xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 30994d24489d9e7ecd6d02d25d181f5da10a182c)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGBlocks.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGCall.h"
19 #include "CGDebugInfo.h"
20 #include "CGObjCRuntime.h"
21 #include "CGOpenCLRuntime.h"
22 #include "CGOpenMPRuntime.h"
23 #include "CGOpenMPRuntimeNVPTX.h"
24 #include "CodeGenFunction.h"
25 #include "CodeGenPGO.h"
26 #include "ConstantEmitter.h"
27 #include "CoverageMappingGen.h"
28 #include "TargetInfo.h"
29 #include "clang/AST/ASTContext.h"
30 #include "clang/AST/CharUnits.h"
31 #include "clang/AST/DeclCXX.h"
32 #include "clang/AST/DeclObjC.h"
33 #include "clang/AST/DeclTemplate.h"
34 #include "clang/AST/Mangle.h"
35 #include "clang/AST/RecordLayout.h"
36 #include "clang/AST/RecursiveASTVisitor.h"
37 #include "clang/Basic/Builtins.h"
38 #include "clang/Basic/CharInfo.h"
39 #include "clang/Basic/Diagnostic.h"
40 #include "clang/Basic/Module.h"
41 #include "clang/Basic/SourceManager.h"
42 #include "clang/Basic/TargetInfo.h"
43 #include "clang/Basic/Version.h"
44 #include "clang/CodeGen/ConstantInitBuilder.h"
45 #include "clang/Frontend/CodeGenOptions.h"
46 #include "clang/Sema/SemaDiagnostic.h"
47 #include "llvm/ADT/Triple.h"
48 #include "llvm/Analysis/TargetLibraryInfo.h"
49 #include "llvm/IR/CallSite.h"
50 #include "llvm/IR/CallingConv.h"
51 #include "llvm/IR/DataLayout.h"
52 #include "llvm/IR/Intrinsics.h"
53 #include "llvm/IR/LLVMContext.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/ProfileData/InstrProfReader.h"
56 #include "llvm/Support/ConvertUTF.h"
57 #include "llvm/Support/ErrorHandling.h"
58 #include "llvm/Support/MD5.h"
59 
60 using namespace clang;
61 using namespace CodeGen;
62 
63 static llvm::cl::opt<bool> LimitedCoverage(
64     "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden,
65     llvm::cl::desc("Emit limited coverage mapping information (experimental)"),
66     llvm::cl::init(false));
67 
68 static const char AnnotationSection[] = "llvm.metadata";
69 
70 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
71   switch (CGM.getTarget().getCXXABI().getKind()) {
72   case TargetCXXABI::GenericAArch64:
73   case TargetCXXABI::GenericARM:
74   case TargetCXXABI::iOS:
75   case TargetCXXABI::iOS64:
76   case TargetCXXABI::WatchOS:
77   case TargetCXXABI::GenericMIPS:
78   case TargetCXXABI::GenericItanium:
79   case TargetCXXABI::WebAssembly:
80     return CreateItaniumCXXABI(CGM);
81   case TargetCXXABI::Microsoft:
82     return CreateMicrosoftCXXABI(CGM);
83   }
84 
85   llvm_unreachable("invalid C++ ABI kind");
86 }
87 
88 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
89                              const PreprocessorOptions &PPO,
90                              const CodeGenOptions &CGO, llvm::Module &M,
91                              DiagnosticsEngine &diags,
92                              CoverageSourceInfo *CoverageInfo)
93     : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
94       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
95       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
96       VMContext(M.getContext()), Types(*this), VTables(*this),
97       SanitizerMD(new SanitizerMetadata(*this)) {
98 
99   // Initialize the type cache.
100   llvm::LLVMContext &LLVMContext = M.getContext();
101   VoidTy = llvm::Type::getVoidTy(LLVMContext);
102   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
103   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
104   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
105   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
106   HalfTy = llvm::Type::getHalfTy(LLVMContext);
107   FloatTy = llvm::Type::getFloatTy(LLVMContext);
108   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
109   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
110   PointerAlignInBytes =
111     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
112   SizeSizeInBytes =
113     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
114   IntAlignInBytes =
115     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
116   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
117   IntPtrTy = llvm::IntegerType::get(LLVMContext,
118     C.getTargetInfo().getMaxPointerWidth());
119   Int8PtrTy = Int8Ty->getPointerTo(0);
120   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
121   AllocaInt8PtrTy = Int8Ty->getPointerTo(
122       M.getDataLayout().getAllocaAddrSpace());
123   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
124 
125   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
126   BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC();
127 
128   if (LangOpts.ObjC1)
129     createObjCRuntime();
130   if (LangOpts.OpenCL)
131     createOpenCLRuntime();
132   if (LangOpts.OpenMP)
133     createOpenMPRuntime();
134   if (LangOpts.CUDA)
135     createCUDARuntime();
136 
137   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
138   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
139       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
140     TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
141                                getCXXABI().getMangleContext()));
142 
143   // If debug info or coverage generation is enabled, create the CGDebugInfo
144   // object.
145   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
146       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
147     DebugInfo.reset(new CGDebugInfo(*this));
148 
149   Block.GlobalUniqueCount = 0;
150 
151   if (C.getLangOpts().ObjC1)
152     ObjCData.reset(new ObjCEntrypoints());
153 
154   if (CodeGenOpts.hasProfileClangUse()) {
155     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
156         CodeGenOpts.ProfileInstrumentUsePath);
157     if (auto E = ReaderOrErr.takeError()) {
158       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
159                                               "Could not read profile %0: %1");
160       llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
161         getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
162                                   << EI.message();
163       });
164     } else
165       PGOReader = std::move(ReaderOrErr.get());
166   }
167 
168   // If coverage mapping generation is enabled, create the
169   // CoverageMappingModuleGen object.
170   if (CodeGenOpts.CoverageMapping)
171     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
172 }
173 
174 CodeGenModule::~CodeGenModule() {}
175 
176 void CodeGenModule::createObjCRuntime() {
177   // This is just isGNUFamily(), but we want to force implementors of
178   // new ABIs to decide how best to do this.
179   switch (LangOpts.ObjCRuntime.getKind()) {
180   case ObjCRuntime::GNUstep:
181   case ObjCRuntime::GCC:
182   case ObjCRuntime::ObjFW:
183     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
184     return;
185 
186   case ObjCRuntime::FragileMacOSX:
187   case ObjCRuntime::MacOSX:
188   case ObjCRuntime::iOS:
189   case ObjCRuntime::WatchOS:
190     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
191     return;
192   }
193   llvm_unreachable("bad runtime kind");
194 }
195 
196 void CodeGenModule::createOpenCLRuntime() {
197   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
198 }
199 
200 void CodeGenModule::createOpenMPRuntime() {
201   // Select a specialized code generation class based on the target, if any.
202   // If it does not exist use the default implementation.
203   switch (getTriple().getArch()) {
204   case llvm::Triple::nvptx:
205   case llvm::Triple::nvptx64:
206     assert(getLangOpts().OpenMPIsDevice &&
207            "OpenMP NVPTX is only prepared to deal with device code.");
208     OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this));
209     break;
210   default:
211     if (LangOpts.OpenMPSimd)
212       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
213     else
214       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
215     break;
216   }
217 }
218 
219 void CodeGenModule::createCUDARuntime() {
220   CUDARuntime.reset(CreateNVCUDARuntime(*this));
221 }
222 
223 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
224   Replacements[Name] = C;
225 }
226 
227 void CodeGenModule::applyReplacements() {
228   for (auto &I : Replacements) {
229     StringRef MangledName = I.first();
230     llvm::Constant *Replacement = I.second;
231     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
232     if (!Entry)
233       continue;
234     auto *OldF = cast<llvm::Function>(Entry);
235     auto *NewF = dyn_cast<llvm::Function>(Replacement);
236     if (!NewF) {
237       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
238         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
239       } else {
240         auto *CE = cast<llvm::ConstantExpr>(Replacement);
241         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
242                CE->getOpcode() == llvm::Instruction::GetElementPtr);
243         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
244       }
245     }
246 
247     // Replace old with new, but keep the old order.
248     OldF->replaceAllUsesWith(Replacement);
249     if (NewF) {
250       NewF->removeFromParent();
251       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
252                                                        NewF);
253     }
254     OldF->eraseFromParent();
255   }
256 }
257 
258 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
259   GlobalValReplacements.push_back(std::make_pair(GV, C));
260 }
261 
262 void CodeGenModule::applyGlobalValReplacements() {
263   for (auto &I : GlobalValReplacements) {
264     llvm::GlobalValue *GV = I.first;
265     llvm::Constant *C = I.second;
266 
267     GV->replaceAllUsesWith(C);
268     GV->eraseFromParent();
269   }
270 }
271 
272 // This is only used in aliases that we created and we know they have a
273 // linear structure.
274 static const llvm::GlobalObject *getAliasedGlobal(
275     const llvm::GlobalIndirectSymbol &GIS) {
276   llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited;
277   const llvm::Constant *C = &GIS;
278   for (;;) {
279     C = C->stripPointerCasts();
280     if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
281       return GO;
282     // stripPointerCasts will not walk over weak aliases.
283     auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C);
284     if (!GIS2)
285       return nullptr;
286     if (!Visited.insert(GIS2).second)
287       return nullptr;
288     C = GIS2->getIndirectSymbol();
289   }
290 }
291 
292 void CodeGenModule::checkAliases() {
293   // Check if the constructed aliases are well formed. It is really unfortunate
294   // that we have to do this in CodeGen, but we only construct mangled names
295   // and aliases during codegen.
296   bool Error = false;
297   DiagnosticsEngine &Diags = getDiags();
298   for (const GlobalDecl &GD : Aliases) {
299     const auto *D = cast<ValueDecl>(GD.getDecl());
300     SourceLocation Location;
301     bool IsIFunc = D->hasAttr<IFuncAttr>();
302     if (const Attr *A = D->getDefiningAttr())
303       Location = A->getLocation();
304     else
305       llvm_unreachable("Not an alias or ifunc?");
306     StringRef MangledName = getMangledName(GD);
307     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
308     auto *Alias  = cast<llvm::GlobalIndirectSymbol>(Entry);
309     const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
310     if (!GV) {
311       Error = true;
312       Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
313     } else if (GV->isDeclaration()) {
314       Error = true;
315       Diags.Report(Location, diag::err_alias_to_undefined)
316           << IsIFunc << IsIFunc;
317     } else if (IsIFunc) {
318       // Check resolver function type.
319       llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(
320           GV->getType()->getPointerElementType());
321       assert(FTy);
322       if (!FTy->getReturnType()->isPointerTy())
323         Diags.Report(Location, diag::err_ifunc_resolver_return);
324       if (FTy->getNumParams())
325         Diags.Report(Location, diag::err_ifunc_resolver_params);
326     }
327 
328     llvm::Constant *Aliasee = Alias->getIndirectSymbol();
329     llvm::GlobalValue *AliaseeGV;
330     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
331       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
332     else
333       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
334 
335     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
336       StringRef AliasSection = SA->getName();
337       if (AliasSection != AliaseeGV->getSection())
338         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
339             << AliasSection << IsIFunc << IsIFunc;
340     }
341 
342     // We have to handle alias to weak aliases in here. LLVM itself disallows
343     // this since the object semantics would not match the IL one. For
344     // compatibility with gcc we implement it by just pointing the alias
345     // to its aliasee's aliasee. We also warn, since the user is probably
346     // expecting the link to be weak.
347     if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) {
348       if (GA->isInterposable()) {
349         Diags.Report(Location, diag::warn_alias_to_weak_alias)
350             << GV->getName() << GA->getName() << IsIFunc;
351         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
352             GA->getIndirectSymbol(), Alias->getType());
353         Alias->setIndirectSymbol(Aliasee);
354       }
355     }
356   }
357   if (!Error)
358     return;
359 
360   for (const GlobalDecl &GD : Aliases) {
361     StringRef MangledName = getMangledName(GD);
362     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
363     auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry);
364     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
365     Alias->eraseFromParent();
366   }
367 }
368 
369 void CodeGenModule::clear() {
370   DeferredDeclsToEmit.clear();
371   if (OpenMPRuntime)
372     OpenMPRuntime->clear();
373 }
374 
375 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
376                                        StringRef MainFile) {
377   if (!hasDiagnostics())
378     return;
379   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
380     if (MainFile.empty())
381       MainFile = "<stdin>";
382     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
383   } else {
384     if (Mismatched > 0)
385       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
386 
387     if (Missing > 0)
388       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
389   }
390 }
391 
392 void CodeGenModule::Release() {
393   EmitDeferred();
394   EmitVTablesOpportunistically();
395   applyGlobalValReplacements();
396   applyReplacements();
397   checkAliases();
398   emitMultiVersionFunctions();
399   EmitCXXGlobalInitFunc();
400   EmitCXXGlobalDtorFunc();
401   EmitCXXThreadLocalInitFunc();
402   if (ObjCRuntime)
403     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
404       AddGlobalCtor(ObjCInitFunction);
405   if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice &&
406       CUDARuntime) {
407     if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction())
408       AddGlobalCtor(CudaCtorFunction);
409     if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction())
410       AddGlobalDtor(CudaDtorFunction);
411   }
412   if (OpenMPRuntime)
413     if (llvm::Function *OpenMPRegistrationFunction =
414             OpenMPRuntime->emitRegistrationFunction()) {
415       auto ComdatKey = OpenMPRegistrationFunction->hasComdat() ?
416         OpenMPRegistrationFunction : nullptr;
417       AddGlobalCtor(OpenMPRegistrationFunction, 0, ComdatKey);
418     }
419   if (PGOReader) {
420     getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext));
421     if (PGOStats.hasDiagnostics())
422       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
423   }
424   EmitCtorList(GlobalCtors, "llvm.global_ctors");
425   EmitCtorList(GlobalDtors, "llvm.global_dtors");
426   EmitGlobalAnnotations();
427   EmitStaticExternCAliases();
428   EmitDeferredUnusedCoverageMappings();
429   if (CoverageMapping)
430     CoverageMapping->emit();
431   if (CodeGenOpts.SanitizeCfiCrossDso) {
432     CodeGenFunction(*this).EmitCfiCheckFail();
433     CodeGenFunction(*this).EmitCfiCheckStub();
434   }
435   emitAtAvailableLinkGuard();
436   emitLLVMUsed();
437   if (SanStats)
438     SanStats->finish();
439 
440   if (CodeGenOpts.Autolink &&
441       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
442     EmitModuleLinkOptions();
443   }
444 
445   // Record mregparm value now so it is visible through rest of codegen.
446   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
447     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
448                               CodeGenOpts.NumRegisterParameters);
449 
450   if (CodeGenOpts.DwarfVersion) {
451     // We actually want the latest version when there are conflicts.
452     // We can change from Warning to Latest if such mode is supported.
453     getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
454                               CodeGenOpts.DwarfVersion);
455   }
456   if (CodeGenOpts.EmitCodeView) {
457     // Indicate that we want CodeView in the metadata.
458     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
459   }
460   if (CodeGenOpts.ControlFlowGuard) {
461     // We want function ID tables for Control Flow Guard.
462     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
463   }
464   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
465     // We don't support LTO with 2 with different StrictVTablePointers
466     // FIXME: we could support it by stripping all the information introduced
467     // by StrictVTablePointers.
468 
469     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
470 
471     llvm::Metadata *Ops[2] = {
472               llvm::MDString::get(VMContext, "StrictVTablePointers"),
473               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
474                   llvm::Type::getInt32Ty(VMContext), 1))};
475 
476     getModule().addModuleFlag(llvm::Module::Require,
477                               "StrictVTablePointersRequirement",
478                               llvm::MDNode::get(VMContext, Ops));
479   }
480   if (DebugInfo)
481     // We support a single version in the linked module. The LLVM
482     // parser will drop debug info with a different version number
483     // (and warn about it, too).
484     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
485                               llvm::DEBUG_METADATA_VERSION);
486 
487   // We need to record the widths of enums and wchar_t, so that we can generate
488   // the correct build attributes in the ARM backend. wchar_size is also used by
489   // TargetLibraryInfo.
490   uint64_t WCharWidth =
491       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
492   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
493 
494   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
495   if (   Arch == llvm::Triple::arm
496       || Arch == llvm::Triple::armeb
497       || Arch == llvm::Triple::thumb
498       || Arch == llvm::Triple::thumbeb) {
499     // The minimum width of an enum in bytes
500     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
501     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
502   }
503 
504   if (CodeGenOpts.SanitizeCfiCrossDso) {
505     // Indicate that we want cross-DSO control flow integrity checks.
506     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
507   }
508 
509   if (CodeGenOpts.CFProtectionReturn &&
510       Target.checkCFProtectionReturnSupported(getDiags())) {
511     // Indicate that we want to instrument return control flow protection.
512     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return",
513                               1);
514   }
515 
516   if (CodeGenOpts.CFProtectionBranch &&
517       Target.checkCFProtectionBranchSupported(getDiags())) {
518     // Indicate that we want to instrument branch control flow protection.
519     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch",
520                               1);
521   }
522 
523   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
524     // Indicate whether __nvvm_reflect should be configured to flush denormal
525     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
526     // property.)
527     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
528                               LangOpts.CUDADeviceFlushDenormalsToZero ? 1 : 0);
529   }
530 
531   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
532   if (LangOpts.OpenCL) {
533     EmitOpenCLMetadata();
534     // Emit SPIR version.
535     if (getTriple().getArch() == llvm::Triple::spir ||
536         getTriple().getArch() == llvm::Triple::spir64) {
537       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
538       // opencl.spir.version named metadata.
539       llvm::Metadata *SPIRVerElts[] = {
540           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
541               Int32Ty, LangOpts.OpenCLVersion / 100)),
542           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
543               Int32Ty, (LangOpts.OpenCLVersion / 100 > 1) ? 0 : 2))};
544       llvm::NamedMDNode *SPIRVerMD =
545           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
546       llvm::LLVMContext &Ctx = TheModule.getContext();
547       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
548     }
549   }
550 
551   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
552     assert(PLevel < 3 && "Invalid PIC Level");
553     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
554     if (Context.getLangOpts().PIE)
555       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
556   }
557 
558   SimplifyPersonality();
559 
560   if (getCodeGenOpts().EmitDeclMetadata)
561     EmitDeclMetadata();
562 
563   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
564     EmitCoverageFile();
565 
566   if (DebugInfo)
567     DebugInfo->finalize();
568 
569   EmitVersionIdentMetadata();
570 
571   EmitTargetMetadata();
572 }
573 
574 void CodeGenModule::EmitOpenCLMetadata() {
575   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
576   // opencl.ocl.version named metadata node.
577   llvm::Metadata *OCLVerElts[] = {
578       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
579           Int32Ty, LangOpts.OpenCLVersion / 100)),
580       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
581           Int32Ty, (LangOpts.OpenCLVersion % 100) / 10))};
582   llvm::NamedMDNode *OCLVerMD =
583       TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
584   llvm::LLVMContext &Ctx = TheModule.getContext();
585   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
586 }
587 
588 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
589   // Make sure that this type is translated.
590   Types.UpdateCompletedType(TD);
591 }
592 
593 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
594   // Make sure that this type is translated.
595   Types.RefreshTypeCacheForClass(RD);
596 }
597 
598 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
599   if (!TBAA)
600     return nullptr;
601   return TBAA->getTypeInfo(QTy);
602 }
603 
604 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
605   // Pointee values may have incomplete types, but they shall never be
606   // dereferenced.
607   if (AccessType->isIncompleteType())
608     return TBAAAccessInfo::getIncompleteInfo();
609 
610   uint64_t Size = Context.getTypeSizeInChars(AccessType).getQuantity();
611   return TBAAAccessInfo(getTBAATypeInfo(AccessType), Size);
612 }
613 
614 TBAAAccessInfo
615 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
616   if (!TBAA)
617     return TBAAAccessInfo();
618   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
619 }
620 
621 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
622   if (!TBAA)
623     return nullptr;
624   return TBAA->getTBAAStructInfo(QTy);
625 }
626 
627 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
628   if (!TBAA)
629     return nullptr;
630   return TBAA->getBaseTypeInfo(QTy);
631 }
632 
633 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
634   if (!TBAA)
635     return nullptr;
636   return TBAA->getAccessTagInfo(Info);
637 }
638 
639 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
640                                                    TBAAAccessInfo TargetInfo) {
641   if (!TBAA)
642     return TBAAAccessInfo();
643   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
644 }
645 
646 TBAAAccessInfo
647 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
648                                                    TBAAAccessInfo InfoB) {
649   if (!TBAA)
650     return TBAAAccessInfo();
651   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
652 }
653 
654 TBAAAccessInfo
655 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
656                                               TBAAAccessInfo SrcInfo) {
657   if (!TBAA)
658     return TBAAAccessInfo();
659   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
660 }
661 
662 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
663                                                 TBAAAccessInfo TBAAInfo) {
664   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
665     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
666 }
667 
668 void CodeGenModule::DecorateInstructionWithInvariantGroup(
669     llvm::Instruction *I, const CXXRecordDecl *RD) {
670   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
671                  llvm::MDNode::get(getLLVMContext(), {}));
672 }
673 
674 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
675   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
676   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
677 }
678 
679 /// ErrorUnsupported - Print out an error that codegen doesn't support the
680 /// specified stmt yet.
681 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
682   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
683                                                "cannot compile this %0 yet");
684   std::string Msg = Type;
685   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
686     << Msg << S->getSourceRange();
687 }
688 
689 /// ErrorUnsupported - Print out an error that codegen doesn't support the
690 /// specified decl yet.
691 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
692   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
693                                                "cannot compile this %0 yet");
694   std::string Msg = Type;
695   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
696 }
697 
698 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
699   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
700 }
701 
702 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
703                                         const NamedDecl *D) const {
704   if (GV->hasDLLImportStorageClass())
705     return;
706   // Internal definitions always have default visibility.
707   if (GV->hasLocalLinkage()) {
708     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
709     return;
710   }
711 
712   // Set visibility for definitions.
713   LinkageInfo LV = D->getLinkageAndVisibility();
714   if (LV.isVisibilityExplicit() || !GV->isDeclarationForLinker())
715     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
716 }
717 
718 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
719                                  llvm::GlobalValue *GV, const NamedDecl *D) {
720   const llvm::Triple &TT = CGM.getTriple();
721   // Only handle ELF for now.
722   if (!TT.isOSBinFormatELF())
723     return false;
724 
725   // If this is not an executable, don't assume anything is local.
726   const auto &CGOpts = CGM.getCodeGenOpts();
727   llvm::Reloc::Model RM = CGOpts.RelocationModel;
728   const auto &LOpts = CGM.getLangOpts();
729   if (RM != llvm::Reloc::Static && !LOpts.PIE)
730     return false;
731 
732   // A definition cannot be preempted from an executable.
733   if (!GV->isDeclarationForLinker())
734     return true;
735 
736   // Most PIC code sequences that assume that a symbol is local cannot produce a
737   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
738   // depended, it seems worth it to handle it here.
739   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
740     return false;
741 
742   // PPC has no copy relocations and cannot use a plt entry as a symbol address.
743   llvm::Triple::ArchType Arch = TT.getArch();
744   if (Arch == llvm::Triple::ppc || Arch == llvm::Triple::ppc64 ||
745       Arch == llvm::Triple::ppc64le)
746     return false;
747 
748   // If we can use copy relocations we can assume it is local.
749   if (auto *VD = dyn_cast<VarDecl>(D))
750     if (VD->getTLSKind() == VarDecl::TLS_None &&
751         (RM == llvm::Reloc::Static || CGOpts.PIECopyRelocations))
752       return true;
753 
754   // If we can use a plt entry as the symbol address we can assume it
755   // is local.
756   // FIXME: This should work for PIE, but the gold linker doesn't support it.
757   if (isa<FunctionDecl>(D) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
758     return true;
759 
760   // Otherwise don't assue it is local.
761   return false;
762 }
763 
764 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV,
765                                 const NamedDecl *D) const {
766   if (shouldAssumeDSOLocal(*this, GV, D))
767     GV->setDSOLocal(true);
768 }
769 
770 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
771                                     const NamedDecl *D) const {
772   setGlobalVisibility(GV, D);
773   setDSOLocal(GV, D);
774 }
775 
776 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
777   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
778       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
779       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
780       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
781       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
782 }
783 
784 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
785     CodeGenOptions::TLSModel M) {
786   switch (M) {
787   case CodeGenOptions::GeneralDynamicTLSModel:
788     return llvm::GlobalVariable::GeneralDynamicTLSModel;
789   case CodeGenOptions::LocalDynamicTLSModel:
790     return llvm::GlobalVariable::LocalDynamicTLSModel;
791   case CodeGenOptions::InitialExecTLSModel:
792     return llvm::GlobalVariable::InitialExecTLSModel;
793   case CodeGenOptions::LocalExecTLSModel:
794     return llvm::GlobalVariable::LocalExecTLSModel;
795   }
796   llvm_unreachable("Invalid TLS model!");
797 }
798 
799 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
800   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
801 
802   llvm::GlobalValue::ThreadLocalMode TLM;
803   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
804 
805   // Override the TLS model if it is explicitly specified.
806   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
807     TLM = GetLLVMTLSModel(Attr->getModel());
808   }
809 
810   GV->setThreadLocalMode(TLM);
811 }
812 
813 static void AppendTargetMangling(const CodeGenModule &CGM,
814                                  const TargetAttr *Attr, raw_ostream &Out) {
815   if (Attr->isDefaultVersion())
816     return;
817 
818   Out << '.';
819   const auto &Target = CGM.getTarget();
820   TargetAttr::ParsedTargetAttr Info =
821       Attr->parse([&Target](StringRef LHS, StringRef RHS) {
822                     // Multiversioning doesn't allow "no-${feature}", so we can
823                     // only have "+" prefixes here.
824                     assert(LHS.startswith("+") && RHS.startswith("+") &&
825                            "Features should always have a prefix.");
826                     return Target.multiVersionSortPriority(LHS.substr(1)) >
827                            Target.multiVersionSortPriority(RHS.substr(1));
828                   });
829 
830   bool IsFirst = true;
831 
832   if (!Info.Architecture.empty()) {
833     IsFirst = false;
834     Out << "arch_" << Info.Architecture;
835   }
836 
837   for (StringRef Feat : Info.Features) {
838     if (!IsFirst)
839       Out << '_';
840     IsFirst = false;
841     Out << Feat.substr(1);
842   }
843 }
844 
845 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD,
846                                       const NamedDecl *ND,
847                                       bool OmitTargetMangling = false) {
848   SmallString<256> Buffer;
849   llvm::raw_svector_ostream Out(Buffer);
850   MangleContext &MC = CGM.getCXXABI().getMangleContext();
851   if (MC.shouldMangleDeclName(ND)) {
852     llvm::raw_svector_ostream Out(Buffer);
853     if (const auto *D = dyn_cast<CXXConstructorDecl>(ND))
854       MC.mangleCXXCtor(D, GD.getCtorType(), Out);
855     else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND))
856       MC.mangleCXXDtor(D, GD.getDtorType(), Out);
857     else
858       MC.mangleName(ND, Out);
859   } else {
860     IdentifierInfo *II = ND->getIdentifier();
861     assert(II && "Attempt to mangle unnamed decl.");
862     const auto *FD = dyn_cast<FunctionDecl>(ND);
863 
864     if (FD &&
865         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
866       llvm::raw_svector_ostream Out(Buffer);
867       Out << "__regcall3__" << II->getName();
868     } else {
869       Out << II->getName();
870     }
871   }
872 
873   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
874     if (FD->isMultiVersion() && !OmitTargetMangling)
875       AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
876   return Out.str();
877 }
878 
879 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
880                                             const FunctionDecl *FD) {
881   if (!FD->isMultiVersion())
882     return;
883 
884   // Get the name of what this would be without the 'target' attribute.  This
885   // allows us to lookup the version that was emitted when this wasn't a
886   // multiversion function.
887   std::string NonTargetName =
888       getMangledNameImpl(*this, GD, FD, /*OmitTargetMangling=*/true);
889   GlobalDecl OtherGD;
890   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
891     assert(OtherGD.getCanonicalDecl()
892                .getDecl()
893                ->getAsFunction()
894                ->isMultiVersion() &&
895            "Other GD should now be a multiversioned function");
896     // OtherFD is the version of this function that was mangled BEFORE
897     // becoming a MultiVersion function.  It potentially needs to be updated.
898     const FunctionDecl *OtherFD =
899         OtherGD.getCanonicalDecl().getDecl()->getAsFunction();
900     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
901     // This is so that if the initial version was already the 'default'
902     // version, we don't try to update it.
903     if (OtherName != NonTargetName) {
904       // Remove instead of erase, since others may have stored the StringRef
905       // to this.
906       const auto ExistingRecord = Manglings.find(NonTargetName);
907       if (ExistingRecord != std::end(Manglings))
908         Manglings.remove(&(*ExistingRecord));
909       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
910       MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first();
911       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
912         Entry->setName(OtherName);
913     }
914   }
915 }
916 
917 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
918   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
919 
920   // Some ABIs don't have constructor variants.  Make sure that base and
921   // complete constructors get mangled the same.
922   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
923     if (!getTarget().getCXXABI().hasConstructorVariants()) {
924       CXXCtorType OrigCtorType = GD.getCtorType();
925       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
926       if (OrigCtorType == Ctor_Base)
927         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
928     }
929   }
930 
931   auto FoundName = MangledDeclNames.find(CanonicalGD);
932   if (FoundName != MangledDeclNames.end())
933     return FoundName->second;
934 
935 
936   // Keep the first result in the case of a mangling collision.
937   const auto *ND = cast<NamedDecl>(GD.getDecl());
938   auto Result =
939       Manglings.insert(std::make_pair(getMangledNameImpl(*this, GD, ND), GD));
940   return MangledDeclNames[CanonicalGD] = Result.first->first();
941 }
942 
943 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
944                                              const BlockDecl *BD) {
945   MangleContext &MangleCtx = getCXXABI().getMangleContext();
946   const Decl *D = GD.getDecl();
947 
948   SmallString<256> Buffer;
949   llvm::raw_svector_ostream Out(Buffer);
950   if (!D)
951     MangleCtx.mangleGlobalBlock(BD,
952       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
953   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
954     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
955   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
956     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
957   else
958     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
959 
960   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
961   return Result.first->first();
962 }
963 
964 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
965   return getModule().getNamedValue(Name);
966 }
967 
968 /// AddGlobalCtor - Add a function to the list that will be called before
969 /// main() runs.
970 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
971                                   llvm::Constant *AssociatedData) {
972   // FIXME: Type coercion of void()* types.
973   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
974 }
975 
976 /// AddGlobalDtor - Add a function to the list that will be called
977 /// when the module is unloaded.
978 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) {
979   // FIXME: Type coercion of void()* types.
980   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
981 }
982 
983 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
984   if (Fns.empty()) return;
985 
986   // Ctor function type is void()*.
987   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
988   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
989 
990   // Get the type of a ctor entry, { i32, void ()*, i8* }.
991   llvm::StructType *CtorStructTy = llvm::StructType::get(
992       Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy);
993 
994   // Construct the constructor and destructor arrays.
995   ConstantInitBuilder builder(*this);
996   auto ctors = builder.beginArray(CtorStructTy);
997   for (const auto &I : Fns) {
998     auto ctor = ctors.beginStruct(CtorStructTy);
999     ctor.addInt(Int32Ty, I.Priority);
1000     ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
1001     if (I.AssociatedData)
1002       ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
1003     else
1004       ctor.addNullPointer(VoidPtrTy);
1005     ctor.finishAndAddTo(ctors);
1006   }
1007 
1008   auto list =
1009     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
1010                                 /*constant*/ false,
1011                                 llvm::GlobalValue::AppendingLinkage);
1012 
1013   // The LTO linker doesn't seem to like it when we set an alignment
1014   // on appending variables.  Take it off as a workaround.
1015   list->setAlignment(0);
1016 
1017   Fns.clear();
1018 }
1019 
1020 llvm::GlobalValue::LinkageTypes
1021 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
1022   const auto *D = cast<FunctionDecl>(GD.getDecl());
1023 
1024   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
1025 
1026   if (isa<CXXDestructorDecl>(D) &&
1027       getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
1028                                          GD.getDtorType())) {
1029     // Destructor variants in the Microsoft C++ ABI are always internal or
1030     // linkonce_odr thunks emitted on an as-needed basis.
1031     return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage
1032                                    : llvm::GlobalValue::LinkOnceODRLinkage;
1033   }
1034 
1035   if (isa<CXXConstructorDecl>(D) &&
1036       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
1037       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1038     // Our approach to inheriting constructors is fundamentally different from
1039     // that used by the MS ABI, so keep our inheriting constructor thunks
1040     // internal rather than trying to pick an unambiguous mangling for them.
1041     return llvm::GlobalValue::InternalLinkage;
1042   }
1043 
1044   return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false);
1045 }
1046 
1047 void CodeGenModule::setFunctionDLLStorageClass(GlobalDecl GD, llvm::Function *F) {
1048   const auto *FD = cast<FunctionDecl>(GD.getDecl());
1049 
1050   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) {
1051     if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) {
1052       // Don't dllexport/import destructor thunks.
1053       F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
1054       return;
1055     }
1056   }
1057 
1058   if (FD->hasAttr<DLLImportAttr>())
1059     F->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
1060   else if (FD->hasAttr<DLLExportAttr>())
1061     F->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
1062   else
1063     F->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
1064 }
1065 
1066 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1067   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1068   if (!MDS) return nullptr;
1069 
1070   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1071 }
1072 
1073 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D,
1074                                                     llvm::Function *F) {
1075   setNonAliasAttributes(D, F);
1076 }
1077 
1078 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
1079                                               const CGFunctionInfo &Info,
1080                                               llvm::Function *F) {
1081   unsigned CallingConv;
1082   llvm::AttributeList PAL;
1083   ConstructAttributeList(F->getName(), Info, D, PAL, CallingConv, false);
1084   F->setAttributes(PAL);
1085   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
1086 }
1087 
1088 /// Determines whether the language options require us to model
1089 /// unwind exceptions.  We treat -fexceptions as mandating this
1090 /// except under the fragile ObjC ABI with only ObjC exceptions
1091 /// enabled.  This means, for example, that C with -fexceptions
1092 /// enables this.
1093 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
1094   // If exceptions are completely disabled, obviously this is false.
1095   if (!LangOpts.Exceptions) return false;
1096 
1097   // If C++ exceptions are enabled, this is true.
1098   if (LangOpts.CXXExceptions) return true;
1099 
1100   // If ObjC exceptions are enabled, this depends on the ABI.
1101   if (LangOpts.ObjCExceptions) {
1102     return LangOpts.ObjCRuntime.hasUnwindExceptions();
1103   }
1104 
1105   return true;
1106 }
1107 
1108 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
1109                                                            llvm::Function *F) {
1110   llvm::AttrBuilder B;
1111 
1112   if (CodeGenOpts.UnwindTables)
1113     B.addAttribute(llvm::Attribute::UWTable);
1114 
1115   if (!hasUnwindExceptions(LangOpts))
1116     B.addAttribute(llvm::Attribute::NoUnwind);
1117 
1118   if (LangOpts.getStackProtector() == LangOptions::SSPOn)
1119     B.addAttribute(llvm::Attribute::StackProtect);
1120   else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
1121     B.addAttribute(llvm::Attribute::StackProtectStrong);
1122   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
1123     B.addAttribute(llvm::Attribute::StackProtectReq);
1124 
1125   if (!D) {
1126     // If we don't have a declaration to control inlining, the function isn't
1127     // explicitly marked as alwaysinline for semantic reasons, and inlining is
1128     // disabled, mark the function as noinline.
1129     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1130         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
1131       B.addAttribute(llvm::Attribute::NoInline);
1132 
1133     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1134     return;
1135   }
1136 
1137   // Track whether we need to add the optnone LLVM attribute,
1138   // starting with the default for this optimization level.
1139   bool ShouldAddOptNone =
1140       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
1141   // We can't add optnone in the following cases, it won't pass the verifier.
1142   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
1143   ShouldAddOptNone &= !F->hasFnAttribute(llvm::Attribute::AlwaysInline);
1144   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
1145 
1146   if (ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) {
1147     B.addAttribute(llvm::Attribute::OptimizeNone);
1148 
1149     // OptimizeNone implies noinline; we should not be inlining such functions.
1150     B.addAttribute(llvm::Attribute::NoInline);
1151     assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1152            "OptimizeNone and AlwaysInline on same function!");
1153 
1154     // We still need to handle naked functions even though optnone subsumes
1155     // much of their semantics.
1156     if (D->hasAttr<NakedAttr>())
1157       B.addAttribute(llvm::Attribute::Naked);
1158 
1159     // OptimizeNone wins over OptimizeForSize and MinSize.
1160     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
1161     F->removeFnAttr(llvm::Attribute::MinSize);
1162   } else if (D->hasAttr<NakedAttr>()) {
1163     // Naked implies noinline: we should not be inlining such functions.
1164     B.addAttribute(llvm::Attribute::Naked);
1165     B.addAttribute(llvm::Attribute::NoInline);
1166   } else if (D->hasAttr<NoDuplicateAttr>()) {
1167     B.addAttribute(llvm::Attribute::NoDuplicate);
1168   } else if (D->hasAttr<NoInlineAttr>()) {
1169     B.addAttribute(llvm::Attribute::NoInline);
1170   } else if (D->hasAttr<AlwaysInlineAttr>() &&
1171              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
1172     // (noinline wins over always_inline, and we can't specify both in IR)
1173     B.addAttribute(llvm::Attribute::AlwaysInline);
1174   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
1175     // If we're not inlining, then force everything that isn't always_inline to
1176     // carry an explicit noinline attribute.
1177     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
1178       B.addAttribute(llvm::Attribute::NoInline);
1179   } else {
1180     // Otherwise, propagate the inline hint attribute and potentially use its
1181     // absence to mark things as noinline.
1182     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1183       if (any_of(FD->redecls(), [&](const FunctionDecl *Redecl) {
1184             return Redecl->isInlineSpecified();
1185           })) {
1186         B.addAttribute(llvm::Attribute::InlineHint);
1187       } else if (CodeGenOpts.getInlining() ==
1188                      CodeGenOptions::OnlyHintInlining &&
1189                  !FD->isInlined() &&
1190                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1191         B.addAttribute(llvm::Attribute::NoInline);
1192       }
1193     }
1194   }
1195 
1196   // Add other optimization related attributes if we are optimizing this
1197   // function.
1198   if (!D->hasAttr<OptimizeNoneAttr>()) {
1199     if (D->hasAttr<ColdAttr>()) {
1200       if (!ShouldAddOptNone)
1201         B.addAttribute(llvm::Attribute::OptimizeForSize);
1202       B.addAttribute(llvm::Attribute::Cold);
1203     }
1204 
1205     if (D->hasAttr<MinSizeAttr>())
1206       B.addAttribute(llvm::Attribute::MinSize);
1207   }
1208 
1209   F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1210 
1211   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
1212   if (alignment)
1213     F->setAlignment(alignment);
1214 
1215   // Some C++ ABIs require 2-byte alignment for member functions, in order to
1216   // reserve a bit for differentiating between virtual and non-virtual member
1217   // functions. If the current target's C++ ABI requires this and this is a
1218   // member function, set its alignment accordingly.
1219   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
1220     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
1221       F->setAlignment(2);
1222   }
1223 
1224   // In the cross-dso CFI mode, we want !type attributes on definitions only.
1225   if (CodeGenOpts.SanitizeCfiCrossDso)
1226     if (auto *FD = dyn_cast<FunctionDecl>(D))
1227       CreateFunctionTypeMetadata(FD, F);
1228 }
1229 
1230 void CodeGenModule::SetCommonAttributes(const Decl *D,
1231                                         llvm::GlobalValue *GV) {
1232   if (const auto *ND = dyn_cast_or_null<NamedDecl>(D))
1233     setGVProperties(GV, ND);
1234   else
1235     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1236 
1237   if (D && D->hasAttr<UsedAttr>())
1238     addUsedGlobal(GV);
1239 }
1240 
1241 void CodeGenModule::setAliasAttributes(const Decl *D,
1242                                        llvm::GlobalValue *GV) {
1243   SetCommonAttributes(D, GV);
1244 
1245   // Process the dllexport attribute based on whether the original definition
1246   // (not necessarily the aliasee) was exported.
1247   if (D->hasAttr<DLLExportAttr>())
1248     GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
1249 }
1250 
1251 void CodeGenModule::setNonAliasAttributes(const Decl *D,
1252                                           llvm::GlobalObject *GO) {
1253   SetCommonAttributes(D, GO);
1254 
1255   if (D) {
1256     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
1257       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
1258         GV->addAttribute("bss-section", SA->getName());
1259       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
1260         GV->addAttribute("data-section", SA->getName());
1261       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
1262         GV->addAttribute("rodata-section", SA->getName());
1263     }
1264 
1265     if (auto *F = dyn_cast<llvm::Function>(GO)) {
1266       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
1267         if (!D->getAttr<SectionAttr>())
1268           F->addFnAttr("implicit-section-name", SA->getName());
1269     }
1270 
1271     if (const SectionAttr *SA = D->getAttr<SectionAttr>())
1272       GO->setSection(SA->getName());
1273   }
1274 
1275   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
1276 }
1277 
1278 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
1279                                                   llvm::Function *F,
1280                                                   const CGFunctionInfo &FI) {
1281   SetLLVMFunctionAttributes(D, FI, F);
1282   SetLLVMFunctionAttributesForDefinition(D, F);
1283 
1284   F->setLinkage(llvm::Function::InternalLinkage);
1285 
1286   setNonAliasAttributes(D, F);
1287 }
1288 
1289 static void setLinkageForGV(llvm::GlobalValue *GV,
1290                             const NamedDecl *ND) {
1291   // Set linkage and visibility in case we never see a definition.
1292   LinkageInfo LV = ND->getLinkageAndVisibility();
1293   if (!isExternallyVisible(LV.getLinkage())) {
1294     // Don't set internal linkage on declarations.
1295   } else {
1296     if (ND->hasAttr<DLLImportAttr>()) {
1297       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
1298       GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
1299     } else if (ND->hasAttr<DLLExportAttr>()) {
1300       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
1301     } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) {
1302       // "extern_weak" is overloaded in LLVM; we probably should have
1303       // separate linkage types for this.
1304       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1305     }
1306   }
1307 }
1308 
1309 void CodeGenModule::CreateFunctionTypeMetadata(const FunctionDecl *FD,
1310                                                llvm::Function *F) {
1311   // Only if we are checking indirect calls.
1312   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
1313     return;
1314 
1315   // Non-static class methods are handled via vtable pointer checks elsewhere.
1316   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
1317     return;
1318 
1319   // Additionally, if building with cross-DSO support...
1320   if (CodeGenOpts.SanitizeCfiCrossDso) {
1321     // Skip available_externally functions. They won't be codegen'ed in the
1322     // current module anyway.
1323     if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally)
1324       return;
1325   }
1326 
1327   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
1328   F->addTypeMetadata(0, MD);
1329   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
1330 
1331   // Emit a hash-based bit set entry for cross-DSO calls.
1332   if (CodeGenOpts.SanitizeCfiCrossDso)
1333     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
1334       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
1335 }
1336 
1337 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
1338                                           bool IsIncompleteFunction,
1339                                           bool IsThunk) {
1340 
1341   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
1342     // If this is an intrinsic function, set the function's attributes
1343     // to the intrinsic's attributes.
1344     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
1345     return;
1346   }
1347 
1348   const auto *FD = cast<FunctionDecl>(GD.getDecl());
1349 
1350   if (!IsIncompleteFunction) {
1351     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
1352     // Setup target-specific attributes.
1353     if (F->isDeclaration())
1354       getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
1355   }
1356 
1357   // Add the Returned attribute for "this", except for iOS 5 and earlier
1358   // where substantial code, including the libstdc++ dylib, was compiled with
1359   // GCC and does not actually return "this".
1360   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
1361       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
1362     assert(!F->arg_empty() &&
1363            F->arg_begin()->getType()
1364              ->canLosslesslyBitCastTo(F->getReturnType()) &&
1365            "unexpected this return");
1366     F->addAttribute(1, llvm::Attribute::Returned);
1367   }
1368 
1369   // Only a few attributes are set on declarations; these may later be
1370   // overridden by a definition.
1371 
1372   setLinkageForGV(F, FD);
1373   setGVProperties(F, FD);
1374 
1375   if (FD->getAttr<PragmaClangTextSectionAttr>()) {
1376     F->addFnAttr("implicit-section-name");
1377   }
1378 
1379   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
1380     F->setSection(SA->getName());
1381 
1382   if (FD->isReplaceableGlobalAllocationFunction()) {
1383     // A replaceable global allocation function does not act like a builtin by
1384     // default, only if it is invoked by a new-expression or delete-expression.
1385     F->addAttribute(llvm::AttributeList::FunctionIndex,
1386                     llvm::Attribute::NoBuiltin);
1387 
1388     // A sane operator new returns a non-aliasing pointer.
1389     // FIXME: Also add NonNull attribute to the return value
1390     // for the non-nothrow forms?
1391     auto Kind = FD->getDeclName().getCXXOverloadedOperator();
1392     if (getCodeGenOpts().AssumeSaneOperatorNew &&
1393         (Kind == OO_New || Kind == OO_Array_New))
1394       F->addAttribute(llvm::AttributeList::ReturnIndex,
1395                       llvm::Attribute::NoAlias);
1396   }
1397 
1398   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
1399     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1400   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1401     if (MD->isVirtual())
1402       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1403 
1404   // Don't emit entries for function declarations in the cross-DSO mode. This
1405   // is handled with better precision by the receiving DSO.
1406   if (!CodeGenOpts.SanitizeCfiCrossDso)
1407     CreateFunctionTypeMetadata(FD, F);
1408 
1409   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
1410     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
1411 }
1412 
1413 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
1414   assert(!GV->isDeclaration() &&
1415          "Only globals with definition can force usage.");
1416   LLVMUsed.emplace_back(GV);
1417 }
1418 
1419 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
1420   assert(!GV->isDeclaration() &&
1421          "Only globals with definition can force usage.");
1422   LLVMCompilerUsed.emplace_back(GV);
1423 }
1424 
1425 static void emitUsed(CodeGenModule &CGM, StringRef Name,
1426                      std::vector<llvm::WeakTrackingVH> &List) {
1427   // Don't create llvm.used if there is no need.
1428   if (List.empty())
1429     return;
1430 
1431   // Convert List to what ConstantArray needs.
1432   SmallVector<llvm::Constant*, 8> UsedArray;
1433   UsedArray.resize(List.size());
1434   for (unsigned i = 0, e = List.size(); i != e; ++i) {
1435     UsedArray[i] =
1436         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
1437             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
1438   }
1439 
1440   if (UsedArray.empty())
1441     return;
1442   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
1443 
1444   auto *GV = new llvm::GlobalVariable(
1445       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
1446       llvm::ConstantArray::get(ATy, UsedArray), Name);
1447 
1448   GV->setSection("llvm.metadata");
1449 }
1450 
1451 void CodeGenModule::emitLLVMUsed() {
1452   emitUsed(*this, "llvm.used", LLVMUsed);
1453   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
1454 }
1455 
1456 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
1457   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
1458   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1459 }
1460 
1461 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
1462   llvm::SmallString<32> Opt;
1463   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
1464   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1465   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1466 }
1467 
1468 void CodeGenModule::AddELFLibDirective(StringRef Lib) {
1469   auto &C = getLLVMContext();
1470   LinkerOptionsMetadata.push_back(llvm::MDNode::get(
1471       C, {llvm::MDString::get(C, "lib"), llvm::MDString::get(C, Lib)}));
1472 }
1473 
1474 void CodeGenModule::AddDependentLib(StringRef Lib) {
1475   llvm::SmallString<24> Opt;
1476   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
1477   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1478   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1479 }
1480 
1481 /// \brief Add link options implied by the given module, including modules
1482 /// it depends on, using a postorder walk.
1483 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
1484                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
1485                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
1486   // Import this module's parent.
1487   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
1488     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
1489   }
1490 
1491   // Import this module's dependencies.
1492   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
1493     if (Visited.insert(Mod->Imports[I - 1]).second)
1494       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
1495   }
1496 
1497   // Add linker options to link against the libraries/frameworks
1498   // described by this module.
1499   llvm::LLVMContext &Context = CGM.getLLVMContext();
1500   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
1501     // Link against a framework.  Frameworks are currently Darwin only, so we
1502     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
1503     if (Mod->LinkLibraries[I-1].IsFramework) {
1504       llvm::Metadata *Args[2] = {
1505           llvm::MDString::get(Context, "-framework"),
1506           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
1507 
1508       Metadata.push_back(llvm::MDNode::get(Context, Args));
1509       continue;
1510     }
1511 
1512     // Link against a library.
1513     llvm::SmallString<24> Opt;
1514     CGM.getTargetCodeGenInfo().getDependentLibraryOption(
1515       Mod->LinkLibraries[I-1].Library, Opt);
1516     auto *OptString = llvm::MDString::get(Context, Opt);
1517     Metadata.push_back(llvm::MDNode::get(Context, OptString));
1518   }
1519 }
1520 
1521 void CodeGenModule::EmitModuleLinkOptions() {
1522   // Collect the set of all of the modules we want to visit to emit link
1523   // options, which is essentially the imported modules and all of their
1524   // non-explicit child modules.
1525   llvm::SetVector<clang::Module *> LinkModules;
1526   llvm::SmallPtrSet<clang::Module *, 16> Visited;
1527   SmallVector<clang::Module *, 16> Stack;
1528 
1529   // Seed the stack with imported modules.
1530   for (Module *M : ImportedModules) {
1531     // Do not add any link flags when an implementation TU of a module imports
1532     // a header of that same module.
1533     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
1534         !getLangOpts().isCompilingModule())
1535       continue;
1536     if (Visited.insert(M).second)
1537       Stack.push_back(M);
1538   }
1539 
1540   // Find all of the modules to import, making a little effort to prune
1541   // non-leaf modules.
1542   while (!Stack.empty()) {
1543     clang::Module *Mod = Stack.pop_back_val();
1544 
1545     bool AnyChildren = false;
1546 
1547     // Visit the submodules of this module.
1548     for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
1549                                         SubEnd = Mod->submodule_end();
1550          Sub != SubEnd; ++Sub) {
1551       // Skip explicit children; they need to be explicitly imported to be
1552       // linked against.
1553       if ((*Sub)->IsExplicit)
1554         continue;
1555 
1556       if (Visited.insert(*Sub).second) {
1557         Stack.push_back(*Sub);
1558         AnyChildren = true;
1559       }
1560     }
1561 
1562     // We didn't find any children, so add this module to the list of
1563     // modules to link against.
1564     if (!AnyChildren) {
1565       LinkModules.insert(Mod);
1566     }
1567   }
1568 
1569   // Add link options for all of the imported modules in reverse topological
1570   // order.  We don't do anything to try to order import link flags with respect
1571   // to linker options inserted by things like #pragma comment().
1572   SmallVector<llvm::MDNode *, 16> MetadataArgs;
1573   Visited.clear();
1574   for (Module *M : LinkModules)
1575     if (Visited.insert(M).second)
1576       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
1577   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
1578   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
1579 
1580   // Add the linker options metadata flag.
1581   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
1582   for (auto *MD : LinkerOptionsMetadata)
1583     NMD->addOperand(MD);
1584 }
1585 
1586 void CodeGenModule::EmitDeferred() {
1587   // Emit code for any potentially referenced deferred decls.  Since a
1588   // previously unused static decl may become used during the generation of code
1589   // for a static function, iterate until no changes are made.
1590 
1591   if (!DeferredVTables.empty()) {
1592     EmitDeferredVTables();
1593 
1594     // Emitting a vtable doesn't directly cause more vtables to
1595     // become deferred, although it can cause functions to be
1596     // emitted that then need those vtables.
1597     assert(DeferredVTables.empty());
1598   }
1599 
1600   // Stop if we're out of both deferred vtables and deferred declarations.
1601   if (DeferredDeclsToEmit.empty())
1602     return;
1603 
1604   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
1605   // work, it will not interfere with this.
1606   std::vector<GlobalDecl> CurDeclsToEmit;
1607   CurDeclsToEmit.swap(DeferredDeclsToEmit);
1608 
1609   for (GlobalDecl &D : CurDeclsToEmit) {
1610     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
1611     // to get GlobalValue with exactly the type we need, not something that
1612     // might had been created for another decl with the same mangled name but
1613     // different type.
1614     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
1615         GetAddrOfGlobal(D, ForDefinition));
1616 
1617     // In case of different address spaces, we may still get a cast, even with
1618     // IsForDefinition equal to true. Query mangled names table to get
1619     // GlobalValue.
1620     if (!GV)
1621       GV = GetGlobalValue(getMangledName(D));
1622 
1623     // Make sure GetGlobalValue returned non-null.
1624     assert(GV);
1625 
1626     // Check to see if we've already emitted this.  This is necessary
1627     // for a couple of reasons: first, decls can end up in the
1628     // deferred-decls queue multiple times, and second, decls can end
1629     // up with definitions in unusual ways (e.g. by an extern inline
1630     // function acquiring a strong function redefinition).  Just
1631     // ignore these cases.
1632     if (!GV->isDeclaration())
1633       continue;
1634 
1635     // Otherwise, emit the definition and move on to the next one.
1636     EmitGlobalDefinition(D, GV);
1637 
1638     // If we found out that we need to emit more decls, do that recursively.
1639     // This has the advantage that the decls are emitted in a DFS and related
1640     // ones are close together, which is convenient for testing.
1641     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
1642       EmitDeferred();
1643       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
1644     }
1645   }
1646 }
1647 
1648 void CodeGenModule::EmitVTablesOpportunistically() {
1649   // Try to emit external vtables as available_externally if they have emitted
1650   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
1651   // is not allowed to create new references to things that need to be emitted
1652   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
1653 
1654   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
1655          && "Only emit opportunistic vtables with optimizations");
1656 
1657   for (const CXXRecordDecl *RD : OpportunisticVTables) {
1658     assert(getVTables().isVTableExternal(RD) &&
1659            "This queue should only contain external vtables");
1660     if (getCXXABI().canSpeculativelyEmitVTable(RD))
1661       VTables.GenerateClassData(RD);
1662   }
1663   OpportunisticVTables.clear();
1664 }
1665 
1666 void CodeGenModule::EmitGlobalAnnotations() {
1667   if (Annotations.empty())
1668     return;
1669 
1670   // Create a new global variable for the ConstantStruct in the Module.
1671   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
1672     Annotations[0]->getType(), Annotations.size()), Annotations);
1673   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
1674                                       llvm::GlobalValue::AppendingLinkage,
1675                                       Array, "llvm.global.annotations");
1676   gv->setSection(AnnotationSection);
1677 }
1678 
1679 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
1680   llvm::Constant *&AStr = AnnotationStrings[Str];
1681   if (AStr)
1682     return AStr;
1683 
1684   // Not found yet, create a new global.
1685   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
1686   auto *gv =
1687       new llvm::GlobalVariable(getModule(), s->getType(), true,
1688                                llvm::GlobalValue::PrivateLinkage, s, ".str");
1689   gv->setSection(AnnotationSection);
1690   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1691   AStr = gv;
1692   return gv;
1693 }
1694 
1695 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
1696   SourceManager &SM = getContext().getSourceManager();
1697   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
1698   if (PLoc.isValid())
1699     return EmitAnnotationString(PLoc.getFilename());
1700   return EmitAnnotationString(SM.getBufferName(Loc));
1701 }
1702 
1703 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
1704   SourceManager &SM = getContext().getSourceManager();
1705   PresumedLoc PLoc = SM.getPresumedLoc(L);
1706   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
1707     SM.getExpansionLineNumber(L);
1708   return llvm::ConstantInt::get(Int32Ty, LineNo);
1709 }
1710 
1711 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
1712                                                 const AnnotateAttr *AA,
1713                                                 SourceLocation L) {
1714   // Get the globals for file name, annotation, and the line number.
1715   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
1716                  *UnitGV = EmitAnnotationUnit(L),
1717                  *LineNoCst = EmitAnnotationLineNo(L);
1718 
1719   // Create the ConstantStruct for the global annotation.
1720   llvm::Constant *Fields[4] = {
1721     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
1722     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
1723     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
1724     LineNoCst
1725   };
1726   return llvm::ConstantStruct::getAnon(Fields);
1727 }
1728 
1729 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
1730                                          llvm::GlobalValue *GV) {
1731   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1732   // Get the struct elements for these annotations.
1733   for (const auto *I : D->specific_attrs<AnnotateAttr>())
1734     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
1735 }
1736 
1737 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind,
1738                                            llvm::Function *Fn,
1739                                            SourceLocation Loc) const {
1740   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1741   // Blacklist by function name.
1742   if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName()))
1743     return true;
1744   // Blacklist by location.
1745   if (Loc.isValid())
1746     return SanitizerBL.isBlacklistedLocation(Kind, Loc);
1747   // If location is unknown, this may be a compiler-generated function. Assume
1748   // it's located in the main file.
1749   auto &SM = Context.getSourceManager();
1750   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
1751     return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName());
1752   }
1753   return false;
1754 }
1755 
1756 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV,
1757                                            SourceLocation Loc, QualType Ty,
1758                                            StringRef Category) const {
1759   // For now globals can be blacklisted only in ASan and KASan.
1760   const SanitizerMask EnabledAsanMask = LangOpts.Sanitize.Mask &
1761       (SanitizerKind::Address | SanitizerKind::KernelAddress | SanitizerKind::HWAddress);
1762   if (!EnabledAsanMask)
1763     return false;
1764   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1765   if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category))
1766     return true;
1767   if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category))
1768     return true;
1769   // Check global type.
1770   if (!Ty.isNull()) {
1771     // Drill down the array types: if global variable of a fixed type is
1772     // blacklisted, we also don't instrument arrays of them.
1773     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
1774       Ty = AT->getElementType();
1775     Ty = Ty.getCanonicalType().getUnqualifiedType();
1776     // We allow to blacklist only record types (classes, structs etc.)
1777     if (Ty->isRecordType()) {
1778       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
1779       if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category))
1780         return true;
1781     }
1782   }
1783   return false;
1784 }
1785 
1786 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
1787                                    StringRef Category) const {
1788   if (!LangOpts.XRayInstrument)
1789     return false;
1790   const auto &XRayFilter = getContext().getXRayFilter();
1791   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
1792   auto Attr = XRayFunctionFilter::ImbueAttribute::NONE;
1793   if (Loc.isValid())
1794     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
1795   if (Attr == ImbueAttr::NONE)
1796     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
1797   switch (Attr) {
1798   case ImbueAttr::NONE:
1799     return false;
1800   case ImbueAttr::ALWAYS:
1801     Fn->addFnAttr("function-instrument", "xray-always");
1802     break;
1803   case ImbueAttr::ALWAYS_ARG1:
1804     Fn->addFnAttr("function-instrument", "xray-always");
1805     Fn->addFnAttr("xray-log-args", "1");
1806     break;
1807   case ImbueAttr::NEVER:
1808     Fn->addFnAttr("function-instrument", "xray-never");
1809     break;
1810   }
1811   return true;
1812 }
1813 
1814 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
1815   // Never defer when EmitAllDecls is specified.
1816   if (LangOpts.EmitAllDecls)
1817     return true;
1818 
1819   return getContext().DeclMustBeEmitted(Global);
1820 }
1821 
1822 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
1823   if (const auto *FD = dyn_cast<FunctionDecl>(Global))
1824     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1825       // Implicit template instantiations may change linkage if they are later
1826       // explicitly instantiated, so they should not be emitted eagerly.
1827       return false;
1828   if (const auto *VD = dyn_cast<VarDecl>(Global))
1829     if (Context.getInlineVariableDefinitionKind(VD) ==
1830         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
1831       // A definition of an inline constexpr static data member may change
1832       // linkage later if it's redeclared outside the class.
1833       return false;
1834   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
1835   // codegen for global variables, because they may be marked as threadprivate.
1836   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
1837       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global))
1838     return false;
1839 
1840   return true;
1841 }
1842 
1843 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor(
1844     const CXXUuidofExpr* E) {
1845   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
1846   // well-formed.
1847   StringRef Uuid = E->getUuidStr();
1848   std::string Name = "_GUID_" + Uuid.lower();
1849   std::replace(Name.begin(), Name.end(), '-', '_');
1850 
1851   // The UUID descriptor should be pointer aligned.
1852   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
1853 
1854   // Look for an existing global.
1855   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
1856     return ConstantAddress(GV, Alignment);
1857 
1858   llvm::Constant *Init = EmitUuidofInitializer(Uuid);
1859   assert(Init && "failed to initialize as constant");
1860 
1861   auto *GV = new llvm::GlobalVariable(
1862       getModule(), Init->getType(),
1863       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
1864   if (supportsCOMDAT())
1865     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
1866   return ConstantAddress(GV, Alignment);
1867 }
1868 
1869 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
1870   const AliasAttr *AA = VD->getAttr<AliasAttr>();
1871   assert(AA && "No alias?");
1872 
1873   CharUnits Alignment = getContext().getDeclAlign(VD);
1874   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
1875 
1876   // See if there is already something with the target's name in the module.
1877   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1878   if (Entry) {
1879     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1880     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
1881     return ConstantAddress(Ptr, Alignment);
1882   }
1883 
1884   llvm::Constant *Aliasee;
1885   if (isa<llvm::FunctionType>(DeclTy))
1886     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
1887                                       GlobalDecl(cast<FunctionDecl>(VD)),
1888                                       /*ForVTable=*/false);
1889   else
1890     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1891                                     llvm::PointerType::getUnqual(DeclTy),
1892                                     nullptr);
1893 
1894   auto *F = cast<llvm::GlobalValue>(Aliasee);
1895   F->setLinkage(llvm::Function::ExternalWeakLinkage);
1896   WeakRefReferences.insert(F);
1897 
1898   return ConstantAddress(Aliasee, Alignment);
1899 }
1900 
1901 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
1902   const auto *Global = cast<ValueDecl>(GD.getDecl());
1903 
1904   // Weak references don't produce any output by themselves.
1905   if (Global->hasAttr<WeakRefAttr>())
1906     return;
1907 
1908   // If this is an alias definition (which otherwise looks like a declaration)
1909   // emit it now.
1910   if (Global->hasAttr<AliasAttr>())
1911     return EmitAliasDefinition(GD);
1912 
1913   // IFunc like an alias whose value is resolved at runtime by calling resolver.
1914   if (Global->hasAttr<IFuncAttr>())
1915     return emitIFuncDefinition(GD);
1916 
1917   // If this is CUDA, be selective about which declarations we emit.
1918   if (LangOpts.CUDA) {
1919     if (LangOpts.CUDAIsDevice) {
1920       if (!Global->hasAttr<CUDADeviceAttr>() &&
1921           !Global->hasAttr<CUDAGlobalAttr>() &&
1922           !Global->hasAttr<CUDAConstantAttr>() &&
1923           !Global->hasAttr<CUDASharedAttr>())
1924         return;
1925     } else {
1926       // We need to emit host-side 'shadows' for all global
1927       // device-side variables because the CUDA runtime needs their
1928       // size and host-side address in order to provide access to
1929       // their device-side incarnations.
1930 
1931       // So device-only functions are the only things we skip.
1932       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
1933           Global->hasAttr<CUDADeviceAttr>())
1934         return;
1935 
1936       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
1937              "Expected Variable or Function");
1938     }
1939   }
1940 
1941   if (LangOpts.OpenMP) {
1942     // If this is OpenMP device, check if it is legal to emit this global
1943     // normally.
1944     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
1945       return;
1946     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
1947       if (MustBeEmitted(Global))
1948         EmitOMPDeclareReduction(DRD);
1949       return;
1950     }
1951   }
1952 
1953   // Ignore declarations, they will be emitted on their first use.
1954   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
1955     // Forward declarations are emitted lazily on first use.
1956     if (!FD->doesThisDeclarationHaveABody()) {
1957       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
1958         return;
1959 
1960       StringRef MangledName = getMangledName(GD);
1961 
1962       // Compute the function info and LLVM type.
1963       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
1964       llvm::Type *Ty = getTypes().GetFunctionType(FI);
1965 
1966       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
1967                               /*DontDefer=*/false);
1968       return;
1969     }
1970   } else {
1971     const auto *VD = cast<VarDecl>(Global);
1972     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
1973     // We need to emit device-side global CUDA variables even if a
1974     // variable does not have a definition -- we still need to define
1975     // host-side shadow for it.
1976     bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
1977                            !VD->hasDefinition() &&
1978                            (VD->hasAttr<CUDAConstantAttr>() ||
1979                             VD->hasAttr<CUDADeviceAttr>());
1980     if (!MustEmitForCuda &&
1981         VD->isThisDeclarationADefinition() != VarDecl::Definition &&
1982         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
1983       // If this declaration may have caused an inline variable definition to
1984       // change linkage, make sure that it's emitted.
1985       if (Context.getInlineVariableDefinitionKind(VD) ==
1986           ASTContext::InlineVariableDefinitionKind::Strong)
1987         GetAddrOfGlobalVar(VD);
1988       return;
1989     }
1990   }
1991 
1992   // Defer code generation to first use when possible, e.g. if this is an inline
1993   // function. If the global must always be emitted, do it eagerly if possible
1994   // to benefit from cache locality.
1995   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
1996     // Emit the definition if it can't be deferred.
1997     EmitGlobalDefinition(GD);
1998     return;
1999   }
2000 
2001   // If we're deferring emission of a C++ variable with an
2002   // initializer, remember the order in which it appeared in the file.
2003   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
2004       cast<VarDecl>(Global)->hasInit()) {
2005     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
2006     CXXGlobalInits.push_back(nullptr);
2007   }
2008 
2009   StringRef MangledName = getMangledName(GD);
2010   if (GetGlobalValue(MangledName) != nullptr) {
2011     // The value has already been used and should therefore be emitted.
2012     addDeferredDeclToEmit(GD);
2013   } else if (MustBeEmitted(Global)) {
2014     // The value must be emitted, but cannot be emitted eagerly.
2015     assert(!MayBeEmittedEagerly(Global));
2016     addDeferredDeclToEmit(GD);
2017   } else {
2018     // Otherwise, remember that we saw a deferred decl with this name.  The
2019     // first use of the mangled name will cause it to move into
2020     // DeferredDeclsToEmit.
2021     DeferredDecls[MangledName] = GD;
2022   }
2023 }
2024 
2025 // Check if T is a class type with a destructor that's not dllimport.
2026 static bool HasNonDllImportDtor(QualType T) {
2027   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
2028     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2029       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
2030         return true;
2031 
2032   return false;
2033 }
2034 
2035 namespace {
2036   struct FunctionIsDirectlyRecursive :
2037     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
2038     const StringRef Name;
2039     const Builtin::Context &BI;
2040     bool Result;
2041     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
2042       Name(N), BI(C), Result(false) {
2043     }
2044     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
2045 
2046     bool TraverseCallExpr(CallExpr *E) {
2047       const FunctionDecl *FD = E->getDirectCallee();
2048       if (!FD)
2049         return true;
2050       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2051       if (Attr && Name == Attr->getLabel()) {
2052         Result = true;
2053         return false;
2054       }
2055       unsigned BuiltinID = FD->getBuiltinID();
2056       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
2057         return true;
2058       StringRef BuiltinName = BI.getName(BuiltinID);
2059       if (BuiltinName.startswith("__builtin_") &&
2060           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
2061         Result = true;
2062         return false;
2063       }
2064       return true;
2065     }
2066   };
2067 
2068   // Make sure we're not referencing non-imported vars or functions.
2069   struct DLLImportFunctionVisitor
2070       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
2071     bool SafeToInline = true;
2072 
2073     bool shouldVisitImplicitCode() const { return true; }
2074 
2075     bool VisitVarDecl(VarDecl *VD) {
2076       if (VD->getTLSKind()) {
2077         // A thread-local variable cannot be imported.
2078         SafeToInline = false;
2079         return SafeToInline;
2080       }
2081 
2082       // A variable definition might imply a destructor call.
2083       if (VD->isThisDeclarationADefinition())
2084         SafeToInline = !HasNonDllImportDtor(VD->getType());
2085 
2086       return SafeToInline;
2087     }
2088 
2089     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
2090       if (const auto *D = E->getTemporary()->getDestructor())
2091         SafeToInline = D->hasAttr<DLLImportAttr>();
2092       return SafeToInline;
2093     }
2094 
2095     bool VisitDeclRefExpr(DeclRefExpr *E) {
2096       ValueDecl *VD = E->getDecl();
2097       if (isa<FunctionDecl>(VD))
2098         SafeToInline = VD->hasAttr<DLLImportAttr>();
2099       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
2100         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
2101       return SafeToInline;
2102     }
2103 
2104     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
2105       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
2106       return SafeToInline;
2107     }
2108 
2109     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
2110       CXXMethodDecl *M = E->getMethodDecl();
2111       if (!M) {
2112         // Call through a pointer to member function. This is safe to inline.
2113         SafeToInline = true;
2114       } else {
2115         SafeToInline = M->hasAttr<DLLImportAttr>();
2116       }
2117       return SafeToInline;
2118     }
2119 
2120     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
2121       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
2122       return SafeToInline;
2123     }
2124 
2125     bool VisitCXXNewExpr(CXXNewExpr *E) {
2126       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
2127       return SafeToInline;
2128     }
2129   };
2130 }
2131 
2132 // isTriviallyRecursive - Check if this function calls another
2133 // decl that, because of the asm attribute or the other decl being a builtin,
2134 // ends up pointing to itself.
2135 bool
2136 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
2137   StringRef Name;
2138   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
2139     // asm labels are a special kind of mangling we have to support.
2140     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2141     if (!Attr)
2142       return false;
2143     Name = Attr->getLabel();
2144   } else {
2145     Name = FD->getName();
2146   }
2147 
2148   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
2149   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
2150   return Walker.Result;
2151 }
2152 
2153 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
2154   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
2155     return true;
2156   const auto *F = cast<FunctionDecl>(GD.getDecl());
2157   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
2158     return false;
2159 
2160   if (F->hasAttr<DLLImportAttr>()) {
2161     // Check whether it would be safe to inline this dllimport function.
2162     DLLImportFunctionVisitor Visitor;
2163     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
2164     if (!Visitor.SafeToInline)
2165       return false;
2166 
2167     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
2168       // Implicit destructor invocations aren't captured in the AST, so the
2169       // check above can't see them. Check for them manually here.
2170       for (const Decl *Member : Dtor->getParent()->decls())
2171         if (isa<FieldDecl>(Member))
2172           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
2173             return false;
2174       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
2175         if (HasNonDllImportDtor(B.getType()))
2176           return false;
2177     }
2178   }
2179 
2180   // PR9614. Avoid cases where the source code is lying to us. An available
2181   // externally function should have an equivalent function somewhere else,
2182   // but a function that calls itself is clearly not equivalent to the real
2183   // implementation.
2184   // This happens in glibc's btowc and in some configure checks.
2185   return !isTriviallyRecursive(F);
2186 }
2187 
2188 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
2189   return CodeGenOpts.OptimizationLevel > 0;
2190 }
2191 
2192 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
2193   const auto *D = cast<ValueDecl>(GD.getDecl());
2194 
2195   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
2196                                  Context.getSourceManager(),
2197                                  "Generating code for declaration");
2198 
2199   if (isa<FunctionDecl>(D)) {
2200     // At -O0, don't generate IR for functions with available_externally
2201     // linkage.
2202     if (!shouldEmitFunction(GD))
2203       return;
2204 
2205     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
2206       // Make sure to emit the definition(s) before we emit the thunks.
2207       // This is necessary for the generation of certain thunks.
2208       if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method))
2209         ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType()));
2210       else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method))
2211         ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType()));
2212       else
2213         EmitGlobalFunctionDefinition(GD, GV);
2214 
2215       if (Method->isVirtual())
2216         getVTables().EmitThunks(GD);
2217 
2218       return;
2219     }
2220 
2221     return EmitGlobalFunctionDefinition(GD, GV);
2222   }
2223 
2224   if (const auto *VD = dyn_cast<VarDecl>(D))
2225     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
2226 
2227   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
2228 }
2229 
2230 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2231                                                       llvm::Function *NewFn);
2232 
2233 void CodeGenModule::emitMultiVersionFunctions() {
2234   for (GlobalDecl GD : MultiVersionFuncs) {
2235     SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
2236     const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
2237     getContext().forEachMultiversionedFunctionVersion(
2238         FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
2239           GlobalDecl CurGD{
2240               (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
2241           StringRef MangledName = getMangledName(CurGD);
2242           llvm::Constant *Func = GetGlobalValue(MangledName);
2243           if (!Func) {
2244             if (CurFD->isDefined()) {
2245               EmitGlobalFunctionDefinition(CurGD, nullptr);
2246               Func = GetGlobalValue(MangledName);
2247             } else {
2248               const CGFunctionInfo &FI =
2249                   getTypes().arrangeGlobalDeclaration(GD);
2250               llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2251               Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
2252                                        /*DontDefer=*/false, ForDefinition);
2253             }
2254             assert(Func && "This should have just been created");
2255           }
2256           Options.emplace_back(getTarget(), cast<llvm::Function>(Func),
2257                                CurFD->getAttr<TargetAttr>()->parse());
2258         });
2259 
2260     llvm::Function *ResolverFunc = cast<llvm::Function>(
2261         GetGlobalValue((getMangledName(GD) + ".resolver").str()));
2262     if (supportsCOMDAT())
2263       ResolverFunc->setComdat(
2264           getModule().getOrInsertComdat(ResolverFunc->getName()));
2265     std::stable_sort(
2266         Options.begin(), Options.end(),
2267         std::greater<CodeGenFunction::MultiVersionResolverOption>());
2268     CodeGenFunction CGF(*this);
2269     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
2270   }
2271 }
2272 
2273 /// If an ifunc for the specified mangled name is not in the module, create and
2274 /// return an llvm IFunc Function with the specified type.
2275 llvm::Constant *
2276 CodeGenModule::GetOrCreateMultiVersionIFunc(GlobalDecl GD, llvm::Type *DeclTy,
2277                                             StringRef MangledName,
2278                                             const FunctionDecl *FD) {
2279   std::string IFuncName = (MangledName + ".ifunc").str();
2280   if (llvm::GlobalValue *IFuncGV = GetGlobalValue(IFuncName))
2281     return IFuncGV;
2282 
2283   // Since this is the first time we've created this IFunc, make sure
2284   // that we put this multiversioned function into the list to be
2285   // replaced later.
2286   MultiVersionFuncs.push_back(GD);
2287 
2288   std::string ResolverName = (MangledName + ".resolver").str();
2289   llvm::Type *ResolverType = llvm::FunctionType::get(
2290       llvm::PointerType::get(DeclTy,
2291                              Context.getTargetAddressSpace(FD->getType())),
2292       false);
2293   llvm::Constant *Resolver =
2294       GetOrCreateLLVMFunction(ResolverName, ResolverType, GlobalDecl{},
2295                               /*ForVTable=*/false);
2296   llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create(
2297       DeclTy, 0, llvm::Function::ExternalLinkage, "", Resolver, &getModule());
2298   GIF->setName(IFuncName);
2299   SetCommonAttributes(FD, GIF);
2300 
2301   return GIF;
2302 }
2303 
2304 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
2305 /// module, create and return an llvm Function with the specified type. If there
2306 /// is something in the module with the specified name, return it potentially
2307 /// bitcasted to the right type.
2308 ///
2309 /// If D is non-null, it specifies a decl that correspond to this.  This is used
2310 /// to set the attributes on the function when it is first created.
2311 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
2312     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
2313     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
2314     ForDefinition_t IsForDefinition) {
2315   const Decl *D = GD.getDecl();
2316 
2317   // Any attempts to use a MultiVersion function should result in retrieving
2318   // the iFunc instead. Name Mangling will handle the rest of the changes.
2319   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
2320     if (FD->isMultiVersion() && FD->getAttr<TargetAttr>()->isDefaultVersion()) {
2321       UpdateMultiVersionNames(GD, FD);
2322       if (!IsForDefinition)
2323         return GetOrCreateMultiVersionIFunc(GD, Ty, MangledName, FD);
2324     }
2325   }
2326 
2327   // Lookup the entry, lazily creating it if necessary.
2328   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2329   if (Entry) {
2330     if (WeakRefReferences.erase(Entry)) {
2331       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
2332       if (FD && !FD->hasAttr<WeakAttr>())
2333         Entry->setLinkage(llvm::Function::ExternalLinkage);
2334     }
2335 
2336     // Handle dropped DLL attributes.
2337     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
2338       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
2339 
2340     // If there are two attempts to define the same mangled name, issue an
2341     // error.
2342     if (IsForDefinition && !Entry->isDeclaration()) {
2343       GlobalDecl OtherGD;
2344       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
2345       // to make sure that we issue an error only once.
2346       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
2347           (GD.getCanonicalDecl().getDecl() !=
2348            OtherGD.getCanonicalDecl().getDecl()) &&
2349           DiagnosedConflictingDefinitions.insert(GD).second) {
2350         getDiags().Report(D->getLocation(),
2351                           diag::err_duplicate_mangled_name);
2352         getDiags().Report(OtherGD.getDecl()->getLocation(),
2353                           diag::note_previous_definition);
2354       }
2355     }
2356 
2357     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
2358         (Entry->getType()->getElementType() == Ty)) {
2359       return Entry;
2360     }
2361 
2362     // Make sure the result is of the correct type.
2363     // (If function is requested for a definition, we always need to create a new
2364     // function, not just return a bitcast.)
2365     if (!IsForDefinition)
2366       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
2367   }
2368 
2369   // This function doesn't have a complete type (for example, the return
2370   // type is an incomplete struct). Use a fake type instead, and make
2371   // sure not to try to set attributes.
2372   bool IsIncompleteFunction = false;
2373 
2374   llvm::FunctionType *FTy;
2375   if (isa<llvm::FunctionType>(Ty)) {
2376     FTy = cast<llvm::FunctionType>(Ty);
2377   } else {
2378     FTy = llvm::FunctionType::get(VoidTy, false);
2379     IsIncompleteFunction = true;
2380   }
2381 
2382   llvm::Function *F =
2383       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
2384                              Entry ? StringRef() : MangledName, &getModule());
2385 
2386   // If we already created a function with the same mangled name (but different
2387   // type) before, take its name and add it to the list of functions to be
2388   // replaced with F at the end of CodeGen.
2389   //
2390   // This happens if there is a prototype for a function (e.g. "int f()") and
2391   // then a definition of a different type (e.g. "int f(int x)").
2392   if (Entry) {
2393     F->takeName(Entry);
2394 
2395     // This might be an implementation of a function without a prototype, in
2396     // which case, try to do special replacement of calls which match the new
2397     // prototype.  The really key thing here is that we also potentially drop
2398     // arguments from the call site so as to make a direct call, which makes the
2399     // inliner happier and suppresses a number of optimizer warnings (!) about
2400     // dropping arguments.
2401     if (!Entry->use_empty()) {
2402       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
2403       Entry->removeDeadConstantUsers();
2404     }
2405 
2406     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
2407         F, Entry->getType()->getElementType()->getPointerTo());
2408     addGlobalValReplacement(Entry, BC);
2409   }
2410 
2411   assert(F->getName() == MangledName && "name was uniqued!");
2412   if (D)
2413     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
2414   if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) {
2415     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex);
2416     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
2417   }
2418 
2419   if (!DontDefer) {
2420     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
2421     // each other bottoming out with the base dtor.  Therefore we emit non-base
2422     // dtors on usage, even if there is no dtor definition in the TU.
2423     if (D && isa<CXXDestructorDecl>(D) &&
2424         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
2425                                            GD.getDtorType()))
2426       addDeferredDeclToEmit(GD);
2427 
2428     // This is the first use or definition of a mangled name.  If there is a
2429     // deferred decl with this name, remember that we need to emit it at the end
2430     // of the file.
2431     auto DDI = DeferredDecls.find(MangledName);
2432     if (DDI != DeferredDecls.end()) {
2433       // Move the potentially referenced deferred decl to the
2434       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
2435       // don't need it anymore).
2436       addDeferredDeclToEmit(DDI->second);
2437       DeferredDecls.erase(DDI);
2438 
2439       // Otherwise, there are cases we have to worry about where we're
2440       // using a declaration for which we must emit a definition but where
2441       // we might not find a top-level definition:
2442       //   - member functions defined inline in their classes
2443       //   - friend functions defined inline in some class
2444       //   - special member functions with implicit definitions
2445       // If we ever change our AST traversal to walk into class methods,
2446       // this will be unnecessary.
2447       //
2448       // We also don't emit a definition for a function if it's going to be an
2449       // entry in a vtable, unless it's already marked as used.
2450     } else if (getLangOpts().CPlusPlus && D) {
2451       // Look for a declaration that's lexically in a record.
2452       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
2453            FD = FD->getPreviousDecl()) {
2454         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
2455           if (FD->doesThisDeclarationHaveABody()) {
2456             addDeferredDeclToEmit(GD.getWithDecl(FD));
2457             break;
2458           }
2459         }
2460       }
2461     }
2462   }
2463 
2464   // Make sure the result is of the requested type.
2465   if (!IsIncompleteFunction) {
2466     assert(F->getType()->getElementType() == Ty);
2467     return F;
2468   }
2469 
2470   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2471   return llvm::ConstantExpr::getBitCast(F, PTy);
2472 }
2473 
2474 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
2475 /// non-null, then this function will use the specified type if it has to
2476 /// create it (this occurs when we see a definition of the function).
2477 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
2478                                                  llvm::Type *Ty,
2479                                                  bool ForVTable,
2480                                                  bool DontDefer,
2481                                               ForDefinition_t IsForDefinition) {
2482   // If there was no specific requested type, just convert it now.
2483   if (!Ty) {
2484     const auto *FD = cast<FunctionDecl>(GD.getDecl());
2485     auto CanonTy = Context.getCanonicalType(FD->getType());
2486     Ty = getTypes().ConvertFunctionType(CanonTy, FD);
2487   }
2488 
2489   StringRef MangledName = getMangledName(GD);
2490   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
2491                                  /*IsThunk=*/false, llvm::AttributeList(),
2492                                  IsForDefinition);
2493 }
2494 
2495 static const FunctionDecl *
2496 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
2497   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
2498   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
2499 
2500   IdentifierInfo &CII = C.Idents.get(Name);
2501   for (const auto &Result : DC->lookup(&CII))
2502     if (const auto FD = dyn_cast<FunctionDecl>(Result))
2503       return FD;
2504 
2505   if (!C.getLangOpts().CPlusPlus)
2506     return nullptr;
2507 
2508   // Demangle the premangled name from getTerminateFn()
2509   IdentifierInfo &CXXII =
2510       (Name == "_ZSt9terminatev" || Name == "\01?terminate@@YAXXZ")
2511           ? C.Idents.get("terminate")
2512           : C.Idents.get(Name);
2513 
2514   for (const auto &N : {"__cxxabiv1", "std"}) {
2515     IdentifierInfo &NS = C.Idents.get(N);
2516     for (const auto &Result : DC->lookup(&NS)) {
2517       NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
2518       if (auto LSD = dyn_cast<LinkageSpecDecl>(Result))
2519         for (const auto &Result : LSD->lookup(&NS))
2520           if ((ND = dyn_cast<NamespaceDecl>(Result)))
2521             break;
2522 
2523       if (ND)
2524         for (const auto &Result : ND->lookup(&CXXII))
2525           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
2526             return FD;
2527     }
2528   }
2529 
2530   return nullptr;
2531 }
2532 
2533 /// CreateRuntimeFunction - Create a new runtime function with the specified
2534 /// type and name.
2535 llvm::Constant *
2536 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
2537                                      llvm::AttributeList ExtraAttrs,
2538                                      bool Local) {
2539   llvm::Constant *C =
2540       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
2541                               /*DontDefer=*/false, /*IsThunk=*/false,
2542                               ExtraAttrs);
2543 
2544   if (auto *F = dyn_cast<llvm::Function>(C)) {
2545     if (F->empty()) {
2546       F->setCallingConv(getRuntimeCC());
2547 
2548       if (!Local && getTriple().isOSBinFormatCOFF() &&
2549           !getCodeGenOpts().LTOVisibilityPublicStd &&
2550           !getTriple().isWindowsGNUEnvironment()) {
2551         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
2552         if (!FD || FD->hasAttr<DLLImportAttr>()) {
2553           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
2554           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
2555         }
2556       }
2557     }
2558   }
2559 
2560   return C;
2561 }
2562 
2563 /// CreateBuiltinFunction - Create a new builtin function with the specified
2564 /// type and name.
2565 llvm::Constant *
2566 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, StringRef Name,
2567                                      llvm::AttributeList ExtraAttrs) {
2568   llvm::Constant *C =
2569       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
2570                               /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs);
2571   if (auto *F = dyn_cast<llvm::Function>(C))
2572     if (F->empty())
2573       F->setCallingConv(getBuiltinCC());
2574   return C;
2575 }
2576 
2577 /// isTypeConstant - Determine whether an object of this type can be emitted
2578 /// as a constant.
2579 ///
2580 /// If ExcludeCtor is true, the duration when the object's constructor runs
2581 /// will not be considered. The caller will need to verify that the object is
2582 /// not written to during its construction.
2583 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
2584   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
2585     return false;
2586 
2587   if (Context.getLangOpts().CPlusPlus) {
2588     if (const CXXRecordDecl *Record
2589           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
2590       return ExcludeCtor && !Record->hasMutableFields() &&
2591              Record->hasTrivialDestructor();
2592   }
2593 
2594   return true;
2595 }
2596 
2597 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
2598 /// create and return an llvm GlobalVariable with the specified type.  If there
2599 /// is something in the module with the specified name, return it potentially
2600 /// bitcasted to the right type.
2601 ///
2602 /// If D is non-null, it specifies a decl that correspond to this.  This is used
2603 /// to set the attributes on the global when it is first created.
2604 ///
2605 /// If IsForDefinition is true, it is guranteed that an actual global with
2606 /// type Ty will be returned, not conversion of a variable with the same
2607 /// mangled name but some other type.
2608 llvm::Constant *
2609 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
2610                                      llvm::PointerType *Ty,
2611                                      const VarDecl *D,
2612                                      ForDefinition_t IsForDefinition) {
2613   // Lookup the entry, lazily creating it if necessary.
2614   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2615   if (Entry) {
2616     if (WeakRefReferences.erase(Entry)) {
2617       if (D && !D->hasAttr<WeakAttr>())
2618         Entry->setLinkage(llvm::Function::ExternalLinkage);
2619     }
2620 
2621     // Handle dropped DLL attributes.
2622     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
2623       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
2624 
2625     if (Entry->getType() == Ty)
2626       return Entry;
2627 
2628     // If there are two attempts to define the same mangled name, issue an
2629     // error.
2630     if (IsForDefinition && !Entry->isDeclaration()) {
2631       GlobalDecl OtherGD;
2632       const VarDecl *OtherD;
2633 
2634       // Check that D is not yet in DiagnosedConflictingDefinitions is required
2635       // to make sure that we issue an error only once.
2636       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
2637           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
2638           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
2639           OtherD->hasInit() &&
2640           DiagnosedConflictingDefinitions.insert(D).second) {
2641         getDiags().Report(D->getLocation(),
2642                           diag::err_duplicate_mangled_name);
2643         getDiags().Report(OtherGD.getDecl()->getLocation(),
2644                           diag::note_previous_definition);
2645       }
2646     }
2647 
2648     // Make sure the result is of the correct type.
2649     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
2650       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
2651 
2652     // (If global is requested for a definition, we always need to create a new
2653     // global, not just return a bitcast.)
2654     if (!IsForDefinition)
2655       return llvm::ConstantExpr::getBitCast(Entry, Ty);
2656   }
2657 
2658   auto AddrSpace = GetGlobalVarAddressSpace(D);
2659   auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace);
2660 
2661   auto *GV = new llvm::GlobalVariable(
2662       getModule(), Ty->getElementType(), false,
2663       llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
2664       llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace);
2665 
2666   // If we already created a global with the same mangled name (but different
2667   // type) before, take its name and remove it from its parent.
2668   if (Entry) {
2669     GV->takeName(Entry);
2670 
2671     if (!Entry->use_empty()) {
2672       llvm::Constant *NewPtrForOldDecl =
2673           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
2674       Entry->replaceAllUsesWith(NewPtrForOldDecl);
2675     }
2676 
2677     Entry->eraseFromParent();
2678   }
2679 
2680   // This is the first use or definition of a mangled name.  If there is a
2681   // deferred decl with this name, remember that we need to emit it at the end
2682   // of the file.
2683   auto DDI = DeferredDecls.find(MangledName);
2684   if (DDI != DeferredDecls.end()) {
2685     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
2686     // list, and remove it from DeferredDecls (since we don't need it anymore).
2687     addDeferredDeclToEmit(DDI->second);
2688     DeferredDecls.erase(DDI);
2689   }
2690 
2691   // Handle things which are present even on external declarations.
2692   if (D) {
2693     // FIXME: This code is overly simple and should be merged with other global
2694     // handling.
2695     GV->setConstant(isTypeConstant(D->getType(), false));
2696 
2697     GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
2698 
2699     setLinkageForGV(GV, D);
2700     setGVProperties(GV, D);
2701 
2702     if (D->getTLSKind()) {
2703       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
2704         CXXThreadLocals.push_back(D);
2705       setTLSMode(GV, *D);
2706     }
2707 
2708     // If required by the ABI, treat declarations of static data members with
2709     // inline initializers as definitions.
2710     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
2711       EmitGlobalVarDefinition(D);
2712     }
2713 
2714     // Emit section information for extern variables.
2715     if (D->hasExternalStorage()) {
2716       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
2717         GV->setSection(SA->getName());
2718     }
2719 
2720     // Handle XCore specific ABI requirements.
2721     if (getTriple().getArch() == llvm::Triple::xcore &&
2722         D->getLanguageLinkage() == CLanguageLinkage &&
2723         D->getType().isConstant(Context) &&
2724         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
2725       GV->setSection(".cp.rodata");
2726 
2727     // Check if we a have a const declaration with an initializer, we may be
2728     // able to emit it as available_externally to expose it's value to the
2729     // optimizer.
2730     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
2731         D->getType().isConstQualified() && !GV->hasInitializer() &&
2732         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
2733       const auto *Record =
2734           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
2735       bool HasMutableFields = Record && Record->hasMutableFields();
2736       if (!HasMutableFields) {
2737         const VarDecl *InitDecl;
2738         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
2739         if (InitExpr) {
2740           ConstantEmitter emitter(*this);
2741           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
2742           if (Init) {
2743             auto *InitType = Init->getType();
2744             if (GV->getType()->getElementType() != InitType) {
2745               // The type of the initializer does not match the definition.
2746               // This happens when an initializer has a different type from
2747               // the type of the global (because of padding at the end of a
2748               // structure for instance).
2749               GV->setName(StringRef());
2750               // Make a new global with the correct type, this is now guaranteed
2751               // to work.
2752               auto *NewGV = cast<llvm::GlobalVariable>(
2753                   GetAddrOfGlobalVar(D, InitType, IsForDefinition));
2754 
2755               // Erase the old global, since it is no longer used.
2756               cast<llvm::GlobalValue>(GV)->eraseFromParent();
2757               GV = NewGV;
2758             } else {
2759               GV->setInitializer(Init);
2760               GV->setConstant(true);
2761               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
2762             }
2763             emitter.finalize(GV);
2764           }
2765         }
2766       }
2767     }
2768   }
2769 
2770   LangAS ExpectedAS =
2771       D ? D->getType().getAddressSpace()
2772         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
2773   assert(getContext().getTargetAddressSpace(ExpectedAS) ==
2774          Ty->getPointerAddressSpace());
2775   if (AddrSpace != ExpectedAS)
2776     return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace,
2777                                                        ExpectedAS, Ty);
2778 
2779   return GV;
2780 }
2781 
2782 llvm::Constant *
2783 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD,
2784                                ForDefinition_t IsForDefinition) {
2785   const Decl *D = GD.getDecl();
2786   if (isa<CXXConstructorDecl>(D))
2787     return getAddrOfCXXStructor(cast<CXXConstructorDecl>(D),
2788                                 getFromCtorType(GD.getCtorType()),
2789                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
2790                                 /*DontDefer=*/false, IsForDefinition);
2791   else if (isa<CXXDestructorDecl>(D))
2792     return getAddrOfCXXStructor(cast<CXXDestructorDecl>(D),
2793                                 getFromDtorType(GD.getDtorType()),
2794                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
2795                                 /*DontDefer=*/false, IsForDefinition);
2796   else if (isa<CXXMethodDecl>(D)) {
2797     auto FInfo = &getTypes().arrangeCXXMethodDeclaration(
2798         cast<CXXMethodDecl>(D));
2799     auto Ty = getTypes().GetFunctionType(*FInfo);
2800     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
2801                              IsForDefinition);
2802   } else if (isa<FunctionDecl>(D)) {
2803     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2804     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2805     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
2806                              IsForDefinition);
2807   } else
2808     return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr,
2809                               IsForDefinition);
2810 }
2811 
2812 llvm::GlobalVariable *
2813 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
2814                                       llvm::Type *Ty,
2815                                       llvm::GlobalValue::LinkageTypes Linkage) {
2816   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
2817   llvm::GlobalVariable *OldGV = nullptr;
2818 
2819   if (GV) {
2820     // Check if the variable has the right type.
2821     if (GV->getType()->getElementType() == Ty)
2822       return GV;
2823 
2824     // Because C++ name mangling, the only way we can end up with an already
2825     // existing global with the same name is if it has been declared extern "C".
2826     assert(GV->isDeclaration() && "Declaration has wrong type!");
2827     OldGV = GV;
2828   }
2829 
2830   // Create a new variable.
2831   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
2832                                 Linkage, nullptr, Name);
2833 
2834   if (OldGV) {
2835     // Replace occurrences of the old variable if needed.
2836     GV->takeName(OldGV);
2837 
2838     if (!OldGV->use_empty()) {
2839       llvm::Constant *NewPtrForOldDecl =
2840       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
2841       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
2842     }
2843 
2844     OldGV->eraseFromParent();
2845   }
2846 
2847   if (supportsCOMDAT() && GV->isWeakForLinker() &&
2848       !GV->hasAvailableExternallyLinkage())
2849     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2850 
2851   return GV;
2852 }
2853 
2854 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
2855 /// given global variable.  If Ty is non-null and if the global doesn't exist,
2856 /// then it will be created with the specified type instead of whatever the
2857 /// normal requested type would be. If IsForDefinition is true, it is guranteed
2858 /// that an actual global with type Ty will be returned, not conversion of a
2859 /// variable with the same mangled name but some other type.
2860 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
2861                                                   llvm::Type *Ty,
2862                                            ForDefinition_t IsForDefinition) {
2863   assert(D->hasGlobalStorage() && "Not a global variable");
2864   QualType ASTTy = D->getType();
2865   if (!Ty)
2866     Ty = getTypes().ConvertTypeForMem(ASTTy);
2867 
2868   llvm::PointerType *PTy =
2869     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
2870 
2871   StringRef MangledName = getMangledName(D);
2872   return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition);
2873 }
2874 
2875 /// CreateRuntimeVariable - Create a new runtime global variable with the
2876 /// specified type and name.
2877 llvm::Constant *
2878 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
2879                                      StringRef Name) {
2880   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr);
2881 }
2882 
2883 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
2884   assert(!D->getInit() && "Cannot emit definite definitions here!");
2885 
2886   StringRef MangledName = getMangledName(D);
2887   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
2888 
2889   // We already have a definition, not declaration, with the same mangled name.
2890   // Emitting of declaration is not required (and actually overwrites emitted
2891   // definition).
2892   if (GV && !GV->isDeclaration())
2893     return;
2894 
2895   // If we have not seen a reference to this variable yet, place it into the
2896   // deferred declarations table to be emitted if needed later.
2897   if (!MustBeEmitted(D) && !GV) {
2898       DeferredDecls[MangledName] = D;
2899       return;
2900   }
2901 
2902   // The tentative definition is the only definition.
2903   EmitGlobalVarDefinition(D);
2904 }
2905 
2906 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
2907   return Context.toCharUnitsFromBits(
2908       getDataLayout().getTypeStoreSizeInBits(Ty));
2909 }
2910 
2911 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
2912   LangAS AddrSpace = LangAS::Default;
2913   if (LangOpts.OpenCL) {
2914     AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
2915     assert(AddrSpace == LangAS::opencl_global ||
2916            AddrSpace == LangAS::opencl_constant ||
2917            AddrSpace == LangAS::opencl_local ||
2918            AddrSpace >= LangAS::FirstTargetAddressSpace);
2919     return AddrSpace;
2920   }
2921 
2922   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
2923     if (D && D->hasAttr<CUDAConstantAttr>())
2924       return LangAS::cuda_constant;
2925     else if (D && D->hasAttr<CUDASharedAttr>())
2926       return LangAS::cuda_shared;
2927     else
2928       return LangAS::cuda_device;
2929   }
2930 
2931   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
2932 }
2933 
2934 template<typename SomeDecl>
2935 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
2936                                                llvm::GlobalValue *GV) {
2937   if (!getLangOpts().CPlusPlus)
2938     return;
2939 
2940   // Must have 'used' attribute, or else inline assembly can't rely on
2941   // the name existing.
2942   if (!D->template hasAttr<UsedAttr>())
2943     return;
2944 
2945   // Must have internal linkage and an ordinary name.
2946   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
2947     return;
2948 
2949   // Must be in an extern "C" context. Entities declared directly within
2950   // a record are not extern "C" even if the record is in such a context.
2951   const SomeDecl *First = D->getFirstDecl();
2952   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
2953     return;
2954 
2955   // OK, this is an internal linkage entity inside an extern "C" linkage
2956   // specification. Make a note of that so we can give it the "expected"
2957   // mangled name if nothing else is using that name.
2958   std::pair<StaticExternCMap::iterator, bool> R =
2959       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
2960 
2961   // If we have multiple internal linkage entities with the same name
2962   // in extern "C" regions, none of them gets that name.
2963   if (!R.second)
2964     R.first->second = nullptr;
2965 }
2966 
2967 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
2968   if (!CGM.supportsCOMDAT())
2969     return false;
2970 
2971   if (D.hasAttr<SelectAnyAttr>())
2972     return true;
2973 
2974   GVALinkage Linkage;
2975   if (auto *VD = dyn_cast<VarDecl>(&D))
2976     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
2977   else
2978     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
2979 
2980   switch (Linkage) {
2981   case GVA_Internal:
2982   case GVA_AvailableExternally:
2983   case GVA_StrongExternal:
2984     return false;
2985   case GVA_DiscardableODR:
2986   case GVA_StrongODR:
2987     return true;
2988   }
2989   llvm_unreachable("No such linkage");
2990 }
2991 
2992 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
2993                                           llvm::GlobalObject &GO) {
2994   if (!shouldBeInCOMDAT(*this, D))
2995     return;
2996   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
2997 }
2998 
2999 /// Pass IsTentative as true if you want to create a tentative definition.
3000 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
3001                                             bool IsTentative) {
3002   // OpenCL global variables of sampler type are translated to function calls,
3003   // therefore no need to be translated.
3004   QualType ASTTy = D->getType();
3005   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
3006     return;
3007 
3008   llvm::Constant *Init = nullptr;
3009   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
3010   bool NeedsGlobalCtor = false;
3011   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
3012 
3013   const VarDecl *InitDecl;
3014   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
3015 
3016   Optional<ConstantEmitter> emitter;
3017 
3018   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
3019   // as part of their declaration."  Sema has already checked for
3020   // error cases, so we just need to set Init to UndefValue.
3021   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
3022       D->hasAttr<CUDASharedAttr>())
3023     Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
3024   else if (!InitExpr) {
3025     // This is a tentative definition; tentative definitions are
3026     // implicitly initialized with { 0 }.
3027     //
3028     // Note that tentative definitions are only emitted at the end of
3029     // a translation unit, so they should never have incomplete
3030     // type. In addition, EmitTentativeDefinition makes sure that we
3031     // never attempt to emit a tentative definition if a real one
3032     // exists. A use may still exists, however, so we still may need
3033     // to do a RAUW.
3034     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
3035     Init = EmitNullConstant(D->getType());
3036   } else {
3037     initializedGlobalDecl = GlobalDecl(D);
3038     emitter.emplace(*this);
3039     Init = emitter->tryEmitForInitializer(*InitDecl);
3040 
3041     if (!Init) {
3042       QualType T = InitExpr->getType();
3043       if (D->getType()->isReferenceType())
3044         T = D->getType();
3045 
3046       if (getLangOpts().CPlusPlus) {
3047         Init = EmitNullConstant(T);
3048         NeedsGlobalCtor = true;
3049       } else {
3050         ErrorUnsupported(D, "static initializer");
3051         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
3052       }
3053     } else {
3054       // We don't need an initializer, so remove the entry for the delayed
3055       // initializer position (just in case this entry was delayed) if we
3056       // also don't need to register a destructor.
3057       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
3058         DelayedCXXInitPosition.erase(D);
3059     }
3060   }
3061 
3062   llvm::Type* InitType = Init->getType();
3063   llvm::Constant *Entry =
3064       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
3065 
3066   // Strip off a bitcast if we got one back.
3067   if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
3068     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
3069            CE->getOpcode() == llvm::Instruction::AddrSpaceCast ||
3070            // All zero index gep.
3071            CE->getOpcode() == llvm::Instruction::GetElementPtr);
3072     Entry = CE->getOperand(0);
3073   }
3074 
3075   // Entry is now either a Function or GlobalVariable.
3076   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
3077 
3078   // We have a definition after a declaration with the wrong type.
3079   // We must make a new GlobalVariable* and update everything that used OldGV
3080   // (a declaration or tentative definition) with the new GlobalVariable*
3081   // (which will be a definition).
3082   //
3083   // This happens if there is a prototype for a global (e.g.
3084   // "extern int x[];") and then a definition of a different type (e.g.
3085   // "int x[10];"). This also happens when an initializer has a different type
3086   // from the type of the global (this happens with unions).
3087   if (!GV || GV->getType()->getElementType() != InitType ||
3088       GV->getType()->getAddressSpace() !=
3089           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
3090 
3091     // Move the old entry aside so that we'll create a new one.
3092     Entry->setName(StringRef());
3093 
3094     // Make a new global with the correct type, this is now guaranteed to work.
3095     GV = cast<llvm::GlobalVariable>(
3096         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)));
3097 
3098     // Replace all uses of the old global with the new global
3099     llvm::Constant *NewPtrForOldDecl =
3100         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
3101     Entry->replaceAllUsesWith(NewPtrForOldDecl);
3102 
3103     // Erase the old global, since it is no longer used.
3104     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
3105   }
3106 
3107   MaybeHandleStaticInExternC(D, GV);
3108 
3109   if (D->hasAttr<AnnotateAttr>())
3110     AddGlobalAnnotations(D, GV);
3111 
3112   // Set the llvm linkage type as appropriate.
3113   llvm::GlobalValue::LinkageTypes Linkage =
3114       getLLVMLinkageVarDefinition(D, GV->isConstant());
3115 
3116   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
3117   // the device. [...]"
3118   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
3119   // __device__, declares a variable that: [...]
3120   // Is accessible from all the threads within the grid and from the host
3121   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
3122   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
3123   if (GV && LangOpts.CUDA) {
3124     if (LangOpts.CUDAIsDevice) {
3125       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>())
3126         GV->setExternallyInitialized(true);
3127     } else {
3128       // Host-side shadows of external declarations of device-side
3129       // global variables become internal definitions. These have to
3130       // be internal in order to prevent name conflicts with global
3131       // host variables with the same name in a different TUs.
3132       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) {
3133         Linkage = llvm::GlobalValue::InternalLinkage;
3134 
3135         // Shadow variables and their properties must be registered
3136         // with CUDA runtime.
3137         unsigned Flags = 0;
3138         if (!D->hasDefinition())
3139           Flags |= CGCUDARuntime::ExternDeviceVar;
3140         if (D->hasAttr<CUDAConstantAttr>())
3141           Flags |= CGCUDARuntime::ConstantDeviceVar;
3142         getCUDARuntime().registerDeviceVar(*GV, Flags);
3143       } else if (D->hasAttr<CUDASharedAttr>())
3144         // __shared__ variables are odd. Shadows do get created, but
3145         // they are not registered with the CUDA runtime, so they
3146         // can't really be used to access their device-side
3147         // counterparts. It's not clear yet whether it's nvcc's bug or
3148         // a feature, but we've got to do the same for compatibility.
3149         Linkage = llvm::GlobalValue::InternalLinkage;
3150     }
3151   }
3152 
3153   GV->setInitializer(Init);
3154   if (emitter) emitter->finalize(GV);
3155 
3156   // If it is safe to mark the global 'constant', do so now.
3157   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
3158                   isTypeConstant(D->getType(), true));
3159 
3160   // If it is in a read-only section, mark it 'constant'.
3161   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
3162     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
3163     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
3164       GV->setConstant(true);
3165   }
3166 
3167   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
3168 
3169 
3170   // On Darwin, if the normal linkage of a C++ thread_local variable is
3171   // LinkOnce or Weak, we keep the normal linkage to prevent multiple
3172   // copies within a linkage unit; otherwise, the backing variable has
3173   // internal linkage and all accesses should just be calls to the
3174   // Itanium-specified entry point, which has the normal linkage of the
3175   // variable. This is to preserve the ability to change the implementation
3176   // behind the scenes.
3177   if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic &&
3178       Context.getTargetInfo().getTriple().isOSDarwin() &&
3179       !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) &&
3180       !llvm::GlobalVariable::isWeakLinkage(Linkage))
3181     Linkage = llvm::GlobalValue::InternalLinkage;
3182 
3183   GV->setLinkage(Linkage);
3184   if (D->hasAttr<DLLImportAttr>())
3185     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
3186   else if (D->hasAttr<DLLExportAttr>())
3187     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
3188   else
3189     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
3190 
3191   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
3192     // common vars aren't constant even if declared const.
3193     GV->setConstant(false);
3194     // Tentative definition of global variables may be initialized with
3195     // non-zero null pointers. In this case they should have weak linkage
3196     // since common linkage must have zero initializer and must not have
3197     // explicit section therefore cannot have non-zero initial value.
3198     if (!GV->getInitializer()->isNullValue())
3199       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
3200   }
3201 
3202   setNonAliasAttributes(D, GV);
3203 
3204   if (D->getTLSKind() && !GV->isThreadLocal()) {
3205     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
3206       CXXThreadLocals.push_back(D);
3207     setTLSMode(GV, *D);
3208   }
3209 
3210   maybeSetTrivialComdat(*D, *GV);
3211 
3212   // Emit the initializer function if necessary.
3213   if (NeedsGlobalCtor || NeedsGlobalDtor)
3214     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
3215 
3216   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
3217 
3218   // Emit global variable debug information.
3219   if (CGDebugInfo *DI = getModuleDebugInfo())
3220     if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
3221       DI->EmitGlobalVariable(GV, D);
3222 }
3223 
3224 static bool isVarDeclStrongDefinition(const ASTContext &Context,
3225                                       CodeGenModule &CGM, const VarDecl *D,
3226                                       bool NoCommon) {
3227   // Don't give variables common linkage if -fno-common was specified unless it
3228   // was overridden by a NoCommon attribute.
3229   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
3230     return true;
3231 
3232   // C11 6.9.2/2:
3233   //   A declaration of an identifier for an object that has file scope without
3234   //   an initializer, and without a storage-class specifier or with the
3235   //   storage-class specifier static, constitutes a tentative definition.
3236   if (D->getInit() || D->hasExternalStorage())
3237     return true;
3238 
3239   // A variable cannot be both common and exist in a section.
3240   if (D->hasAttr<SectionAttr>())
3241     return true;
3242 
3243   // A variable cannot be both common and exist in a section.
3244   // We dont try to determine which is the right section in the front-end.
3245   // If no specialized section name is applicable, it will resort to default.
3246   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
3247       D->hasAttr<PragmaClangDataSectionAttr>() ||
3248       D->hasAttr<PragmaClangRodataSectionAttr>())
3249     return true;
3250 
3251   // Thread local vars aren't considered common linkage.
3252   if (D->getTLSKind())
3253     return true;
3254 
3255   // Tentative definitions marked with WeakImportAttr are true definitions.
3256   if (D->hasAttr<WeakImportAttr>())
3257     return true;
3258 
3259   // A variable cannot be both common and exist in a comdat.
3260   if (shouldBeInCOMDAT(CGM, *D))
3261     return true;
3262 
3263   // Declarations with a required alignment do not have common linkage in MSVC
3264   // mode.
3265   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
3266     if (D->hasAttr<AlignedAttr>())
3267       return true;
3268     QualType VarType = D->getType();
3269     if (Context.isAlignmentRequired(VarType))
3270       return true;
3271 
3272     if (const auto *RT = VarType->getAs<RecordType>()) {
3273       const RecordDecl *RD = RT->getDecl();
3274       for (const FieldDecl *FD : RD->fields()) {
3275         if (FD->isBitField())
3276           continue;
3277         if (FD->hasAttr<AlignedAttr>())
3278           return true;
3279         if (Context.isAlignmentRequired(FD->getType()))
3280           return true;
3281       }
3282     }
3283   }
3284 
3285   return false;
3286 }
3287 
3288 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
3289     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
3290   if (Linkage == GVA_Internal)
3291     return llvm::Function::InternalLinkage;
3292 
3293   if (D->hasAttr<WeakAttr>()) {
3294     if (IsConstantVariable)
3295       return llvm::GlobalVariable::WeakODRLinkage;
3296     else
3297       return llvm::GlobalVariable::WeakAnyLinkage;
3298   }
3299 
3300   // We are guaranteed to have a strong definition somewhere else,
3301   // so we can use available_externally linkage.
3302   if (Linkage == GVA_AvailableExternally)
3303     return llvm::GlobalValue::AvailableExternallyLinkage;
3304 
3305   // Note that Apple's kernel linker doesn't support symbol
3306   // coalescing, so we need to avoid linkonce and weak linkages there.
3307   // Normally, this means we just map to internal, but for explicit
3308   // instantiations we'll map to external.
3309 
3310   // In C++, the compiler has to emit a definition in every translation unit
3311   // that references the function.  We should use linkonce_odr because
3312   // a) if all references in this translation unit are optimized away, we
3313   // don't need to codegen it.  b) if the function persists, it needs to be
3314   // merged with other definitions. c) C++ has the ODR, so we know the
3315   // definition is dependable.
3316   if (Linkage == GVA_DiscardableODR)
3317     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
3318                                             : llvm::Function::InternalLinkage;
3319 
3320   // An explicit instantiation of a template has weak linkage, since
3321   // explicit instantiations can occur in multiple translation units
3322   // and must all be equivalent. However, we are not allowed to
3323   // throw away these explicit instantiations.
3324   //
3325   // We don't currently support CUDA device code spread out across multiple TUs,
3326   // so say that CUDA templates are either external (for kernels) or internal.
3327   // This lets llvm perform aggressive inter-procedural optimizations.
3328   if (Linkage == GVA_StrongODR) {
3329     if (Context.getLangOpts().AppleKext)
3330       return llvm::Function::ExternalLinkage;
3331     if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice)
3332       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
3333                                           : llvm::Function::InternalLinkage;
3334     return llvm::Function::WeakODRLinkage;
3335   }
3336 
3337   // C++ doesn't have tentative definitions and thus cannot have common
3338   // linkage.
3339   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
3340       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
3341                                  CodeGenOpts.NoCommon))
3342     return llvm::GlobalVariable::CommonLinkage;
3343 
3344   // selectany symbols are externally visible, so use weak instead of
3345   // linkonce.  MSVC optimizes away references to const selectany globals, so
3346   // all definitions should be the same and ODR linkage should be used.
3347   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
3348   if (D->hasAttr<SelectAnyAttr>())
3349     return llvm::GlobalVariable::WeakODRLinkage;
3350 
3351   // Otherwise, we have strong external linkage.
3352   assert(Linkage == GVA_StrongExternal);
3353   return llvm::GlobalVariable::ExternalLinkage;
3354 }
3355 
3356 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
3357     const VarDecl *VD, bool IsConstant) {
3358   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
3359   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
3360 }
3361 
3362 /// Replace the uses of a function that was declared with a non-proto type.
3363 /// We want to silently drop extra arguments from call sites
3364 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
3365                                           llvm::Function *newFn) {
3366   // Fast path.
3367   if (old->use_empty()) return;
3368 
3369   llvm::Type *newRetTy = newFn->getReturnType();
3370   SmallVector<llvm::Value*, 4> newArgs;
3371   SmallVector<llvm::OperandBundleDef, 1> newBundles;
3372 
3373   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
3374          ui != ue; ) {
3375     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
3376     llvm::User *user = use->getUser();
3377 
3378     // Recognize and replace uses of bitcasts.  Most calls to
3379     // unprototyped functions will use bitcasts.
3380     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
3381       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
3382         replaceUsesOfNonProtoConstant(bitcast, newFn);
3383       continue;
3384     }
3385 
3386     // Recognize calls to the function.
3387     llvm::CallSite callSite(user);
3388     if (!callSite) continue;
3389     if (!callSite.isCallee(&*use)) continue;
3390 
3391     // If the return types don't match exactly, then we can't
3392     // transform this call unless it's dead.
3393     if (callSite->getType() != newRetTy && !callSite->use_empty())
3394       continue;
3395 
3396     // Get the call site's attribute list.
3397     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
3398     llvm::AttributeList oldAttrs = callSite.getAttributes();
3399 
3400     // If the function was passed too few arguments, don't transform.
3401     unsigned newNumArgs = newFn->arg_size();
3402     if (callSite.arg_size() < newNumArgs) continue;
3403 
3404     // If extra arguments were passed, we silently drop them.
3405     // If any of the types mismatch, we don't transform.
3406     unsigned argNo = 0;
3407     bool dontTransform = false;
3408     for (llvm::Argument &A : newFn->args()) {
3409       if (callSite.getArgument(argNo)->getType() != A.getType()) {
3410         dontTransform = true;
3411         break;
3412       }
3413 
3414       // Add any parameter attributes.
3415       newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo));
3416       argNo++;
3417     }
3418     if (dontTransform)
3419       continue;
3420 
3421     // Okay, we can transform this.  Create the new call instruction and copy
3422     // over the required information.
3423     newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
3424 
3425     // Copy over any operand bundles.
3426     callSite.getOperandBundlesAsDefs(newBundles);
3427 
3428     llvm::CallSite newCall;
3429     if (callSite.isCall()) {
3430       newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "",
3431                                        callSite.getInstruction());
3432     } else {
3433       auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction());
3434       newCall = llvm::InvokeInst::Create(newFn,
3435                                          oldInvoke->getNormalDest(),
3436                                          oldInvoke->getUnwindDest(),
3437                                          newArgs, newBundles, "",
3438                                          callSite.getInstruction());
3439     }
3440     newArgs.clear(); // for the next iteration
3441 
3442     if (!newCall->getType()->isVoidTy())
3443       newCall->takeName(callSite.getInstruction());
3444     newCall.setAttributes(llvm::AttributeList::get(
3445         newFn->getContext(), oldAttrs.getFnAttributes(),
3446         oldAttrs.getRetAttributes(), newArgAttrs));
3447     newCall.setCallingConv(callSite.getCallingConv());
3448 
3449     // Finally, remove the old call, replacing any uses with the new one.
3450     if (!callSite->use_empty())
3451       callSite->replaceAllUsesWith(newCall.getInstruction());
3452 
3453     // Copy debug location attached to CI.
3454     if (callSite->getDebugLoc())
3455       newCall->setDebugLoc(callSite->getDebugLoc());
3456 
3457     callSite->eraseFromParent();
3458   }
3459 }
3460 
3461 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
3462 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
3463 /// existing call uses of the old function in the module, this adjusts them to
3464 /// call the new function directly.
3465 ///
3466 /// This is not just a cleanup: the always_inline pass requires direct calls to
3467 /// functions to be able to inline them.  If there is a bitcast in the way, it
3468 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
3469 /// run at -O0.
3470 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
3471                                                       llvm::Function *NewFn) {
3472   // If we're redefining a global as a function, don't transform it.
3473   if (!isa<llvm::Function>(Old)) return;
3474 
3475   replaceUsesOfNonProtoConstant(Old, NewFn);
3476 }
3477 
3478 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
3479   auto DK = VD->isThisDeclarationADefinition();
3480   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
3481     return;
3482 
3483   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
3484   // If we have a definition, this might be a deferred decl. If the
3485   // instantiation is explicit, make sure we emit it at the end.
3486   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
3487     GetAddrOfGlobalVar(VD);
3488 
3489   EmitTopLevelDecl(VD);
3490 }
3491 
3492 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
3493                                                  llvm::GlobalValue *GV) {
3494   const auto *D = cast<FunctionDecl>(GD.getDecl());
3495 
3496   // Compute the function info and LLVM type.
3497   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3498   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3499 
3500   // Get or create the prototype for the function.
3501   if (!GV || (GV->getType()->getElementType() != Ty))
3502     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
3503                                                    /*DontDefer=*/true,
3504                                                    ForDefinition));
3505 
3506   // Already emitted.
3507   if (!GV->isDeclaration())
3508     return;
3509 
3510   // We need to set linkage and visibility on the function before
3511   // generating code for it because various parts of IR generation
3512   // want to propagate this information down (e.g. to local static
3513   // declarations).
3514   auto *Fn = cast<llvm::Function>(GV);
3515   setFunctionLinkage(GD, Fn);
3516   setFunctionDLLStorageClass(GD, Fn);
3517 
3518   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
3519   setGVProperties(Fn, D);
3520 
3521   MaybeHandleStaticInExternC(D, Fn);
3522 
3523   maybeSetTrivialComdat(*D, *Fn);
3524 
3525   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
3526 
3527   setFunctionDefinitionAttributes(D, Fn);
3528   SetLLVMFunctionAttributesForDefinition(D, Fn);
3529 
3530   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
3531     AddGlobalCtor(Fn, CA->getPriority());
3532   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
3533     AddGlobalDtor(Fn, DA->getPriority());
3534   if (D->hasAttr<AnnotateAttr>())
3535     AddGlobalAnnotations(D, Fn);
3536 }
3537 
3538 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
3539   const auto *D = cast<ValueDecl>(GD.getDecl());
3540   const AliasAttr *AA = D->getAttr<AliasAttr>();
3541   assert(AA && "Not an alias?");
3542 
3543   StringRef MangledName = getMangledName(GD);
3544 
3545   if (AA->getAliasee() == MangledName) {
3546     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
3547     return;
3548   }
3549 
3550   // If there is a definition in the module, then it wins over the alias.
3551   // This is dubious, but allow it to be safe.  Just ignore the alias.
3552   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3553   if (Entry && !Entry->isDeclaration())
3554     return;
3555 
3556   Aliases.push_back(GD);
3557 
3558   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
3559 
3560   // Create a reference to the named value.  This ensures that it is emitted
3561   // if a deferred decl.
3562   llvm::Constant *Aliasee;
3563   if (isa<llvm::FunctionType>(DeclTy))
3564     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
3565                                       /*ForVTable=*/false);
3566   else
3567     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
3568                                     llvm::PointerType::getUnqual(DeclTy),
3569                                     /*D=*/nullptr);
3570 
3571   // Create the new alias itself, but don't set a name yet.
3572   auto *GA = llvm::GlobalAlias::create(
3573       DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule());
3574 
3575   if (Entry) {
3576     if (GA->getAliasee() == Entry) {
3577       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
3578       return;
3579     }
3580 
3581     assert(Entry->isDeclaration());
3582 
3583     // If there is a declaration in the module, then we had an extern followed
3584     // by the alias, as in:
3585     //   extern int test6();
3586     //   ...
3587     //   int test6() __attribute__((alias("test7")));
3588     //
3589     // Remove it and replace uses of it with the alias.
3590     GA->takeName(Entry);
3591 
3592     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
3593                                                           Entry->getType()));
3594     Entry->eraseFromParent();
3595   } else {
3596     GA->setName(MangledName);
3597   }
3598 
3599   // Set attributes which are particular to an alias; this is a
3600   // specialization of the attributes which may be set on a global
3601   // variable/function.
3602   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
3603       D->isWeakImported()) {
3604     GA->setLinkage(llvm::Function::WeakAnyLinkage);
3605   }
3606 
3607   if (const auto *VD = dyn_cast<VarDecl>(D))
3608     if (VD->getTLSKind())
3609       setTLSMode(GA, *VD);
3610 
3611   setAliasAttributes(D, GA);
3612 }
3613 
3614 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
3615   const auto *D = cast<ValueDecl>(GD.getDecl());
3616   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
3617   assert(IFA && "Not an ifunc?");
3618 
3619   StringRef MangledName = getMangledName(GD);
3620 
3621   if (IFA->getResolver() == MangledName) {
3622     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
3623     return;
3624   }
3625 
3626   // Report an error if some definition overrides ifunc.
3627   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3628   if (Entry && !Entry->isDeclaration()) {
3629     GlobalDecl OtherGD;
3630     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3631         DiagnosedConflictingDefinitions.insert(GD).second) {
3632       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name);
3633       Diags.Report(OtherGD.getDecl()->getLocation(),
3634                    diag::note_previous_definition);
3635     }
3636     return;
3637   }
3638 
3639   Aliases.push_back(GD);
3640 
3641   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
3642   llvm::Constant *Resolver =
3643       GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD,
3644                               /*ForVTable=*/false);
3645   llvm::GlobalIFunc *GIF =
3646       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
3647                                 "", Resolver, &getModule());
3648   if (Entry) {
3649     if (GIF->getResolver() == Entry) {
3650       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
3651       return;
3652     }
3653     assert(Entry->isDeclaration());
3654 
3655     // If there is a declaration in the module, then we had an extern followed
3656     // by the ifunc, as in:
3657     //   extern int test();
3658     //   ...
3659     //   int test() __attribute__((ifunc("resolver")));
3660     //
3661     // Remove it and replace uses of it with the ifunc.
3662     GIF->takeName(Entry);
3663 
3664     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
3665                                                           Entry->getType()));
3666     Entry->eraseFromParent();
3667   } else
3668     GIF->setName(MangledName);
3669 
3670   SetCommonAttributes(D, GIF);
3671 }
3672 
3673 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
3674                                             ArrayRef<llvm::Type*> Tys) {
3675   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
3676                                          Tys);
3677 }
3678 
3679 static llvm::StringMapEntry<llvm::GlobalVariable *> &
3680 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
3681                          const StringLiteral *Literal, bool TargetIsLSB,
3682                          bool &IsUTF16, unsigned &StringLength) {
3683   StringRef String = Literal->getString();
3684   unsigned NumBytes = String.size();
3685 
3686   // Check for simple case.
3687   if (!Literal->containsNonAsciiOrNull()) {
3688     StringLength = NumBytes;
3689     return *Map.insert(std::make_pair(String, nullptr)).first;
3690   }
3691 
3692   // Otherwise, convert the UTF8 literals into a string of shorts.
3693   IsUTF16 = true;
3694 
3695   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
3696   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
3697   llvm::UTF16 *ToPtr = &ToBuf[0];
3698 
3699   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
3700                                  ToPtr + NumBytes, llvm::strictConversion);
3701 
3702   // ConvertUTF8toUTF16 returns the length in ToPtr.
3703   StringLength = ToPtr - &ToBuf[0];
3704 
3705   // Add an explicit null.
3706   *ToPtr = 0;
3707   return *Map.insert(std::make_pair(
3708                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
3709                                    (StringLength + 1) * 2),
3710                          nullptr)).first;
3711 }
3712 
3713 ConstantAddress
3714 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
3715   unsigned StringLength = 0;
3716   bool isUTF16 = false;
3717   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
3718       GetConstantCFStringEntry(CFConstantStringMap, Literal,
3719                                getDataLayout().isLittleEndian(), isUTF16,
3720                                StringLength);
3721 
3722   if (auto *C = Entry.second)
3723     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
3724 
3725   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
3726   llvm::Constant *Zeros[] = { Zero, Zero };
3727 
3728   // If we don't already have it, get __CFConstantStringClassReference.
3729   if (!CFConstantStringClassRef) {
3730     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
3731     Ty = llvm::ArrayType::get(Ty, 0);
3732     llvm::Constant *GV =
3733         CreateRuntimeVariable(Ty, "__CFConstantStringClassReference");
3734 
3735     if (getTriple().isOSBinFormatCOFF()) {
3736       IdentifierInfo &II = getContext().Idents.get(GV->getName());
3737       TranslationUnitDecl *TUDecl = getContext().getTranslationUnitDecl();
3738       DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
3739       llvm::GlobalValue *CGV = cast<llvm::GlobalValue>(GV);
3740 
3741       const VarDecl *VD = nullptr;
3742       for (const auto &Result : DC->lookup(&II))
3743         if ((VD = dyn_cast<VarDecl>(Result)))
3744           break;
3745 
3746       if (!VD || !VD->hasAttr<DLLExportAttr>()) {
3747         CGV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
3748         CGV->setLinkage(llvm::GlobalValue::ExternalLinkage);
3749       } else {
3750         CGV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
3751         CGV->setLinkage(llvm::GlobalValue::ExternalLinkage);
3752       }
3753     }
3754 
3755     // Decay array -> ptr
3756     CFConstantStringClassRef =
3757         llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros);
3758   }
3759 
3760   QualType CFTy = getContext().getCFConstantStringType();
3761 
3762   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
3763 
3764   ConstantInitBuilder Builder(*this);
3765   auto Fields = Builder.beginStruct(STy);
3766 
3767   // Class pointer.
3768   Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef));
3769 
3770   // Flags.
3771   Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
3772 
3773   // String pointer.
3774   llvm::Constant *C = nullptr;
3775   if (isUTF16) {
3776     auto Arr = llvm::makeArrayRef(
3777         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
3778         Entry.first().size() / 2);
3779     C = llvm::ConstantDataArray::get(VMContext, Arr);
3780   } else {
3781     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
3782   }
3783 
3784   // Note: -fwritable-strings doesn't make the backing store strings of
3785   // CFStrings writable. (See <rdar://problem/10657500>)
3786   auto *GV =
3787       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
3788                                llvm::GlobalValue::PrivateLinkage, C, ".str");
3789   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3790   // Don't enforce the target's minimum global alignment, since the only use
3791   // of the string is via this class initializer.
3792   CharUnits Align = isUTF16
3793                         ? getContext().getTypeAlignInChars(getContext().ShortTy)
3794                         : getContext().getTypeAlignInChars(getContext().CharTy);
3795   GV->setAlignment(Align.getQuantity());
3796 
3797   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
3798   // Without it LLVM can merge the string with a non unnamed_addr one during
3799   // LTO.  Doing that changes the section it ends in, which surprises ld64.
3800   if (getTriple().isOSBinFormatMachO())
3801     GV->setSection(isUTF16 ? "__TEXT,__ustring"
3802                            : "__TEXT,__cstring,cstring_literals");
3803 
3804   // String.
3805   llvm::Constant *Str =
3806       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
3807 
3808   if (isUTF16)
3809     // Cast the UTF16 string to the correct type.
3810     Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
3811   Fields.add(Str);
3812 
3813   // String length.
3814   auto Ty = getTypes().ConvertType(getContext().LongTy);
3815   Fields.addInt(cast<llvm::IntegerType>(Ty), StringLength);
3816 
3817   CharUnits Alignment = getPointerAlign();
3818 
3819   // The struct.
3820   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
3821                                     /*isConstant=*/false,
3822                                     llvm::GlobalVariable::PrivateLinkage);
3823   switch (getTriple().getObjectFormat()) {
3824   case llvm::Triple::UnknownObjectFormat:
3825     llvm_unreachable("unknown file format");
3826   case llvm::Triple::COFF:
3827   case llvm::Triple::ELF:
3828   case llvm::Triple::Wasm:
3829     GV->setSection("cfstring");
3830     break;
3831   case llvm::Triple::MachO:
3832     GV->setSection("__DATA,__cfstring");
3833     break;
3834   }
3835   Entry.second = GV;
3836 
3837   return ConstantAddress(GV, Alignment);
3838 }
3839 
3840 bool CodeGenModule::getExpressionLocationsEnabled() const {
3841   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
3842 }
3843 
3844 QualType CodeGenModule::getObjCFastEnumerationStateType() {
3845   if (ObjCFastEnumerationStateType.isNull()) {
3846     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
3847     D->startDefinition();
3848 
3849     QualType FieldTypes[] = {
3850       Context.UnsignedLongTy,
3851       Context.getPointerType(Context.getObjCIdType()),
3852       Context.getPointerType(Context.UnsignedLongTy),
3853       Context.getConstantArrayType(Context.UnsignedLongTy,
3854                            llvm::APInt(32, 5), ArrayType::Normal, 0)
3855     };
3856 
3857     for (size_t i = 0; i < 4; ++i) {
3858       FieldDecl *Field = FieldDecl::Create(Context,
3859                                            D,
3860                                            SourceLocation(),
3861                                            SourceLocation(), nullptr,
3862                                            FieldTypes[i], /*TInfo=*/nullptr,
3863                                            /*BitWidth=*/nullptr,
3864                                            /*Mutable=*/false,
3865                                            ICIS_NoInit);
3866       Field->setAccess(AS_public);
3867       D->addDecl(Field);
3868     }
3869 
3870     D->completeDefinition();
3871     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
3872   }
3873 
3874   return ObjCFastEnumerationStateType;
3875 }
3876 
3877 llvm::Constant *
3878 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
3879   assert(!E->getType()->isPointerType() && "Strings are always arrays");
3880 
3881   // Don't emit it as the address of the string, emit the string data itself
3882   // as an inline array.
3883   if (E->getCharByteWidth() == 1) {
3884     SmallString<64> Str(E->getString());
3885 
3886     // Resize the string to the right size, which is indicated by its type.
3887     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
3888     Str.resize(CAT->getSize().getZExtValue());
3889     return llvm::ConstantDataArray::getString(VMContext, Str, false);
3890   }
3891 
3892   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
3893   llvm::Type *ElemTy = AType->getElementType();
3894   unsigned NumElements = AType->getNumElements();
3895 
3896   // Wide strings have either 2-byte or 4-byte elements.
3897   if (ElemTy->getPrimitiveSizeInBits() == 16) {
3898     SmallVector<uint16_t, 32> Elements;
3899     Elements.reserve(NumElements);
3900 
3901     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
3902       Elements.push_back(E->getCodeUnit(i));
3903     Elements.resize(NumElements);
3904     return llvm::ConstantDataArray::get(VMContext, Elements);
3905   }
3906 
3907   assert(ElemTy->getPrimitiveSizeInBits() == 32);
3908   SmallVector<uint32_t, 32> Elements;
3909   Elements.reserve(NumElements);
3910 
3911   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
3912     Elements.push_back(E->getCodeUnit(i));
3913   Elements.resize(NumElements);
3914   return llvm::ConstantDataArray::get(VMContext, Elements);
3915 }
3916 
3917 static llvm::GlobalVariable *
3918 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
3919                       CodeGenModule &CGM, StringRef GlobalName,
3920                       CharUnits Alignment) {
3921   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
3922   unsigned AddrSpace = 0;
3923   if (CGM.getLangOpts().OpenCL)
3924     AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant);
3925 
3926   llvm::Module &M = CGM.getModule();
3927   // Create a global variable for this string
3928   auto *GV = new llvm::GlobalVariable(
3929       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
3930       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
3931   GV->setAlignment(Alignment.getQuantity());
3932   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3933   if (GV->isWeakForLinker()) {
3934     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
3935     GV->setComdat(M.getOrInsertComdat(GV->getName()));
3936   }
3937 
3938   return GV;
3939 }
3940 
3941 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
3942 /// constant array for the given string literal.
3943 ConstantAddress
3944 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
3945                                                   StringRef Name) {
3946   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
3947 
3948   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
3949   llvm::GlobalVariable **Entry = nullptr;
3950   if (!LangOpts.WritableStrings) {
3951     Entry = &ConstantStringMap[C];
3952     if (auto GV = *Entry) {
3953       if (Alignment.getQuantity() > GV->getAlignment())
3954         GV->setAlignment(Alignment.getQuantity());
3955       return ConstantAddress(GV, Alignment);
3956     }
3957   }
3958 
3959   SmallString<256> MangledNameBuffer;
3960   StringRef GlobalVariableName;
3961   llvm::GlobalValue::LinkageTypes LT;
3962 
3963   // Mangle the string literal if the ABI allows for it.  However, we cannot
3964   // do this if  we are compiling with ASan or -fwritable-strings because they
3965   // rely on strings having normal linkage.
3966   if (!LangOpts.WritableStrings &&
3967       !LangOpts.Sanitize.has(SanitizerKind::Address) &&
3968       getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) {
3969     llvm::raw_svector_ostream Out(MangledNameBuffer);
3970     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
3971 
3972     LT = llvm::GlobalValue::LinkOnceODRLinkage;
3973     GlobalVariableName = MangledNameBuffer;
3974   } else {
3975     LT = llvm::GlobalValue::PrivateLinkage;
3976     GlobalVariableName = Name;
3977   }
3978 
3979   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
3980   if (Entry)
3981     *Entry = GV;
3982 
3983   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
3984                                   QualType());
3985   return ConstantAddress(GV, Alignment);
3986 }
3987 
3988 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
3989 /// array for the given ObjCEncodeExpr node.
3990 ConstantAddress
3991 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
3992   std::string Str;
3993   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
3994 
3995   return GetAddrOfConstantCString(Str);
3996 }
3997 
3998 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
3999 /// the literal and a terminating '\0' character.
4000 /// The result has pointer to array type.
4001 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
4002     const std::string &Str, const char *GlobalName) {
4003   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
4004   CharUnits Alignment =
4005     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
4006 
4007   llvm::Constant *C =
4008       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
4009 
4010   // Don't share any string literals if strings aren't constant.
4011   llvm::GlobalVariable **Entry = nullptr;
4012   if (!LangOpts.WritableStrings) {
4013     Entry = &ConstantStringMap[C];
4014     if (auto GV = *Entry) {
4015       if (Alignment.getQuantity() > GV->getAlignment())
4016         GV->setAlignment(Alignment.getQuantity());
4017       return ConstantAddress(GV, Alignment);
4018     }
4019   }
4020 
4021   // Get the default prefix if a name wasn't specified.
4022   if (!GlobalName)
4023     GlobalName = ".str";
4024   // Create a global variable for this.
4025   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
4026                                   GlobalName, Alignment);
4027   if (Entry)
4028     *Entry = GV;
4029   return ConstantAddress(GV, Alignment);
4030 }
4031 
4032 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
4033     const MaterializeTemporaryExpr *E, const Expr *Init) {
4034   assert((E->getStorageDuration() == SD_Static ||
4035           E->getStorageDuration() == SD_Thread) && "not a global temporary");
4036   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
4037 
4038   // If we're not materializing a subobject of the temporary, keep the
4039   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
4040   QualType MaterializedType = Init->getType();
4041   if (Init == E->GetTemporaryExpr())
4042     MaterializedType = E->getType();
4043 
4044   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
4045 
4046   if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E])
4047     return ConstantAddress(Slot, Align);
4048 
4049   // FIXME: If an externally-visible declaration extends multiple temporaries,
4050   // we need to give each temporary the same name in every translation unit (and
4051   // we also need to make the temporaries externally-visible).
4052   SmallString<256> Name;
4053   llvm::raw_svector_ostream Out(Name);
4054   getCXXABI().getMangleContext().mangleReferenceTemporary(
4055       VD, E->getManglingNumber(), Out);
4056 
4057   APValue *Value = nullptr;
4058   if (E->getStorageDuration() == SD_Static) {
4059     // We might have a cached constant initializer for this temporary. Note
4060     // that this might have a different value from the value computed by
4061     // evaluating the initializer if the surrounding constant expression
4062     // modifies the temporary.
4063     Value = getContext().getMaterializedTemporaryValue(E, false);
4064     if (Value && Value->isUninit())
4065       Value = nullptr;
4066   }
4067 
4068   // Try evaluating it now, it might have a constant initializer.
4069   Expr::EvalResult EvalResult;
4070   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
4071       !EvalResult.hasSideEffects())
4072     Value = &EvalResult.Val;
4073 
4074   LangAS AddrSpace =
4075       VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
4076 
4077   Optional<ConstantEmitter> emitter;
4078   llvm::Constant *InitialValue = nullptr;
4079   bool Constant = false;
4080   llvm::Type *Type;
4081   if (Value) {
4082     // The temporary has a constant initializer, use it.
4083     emitter.emplace(*this);
4084     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
4085                                                MaterializedType);
4086     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
4087     Type = InitialValue->getType();
4088   } else {
4089     // No initializer, the initialization will be provided when we
4090     // initialize the declaration which performed lifetime extension.
4091     Type = getTypes().ConvertTypeForMem(MaterializedType);
4092   }
4093 
4094   // Create a global variable for this lifetime-extended temporary.
4095   llvm::GlobalValue::LinkageTypes Linkage =
4096       getLLVMLinkageVarDefinition(VD, Constant);
4097   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
4098     const VarDecl *InitVD;
4099     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
4100         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
4101       // Temporaries defined inside a class get linkonce_odr linkage because the
4102       // class can be defined in multipe translation units.
4103       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
4104     } else {
4105       // There is no need for this temporary to have external linkage if the
4106       // VarDecl has external linkage.
4107       Linkage = llvm::GlobalVariable::InternalLinkage;
4108     }
4109   }
4110   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
4111   auto *GV = new llvm::GlobalVariable(
4112       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
4113       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
4114   if (emitter) emitter->finalize(GV);
4115   setGVProperties(GV, VD);
4116   GV->setAlignment(Align.getQuantity());
4117   if (supportsCOMDAT() && GV->isWeakForLinker())
4118     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
4119   if (VD->getTLSKind())
4120     setTLSMode(GV, *VD);
4121   llvm::Constant *CV = GV;
4122   if (AddrSpace != LangAS::Default)
4123     CV = getTargetCodeGenInfo().performAddrSpaceCast(
4124         *this, GV, AddrSpace, LangAS::Default,
4125         Type->getPointerTo(
4126             getContext().getTargetAddressSpace(LangAS::Default)));
4127   MaterializedGlobalTemporaryMap[E] = CV;
4128   return ConstantAddress(CV, Align);
4129 }
4130 
4131 /// EmitObjCPropertyImplementations - Emit information for synthesized
4132 /// properties for an implementation.
4133 void CodeGenModule::EmitObjCPropertyImplementations(const
4134                                                     ObjCImplementationDecl *D) {
4135   for (const auto *PID : D->property_impls()) {
4136     // Dynamic is just for type-checking.
4137     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
4138       ObjCPropertyDecl *PD = PID->getPropertyDecl();
4139 
4140       // Determine which methods need to be implemented, some may have
4141       // been overridden. Note that ::isPropertyAccessor is not the method
4142       // we want, that just indicates if the decl came from a
4143       // property. What we want to know is if the method is defined in
4144       // this implementation.
4145       if (!D->getInstanceMethod(PD->getGetterName()))
4146         CodeGenFunction(*this).GenerateObjCGetter(
4147                                  const_cast<ObjCImplementationDecl *>(D), PID);
4148       if (!PD->isReadOnly() &&
4149           !D->getInstanceMethod(PD->getSetterName()))
4150         CodeGenFunction(*this).GenerateObjCSetter(
4151                                  const_cast<ObjCImplementationDecl *>(D), PID);
4152     }
4153   }
4154 }
4155 
4156 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
4157   const ObjCInterfaceDecl *iface = impl->getClassInterface();
4158   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
4159        ivar; ivar = ivar->getNextIvar())
4160     if (ivar->getType().isDestructedType())
4161       return true;
4162 
4163   return false;
4164 }
4165 
4166 static bool AllTrivialInitializers(CodeGenModule &CGM,
4167                                    ObjCImplementationDecl *D) {
4168   CodeGenFunction CGF(CGM);
4169   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
4170        E = D->init_end(); B != E; ++B) {
4171     CXXCtorInitializer *CtorInitExp = *B;
4172     Expr *Init = CtorInitExp->getInit();
4173     if (!CGF.isTrivialInitializer(Init))
4174       return false;
4175   }
4176   return true;
4177 }
4178 
4179 /// EmitObjCIvarInitializations - Emit information for ivar initialization
4180 /// for an implementation.
4181 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
4182   // We might need a .cxx_destruct even if we don't have any ivar initializers.
4183   if (needsDestructMethod(D)) {
4184     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
4185     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
4186     ObjCMethodDecl *DTORMethod =
4187       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
4188                              cxxSelector, getContext().VoidTy, nullptr, D,
4189                              /*isInstance=*/true, /*isVariadic=*/false,
4190                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
4191                              /*isDefined=*/false, ObjCMethodDecl::Required);
4192     D->addInstanceMethod(DTORMethod);
4193     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
4194     D->setHasDestructors(true);
4195   }
4196 
4197   // If the implementation doesn't have any ivar initializers, we don't need
4198   // a .cxx_construct.
4199   if (D->getNumIvarInitializers() == 0 ||
4200       AllTrivialInitializers(*this, D))
4201     return;
4202 
4203   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
4204   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
4205   // The constructor returns 'self'.
4206   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
4207                                                 D->getLocation(),
4208                                                 D->getLocation(),
4209                                                 cxxSelector,
4210                                                 getContext().getObjCIdType(),
4211                                                 nullptr, D, /*isInstance=*/true,
4212                                                 /*isVariadic=*/false,
4213                                                 /*isPropertyAccessor=*/true,
4214                                                 /*isImplicitlyDeclared=*/true,
4215                                                 /*isDefined=*/false,
4216                                                 ObjCMethodDecl::Required);
4217   D->addInstanceMethod(CTORMethod);
4218   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
4219   D->setHasNonZeroConstructors(true);
4220 }
4221 
4222 // EmitLinkageSpec - Emit all declarations in a linkage spec.
4223 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
4224   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
4225       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
4226     ErrorUnsupported(LSD, "linkage spec");
4227     return;
4228   }
4229 
4230   EmitDeclContext(LSD);
4231 }
4232 
4233 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
4234   for (auto *I : DC->decls()) {
4235     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
4236     // are themselves considered "top-level", so EmitTopLevelDecl on an
4237     // ObjCImplDecl does not recursively visit them. We need to do that in
4238     // case they're nested inside another construct (LinkageSpecDecl /
4239     // ExportDecl) that does stop them from being considered "top-level".
4240     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
4241       for (auto *M : OID->methods())
4242         EmitTopLevelDecl(M);
4243     }
4244 
4245     EmitTopLevelDecl(I);
4246   }
4247 }
4248 
4249 /// EmitTopLevelDecl - Emit code for a single top level declaration.
4250 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
4251   // Ignore dependent declarations.
4252   if (D->isTemplated())
4253     return;
4254 
4255   switch (D->getKind()) {
4256   case Decl::CXXConversion:
4257   case Decl::CXXMethod:
4258   case Decl::Function:
4259     EmitGlobal(cast<FunctionDecl>(D));
4260     // Always provide some coverage mapping
4261     // even for the functions that aren't emitted.
4262     AddDeferredUnusedCoverageMapping(D);
4263     break;
4264 
4265   case Decl::CXXDeductionGuide:
4266     // Function-like, but does not result in code emission.
4267     break;
4268 
4269   case Decl::Var:
4270   case Decl::Decomposition:
4271   case Decl::VarTemplateSpecialization:
4272     EmitGlobal(cast<VarDecl>(D));
4273     if (auto *DD = dyn_cast<DecompositionDecl>(D))
4274       for (auto *B : DD->bindings())
4275         if (auto *HD = B->getHoldingVar())
4276           EmitGlobal(HD);
4277     break;
4278 
4279   // Indirect fields from global anonymous structs and unions can be
4280   // ignored; only the actual variable requires IR gen support.
4281   case Decl::IndirectField:
4282     break;
4283 
4284   // C++ Decls
4285   case Decl::Namespace:
4286     EmitDeclContext(cast<NamespaceDecl>(D));
4287     break;
4288   case Decl::ClassTemplateSpecialization: {
4289     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
4290     if (DebugInfo &&
4291         Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition &&
4292         Spec->hasDefinition())
4293       DebugInfo->completeTemplateDefinition(*Spec);
4294   } LLVM_FALLTHROUGH;
4295   case Decl::CXXRecord:
4296     if (DebugInfo) {
4297       if (auto *ES = D->getASTContext().getExternalSource())
4298         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
4299           DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D));
4300     }
4301     // Emit any static data members, they may be definitions.
4302     for (auto *I : cast<CXXRecordDecl>(D)->decls())
4303       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
4304         EmitTopLevelDecl(I);
4305     break;
4306     // No code generation needed.
4307   case Decl::UsingShadow:
4308   case Decl::ClassTemplate:
4309   case Decl::VarTemplate:
4310   case Decl::VarTemplatePartialSpecialization:
4311   case Decl::FunctionTemplate:
4312   case Decl::TypeAliasTemplate:
4313   case Decl::Block:
4314   case Decl::Empty:
4315     break;
4316   case Decl::Using:          // using X; [C++]
4317     if (CGDebugInfo *DI = getModuleDebugInfo())
4318         DI->EmitUsingDecl(cast<UsingDecl>(*D));
4319     return;
4320   case Decl::NamespaceAlias:
4321     if (CGDebugInfo *DI = getModuleDebugInfo())
4322         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
4323     return;
4324   case Decl::UsingDirective: // using namespace X; [C++]
4325     if (CGDebugInfo *DI = getModuleDebugInfo())
4326       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
4327     return;
4328   case Decl::CXXConstructor:
4329     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
4330     break;
4331   case Decl::CXXDestructor:
4332     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
4333     break;
4334 
4335   case Decl::StaticAssert:
4336     // Nothing to do.
4337     break;
4338 
4339   // Objective-C Decls
4340 
4341   // Forward declarations, no (immediate) code generation.
4342   case Decl::ObjCInterface:
4343   case Decl::ObjCCategory:
4344     break;
4345 
4346   case Decl::ObjCProtocol: {
4347     auto *Proto = cast<ObjCProtocolDecl>(D);
4348     if (Proto->isThisDeclarationADefinition())
4349       ObjCRuntime->GenerateProtocol(Proto);
4350     break;
4351   }
4352 
4353   case Decl::ObjCCategoryImpl:
4354     // Categories have properties but don't support synthesize so we
4355     // can ignore them here.
4356     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
4357     break;
4358 
4359   case Decl::ObjCImplementation: {
4360     auto *OMD = cast<ObjCImplementationDecl>(D);
4361     EmitObjCPropertyImplementations(OMD);
4362     EmitObjCIvarInitializations(OMD);
4363     ObjCRuntime->GenerateClass(OMD);
4364     // Emit global variable debug information.
4365     if (CGDebugInfo *DI = getModuleDebugInfo())
4366       if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
4367         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
4368             OMD->getClassInterface()), OMD->getLocation());
4369     break;
4370   }
4371   case Decl::ObjCMethod: {
4372     auto *OMD = cast<ObjCMethodDecl>(D);
4373     // If this is not a prototype, emit the body.
4374     if (OMD->getBody())
4375       CodeGenFunction(*this).GenerateObjCMethod(OMD);
4376     break;
4377   }
4378   case Decl::ObjCCompatibleAlias:
4379     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
4380     break;
4381 
4382   case Decl::PragmaComment: {
4383     const auto *PCD = cast<PragmaCommentDecl>(D);
4384     switch (PCD->getCommentKind()) {
4385     case PCK_Unknown:
4386       llvm_unreachable("unexpected pragma comment kind");
4387     case PCK_Linker:
4388       AppendLinkerOptions(PCD->getArg());
4389       break;
4390     case PCK_Lib:
4391       if (getTarget().getTriple().isOSBinFormatELF() &&
4392           !getTarget().getTriple().isPS4())
4393         AddELFLibDirective(PCD->getArg());
4394       else
4395         AddDependentLib(PCD->getArg());
4396       break;
4397     case PCK_Compiler:
4398     case PCK_ExeStr:
4399     case PCK_User:
4400       break; // We ignore all of these.
4401     }
4402     break;
4403   }
4404 
4405   case Decl::PragmaDetectMismatch: {
4406     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
4407     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
4408     break;
4409   }
4410 
4411   case Decl::LinkageSpec:
4412     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
4413     break;
4414 
4415   case Decl::FileScopeAsm: {
4416     // File-scope asm is ignored during device-side CUDA compilation.
4417     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
4418       break;
4419     // File-scope asm is ignored during device-side OpenMP compilation.
4420     if (LangOpts.OpenMPIsDevice)
4421       break;
4422     auto *AD = cast<FileScopeAsmDecl>(D);
4423     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
4424     break;
4425   }
4426 
4427   case Decl::Import: {
4428     auto *Import = cast<ImportDecl>(D);
4429 
4430     // If we've already imported this module, we're done.
4431     if (!ImportedModules.insert(Import->getImportedModule()))
4432       break;
4433 
4434     // Emit debug information for direct imports.
4435     if (!Import->getImportedOwningModule()) {
4436       if (CGDebugInfo *DI = getModuleDebugInfo())
4437         DI->EmitImportDecl(*Import);
4438     }
4439 
4440     // Find all of the submodules and emit the module initializers.
4441     llvm::SmallPtrSet<clang::Module *, 16> Visited;
4442     SmallVector<clang::Module *, 16> Stack;
4443     Visited.insert(Import->getImportedModule());
4444     Stack.push_back(Import->getImportedModule());
4445 
4446     while (!Stack.empty()) {
4447       clang::Module *Mod = Stack.pop_back_val();
4448       if (!EmittedModuleInitializers.insert(Mod).second)
4449         continue;
4450 
4451       for (auto *D : Context.getModuleInitializers(Mod))
4452         EmitTopLevelDecl(D);
4453 
4454       // Visit the submodules of this module.
4455       for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
4456                                              SubEnd = Mod->submodule_end();
4457            Sub != SubEnd; ++Sub) {
4458         // Skip explicit children; they need to be explicitly imported to emit
4459         // the initializers.
4460         if ((*Sub)->IsExplicit)
4461           continue;
4462 
4463         if (Visited.insert(*Sub).second)
4464           Stack.push_back(*Sub);
4465       }
4466     }
4467     break;
4468   }
4469 
4470   case Decl::Export:
4471     EmitDeclContext(cast<ExportDecl>(D));
4472     break;
4473 
4474   case Decl::OMPThreadPrivate:
4475     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
4476     break;
4477 
4478   case Decl::OMPDeclareReduction:
4479     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
4480     break;
4481 
4482   default:
4483     // Make sure we handled everything we should, every other kind is a
4484     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
4485     // function. Need to recode Decl::Kind to do that easily.
4486     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
4487     break;
4488   }
4489 }
4490 
4491 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
4492   // Do we need to generate coverage mapping?
4493   if (!CodeGenOpts.CoverageMapping)
4494     return;
4495   switch (D->getKind()) {
4496   case Decl::CXXConversion:
4497   case Decl::CXXMethod:
4498   case Decl::Function:
4499   case Decl::ObjCMethod:
4500   case Decl::CXXConstructor:
4501   case Decl::CXXDestructor: {
4502     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
4503       return;
4504     SourceManager &SM = getContext().getSourceManager();
4505     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getLocStart()))
4506       return;
4507     auto I = DeferredEmptyCoverageMappingDecls.find(D);
4508     if (I == DeferredEmptyCoverageMappingDecls.end())
4509       DeferredEmptyCoverageMappingDecls[D] = true;
4510     break;
4511   }
4512   default:
4513     break;
4514   };
4515 }
4516 
4517 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
4518   // Do we need to generate coverage mapping?
4519   if (!CodeGenOpts.CoverageMapping)
4520     return;
4521   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
4522     if (Fn->isTemplateInstantiation())
4523       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
4524   }
4525   auto I = DeferredEmptyCoverageMappingDecls.find(D);
4526   if (I == DeferredEmptyCoverageMappingDecls.end())
4527     DeferredEmptyCoverageMappingDecls[D] = false;
4528   else
4529     I->second = false;
4530 }
4531 
4532 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
4533   // We call takeVector() here to avoid use-after-free.
4534   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
4535   // we deserialize function bodies to emit coverage info for them, and that
4536   // deserializes more declarations. How should we handle that case?
4537   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
4538     if (!Entry.second)
4539       continue;
4540     const Decl *D = Entry.first;
4541     switch (D->getKind()) {
4542     case Decl::CXXConversion:
4543     case Decl::CXXMethod:
4544     case Decl::Function:
4545     case Decl::ObjCMethod: {
4546       CodeGenPGO PGO(*this);
4547       GlobalDecl GD(cast<FunctionDecl>(D));
4548       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4549                                   getFunctionLinkage(GD));
4550       break;
4551     }
4552     case Decl::CXXConstructor: {
4553       CodeGenPGO PGO(*this);
4554       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
4555       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4556                                   getFunctionLinkage(GD));
4557       break;
4558     }
4559     case Decl::CXXDestructor: {
4560       CodeGenPGO PGO(*this);
4561       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
4562       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4563                                   getFunctionLinkage(GD));
4564       break;
4565     }
4566     default:
4567       break;
4568     };
4569   }
4570 }
4571 
4572 /// Turns the given pointer into a constant.
4573 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
4574                                           const void *Ptr) {
4575   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
4576   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
4577   return llvm::ConstantInt::get(i64, PtrInt);
4578 }
4579 
4580 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
4581                                    llvm::NamedMDNode *&GlobalMetadata,
4582                                    GlobalDecl D,
4583                                    llvm::GlobalValue *Addr) {
4584   if (!GlobalMetadata)
4585     GlobalMetadata =
4586       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
4587 
4588   // TODO: should we report variant information for ctors/dtors?
4589   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
4590                            llvm::ConstantAsMetadata::get(GetPointerConstant(
4591                                CGM.getLLVMContext(), D.getDecl()))};
4592   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
4593 }
4594 
4595 /// For each function which is declared within an extern "C" region and marked
4596 /// as 'used', but has internal linkage, create an alias from the unmangled
4597 /// name to the mangled name if possible. People expect to be able to refer
4598 /// to such functions with an unmangled name from inline assembly within the
4599 /// same translation unit.
4600 void CodeGenModule::EmitStaticExternCAliases() {
4601   // Don't do anything if we're generating CUDA device code -- the NVPTX
4602   // assembly target doesn't support aliases.
4603   if (Context.getTargetInfo().getTriple().isNVPTX())
4604     return;
4605   for (auto &I : StaticExternCValues) {
4606     IdentifierInfo *Name = I.first;
4607     llvm::GlobalValue *Val = I.second;
4608     if (Val && !getModule().getNamedValue(Name->getName()))
4609       addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
4610   }
4611 }
4612 
4613 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
4614                                              GlobalDecl &Result) const {
4615   auto Res = Manglings.find(MangledName);
4616   if (Res == Manglings.end())
4617     return false;
4618   Result = Res->getValue();
4619   return true;
4620 }
4621 
4622 /// Emits metadata nodes associating all the global values in the
4623 /// current module with the Decls they came from.  This is useful for
4624 /// projects using IR gen as a subroutine.
4625 ///
4626 /// Since there's currently no way to associate an MDNode directly
4627 /// with an llvm::GlobalValue, we create a global named metadata
4628 /// with the name 'clang.global.decl.ptrs'.
4629 void CodeGenModule::EmitDeclMetadata() {
4630   llvm::NamedMDNode *GlobalMetadata = nullptr;
4631 
4632   for (auto &I : MangledDeclNames) {
4633     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
4634     // Some mangled names don't necessarily have an associated GlobalValue
4635     // in this module, e.g. if we mangled it for DebugInfo.
4636     if (Addr)
4637       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
4638   }
4639 }
4640 
4641 /// Emits metadata nodes for all the local variables in the current
4642 /// function.
4643 void CodeGenFunction::EmitDeclMetadata() {
4644   if (LocalDeclMap.empty()) return;
4645 
4646   llvm::LLVMContext &Context = getLLVMContext();
4647 
4648   // Find the unique metadata ID for this name.
4649   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
4650 
4651   llvm::NamedMDNode *GlobalMetadata = nullptr;
4652 
4653   for (auto &I : LocalDeclMap) {
4654     const Decl *D = I.first;
4655     llvm::Value *Addr = I.second.getPointer();
4656     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
4657       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
4658       Alloca->setMetadata(
4659           DeclPtrKind, llvm::MDNode::get(
4660                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
4661     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
4662       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
4663       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
4664     }
4665   }
4666 }
4667 
4668 void CodeGenModule::EmitVersionIdentMetadata() {
4669   llvm::NamedMDNode *IdentMetadata =
4670     TheModule.getOrInsertNamedMetadata("llvm.ident");
4671   std::string Version = getClangFullVersion();
4672   llvm::LLVMContext &Ctx = TheModule.getContext();
4673 
4674   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
4675   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
4676 }
4677 
4678 void CodeGenModule::EmitTargetMetadata() {
4679   // Warning, new MangledDeclNames may be appended within this loop.
4680   // We rely on MapVector insertions adding new elements to the end
4681   // of the container.
4682   // FIXME: Move this loop into the one target that needs it, and only
4683   // loop over those declarations for which we couldn't emit the target
4684   // metadata when we emitted the declaration.
4685   for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
4686     auto Val = *(MangledDeclNames.begin() + I);
4687     const Decl *D = Val.first.getDecl()->getMostRecentDecl();
4688     llvm::GlobalValue *GV = GetGlobalValue(Val.second);
4689     getTargetCodeGenInfo().emitTargetMD(D, GV, *this);
4690   }
4691 }
4692 
4693 void CodeGenModule::EmitCoverageFile() {
4694   if (getCodeGenOpts().CoverageDataFile.empty() &&
4695       getCodeGenOpts().CoverageNotesFile.empty())
4696     return;
4697 
4698   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
4699   if (!CUNode)
4700     return;
4701 
4702   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
4703   llvm::LLVMContext &Ctx = TheModule.getContext();
4704   auto *CoverageDataFile =
4705       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
4706   auto *CoverageNotesFile =
4707       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
4708   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
4709     llvm::MDNode *CU = CUNode->getOperand(i);
4710     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
4711     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
4712   }
4713 }
4714 
4715 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) {
4716   // Sema has checked that all uuid strings are of the form
4717   // "12345678-1234-1234-1234-1234567890ab".
4718   assert(Uuid.size() == 36);
4719   for (unsigned i = 0; i < 36; ++i) {
4720     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-');
4721     else                                         assert(isHexDigit(Uuid[i]));
4722   }
4723 
4724   // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab".
4725   const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
4726 
4727   llvm::Constant *Field3[8];
4728   for (unsigned Idx = 0; Idx < 8; ++Idx)
4729     Field3[Idx] = llvm::ConstantInt::get(
4730         Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
4731 
4732   llvm::Constant *Fields[4] = {
4733     llvm::ConstantInt::get(Int32Ty, Uuid.substr(0,  8), 16),
4734     llvm::ConstantInt::get(Int16Ty, Uuid.substr(9,  4), 16),
4735     llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
4736     llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
4737   };
4738 
4739   return llvm::ConstantStruct::getAnon(Fields);
4740 }
4741 
4742 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
4743                                                        bool ForEH) {
4744   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
4745   // FIXME: should we even be calling this method if RTTI is disabled
4746   // and it's not for EH?
4747   if (!ForEH && !getLangOpts().RTTI)
4748     return llvm::Constant::getNullValue(Int8PtrTy);
4749 
4750   if (ForEH && Ty->isObjCObjectPointerType() &&
4751       LangOpts.ObjCRuntime.isGNUFamily())
4752     return ObjCRuntime->GetEHType(Ty);
4753 
4754   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
4755 }
4756 
4757 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
4758   // Do not emit threadprivates in simd-only mode.
4759   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
4760     return;
4761   for (auto RefExpr : D->varlists()) {
4762     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
4763     bool PerformInit =
4764         VD->getAnyInitializer() &&
4765         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
4766                                                         /*ForRef=*/false);
4767 
4768     Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
4769     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
4770             VD, Addr, RefExpr->getLocStart(), PerformInit))
4771       CXXGlobalInits.push_back(InitFunction);
4772   }
4773 }
4774 
4775 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
4776   llvm::Metadata *&InternalId = MetadataIdMap[T.getCanonicalType()];
4777   if (InternalId)
4778     return InternalId;
4779 
4780   if (isExternallyVisible(T->getLinkage())) {
4781     std::string OutName;
4782     llvm::raw_string_ostream Out(OutName);
4783     getCXXABI().getMangleContext().mangleTypeName(T, Out);
4784 
4785     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
4786   } else {
4787     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
4788                                            llvm::ArrayRef<llvm::Metadata *>());
4789   }
4790 
4791   return InternalId;
4792 }
4793 
4794 // Generalize pointer types to a void pointer with the qualifiers of the
4795 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
4796 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
4797 // 'void *'.
4798 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
4799   if (!Ty->isPointerType())
4800     return Ty;
4801 
4802   return Ctx.getPointerType(
4803       QualType(Ctx.VoidTy).withCVRQualifiers(
4804           Ty->getPointeeType().getCVRQualifiers()));
4805 }
4806 
4807 // Apply type generalization to a FunctionType's return and argument types
4808 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
4809   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
4810     SmallVector<QualType, 8> GeneralizedParams;
4811     for (auto &Param : FnType->param_types())
4812       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
4813 
4814     return Ctx.getFunctionType(
4815         GeneralizeType(Ctx, FnType->getReturnType()),
4816         GeneralizedParams, FnType->getExtProtoInfo());
4817   }
4818 
4819   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
4820     return Ctx.getFunctionNoProtoType(
4821         GeneralizeType(Ctx, FnType->getReturnType()));
4822 
4823   llvm_unreachable("Encountered unknown FunctionType");
4824 }
4825 
4826 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
4827   T = GeneralizeFunctionType(getContext(), T);
4828 
4829   llvm::Metadata *&InternalId = GeneralizedMetadataIdMap[T.getCanonicalType()];
4830   if (InternalId)
4831     return InternalId;
4832 
4833   if (isExternallyVisible(T->getLinkage())) {
4834     std::string OutName;
4835     llvm::raw_string_ostream Out(OutName);
4836     getCXXABI().getMangleContext().mangleTypeName(T, Out);
4837     Out << ".generalized";
4838 
4839     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
4840   } else {
4841     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
4842                                            llvm::ArrayRef<llvm::Metadata *>());
4843   }
4844 
4845   return InternalId;
4846 }
4847 
4848 /// Returns whether this module needs the "all-vtables" type identifier.
4849 bool CodeGenModule::NeedAllVtablesTypeId() const {
4850   // Returns true if at least one of vtable-based CFI checkers is enabled and
4851   // is not in the trapping mode.
4852   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
4853            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
4854           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
4855            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
4856           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
4857            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
4858           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
4859            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
4860 }
4861 
4862 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
4863                                           CharUnits Offset,
4864                                           const CXXRecordDecl *RD) {
4865   llvm::Metadata *MD =
4866       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
4867   VTable->addTypeMetadata(Offset.getQuantity(), MD);
4868 
4869   if (CodeGenOpts.SanitizeCfiCrossDso)
4870     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
4871       VTable->addTypeMetadata(Offset.getQuantity(),
4872                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
4873 
4874   if (NeedAllVtablesTypeId()) {
4875     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
4876     VTable->addTypeMetadata(Offset.getQuantity(), MD);
4877   }
4878 }
4879 
4880 // Fills in the supplied string map with the set of target features for the
4881 // passed in function.
4882 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
4883                                           const FunctionDecl *FD) {
4884   StringRef TargetCPU = Target.getTargetOpts().CPU;
4885   if (const auto *TD = FD->getAttr<TargetAttr>()) {
4886     // If we have a TargetAttr build up the feature map based on that.
4887     TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
4888 
4889     ParsedAttr.Features.erase(
4890         llvm::remove_if(ParsedAttr.Features,
4891                         [&](const std::string &Feat) {
4892                           return !Target.isValidFeatureName(
4893                               StringRef{Feat}.substr(1));
4894                         }),
4895         ParsedAttr.Features.end());
4896 
4897     // Make a copy of the features as passed on the command line into the
4898     // beginning of the additional features from the function to override.
4899     ParsedAttr.Features.insert(ParsedAttr.Features.begin(),
4900                             Target.getTargetOpts().FeaturesAsWritten.begin(),
4901                             Target.getTargetOpts().FeaturesAsWritten.end());
4902 
4903     if (ParsedAttr.Architecture != "" &&
4904         Target.isValidCPUName(ParsedAttr.Architecture))
4905       TargetCPU = ParsedAttr.Architecture;
4906 
4907     // Now populate the feature map, first with the TargetCPU which is either
4908     // the default or a new one from the target attribute string. Then we'll use
4909     // the passed in features (FeaturesAsWritten) along with the new ones from
4910     // the attribute.
4911     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
4912                           ParsedAttr.Features);
4913   } else {
4914     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
4915                           Target.getTargetOpts().Features);
4916   }
4917 }
4918 
4919 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
4920   if (!SanStats)
4921     SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule());
4922 
4923   return *SanStats;
4924 }
4925 llvm::Value *
4926 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
4927                                                   CodeGenFunction &CGF) {
4928   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
4929   auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
4930   auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
4931   return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy,
4932                                 "__translate_sampler_initializer"),
4933                                 {C});
4934 }
4935