167 return; 5168 5169 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 5170 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 5171 // The constructor returns 'self'. 5172 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 5173 D->getLocation(), 5174 D->getLocation(), 5175 cxxSelector, 5176 getContext().getObjCIdType(), 5177 nullptr, D, /*isInstance=*/true, 5178 /*isVariadic=*/false, 5179 /*isPropertyAccessor=*/true, 5180 /*isImplicitlyDeclared=*/true, 5181 /*isDefined=*/false, 5182 ObjCMethodDecl::Required); 5183 D->addInstanceMethod(CTORMethod); 5184 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 5185 D->setHasNonZeroConstructors(true); 5186 } 5187 5188 // EmitLinkageSpec - Emit all declarations in a linkage spec. 5189 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 5190 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 5191 LSD->getLanguage() != LinkageSpecDecl::lang_cxx && 5192 LSD->getLanguage() != LinkageSpecDecl::lang_cxx_11 && 5193 LSD->getLanguage() != LinkageSpecDecl::lang_cxx_14) { 5194 ErrorUnsupported(LSD, "linkage spec"); 5195 return; 5196 } 5197 5198 EmitDeclContext(LSD); 5199 } 5200 5201 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 5202 for (auto *I : DC->decls()) { 5203 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 5204 // are themselves considered "top-level", so EmitTopLevelDecl on an 5205 // ObjCImplDecl does not recursively visit them. We need to do that in 5206 // case they're nested inside another construct (LinkageSpecDecl / 5207 // ExportDecl) that does stop them from being considered "top-level". 5208 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 5209 for (auto *M : OID->methods()) 5210 EmitTopLevelDecl(M); 5211 } 5212 5213 EmitTopLevelDecl(I); 5214 } 5215 } 5216 5217 /// EmitTopLevelDecl - Emit code for a single top level declaration. 5218 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 5219 // Ignore dependent declarations. 5220 if (D->isTemplated()) 5221 return; 5222 5223 switch (D->getKind()) { 5224 case Decl::CXXConversion: 5225 case Decl::CXXMethod: 5226 case Decl::Function: 5227 EmitGlobal(cast<FunctionDecl>(D)); 5228 // Always provide some coverage mapping 5229 // even for the functions that aren't emitted. 5230 AddDeferredUnusedCoverageMapping(D); 5231 break; 5232 5233 case Decl::CXXDeductionGuide: 5234 // Function-like, but does not result in code emission. 5235 break; 5236 5237 case Decl::Var: 5238 case Decl::Decomposition: 5239 case Decl::VarTemplateSpecialization: 5240 EmitGlobal(cast<VarDecl>(D)); 5241 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 5242 for (auto *B : DD->bindings()) 5243 if (auto *HD = B->getHoldingVar()) 5244 EmitGlobal(HD); 5245 break; 5246 5247 // Indirect fields from global anonymous structs and unions can be 5248 // ignored; only the actual variable requires IR gen support. 5249 case Decl::IndirectField: 5250 break; 5251 5252 // C++ Decls 5253 case Decl::Namespace: 5254 EmitDeclContext(cast<NamespaceDecl>(D)); 5255 break; 5256 case Decl::ClassTemplateSpecialization: { 5257 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 5258 if (DebugInfo && 5259 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition && 5260 Spec->hasDefinition()) 5261 DebugInfo->completeTemplateDefinition(*Spec); 5262 } LLVM_FALLTHROUGH; 5263 case Decl::CXXRecord: 5264 if (DebugInfo) { 5265 if (auto *ES = D->getASTContext().getExternalSource()) 5266 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 5267 DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D)); 5268 } 5269 // Emit any static data members, they may be definitions. 5270 for (auto *I : cast<CXXRecordDecl>(D)->decls()) 5271 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 5272 EmitTopLevelDecl(I); 5273 break; 5274 // No code generation needed. 5275 case Decl::UsingShadow: 5276 case Decl::ClassTemplate: 5277 case Decl::VarTemplate: 5278 case Decl::Concept: 5279 case Decl::VarTemplatePartialSpecialization: 5280 case Decl::FunctionTemplate: 5281 case Decl::TypeAliasTemplate: 5282 case Decl::Block: 5283 case Decl::Empty: 5284 case Decl::Binding: 5285 break; 5286 case Decl::Using: // using X; [C++] 5287 if (CGDebugInfo *DI = getModuleDebugInfo()) 5288 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 5289 return; 5290 case Decl::NamespaceAlias: 5291 if (CGDebugInfo *DI = getModuleDebugInfo()) 5292 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 5293 return; 5294 case Decl::UsingDirective: // using namespace X; [C++] 5295 if (CGDebugInfo *DI = getModuleDebugInfo()) 5296 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 5297 return; 5298 case Decl::CXXConstructor: 5299 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 5300 break; 5301 case Decl::CXXDestructor: 5302 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 5303 break; 5304 5305 case Decl::StaticAssert: 5306 // Nothing to do. 5307 break; 5308 5309 // Objective-C Decls 5310 5311 // Forward declarations, no (immediate) code generation. 5312 case Decl::ObjCInterface: 5313 case Decl::ObjCCategory: 5314 break; 5315 5316 case Decl::ObjCProtocol: { 5317 auto *Proto = cast<ObjCProtocolDecl>(D); 5318 if (Proto->isThisDeclarationADefinition()) 5319 ObjCRuntime->GenerateProtocol(Proto); 5320 break; 5321 } 5322 5323 case Decl::ObjCCategoryImpl: 5324 // Categories have properties but don't support synthesize so we 5325 // can ignore them here. 5326 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 5327 break; 5328 5329 case Decl::ObjCImplementation: { 5330 auto *OMD = cast<ObjCImplementationDecl>(D); 5331 EmitObjCPropertyImplementations(OMD); 5332 EmitObjCIvarInitializations(OMD); 5333 ObjCRuntime->GenerateClass(OMD); 5334 // Emit global variable debug information. 5335 if (CGDebugInfo *DI = getModuleDebugInfo()) 5336 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 5337 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 5338 OMD->getClassInterface()), OMD->getLocation()); 5339 break; 5340 } 5341 case Decl::ObjCMethod: { 5342 auto *OMD = cast<ObjCMethodDecl>(D); 5343 // If this is not a prototype, emit the body. 5344 if (OMD->getBody()) 5345 CodeGenFunction(*this).GenerateObjCMethod(OMD); 5346 break; 5347 } 5348 case Decl::ObjCCompatibleAlias: 5349 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 5350 break; 5351 5352 case Decl::PragmaComment: { 5353 const auto *PCD = cast<PragmaCommentDecl>(D); 5354 switch (PCD->getCommentKind()) { 5355 case PCK_Unknown: 5356 llvm_unreachable("unexpected pragma comment kind"); 5357 case PCK_Linker: 5358 AppendLinkerOptions(PCD->getArg()); 5359 break; 5360 case PCK_Lib: 5361 AddDependentLib(PCD->getArg()); 5362 break; 5363 case PCK_Compiler: 5364 case PCK_ExeStr: 5365 case PCK_User: 5366 break; // We ignore all of these. 5367 } 5368 break; 5369 } 5370 5371 case Decl::PragmaDetectMismatch: { 5372 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 5373 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 5374 break; 5375 } 5376 5377 case Decl::LinkageSpec: 5378 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 5379 break; 5380 5381 case Decl::FileScopeAsm: { 5382 // File-scope asm is ignored during device-side CUDA compilation. 5383 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 5384 break; 5385 // File-scope asm is ignored during device-side OpenMP compilation. 5386 if (LangOpts.OpenMPIsDevice) 5387 break; 5388 auto *AD = cast<FileScopeAsmDecl>(D); 5389 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 5390 break; 5391 } 5392 5393 case Decl::Import: { 5394 auto *Import = cast<ImportDecl>(D); 5395 5396 // If we've already imported this module, we're done. 5397 if (!ImportedModules.insert(Import->getImportedModule())) 5398 break; 5399 5400 // Emit debug information for direct imports. 5401 if (!Import->getImportedOwningModule()) { 5402 if (CGDebugInfo *DI = getModuleDebugInfo()) 5403 DI->EmitImportDecl(*Import); 5404 } 5405 5406 // Find all of the submodules and emit the module initializers. 5407 llvm::SmallPtrSet<clang::Module *, 16> Visited; 5408 SmallVector<clang::Module *, 16> Stack; 5409 Visited.insert(Import->getImportedModule()); 5410 Stack.push_back(Import->getImportedModule()); 5411 5412 while (!Stack.empty()) { 5413 clang::Module *Mod = Stack.pop_back_val(); 5414 if (!EmittedModuleInitializers.insert(Mod).second) 5415 continue; 5416 5417 for (auto *D : Context.getModuleInitializers(Mod)) 5418 EmitTopLevelDecl(D); 5419 5420 // Visit the submodules of this module. 5421 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 5422 SubEnd = Mod->submodule_end(); 5423 Sub != SubEnd; ++Sub) { 5424 // Skip explicit children; they need to be explicitly imported to emit 5425 // the initializers. 5426 if ((*Sub)->IsExplicit) 5427 continue; 5428 5429 if (Visited.insert(*Sub).second) 5430 Stack.push_back(*Sub); 5431 } 5432 } 5433 break; 5434 } 5435 5436 case Decl::Export: 5437 EmitDeclContext(cast<ExportDecl>(D)); 5438 break; 5439 5440 case Decl::OMPThreadPrivate: 5441 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 5442 break; 5443 5444 case Decl::OMPAllocate: 5445 break; 5446 5447 case Decl::OMPDeclareReduction: 5448 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 5449 break; 5450 5451 case Decl::OMPDeclareMapper: 5452 EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D)); 5453 break; 5454 5455 case Decl::OMPRequires: 5456 EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D)); 5457 break; 5458 5459 default: 5460 // Make sure we handled everything we should, every other kind is a 5461 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 5462 // function. Need to recode Decl::Kind to do that easily. 5463 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 5464 break; 5465 } 5466 } 5467 5468 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 5469 // Do we need to generate coverage mapping? 5470 if (!CodeGenOpts.CoverageMapping) 5471 return; 5472 switch (D->getKind()) { 5473 case Decl::CXXConversion: 5474 case Decl::CXXMethod: 5475 case Decl::Function: 5476 case Decl::ObjCMethod: 5477 case Decl::CXXConstructor: 5478 case Decl::CXXDestructor: { 5479 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 5480 return; 5481 SourceManager &SM = getContext().getSourceManager(); 5482 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc())) 5483 return; 5484 auto I = DeferredEmptyCoverageMappingDecls.find(D); 5485 if (I == DeferredEmptyCoverageMappingDecls.end()) 5486 DeferredEmptyCoverageMappingDecls[D] = true; 5487 break; 5488 } 5489 default: 5490 break; 5491 }; 5492 } 5493 5494 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 5495 // Do we need to generate coverage mapping? 5496 if (!CodeGenOpts.CoverageMapping) 5497 return; 5498 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 5499 if (Fn->isTemplateInstantiation()) 5500 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 5501 } 5502 auto I = DeferredEmptyCoverageMappingDecls.find(D); 5503 if (I == DeferredEmptyCoverageMappingDecls.end()) 5504 DeferredEmptyCoverageMappingDecls[D] = false; 5505 else 5506 I->second = false; 5507 } 5508 5509 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 5510 // We call takeVector() here to avoid use-after-free. 5511 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 5512 // we deserialize function bodies to emit coverage info for them, and that 5513 // deserializes more declarations. How should we handle that case? 5514 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 5515 if (!Entry.second) 5516 continue; 5517 const Decl *D = Entry.first; 5518 switch (D->getKind()) { 5519 case Decl::CXXConversion: 5520 case Decl::CXXMethod: 5521 case Decl::Function: 5522 case Decl::ObjCMethod: { 5523 CodeGenPGO PGO(*this); 5524 GlobalDecl GD(cast<FunctionDecl>(D)); 5525 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5526 getFunctionLinkage(GD)); 5527 break; 5528 } 5529 case Decl::CXXConstructor: { 5530 CodeGenPGO PGO(*this); 5531 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 5532 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5533 getFunctionLinkage(GD)); 5534 break; 5535 } 5536 case Decl::CXXDestructor: { 5537 CodeGenPGO PGO(*this); 5538 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 5539 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5540 getFunctionLinkage(GD)); 5541 break; 5542 } 5543 default: 5544 break; 5545 }; 5546 } 5547 } 5548 5549 /// Turns the given pointer into a constant. 5550 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 5551 const void *Ptr) { 5552 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 5553 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 5554 return llvm::ConstantInt::get(i64, PtrInt); 5555 } 5556 5557 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 5558 llvm::NamedMDNode *&GlobalMetadata, 5559 GlobalDecl D, 5560 llvm::GlobalValue *Addr) { 5561 if (!GlobalMetadata) 5562 GlobalMetadata = 5563 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 5564 5565 // TODO: should we report variant information for ctors/dtors? 5566 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 5567 llvm::ConstantAsMetadata::get(GetPointerConstant( 5568 CGM.getLLVMContext(), D.getDecl()))}; 5569 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 5570 } 5571 5572 /// For each function which is declared within an extern "C" region and marked 5573 /// as 'used', but has internal linkage, create an alias from the unmangled 5574 /// name to the mangled name if possible. People expect to be able to refer 5575 /// to such functions with an unmangled name from inline assembly within the 5576 /// same translation unit. 5577 void CodeGenModule::EmitStaticExternCAliases() { 5578 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases()) 5579 return; 5580 for (auto &I : StaticExternCValues) { 5581 IdentifierInfo *Name = I.first; 5582 llvm::GlobalValue *Val = I.second; 5583 if (Val && !getModule().getNamedValue(Name->getName())) 5584 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 5585 } 5586 } 5587 5588 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 5589 GlobalDecl &Result) const { 5590 auto Res = Manglings.find(MangledName); 5591 if (Res == Manglings.end()) 5592 return false; 5593 Result = Res->getValue(); 5594 return true; 5595 } 5596 5597 /// Emits metadata nodes associating all the global values in the 5598 /// current module with the Decls they came from. This is useful for 5599 /// projects using IR gen as a subroutine. 5600 /// 5601 /// Since there's currently no way to associate an MDNode directly 5602 /// with an llvm::GlobalValue, we create a global named metadata 5603 /// with the name 'clang.global.decl.ptrs'. 5604 void CodeGenModule::EmitDeclMetadata() { 5605 llvm::NamedMDNode *GlobalMetadata = nullptr; 5606 5607 for (auto &I : MangledDeclNames) { 5608 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 5609 // Some mangled names don't necessarily have an associated GlobalValue 5610 // in this module, e.g. if we mangled it for DebugInfo. 5611 if (Addr) 5612 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 5613 } 5614 } 5615 5616 /// Emits metadata nodes for all the local variables in the current 5617 /// function. 5618 void CodeGenFunction::EmitDeclMetadata() { 5619 if (LocalDeclMap.empty()) return; 5620 5621 llvm::LLVMContext &Context = getLLVMContext(); 5622 5623 // Find the unique metadata ID for this name. 5624 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 5625 5626 llvm::NamedMDNode *GlobalMetadata = nullptr; 5627 5628 for (auto &I : LocalDeclMap) { 5629 const Decl *D = I.first; 5630 llvm::Value *Addr = I.second.getPointer(); 5631 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 5632 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 5633 Alloca->setMetadata( 5634 DeclPtrKind, llvm::MDNode::get( 5635 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 5636 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 5637 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 5638 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 5639 } 5640 } 5641 } 5642 5643 void CodeGenModule::EmitVersionIdentMetadata() { 5644 llvm::NamedMDNode *IdentMetadata = 5645 TheModule.getOrInsertNamedMetadata("llvm.ident"); 5646 std::string Version = getClangFullVersion(); 5647 llvm::LLVMContext &Ctx = TheModule.getContext(); 5648 5649 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 5650 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 5651 } 5652 5653 void CodeGenModule::EmitCommandLineMetadata() { 5654 llvm::NamedMDNode *CommandLineMetadata = 5655 TheModule.getOrInsertNamedMetadata("llvm.commandline"); 5656 std::string CommandLine = getCodeGenOpts().RecordCommandLine; 5657 llvm::LLVMContext &Ctx = TheModule.getContext(); 5658 5659 llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)}; 5660 CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode)); 5661 } 5662 5663 void CodeGenModule::EmitTargetMetadata() { 5664 // Warning, new MangledDeclNames may be appended within this loop. 5665 // We rely on MapVector insertions adding new elements to the end 5666 // of the container. 5667 // FIXME: Move this loop into the one target that needs it, and only 5668 // loop over those declarations for which we couldn't emit the target 5669 // metadata when we emitted the declaration. 5670 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 5671 auto Val = *(MangledDeclNames.begin() + I); 5672 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 5673 llvm::GlobalValue *GV = GetGlobalValue(Val.second); 5674 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 5675 } 5676 } 5677 5678 void CodeGenModule::EmitCoverageFile() { 5679 if (getCodeGenOpts().CoverageDataFile.empty() && 5680 getCodeGenOpts().CoverageNotesFile.empty()) 5681 return; 5682 5683 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 5684 if (!CUNode) 5685 return; 5686 5687 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 5688 llvm::LLVMContext &Ctx = TheModule.getContext(); 5689 auto *CoverageDataFile = 5690 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 5691 auto *CoverageNotesFile = 5692 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 5693 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 5694 llvm::MDNode *CU = CUNode->getOperand(i); 5695 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 5696 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 5697 } 5698 } 5699 5700 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) { 5701 // Sema has checked that all uuid strings are of the form 5702 // "12345678-1234-1234-1234-1234567890ab". 5703 assert(Uuid.size() == 36); 5704 for (unsigned i = 0; i < 36; ++i) { 5705 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 5706 else assert(isHexDigit(Uuid[i])); 5707 } 5708 5709 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab". 5710 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 5711 5712 llvm::Constant *Field3[8]; 5713 for (unsigned Idx = 0; Idx < 8; ++Idx) 5714 Field3[Idx] = llvm::ConstantInt::get( 5715 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 5716 5717 llvm::Constant *Fields[4] = { 5718 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 5719 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 5720 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 5721 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 5722 }; 5723 5724 return llvm::ConstantStruct::getAnon(Fields); 5725 } 5726 5727 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 5728 bool ForEH) { 5729 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 5730 // FIXME: should we even be calling this method if RTTI is disabled 5731 // and it's not for EH? 5732 if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice) 5733 return llvm::Constant::getNullValue(Int8PtrTy); 5734 5735 if (ForEH && Ty->isObjCObjectPointerType() && 5736 LangOpts.ObjCRuntime.isGNUFamily()) 5737 return ObjCRuntime->GetEHType(Ty); 5738 5739 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 5740 } 5741 5742 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 5743 // Do not emit threadprivates in simd-only mode. 5744 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 5745 return; 5746 for (auto RefExpr : D->varlists()) { 5747 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 5748 bool PerformInit = 5749 VD->getAnyInitializer() && 5750 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 5751 /*ForRef=*/false); 5752 5753 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 5754 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 5755 VD, Addr, RefExpr->getBeginLoc(), PerformInit)) 5756 CXXGlobalInits.push_back(InitFunction); 5757 } 5758 } 5759 5760 llvm::Metadata * 5761 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map, 5762 StringRef Suffix) { 5763 llvm::Metadata *&InternalId = Map[T.getCanonicalType()]; 5764 if (InternalId) 5765 return InternalId; 5766 5767 if (isExternallyVisible(T->getLinkage())) { 5768 std::string OutName; 5769 llvm::raw_string_ostream Out(OutName); 5770 getCXXABI().getMangleContext().mangleTypeName(T, Out); 5771 Out << Suffix; 5772 5773 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 5774 } else { 5775 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 5776 llvm::ArrayRef<llvm::Metadata *>()); 5777 } 5778 5779 return InternalId; 5780 } 5781 5782 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 5783 return CreateMetadataIdentifierImpl(T, MetadataIdMap, ""); 5784 } 5785 5786 llvm::Metadata * 5787 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) { 5788 return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual"); 5789 } 5790 5791 // Generalize pointer types to a void pointer with the qualifiers of the 5792 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 5793 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 5794 // 'void *'. 5795 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 5796 if (!Ty->isPointerType()) 5797 return Ty; 5798 5799 return Ctx.getPointerType( 5800 QualType(Ctx.VoidTy).withCVRQualifiers( 5801 Ty->getPointeeType().getCVRQualifiers())); 5802 } 5803 5804 // Apply type generalization to a FunctionType's return and argument types 5805 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 5806 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 5807 SmallVector<QualType, 8> GeneralizedParams; 5808 for (auto &Param : FnType->param_types()) 5809 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 5810 5811 return Ctx.getFunctionType( 5812 GeneralizeType(Ctx, FnType->getReturnType()), 5813 GeneralizedParams, FnType->getExtProtoInfo()); 5814 } 5815 5816 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 5817 return Ctx.getFunctionNoProtoType( 5818 GeneralizeType(Ctx, FnType->getReturnType())); 5819 5820 llvm_unreachable("Encountered unknown FunctionType"); 5821 } 5822 5823 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 5824 return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T), 5825 GeneralizedMetadataIdMap, ".generalized"); 5826 } 5827 5828 /// Returns whether this module needs the "all-vtables" type identifier. 5829 bool CodeGenModule::NeedAllVtablesTypeId() const { 5830 // Returns true if at least one of vtable-based CFI checkers is enabled and 5831 // is not in the trapping mode. 5832 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 5833 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 5834 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 5835 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 5836 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 5837 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 5838 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 5839 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 5840 } 5841 5842 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 5843 CharUnits Offset, 5844 const CXXRecordDecl *RD) { 5845 llvm::Metadata *MD = 5846 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 5847 VTable->addTypeMetadata(Offset.getQuantity(), MD); 5848 5849 if (CodeGenOpts.SanitizeCfiCrossDso) 5850 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 5851 VTable->addTypeMetadata(Offset.getQuantity(), 5852 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 5853 5854 if (NeedAllVtablesTypeId()) { 5855 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 5856 VTable->addTypeMetadata(Offset.getQuantity(), MD); 5857 } 5858 } 5859 5860 TargetAttr::ParsedTargetAttr CodeGenModule::filterFunctionTargetAttrs(const TargetAttr *TD) { 5861 assert(TD != nullptr); 5862 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 5863 5864 ParsedAttr.Features.erase( 5865 llvm::remove_if(ParsedAttr.Features, 5866 [&](const std::string &Feat) { 5867 return !Target.isValidFeatureName( 5868 StringRef{Feat}.substr(1)); 5869 }), 5870 ParsedAttr.Features.end()); 5871 return ParsedAttr; 5872 } 5873 5874 5875 // Fills in the supplied string map with the set of target features for the 5876 // passed in function. 5877 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap, 5878 GlobalDecl GD) { 5879 StringRef TargetCPU = Target.getTargetOpts().CPU; 5880 const FunctionDecl *FD = GD.getDecl()->getAsFunction(); 5881 if (const auto *TD = FD->getAttr<TargetAttr>()) { 5882 TargetAttr::ParsedTargetAttr ParsedAttr = filterFunctionTargetAttrs(TD); 5883 5884 // Make a copy of the features as passed on the command line into the 5885 // beginning of the additional features from the function to override. 5886 ParsedAttr.Features.insert(ParsedAttr.Features.begin(), 5887 Target.getTargetOpts().FeaturesAsWritten.begin(), 5888 Target.getTargetOpts().FeaturesAsWritten.end()); 5889 5890 if (ParsedAttr.Architecture != "" && 5891 Target.isValidCPUName(ParsedAttr.Architecture)) 5892 TargetCPU = ParsedAttr.Architecture; 5893 5894 // Now populate the feature map, first with the TargetCPU which is either 5895 // the default or a new one from the target attribute string. Then we'll use 5896 // the passed in features (FeaturesAsWritten) along with the new ones from 5897 // the attribute. 5898 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 5899 ParsedAttr.Features); 5900 } else if (const auto *SD = FD->getAttr<CPUSpecificAttr>()) { 5901 llvm::SmallVector<StringRef, 32> FeaturesTmp; 5902 Target.getCPUSpecificCPUDispatchFeatures( 5903 SD->getCPUName(GD.getMultiVersionIndex())->getName(), FeaturesTmp); 5904 std::vector<std::string> Features(FeaturesTmp.begin(), FeaturesTmp.end()); 5905 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, Features); 5906 } else { 5907 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 5908 Target.getTargetOpts().Features); 5909 } 5910 } 5911 5912 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 5913 if (!SanStats) 5914 SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule()); 5915 5916 return *SanStats; 5917 } 5918 llvm::Value * 5919 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 5920 CodeGenFunction &CGF) { 5921 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 5922 auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 5923 auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 5924 return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy, 5925 "__translate_sampler_initializer"), 5926 {C}); 5927 } 5928