xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 2d11ae0a40e209a7b91aeff0c9cf28fe41dce93c)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-module state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenModule.h"
14 #include "CGBlocks.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGObjCRuntime.h"
20 #include "CGOpenCLRuntime.h"
21 #include "CGOpenMPRuntime.h"
22 #include "CGOpenMPRuntimeAMDGCN.h"
23 #include "CGOpenMPRuntimeNVPTX.h"
24 #include "CodeGenFunction.h"
25 #include "CodeGenPGO.h"
26 #include "ConstantEmitter.h"
27 #include "CoverageMappingGen.h"
28 #include "TargetInfo.h"
29 #include "clang/AST/ASTContext.h"
30 #include "clang/AST/CharUnits.h"
31 #include "clang/AST/DeclCXX.h"
32 #include "clang/AST/DeclObjC.h"
33 #include "clang/AST/DeclTemplate.h"
34 #include "clang/AST/Mangle.h"
35 #include "clang/AST/RecordLayout.h"
36 #include "clang/AST/RecursiveASTVisitor.h"
37 #include "clang/AST/StmtVisitor.h"
38 #include "clang/Basic/Builtins.h"
39 #include "clang/Basic/CharInfo.h"
40 #include "clang/Basic/CodeGenOptions.h"
41 #include "clang/Basic/Diagnostic.h"
42 #include "clang/Basic/FileManager.h"
43 #include "clang/Basic/Module.h"
44 #include "clang/Basic/SourceManager.h"
45 #include "clang/Basic/TargetInfo.h"
46 #include "clang/Basic/Version.h"
47 #include "clang/CodeGen/ConstantInitBuilder.h"
48 #include "clang/Frontend/FrontendDiagnostic.h"
49 #include "llvm/ADT/StringSwitch.h"
50 #include "llvm/ADT/Triple.h"
51 #include "llvm/Analysis/TargetLibraryInfo.h"
52 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
53 #include "llvm/IR/CallingConv.h"
54 #include "llvm/IR/DataLayout.h"
55 #include "llvm/IR/Intrinsics.h"
56 #include "llvm/IR/LLVMContext.h"
57 #include "llvm/IR/Module.h"
58 #include "llvm/IR/ProfileSummary.h"
59 #include "llvm/ProfileData/InstrProfReader.h"
60 #include "llvm/Support/CodeGen.h"
61 #include "llvm/Support/CommandLine.h"
62 #include "llvm/Support/ConvertUTF.h"
63 #include "llvm/Support/ErrorHandling.h"
64 #include "llvm/Support/MD5.h"
65 #include "llvm/Support/TimeProfiler.h"
66 
67 using namespace clang;
68 using namespace CodeGen;
69 
70 static llvm::cl::opt<bool> LimitedCoverage(
71     "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden,
72     llvm::cl::desc("Emit limited coverage mapping information (experimental)"),
73     llvm::cl::init(false));
74 
75 static const char AnnotationSection[] = "llvm.metadata";
76 
77 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
78   switch (CGM.getTarget().getCXXABI().getKind()) {
79   case TargetCXXABI::Fuchsia:
80   case TargetCXXABI::GenericAArch64:
81   case TargetCXXABI::GenericARM:
82   case TargetCXXABI::iOS:
83   case TargetCXXABI::iOS64:
84   case TargetCXXABI::WatchOS:
85   case TargetCXXABI::GenericMIPS:
86   case TargetCXXABI::GenericItanium:
87   case TargetCXXABI::WebAssembly:
88   case TargetCXXABI::XL:
89     return CreateItaniumCXXABI(CGM);
90   case TargetCXXABI::Microsoft:
91     return CreateMicrosoftCXXABI(CGM);
92   }
93 
94   llvm_unreachable("invalid C++ ABI kind");
95 }
96 
97 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
98                              const PreprocessorOptions &PPO,
99                              const CodeGenOptions &CGO, llvm::Module &M,
100                              DiagnosticsEngine &diags,
101                              CoverageSourceInfo *CoverageInfo)
102     : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
103       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
104       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
105       VMContext(M.getContext()), Types(*this), VTables(*this),
106       SanitizerMD(new SanitizerMetadata(*this)) {
107 
108   // Initialize the type cache.
109   llvm::LLVMContext &LLVMContext = M.getContext();
110   VoidTy = llvm::Type::getVoidTy(LLVMContext);
111   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
112   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
113   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
114   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
115   HalfTy = llvm::Type::getHalfTy(LLVMContext);
116   BFloatTy = llvm::Type::getBFloatTy(LLVMContext);
117   FloatTy = llvm::Type::getFloatTy(LLVMContext);
118   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
119   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
120   PointerAlignInBytes =
121     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
122   SizeSizeInBytes =
123     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
124   IntAlignInBytes =
125     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
126   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
127   IntPtrTy = llvm::IntegerType::get(LLVMContext,
128     C.getTargetInfo().getMaxPointerWidth());
129   Int8PtrTy = Int8Ty->getPointerTo(0);
130   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
131   AllocaInt8PtrTy = Int8Ty->getPointerTo(
132       M.getDataLayout().getAllocaAddrSpace());
133   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
134 
135   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
136 
137   if (LangOpts.ObjC)
138     createObjCRuntime();
139   if (LangOpts.OpenCL)
140     createOpenCLRuntime();
141   if (LangOpts.OpenMP)
142     createOpenMPRuntime();
143   if (LangOpts.CUDA)
144     createCUDARuntime();
145 
146   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
147   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
148       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
149     TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
150                                getCXXABI().getMangleContext()));
151 
152   // If debug info or coverage generation is enabled, create the CGDebugInfo
153   // object.
154   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
155       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
156     DebugInfo.reset(new CGDebugInfo(*this));
157 
158   Block.GlobalUniqueCount = 0;
159 
160   if (C.getLangOpts().ObjC)
161     ObjCData.reset(new ObjCEntrypoints());
162 
163   if (CodeGenOpts.hasProfileClangUse()) {
164     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
165         CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile);
166     if (auto E = ReaderOrErr.takeError()) {
167       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
168                                               "Could not read profile %0: %1");
169       llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
170         getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
171                                   << EI.message();
172       });
173     } else
174       PGOReader = std::move(ReaderOrErr.get());
175   }
176 
177   // If coverage mapping generation is enabled, create the
178   // CoverageMappingModuleGen object.
179   if (CodeGenOpts.CoverageMapping)
180     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
181 }
182 
183 CodeGenModule::~CodeGenModule() {}
184 
185 void CodeGenModule::createObjCRuntime() {
186   // This is just isGNUFamily(), but we want to force implementors of
187   // new ABIs to decide how best to do this.
188   switch (LangOpts.ObjCRuntime.getKind()) {
189   case ObjCRuntime::GNUstep:
190   case ObjCRuntime::GCC:
191   case ObjCRuntime::ObjFW:
192     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
193     return;
194 
195   case ObjCRuntime::FragileMacOSX:
196   case ObjCRuntime::MacOSX:
197   case ObjCRuntime::iOS:
198   case ObjCRuntime::WatchOS:
199     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
200     return;
201   }
202   llvm_unreachable("bad runtime kind");
203 }
204 
205 void CodeGenModule::createOpenCLRuntime() {
206   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
207 }
208 
209 void CodeGenModule::createOpenMPRuntime() {
210   // Select a specialized code generation class based on the target, if any.
211   // If it does not exist use the default implementation.
212   switch (getTriple().getArch()) {
213   case llvm::Triple::nvptx:
214   case llvm::Triple::nvptx64:
215     assert(getLangOpts().OpenMPIsDevice &&
216            "OpenMP NVPTX is only prepared to deal with device code.");
217     OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this));
218     break;
219   case llvm::Triple::amdgcn:
220     assert(getLangOpts().OpenMPIsDevice &&
221            "OpenMP AMDGCN is only prepared to deal with device code.");
222     OpenMPRuntime.reset(new CGOpenMPRuntimeAMDGCN(*this));
223     break;
224   default:
225     if (LangOpts.OpenMPSimd)
226       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
227     else
228       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
229     break;
230   }
231 }
232 
233 void CodeGenModule::createCUDARuntime() {
234   CUDARuntime.reset(CreateNVCUDARuntime(*this));
235 }
236 
237 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
238   Replacements[Name] = C;
239 }
240 
241 void CodeGenModule::applyReplacements() {
242   for (auto &I : Replacements) {
243     StringRef MangledName = I.first();
244     llvm::Constant *Replacement = I.second;
245     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
246     if (!Entry)
247       continue;
248     auto *OldF = cast<llvm::Function>(Entry);
249     auto *NewF = dyn_cast<llvm::Function>(Replacement);
250     if (!NewF) {
251       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
252         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
253       } else {
254         auto *CE = cast<llvm::ConstantExpr>(Replacement);
255         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
256                CE->getOpcode() == llvm::Instruction::GetElementPtr);
257         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
258       }
259     }
260 
261     // Replace old with new, but keep the old order.
262     OldF->replaceAllUsesWith(Replacement);
263     if (NewF) {
264       NewF->removeFromParent();
265       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
266                                                        NewF);
267     }
268     OldF->eraseFromParent();
269   }
270 }
271 
272 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
273   GlobalValReplacements.push_back(std::make_pair(GV, C));
274 }
275 
276 void CodeGenModule::applyGlobalValReplacements() {
277   for (auto &I : GlobalValReplacements) {
278     llvm::GlobalValue *GV = I.first;
279     llvm::Constant *C = I.second;
280 
281     GV->replaceAllUsesWith(C);
282     GV->eraseFromParent();
283   }
284 }
285 
286 // This is only used in aliases that we created and we know they have a
287 // linear structure.
288 static const llvm::GlobalObject *getAliasedGlobal(
289     const llvm::GlobalIndirectSymbol &GIS) {
290   llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited;
291   const llvm::Constant *C = &GIS;
292   for (;;) {
293     C = C->stripPointerCasts();
294     if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
295       return GO;
296     // stripPointerCasts will not walk over weak aliases.
297     auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C);
298     if (!GIS2)
299       return nullptr;
300     if (!Visited.insert(GIS2).second)
301       return nullptr;
302     C = GIS2->getIndirectSymbol();
303   }
304 }
305 
306 void CodeGenModule::checkAliases() {
307   // Check if the constructed aliases are well formed. It is really unfortunate
308   // that we have to do this in CodeGen, but we only construct mangled names
309   // and aliases during codegen.
310   bool Error = false;
311   DiagnosticsEngine &Diags = getDiags();
312   for (const GlobalDecl &GD : Aliases) {
313     const auto *D = cast<ValueDecl>(GD.getDecl());
314     SourceLocation Location;
315     bool IsIFunc = D->hasAttr<IFuncAttr>();
316     if (const Attr *A = D->getDefiningAttr())
317       Location = A->getLocation();
318     else
319       llvm_unreachable("Not an alias or ifunc?");
320     StringRef MangledName = getMangledName(GD);
321     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
322     auto *Alias  = cast<llvm::GlobalIndirectSymbol>(Entry);
323     const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
324     if (!GV) {
325       Error = true;
326       Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
327     } else if (GV->isDeclaration()) {
328       Error = true;
329       Diags.Report(Location, diag::err_alias_to_undefined)
330           << IsIFunc << IsIFunc;
331     } else if (IsIFunc) {
332       // Check resolver function type.
333       llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(
334           GV->getType()->getPointerElementType());
335       assert(FTy);
336       if (!FTy->getReturnType()->isPointerTy())
337         Diags.Report(Location, diag::err_ifunc_resolver_return);
338     }
339 
340     llvm::Constant *Aliasee = Alias->getIndirectSymbol();
341     llvm::GlobalValue *AliaseeGV;
342     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
343       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
344     else
345       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
346 
347     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
348       StringRef AliasSection = SA->getName();
349       if (AliasSection != AliaseeGV->getSection())
350         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
351             << AliasSection << IsIFunc << IsIFunc;
352     }
353 
354     // We have to handle alias to weak aliases in here. LLVM itself disallows
355     // this since the object semantics would not match the IL one. For
356     // compatibility with gcc we implement it by just pointing the alias
357     // to its aliasee's aliasee. We also warn, since the user is probably
358     // expecting the link to be weak.
359     if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) {
360       if (GA->isInterposable()) {
361         Diags.Report(Location, diag::warn_alias_to_weak_alias)
362             << GV->getName() << GA->getName() << IsIFunc;
363         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
364             GA->getIndirectSymbol(), Alias->getType());
365         Alias->setIndirectSymbol(Aliasee);
366       }
367     }
368   }
369   if (!Error)
370     return;
371 
372   for (const GlobalDecl &GD : Aliases) {
373     StringRef MangledName = getMangledName(GD);
374     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
375     auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry);
376     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
377     Alias->eraseFromParent();
378   }
379 }
380 
381 void CodeGenModule::clear() {
382   DeferredDeclsToEmit.clear();
383   if (OpenMPRuntime)
384     OpenMPRuntime->clear();
385 }
386 
387 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
388                                        StringRef MainFile) {
389   if (!hasDiagnostics())
390     return;
391   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
392     if (MainFile.empty())
393       MainFile = "<stdin>";
394     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
395   } else {
396     if (Mismatched > 0)
397       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
398 
399     if (Missing > 0)
400       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
401   }
402 }
403 
404 void CodeGenModule::Release() {
405   EmitDeferred();
406   EmitVTablesOpportunistically();
407   applyGlobalValReplacements();
408   applyReplacements();
409   checkAliases();
410   emitMultiVersionFunctions();
411   EmitCXXGlobalInitFunc();
412   EmitCXXGlobalCleanUpFunc();
413   registerGlobalDtorsWithAtExit();
414   EmitCXXThreadLocalInitFunc();
415   if (ObjCRuntime)
416     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
417       AddGlobalCtor(ObjCInitFunction);
418   if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice &&
419       CUDARuntime) {
420     if (llvm::Function *CudaCtorFunction =
421             CUDARuntime->makeModuleCtorFunction())
422       AddGlobalCtor(CudaCtorFunction);
423   }
424   if (OpenMPRuntime) {
425     if (llvm::Function *OpenMPRequiresDirectiveRegFun =
426             OpenMPRuntime->emitRequiresDirectiveRegFun()) {
427       AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0);
428     }
429     OpenMPRuntime->createOffloadEntriesAndInfoMetadata();
430     OpenMPRuntime->clear();
431   }
432   if (PGOReader) {
433     getModule().setProfileSummary(
434         PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
435         llvm::ProfileSummary::PSK_Instr);
436     if (PGOStats.hasDiagnostics())
437       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
438   }
439   EmitCtorList(GlobalCtors, "llvm.global_ctors");
440   EmitCtorList(GlobalDtors, "llvm.global_dtors");
441   EmitGlobalAnnotations();
442   EmitStaticExternCAliases();
443   EmitDeferredUnusedCoverageMappings();
444   if (CoverageMapping)
445     CoverageMapping->emit();
446   if (CodeGenOpts.SanitizeCfiCrossDso) {
447     CodeGenFunction(*this).EmitCfiCheckFail();
448     CodeGenFunction(*this).EmitCfiCheckStub();
449   }
450   emitAtAvailableLinkGuard();
451   if (Context.getTargetInfo().getTriple().isWasm() &&
452       !Context.getTargetInfo().getTriple().isOSEmscripten()) {
453     EmitMainVoidAlias();
454   }
455   emitLLVMUsed();
456   if (SanStats)
457     SanStats->finish();
458 
459   if (CodeGenOpts.Autolink &&
460       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
461     EmitModuleLinkOptions();
462   }
463 
464   // On ELF we pass the dependent library specifiers directly to the linker
465   // without manipulating them. This is in contrast to other platforms where
466   // they are mapped to a specific linker option by the compiler. This
467   // difference is a result of the greater variety of ELF linkers and the fact
468   // that ELF linkers tend to handle libraries in a more complicated fashion
469   // than on other platforms. This forces us to defer handling the dependent
470   // libs to the linker.
471   //
472   // CUDA/HIP device and host libraries are different. Currently there is no
473   // way to differentiate dependent libraries for host or device. Existing
474   // usage of #pragma comment(lib, *) is intended for host libraries on
475   // Windows. Therefore emit llvm.dependent-libraries only for host.
476   if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
477     auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
478     for (auto *MD : ELFDependentLibraries)
479       NMD->addOperand(MD);
480   }
481 
482   // Record mregparm value now so it is visible through rest of codegen.
483   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
484     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
485                               CodeGenOpts.NumRegisterParameters);
486 
487   if (CodeGenOpts.DwarfVersion) {
488     getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version",
489                               CodeGenOpts.DwarfVersion);
490   }
491 
492   if (Context.getLangOpts().SemanticInterposition)
493     // Require various optimization to respect semantic interposition.
494     getModule().setSemanticInterposition(1);
495   else if (Context.getLangOpts().ExplicitNoSemanticInterposition)
496     // Allow dso_local on applicable targets.
497     getModule().setSemanticInterposition(0);
498 
499   if (CodeGenOpts.EmitCodeView) {
500     // Indicate that we want CodeView in the metadata.
501     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
502   }
503   if (CodeGenOpts.CodeViewGHash) {
504     getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
505   }
506   if (CodeGenOpts.ControlFlowGuard) {
507     // Function ID tables and checks for Control Flow Guard (cfguard=2).
508     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2);
509   } else if (CodeGenOpts.ControlFlowGuardNoChecks) {
510     // Function ID tables for Control Flow Guard (cfguard=1).
511     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
512   }
513   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
514     // We don't support LTO with 2 with different StrictVTablePointers
515     // FIXME: we could support it by stripping all the information introduced
516     // by StrictVTablePointers.
517 
518     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
519 
520     llvm::Metadata *Ops[2] = {
521               llvm::MDString::get(VMContext, "StrictVTablePointers"),
522               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
523                   llvm::Type::getInt32Ty(VMContext), 1))};
524 
525     getModule().addModuleFlag(llvm::Module::Require,
526                               "StrictVTablePointersRequirement",
527                               llvm::MDNode::get(VMContext, Ops));
528   }
529   if (getModuleDebugInfo())
530     // We support a single version in the linked module. The LLVM
531     // parser will drop debug info with a different version number
532     // (and warn about it, too).
533     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
534                               llvm::DEBUG_METADATA_VERSION);
535 
536   // We need to record the widths of enums and wchar_t, so that we can generate
537   // the correct build attributes in the ARM backend. wchar_size is also used by
538   // TargetLibraryInfo.
539   uint64_t WCharWidth =
540       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
541   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
542 
543   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
544   if (   Arch == llvm::Triple::arm
545       || Arch == llvm::Triple::armeb
546       || Arch == llvm::Triple::thumb
547       || Arch == llvm::Triple::thumbeb) {
548     // The minimum width of an enum in bytes
549     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
550     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
551   }
552 
553   if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) {
554     StringRef ABIStr = Target.getABI();
555     llvm::LLVMContext &Ctx = TheModule.getContext();
556     getModule().addModuleFlag(llvm::Module::Error, "target-abi",
557                               llvm::MDString::get(Ctx, ABIStr));
558   }
559 
560   if (CodeGenOpts.SanitizeCfiCrossDso) {
561     // Indicate that we want cross-DSO control flow integrity checks.
562     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
563   }
564 
565   if (CodeGenOpts.WholeProgramVTables) {
566     // Indicate whether VFE was enabled for this module, so that the
567     // vcall_visibility metadata added under whole program vtables is handled
568     // appropriately in the optimizer.
569     getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim",
570                               CodeGenOpts.VirtualFunctionElimination);
571   }
572 
573   if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) {
574     getModule().addModuleFlag(llvm::Module::Override,
575                               "CFI Canonical Jump Tables",
576                               CodeGenOpts.SanitizeCfiCanonicalJumpTables);
577   }
578 
579   if (CodeGenOpts.CFProtectionReturn &&
580       Target.checkCFProtectionReturnSupported(getDiags())) {
581     // Indicate that we want to instrument return control flow protection.
582     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return",
583                               1);
584   }
585 
586   if (CodeGenOpts.CFProtectionBranch &&
587       Target.checkCFProtectionBranchSupported(getDiags())) {
588     // Indicate that we want to instrument branch control flow protection.
589     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch",
590                               1);
591   }
592 
593   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
594     // Indicate whether __nvvm_reflect should be configured to flush denormal
595     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
596     // property.)
597     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
598                               CodeGenOpts.FP32DenormalMode.Output !=
599                                   llvm::DenormalMode::IEEE);
600   }
601 
602   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
603   if (LangOpts.OpenCL) {
604     EmitOpenCLMetadata();
605     // Emit SPIR version.
606     if (getTriple().isSPIR()) {
607       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
608       // opencl.spir.version named metadata.
609       // C++ is backwards compatible with OpenCL v2.0.
610       auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion;
611       llvm::Metadata *SPIRVerElts[] = {
612           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
613               Int32Ty, Version / 100)),
614           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
615               Int32Ty, (Version / 100 > 1) ? 0 : 2))};
616       llvm::NamedMDNode *SPIRVerMD =
617           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
618       llvm::LLVMContext &Ctx = TheModule.getContext();
619       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
620     }
621   }
622 
623   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
624     assert(PLevel < 3 && "Invalid PIC Level");
625     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
626     if (Context.getLangOpts().PIE)
627       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
628   }
629 
630   if (getCodeGenOpts().CodeModel.size() > 0) {
631     unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
632                   .Case("tiny", llvm::CodeModel::Tiny)
633                   .Case("small", llvm::CodeModel::Small)
634                   .Case("kernel", llvm::CodeModel::Kernel)
635                   .Case("medium", llvm::CodeModel::Medium)
636                   .Case("large", llvm::CodeModel::Large)
637                   .Default(~0u);
638     if (CM != ~0u) {
639       llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
640       getModule().setCodeModel(codeModel);
641     }
642   }
643 
644   if (CodeGenOpts.NoPLT)
645     getModule().setRtLibUseGOT();
646 
647   SimplifyPersonality();
648 
649   if (getCodeGenOpts().EmitDeclMetadata)
650     EmitDeclMetadata();
651 
652   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
653     EmitCoverageFile();
654 
655   if (CGDebugInfo *DI = getModuleDebugInfo())
656     DI->finalize();
657 
658   if (getCodeGenOpts().EmitVersionIdentMetadata)
659     EmitVersionIdentMetadata();
660 
661   if (!getCodeGenOpts().RecordCommandLine.empty())
662     EmitCommandLineMetadata();
663 
664   getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames);
665 
666   EmitBackendOptionsMetadata(getCodeGenOpts());
667 }
668 
669 void CodeGenModule::EmitOpenCLMetadata() {
670   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
671   // opencl.ocl.version named metadata node.
672   // C++ is backwards compatible with OpenCL v2.0.
673   // FIXME: We might need to add CXX version at some point too?
674   auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion;
675   llvm::Metadata *OCLVerElts[] = {
676       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
677           Int32Ty, Version / 100)),
678       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
679           Int32Ty, (Version % 100) / 10))};
680   llvm::NamedMDNode *OCLVerMD =
681       TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
682   llvm::LLVMContext &Ctx = TheModule.getContext();
683   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
684 }
685 
686 void CodeGenModule::EmitBackendOptionsMetadata(
687     const CodeGenOptions CodeGenOpts) {
688   switch (getTriple().getArch()) {
689   default:
690     break;
691   case llvm::Triple::riscv32:
692   case llvm::Triple::riscv64:
693     getModule().addModuleFlag(llvm::Module::Error, "SmallDataLimit",
694                               CodeGenOpts.SmallDataLimit);
695     break;
696   }
697 }
698 
699 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
700   // Make sure that this type is translated.
701   Types.UpdateCompletedType(TD);
702 }
703 
704 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
705   // Make sure that this type is translated.
706   Types.RefreshTypeCacheForClass(RD);
707 }
708 
709 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
710   if (!TBAA)
711     return nullptr;
712   return TBAA->getTypeInfo(QTy);
713 }
714 
715 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
716   if (!TBAA)
717     return TBAAAccessInfo();
718   if (getLangOpts().CUDAIsDevice) {
719     // As CUDA builtin surface/texture types are replaced, skip generating TBAA
720     // access info.
721     if (AccessType->isCUDADeviceBuiltinSurfaceType()) {
722       if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() !=
723           nullptr)
724         return TBAAAccessInfo();
725     } else if (AccessType->isCUDADeviceBuiltinTextureType()) {
726       if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() !=
727           nullptr)
728         return TBAAAccessInfo();
729     }
730   }
731   return TBAA->getAccessInfo(AccessType);
732 }
733 
734 TBAAAccessInfo
735 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
736   if (!TBAA)
737     return TBAAAccessInfo();
738   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
739 }
740 
741 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
742   if (!TBAA)
743     return nullptr;
744   return TBAA->getTBAAStructInfo(QTy);
745 }
746 
747 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
748   if (!TBAA)
749     return nullptr;
750   return TBAA->getBaseTypeInfo(QTy);
751 }
752 
753 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
754   if (!TBAA)
755     return nullptr;
756   return TBAA->getAccessTagInfo(Info);
757 }
758 
759 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
760                                                    TBAAAccessInfo TargetInfo) {
761   if (!TBAA)
762     return TBAAAccessInfo();
763   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
764 }
765 
766 TBAAAccessInfo
767 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
768                                                    TBAAAccessInfo InfoB) {
769   if (!TBAA)
770     return TBAAAccessInfo();
771   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
772 }
773 
774 TBAAAccessInfo
775 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
776                                               TBAAAccessInfo SrcInfo) {
777   if (!TBAA)
778     return TBAAAccessInfo();
779   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
780 }
781 
782 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
783                                                 TBAAAccessInfo TBAAInfo) {
784   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
785     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
786 }
787 
788 void CodeGenModule::DecorateInstructionWithInvariantGroup(
789     llvm::Instruction *I, const CXXRecordDecl *RD) {
790   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
791                  llvm::MDNode::get(getLLVMContext(), {}));
792 }
793 
794 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
795   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
796   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
797 }
798 
799 /// ErrorUnsupported - Print out an error that codegen doesn't support the
800 /// specified stmt yet.
801 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
802   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
803                                                "cannot compile this %0 yet");
804   std::string Msg = Type;
805   getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
806       << Msg << S->getSourceRange();
807 }
808 
809 /// ErrorUnsupported - Print out an error that codegen doesn't support the
810 /// specified decl yet.
811 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
812   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
813                                                "cannot compile this %0 yet");
814   std::string Msg = Type;
815   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
816 }
817 
818 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
819   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
820 }
821 
822 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
823                                         const NamedDecl *D) const {
824   if (GV->hasDLLImportStorageClass())
825     return;
826   // Internal definitions always have default visibility.
827   if (GV->hasLocalLinkage()) {
828     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
829     return;
830   }
831   if (!D)
832     return;
833   // Set visibility for definitions, and for declarations if requested globally
834   // or set explicitly.
835   LinkageInfo LV = D->getLinkageAndVisibility();
836   if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
837       !GV->isDeclarationForLinker())
838     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
839 }
840 
841 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
842                                  llvm::GlobalValue *GV) {
843   if (GV->hasLocalLinkage())
844     return true;
845 
846   if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
847     return true;
848 
849   // DLLImport explicitly marks the GV as external.
850   if (GV->hasDLLImportStorageClass())
851     return false;
852 
853   const llvm::Triple &TT = CGM.getTriple();
854   if (TT.isWindowsGNUEnvironment()) {
855     // In MinGW, variables without DLLImport can still be automatically
856     // imported from a DLL by the linker; don't mark variables that
857     // potentially could come from another DLL as DSO local.
858     if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
859         !GV->isThreadLocal())
860       return false;
861   }
862 
863   // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
864   // remain unresolved in the link, they can be resolved to zero, which is
865   // outside the current DSO.
866   if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
867     return false;
868 
869   // Every other GV is local on COFF.
870   // Make an exception for windows OS in the triple: Some firmware builds use
871   // *-win32-macho triples. This (accidentally?) produced windows relocations
872   // without GOT tables in older clang versions; Keep this behaviour.
873   // FIXME: even thread local variables?
874   if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
875     return true;
876 
877   // Only handle COFF and ELF for now.
878   if (!TT.isOSBinFormatELF())
879     return false;
880 
881   // If this is not an executable, don't assume anything is local.
882   const auto &CGOpts = CGM.getCodeGenOpts();
883   llvm::Reloc::Model RM = CGOpts.RelocationModel;
884   const auto &LOpts = CGM.getLangOpts();
885   if (RM != llvm::Reloc::Static && !LOpts.PIE)
886     return false;
887 
888   // A definition cannot be preempted from an executable.
889   if (!GV->isDeclarationForLinker())
890     return true;
891 
892   // Most PIC code sequences that assume that a symbol is local cannot produce a
893   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
894   // depended, it seems worth it to handle it here.
895   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
896     return false;
897 
898   // PPC has no copy relocations and cannot use a plt entry as a symbol address.
899   llvm::Triple::ArchType Arch = TT.getArch();
900   if (Arch == llvm::Triple::ppc || Arch == llvm::Triple::ppc64 ||
901       Arch == llvm::Triple::ppc64le)
902     return false;
903 
904   // If we can use copy relocations we can assume it is local.
905   if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
906     if (!Var->isThreadLocal() &&
907         (RM == llvm::Reloc::Static || CGOpts.PIECopyRelocations))
908       return true;
909 
910   // If we can use a plt entry as the symbol address we can assume it
911   // is local.
912   // FIXME: This should work for PIE, but the gold linker doesn't support it.
913   if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
914     return true;
915 
916   // Otherwise don't assume it is local.
917   return false;
918 }
919 
920 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
921   GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
922 }
923 
924 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
925                                           GlobalDecl GD) const {
926   const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
927   // C++ destructors have a few C++ ABI specific special cases.
928   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
929     getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
930     return;
931   }
932   setDLLImportDLLExport(GV, D);
933 }
934 
935 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
936                                           const NamedDecl *D) const {
937   if (D && D->isExternallyVisible()) {
938     if (D->hasAttr<DLLImportAttr>())
939       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
940     else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker())
941       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
942   }
943 }
944 
945 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
946                                     GlobalDecl GD) const {
947   setDLLImportDLLExport(GV, GD);
948   setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl()));
949 }
950 
951 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
952                                     const NamedDecl *D) const {
953   setDLLImportDLLExport(GV, D);
954   setGVPropertiesAux(GV, D);
955 }
956 
957 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV,
958                                        const NamedDecl *D) const {
959   setGlobalVisibility(GV, D);
960   setDSOLocal(GV);
961   GV->setPartition(CodeGenOpts.SymbolPartition);
962 }
963 
964 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
965   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
966       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
967       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
968       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
969       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
970 }
971 
972 llvm::GlobalVariable::ThreadLocalMode
973 CodeGenModule::GetDefaultLLVMTLSModel() const {
974   switch (CodeGenOpts.getDefaultTLSModel()) {
975   case CodeGenOptions::GeneralDynamicTLSModel:
976     return llvm::GlobalVariable::GeneralDynamicTLSModel;
977   case CodeGenOptions::LocalDynamicTLSModel:
978     return llvm::GlobalVariable::LocalDynamicTLSModel;
979   case CodeGenOptions::InitialExecTLSModel:
980     return llvm::GlobalVariable::InitialExecTLSModel;
981   case CodeGenOptions::LocalExecTLSModel:
982     return llvm::GlobalVariable::LocalExecTLSModel;
983   }
984   llvm_unreachable("Invalid TLS model!");
985 }
986 
987 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
988   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
989 
990   llvm::GlobalValue::ThreadLocalMode TLM;
991   TLM = GetDefaultLLVMTLSModel();
992 
993   // Override the TLS model if it is explicitly specified.
994   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
995     TLM = GetLLVMTLSModel(Attr->getModel());
996   }
997 
998   GV->setThreadLocalMode(TLM);
999 }
1000 
1001 static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
1002                                           StringRef Name) {
1003   const TargetInfo &Target = CGM.getTarget();
1004   return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
1005 }
1006 
1007 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
1008                                                  const CPUSpecificAttr *Attr,
1009                                                  unsigned CPUIndex,
1010                                                  raw_ostream &Out) {
1011   // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
1012   // supported.
1013   if (Attr)
1014     Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
1015   else if (CGM.getTarget().supportsIFunc())
1016     Out << ".resolver";
1017 }
1018 
1019 static void AppendTargetMangling(const CodeGenModule &CGM,
1020                                  const TargetAttr *Attr, raw_ostream &Out) {
1021   if (Attr->isDefaultVersion())
1022     return;
1023 
1024   Out << '.';
1025   const TargetInfo &Target = CGM.getTarget();
1026   ParsedTargetAttr Info =
1027       Attr->parse([&Target](StringRef LHS, StringRef RHS) {
1028         // Multiversioning doesn't allow "no-${feature}", so we can
1029         // only have "+" prefixes here.
1030         assert(LHS.startswith("+") && RHS.startswith("+") &&
1031                "Features should always have a prefix.");
1032         return Target.multiVersionSortPriority(LHS.substr(1)) >
1033                Target.multiVersionSortPriority(RHS.substr(1));
1034       });
1035 
1036   bool IsFirst = true;
1037 
1038   if (!Info.Architecture.empty()) {
1039     IsFirst = false;
1040     Out << "arch_" << Info.Architecture;
1041   }
1042 
1043   for (StringRef Feat : Info.Features) {
1044     if (!IsFirst)
1045       Out << '_';
1046     IsFirst = false;
1047     Out << Feat.substr(1);
1048   }
1049 }
1050 
1051 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD,
1052                                       const NamedDecl *ND,
1053                                       bool OmitMultiVersionMangling = false) {
1054   SmallString<256> Buffer;
1055   llvm::raw_svector_ostream Out(Buffer);
1056   MangleContext &MC = CGM.getCXXABI().getMangleContext();
1057   if (MC.shouldMangleDeclName(ND))
1058     MC.mangleName(GD.getWithDecl(ND), Out);
1059   else {
1060     IdentifierInfo *II = ND->getIdentifier();
1061     assert(II && "Attempt to mangle unnamed decl.");
1062     const auto *FD = dyn_cast<FunctionDecl>(ND);
1063 
1064     if (FD &&
1065         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
1066       Out << "__regcall3__" << II->getName();
1067     } else if (FD && FD->hasAttr<CUDAGlobalAttr>() &&
1068                GD.getKernelReferenceKind() == KernelReferenceKind::Stub) {
1069       Out << "__device_stub__" << II->getName();
1070     } else {
1071       Out << II->getName();
1072     }
1073   }
1074 
1075   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1076     if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
1077       switch (FD->getMultiVersionKind()) {
1078       case MultiVersionKind::CPUDispatch:
1079       case MultiVersionKind::CPUSpecific:
1080         AppendCPUSpecificCPUDispatchMangling(CGM,
1081                                              FD->getAttr<CPUSpecificAttr>(),
1082                                              GD.getMultiVersionIndex(), Out);
1083         break;
1084       case MultiVersionKind::Target:
1085         AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
1086         break;
1087       case MultiVersionKind::None:
1088         llvm_unreachable("None multiversion type isn't valid here");
1089       }
1090     }
1091 
1092   return std::string(Out.str());
1093 }
1094 
1095 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
1096                                             const FunctionDecl *FD) {
1097   if (!FD->isMultiVersion())
1098     return;
1099 
1100   // Get the name of what this would be without the 'target' attribute.  This
1101   // allows us to lookup the version that was emitted when this wasn't a
1102   // multiversion function.
1103   std::string NonTargetName =
1104       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1105   GlobalDecl OtherGD;
1106   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1107     assert(OtherGD.getCanonicalDecl()
1108                .getDecl()
1109                ->getAsFunction()
1110                ->isMultiVersion() &&
1111            "Other GD should now be a multiversioned function");
1112     // OtherFD is the version of this function that was mangled BEFORE
1113     // becoming a MultiVersion function.  It potentially needs to be updated.
1114     const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1115                                       .getDecl()
1116                                       ->getAsFunction()
1117                                       ->getMostRecentDecl();
1118     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1119     // This is so that if the initial version was already the 'default'
1120     // version, we don't try to update it.
1121     if (OtherName != NonTargetName) {
1122       // Remove instead of erase, since others may have stored the StringRef
1123       // to this.
1124       const auto ExistingRecord = Manglings.find(NonTargetName);
1125       if (ExistingRecord != std::end(Manglings))
1126         Manglings.remove(&(*ExistingRecord));
1127       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1128       MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first();
1129       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
1130         Entry->setName(OtherName);
1131     }
1132   }
1133 }
1134 
1135 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
1136   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
1137 
1138   // Some ABIs don't have constructor variants.  Make sure that base and
1139   // complete constructors get mangled the same.
1140   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
1141     if (!getTarget().getCXXABI().hasConstructorVariants()) {
1142       CXXCtorType OrigCtorType = GD.getCtorType();
1143       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
1144       if (OrigCtorType == Ctor_Base)
1145         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
1146     }
1147   }
1148 
1149   auto FoundName = MangledDeclNames.find(CanonicalGD);
1150   if (FoundName != MangledDeclNames.end())
1151     return FoundName->second;
1152 
1153   // Keep the first result in the case of a mangling collision.
1154   const auto *ND = cast<NamedDecl>(GD.getDecl());
1155   std::string MangledName = getMangledNameImpl(*this, GD, ND);
1156 
1157   // Ensure either we have different ABIs between host and device compilations,
1158   // says host compilation following MSVC ABI but device compilation follows
1159   // Itanium C++ ABI or, if they follow the same ABI, kernel names after
1160   // mangling should be the same after name stubbing. The later checking is
1161   // very important as the device kernel name being mangled in host-compilation
1162   // is used to resolve the device binaries to be executed. Inconsistent naming
1163   // result in undefined behavior. Even though we cannot check that naming
1164   // directly between host- and device-compilations, the host- and
1165   // device-mangling in host compilation could help catching certain ones.
1166   assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() ||
1167          getLangOpts().CUDAIsDevice ||
1168          (getContext().getAuxTargetInfo() &&
1169           (getContext().getAuxTargetInfo()->getCXXABI() !=
1170            getContext().getTargetInfo().getCXXABI())) ||
1171          getCUDARuntime().getDeviceSideName(ND) ==
1172              getMangledNameImpl(
1173                  *this,
1174                  GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel),
1175                  ND));
1176 
1177   auto Result = Manglings.insert(std::make_pair(MangledName, GD));
1178   return MangledDeclNames[CanonicalGD] = Result.first->first();
1179 }
1180 
1181 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
1182                                              const BlockDecl *BD) {
1183   MangleContext &MangleCtx = getCXXABI().getMangleContext();
1184   const Decl *D = GD.getDecl();
1185 
1186   SmallString<256> Buffer;
1187   llvm::raw_svector_ostream Out(Buffer);
1188   if (!D)
1189     MangleCtx.mangleGlobalBlock(BD,
1190       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
1191   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
1192     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
1193   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
1194     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
1195   else
1196     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
1197 
1198   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
1199   return Result.first->first();
1200 }
1201 
1202 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
1203   return getModule().getNamedValue(Name);
1204 }
1205 
1206 /// AddGlobalCtor - Add a function to the list that will be called before
1207 /// main() runs.
1208 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
1209                                   llvm::Constant *AssociatedData) {
1210   // FIXME: Type coercion of void()* types.
1211   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
1212 }
1213 
1214 /// AddGlobalDtor - Add a function to the list that will be called
1215 /// when the module is unloaded.
1216 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) {
1217   if (CodeGenOpts.RegisterGlobalDtorsWithAtExit) {
1218     if (getCXXABI().useSinitAndSterm())
1219       llvm::report_fatal_error(
1220           "register global dtors with atexit() is not supported yet");
1221     DtorsUsingAtExit[Priority].push_back(Dtor);
1222     return;
1223   }
1224 
1225   // FIXME: Type coercion of void()* types.
1226   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
1227 }
1228 
1229 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
1230   if (Fns.empty()) return;
1231 
1232   // Ctor function type is void()*.
1233   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
1234   llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy,
1235       TheModule.getDataLayout().getProgramAddressSpace());
1236 
1237   // Get the type of a ctor entry, { i32, void ()*, i8* }.
1238   llvm::StructType *CtorStructTy = llvm::StructType::get(
1239       Int32Ty, CtorPFTy, VoidPtrTy);
1240 
1241   // Construct the constructor and destructor arrays.
1242   ConstantInitBuilder builder(*this);
1243   auto ctors = builder.beginArray(CtorStructTy);
1244   for (const auto &I : Fns) {
1245     auto ctor = ctors.beginStruct(CtorStructTy);
1246     ctor.addInt(Int32Ty, I.Priority);
1247     ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
1248     if (I.AssociatedData)
1249       ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
1250     else
1251       ctor.addNullPointer(VoidPtrTy);
1252     ctor.finishAndAddTo(ctors);
1253   }
1254 
1255   auto list =
1256     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
1257                                 /*constant*/ false,
1258                                 llvm::GlobalValue::AppendingLinkage);
1259 
1260   // The LTO linker doesn't seem to like it when we set an alignment
1261   // on appending variables.  Take it off as a workaround.
1262   list->setAlignment(llvm::None);
1263 
1264   Fns.clear();
1265 }
1266 
1267 llvm::GlobalValue::LinkageTypes
1268 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
1269   const auto *D = cast<FunctionDecl>(GD.getDecl());
1270 
1271   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
1272 
1273   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
1274     return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
1275 
1276   if (isa<CXXConstructorDecl>(D) &&
1277       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
1278       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1279     // Our approach to inheriting constructors is fundamentally different from
1280     // that used by the MS ABI, so keep our inheriting constructor thunks
1281     // internal rather than trying to pick an unambiguous mangling for them.
1282     return llvm::GlobalValue::InternalLinkage;
1283   }
1284 
1285   return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false);
1286 }
1287 
1288 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1289   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1290   if (!MDS) return nullptr;
1291 
1292   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1293 }
1294 
1295 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
1296                                               const CGFunctionInfo &Info,
1297                                               llvm::Function *F) {
1298   unsigned CallingConv;
1299   llvm::AttributeList PAL;
1300   ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, false);
1301   F->setAttributes(PAL);
1302   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
1303 }
1304 
1305 static void removeImageAccessQualifier(std::string& TyName) {
1306   std::string ReadOnlyQual("__read_only");
1307   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
1308   if (ReadOnlyPos != std::string::npos)
1309     // "+ 1" for the space after access qualifier.
1310     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
1311   else {
1312     std::string WriteOnlyQual("__write_only");
1313     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
1314     if (WriteOnlyPos != std::string::npos)
1315       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
1316     else {
1317       std::string ReadWriteQual("__read_write");
1318       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
1319       if (ReadWritePos != std::string::npos)
1320         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
1321     }
1322   }
1323 }
1324 
1325 // Returns the address space id that should be produced to the
1326 // kernel_arg_addr_space metadata. This is always fixed to the ids
1327 // as specified in the SPIR 2.0 specification in order to differentiate
1328 // for example in clGetKernelArgInfo() implementation between the address
1329 // spaces with targets without unique mapping to the OpenCL address spaces
1330 // (basically all single AS CPUs).
1331 static unsigned ArgInfoAddressSpace(LangAS AS) {
1332   switch (AS) {
1333   case LangAS::opencl_global:
1334     return 1;
1335   case LangAS::opencl_constant:
1336     return 2;
1337   case LangAS::opencl_local:
1338     return 3;
1339   case LangAS::opencl_generic:
1340     return 4; // Not in SPIR 2.0 specs.
1341   case LangAS::opencl_global_device:
1342     return 5;
1343   case LangAS::opencl_global_host:
1344     return 6;
1345   default:
1346     return 0; // Assume private.
1347   }
1348 }
1349 
1350 void CodeGenModule::GenOpenCLArgMetadata(llvm::Function *Fn,
1351                                          const FunctionDecl *FD,
1352                                          CodeGenFunction *CGF) {
1353   assert(((FD && CGF) || (!FD && !CGF)) &&
1354          "Incorrect use - FD and CGF should either be both null or not!");
1355   // Create MDNodes that represent the kernel arg metadata.
1356   // Each MDNode is a list in the form of "key", N number of values which is
1357   // the same number of values as their are kernel arguments.
1358 
1359   const PrintingPolicy &Policy = Context.getPrintingPolicy();
1360 
1361   // MDNode for the kernel argument address space qualifiers.
1362   SmallVector<llvm::Metadata *, 8> addressQuals;
1363 
1364   // MDNode for the kernel argument access qualifiers (images only).
1365   SmallVector<llvm::Metadata *, 8> accessQuals;
1366 
1367   // MDNode for the kernel argument type names.
1368   SmallVector<llvm::Metadata *, 8> argTypeNames;
1369 
1370   // MDNode for the kernel argument base type names.
1371   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
1372 
1373   // MDNode for the kernel argument type qualifiers.
1374   SmallVector<llvm::Metadata *, 8> argTypeQuals;
1375 
1376   // MDNode for the kernel argument names.
1377   SmallVector<llvm::Metadata *, 8> argNames;
1378 
1379   if (FD && CGF)
1380     for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
1381       const ParmVarDecl *parm = FD->getParamDecl(i);
1382       QualType ty = parm->getType();
1383       std::string typeQuals;
1384 
1385       if (ty->isPointerType()) {
1386         QualType pointeeTy = ty->getPointeeType();
1387 
1388         // Get address qualifier.
1389         addressQuals.push_back(
1390             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(
1391                 ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
1392 
1393         // Get argument type name.
1394         std::string typeName =
1395             pointeeTy.getUnqualifiedType().getAsString(Policy) + "*";
1396 
1397         // Turn "unsigned type" to "utype"
1398         std::string::size_type pos = typeName.find("unsigned");
1399         if (pointeeTy.isCanonical() && pos != std::string::npos)
1400           typeName.erase(pos + 1, 8);
1401 
1402         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1403 
1404         std::string baseTypeName =
1405             pointeeTy.getUnqualifiedType().getCanonicalType().getAsString(
1406                 Policy) +
1407             "*";
1408 
1409         // Turn "unsigned type" to "utype"
1410         pos = baseTypeName.find("unsigned");
1411         if (pos != std::string::npos)
1412           baseTypeName.erase(pos + 1, 8);
1413 
1414         argBaseTypeNames.push_back(
1415             llvm::MDString::get(VMContext, baseTypeName));
1416 
1417         // Get argument type qualifiers:
1418         if (ty.isRestrictQualified())
1419           typeQuals = "restrict";
1420         if (pointeeTy.isConstQualified() ||
1421             (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
1422           typeQuals += typeQuals.empty() ? "const" : " const";
1423         if (pointeeTy.isVolatileQualified())
1424           typeQuals += typeQuals.empty() ? "volatile" : " volatile";
1425       } else {
1426         uint32_t AddrSpc = 0;
1427         bool isPipe = ty->isPipeType();
1428         if (ty->isImageType() || isPipe)
1429           AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
1430 
1431         addressQuals.push_back(
1432             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc)));
1433 
1434         // Get argument type name.
1435         std::string typeName;
1436         if (isPipe)
1437           typeName = ty.getCanonicalType()
1438                          ->castAs<PipeType>()
1439                          ->getElementType()
1440                          .getAsString(Policy);
1441         else
1442           typeName = ty.getUnqualifiedType().getAsString(Policy);
1443 
1444         // Turn "unsigned type" to "utype"
1445         std::string::size_type pos = typeName.find("unsigned");
1446         if (ty.isCanonical() && pos != std::string::npos)
1447           typeName.erase(pos + 1, 8);
1448 
1449         std::string baseTypeName;
1450         if (isPipe)
1451           baseTypeName = ty.getCanonicalType()
1452                              ->castAs<PipeType>()
1453                              ->getElementType()
1454                              .getCanonicalType()
1455                              .getAsString(Policy);
1456         else
1457           baseTypeName =
1458               ty.getUnqualifiedType().getCanonicalType().getAsString(Policy);
1459 
1460         // Remove access qualifiers on images
1461         // (as they are inseparable from type in clang implementation,
1462         // but OpenCL spec provides a special query to get access qualifier
1463         // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
1464         if (ty->isImageType()) {
1465           removeImageAccessQualifier(typeName);
1466           removeImageAccessQualifier(baseTypeName);
1467         }
1468 
1469         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1470 
1471         // Turn "unsigned type" to "utype"
1472         pos = baseTypeName.find("unsigned");
1473         if (pos != std::string::npos)
1474           baseTypeName.erase(pos + 1, 8);
1475 
1476         argBaseTypeNames.push_back(
1477             llvm::MDString::get(VMContext, baseTypeName));
1478 
1479         if (isPipe)
1480           typeQuals = "pipe";
1481       }
1482 
1483       argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals));
1484 
1485       // Get image and pipe access qualifier:
1486       if (ty->isImageType() || ty->isPipeType()) {
1487         const Decl *PDecl = parm;
1488         if (auto *TD = dyn_cast<TypedefType>(ty))
1489           PDecl = TD->getDecl();
1490         const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
1491         if (A && A->isWriteOnly())
1492           accessQuals.push_back(llvm::MDString::get(VMContext, "write_only"));
1493         else if (A && A->isReadWrite())
1494           accessQuals.push_back(llvm::MDString::get(VMContext, "read_write"));
1495         else
1496           accessQuals.push_back(llvm::MDString::get(VMContext, "read_only"));
1497       } else
1498         accessQuals.push_back(llvm::MDString::get(VMContext, "none"));
1499 
1500       // Get argument name.
1501       argNames.push_back(llvm::MDString::get(VMContext, parm->getName()));
1502     }
1503 
1504   Fn->setMetadata("kernel_arg_addr_space",
1505                   llvm::MDNode::get(VMContext, addressQuals));
1506   Fn->setMetadata("kernel_arg_access_qual",
1507                   llvm::MDNode::get(VMContext, accessQuals));
1508   Fn->setMetadata("kernel_arg_type",
1509                   llvm::MDNode::get(VMContext, argTypeNames));
1510   Fn->setMetadata("kernel_arg_base_type",
1511                   llvm::MDNode::get(VMContext, argBaseTypeNames));
1512   Fn->setMetadata("kernel_arg_type_qual",
1513                   llvm::MDNode::get(VMContext, argTypeQuals));
1514   if (getCodeGenOpts().EmitOpenCLArgMetadata)
1515     Fn->setMetadata("kernel_arg_name",
1516                     llvm::MDNode::get(VMContext, argNames));
1517 }
1518 
1519 /// Determines whether the language options require us to model
1520 /// unwind exceptions.  We treat -fexceptions as mandating this
1521 /// except under the fragile ObjC ABI with only ObjC exceptions
1522 /// enabled.  This means, for example, that C with -fexceptions
1523 /// enables this.
1524 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
1525   // If exceptions are completely disabled, obviously this is false.
1526   if (!LangOpts.Exceptions) return false;
1527 
1528   // If C++ exceptions are enabled, this is true.
1529   if (LangOpts.CXXExceptions) return true;
1530 
1531   // If ObjC exceptions are enabled, this depends on the ABI.
1532   if (LangOpts.ObjCExceptions) {
1533     return LangOpts.ObjCRuntime.hasUnwindExceptions();
1534   }
1535 
1536   return true;
1537 }
1538 
1539 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
1540                                                       const CXXMethodDecl *MD) {
1541   // Check that the type metadata can ever actually be used by a call.
1542   if (!CGM.getCodeGenOpts().LTOUnit ||
1543       !CGM.HasHiddenLTOVisibility(MD->getParent()))
1544     return false;
1545 
1546   // Only functions whose address can be taken with a member function pointer
1547   // need this sort of type metadata.
1548   return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) &&
1549          !isa<CXXDestructorDecl>(MD);
1550 }
1551 
1552 std::vector<const CXXRecordDecl *>
1553 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
1554   llvm::SetVector<const CXXRecordDecl *> MostBases;
1555 
1556   std::function<void (const CXXRecordDecl *)> CollectMostBases;
1557   CollectMostBases = [&](const CXXRecordDecl *RD) {
1558     if (RD->getNumBases() == 0)
1559       MostBases.insert(RD);
1560     for (const CXXBaseSpecifier &B : RD->bases())
1561       CollectMostBases(B.getType()->getAsCXXRecordDecl());
1562   };
1563   CollectMostBases(RD);
1564   return MostBases.takeVector();
1565 }
1566 
1567 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
1568                                                            llvm::Function *F) {
1569   llvm::AttrBuilder B;
1570 
1571   if (CodeGenOpts.UnwindTables)
1572     B.addAttribute(llvm::Attribute::UWTable);
1573 
1574   if (CodeGenOpts.StackClashProtector)
1575     B.addAttribute("probe-stack", "inline-asm");
1576 
1577   if (!hasUnwindExceptions(LangOpts))
1578     B.addAttribute(llvm::Attribute::NoUnwind);
1579 
1580   if (!D || !D->hasAttr<NoStackProtectorAttr>()) {
1581     if (LangOpts.getStackProtector() == LangOptions::SSPOn)
1582       B.addAttribute(llvm::Attribute::StackProtect);
1583     else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
1584       B.addAttribute(llvm::Attribute::StackProtectStrong);
1585     else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
1586       B.addAttribute(llvm::Attribute::StackProtectReq);
1587   }
1588 
1589   if (!D) {
1590     // If we don't have a declaration to control inlining, the function isn't
1591     // explicitly marked as alwaysinline for semantic reasons, and inlining is
1592     // disabled, mark the function as noinline.
1593     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1594         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
1595       B.addAttribute(llvm::Attribute::NoInline);
1596 
1597     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1598     return;
1599   }
1600 
1601   // Track whether we need to add the optnone LLVM attribute,
1602   // starting with the default for this optimization level.
1603   bool ShouldAddOptNone =
1604       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
1605   // We can't add optnone in the following cases, it won't pass the verifier.
1606   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
1607   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
1608 
1609   // Add optnone, but do so only if the function isn't always_inline.
1610   if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) &&
1611       !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1612     B.addAttribute(llvm::Attribute::OptimizeNone);
1613 
1614     // OptimizeNone implies noinline; we should not be inlining such functions.
1615     B.addAttribute(llvm::Attribute::NoInline);
1616 
1617     // We still need to handle naked functions even though optnone subsumes
1618     // much of their semantics.
1619     if (D->hasAttr<NakedAttr>())
1620       B.addAttribute(llvm::Attribute::Naked);
1621 
1622     // OptimizeNone wins over OptimizeForSize and MinSize.
1623     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
1624     F->removeFnAttr(llvm::Attribute::MinSize);
1625   } else if (D->hasAttr<NakedAttr>()) {
1626     // Naked implies noinline: we should not be inlining such functions.
1627     B.addAttribute(llvm::Attribute::Naked);
1628     B.addAttribute(llvm::Attribute::NoInline);
1629   } else if (D->hasAttr<NoDuplicateAttr>()) {
1630     B.addAttribute(llvm::Attribute::NoDuplicate);
1631   } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1632     // Add noinline if the function isn't always_inline.
1633     B.addAttribute(llvm::Attribute::NoInline);
1634   } else if (D->hasAttr<AlwaysInlineAttr>() &&
1635              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
1636     // (noinline wins over always_inline, and we can't specify both in IR)
1637     B.addAttribute(llvm::Attribute::AlwaysInline);
1638   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
1639     // If we're not inlining, then force everything that isn't always_inline to
1640     // carry an explicit noinline attribute.
1641     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
1642       B.addAttribute(llvm::Attribute::NoInline);
1643   } else {
1644     // Otherwise, propagate the inline hint attribute and potentially use its
1645     // absence to mark things as noinline.
1646     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1647       // Search function and template pattern redeclarations for inline.
1648       auto CheckForInline = [](const FunctionDecl *FD) {
1649         auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
1650           return Redecl->isInlineSpecified();
1651         };
1652         if (any_of(FD->redecls(), CheckRedeclForInline))
1653           return true;
1654         const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
1655         if (!Pattern)
1656           return false;
1657         return any_of(Pattern->redecls(), CheckRedeclForInline);
1658       };
1659       if (CheckForInline(FD)) {
1660         B.addAttribute(llvm::Attribute::InlineHint);
1661       } else if (CodeGenOpts.getInlining() ==
1662                      CodeGenOptions::OnlyHintInlining &&
1663                  !FD->isInlined() &&
1664                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1665         B.addAttribute(llvm::Attribute::NoInline);
1666       }
1667     }
1668   }
1669 
1670   // Add other optimization related attributes if we are optimizing this
1671   // function.
1672   if (!D->hasAttr<OptimizeNoneAttr>()) {
1673     if (D->hasAttr<ColdAttr>()) {
1674       if (!ShouldAddOptNone)
1675         B.addAttribute(llvm::Attribute::OptimizeForSize);
1676       B.addAttribute(llvm::Attribute::Cold);
1677     }
1678 
1679     if (D->hasAttr<MinSizeAttr>())
1680       B.addAttribute(llvm::Attribute::MinSize);
1681   }
1682 
1683   F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1684 
1685   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
1686   if (alignment)
1687     F->setAlignment(llvm::Align(alignment));
1688 
1689   if (!D->hasAttr<AlignedAttr>())
1690     if (LangOpts.FunctionAlignment)
1691       F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment));
1692 
1693   // Some C++ ABIs require 2-byte alignment for member functions, in order to
1694   // reserve a bit for differentiating between virtual and non-virtual member
1695   // functions. If the current target's C++ ABI requires this and this is a
1696   // member function, set its alignment accordingly.
1697   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
1698     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
1699       F->setAlignment(llvm::Align(2));
1700   }
1701 
1702   // In the cross-dso CFI mode with canonical jump tables, we want !type
1703   // attributes on definitions only.
1704   if (CodeGenOpts.SanitizeCfiCrossDso &&
1705       CodeGenOpts.SanitizeCfiCanonicalJumpTables) {
1706     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1707       // Skip available_externally functions. They won't be codegen'ed in the
1708       // current module anyway.
1709       if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally)
1710         CreateFunctionTypeMetadataForIcall(FD, F);
1711     }
1712   }
1713 
1714   // Emit type metadata on member functions for member function pointer checks.
1715   // These are only ever necessary on definitions; we're guaranteed that the
1716   // definition will be present in the LTO unit as a result of LTO visibility.
1717   auto *MD = dyn_cast<CXXMethodDecl>(D);
1718   if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
1719     for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
1720       llvm::Metadata *Id =
1721           CreateMetadataIdentifierForType(Context.getMemberPointerType(
1722               MD->getType(), Context.getRecordType(Base).getTypePtr()));
1723       F->addTypeMetadata(0, Id);
1724     }
1725   }
1726 }
1727 
1728 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
1729   const Decl *D = GD.getDecl();
1730   if (dyn_cast_or_null<NamedDecl>(D))
1731     setGVProperties(GV, GD);
1732   else
1733     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1734 
1735   if (D && D->hasAttr<UsedAttr>())
1736     addUsedGlobal(GV);
1737 
1738   if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) {
1739     const auto *VD = cast<VarDecl>(D);
1740     if (VD->getType().isConstQualified() &&
1741         VD->getStorageDuration() == SD_Static)
1742       addUsedGlobal(GV);
1743   }
1744 }
1745 
1746 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
1747                                                 llvm::AttrBuilder &Attrs) {
1748   // Add target-cpu and target-features attributes to functions. If
1749   // we have a decl for the function and it has a target attribute then
1750   // parse that and add it to the feature set.
1751   StringRef TargetCPU = getTarget().getTargetOpts().CPU;
1752   StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU;
1753   std::vector<std::string> Features;
1754   const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
1755   FD = FD ? FD->getMostRecentDecl() : FD;
1756   const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
1757   const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
1758   bool AddedAttr = false;
1759   if (TD || SD) {
1760     llvm::StringMap<bool> FeatureMap;
1761     getContext().getFunctionFeatureMap(FeatureMap, GD);
1762 
1763     // Produce the canonical string for this set of features.
1764     for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
1765       Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
1766 
1767     // Now add the target-cpu and target-features to the function.
1768     // While we populated the feature map above, we still need to
1769     // get and parse the target attribute so we can get the cpu for
1770     // the function.
1771     if (TD) {
1772       ParsedTargetAttr ParsedAttr = TD->parse();
1773       if (!ParsedAttr.Architecture.empty() &&
1774           getTarget().isValidCPUName(ParsedAttr.Architecture)) {
1775         TargetCPU = ParsedAttr.Architecture;
1776         TuneCPU = ""; // Clear the tune CPU.
1777       }
1778       if (!ParsedAttr.Tune.empty() &&
1779           getTarget().isValidCPUName(ParsedAttr.Tune))
1780         TuneCPU = ParsedAttr.Tune;
1781     }
1782   } else {
1783     // Otherwise just add the existing target cpu and target features to the
1784     // function.
1785     Features = getTarget().getTargetOpts().Features;
1786   }
1787 
1788   if (!TargetCPU.empty()) {
1789     Attrs.addAttribute("target-cpu", TargetCPU);
1790     AddedAttr = true;
1791   }
1792   if (!TuneCPU.empty()) {
1793     Attrs.addAttribute("tune-cpu", TuneCPU);
1794     AddedAttr = true;
1795   }
1796   if (!Features.empty()) {
1797     llvm::sort(Features);
1798     Attrs.addAttribute("target-features", llvm::join(Features, ","));
1799     AddedAttr = true;
1800   }
1801 
1802   return AddedAttr;
1803 }
1804 
1805 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
1806                                           llvm::GlobalObject *GO) {
1807   const Decl *D = GD.getDecl();
1808   SetCommonAttributes(GD, GO);
1809 
1810   if (D) {
1811     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
1812       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
1813         GV->addAttribute("bss-section", SA->getName());
1814       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
1815         GV->addAttribute("data-section", SA->getName());
1816       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
1817         GV->addAttribute("rodata-section", SA->getName());
1818       if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>())
1819         GV->addAttribute("relro-section", SA->getName());
1820     }
1821 
1822     if (auto *F = dyn_cast<llvm::Function>(GO)) {
1823       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
1824         if (!D->getAttr<SectionAttr>())
1825           F->addFnAttr("implicit-section-name", SA->getName());
1826 
1827       llvm::AttrBuilder Attrs;
1828       if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
1829         // We know that GetCPUAndFeaturesAttributes will always have the
1830         // newest set, since it has the newest possible FunctionDecl, so the
1831         // new ones should replace the old.
1832         llvm::AttrBuilder RemoveAttrs;
1833         RemoveAttrs.addAttribute("target-cpu");
1834         RemoveAttrs.addAttribute("target-features");
1835         RemoveAttrs.addAttribute("tune-cpu");
1836         F->removeAttributes(llvm::AttributeList::FunctionIndex, RemoveAttrs);
1837         F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs);
1838       }
1839     }
1840 
1841     if (const auto *CSA = D->getAttr<CodeSegAttr>())
1842       GO->setSection(CSA->getName());
1843     else if (const auto *SA = D->getAttr<SectionAttr>())
1844       GO->setSection(SA->getName());
1845   }
1846 
1847   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
1848 }
1849 
1850 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
1851                                                   llvm::Function *F,
1852                                                   const CGFunctionInfo &FI) {
1853   const Decl *D = GD.getDecl();
1854   SetLLVMFunctionAttributes(GD, FI, F);
1855   SetLLVMFunctionAttributesForDefinition(D, F);
1856 
1857   F->setLinkage(llvm::Function::InternalLinkage);
1858 
1859   setNonAliasAttributes(GD, F);
1860 }
1861 
1862 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
1863   // Set linkage and visibility in case we never see a definition.
1864   LinkageInfo LV = ND->getLinkageAndVisibility();
1865   // Don't set internal linkage on declarations.
1866   // "extern_weak" is overloaded in LLVM; we probably should have
1867   // separate linkage types for this.
1868   if (isExternallyVisible(LV.getLinkage()) &&
1869       (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
1870     GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1871 }
1872 
1873 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
1874                                                        llvm::Function *F) {
1875   // Only if we are checking indirect calls.
1876   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
1877     return;
1878 
1879   // Non-static class methods are handled via vtable or member function pointer
1880   // checks elsewhere.
1881   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
1882     return;
1883 
1884   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
1885   F->addTypeMetadata(0, MD);
1886   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
1887 
1888   // Emit a hash-based bit set entry for cross-DSO calls.
1889   if (CodeGenOpts.SanitizeCfiCrossDso)
1890     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
1891       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
1892 }
1893 
1894 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
1895                                           bool IsIncompleteFunction,
1896                                           bool IsThunk) {
1897 
1898   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
1899     // If this is an intrinsic function, set the function's attributes
1900     // to the intrinsic's attributes.
1901     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
1902     return;
1903   }
1904 
1905   const auto *FD = cast<FunctionDecl>(GD.getDecl());
1906 
1907   if (!IsIncompleteFunction)
1908     SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F);
1909 
1910   // Add the Returned attribute for "this", except for iOS 5 and earlier
1911   // where substantial code, including the libstdc++ dylib, was compiled with
1912   // GCC and does not actually return "this".
1913   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
1914       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
1915     assert(!F->arg_empty() &&
1916            F->arg_begin()->getType()
1917              ->canLosslesslyBitCastTo(F->getReturnType()) &&
1918            "unexpected this return");
1919     F->addAttribute(1, llvm::Attribute::Returned);
1920   }
1921 
1922   // Only a few attributes are set on declarations; these may later be
1923   // overridden by a definition.
1924 
1925   setLinkageForGV(F, FD);
1926   setGVProperties(F, FD);
1927 
1928   // Setup target-specific attributes.
1929   if (!IsIncompleteFunction && F->isDeclaration())
1930     getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
1931 
1932   if (const auto *CSA = FD->getAttr<CodeSegAttr>())
1933     F->setSection(CSA->getName());
1934   else if (const auto *SA = FD->getAttr<SectionAttr>())
1935      F->setSection(SA->getName());
1936 
1937   // If we plan on emitting this inline builtin, we can't treat it as a builtin.
1938   if (FD->isInlineBuiltinDeclaration()) {
1939     const FunctionDecl *FDBody;
1940     bool HasBody = FD->hasBody(FDBody);
1941     (void)HasBody;
1942     assert(HasBody && "Inline builtin declarations should always have an "
1943                       "available body!");
1944     if (shouldEmitFunction(FDBody))
1945       F->addAttribute(llvm::AttributeList::FunctionIndex,
1946                       llvm::Attribute::NoBuiltin);
1947   }
1948 
1949   if (FD->isReplaceableGlobalAllocationFunction()) {
1950     // A replaceable global allocation function does not act like a builtin by
1951     // default, only if it is invoked by a new-expression or delete-expression.
1952     F->addAttribute(llvm::AttributeList::FunctionIndex,
1953                     llvm::Attribute::NoBuiltin);
1954   }
1955 
1956   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
1957     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1958   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1959     if (MD->isVirtual())
1960       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1961 
1962   // Don't emit entries for function declarations in the cross-DSO mode. This
1963   // is handled with better precision by the receiving DSO. But if jump tables
1964   // are non-canonical then we need type metadata in order to produce the local
1965   // jump table.
1966   if (!CodeGenOpts.SanitizeCfiCrossDso ||
1967       !CodeGenOpts.SanitizeCfiCanonicalJumpTables)
1968     CreateFunctionTypeMetadataForIcall(FD, F);
1969 
1970   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
1971     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
1972 
1973   if (const auto *CB = FD->getAttr<CallbackAttr>()) {
1974     // Annotate the callback behavior as metadata:
1975     //  - The callback callee (as argument number).
1976     //  - The callback payloads (as argument numbers).
1977     llvm::LLVMContext &Ctx = F->getContext();
1978     llvm::MDBuilder MDB(Ctx);
1979 
1980     // The payload indices are all but the first one in the encoding. The first
1981     // identifies the callback callee.
1982     int CalleeIdx = *CB->encoding_begin();
1983     ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
1984     F->addMetadata(llvm::LLVMContext::MD_callback,
1985                    *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
1986                                                CalleeIdx, PayloadIndices,
1987                                                /* VarArgsArePassed */ false)}));
1988   }
1989 }
1990 
1991 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
1992   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
1993          "Only globals with definition can force usage.");
1994   LLVMUsed.emplace_back(GV);
1995 }
1996 
1997 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
1998   assert(!GV->isDeclaration() &&
1999          "Only globals with definition can force usage.");
2000   LLVMCompilerUsed.emplace_back(GV);
2001 }
2002 
2003 static void emitUsed(CodeGenModule &CGM, StringRef Name,
2004                      std::vector<llvm::WeakTrackingVH> &List) {
2005   // Don't create llvm.used if there is no need.
2006   if (List.empty())
2007     return;
2008 
2009   // Convert List to what ConstantArray needs.
2010   SmallVector<llvm::Constant*, 8> UsedArray;
2011   UsedArray.resize(List.size());
2012   for (unsigned i = 0, e = List.size(); i != e; ++i) {
2013     UsedArray[i] =
2014         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
2015             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
2016   }
2017 
2018   if (UsedArray.empty())
2019     return;
2020   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
2021 
2022   auto *GV = new llvm::GlobalVariable(
2023       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
2024       llvm::ConstantArray::get(ATy, UsedArray), Name);
2025 
2026   GV->setSection("llvm.metadata");
2027 }
2028 
2029 void CodeGenModule::emitLLVMUsed() {
2030   emitUsed(*this, "llvm.used", LLVMUsed);
2031   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
2032 }
2033 
2034 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
2035   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
2036   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2037 }
2038 
2039 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
2040   llvm::SmallString<32> Opt;
2041   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
2042   if (Opt.empty())
2043     return;
2044   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2045   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2046 }
2047 
2048 void CodeGenModule::AddDependentLib(StringRef Lib) {
2049   auto &C = getLLVMContext();
2050   if (getTarget().getTriple().isOSBinFormatELF()) {
2051       ELFDependentLibraries.push_back(
2052         llvm::MDNode::get(C, llvm::MDString::get(C, Lib)));
2053     return;
2054   }
2055 
2056   llvm::SmallString<24> Opt;
2057   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
2058   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2059   LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts));
2060 }
2061 
2062 /// Add link options implied by the given module, including modules
2063 /// it depends on, using a postorder walk.
2064 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
2065                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
2066                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
2067   // Import this module's parent.
2068   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
2069     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
2070   }
2071 
2072   // Import this module's dependencies.
2073   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
2074     if (Visited.insert(Mod->Imports[I - 1]).second)
2075       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
2076   }
2077 
2078   // Add linker options to link against the libraries/frameworks
2079   // described by this module.
2080   llvm::LLVMContext &Context = CGM.getLLVMContext();
2081   bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
2082 
2083   // For modules that use export_as for linking, use that module
2084   // name instead.
2085   if (Mod->UseExportAsModuleLinkName)
2086     return;
2087 
2088   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
2089     // Link against a framework.  Frameworks are currently Darwin only, so we
2090     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
2091     if (Mod->LinkLibraries[I-1].IsFramework) {
2092       llvm::Metadata *Args[2] = {
2093           llvm::MDString::get(Context, "-framework"),
2094           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
2095 
2096       Metadata.push_back(llvm::MDNode::get(Context, Args));
2097       continue;
2098     }
2099 
2100     // Link against a library.
2101     if (IsELF) {
2102       llvm::Metadata *Args[2] = {
2103           llvm::MDString::get(Context, "lib"),
2104           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library),
2105       };
2106       Metadata.push_back(llvm::MDNode::get(Context, Args));
2107     } else {
2108       llvm::SmallString<24> Opt;
2109       CGM.getTargetCodeGenInfo().getDependentLibraryOption(
2110           Mod->LinkLibraries[I - 1].Library, Opt);
2111       auto *OptString = llvm::MDString::get(Context, Opt);
2112       Metadata.push_back(llvm::MDNode::get(Context, OptString));
2113     }
2114   }
2115 }
2116 
2117 void CodeGenModule::EmitModuleLinkOptions() {
2118   // Collect the set of all of the modules we want to visit to emit link
2119   // options, which is essentially the imported modules and all of their
2120   // non-explicit child modules.
2121   llvm::SetVector<clang::Module *> LinkModules;
2122   llvm::SmallPtrSet<clang::Module *, 16> Visited;
2123   SmallVector<clang::Module *, 16> Stack;
2124 
2125   // Seed the stack with imported modules.
2126   for (Module *M : ImportedModules) {
2127     // Do not add any link flags when an implementation TU of a module imports
2128     // a header of that same module.
2129     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
2130         !getLangOpts().isCompilingModule())
2131       continue;
2132     if (Visited.insert(M).second)
2133       Stack.push_back(M);
2134   }
2135 
2136   // Find all of the modules to import, making a little effort to prune
2137   // non-leaf modules.
2138   while (!Stack.empty()) {
2139     clang::Module *Mod = Stack.pop_back_val();
2140 
2141     bool AnyChildren = false;
2142 
2143     // Visit the submodules of this module.
2144     for (const auto &SM : Mod->submodules()) {
2145       // Skip explicit children; they need to be explicitly imported to be
2146       // linked against.
2147       if (SM->IsExplicit)
2148         continue;
2149 
2150       if (Visited.insert(SM).second) {
2151         Stack.push_back(SM);
2152         AnyChildren = true;
2153       }
2154     }
2155 
2156     // We didn't find any children, so add this module to the list of
2157     // modules to link against.
2158     if (!AnyChildren) {
2159       LinkModules.insert(Mod);
2160     }
2161   }
2162 
2163   // Add link options for all of the imported modules in reverse topological
2164   // order.  We don't do anything to try to order import link flags with respect
2165   // to linker options inserted by things like #pragma comment().
2166   SmallVector<llvm::MDNode *, 16> MetadataArgs;
2167   Visited.clear();
2168   for (Module *M : LinkModules)
2169     if (Visited.insert(M).second)
2170       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
2171   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
2172   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
2173 
2174   // Add the linker options metadata flag.
2175   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
2176   for (auto *MD : LinkerOptionsMetadata)
2177     NMD->addOperand(MD);
2178 }
2179 
2180 void CodeGenModule::EmitDeferred() {
2181   // Emit deferred declare target declarations.
2182   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
2183     getOpenMPRuntime().emitDeferredTargetDecls();
2184 
2185   // Emit code for any potentially referenced deferred decls.  Since a
2186   // previously unused static decl may become used during the generation of code
2187   // for a static function, iterate until no changes are made.
2188 
2189   if (!DeferredVTables.empty()) {
2190     EmitDeferredVTables();
2191 
2192     // Emitting a vtable doesn't directly cause more vtables to
2193     // become deferred, although it can cause functions to be
2194     // emitted that then need those vtables.
2195     assert(DeferredVTables.empty());
2196   }
2197 
2198   // Stop if we're out of both deferred vtables and deferred declarations.
2199   if (DeferredDeclsToEmit.empty())
2200     return;
2201 
2202   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
2203   // work, it will not interfere with this.
2204   std::vector<GlobalDecl> CurDeclsToEmit;
2205   CurDeclsToEmit.swap(DeferredDeclsToEmit);
2206 
2207   for (GlobalDecl &D : CurDeclsToEmit) {
2208     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
2209     // to get GlobalValue with exactly the type we need, not something that
2210     // might had been created for another decl with the same mangled name but
2211     // different type.
2212     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
2213         GetAddrOfGlobal(D, ForDefinition));
2214 
2215     // In case of different address spaces, we may still get a cast, even with
2216     // IsForDefinition equal to true. Query mangled names table to get
2217     // GlobalValue.
2218     if (!GV)
2219       GV = GetGlobalValue(getMangledName(D));
2220 
2221     // Make sure GetGlobalValue returned non-null.
2222     assert(GV);
2223 
2224     // Check to see if we've already emitted this.  This is necessary
2225     // for a couple of reasons: first, decls can end up in the
2226     // deferred-decls queue multiple times, and second, decls can end
2227     // up with definitions in unusual ways (e.g. by an extern inline
2228     // function acquiring a strong function redefinition).  Just
2229     // ignore these cases.
2230     if (!GV->isDeclaration())
2231       continue;
2232 
2233     // If this is OpenMP, check if it is legal to emit this global normally.
2234     if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D))
2235       continue;
2236 
2237     // Otherwise, emit the definition and move on to the next one.
2238     EmitGlobalDefinition(D, GV);
2239 
2240     // If we found out that we need to emit more decls, do that recursively.
2241     // This has the advantage that the decls are emitted in a DFS and related
2242     // ones are close together, which is convenient for testing.
2243     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
2244       EmitDeferred();
2245       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
2246     }
2247   }
2248 }
2249 
2250 void CodeGenModule::EmitVTablesOpportunistically() {
2251   // Try to emit external vtables as available_externally if they have emitted
2252   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
2253   // is not allowed to create new references to things that need to be emitted
2254   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
2255 
2256   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
2257          && "Only emit opportunistic vtables with optimizations");
2258 
2259   for (const CXXRecordDecl *RD : OpportunisticVTables) {
2260     assert(getVTables().isVTableExternal(RD) &&
2261            "This queue should only contain external vtables");
2262     if (getCXXABI().canSpeculativelyEmitVTable(RD))
2263       VTables.GenerateClassData(RD);
2264   }
2265   OpportunisticVTables.clear();
2266 }
2267 
2268 void CodeGenModule::EmitGlobalAnnotations() {
2269   if (Annotations.empty())
2270     return;
2271 
2272   // Create a new global variable for the ConstantStruct in the Module.
2273   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
2274     Annotations[0]->getType(), Annotations.size()), Annotations);
2275   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
2276                                       llvm::GlobalValue::AppendingLinkage,
2277                                       Array, "llvm.global.annotations");
2278   gv->setSection(AnnotationSection);
2279 }
2280 
2281 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
2282   llvm::Constant *&AStr = AnnotationStrings[Str];
2283   if (AStr)
2284     return AStr;
2285 
2286   // Not found yet, create a new global.
2287   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
2288   auto *gv =
2289       new llvm::GlobalVariable(getModule(), s->getType(), true,
2290                                llvm::GlobalValue::PrivateLinkage, s, ".str");
2291   gv->setSection(AnnotationSection);
2292   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2293   AStr = gv;
2294   return gv;
2295 }
2296 
2297 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
2298   SourceManager &SM = getContext().getSourceManager();
2299   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
2300   if (PLoc.isValid())
2301     return EmitAnnotationString(PLoc.getFilename());
2302   return EmitAnnotationString(SM.getBufferName(Loc));
2303 }
2304 
2305 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
2306   SourceManager &SM = getContext().getSourceManager();
2307   PresumedLoc PLoc = SM.getPresumedLoc(L);
2308   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
2309     SM.getExpansionLineNumber(L);
2310   return llvm::ConstantInt::get(Int32Ty, LineNo);
2311 }
2312 
2313 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
2314                                                 const AnnotateAttr *AA,
2315                                                 SourceLocation L) {
2316   // Get the globals for file name, annotation, and the line number.
2317   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
2318                  *UnitGV = EmitAnnotationUnit(L),
2319                  *LineNoCst = EmitAnnotationLineNo(L);
2320 
2321   llvm::Constant *ASZeroGV = GV;
2322   if (GV->getAddressSpace() != 0) {
2323     ASZeroGV = llvm::ConstantExpr::getAddrSpaceCast(
2324                    GV, GV->getValueType()->getPointerTo(0));
2325   }
2326 
2327   // Create the ConstantStruct for the global annotation.
2328   llvm::Constant *Fields[4] = {
2329     llvm::ConstantExpr::getBitCast(ASZeroGV, Int8PtrTy),
2330     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
2331     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
2332     LineNoCst
2333   };
2334   return llvm::ConstantStruct::getAnon(Fields);
2335 }
2336 
2337 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
2338                                          llvm::GlobalValue *GV) {
2339   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2340   // Get the struct elements for these annotations.
2341   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2342     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
2343 }
2344 
2345 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind,
2346                                            llvm::Function *Fn,
2347                                            SourceLocation Loc) const {
2348   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
2349   // Blacklist by function name.
2350   if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName()))
2351     return true;
2352   // Blacklist by location.
2353   if (Loc.isValid())
2354     return SanitizerBL.isBlacklistedLocation(Kind, Loc);
2355   // If location is unknown, this may be a compiler-generated function. Assume
2356   // it's located in the main file.
2357   auto &SM = Context.getSourceManager();
2358   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
2359     return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName());
2360   }
2361   return false;
2362 }
2363 
2364 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV,
2365                                            SourceLocation Loc, QualType Ty,
2366                                            StringRef Category) const {
2367   // For now globals can be blacklisted only in ASan and KASan.
2368   const SanitizerMask EnabledAsanMask =
2369       LangOpts.Sanitize.Mask &
2370       (SanitizerKind::Address | SanitizerKind::KernelAddress |
2371        SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress |
2372        SanitizerKind::MemTag);
2373   if (!EnabledAsanMask)
2374     return false;
2375   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
2376   if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category))
2377     return true;
2378   if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category))
2379     return true;
2380   // Check global type.
2381   if (!Ty.isNull()) {
2382     // Drill down the array types: if global variable of a fixed type is
2383     // blacklisted, we also don't instrument arrays of them.
2384     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
2385       Ty = AT->getElementType();
2386     Ty = Ty.getCanonicalType().getUnqualifiedType();
2387     // We allow to blacklist only record types (classes, structs etc.)
2388     if (Ty->isRecordType()) {
2389       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
2390       if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category))
2391         return true;
2392     }
2393   }
2394   return false;
2395 }
2396 
2397 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
2398                                    StringRef Category) const {
2399   const auto &XRayFilter = getContext().getXRayFilter();
2400   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
2401   auto Attr = ImbueAttr::NONE;
2402   if (Loc.isValid())
2403     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
2404   if (Attr == ImbueAttr::NONE)
2405     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
2406   switch (Attr) {
2407   case ImbueAttr::NONE:
2408     return false;
2409   case ImbueAttr::ALWAYS:
2410     Fn->addFnAttr("function-instrument", "xray-always");
2411     break;
2412   case ImbueAttr::ALWAYS_ARG1:
2413     Fn->addFnAttr("function-instrument", "xray-always");
2414     Fn->addFnAttr("xray-log-args", "1");
2415     break;
2416   case ImbueAttr::NEVER:
2417     Fn->addFnAttr("function-instrument", "xray-never");
2418     break;
2419   }
2420   return true;
2421 }
2422 
2423 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
2424   // Never defer when EmitAllDecls is specified.
2425   if (LangOpts.EmitAllDecls)
2426     return true;
2427 
2428   if (CodeGenOpts.KeepStaticConsts) {
2429     const auto *VD = dyn_cast<VarDecl>(Global);
2430     if (VD && VD->getType().isConstQualified() &&
2431         VD->getStorageDuration() == SD_Static)
2432       return true;
2433   }
2434 
2435   return getContext().DeclMustBeEmitted(Global);
2436 }
2437 
2438 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
2439   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2440     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
2441       // Implicit template instantiations may change linkage if they are later
2442       // explicitly instantiated, so they should not be emitted eagerly.
2443       return false;
2444     // In OpenMP 5.0 function may be marked as device_type(nohost) and we should
2445     // not emit them eagerly unless we sure that the function must be emitted on
2446     // the host.
2447     if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd &&
2448         !LangOpts.OpenMPIsDevice &&
2449         !OMPDeclareTargetDeclAttr::getDeviceType(FD) &&
2450         !FD->isUsed(/*CheckUsedAttr=*/false) && !FD->isReferenced())
2451       return false;
2452   }
2453   if (const auto *VD = dyn_cast<VarDecl>(Global))
2454     if (Context.getInlineVariableDefinitionKind(VD) ==
2455         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
2456       // A definition of an inline constexpr static data member may change
2457       // linkage later if it's redeclared outside the class.
2458       return false;
2459   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
2460   // codegen for global variables, because they may be marked as threadprivate.
2461   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
2462       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
2463       !isTypeConstant(Global->getType(), false) &&
2464       !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
2465     return false;
2466 
2467   return true;
2468 }
2469 
2470 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) {
2471   StringRef Name = getMangledName(GD);
2472 
2473   // The UUID descriptor should be pointer aligned.
2474   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
2475 
2476   // Look for an existing global.
2477   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
2478     return ConstantAddress(GV, Alignment);
2479 
2480   ConstantEmitter Emitter(*this);
2481   llvm::Constant *Init;
2482 
2483   APValue &V = GD->getAsAPValue();
2484   if (!V.isAbsent()) {
2485     // If possible, emit the APValue version of the initializer. In particular,
2486     // this gets the type of the constant right.
2487     Init = Emitter.emitForInitializer(
2488         GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType());
2489   } else {
2490     // As a fallback, directly construct the constant.
2491     // FIXME: This may get padding wrong under esoteric struct layout rules.
2492     // MSVC appears to create a complete type 'struct __s_GUID' that it
2493     // presumably uses to represent these constants.
2494     MSGuidDecl::Parts Parts = GD->getParts();
2495     llvm::Constant *Fields[4] = {
2496         llvm::ConstantInt::get(Int32Ty, Parts.Part1),
2497         llvm::ConstantInt::get(Int16Ty, Parts.Part2),
2498         llvm::ConstantInt::get(Int16Ty, Parts.Part3),
2499         llvm::ConstantDataArray::getRaw(
2500             StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8,
2501             Int8Ty)};
2502     Init = llvm::ConstantStruct::getAnon(Fields);
2503   }
2504 
2505   auto *GV = new llvm::GlobalVariable(
2506       getModule(), Init->getType(),
2507       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
2508   if (supportsCOMDAT())
2509     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2510   setDSOLocal(GV);
2511 
2512   llvm::Constant *Addr = GV;
2513   if (!V.isAbsent()) {
2514     Emitter.finalize(GV);
2515   } else {
2516     llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType());
2517     Addr = llvm::ConstantExpr::getBitCast(
2518         GV, Ty->getPointerTo(GV->getAddressSpace()));
2519   }
2520   return ConstantAddress(Addr, Alignment);
2521 }
2522 
2523 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
2524   const AliasAttr *AA = VD->getAttr<AliasAttr>();
2525   assert(AA && "No alias?");
2526 
2527   CharUnits Alignment = getContext().getDeclAlign(VD);
2528   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
2529 
2530   // See if there is already something with the target's name in the module.
2531   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
2532   if (Entry) {
2533     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
2534     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
2535     return ConstantAddress(Ptr, Alignment);
2536   }
2537 
2538   llvm::Constant *Aliasee;
2539   if (isa<llvm::FunctionType>(DeclTy))
2540     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
2541                                       GlobalDecl(cast<FunctionDecl>(VD)),
2542                                       /*ForVTable=*/false);
2543   else
2544     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2545                                     llvm::PointerType::getUnqual(DeclTy),
2546                                     nullptr);
2547 
2548   auto *F = cast<llvm::GlobalValue>(Aliasee);
2549   F->setLinkage(llvm::Function::ExternalWeakLinkage);
2550   WeakRefReferences.insert(F);
2551 
2552   return ConstantAddress(Aliasee, Alignment);
2553 }
2554 
2555 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
2556   const auto *Global = cast<ValueDecl>(GD.getDecl());
2557 
2558   // Weak references don't produce any output by themselves.
2559   if (Global->hasAttr<WeakRefAttr>())
2560     return;
2561 
2562   // If this is an alias definition (which otherwise looks like a declaration)
2563   // emit it now.
2564   if (Global->hasAttr<AliasAttr>())
2565     return EmitAliasDefinition(GD);
2566 
2567   // IFunc like an alias whose value is resolved at runtime by calling resolver.
2568   if (Global->hasAttr<IFuncAttr>())
2569     return emitIFuncDefinition(GD);
2570 
2571   // If this is a cpu_dispatch multiversion function, emit the resolver.
2572   if (Global->hasAttr<CPUDispatchAttr>())
2573     return emitCPUDispatchDefinition(GD);
2574 
2575   // If this is CUDA, be selective about which declarations we emit.
2576   if (LangOpts.CUDA) {
2577     if (LangOpts.CUDAIsDevice) {
2578       if (!Global->hasAttr<CUDADeviceAttr>() &&
2579           !Global->hasAttr<CUDAGlobalAttr>() &&
2580           !Global->hasAttr<CUDAConstantAttr>() &&
2581           !Global->hasAttr<CUDASharedAttr>() &&
2582           !Global->getType()->isCUDADeviceBuiltinSurfaceType() &&
2583           !Global->getType()->isCUDADeviceBuiltinTextureType())
2584         return;
2585     } else {
2586       // We need to emit host-side 'shadows' for all global
2587       // device-side variables because the CUDA runtime needs their
2588       // size and host-side address in order to provide access to
2589       // their device-side incarnations.
2590 
2591       // So device-only functions are the only things we skip.
2592       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
2593           Global->hasAttr<CUDADeviceAttr>())
2594         return;
2595 
2596       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
2597              "Expected Variable or Function");
2598     }
2599   }
2600 
2601   if (LangOpts.OpenMP) {
2602     // If this is OpenMP, check if it is legal to emit this global normally.
2603     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
2604       return;
2605     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
2606       if (MustBeEmitted(Global))
2607         EmitOMPDeclareReduction(DRD);
2608       return;
2609     } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
2610       if (MustBeEmitted(Global))
2611         EmitOMPDeclareMapper(DMD);
2612       return;
2613     }
2614   }
2615 
2616   // Ignore declarations, they will be emitted on their first use.
2617   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2618     // Forward declarations are emitted lazily on first use.
2619     if (!FD->doesThisDeclarationHaveABody()) {
2620       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
2621         return;
2622 
2623       StringRef MangledName = getMangledName(GD);
2624 
2625       // Compute the function info and LLVM type.
2626       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2627       llvm::Type *Ty = getTypes().GetFunctionType(FI);
2628 
2629       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
2630                               /*DontDefer=*/false);
2631       return;
2632     }
2633   } else {
2634     const auto *VD = cast<VarDecl>(Global);
2635     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
2636     if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
2637         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
2638       if (LangOpts.OpenMP) {
2639         // Emit declaration of the must-be-emitted declare target variable.
2640         if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
2641                 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
2642           bool UnifiedMemoryEnabled =
2643               getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
2644           if (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2645               !UnifiedMemoryEnabled) {
2646             (void)GetAddrOfGlobalVar(VD);
2647           } else {
2648             assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
2649                     (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2650                      UnifiedMemoryEnabled)) &&
2651                    "Link clause or to clause with unified memory expected.");
2652             (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
2653           }
2654 
2655           return;
2656         }
2657       }
2658       // If this declaration may have caused an inline variable definition to
2659       // change linkage, make sure that it's emitted.
2660       if (Context.getInlineVariableDefinitionKind(VD) ==
2661           ASTContext::InlineVariableDefinitionKind::Strong)
2662         GetAddrOfGlobalVar(VD);
2663       return;
2664     }
2665   }
2666 
2667   // Defer code generation to first use when possible, e.g. if this is an inline
2668   // function. If the global must always be emitted, do it eagerly if possible
2669   // to benefit from cache locality.
2670   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
2671     // Emit the definition if it can't be deferred.
2672     EmitGlobalDefinition(GD);
2673     return;
2674   }
2675 
2676   // If we're deferring emission of a C++ variable with an
2677   // initializer, remember the order in which it appeared in the file.
2678   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
2679       cast<VarDecl>(Global)->hasInit()) {
2680     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
2681     CXXGlobalInits.push_back(nullptr);
2682   }
2683 
2684   StringRef MangledName = getMangledName(GD);
2685   if (GetGlobalValue(MangledName) != nullptr) {
2686     // The value has already been used and should therefore be emitted.
2687     addDeferredDeclToEmit(GD);
2688   } else if (MustBeEmitted(Global)) {
2689     // The value must be emitted, but cannot be emitted eagerly.
2690     assert(!MayBeEmittedEagerly(Global));
2691     addDeferredDeclToEmit(GD);
2692   } else {
2693     // Otherwise, remember that we saw a deferred decl with this name.  The
2694     // first use of the mangled name will cause it to move into
2695     // DeferredDeclsToEmit.
2696     DeferredDecls[MangledName] = GD;
2697   }
2698 }
2699 
2700 // Check if T is a class type with a destructor that's not dllimport.
2701 static bool HasNonDllImportDtor(QualType T) {
2702   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
2703     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2704       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
2705         return true;
2706 
2707   return false;
2708 }
2709 
2710 namespace {
2711   struct FunctionIsDirectlyRecursive
2712       : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
2713     const StringRef Name;
2714     const Builtin::Context &BI;
2715     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
2716         : Name(N), BI(C) {}
2717 
2718     bool VisitCallExpr(const CallExpr *E) {
2719       const FunctionDecl *FD = E->getDirectCallee();
2720       if (!FD)
2721         return false;
2722       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2723       if (Attr && Name == Attr->getLabel())
2724         return true;
2725       unsigned BuiltinID = FD->getBuiltinID();
2726       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
2727         return false;
2728       StringRef BuiltinName = BI.getName(BuiltinID);
2729       if (BuiltinName.startswith("__builtin_") &&
2730           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
2731         return true;
2732       }
2733       return false;
2734     }
2735 
2736     bool VisitStmt(const Stmt *S) {
2737       for (const Stmt *Child : S->children())
2738         if (Child && this->Visit(Child))
2739           return true;
2740       return false;
2741     }
2742   };
2743 
2744   // Make sure we're not referencing non-imported vars or functions.
2745   struct DLLImportFunctionVisitor
2746       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
2747     bool SafeToInline = true;
2748 
2749     bool shouldVisitImplicitCode() const { return true; }
2750 
2751     bool VisitVarDecl(VarDecl *VD) {
2752       if (VD->getTLSKind()) {
2753         // A thread-local variable cannot be imported.
2754         SafeToInline = false;
2755         return SafeToInline;
2756       }
2757 
2758       // A variable definition might imply a destructor call.
2759       if (VD->isThisDeclarationADefinition())
2760         SafeToInline = !HasNonDllImportDtor(VD->getType());
2761 
2762       return SafeToInline;
2763     }
2764 
2765     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
2766       if (const auto *D = E->getTemporary()->getDestructor())
2767         SafeToInline = D->hasAttr<DLLImportAttr>();
2768       return SafeToInline;
2769     }
2770 
2771     bool VisitDeclRefExpr(DeclRefExpr *E) {
2772       ValueDecl *VD = E->getDecl();
2773       if (isa<FunctionDecl>(VD))
2774         SafeToInline = VD->hasAttr<DLLImportAttr>();
2775       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
2776         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
2777       return SafeToInline;
2778     }
2779 
2780     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
2781       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
2782       return SafeToInline;
2783     }
2784 
2785     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
2786       CXXMethodDecl *M = E->getMethodDecl();
2787       if (!M) {
2788         // Call through a pointer to member function. This is safe to inline.
2789         SafeToInline = true;
2790       } else {
2791         SafeToInline = M->hasAttr<DLLImportAttr>();
2792       }
2793       return SafeToInline;
2794     }
2795 
2796     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
2797       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
2798       return SafeToInline;
2799     }
2800 
2801     bool VisitCXXNewExpr(CXXNewExpr *E) {
2802       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
2803       return SafeToInline;
2804     }
2805   };
2806 }
2807 
2808 // isTriviallyRecursive - Check if this function calls another
2809 // decl that, because of the asm attribute or the other decl being a builtin,
2810 // ends up pointing to itself.
2811 bool
2812 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
2813   StringRef Name;
2814   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
2815     // asm labels are a special kind of mangling we have to support.
2816     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2817     if (!Attr)
2818       return false;
2819     Name = Attr->getLabel();
2820   } else {
2821     Name = FD->getName();
2822   }
2823 
2824   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
2825   const Stmt *Body = FD->getBody();
2826   return Body ? Walker.Visit(Body) : false;
2827 }
2828 
2829 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
2830   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
2831     return true;
2832   const auto *F = cast<FunctionDecl>(GD.getDecl());
2833   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
2834     return false;
2835 
2836   if (F->hasAttr<DLLImportAttr>()) {
2837     // Check whether it would be safe to inline this dllimport function.
2838     DLLImportFunctionVisitor Visitor;
2839     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
2840     if (!Visitor.SafeToInline)
2841       return false;
2842 
2843     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
2844       // Implicit destructor invocations aren't captured in the AST, so the
2845       // check above can't see them. Check for them manually here.
2846       for (const Decl *Member : Dtor->getParent()->decls())
2847         if (isa<FieldDecl>(Member))
2848           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
2849             return false;
2850       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
2851         if (HasNonDllImportDtor(B.getType()))
2852           return false;
2853     }
2854   }
2855 
2856   // PR9614. Avoid cases where the source code is lying to us. An available
2857   // externally function should have an equivalent function somewhere else,
2858   // but a function that calls itself through asm label/`__builtin_` trickery is
2859   // clearly not equivalent to the real implementation.
2860   // This happens in glibc's btowc and in some configure checks.
2861   return !isTriviallyRecursive(F);
2862 }
2863 
2864 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
2865   return CodeGenOpts.OptimizationLevel > 0;
2866 }
2867 
2868 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
2869                                                        llvm::GlobalValue *GV) {
2870   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2871 
2872   if (FD->isCPUSpecificMultiVersion()) {
2873     auto *Spec = FD->getAttr<CPUSpecificAttr>();
2874     for (unsigned I = 0; I < Spec->cpus_size(); ++I)
2875       EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
2876     // Requires multiple emits.
2877   } else
2878     EmitGlobalFunctionDefinition(GD, GV);
2879 }
2880 
2881 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
2882   const auto *D = cast<ValueDecl>(GD.getDecl());
2883 
2884   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
2885                                  Context.getSourceManager(),
2886                                  "Generating code for declaration");
2887 
2888   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
2889     // At -O0, don't generate IR for functions with available_externally
2890     // linkage.
2891     if (!shouldEmitFunction(GD))
2892       return;
2893 
2894     llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
2895       std::string Name;
2896       llvm::raw_string_ostream OS(Name);
2897       FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(),
2898                                /*Qualified=*/true);
2899       return Name;
2900     });
2901 
2902     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
2903       // Make sure to emit the definition(s) before we emit the thunks.
2904       // This is necessary for the generation of certain thunks.
2905       if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method))
2906         ABI->emitCXXStructor(GD);
2907       else if (FD->isMultiVersion())
2908         EmitMultiVersionFunctionDefinition(GD, GV);
2909       else
2910         EmitGlobalFunctionDefinition(GD, GV);
2911 
2912       if (Method->isVirtual())
2913         getVTables().EmitThunks(GD);
2914 
2915       return;
2916     }
2917 
2918     if (FD->isMultiVersion())
2919       return EmitMultiVersionFunctionDefinition(GD, GV);
2920     return EmitGlobalFunctionDefinition(GD, GV);
2921   }
2922 
2923   if (const auto *VD = dyn_cast<VarDecl>(D))
2924     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
2925 
2926   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
2927 }
2928 
2929 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2930                                                       llvm::Function *NewFn);
2931 
2932 static unsigned
2933 TargetMVPriority(const TargetInfo &TI,
2934                  const CodeGenFunction::MultiVersionResolverOption &RO) {
2935   unsigned Priority = 0;
2936   for (StringRef Feat : RO.Conditions.Features)
2937     Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
2938 
2939   if (!RO.Conditions.Architecture.empty())
2940     Priority = std::max(
2941         Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
2942   return Priority;
2943 }
2944 
2945 void CodeGenModule::emitMultiVersionFunctions() {
2946   for (GlobalDecl GD : MultiVersionFuncs) {
2947     SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
2948     const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
2949     getContext().forEachMultiversionedFunctionVersion(
2950         FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
2951           GlobalDecl CurGD{
2952               (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
2953           StringRef MangledName = getMangledName(CurGD);
2954           llvm::Constant *Func = GetGlobalValue(MangledName);
2955           if (!Func) {
2956             if (CurFD->isDefined()) {
2957               EmitGlobalFunctionDefinition(CurGD, nullptr);
2958               Func = GetGlobalValue(MangledName);
2959             } else {
2960               const CGFunctionInfo &FI =
2961                   getTypes().arrangeGlobalDeclaration(GD);
2962               llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2963               Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
2964                                        /*DontDefer=*/false, ForDefinition);
2965             }
2966             assert(Func && "This should have just been created");
2967           }
2968 
2969           const auto *TA = CurFD->getAttr<TargetAttr>();
2970           llvm::SmallVector<StringRef, 8> Feats;
2971           TA->getAddedFeatures(Feats);
2972 
2973           Options.emplace_back(cast<llvm::Function>(Func),
2974                                TA->getArchitecture(), Feats);
2975         });
2976 
2977     llvm::Function *ResolverFunc;
2978     const TargetInfo &TI = getTarget();
2979 
2980     if (TI.supportsIFunc() || FD->isTargetMultiVersion()) {
2981       ResolverFunc = cast<llvm::Function>(
2982           GetGlobalValue((getMangledName(GD) + ".resolver").str()));
2983       ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage);
2984     } else {
2985       ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD)));
2986     }
2987 
2988     if (supportsCOMDAT())
2989       ResolverFunc->setComdat(
2990           getModule().getOrInsertComdat(ResolverFunc->getName()));
2991 
2992     llvm::stable_sort(
2993         Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
2994                        const CodeGenFunction::MultiVersionResolverOption &RHS) {
2995           return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
2996         });
2997     CodeGenFunction CGF(*this);
2998     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
2999   }
3000 }
3001 
3002 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
3003   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3004   assert(FD && "Not a FunctionDecl?");
3005   const auto *DD = FD->getAttr<CPUDispatchAttr>();
3006   assert(DD && "Not a cpu_dispatch Function?");
3007   llvm::Type *DeclTy = getTypes().ConvertType(FD->getType());
3008 
3009   if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) {
3010     const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD);
3011     DeclTy = getTypes().GetFunctionType(FInfo);
3012   }
3013 
3014   StringRef ResolverName = getMangledName(GD);
3015 
3016   llvm::Type *ResolverType;
3017   GlobalDecl ResolverGD;
3018   if (getTarget().supportsIFunc())
3019     ResolverType = llvm::FunctionType::get(
3020         llvm::PointerType::get(DeclTy,
3021                                Context.getTargetAddressSpace(FD->getType())),
3022         false);
3023   else {
3024     ResolverType = DeclTy;
3025     ResolverGD = GD;
3026   }
3027 
3028   auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
3029       ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
3030   ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage);
3031   if (supportsCOMDAT())
3032     ResolverFunc->setComdat(
3033         getModule().getOrInsertComdat(ResolverFunc->getName()));
3034 
3035   SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3036   const TargetInfo &Target = getTarget();
3037   unsigned Index = 0;
3038   for (const IdentifierInfo *II : DD->cpus()) {
3039     // Get the name of the target function so we can look it up/create it.
3040     std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
3041                               getCPUSpecificMangling(*this, II->getName());
3042 
3043     llvm::Constant *Func = GetGlobalValue(MangledName);
3044 
3045     if (!Func) {
3046       GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
3047       if (ExistingDecl.getDecl() &&
3048           ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
3049         EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
3050         Func = GetGlobalValue(MangledName);
3051       } else {
3052         if (!ExistingDecl.getDecl())
3053           ExistingDecl = GD.getWithMultiVersionIndex(Index);
3054 
3055       Func = GetOrCreateLLVMFunction(
3056           MangledName, DeclTy, ExistingDecl,
3057           /*ForVTable=*/false, /*DontDefer=*/true,
3058           /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
3059       }
3060     }
3061 
3062     llvm::SmallVector<StringRef, 32> Features;
3063     Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
3064     llvm::transform(Features, Features.begin(),
3065                     [](StringRef Str) { return Str.substr(1); });
3066     Features.erase(std::remove_if(
3067         Features.begin(), Features.end(), [&Target](StringRef Feat) {
3068           return !Target.validateCpuSupports(Feat);
3069         }), Features.end());
3070     Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
3071     ++Index;
3072   }
3073 
3074   llvm::sort(
3075       Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
3076                   const CodeGenFunction::MultiVersionResolverOption &RHS) {
3077         return CodeGenFunction::GetX86CpuSupportsMask(LHS.Conditions.Features) >
3078                CodeGenFunction::GetX86CpuSupportsMask(RHS.Conditions.Features);
3079       });
3080 
3081   // If the list contains multiple 'default' versions, such as when it contains
3082   // 'pentium' and 'generic', don't emit the call to the generic one (since we
3083   // always run on at least a 'pentium'). We do this by deleting the 'least
3084   // advanced' (read, lowest mangling letter).
3085   while (Options.size() > 1 &&
3086          CodeGenFunction::GetX86CpuSupportsMask(
3087              (Options.end() - 2)->Conditions.Features) == 0) {
3088     StringRef LHSName = (Options.end() - 2)->Function->getName();
3089     StringRef RHSName = (Options.end() - 1)->Function->getName();
3090     if (LHSName.compare(RHSName) < 0)
3091       Options.erase(Options.end() - 2);
3092     else
3093       Options.erase(Options.end() - 1);
3094   }
3095 
3096   CodeGenFunction CGF(*this);
3097   CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3098 
3099   if (getTarget().supportsIFunc()) {
3100     std::string AliasName = getMangledNameImpl(
3101         *this, GD, FD, /*OmitMultiVersionMangling=*/true);
3102     llvm::Constant *AliasFunc = GetGlobalValue(AliasName);
3103     if (!AliasFunc) {
3104       auto *IFunc = cast<llvm::GlobalIFunc>(GetOrCreateLLVMFunction(
3105           AliasName, DeclTy, GD, /*ForVTable=*/false, /*DontDefer=*/true,
3106           /*IsThunk=*/false, llvm::AttributeList(), NotForDefinition));
3107       auto *GA = llvm::GlobalAlias::create(
3108          DeclTy, 0, getFunctionLinkage(GD), AliasName, IFunc, &getModule());
3109       GA->setLinkage(llvm::Function::WeakODRLinkage);
3110       SetCommonAttributes(GD, GA);
3111     }
3112   }
3113 }
3114 
3115 /// If a dispatcher for the specified mangled name is not in the module, create
3116 /// and return an llvm Function with the specified type.
3117 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(
3118     GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) {
3119   std::string MangledName =
3120       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
3121 
3122   // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
3123   // a separate resolver).
3124   std::string ResolverName = MangledName;
3125   if (getTarget().supportsIFunc())
3126     ResolverName += ".ifunc";
3127   else if (FD->isTargetMultiVersion())
3128     ResolverName += ".resolver";
3129 
3130   // If this already exists, just return that one.
3131   if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName))
3132     return ResolverGV;
3133 
3134   // Since this is the first time we've created this IFunc, make sure
3135   // that we put this multiversioned function into the list to be
3136   // replaced later if necessary (target multiversioning only).
3137   if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion())
3138     MultiVersionFuncs.push_back(GD);
3139 
3140   if (getTarget().supportsIFunc()) {
3141     llvm::Type *ResolverType = llvm::FunctionType::get(
3142         llvm::PointerType::get(
3143             DeclTy, getContext().getTargetAddressSpace(FD->getType())),
3144         false);
3145     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3146         MangledName + ".resolver", ResolverType, GlobalDecl{},
3147         /*ForVTable=*/false);
3148     llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create(
3149         DeclTy, 0, llvm::Function::WeakODRLinkage, "", Resolver, &getModule());
3150     GIF->setName(ResolverName);
3151     SetCommonAttributes(FD, GIF);
3152 
3153     return GIF;
3154   }
3155 
3156   llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3157       ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
3158   assert(isa<llvm::GlobalValue>(Resolver) &&
3159          "Resolver should be created for the first time");
3160   SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
3161   return Resolver;
3162 }
3163 
3164 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
3165 /// module, create and return an llvm Function with the specified type. If there
3166 /// is something in the module with the specified name, return it potentially
3167 /// bitcasted to the right type.
3168 ///
3169 /// If D is non-null, it specifies a decl that correspond to this.  This is used
3170 /// to set the attributes on the function when it is first created.
3171 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
3172     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
3173     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
3174     ForDefinition_t IsForDefinition) {
3175   const Decl *D = GD.getDecl();
3176 
3177   // Any attempts to use a MultiVersion function should result in retrieving
3178   // the iFunc instead. Name Mangling will handle the rest of the changes.
3179   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
3180     // For the device mark the function as one that should be emitted.
3181     if (getLangOpts().OpenMPIsDevice && OpenMPRuntime &&
3182         !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
3183         !DontDefer && !IsForDefinition) {
3184       if (const FunctionDecl *FDDef = FD->getDefinition()) {
3185         GlobalDecl GDDef;
3186         if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
3187           GDDef = GlobalDecl(CD, GD.getCtorType());
3188         else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
3189           GDDef = GlobalDecl(DD, GD.getDtorType());
3190         else
3191           GDDef = GlobalDecl(FDDef);
3192         EmitGlobal(GDDef);
3193       }
3194     }
3195 
3196     if (FD->isMultiVersion()) {
3197       if (FD->hasAttr<TargetAttr>())
3198         UpdateMultiVersionNames(GD, FD);
3199       if (!IsForDefinition)
3200         return GetOrCreateMultiVersionResolver(GD, Ty, FD);
3201     }
3202   }
3203 
3204   // Lookup the entry, lazily creating it if necessary.
3205   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3206   if (Entry) {
3207     if (WeakRefReferences.erase(Entry)) {
3208       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
3209       if (FD && !FD->hasAttr<WeakAttr>())
3210         Entry->setLinkage(llvm::Function::ExternalLinkage);
3211     }
3212 
3213     // Handle dropped DLL attributes.
3214     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) {
3215       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3216       setDSOLocal(Entry);
3217     }
3218 
3219     // If there are two attempts to define the same mangled name, issue an
3220     // error.
3221     if (IsForDefinition && !Entry->isDeclaration()) {
3222       GlobalDecl OtherGD;
3223       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
3224       // to make sure that we issue an error only once.
3225       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3226           (GD.getCanonicalDecl().getDecl() !=
3227            OtherGD.getCanonicalDecl().getDecl()) &&
3228           DiagnosedConflictingDefinitions.insert(GD).second) {
3229         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3230             << MangledName;
3231         getDiags().Report(OtherGD.getDecl()->getLocation(),
3232                           diag::note_previous_definition);
3233       }
3234     }
3235 
3236     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
3237         (Entry->getValueType() == Ty)) {
3238       return Entry;
3239     }
3240 
3241     // Make sure the result is of the correct type.
3242     // (If function is requested for a definition, we always need to create a new
3243     // function, not just return a bitcast.)
3244     if (!IsForDefinition)
3245       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
3246   }
3247 
3248   // This function doesn't have a complete type (for example, the return
3249   // type is an incomplete struct). Use a fake type instead, and make
3250   // sure not to try to set attributes.
3251   bool IsIncompleteFunction = false;
3252 
3253   llvm::FunctionType *FTy;
3254   if (isa<llvm::FunctionType>(Ty)) {
3255     FTy = cast<llvm::FunctionType>(Ty);
3256   } else {
3257     FTy = llvm::FunctionType::get(VoidTy, false);
3258     IsIncompleteFunction = true;
3259   }
3260 
3261   llvm::Function *F =
3262       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
3263                              Entry ? StringRef() : MangledName, &getModule());
3264 
3265   // If we already created a function with the same mangled name (but different
3266   // type) before, take its name and add it to the list of functions to be
3267   // replaced with F at the end of CodeGen.
3268   //
3269   // This happens if there is a prototype for a function (e.g. "int f()") and
3270   // then a definition of a different type (e.g. "int f(int x)").
3271   if (Entry) {
3272     F->takeName(Entry);
3273 
3274     // This might be an implementation of a function without a prototype, in
3275     // which case, try to do special replacement of calls which match the new
3276     // prototype.  The really key thing here is that we also potentially drop
3277     // arguments from the call site so as to make a direct call, which makes the
3278     // inliner happier and suppresses a number of optimizer warnings (!) about
3279     // dropping arguments.
3280     if (!Entry->use_empty()) {
3281       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
3282       Entry->removeDeadConstantUsers();
3283     }
3284 
3285     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
3286         F, Entry->getValueType()->getPointerTo());
3287     addGlobalValReplacement(Entry, BC);
3288   }
3289 
3290   assert(F->getName() == MangledName && "name was uniqued!");
3291   if (D)
3292     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
3293   if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) {
3294     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex);
3295     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
3296   }
3297 
3298   if (!DontDefer) {
3299     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
3300     // each other bottoming out with the base dtor.  Therefore we emit non-base
3301     // dtors on usage, even if there is no dtor definition in the TU.
3302     if (D && isa<CXXDestructorDecl>(D) &&
3303         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
3304                                            GD.getDtorType()))
3305       addDeferredDeclToEmit(GD);
3306 
3307     // This is the first use or definition of a mangled name.  If there is a
3308     // deferred decl with this name, remember that we need to emit it at the end
3309     // of the file.
3310     auto DDI = DeferredDecls.find(MangledName);
3311     if (DDI != DeferredDecls.end()) {
3312       // Move the potentially referenced deferred decl to the
3313       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
3314       // don't need it anymore).
3315       addDeferredDeclToEmit(DDI->second);
3316       DeferredDecls.erase(DDI);
3317 
3318       // Otherwise, there are cases we have to worry about where we're
3319       // using a declaration for which we must emit a definition but where
3320       // we might not find a top-level definition:
3321       //   - member functions defined inline in their classes
3322       //   - friend functions defined inline in some class
3323       //   - special member functions with implicit definitions
3324       // If we ever change our AST traversal to walk into class methods,
3325       // this will be unnecessary.
3326       //
3327       // We also don't emit a definition for a function if it's going to be an
3328       // entry in a vtable, unless it's already marked as used.
3329     } else if (getLangOpts().CPlusPlus && D) {
3330       // Look for a declaration that's lexically in a record.
3331       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
3332            FD = FD->getPreviousDecl()) {
3333         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
3334           if (FD->doesThisDeclarationHaveABody()) {
3335             addDeferredDeclToEmit(GD.getWithDecl(FD));
3336             break;
3337           }
3338         }
3339       }
3340     }
3341   }
3342 
3343   // Make sure the result is of the requested type.
3344   if (!IsIncompleteFunction) {
3345     assert(F->getFunctionType() == Ty);
3346     return F;
3347   }
3348 
3349   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
3350   return llvm::ConstantExpr::getBitCast(F, PTy);
3351 }
3352 
3353 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
3354 /// non-null, then this function will use the specified type if it has to
3355 /// create it (this occurs when we see a definition of the function).
3356 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
3357                                                  llvm::Type *Ty,
3358                                                  bool ForVTable,
3359                                                  bool DontDefer,
3360                                               ForDefinition_t IsForDefinition) {
3361   assert(!cast<FunctionDecl>(GD.getDecl())->isConsteval() &&
3362          "consteval function should never be emitted");
3363   // If there was no specific requested type, just convert it now.
3364   if (!Ty) {
3365     const auto *FD = cast<FunctionDecl>(GD.getDecl());
3366     Ty = getTypes().ConvertType(FD->getType());
3367   }
3368 
3369   // Devirtualized destructor calls may come through here instead of via
3370   // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
3371   // of the complete destructor when necessary.
3372   if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
3373     if (getTarget().getCXXABI().isMicrosoft() &&
3374         GD.getDtorType() == Dtor_Complete &&
3375         DD->getParent()->getNumVBases() == 0)
3376       GD = GlobalDecl(DD, Dtor_Base);
3377   }
3378 
3379   StringRef MangledName = getMangledName(GD);
3380   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
3381                                  /*IsThunk=*/false, llvm::AttributeList(),
3382                                  IsForDefinition);
3383 }
3384 
3385 static const FunctionDecl *
3386 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
3387   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
3388   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
3389 
3390   IdentifierInfo &CII = C.Idents.get(Name);
3391   for (const auto &Result : DC->lookup(&CII))
3392     if (const auto FD = dyn_cast<FunctionDecl>(Result))
3393       return FD;
3394 
3395   if (!C.getLangOpts().CPlusPlus)
3396     return nullptr;
3397 
3398   // Demangle the premangled name from getTerminateFn()
3399   IdentifierInfo &CXXII =
3400       (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
3401           ? C.Idents.get("terminate")
3402           : C.Idents.get(Name);
3403 
3404   for (const auto &N : {"__cxxabiv1", "std"}) {
3405     IdentifierInfo &NS = C.Idents.get(N);
3406     for (const auto &Result : DC->lookup(&NS)) {
3407       NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
3408       if (auto LSD = dyn_cast<LinkageSpecDecl>(Result))
3409         for (const auto &Result : LSD->lookup(&NS))
3410           if ((ND = dyn_cast<NamespaceDecl>(Result)))
3411             break;
3412 
3413       if (ND)
3414         for (const auto &Result : ND->lookup(&CXXII))
3415           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
3416             return FD;
3417     }
3418   }
3419 
3420   return nullptr;
3421 }
3422 
3423 /// CreateRuntimeFunction - Create a new runtime function with the specified
3424 /// type and name.
3425 llvm::FunctionCallee
3426 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
3427                                      llvm::AttributeList ExtraAttrs, bool Local,
3428                                      bool AssumeConvergent) {
3429   if (AssumeConvergent) {
3430     ExtraAttrs =
3431         ExtraAttrs.addAttribute(VMContext, llvm::AttributeList::FunctionIndex,
3432                                 llvm::Attribute::Convergent);
3433   }
3434 
3435   llvm::Constant *C =
3436       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
3437                               /*DontDefer=*/false, /*IsThunk=*/false,
3438                               ExtraAttrs);
3439 
3440   if (auto *F = dyn_cast<llvm::Function>(C)) {
3441     if (F->empty()) {
3442       F->setCallingConv(getRuntimeCC());
3443 
3444       // In Windows Itanium environments, try to mark runtime functions
3445       // dllimport. For Mingw and MSVC, don't. We don't really know if the user
3446       // will link their standard library statically or dynamically. Marking
3447       // functions imported when they are not imported can cause linker errors
3448       // and warnings.
3449       if (!Local && getTriple().isWindowsItaniumEnvironment() &&
3450           !getCodeGenOpts().LTOVisibilityPublicStd) {
3451         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
3452         if (!FD || FD->hasAttr<DLLImportAttr>()) {
3453           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
3454           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
3455         }
3456       }
3457       setDSOLocal(F);
3458     }
3459   }
3460 
3461   return {FTy, C};
3462 }
3463 
3464 /// isTypeConstant - Determine whether an object of this type can be emitted
3465 /// as a constant.
3466 ///
3467 /// If ExcludeCtor is true, the duration when the object's constructor runs
3468 /// will not be considered. The caller will need to verify that the object is
3469 /// not written to during its construction.
3470 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
3471   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
3472     return false;
3473 
3474   if (Context.getLangOpts().CPlusPlus) {
3475     if (const CXXRecordDecl *Record
3476           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
3477       return ExcludeCtor && !Record->hasMutableFields() &&
3478              Record->hasTrivialDestructor();
3479   }
3480 
3481   return true;
3482 }
3483 
3484 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
3485 /// create and return an llvm GlobalVariable with the specified type.  If there
3486 /// is something in the module with the specified name, return it potentially
3487 /// bitcasted to the right type.
3488 ///
3489 /// If D is non-null, it specifies a decl that correspond to this.  This is used
3490 /// to set the attributes on the global when it is first created.
3491 ///
3492 /// If IsForDefinition is true, it is guaranteed that an actual global with
3493 /// type Ty will be returned, not conversion of a variable with the same
3494 /// mangled name but some other type.
3495 llvm::Constant *
3496 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
3497                                      llvm::PointerType *Ty,
3498                                      const VarDecl *D,
3499                                      ForDefinition_t IsForDefinition) {
3500   // Lookup the entry, lazily creating it if necessary.
3501   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3502   if (Entry) {
3503     if (WeakRefReferences.erase(Entry)) {
3504       if (D && !D->hasAttr<WeakAttr>())
3505         Entry->setLinkage(llvm::Function::ExternalLinkage);
3506     }
3507 
3508     // Handle dropped DLL attributes.
3509     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
3510       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3511 
3512     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
3513       getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
3514 
3515     if (Entry->getType() == Ty)
3516       return Entry;
3517 
3518     // If there are two attempts to define the same mangled name, issue an
3519     // error.
3520     if (IsForDefinition && !Entry->isDeclaration()) {
3521       GlobalDecl OtherGD;
3522       const VarDecl *OtherD;
3523 
3524       // Check that D is not yet in DiagnosedConflictingDefinitions is required
3525       // to make sure that we issue an error only once.
3526       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
3527           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
3528           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
3529           OtherD->hasInit() &&
3530           DiagnosedConflictingDefinitions.insert(D).second) {
3531         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3532             << MangledName;
3533         getDiags().Report(OtherGD.getDecl()->getLocation(),
3534                           diag::note_previous_definition);
3535       }
3536     }
3537 
3538     // Make sure the result is of the correct type.
3539     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
3540       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
3541 
3542     // (If global is requested for a definition, we always need to create a new
3543     // global, not just return a bitcast.)
3544     if (!IsForDefinition)
3545       return llvm::ConstantExpr::getBitCast(Entry, Ty);
3546   }
3547 
3548   auto AddrSpace = GetGlobalVarAddressSpace(D);
3549   auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace);
3550 
3551   auto *GV = new llvm::GlobalVariable(
3552       getModule(), Ty->getElementType(), false,
3553       llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
3554       llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace);
3555 
3556   // If we already created a global with the same mangled name (but different
3557   // type) before, take its name and remove it from its parent.
3558   if (Entry) {
3559     GV->takeName(Entry);
3560 
3561     if (!Entry->use_empty()) {
3562       llvm::Constant *NewPtrForOldDecl =
3563           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
3564       Entry->replaceAllUsesWith(NewPtrForOldDecl);
3565     }
3566 
3567     Entry->eraseFromParent();
3568   }
3569 
3570   // This is the first use or definition of a mangled name.  If there is a
3571   // deferred decl with this name, remember that we need to emit it at the end
3572   // of the file.
3573   auto DDI = DeferredDecls.find(MangledName);
3574   if (DDI != DeferredDecls.end()) {
3575     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
3576     // list, and remove it from DeferredDecls (since we don't need it anymore).
3577     addDeferredDeclToEmit(DDI->second);
3578     DeferredDecls.erase(DDI);
3579   }
3580 
3581   // Handle things which are present even on external declarations.
3582   if (D) {
3583     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
3584       getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
3585 
3586     // FIXME: This code is overly simple and should be merged with other global
3587     // handling.
3588     GV->setConstant(isTypeConstant(D->getType(), false));
3589 
3590     GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
3591 
3592     setLinkageForGV(GV, D);
3593 
3594     if (D->getTLSKind()) {
3595       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
3596         CXXThreadLocals.push_back(D);
3597       setTLSMode(GV, *D);
3598     }
3599 
3600     setGVProperties(GV, D);
3601 
3602     // If required by the ABI, treat declarations of static data members with
3603     // inline initializers as definitions.
3604     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
3605       EmitGlobalVarDefinition(D);
3606     }
3607 
3608     // Emit section information for extern variables.
3609     if (D->hasExternalStorage()) {
3610       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
3611         GV->setSection(SA->getName());
3612     }
3613 
3614     // Handle XCore specific ABI requirements.
3615     if (getTriple().getArch() == llvm::Triple::xcore &&
3616         D->getLanguageLinkage() == CLanguageLinkage &&
3617         D->getType().isConstant(Context) &&
3618         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
3619       GV->setSection(".cp.rodata");
3620 
3621     // Check if we a have a const declaration with an initializer, we may be
3622     // able to emit it as available_externally to expose it's value to the
3623     // optimizer.
3624     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
3625         D->getType().isConstQualified() && !GV->hasInitializer() &&
3626         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
3627       const auto *Record =
3628           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
3629       bool HasMutableFields = Record && Record->hasMutableFields();
3630       if (!HasMutableFields) {
3631         const VarDecl *InitDecl;
3632         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
3633         if (InitExpr) {
3634           ConstantEmitter emitter(*this);
3635           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
3636           if (Init) {
3637             auto *InitType = Init->getType();
3638             if (GV->getValueType() != InitType) {
3639               // The type of the initializer does not match the definition.
3640               // This happens when an initializer has a different type from
3641               // the type of the global (because of padding at the end of a
3642               // structure for instance).
3643               GV->setName(StringRef());
3644               // Make a new global with the correct type, this is now guaranteed
3645               // to work.
3646               auto *NewGV = cast<llvm::GlobalVariable>(
3647                   GetAddrOfGlobalVar(D, InitType, IsForDefinition)
3648                       ->stripPointerCasts());
3649 
3650               // Erase the old global, since it is no longer used.
3651               GV->eraseFromParent();
3652               GV = NewGV;
3653             } else {
3654               GV->setInitializer(Init);
3655               GV->setConstant(true);
3656               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
3657             }
3658             emitter.finalize(GV);
3659           }
3660         }
3661       }
3662     }
3663   }
3664 
3665   if (GV->isDeclaration())
3666     getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
3667 
3668   LangAS ExpectedAS =
3669       D ? D->getType().getAddressSpace()
3670         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
3671   assert(getContext().getTargetAddressSpace(ExpectedAS) ==
3672          Ty->getPointerAddressSpace());
3673   if (AddrSpace != ExpectedAS)
3674     return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace,
3675                                                        ExpectedAS, Ty);
3676 
3677   return GV;
3678 }
3679 
3680 llvm::Constant *
3681 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) {
3682   const Decl *D = GD.getDecl();
3683 
3684   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
3685     return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
3686                                 /*DontDefer=*/false, IsForDefinition);
3687 
3688   if (isa<CXXMethodDecl>(D)) {
3689     auto FInfo =
3690         &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D));
3691     auto Ty = getTypes().GetFunctionType(*FInfo);
3692     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
3693                              IsForDefinition);
3694   }
3695 
3696   if (isa<FunctionDecl>(D)) {
3697     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3698     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3699     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
3700                              IsForDefinition);
3701   }
3702 
3703   return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition);
3704 }
3705 
3706 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
3707     StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
3708     unsigned Alignment) {
3709   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
3710   llvm::GlobalVariable *OldGV = nullptr;
3711 
3712   if (GV) {
3713     // Check if the variable has the right type.
3714     if (GV->getValueType() == Ty)
3715       return GV;
3716 
3717     // Because C++ name mangling, the only way we can end up with an already
3718     // existing global with the same name is if it has been declared extern "C".
3719     assert(GV->isDeclaration() && "Declaration has wrong type!");
3720     OldGV = GV;
3721   }
3722 
3723   // Create a new variable.
3724   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
3725                                 Linkage, nullptr, Name);
3726 
3727   if (OldGV) {
3728     // Replace occurrences of the old variable if needed.
3729     GV->takeName(OldGV);
3730 
3731     if (!OldGV->use_empty()) {
3732       llvm::Constant *NewPtrForOldDecl =
3733       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
3734       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
3735     }
3736 
3737     OldGV->eraseFromParent();
3738   }
3739 
3740   if (supportsCOMDAT() && GV->isWeakForLinker() &&
3741       !GV->hasAvailableExternallyLinkage())
3742     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3743 
3744   GV->setAlignment(llvm::MaybeAlign(Alignment));
3745 
3746   return GV;
3747 }
3748 
3749 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
3750 /// given global variable.  If Ty is non-null and if the global doesn't exist,
3751 /// then it will be created with the specified type instead of whatever the
3752 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
3753 /// that an actual global with type Ty will be returned, not conversion of a
3754 /// variable with the same mangled name but some other type.
3755 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
3756                                                   llvm::Type *Ty,
3757                                            ForDefinition_t IsForDefinition) {
3758   assert(D->hasGlobalStorage() && "Not a global variable");
3759   QualType ASTTy = D->getType();
3760   if (!Ty)
3761     Ty = getTypes().ConvertTypeForMem(ASTTy);
3762 
3763   llvm::PointerType *PTy =
3764     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
3765 
3766   StringRef MangledName = getMangledName(D);
3767   return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition);
3768 }
3769 
3770 /// CreateRuntimeVariable - Create a new runtime global variable with the
3771 /// specified type and name.
3772 llvm::Constant *
3773 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
3774                                      StringRef Name) {
3775   auto PtrTy =
3776       getContext().getLangOpts().OpenCL
3777           ? llvm::PointerType::get(
3778                 Ty, getContext().getTargetAddressSpace(LangAS::opencl_global))
3779           : llvm::PointerType::getUnqual(Ty);
3780   auto *Ret = GetOrCreateLLVMGlobal(Name, PtrTy, nullptr);
3781   setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
3782   return Ret;
3783 }
3784 
3785 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
3786   assert(!D->getInit() && "Cannot emit definite definitions here!");
3787 
3788   StringRef MangledName = getMangledName(D);
3789   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
3790 
3791   // We already have a definition, not declaration, with the same mangled name.
3792   // Emitting of declaration is not required (and actually overwrites emitted
3793   // definition).
3794   if (GV && !GV->isDeclaration())
3795     return;
3796 
3797   // If we have not seen a reference to this variable yet, place it into the
3798   // deferred declarations table to be emitted if needed later.
3799   if (!MustBeEmitted(D) && !GV) {
3800       DeferredDecls[MangledName] = D;
3801       return;
3802   }
3803 
3804   // The tentative definition is the only definition.
3805   EmitGlobalVarDefinition(D);
3806 }
3807 
3808 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) {
3809   EmitExternalVarDeclaration(D);
3810 }
3811 
3812 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
3813   return Context.toCharUnitsFromBits(
3814       getDataLayout().getTypeStoreSizeInBits(Ty));
3815 }
3816 
3817 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
3818   LangAS AddrSpace = LangAS::Default;
3819   if (LangOpts.OpenCL) {
3820     AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
3821     assert(AddrSpace == LangAS::opencl_global ||
3822            AddrSpace == LangAS::opencl_global_device ||
3823            AddrSpace == LangAS::opencl_global_host ||
3824            AddrSpace == LangAS::opencl_constant ||
3825            AddrSpace == LangAS::opencl_local ||
3826            AddrSpace >= LangAS::FirstTargetAddressSpace);
3827     return AddrSpace;
3828   }
3829 
3830   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
3831     if (D && D->hasAttr<CUDAConstantAttr>())
3832       return LangAS::cuda_constant;
3833     else if (D && D->hasAttr<CUDASharedAttr>())
3834       return LangAS::cuda_shared;
3835     else if (D && D->hasAttr<CUDADeviceAttr>())
3836       return LangAS::cuda_device;
3837     else if (D && D->getType().isConstQualified())
3838       return LangAS::cuda_constant;
3839     else
3840       return LangAS::cuda_device;
3841   }
3842 
3843   if (LangOpts.OpenMP) {
3844     LangAS AS;
3845     if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS))
3846       return AS;
3847   }
3848   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
3849 }
3850 
3851 LangAS CodeGenModule::getStringLiteralAddressSpace() const {
3852   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
3853   if (LangOpts.OpenCL)
3854     return LangAS::opencl_constant;
3855   if (auto AS = getTarget().getConstantAddressSpace())
3856     return AS.getValue();
3857   return LangAS::Default;
3858 }
3859 
3860 // In address space agnostic languages, string literals are in default address
3861 // space in AST. However, certain targets (e.g. amdgcn) request them to be
3862 // emitted in constant address space in LLVM IR. To be consistent with other
3863 // parts of AST, string literal global variables in constant address space
3864 // need to be casted to default address space before being put into address
3865 // map and referenced by other part of CodeGen.
3866 // In OpenCL, string literals are in constant address space in AST, therefore
3867 // they should not be casted to default address space.
3868 static llvm::Constant *
3869 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
3870                                        llvm::GlobalVariable *GV) {
3871   llvm::Constant *Cast = GV;
3872   if (!CGM.getLangOpts().OpenCL) {
3873     if (auto AS = CGM.getTarget().getConstantAddressSpace()) {
3874       if (AS != LangAS::Default)
3875         Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
3876             CGM, GV, AS.getValue(), LangAS::Default,
3877             GV->getValueType()->getPointerTo(
3878                 CGM.getContext().getTargetAddressSpace(LangAS::Default)));
3879     }
3880   }
3881   return Cast;
3882 }
3883 
3884 template<typename SomeDecl>
3885 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
3886                                                llvm::GlobalValue *GV) {
3887   if (!getLangOpts().CPlusPlus)
3888     return;
3889 
3890   // Must have 'used' attribute, or else inline assembly can't rely on
3891   // the name existing.
3892   if (!D->template hasAttr<UsedAttr>())
3893     return;
3894 
3895   // Must have internal linkage and an ordinary name.
3896   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
3897     return;
3898 
3899   // Must be in an extern "C" context. Entities declared directly within
3900   // a record are not extern "C" even if the record is in such a context.
3901   const SomeDecl *First = D->getFirstDecl();
3902   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
3903     return;
3904 
3905   // OK, this is an internal linkage entity inside an extern "C" linkage
3906   // specification. Make a note of that so we can give it the "expected"
3907   // mangled name if nothing else is using that name.
3908   std::pair<StaticExternCMap::iterator, bool> R =
3909       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
3910 
3911   // If we have multiple internal linkage entities with the same name
3912   // in extern "C" regions, none of them gets that name.
3913   if (!R.second)
3914     R.first->second = nullptr;
3915 }
3916 
3917 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
3918   if (!CGM.supportsCOMDAT())
3919     return false;
3920 
3921   // Do not set COMDAT attribute for CUDA/HIP stub functions to prevent
3922   // them being "merged" by the COMDAT Folding linker optimization.
3923   if (D.hasAttr<CUDAGlobalAttr>())
3924     return false;
3925 
3926   if (D.hasAttr<SelectAnyAttr>())
3927     return true;
3928 
3929   GVALinkage Linkage;
3930   if (auto *VD = dyn_cast<VarDecl>(&D))
3931     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
3932   else
3933     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
3934 
3935   switch (Linkage) {
3936   case GVA_Internal:
3937   case GVA_AvailableExternally:
3938   case GVA_StrongExternal:
3939     return false;
3940   case GVA_DiscardableODR:
3941   case GVA_StrongODR:
3942     return true;
3943   }
3944   llvm_unreachable("No such linkage");
3945 }
3946 
3947 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
3948                                           llvm::GlobalObject &GO) {
3949   if (!shouldBeInCOMDAT(*this, D))
3950     return;
3951   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
3952 }
3953 
3954 /// Pass IsTentative as true if you want to create a tentative definition.
3955 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
3956                                             bool IsTentative) {
3957   // OpenCL global variables of sampler type are translated to function calls,
3958   // therefore no need to be translated.
3959   QualType ASTTy = D->getType();
3960   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
3961     return;
3962 
3963   // If this is OpenMP device, check if it is legal to emit this global
3964   // normally.
3965   if (LangOpts.OpenMPIsDevice && OpenMPRuntime &&
3966       OpenMPRuntime->emitTargetGlobalVariable(D))
3967     return;
3968 
3969   llvm::Constant *Init = nullptr;
3970   bool NeedsGlobalCtor = false;
3971   bool NeedsGlobalDtor =
3972       D->needsDestruction(getContext()) == QualType::DK_cxx_destructor;
3973 
3974   const VarDecl *InitDecl;
3975   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
3976 
3977   Optional<ConstantEmitter> emitter;
3978 
3979   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
3980   // as part of their declaration."  Sema has already checked for
3981   // error cases, so we just need to set Init to UndefValue.
3982   bool IsCUDASharedVar =
3983       getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
3984   // Shadows of initialized device-side global variables are also left
3985   // undefined.
3986   bool IsCUDAShadowVar =
3987       !getLangOpts().CUDAIsDevice &&
3988       (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
3989        D->hasAttr<CUDASharedAttr>());
3990   bool IsCUDADeviceShadowVar =
3991       getLangOpts().CUDAIsDevice &&
3992       (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
3993        D->getType()->isCUDADeviceBuiltinTextureType());
3994   // HIP pinned shadow of initialized host-side global variables are also
3995   // left undefined.
3996   if (getLangOpts().CUDA &&
3997       (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar))
3998     Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
3999   else if (D->hasAttr<LoaderUninitializedAttr>())
4000     Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
4001   else if (!InitExpr) {
4002     // This is a tentative definition; tentative definitions are
4003     // implicitly initialized with { 0 }.
4004     //
4005     // Note that tentative definitions are only emitted at the end of
4006     // a translation unit, so they should never have incomplete
4007     // type. In addition, EmitTentativeDefinition makes sure that we
4008     // never attempt to emit a tentative definition if a real one
4009     // exists. A use may still exists, however, so we still may need
4010     // to do a RAUW.
4011     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
4012     Init = EmitNullConstant(D->getType());
4013   } else {
4014     initializedGlobalDecl = GlobalDecl(D);
4015     emitter.emplace(*this);
4016     Init = emitter->tryEmitForInitializer(*InitDecl);
4017 
4018     if (!Init) {
4019       QualType T = InitExpr->getType();
4020       if (D->getType()->isReferenceType())
4021         T = D->getType();
4022 
4023       if (getLangOpts().CPlusPlus) {
4024         Init = EmitNullConstant(T);
4025         NeedsGlobalCtor = true;
4026       } else {
4027         ErrorUnsupported(D, "static initializer");
4028         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
4029       }
4030     } else {
4031       // We don't need an initializer, so remove the entry for the delayed
4032       // initializer position (just in case this entry was delayed) if we
4033       // also don't need to register a destructor.
4034       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
4035         DelayedCXXInitPosition.erase(D);
4036     }
4037   }
4038 
4039   llvm::Type* InitType = Init->getType();
4040   llvm::Constant *Entry =
4041       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
4042 
4043   // Strip off pointer casts if we got them.
4044   Entry = Entry->stripPointerCasts();
4045 
4046   // Entry is now either a Function or GlobalVariable.
4047   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
4048 
4049   // We have a definition after a declaration with the wrong type.
4050   // We must make a new GlobalVariable* and update everything that used OldGV
4051   // (a declaration or tentative definition) with the new GlobalVariable*
4052   // (which will be a definition).
4053   //
4054   // This happens if there is a prototype for a global (e.g.
4055   // "extern int x[];") and then a definition of a different type (e.g.
4056   // "int x[10];"). This also happens when an initializer has a different type
4057   // from the type of the global (this happens with unions).
4058   if (!GV || GV->getValueType() != InitType ||
4059       GV->getType()->getAddressSpace() !=
4060           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
4061 
4062     // Move the old entry aside so that we'll create a new one.
4063     Entry->setName(StringRef());
4064 
4065     // Make a new global with the correct type, this is now guaranteed to work.
4066     GV = cast<llvm::GlobalVariable>(
4067         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))
4068             ->stripPointerCasts());
4069 
4070     // Replace all uses of the old global with the new global
4071     llvm::Constant *NewPtrForOldDecl =
4072         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
4073     Entry->replaceAllUsesWith(NewPtrForOldDecl);
4074 
4075     // Erase the old global, since it is no longer used.
4076     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
4077   }
4078 
4079   MaybeHandleStaticInExternC(D, GV);
4080 
4081   if (D->hasAttr<AnnotateAttr>())
4082     AddGlobalAnnotations(D, GV);
4083 
4084   // Set the llvm linkage type as appropriate.
4085   llvm::GlobalValue::LinkageTypes Linkage =
4086       getLLVMLinkageVarDefinition(D, GV->isConstant());
4087 
4088   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
4089   // the device. [...]"
4090   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
4091   // __device__, declares a variable that: [...]
4092   // Is accessible from all the threads within the grid and from the host
4093   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
4094   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
4095   if (GV && LangOpts.CUDA) {
4096     if (LangOpts.CUDAIsDevice) {
4097       if (Linkage != llvm::GlobalValue::InternalLinkage &&
4098           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()))
4099         GV->setExternallyInitialized(true);
4100     } else {
4101       // Host-side shadows of external declarations of device-side
4102       // global variables become internal definitions. These have to
4103       // be internal in order to prevent name conflicts with global
4104       // host variables with the same name in a different TUs.
4105       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) {
4106         Linkage = llvm::GlobalValue::InternalLinkage;
4107         // Shadow variables and their properties must be registered with CUDA
4108         // runtime. Skip Extern global variables, which will be registered in
4109         // the TU where they are defined.
4110         if (!D->hasExternalStorage())
4111           getCUDARuntime().registerDeviceVar(D, *GV, !D->hasDefinition(),
4112                                              D->hasAttr<CUDAConstantAttr>());
4113       } else if (D->hasAttr<CUDASharedAttr>()) {
4114         // __shared__ variables are odd. Shadows do get created, but
4115         // they are not registered with the CUDA runtime, so they
4116         // can't really be used to access their device-side
4117         // counterparts. It's not clear yet whether it's nvcc's bug or
4118         // a feature, but we've got to do the same for compatibility.
4119         Linkage = llvm::GlobalValue::InternalLinkage;
4120       } else if (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
4121                  D->getType()->isCUDADeviceBuiltinTextureType()) {
4122         // Builtin surfaces and textures and their template arguments are
4123         // also registered with CUDA runtime.
4124         Linkage = llvm::GlobalValue::InternalLinkage;
4125         const ClassTemplateSpecializationDecl *TD =
4126             cast<ClassTemplateSpecializationDecl>(
4127                 D->getType()->getAs<RecordType>()->getDecl());
4128         const TemplateArgumentList &Args = TD->getTemplateArgs();
4129         if (TD->hasAttr<CUDADeviceBuiltinSurfaceTypeAttr>()) {
4130           assert(Args.size() == 2 &&
4131                  "Unexpected number of template arguments of CUDA device "
4132                  "builtin surface type.");
4133           auto SurfType = Args[1].getAsIntegral();
4134           if (!D->hasExternalStorage())
4135             getCUDARuntime().registerDeviceSurf(D, *GV, !D->hasDefinition(),
4136                                                 SurfType.getSExtValue());
4137         } else {
4138           assert(Args.size() == 3 &&
4139                  "Unexpected number of template arguments of CUDA device "
4140                  "builtin texture type.");
4141           auto TexType = Args[1].getAsIntegral();
4142           auto Normalized = Args[2].getAsIntegral();
4143           if (!D->hasExternalStorage())
4144             getCUDARuntime().registerDeviceTex(D, *GV, !D->hasDefinition(),
4145                                                TexType.getSExtValue(),
4146                                                Normalized.getZExtValue());
4147         }
4148       }
4149     }
4150   }
4151 
4152   GV->setInitializer(Init);
4153   if (emitter)
4154     emitter->finalize(GV);
4155 
4156   // If it is safe to mark the global 'constant', do so now.
4157   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
4158                   isTypeConstant(D->getType(), true));
4159 
4160   // If it is in a read-only section, mark it 'constant'.
4161   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
4162     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
4163     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
4164       GV->setConstant(true);
4165   }
4166 
4167   GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
4168 
4169   // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper
4170   // function is only defined alongside the variable, not also alongside
4171   // callers. Normally, all accesses to a thread_local go through the
4172   // thread-wrapper in order to ensure initialization has occurred, underlying
4173   // variable will never be used other than the thread-wrapper, so it can be
4174   // converted to internal linkage.
4175   //
4176   // However, if the variable has the 'constinit' attribute, it _can_ be
4177   // referenced directly, without calling the thread-wrapper, so the linkage
4178   // must not be changed.
4179   //
4180   // Additionally, if the variable isn't plain external linkage, e.g. if it's
4181   // weak or linkonce, the de-duplication semantics are important to preserve,
4182   // so we don't change the linkage.
4183   if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
4184       Linkage == llvm::GlobalValue::ExternalLinkage &&
4185       Context.getTargetInfo().getTriple().isOSDarwin() &&
4186       !D->hasAttr<ConstInitAttr>())
4187     Linkage = llvm::GlobalValue::InternalLinkage;
4188 
4189   GV->setLinkage(Linkage);
4190   if (D->hasAttr<DLLImportAttr>())
4191     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
4192   else if (D->hasAttr<DLLExportAttr>())
4193     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
4194   else
4195     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
4196 
4197   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
4198     // common vars aren't constant even if declared const.
4199     GV->setConstant(false);
4200     // Tentative definition of global variables may be initialized with
4201     // non-zero null pointers. In this case they should have weak linkage
4202     // since common linkage must have zero initializer and must not have
4203     // explicit section therefore cannot have non-zero initial value.
4204     if (!GV->getInitializer()->isNullValue())
4205       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
4206   }
4207 
4208   setNonAliasAttributes(D, GV);
4209 
4210   if (D->getTLSKind() && !GV->isThreadLocal()) {
4211     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4212       CXXThreadLocals.push_back(D);
4213     setTLSMode(GV, *D);
4214   }
4215 
4216   maybeSetTrivialComdat(*D, *GV);
4217 
4218   // Emit the initializer function if necessary.
4219   if (NeedsGlobalCtor || NeedsGlobalDtor)
4220     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
4221 
4222   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
4223 
4224   // Emit global variable debug information.
4225   if (CGDebugInfo *DI = getModuleDebugInfo())
4226     if (getCodeGenOpts().hasReducedDebugInfo())
4227       DI->EmitGlobalVariable(GV, D);
4228 }
4229 
4230 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) {
4231   if (CGDebugInfo *DI = getModuleDebugInfo())
4232     if (getCodeGenOpts().hasReducedDebugInfo()) {
4233       QualType ASTTy = D->getType();
4234       llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType());
4235       llvm::PointerType *PTy =
4236           llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
4237       llvm::Constant *GV = GetOrCreateLLVMGlobal(D->getName(), PTy, D);
4238       DI->EmitExternalVariable(
4239           cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D);
4240     }
4241 }
4242 
4243 static bool isVarDeclStrongDefinition(const ASTContext &Context,
4244                                       CodeGenModule &CGM, const VarDecl *D,
4245                                       bool NoCommon) {
4246   // Don't give variables common linkage if -fno-common was specified unless it
4247   // was overridden by a NoCommon attribute.
4248   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
4249     return true;
4250 
4251   // C11 6.9.2/2:
4252   //   A declaration of an identifier for an object that has file scope without
4253   //   an initializer, and without a storage-class specifier or with the
4254   //   storage-class specifier static, constitutes a tentative definition.
4255   if (D->getInit() || D->hasExternalStorage())
4256     return true;
4257 
4258   // A variable cannot be both common and exist in a section.
4259   if (D->hasAttr<SectionAttr>())
4260     return true;
4261 
4262   // A variable cannot be both common and exist in a section.
4263   // We don't try to determine which is the right section in the front-end.
4264   // If no specialized section name is applicable, it will resort to default.
4265   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
4266       D->hasAttr<PragmaClangDataSectionAttr>() ||
4267       D->hasAttr<PragmaClangRelroSectionAttr>() ||
4268       D->hasAttr<PragmaClangRodataSectionAttr>())
4269     return true;
4270 
4271   // Thread local vars aren't considered common linkage.
4272   if (D->getTLSKind())
4273     return true;
4274 
4275   // Tentative definitions marked with WeakImportAttr are true definitions.
4276   if (D->hasAttr<WeakImportAttr>())
4277     return true;
4278 
4279   // A variable cannot be both common and exist in a comdat.
4280   if (shouldBeInCOMDAT(CGM, *D))
4281     return true;
4282 
4283   // Declarations with a required alignment do not have common linkage in MSVC
4284   // mode.
4285   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
4286     if (D->hasAttr<AlignedAttr>())
4287       return true;
4288     QualType VarType = D->getType();
4289     if (Context.isAlignmentRequired(VarType))
4290       return true;
4291 
4292     if (const auto *RT = VarType->getAs<RecordType>()) {
4293       const RecordDecl *RD = RT->getDecl();
4294       for (const FieldDecl *FD : RD->fields()) {
4295         if (FD->isBitField())
4296           continue;
4297         if (FD->hasAttr<AlignedAttr>())
4298           return true;
4299         if (Context.isAlignmentRequired(FD->getType()))
4300           return true;
4301       }
4302     }
4303   }
4304 
4305   // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
4306   // common symbols, so symbols with greater alignment requirements cannot be
4307   // common.
4308   // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
4309   // alignments for common symbols via the aligncomm directive, so this
4310   // restriction only applies to MSVC environments.
4311   if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
4312       Context.getTypeAlignIfKnown(D->getType()) >
4313           Context.toBits(CharUnits::fromQuantity(32)))
4314     return true;
4315 
4316   return false;
4317 }
4318 
4319 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
4320     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
4321   if (Linkage == GVA_Internal)
4322     return llvm::Function::InternalLinkage;
4323 
4324   if (D->hasAttr<WeakAttr>()) {
4325     if (IsConstantVariable)
4326       return llvm::GlobalVariable::WeakODRLinkage;
4327     else
4328       return llvm::GlobalVariable::WeakAnyLinkage;
4329   }
4330 
4331   if (const auto *FD = D->getAsFunction())
4332     if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
4333       return llvm::GlobalVariable::LinkOnceAnyLinkage;
4334 
4335   // We are guaranteed to have a strong definition somewhere else,
4336   // so we can use available_externally linkage.
4337   if (Linkage == GVA_AvailableExternally)
4338     return llvm::GlobalValue::AvailableExternallyLinkage;
4339 
4340   // Note that Apple's kernel linker doesn't support symbol
4341   // coalescing, so we need to avoid linkonce and weak linkages there.
4342   // Normally, this means we just map to internal, but for explicit
4343   // instantiations we'll map to external.
4344 
4345   // In C++, the compiler has to emit a definition in every translation unit
4346   // that references the function.  We should use linkonce_odr because
4347   // a) if all references in this translation unit are optimized away, we
4348   // don't need to codegen it.  b) if the function persists, it needs to be
4349   // merged with other definitions. c) C++ has the ODR, so we know the
4350   // definition is dependable.
4351   if (Linkage == GVA_DiscardableODR)
4352     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
4353                                             : llvm::Function::InternalLinkage;
4354 
4355   // An explicit instantiation of a template has weak linkage, since
4356   // explicit instantiations can occur in multiple translation units
4357   // and must all be equivalent. However, we are not allowed to
4358   // throw away these explicit instantiations.
4359   //
4360   // We don't currently support CUDA device code spread out across multiple TUs,
4361   // so say that CUDA templates are either external (for kernels) or internal.
4362   // This lets llvm perform aggressive inter-procedural optimizations.
4363   if (Linkage == GVA_StrongODR) {
4364     if (Context.getLangOpts().AppleKext)
4365       return llvm::Function::ExternalLinkage;
4366     if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice)
4367       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
4368                                           : llvm::Function::InternalLinkage;
4369     return llvm::Function::WeakODRLinkage;
4370   }
4371 
4372   // C++ doesn't have tentative definitions and thus cannot have common
4373   // linkage.
4374   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
4375       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
4376                                  CodeGenOpts.NoCommon))
4377     return llvm::GlobalVariable::CommonLinkage;
4378 
4379   // selectany symbols are externally visible, so use weak instead of
4380   // linkonce.  MSVC optimizes away references to const selectany globals, so
4381   // all definitions should be the same and ODR linkage should be used.
4382   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
4383   if (D->hasAttr<SelectAnyAttr>())
4384     return llvm::GlobalVariable::WeakODRLinkage;
4385 
4386   // Otherwise, we have strong external linkage.
4387   assert(Linkage == GVA_StrongExternal);
4388   return llvm::GlobalVariable::ExternalLinkage;
4389 }
4390 
4391 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
4392     const VarDecl *VD, bool IsConstant) {
4393   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
4394   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
4395 }
4396 
4397 /// Replace the uses of a function that was declared with a non-proto type.
4398 /// We want to silently drop extra arguments from call sites
4399 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
4400                                           llvm::Function *newFn) {
4401   // Fast path.
4402   if (old->use_empty()) return;
4403 
4404   llvm::Type *newRetTy = newFn->getReturnType();
4405   SmallVector<llvm::Value*, 4> newArgs;
4406   SmallVector<llvm::OperandBundleDef, 1> newBundles;
4407 
4408   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
4409          ui != ue; ) {
4410     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
4411     llvm::User *user = use->getUser();
4412 
4413     // Recognize and replace uses of bitcasts.  Most calls to
4414     // unprototyped functions will use bitcasts.
4415     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
4416       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
4417         replaceUsesOfNonProtoConstant(bitcast, newFn);
4418       continue;
4419     }
4420 
4421     // Recognize calls to the function.
4422     llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
4423     if (!callSite) continue;
4424     if (!callSite->isCallee(&*use))
4425       continue;
4426 
4427     // If the return types don't match exactly, then we can't
4428     // transform this call unless it's dead.
4429     if (callSite->getType() != newRetTy && !callSite->use_empty())
4430       continue;
4431 
4432     // Get the call site's attribute list.
4433     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
4434     llvm::AttributeList oldAttrs = callSite->getAttributes();
4435 
4436     // If the function was passed too few arguments, don't transform.
4437     unsigned newNumArgs = newFn->arg_size();
4438     if (callSite->arg_size() < newNumArgs)
4439       continue;
4440 
4441     // If extra arguments were passed, we silently drop them.
4442     // If any of the types mismatch, we don't transform.
4443     unsigned argNo = 0;
4444     bool dontTransform = false;
4445     for (llvm::Argument &A : newFn->args()) {
4446       if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
4447         dontTransform = true;
4448         break;
4449       }
4450 
4451       // Add any parameter attributes.
4452       newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo));
4453       argNo++;
4454     }
4455     if (dontTransform)
4456       continue;
4457 
4458     // Okay, we can transform this.  Create the new call instruction and copy
4459     // over the required information.
4460     newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
4461 
4462     // Copy over any operand bundles.
4463     callSite->getOperandBundlesAsDefs(newBundles);
4464 
4465     llvm::CallBase *newCall;
4466     if (dyn_cast<llvm::CallInst>(callSite)) {
4467       newCall =
4468           llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite);
4469     } else {
4470       auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
4471       newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(),
4472                                          oldInvoke->getUnwindDest(), newArgs,
4473                                          newBundles, "", callSite);
4474     }
4475     newArgs.clear(); // for the next iteration
4476 
4477     if (!newCall->getType()->isVoidTy())
4478       newCall->takeName(callSite);
4479     newCall->setAttributes(llvm::AttributeList::get(
4480         newFn->getContext(), oldAttrs.getFnAttributes(),
4481         oldAttrs.getRetAttributes(), newArgAttrs));
4482     newCall->setCallingConv(callSite->getCallingConv());
4483 
4484     // Finally, remove the old call, replacing any uses with the new one.
4485     if (!callSite->use_empty())
4486       callSite->replaceAllUsesWith(newCall);
4487 
4488     // Copy debug location attached to CI.
4489     if (callSite->getDebugLoc())
4490       newCall->setDebugLoc(callSite->getDebugLoc());
4491 
4492     callSite->eraseFromParent();
4493   }
4494 }
4495 
4496 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
4497 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
4498 /// existing call uses of the old function in the module, this adjusts them to
4499 /// call the new function directly.
4500 ///
4501 /// This is not just a cleanup: the always_inline pass requires direct calls to
4502 /// functions to be able to inline them.  If there is a bitcast in the way, it
4503 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
4504 /// run at -O0.
4505 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
4506                                                       llvm::Function *NewFn) {
4507   // If we're redefining a global as a function, don't transform it.
4508   if (!isa<llvm::Function>(Old)) return;
4509 
4510   replaceUsesOfNonProtoConstant(Old, NewFn);
4511 }
4512 
4513 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
4514   auto DK = VD->isThisDeclarationADefinition();
4515   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
4516     return;
4517 
4518   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
4519   // If we have a definition, this might be a deferred decl. If the
4520   // instantiation is explicit, make sure we emit it at the end.
4521   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
4522     GetAddrOfGlobalVar(VD);
4523 
4524   EmitTopLevelDecl(VD);
4525 }
4526 
4527 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
4528                                                  llvm::GlobalValue *GV) {
4529   const auto *D = cast<FunctionDecl>(GD.getDecl());
4530 
4531   // Compute the function info and LLVM type.
4532   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4533   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4534 
4535   // Get or create the prototype for the function.
4536   if (!GV || (GV->getValueType() != Ty))
4537     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
4538                                                    /*DontDefer=*/true,
4539                                                    ForDefinition));
4540 
4541   // Already emitted.
4542   if (!GV->isDeclaration())
4543     return;
4544 
4545   // We need to set linkage and visibility on the function before
4546   // generating code for it because various parts of IR generation
4547   // want to propagate this information down (e.g. to local static
4548   // declarations).
4549   auto *Fn = cast<llvm::Function>(GV);
4550   setFunctionLinkage(GD, Fn);
4551 
4552   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
4553   setGVProperties(Fn, GD);
4554 
4555   MaybeHandleStaticInExternC(D, Fn);
4556 
4557 
4558   maybeSetTrivialComdat(*D, *Fn);
4559 
4560   CodeGenFunction(*this).GenerateCode(GD, Fn, FI);
4561 
4562   setNonAliasAttributes(GD, Fn);
4563   SetLLVMFunctionAttributesForDefinition(D, Fn);
4564 
4565   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
4566     AddGlobalCtor(Fn, CA->getPriority());
4567   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
4568     AddGlobalDtor(Fn, DA->getPriority());
4569   if (D->hasAttr<AnnotateAttr>())
4570     AddGlobalAnnotations(D, Fn);
4571 }
4572 
4573 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
4574   const auto *D = cast<ValueDecl>(GD.getDecl());
4575   const AliasAttr *AA = D->getAttr<AliasAttr>();
4576   assert(AA && "Not an alias?");
4577 
4578   StringRef MangledName = getMangledName(GD);
4579 
4580   if (AA->getAliasee() == MangledName) {
4581     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
4582     return;
4583   }
4584 
4585   // If there is a definition in the module, then it wins over the alias.
4586   // This is dubious, but allow it to be safe.  Just ignore the alias.
4587   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4588   if (Entry && !Entry->isDeclaration())
4589     return;
4590 
4591   Aliases.push_back(GD);
4592 
4593   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
4594 
4595   // Create a reference to the named value.  This ensures that it is emitted
4596   // if a deferred decl.
4597   llvm::Constant *Aliasee;
4598   llvm::GlobalValue::LinkageTypes LT;
4599   if (isa<llvm::FunctionType>(DeclTy)) {
4600     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
4601                                       /*ForVTable=*/false);
4602     LT = getFunctionLinkage(GD);
4603   } else {
4604     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
4605                                     llvm::PointerType::getUnqual(DeclTy),
4606                                     /*D=*/nullptr);
4607     LT = getLLVMLinkageVarDefinition(cast<VarDecl>(GD.getDecl()),
4608                                      D->getType().isConstQualified());
4609   }
4610 
4611   // Create the new alias itself, but don't set a name yet.
4612   unsigned AS = Aliasee->getType()->getPointerAddressSpace();
4613   auto *GA =
4614       llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule());
4615 
4616   if (Entry) {
4617     if (GA->getAliasee() == Entry) {
4618       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
4619       return;
4620     }
4621 
4622     assert(Entry->isDeclaration());
4623 
4624     // If there is a declaration in the module, then we had an extern followed
4625     // by the alias, as in:
4626     //   extern int test6();
4627     //   ...
4628     //   int test6() __attribute__((alias("test7")));
4629     //
4630     // Remove it and replace uses of it with the alias.
4631     GA->takeName(Entry);
4632 
4633     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
4634                                                           Entry->getType()));
4635     Entry->eraseFromParent();
4636   } else {
4637     GA->setName(MangledName);
4638   }
4639 
4640   // Set attributes which are particular to an alias; this is a
4641   // specialization of the attributes which may be set on a global
4642   // variable/function.
4643   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
4644       D->isWeakImported()) {
4645     GA->setLinkage(llvm::Function::WeakAnyLinkage);
4646   }
4647 
4648   if (const auto *VD = dyn_cast<VarDecl>(D))
4649     if (VD->getTLSKind())
4650       setTLSMode(GA, *VD);
4651 
4652   SetCommonAttributes(GD, GA);
4653 }
4654 
4655 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
4656   const auto *D = cast<ValueDecl>(GD.getDecl());
4657   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
4658   assert(IFA && "Not an ifunc?");
4659 
4660   StringRef MangledName = getMangledName(GD);
4661 
4662   if (IFA->getResolver() == MangledName) {
4663     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
4664     return;
4665   }
4666 
4667   // Report an error if some definition overrides ifunc.
4668   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4669   if (Entry && !Entry->isDeclaration()) {
4670     GlobalDecl OtherGD;
4671     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
4672         DiagnosedConflictingDefinitions.insert(GD).second) {
4673       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
4674           << MangledName;
4675       Diags.Report(OtherGD.getDecl()->getLocation(),
4676                    diag::note_previous_definition);
4677     }
4678     return;
4679   }
4680 
4681   Aliases.push_back(GD);
4682 
4683   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
4684   llvm::Constant *Resolver =
4685       GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD,
4686                               /*ForVTable=*/false);
4687   llvm::GlobalIFunc *GIF =
4688       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
4689                                 "", Resolver, &getModule());
4690   if (Entry) {
4691     if (GIF->getResolver() == Entry) {
4692       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
4693       return;
4694     }
4695     assert(Entry->isDeclaration());
4696 
4697     // If there is a declaration in the module, then we had an extern followed
4698     // by the ifunc, as in:
4699     //   extern int test();
4700     //   ...
4701     //   int test() __attribute__((ifunc("resolver")));
4702     //
4703     // Remove it and replace uses of it with the ifunc.
4704     GIF->takeName(Entry);
4705 
4706     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
4707                                                           Entry->getType()));
4708     Entry->eraseFromParent();
4709   } else
4710     GIF->setName(MangledName);
4711 
4712   SetCommonAttributes(GD, GIF);
4713 }
4714 
4715 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
4716                                             ArrayRef<llvm::Type*> Tys) {
4717   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
4718                                          Tys);
4719 }
4720 
4721 static llvm::StringMapEntry<llvm::GlobalVariable *> &
4722 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
4723                          const StringLiteral *Literal, bool TargetIsLSB,
4724                          bool &IsUTF16, unsigned &StringLength) {
4725   StringRef String = Literal->getString();
4726   unsigned NumBytes = String.size();
4727 
4728   // Check for simple case.
4729   if (!Literal->containsNonAsciiOrNull()) {
4730     StringLength = NumBytes;
4731     return *Map.insert(std::make_pair(String, nullptr)).first;
4732   }
4733 
4734   // Otherwise, convert the UTF8 literals into a string of shorts.
4735   IsUTF16 = true;
4736 
4737   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
4738   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
4739   llvm::UTF16 *ToPtr = &ToBuf[0];
4740 
4741   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
4742                                  ToPtr + NumBytes, llvm::strictConversion);
4743 
4744   // ConvertUTF8toUTF16 returns the length in ToPtr.
4745   StringLength = ToPtr - &ToBuf[0];
4746 
4747   // Add an explicit null.
4748   *ToPtr = 0;
4749   return *Map.insert(std::make_pair(
4750                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
4751                                    (StringLength + 1) * 2),
4752                          nullptr)).first;
4753 }
4754 
4755 ConstantAddress
4756 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
4757   unsigned StringLength = 0;
4758   bool isUTF16 = false;
4759   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
4760       GetConstantCFStringEntry(CFConstantStringMap, Literal,
4761                                getDataLayout().isLittleEndian(), isUTF16,
4762                                StringLength);
4763 
4764   if (auto *C = Entry.second)
4765     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
4766 
4767   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
4768   llvm::Constant *Zeros[] = { Zero, Zero };
4769 
4770   const ASTContext &Context = getContext();
4771   const llvm::Triple &Triple = getTriple();
4772 
4773   const auto CFRuntime = getLangOpts().CFRuntime;
4774   const bool IsSwiftABI =
4775       static_cast<unsigned>(CFRuntime) >=
4776       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
4777   const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
4778 
4779   // If we don't already have it, get __CFConstantStringClassReference.
4780   if (!CFConstantStringClassRef) {
4781     const char *CFConstantStringClassName = "__CFConstantStringClassReference";
4782     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
4783     Ty = llvm::ArrayType::get(Ty, 0);
4784 
4785     switch (CFRuntime) {
4786     default: break;
4787     case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH;
4788     case LangOptions::CoreFoundationABI::Swift5_0:
4789       CFConstantStringClassName =
4790           Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
4791                               : "$s10Foundation19_NSCFConstantStringCN";
4792       Ty = IntPtrTy;
4793       break;
4794     case LangOptions::CoreFoundationABI::Swift4_2:
4795       CFConstantStringClassName =
4796           Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
4797                               : "$S10Foundation19_NSCFConstantStringCN";
4798       Ty = IntPtrTy;
4799       break;
4800     case LangOptions::CoreFoundationABI::Swift4_1:
4801       CFConstantStringClassName =
4802           Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
4803                               : "__T010Foundation19_NSCFConstantStringCN";
4804       Ty = IntPtrTy;
4805       break;
4806     }
4807 
4808     llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
4809 
4810     if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
4811       llvm::GlobalValue *GV = nullptr;
4812 
4813       if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
4814         IdentifierInfo &II = Context.Idents.get(GV->getName());
4815         TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
4816         DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
4817 
4818         const VarDecl *VD = nullptr;
4819         for (const auto &Result : DC->lookup(&II))
4820           if ((VD = dyn_cast<VarDecl>(Result)))
4821             break;
4822 
4823         if (Triple.isOSBinFormatELF()) {
4824           if (!VD)
4825             GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
4826         } else {
4827           GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
4828           if (!VD || !VD->hasAttr<DLLExportAttr>())
4829             GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
4830           else
4831             GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
4832         }
4833 
4834         setDSOLocal(GV);
4835       }
4836     }
4837 
4838     // Decay array -> ptr
4839     CFConstantStringClassRef =
4840         IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty)
4841                    : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros);
4842   }
4843 
4844   QualType CFTy = Context.getCFConstantStringType();
4845 
4846   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
4847 
4848   ConstantInitBuilder Builder(*this);
4849   auto Fields = Builder.beginStruct(STy);
4850 
4851   // Class pointer.
4852   Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef));
4853 
4854   // Flags.
4855   if (IsSwiftABI) {
4856     Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
4857     Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
4858   } else {
4859     Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
4860   }
4861 
4862   // String pointer.
4863   llvm::Constant *C = nullptr;
4864   if (isUTF16) {
4865     auto Arr = llvm::makeArrayRef(
4866         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
4867         Entry.first().size() / 2);
4868     C = llvm::ConstantDataArray::get(VMContext, Arr);
4869   } else {
4870     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
4871   }
4872 
4873   // Note: -fwritable-strings doesn't make the backing store strings of
4874   // CFStrings writable. (See <rdar://problem/10657500>)
4875   auto *GV =
4876       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
4877                                llvm::GlobalValue::PrivateLinkage, C, ".str");
4878   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
4879   // Don't enforce the target's minimum global alignment, since the only use
4880   // of the string is via this class initializer.
4881   CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
4882                             : Context.getTypeAlignInChars(Context.CharTy);
4883   GV->setAlignment(Align.getAsAlign());
4884 
4885   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
4886   // Without it LLVM can merge the string with a non unnamed_addr one during
4887   // LTO.  Doing that changes the section it ends in, which surprises ld64.
4888   if (Triple.isOSBinFormatMachO())
4889     GV->setSection(isUTF16 ? "__TEXT,__ustring"
4890                            : "__TEXT,__cstring,cstring_literals");
4891   // Make sure the literal ends up in .rodata to allow for safe ICF and for
4892   // the static linker to adjust permissions to read-only later on.
4893   else if (Triple.isOSBinFormatELF())
4894     GV->setSection(".rodata");
4895 
4896   // String.
4897   llvm::Constant *Str =
4898       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
4899 
4900   if (isUTF16)
4901     // Cast the UTF16 string to the correct type.
4902     Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
4903   Fields.add(Str);
4904 
4905   // String length.
4906   llvm::IntegerType *LengthTy =
4907       llvm::IntegerType::get(getModule().getContext(),
4908                              Context.getTargetInfo().getLongWidth());
4909   if (IsSwiftABI) {
4910     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
4911         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
4912       LengthTy = Int32Ty;
4913     else
4914       LengthTy = IntPtrTy;
4915   }
4916   Fields.addInt(LengthTy, StringLength);
4917 
4918   // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is
4919   // properly aligned on 32-bit platforms.
4920   CharUnits Alignment =
4921       IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign();
4922 
4923   // The struct.
4924   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
4925                                     /*isConstant=*/false,
4926                                     llvm::GlobalVariable::PrivateLinkage);
4927   GV->addAttribute("objc_arc_inert");
4928   switch (Triple.getObjectFormat()) {
4929   case llvm::Triple::UnknownObjectFormat:
4930     llvm_unreachable("unknown file format");
4931   case llvm::Triple::GOFF:
4932     llvm_unreachable("GOFF is not yet implemented");
4933   case llvm::Triple::XCOFF:
4934     llvm_unreachable("XCOFF is not yet implemented");
4935   case llvm::Triple::COFF:
4936   case llvm::Triple::ELF:
4937   case llvm::Triple::Wasm:
4938     GV->setSection("cfstring");
4939     break;
4940   case llvm::Triple::MachO:
4941     GV->setSection("__DATA,__cfstring");
4942     break;
4943   }
4944   Entry.second = GV;
4945 
4946   return ConstantAddress(GV, Alignment);
4947 }
4948 
4949 bool CodeGenModule::getExpressionLocationsEnabled() const {
4950   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
4951 }
4952 
4953 QualType CodeGenModule::getObjCFastEnumerationStateType() {
4954   if (ObjCFastEnumerationStateType.isNull()) {
4955     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
4956     D->startDefinition();
4957 
4958     QualType FieldTypes[] = {
4959       Context.UnsignedLongTy,
4960       Context.getPointerType(Context.getObjCIdType()),
4961       Context.getPointerType(Context.UnsignedLongTy),
4962       Context.getConstantArrayType(Context.UnsignedLongTy,
4963                            llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0)
4964     };
4965 
4966     for (size_t i = 0; i < 4; ++i) {
4967       FieldDecl *Field = FieldDecl::Create(Context,
4968                                            D,
4969                                            SourceLocation(),
4970                                            SourceLocation(), nullptr,
4971                                            FieldTypes[i], /*TInfo=*/nullptr,
4972                                            /*BitWidth=*/nullptr,
4973                                            /*Mutable=*/false,
4974                                            ICIS_NoInit);
4975       Field->setAccess(AS_public);
4976       D->addDecl(Field);
4977     }
4978 
4979     D->completeDefinition();
4980     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
4981   }
4982 
4983   return ObjCFastEnumerationStateType;
4984 }
4985 
4986 llvm::Constant *
4987 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
4988   assert(!E->getType()->isPointerType() && "Strings are always arrays");
4989 
4990   // Don't emit it as the address of the string, emit the string data itself
4991   // as an inline array.
4992   if (E->getCharByteWidth() == 1) {
4993     SmallString<64> Str(E->getString());
4994 
4995     // Resize the string to the right size, which is indicated by its type.
4996     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
4997     Str.resize(CAT->getSize().getZExtValue());
4998     return llvm::ConstantDataArray::getString(VMContext, Str, false);
4999   }
5000 
5001   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
5002   llvm::Type *ElemTy = AType->getElementType();
5003   unsigned NumElements = AType->getNumElements();
5004 
5005   // Wide strings have either 2-byte or 4-byte elements.
5006   if (ElemTy->getPrimitiveSizeInBits() == 16) {
5007     SmallVector<uint16_t, 32> Elements;
5008     Elements.reserve(NumElements);
5009 
5010     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
5011       Elements.push_back(E->getCodeUnit(i));
5012     Elements.resize(NumElements);
5013     return llvm::ConstantDataArray::get(VMContext, Elements);
5014   }
5015 
5016   assert(ElemTy->getPrimitiveSizeInBits() == 32);
5017   SmallVector<uint32_t, 32> Elements;
5018   Elements.reserve(NumElements);
5019 
5020   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
5021     Elements.push_back(E->getCodeUnit(i));
5022   Elements.resize(NumElements);
5023   return llvm::ConstantDataArray::get(VMContext, Elements);
5024 }
5025 
5026 static llvm::GlobalVariable *
5027 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
5028                       CodeGenModule &CGM, StringRef GlobalName,
5029                       CharUnits Alignment) {
5030   unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
5031       CGM.getStringLiteralAddressSpace());
5032 
5033   llvm::Module &M = CGM.getModule();
5034   // Create a global variable for this string
5035   auto *GV = new llvm::GlobalVariable(
5036       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
5037       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
5038   GV->setAlignment(Alignment.getAsAlign());
5039   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5040   if (GV->isWeakForLinker()) {
5041     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
5042     GV->setComdat(M.getOrInsertComdat(GV->getName()));
5043   }
5044   CGM.setDSOLocal(GV);
5045 
5046   return GV;
5047 }
5048 
5049 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
5050 /// constant array for the given string literal.
5051 ConstantAddress
5052 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
5053                                                   StringRef Name) {
5054   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
5055 
5056   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
5057   llvm::GlobalVariable **Entry = nullptr;
5058   if (!LangOpts.WritableStrings) {
5059     Entry = &ConstantStringMap[C];
5060     if (auto GV = *Entry) {
5061       if (Alignment.getQuantity() > GV->getAlignment())
5062         GV->setAlignment(Alignment.getAsAlign());
5063       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5064                              Alignment);
5065     }
5066   }
5067 
5068   SmallString<256> MangledNameBuffer;
5069   StringRef GlobalVariableName;
5070   llvm::GlobalValue::LinkageTypes LT;
5071 
5072   // Mangle the string literal if that's how the ABI merges duplicate strings.
5073   // Don't do it if they are writable, since we don't want writes in one TU to
5074   // affect strings in another.
5075   if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
5076       !LangOpts.WritableStrings) {
5077     llvm::raw_svector_ostream Out(MangledNameBuffer);
5078     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
5079     LT = llvm::GlobalValue::LinkOnceODRLinkage;
5080     GlobalVariableName = MangledNameBuffer;
5081   } else {
5082     LT = llvm::GlobalValue::PrivateLinkage;
5083     GlobalVariableName = Name;
5084   }
5085 
5086   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
5087   if (Entry)
5088     *Entry = GV;
5089 
5090   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
5091                                   QualType());
5092 
5093   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5094                          Alignment);
5095 }
5096 
5097 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
5098 /// array for the given ObjCEncodeExpr node.
5099 ConstantAddress
5100 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
5101   std::string Str;
5102   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
5103 
5104   return GetAddrOfConstantCString(Str);
5105 }
5106 
5107 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
5108 /// the literal and a terminating '\0' character.
5109 /// The result has pointer to array type.
5110 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
5111     const std::string &Str, const char *GlobalName) {
5112   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
5113   CharUnits Alignment =
5114     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
5115 
5116   llvm::Constant *C =
5117       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
5118 
5119   // Don't share any string literals if strings aren't constant.
5120   llvm::GlobalVariable **Entry = nullptr;
5121   if (!LangOpts.WritableStrings) {
5122     Entry = &ConstantStringMap[C];
5123     if (auto GV = *Entry) {
5124       if (Alignment.getQuantity() > GV->getAlignment())
5125         GV->setAlignment(Alignment.getAsAlign());
5126       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5127                              Alignment);
5128     }
5129   }
5130 
5131   // Get the default prefix if a name wasn't specified.
5132   if (!GlobalName)
5133     GlobalName = ".str";
5134   // Create a global variable for this.
5135   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
5136                                   GlobalName, Alignment);
5137   if (Entry)
5138     *Entry = GV;
5139 
5140   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5141                          Alignment);
5142 }
5143 
5144 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
5145     const MaterializeTemporaryExpr *E, const Expr *Init) {
5146   assert((E->getStorageDuration() == SD_Static ||
5147           E->getStorageDuration() == SD_Thread) && "not a global temporary");
5148   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
5149 
5150   // If we're not materializing a subobject of the temporary, keep the
5151   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
5152   QualType MaterializedType = Init->getType();
5153   if (Init == E->getSubExpr())
5154     MaterializedType = E->getType();
5155 
5156   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
5157 
5158   if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E])
5159     return ConstantAddress(Slot, Align);
5160 
5161   // FIXME: If an externally-visible declaration extends multiple temporaries,
5162   // we need to give each temporary the same name in every translation unit (and
5163   // we also need to make the temporaries externally-visible).
5164   SmallString<256> Name;
5165   llvm::raw_svector_ostream Out(Name);
5166   getCXXABI().getMangleContext().mangleReferenceTemporary(
5167       VD, E->getManglingNumber(), Out);
5168 
5169   APValue *Value = nullptr;
5170   if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) {
5171     // If the initializer of the extending declaration is a constant
5172     // initializer, we should have a cached constant initializer for this
5173     // temporary. Note that this might have a different value from the value
5174     // computed by evaluating the initializer if the surrounding constant
5175     // expression modifies the temporary.
5176     Value = E->getOrCreateValue(false);
5177   }
5178 
5179   // Try evaluating it now, it might have a constant initializer.
5180   Expr::EvalResult EvalResult;
5181   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
5182       !EvalResult.hasSideEffects())
5183     Value = &EvalResult.Val;
5184 
5185   LangAS AddrSpace =
5186       VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
5187 
5188   Optional<ConstantEmitter> emitter;
5189   llvm::Constant *InitialValue = nullptr;
5190   bool Constant = false;
5191   llvm::Type *Type;
5192   if (Value) {
5193     // The temporary has a constant initializer, use it.
5194     emitter.emplace(*this);
5195     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
5196                                                MaterializedType);
5197     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
5198     Type = InitialValue->getType();
5199   } else {
5200     // No initializer, the initialization will be provided when we
5201     // initialize the declaration which performed lifetime extension.
5202     Type = getTypes().ConvertTypeForMem(MaterializedType);
5203   }
5204 
5205   // Create a global variable for this lifetime-extended temporary.
5206   llvm::GlobalValue::LinkageTypes Linkage =
5207       getLLVMLinkageVarDefinition(VD, Constant);
5208   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
5209     const VarDecl *InitVD;
5210     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
5211         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
5212       // Temporaries defined inside a class get linkonce_odr linkage because the
5213       // class can be defined in multiple translation units.
5214       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
5215     } else {
5216       // There is no need for this temporary to have external linkage if the
5217       // VarDecl has external linkage.
5218       Linkage = llvm::GlobalVariable::InternalLinkage;
5219     }
5220   }
5221   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
5222   auto *GV = new llvm::GlobalVariable(
5223       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
5224       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
5225   if (emitter) emitter->finalize(GV);
5226   setGVProperties(GV, VD);
5227   GV->setAlignment(Align.getAsAlign());
5228   if (supportsCOMDAT() && GV->isWeakForLinker())
5229     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
5230   if (VD->getTLSKind())
5231     setTLSMode(GV, *VD);
5232   llvm::Constant *CV = GV;
5233   if (AddrSpace != LangAS::Default)
5234     CV = getTargetCodeGenInfo().performAddrSpaceCast(
5235         *this, GV, AddrSpace, LangAS::Default,
5236         Type->getPointerTo(
5237             getContext().getTargetAddressSpace(LangAS::Default)));
5238   MaterializedGlobalTemporaryMap[E] = CV;
5239   return ConstantAddress(CV, Align);
5240 }
5241 
5242 /// EmitObjCPropertyImplementations - Emit information for synthesized
5243 /// properties for an implementation.
5244 void CodeGenModule::EmitObjCPropertyImplementations(const
5245                                                     ObjCImplementationDecl *D) {
5246   for (const auto *PID : D->property_impls()) {
5247     // Dynamic is just for type-checking.
5248     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
5249       ObjCPropertyDecl *PD = PID->getPropertyDecl();
5250 
5251       // Determine which methods need to be implemented, some may have
5252       // been overridden. Note that ::isPropertyAccessor is not the method
5253       // we want, that just indicates if the decl came from a
5254       // property. What we want to know is if the method is defined in
5255       // this implementation.
5256       auto *Getter = PID->getGetterMethodDecl();
5257       if (!Getter || Getter->isSynthesizedAccessorStub())
5258         CodeGenFunction(*this).GenerateObjCGetter(
5259             const_cast<ObjCImplementationDecl *>(D), PID);
5260       auto *Setter = PID->getSetterMethodDecl();
5261       if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub()))
5262         CodeGenFunction(*this).GenerateObjCSetter(
5263                                  const_cast<ObjCImplementationDecl *>(D), PID);
5264     }
5265   }
5266 }
5267 
5268 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
5269   const ObjCInterfaceDecl *iface = impl->getClassInterface();
5270   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
5271        ivar; ivar = ivar->getNextIvar())
5272     if (ivar->getType().isDestructedType())
5273       return true;
5274 
5275   return false;
5276 }
5277 
5278 static bool AllTrivialInitializers(CodeGenModule &CGM,
5279                                    ObjCImplementationDecl *D) {
5280   CodeGenFunction CGF(CGM);
5281   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
5282        E = D->init_end(); B != E; ++B) {
5283     CXXCtorInitializer *CtorInitExp = *B;
5284     Expr *Init = CtorInitExp->getInit();
5285     if (!CGF.isTrivialInitializer(Init))
5286       return false;
5287   }
5288   return true;
5289 }
5290 
5291 /// EmitObjCIvarInitializations - Emit information for ivar initialization
5292 /// for an implementation.
5293 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
5294   // We might need a .cxx_destruct even if we don't have any ivar initializers.
5295   if (needsDestructMethod(D)) {
5296     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
5297     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5298     ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(
5299         getContext(), D->getLocation(), D->getLocation(), cxxSelector,
5300         getContext().VoidTy, nullptr, D,
5301         /*isInstance=*/true, /*isVariadic=*/false,
5302         /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
5303         /*isImplicitlyDeclared=*/true,
5304         /*isDefined=*/false, ObjCMethodDecl::Required);
5305     D->addInstanceMethod(DTORMethod);
5306     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
5307     D->setHasDestructors(true);
5308   }
5309 
5310   // If the implementation doesn't have any ivar initializers, we don't need
5311   // a .cxx_construct.
5312   if (D->getNumIvarInitializers() == 0 ||
5313       AllTrivialInitializers(*this, D))
5314     return;
5315 
5316   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
5317   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5318   // The constructor returns 'self'.
5319   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(
5320       getContext(), D->getLocation(), D->getLocation(), cxxSelector,
5321       getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true,
5322       /*isVariadic=*/false,
5323       /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
5324       /*isImplicitlyDeclared=*/true,
5325       /*isDefined=*/false, ObjCMethodDecl::Required);
5326   D->addInstanceMethod(CTORMethod);
5327   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
5328   D->setHasNonZeroConstructors(true);
5329 }
5330 
5331 // EmitLinkageSpec - Emit all declarations in a linkage spec.
5332 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
5333   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
5334       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
5335     ErrorUnsupported(LSD, "linkage spec");
5336     return;
5337   }
5338 
5339   EmitDeclContext(LSD);
5340 }
5341 
5342 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
5343   for (auto *I : DC->decls()) {
5344     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
5345     // are themselves considered "top-level", so EmitTopLevelDecl on an
5346     // ObjCImplDecl does not recursively visit them. We need to do that in
5347     // case they're nested inside another construct (LinkageSpecDecl /
5348     // ExportDecl) that does stop them from being considered "top-level".
5349     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
5350       for (auto *M : OID->methods())
5351         EmitTopLevelDecl(M);
5352     }
5353 
5354     EmitTopLevelDecl(I);
5355   }
5356 }
5357 
5358 /// EmitTopLevelDecl - Emit code for a single top level declaration.
5359 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
5360   // Ignore dependent declarations.
5361   if (D->isTemplated())
5362     return;
5363 
5364   // Consteval function shouldn't be emitted.
5365   if (auto *FD = dyn_cast<FunctionDecl>(D))
5366     if (FD->isConsteval())
5367       return;
5368 
5369   switch (D->getKind()) {
5370   case Decl::CXXConversion:
5371   case Decl::CXXMethod:
5372   case Decl::Function:
5373     EmitGlobal(cast<FunctionDecl>(D));
5374     // Always provide some coverage mapping
5375     // even for the functions that aren't emitted.
5376     AddDeferredUnusedCoverageMapping(D);
5377     break;
5378 
5379   case Decl::CXXDeductionGuide:
5380     // Function-like, but does not result in code emission.
5381     break;
5382 
5383   case Decl::Var:
5384   case Decl::Decomposition:
5385   case Decl::VarTemplateSpecialization:
5386     EmitGlobal(cast<VarDecl>(D));
5387     if (auto *DD = dyn_cast<DecompositionDecl>(D))
5388       for (auto *B : DD->bindings())
5389         if (auto *HD = B->getHoldingVar())
5390           EmitGlobal(HD);
5391     break;
5392 
5393   // Indirect fields from global anonymous structs and unions can be
5394   // ignored; only the actual variable requires IR gen support.
5395   case Decl::IndirectField:
5396     break;
5397 
5398   // C++ Decls
5399   case Decl::Namespace:
5400     EmitDeclContext(cast<NamespaceDecl>(D));
5401     break;
5402   case Decl::ClassTemplateSpecialization: {
5403     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
5404     if (CGDebugInfo *DI = getModuleDebugInfo())
5405       if (Spec->getSpecializationKind() ==
5406               TSK_ExplicitInstantiationDefinition &&
5407           Spec->hasDefinition())
5408         DI->completeTemplateDefinition(*Spec);
5409   } LLVM_FALLTHROUGH;
5410   case Decl::CXXRecord: {
5411     CXXRecordDecl *CRD = cast<CXXRecordDecl>(D);
5412     if (CGDebugInfo *DI = getModuleDebugInfo()) {
5413       if (CRD->hasDefinition())
5414         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
5415       if (auto *ES = D->getASTContext().getExternalSource())
5416         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
5417           DI->completeUnusedClass(*CRD);
5418     }
5419     // Emit any static data members, they may be definitions.
5420     for (auto *I : CRD->decls())
5421       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
5422         EmitTopLevelDecl(I);
5423     break;
5424   }
5425     // No code generation needed.
5426   case Decl::UsingShadow:
5427   case Decl::ClassTemplate:
5428   case Decl::VarTemplate:
5429   case Decl::Concept:
5430   case Decl::VarTemplatePartialSpecialization:
5431   case Decl::FunctionTemplate:
5432   case Decl::TypeAliasTemplate:
5433   case Decl::Block:
5434   case Decl::Empty:
5435   case Decl::Binding:
5436     break;
5437   case Decl::Using:          // using X; [C++]
5438     if (CGDebugInfo *DI = getModuleDebugInfo())
5439         DI->EmitUsingDecl(cast<UsingDecl>(*D));
5440     break;
5441   case Decl::NamespaceAlias:
5442     if (CGDebugInfo *DI = getModuleDebugInfo())
5443         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
5444     break;
5445   case Decl::UsingDirective: // using namespace X; [C++]
5446     if (CGDebugInfo *DI = getModuleDebugInfo())
5447       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
5448     break;
5449   case Decl::CXXConstructor:
5450     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
5451     break;
5452   case Decl::CXXDestructor:
5453     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
5454     break;
5455 
5456   case Decl::StaticAssert:
5457     // Nothing to do.
5458     break;
5459 
5460   // Objective-C Decls
5461 
5462   // Forward declarations, no (immediate) code generation.
5463   case Decl::ObjCInterface:
5464   case Decl::ObjCCategory:
5465     break;
5466 
5467   case Decl::ObjCProtocol: {
5468     auto *Proto = cast<ObjCProtocolDecl>(D);
5469     if (Proto->isThisDeclarationADefinition())
5470       ObjCRuntime->GenerateProtocol(Proto);
5471     break;
5472   }
5473 
5474   case Decl::ObjCCategoryImpl:
5475     // Categories have properties but don't support synthesize so we
5476     // can ignore them here.
5477     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
5478     break;
5479 
5480   case Decl::ObjCImplementation: {
5481     auto *OMD = cast<ObjCImplementationDecl>(D);
5482     EmitObjCPropertyImplementations(OMD);
5483     EmitObjCIvarInitializations(OMD);
5484     ObjCRuntime->GenerateClass(OMD);
5485     // Emit global variable debug information.
5486     if (CGDebugInfo *DI = getModuleDebugInfo())
5487       if (getCodeGenOpts().hasReducedDebugInfo())
5488         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
5489             OMD->getClassInterface()), OMD->getLocation());
5490     break;
5491   }
5492   case Decl::ObjCMethod: {
5493     auto *OMD = cast<ObjCMethodDecl>(D);
5494     // If this is not a prototype, emit the body.
5495     if (OMD->getBody())
5496       CodeGenFunction(*this).GenerateObjCMethod(OMD);
5497     break;
5498   }
5499   case Decl::ObjCCompatibleAlias:
5500     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
5501     break;
5502 
5503   case Decl::PragmaComment: {
5504     const auto *PCD = cast<PragmaCommentDecl>(D);
5505     switch (PCD->getCommentKind()) {
5506     case PCK_Unknown:
5507       llvm_unreachable("unexpected pragma comment kind");
5508     case PCK_Linker:
5509       AppendLinkerOptions(PCD->getArg());
5510       break;
5511     case PCK_Lib:
5512         AddDependentLib(PCD->getArg());
5513       break;
5514     case PCK_Compiler:
5515     case PCK_ExeStr:
5516     case PCK_User:
5517       break; // We ignore all of these.
5518     }
5519     break;
5520   }
5521 
5522   case Decl::PragmaDetectMismatch: {
5523     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
5524     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
5525     break;
5526   }
5527 
5528   case Decl::LinkageSpec:
5529     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
5530     break;
5531 
5532   case Decl::FileScopeAsm: {
5533     // File-scope asm is ignored during device-side CUDA compilation.
5534     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
5535       break;
5536     // File-scope asm is ignored during device-side OpenMP compilation.
5537     if (LangOpts.OpenMPIsDevice)
5538       break;
5539     auto *AD = cast<FileScopeAsmDecl>(D);
5540     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
5541     break;
5542   }
5543 
5544   case Decl::Import: {
5545     auto *Import = cast<ImportDecl>(D);
5546 
5547     // If we've already imported this module, we're done.
5548     if (!ImportedModules.insert(Import->getImportedModule()))
5549       break;
5550 
5551     // Emit debug information for direct imports.
5552     if (!Import->getImportedOwningModule()) {
5553       if (CGDebugInfo *DI = getModuleDebugInfo())
5554         DI->EmitImportDecl(*Import);
5555     }
5556 
5557     // Find all of the submodules and emit the module initializers.
5558     llvm::SmallPtrSet<clang::Module *, 16> Visited;
5559     SmallVector<clang::Module *, 16> Stack;
5560     Visited.insert(Import->getImportedModule());
5561     Stack.push_back(Import->getImportedModule());
5562 
5563     while (!Stack.empty()) {
5564       clang::Module *Mod = Stack.pop_back_val();
5565       if (!EmittedModuleInitializers.insert(Mod).second)
5566         continue;
5567 
5568       for (auto *D : Context.getModuleInitializers(Mod))
5569         EmitTopLevelDecl(D);
5570 
5571       // Visit the submodules of this module.
5572       for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
5573                                              SubEnd = Mod->submodule_end();
5574            Sub != SubEnd; ++Sub) {
5575         // Skip explicit children; they need to be explicitly imported to emit
5576         // the initializers.
5577         if ((*Sub)->IsExplicit)
5578           continue;
5579 
5580         if (Visited.insert(*Sub).second)
5581           Stack.push_back(*Sub);
5582       }
5583     }
5584     break;
5585   }
5586 
5587   case Decl::Export:
5588     EmitDeclContext(cast<ExportDecl>(D));
5589     break;
5590 
5591   case Decl::OMPThreadPrivate:
5592     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
5593     break;
5594 
5595   case Decl::OMPAllocate:
5596     break;
5597 
5598   case Decl::OMPDeclareReduction:
5599     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
5600     break;
5601 
5602   case Decl::OMPDeclareMapper:
5603     EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
5604     break;
5605 
5606   case Decl::OMPRequires:
5607     EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
5608     break;
5609 
5610   case Decl::Typedef:
5611   case Decl::TypeAlias: // using foo = bar; [C++11]
5612     if (CGDebugInfo *DI = getModuleDebugInfo())
5613       DI->EmitAndRetainType(
5614           getContext().getTypedefType(cast<TypedefNameDecl>(D)));
5615     break;
5616 
5617   case Decl::Record:
5618     if (CGDebugInfo *DI = getModuleDebugInfo())
5619       if (cast<RecordDecl>(D)->getDefinition())
5620         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
5621     break;
5622 
5623   case Decl::Enum:
5624     if (CGDebugInfo *DI = getModuleDebugInfo())
5625       if (cast<EnumDecl>(D)->getDefinition())
5626         DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D)));
5627     break;
5628 
5629   default:
5630     // Make sure we handled everything we should, every other kind is a
5631     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
5632     // function. Need to recode Decl::Kind to do that easily.
5633     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
5634     break;
5635   }
5636 }
5637 
5638 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
5639   // Do we need to generate coverage mapping?
5640   if (!CodeGenOpts.CoverageMapping)
5641     return;
5642   switch (D->getKind()) {
5643   case Decl::CXXConversion:
5644   case Decl::CXXMethod:
5645   case Decl::Function:
5646   case Decl::ObjCMethod:
5647   case Decl::CXXConstructor:
5648   case Decl::CXXDestructor: {
5649     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
5650       break;
5651     SourceManager &SM = getContext().getSourceManager();
5652     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
5653       break;
5654     auto I = DeferredEmptyCoverageMappingDecls.find(D);
5655     if (I == DeferredEmptyCoverageMappingDecls.end())
5656       DeferredEmptyCoverageMappingDecls[D] = true;
5657     break;
5658   }
5659   default:
5660     break;
5661   };
5662 }
5663 
5664 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
5665   // Do we need to generate coverage mapping?
5666   if (!CodeGenOpts.CoverageMapping)
5667     return;
5668   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
5669     if (Fn->isTemplateInstantiation())
5670       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
5671   }
5672   auto I = DeferredEmptyCoverageMappingDecls.find(D);
5673   if (I == DeferredEmptyCoverageMappingDecls.end())
5674     DeferredEmptyCoverageMappingDecls[D] = false;
5675   else
5676     I->second = false;
5677 }
5678 
5679 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
5680   // We call takeVector() here to avoid use-after-free.
5681   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
5682   // we deserialize function bodies to emit coverage info for them, and that
5683   // deserializes more declarations. How should we handle that case?
5684   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
5685     if (!Entry.second)
5686       continue;
5687     const Decl *D = Entry.first;
5688     switch (D->getKind()) {
5689     case Decl::CXXConversion:
5690     case Decl::CXXMethod:
5691     case Decl::Function:
5692     case Decl::ObjCMethod: {
5693       CodeGenPGO PGO(*this);
5694       GlobalDecl GD(cast<FunctionDecl>(D));
5695       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5696                                   getFunctionLinkage(GD));
5697       break;
5698     }
5699     case Decl::CXXConstructor: {
5700       CodeGenPGO PGO(*this);
5701       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
5702       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5703                                   getFunctionLinkage(GD));
5704       break;
5705     }
5706     case Decl::CXXDestructor: {
5707       CodeGenPGO PGO(*this);
5708       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
5709       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5710                                   getFunctionLinkage(GD));
5711       break;
5712     }
5713     default:
5714       break;
5715     };
5716   }
5717 }
5718 
5719 void CodeGenModule::EmitMainVoidAlias() {
5720   // In order to transition away from "__original_main" gracefully, emit an
5721   // alias for "main" in the no-argument case so that libc can detect when
5722   // new-style no-argument main is in used.
5723   if (llvm::Function *F = getModule().getFunction("main")) {
5724     if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() &&
5725         F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth()))
5726       addUsedGlobal(llvm::GlobalAlias::create("__main_void", F));
5727   }
5728 }
5729 
5730 /// Turns the given pointer into a constant.
5731 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
5732                                           const void *Ptr) {
5733   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
5734   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
5735   return llvm::ConstantInt::get(i64, PtrInt);
5736 }
5737 
5738 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
5739                                    llvm::NamedMDNode *&GlobalMetadata,
5740                                    GlobalDecl D,
5741                                    llvm::GlobalValue *Addr) {
5742   if (!GlobalMetadata)
5743     GlobalMetadata =
5744       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
5745 
5746   // TODO: should we report variant information for ctors/dtors?
5747   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
5748                            llvm::ConstantAsMetadata::get(GetPointerConstant(
5749                                CGM.getLLVMContext(), D.getDecl()))};
5750   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
5751 }
5752 
5753 /// For each function which is declared within an extern "C" region and marked
5754 /// as 'used', but has internal linkage, create an alias from the unmangled
5755 /// name to the mangled name if possible. People expect to be able to refer
5756 /// to such functions with an unmangled name from inline assembly within the
5757 /// same translation unit.
5758 void CodeGenModule::EmitStaticExternCAliases() {
5759   if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
5760     return;
5761   for (auto &I : StaticExternCValues) {
5762     IdentifierInfo *Name = I.first;
5763     llvm::GlobalValue *Val = I.second;
5764     if (Val && !getModule().getNamedValue(Name->getName()))
5765       addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
5766   }
5767 }
5768 
5769 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
5770                                              GlobalDecl &Result) const {
5771   auto Res = Manglings.find(MangledName);
5772   if (Res == Manglings.end())
5773     return false;
5774   Result = Res->getValue();
5775   return true;
5776 }
5777 
5778 /// Emits metadata nodes associating all the global values in the
5779 /// current module with the Decls they came from.  This is useful for
5780 /// projects using IR gen as a subroutine.
5781 ///
5782 /// Since there's currently no way to associate an MDNode directly
5783 /// with an llvm::GlobalValue, we create a global named metadata
5784 /// with the name 'clang.global.decl.ptrs'.
5785 void CodeGenModule::EmitDeclMetadata() {
5786   llvm::NamedMDNode *GlobalMetadata = nullptr;
5787 
5788   for (auto &I : MangledDeclNames) {
5789     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
5790     // Some mangled names don't necessarily have an associated GlobalValue
5791     // in this module, e.g. if we mangled it for DebugInfo.
5792     if (Addr)
5793       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
5794   }
5795 }
5796 
5797 /// Emits metadata nodes for all the local variables in the current
5798 /// function.
5799 void CodeGenFunction::EmitDeclMetadata() {
5800   if (LocalDeclMap.empty()) return;
5801 
5802   llvm::LLVMContext &Context = getLLVMContext();
5803 
5804   // Find the unique metadata ID for this name.
5805   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
5806 
5807   llvm::NamedMDNode *GlobalMetadata = nullptr;
5808 
5809   for (auto &I : LocalDeclMap) {
5810     const Decl *D = I.first;
5811     llvm::Value *Addr = I.second.getPointer();
5812     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
5813       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
5814       Alloca->setMetadata(
5815           DeclPtrKind, llvm::MDNode::get(
5816                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
5817     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
5818       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
5819       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
5820     }
5821   }
5822 }
5823 
5824 void CodeGenModule::EmitVersionIdentMetadata() {
5825   llvm::NamedMDNode *IdentMetadata =
5826     TheModule.getOrInsertNamedMetadata("llvm.ident");
5827   std::string Version = getClangFullVersion();
5828   llvm::LLVMContext &Ctx = TheModule.getContext();
5829 
5830   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
5831   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
5832 }
5833 
5834 void CodeGenModule::EmitCommandLineMetadata() {
5835   llvm::NamedMDNode *CommandLineMetadata =
5836     TheModule.getOrInsertNamedMetadata("llvm.commandline");
5837   std::string CommandLine = getCodeGenOpts().RecordCommandLine;
5838   llvm::LLVMContext &Ctx = TheModule.getContext();
5839 
5840   llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
5841   CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
5842 }
5843 
5844 void CodeGenModule::EmitCoverageFile() {
5845   if (getCodeGenOpts().CoverageDataFile.empty() &&
5846       getCodeGenOpts().CoverageNotesFile.empty())
5847     return;
5848 
5849   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
5850   if (!CUNode)
5851     return;
5852 
5853   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
5854   llvm::LLVMContext &Ctx = TheModule.getContext();
5855   auto *CoverageDataFile =
5856       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
5857   auto *CoverageNotesFile =
5858       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
5859   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
5860     llvm::MDNode *CU = CUNode->getOperand(i);
5861     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
5862     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
5863   }
5864 }
5865 
5866 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
5867                                                        bool ForEH) {
5868   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
5869   // FIXME: should we even be calling this method if RTTI is disabled
5870   // and it's not for EH?
5871   if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice ||
5872       (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
5873        getTriple().isNVPTX()))
5874     return llvm::Constant::getNullValue(Int8PtrTy);
5875 
5876   if (ForEH && Ty->isObjCObjectPointerType() &&
5877       LangOpts.ObjCRuntime.isGNUFamily())
5878     return ObjCRuntime->GetEHType(Ty);
5879 
5880   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
5881 }
5882 
5883 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
5884   // Do not emit threadprivates in simd-only mode.
5885   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
5886     return;
5887   for (auto RefExpr : D->varlists()) {
5888     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
5889     bool PerformInit =
5890         VD->getAnyInitializer() &&
5891         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
5892                                                         /*ForRef=*/false);
5893 
5894     Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
5895     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
5896             VD, Addr, RefExpr->getBeginLoc(), PerformInit))
5897       CXXGlobalInits.push_back(InitFunction);
5898   }
5899 }
5900 
5901 llvm::Metadata *
5902 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
5903                                             StringRef Suffix) {
5904   llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
5905   if (InternalId)
5906     return InternalId;
5907 
5908   if (isExternallyVisible(T->getLinkage())) {
5909     std::string OutName;
5910     llvm::raw_string_ostream Out(OutName);
5911     getCXXABI().getMangleContext().mangleTypeName(T, Out);
5912     Out << Suffix;
5913 
5914     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
5915   } else {
5916     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
5917                                            llvm::ArrayRef<llvm::Metadata *>());
5918   }
5919 
5920   return InternalId;
5921 }
5922 
5923 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
5924   return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
5925 }
5926 
5927 llvm::Metadata *
5928 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
5929   return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
5930 }
5931 
5932 // Generalize pointer types to a void pointer with the qualifiers of the
5933 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
5934 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
5935 // 'void *'.
5936 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
5937   if (!Ty->isPointerType())
5938     return Ty;
5939 
5940   return Ctx.getPointerType(
5941       QualType(Ctx.VoidTy).withCVRQualifiers(
5942           Ty->getPointeeType().getCVRQualifiers()));
5943 }
5944 
5945 // Apply type generalization to a FunctionType's return and argument types
5946 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
5947   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
5948     SmallVector<QualType, 8> GeneralizedParams;
5949     for (auto &Param : FnType->param_types())
5950       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
5951 
5952     return Ctx.getFunctionType(
5953         GeneralizeType(Ctx, FnType->getReturnType()),
5954         GeneralizedParams, FnType->getExtProtoInfo());
5955   }
5956 
5957   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
5958     return Ctx.getFunctionNoProtoType(
5959         GeneralizeType(Ctx, FnType->getReturnType()));
5960 
5961   llvm_unreachable("Encountered unknown FunctionType");
5962 }
5963 
5964 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
5965   return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
5966                                       GeneralizedMetadataIdMap, ".generalized");
5967 }
5968 
5969 /// Returns whether this module needs the "all-vtables" type identifier.
5970 bool CodeGenModule::NeedAllVtablesTypeId() const {
5971   // Returns true if at least one of vtable-based CFI checkers is enabled and
5972   // is not in the trapping mode.
5973   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
5974            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
5975           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
5976            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
5977           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
5978            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
5979           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
5980            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
5981 }
5982 
5983 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
5984                                           CharUnits Offset,
5985                                           const CXXRecordDecl *RD) {
5986   llvm::Metadata *MD =
5987       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
5988   VTable->addTypeMetadata(Offset.getQuantity(), MD);
5989 
5990   if (CodeGenOpts.SanitizeCfiCrossDso)
5991     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
5992       VTable->addTypeMetadata(Offset.getQuantity(),
5993                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
5994 
5995   if (NeedAllVtablesTypeId()) {
5996     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
5997     VTable->addTypeMetadata(Offset.getQuantity(), MD);
5998   }
5999 }
6000 
6001 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
6002   if (!SanStats)
6003     SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule());
6004 
6005   return *SanStats;
6006 }
6007 llvm::Value *
6008 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
6009                                                   CodeGenFunction &CGF) {
6010   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
6011   auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
6012   auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
6013   return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy,
6014                                 "__translate_sampler_initializer"),
6015                                 {C});
6016 }
6017 
6018 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment(
6019     QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) {
6020   return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
6021                                  /* forPointeeType= */ true);
6022 }
6023 
6024 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T,
6025                                                  LValueBaseInfo *BaseInfo,
6026                                                  TBAAAccessInfo *TBAAInfo,
6027                                                  bool forPointeeType) {
6028   if (TBAAInfo)
6029     *TBAAInfo = getTBAAAccessInfo(T);
6030 
6031   // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But
6032   // that doesn't return the information we need to compute BaseInfo.
6033 
6034   // Honor alignment typedef attributes even on incomplete types.
6035   // We also honor them straight for C++ class types, even as pointees;
6036   // there's an expressivity gap here.
6037   if (auto TT = T->getAs<TypedefType>()) {
6038     if (auto Align = TT->getDecl()->getMaxAlignment()) {
6039       if (BaseInfo)
6040         *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
6041       return getContext().toCharUnitsFromBits(Align);
6042     }
6043   }
6044 
6045   bool AlignForArray = T->isArrayType();
6046 
6047   // Analyze the base element type, so we don't get confused by incomplete
6048   // array types.
6049   T = getContext().getBaseElementType(T);
6050 
6051   if (T->isIncompleteType()) {
6052     // We could try to replicate the logic from
6053     // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the
6054     // type is incomplete, so it's impossible to test. We could try to reuse
6055     // getTypeAlignIfKnown, but that doesn't return the information we need
6056     // to set BaseInfo.  So just ignore the possibility that the alignment is
6057     // greater than one.
6058     if (BaseInfo)
6059       *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
6060     return CharUnits::One();
6061   }
6062 
6063   if (BaseInfo)
6064     *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
6065 
6066   CharUnits Alignment;
6067   // For C++ class pointees, we don't know whether we're pointing at a
6068   // base or a complete object, so we generally need to use the
6069   // non-virtual alignment.
6070   const CXXRecordDecl *RD;
6071   if (forPointeeType && !AlignForArray && (RD = T->getAsCXXRecordDecl())) {
6072     Alignment = getClassPointerAlignment(RD);
6073   } else {
6074     Alignment = getContext().getTypeAlignInChars(T);
6075     if (T.getQualifiers().hasUnaligned())
6076       Alignment = CharUnits::One();
6077   }
6078 
6079   // Cap to the global maximum type alignment unless the alignment
6080   // was somehow explicit on the type.
6081   if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
6082     if (Alignment.getQuantity() > MaxAlign &&
6083         !getContext().isAlignmentRequired(T))
6084       Alignment = CharUnits::fromQuantity(MaxAlign);
6085   }
6086   return Alignment;
6087 }
6088 
6089 bool CodeGenModule::stopAutoInit() {
6090   unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter;
6091   if (StopAfter) {
6092     // This number is positive only when -ftrivial-auto-var-init-stop-after=* is
6093     // used
6094     if (NumAutoVarInit >= StopAfter) {
6095       return true;
6096     }
6097     if (!NumAutoVarInit) {
6098       unsigned DiagID = getDiags().getCustomDiagID(
6099           DiagnosticsEngine::Warning,
6100           "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the "
6101           "number of times ftrivial-auto-var-init=%1 gets applied.");
6102       getDiags().Report(DiagID)
6103           << StopAfter
6104           << (getContext().getLangOpts().getTrivialAutoVarInit() ==
6105                       LangOptions::TrivialAutoVarInitKind::Zero
6106                   ? "zero"
6107                   : "pattern");
6108     }
6109     ++NumAutoVarInit;
6110   }
6111   return false;
6112 }
6113