1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-module state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenModule.h" 14 #include "CGBlocks.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCall.h" 18 #include "CGDebugInfo.h" 19 #include "CGObjCRuntime.h" 20 #include "CGOpenCLRuntime.h" 21 #include "CGOpenMPRuntime.h" 22 #include "CGOpenMPRuntimeAMDGCN.h" 23 #include "CGOpenMPRuntimeNVPTX.h" 24 #include "CodeGenFunction.h" 25 #include "CodeGenPGO.h" 26 #include "ConstantEmitter.h" 27 #include "CoverageMappingGen.h" 28 #include "TargetInfo.h" 29 #include "clang/AST/ASTContext.h" 30 #include "clang/AST/CharUnits.h" 31 #include "clang/AST/DeclCXX.h" 32 #include "clang/AST/DeclObjC.h" 33 #include "clang/AST/DeclTemplate.h" 34 #include "clang/AST/Mangle.h" 35 #include "clang/AST/RecordLayout.h" 36 #include "clang/AST/RecursiveASTVisitor.h" 37 #include "clang/AST/StmtVisitor.h" 38 #include "clang/Basic/Builtins.h" 39 #include "clang/Basic/CharInfo.h" 40 #include "clang/Basic/CodeGenOptions.h" 41 #include "clang/Basic/Diagnostic.h" 42 #include "clang/Basic/FileManager.h" 43 #include "clang/Basic/Module.h" 44 #include "clang/Basic/SourceManager.h" 45 #include "clang/Basic/TargetInfo.h" 46 #include "clang/Basic/Version.h" 47 #include "clang/CodeGen/ConstantInitBuilder.h" 48 #include "clang/Frontend/FrontendDiagnostic.h" 49 #include "llvm/ADT/StringSwitch.h" 50 #include "llvm/ADT/Triple.h" 51 #include "llvm/Analysis/TargetLibraryInfo.h" 52 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 53 #include "llvm/IR/CallingConv.h" 54 #include "llvm/IR/DataLayout.h" 55 #include "llvm/IR/Intrinsics.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/Module.h" 58 #include "llvm/IR/ProfileSummary.h" 59 #include "llvm/ProfileData/InstrProfReader.h" 60 #include "llvm/Support/CodeGen.h" 61 #include "llvm/Support/CommandLine.h" 62 #include "llvm/Support/ConvertUTF.h" 63 #include "llvm/Support/ErrorHandling.h" 64 #include "llvm/Support/MD5.h" 65 #include "llvm/Support/TimeProfiler.h" 66 67 using namespace clang; 68 using namespace CodeGen; 69 70 static llvm::cl::opt<bool> LimitedCoverage( 71 "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden, 72 llvm::cl::desc("Emit limited coverage mapping information (experimental)"), 73 llvm::cl::init(false)); 74 75 static const char AnnotationSection[] = "llvm.metadata"; 76 77 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 78 switch (CGM.getTarget().getCXXABI().getKind()) { 79 case TargetCXXABI::Fuchsia: 80 case TargetCXXABI::GenericAArch64: 81 case TargetCXXABI::GenericARM: 82 case TargetCXXABI::iOS: 83 case TargetCXXABI::iOS64: 84 case TargetCXXABI::WatchOS: 85 case TargetCXXABI::GenericMIPS: 86 case TargetCXXABI::GenericItanium: 87 case TargetCXXABI::WebAssembly: 88 case TargetCXXABI::XL: 89 return CreateItaniumCXXABI(CGM); 90 case TargetCXXABI::Microsoft: 91 return CreateMicrosoftCXXABI(CGM); 92 } 93 94 llvm_unreachable("invalid C++ ABI kind"); 95 } 96 97 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 98 const PreprocessorOptions &PPO, 99 const CodeGenOptions &CGO, llvm::Module &M, 100 DiagnosticsEngine &diags, 101 CoverageSourceInfo *CoverageInfo) 102 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 103 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 104 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 105 VMContext(M.getContext()), Types(*this), VTables(*this), 106 SanitizerMD(new SanitizerMetadata(*this)) { 107 108 // Initialize the type cache. 109 llvm::LLVMContext &LLVMContext = M.getContext(); 110 VoidTy = llvm::Type::getVoidTy(LLVMContext); 111 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 112 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 113 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 114 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 115 HalfTy = llvm::Type::getHalfTy(LLVMContext); 116 BFloatTy = llvm::Type::getBFloatTy(LLVMContext); 117 FloatTy = llvm::Type::getFloatTy(LLVMContext); 118 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 119 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 120 PointerAlignInBytes = 121 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 122 SizeSizeInBytes = 123 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 124 IntAlignInBytes = 125 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 126 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 127 IntPtrTy = llvm::IntegerType::get(LLVMContext, 128 C.getTargetInfo().getMaxPointerWidth()); 129 Int8PtrTy = Int8Ty->getPointerTo(0); 130 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 131 AllocaInt8PtrTy = Int8Ty->getPointerTo( 132 M.getDataLayout().getAllocaAddrSpace()); 133 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 134 135 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 136 137 if (LangOpts.ObjC) 138 createObjCRuntime(); 139 if (LangOpts.OpenCL) 140 createOpenCLRuntime(); 141 if (LangOpts.OpenMP) 142 createOpenMPRuntime(); 143 if (LangOpts.CUDA) 144 createCUDARuntime(); 145 146 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 147 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 148 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 149 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(), 150 getCXXABI().getMangleContext())); 151 152 // If debug info or coverage generation is enabled, create the CGDebugInfo 153 // object. 154 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 155 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 156 DebugInfo.reset(new CGDebugInfo(*this)); 157 158 Block.GlobalUniqueCount = 0; 159 160 if (C.getLangOpts().ObjC) 161 ObjCData.reset(new ObjCEntrypoints()); 162 163 if (CodeGenOpts.hasProfileClangUse()) { 164 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 165 CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile); 166 if (auto E = ReaderOrErr.takeError()) { 167 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 168 "Could not read profile %0: %1"); 169 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) { 170 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 171 << EI.message(); 172 }); 173 } else 174 PGOReader = std::move(ReaderOrErr.get()); 175 } 176 177 // If coverage mapping generation is enabled, create the 178 // CoverageMappingModuleGen object. 179 if (CodeGenOpts.CoverageMapping) 180 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 181 } 182 183 CodeGenModule::~CodeGenModule() {} 184 185 void CodeGenModule::createObjCRuntime() { 186 // This is just isGNUFamily(), but we want to force implementors of 187 // new ABIs to decide how best to do this. 188 switch (LangOpts.ObjCRuntime.getKind()) { 189 case ObjCRuntime::GNUstep: 190 case ObjCRuntime::GCC: 191 case ObjCRuntime::ObjFW: 192 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 193 return; 194 195 case ObjCRuntime::FragileMacOSX: 196 case ObjCRuntime::MacOSX: 197 case ObjCRuntime::iOS: 198 case ObjCRuntime::WatchOS: 199 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 200 return; 201 } 202 llvm_unreachable("bad runtime kind"); 203 } 204 205 void CodeGenModule::createOpenCLRuntime() { 206 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 207 } 208 209 void CodeGenModule::createOpenMPRuntime() { 210 // Select a specialized code generation class based on the target, if any. 211 // If it does not exist use the default implementation. 212 switch (getTriple().getArch()) { 213 case llvm::Triple::nvptx: 214 case llvm::Triple::nvptx64: 215 assert(getLangOpts().OpenMPIsDevice && 216 "OpenMP NVPTX is only prepared to deal with device code."); 217 OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this)); 218 break; 219 case llvm::Triple::amdgcn: 220 assert(getLangOpts().OpenMPIsDevice && 221 "OpenMP AMDGCN is only prepared to deal with device code."); 222 OpenMPRuntime.reset(new CGOpenMPRuntimeAMDGCN(*this)); 223 break; 224 default: 225 if (LangOpts.OpenMPSimd) 226 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 227 else 228 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 229 break; 230 } 231 } 232 233 void CodeGenModule::createCUDARuntime() { 234 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 235 } 236 237 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 238 Replacements[Name] = C; 239 } 240 241 void CodeGenModule::applyReplacements() { 242 for (auto &I : Replacements) { 243 StringRef MangledName = I.first(); 244 llvm::Constant *Replacement = I.second; 245 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 246 if (!Entry) 247 continue; 248 auto *OldF = cast<llvm::Function>(Entry); 249 auto *NewF = dyn_cast<llvm::Function>(Replacement); 250 if (!NewF) { 251 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 252 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 253 } else { 254 auto *CE = cast<llvm::ConstantExpr>(Replacement); 255 assert(CE->getOpcode() == llvm::Instruction::BitCast || 256 CE->getOpcode() == llvm::Instruction::GetElementPtr); 257 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 258 } 259 } 260 261 // Replace old with new, but keep the old order. 262 OldF->replaceAllUsesWith(Replacement); 263 if (NewF) { 264 NewF->removeFromParent(); 265 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 266 NewF); 267 } 268 OldF->eraseFromParent(); 269 } 270 } 271 272 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 273 GlobalValReplacements.push_back(std::make_pair(GV, C)); 274 } 275 276 void CodeGenModule::applyGlobalValReplacements() { 277 for (auto &I : GlobalValReplacements) { 278 llvm::GlobalValue *GV = I.first; 279 llvm::Constant *C = I.second; 280 281 GV->replaceAllUsesWith(C); 282 GV->eraseFromParent(); 283 } 284 } 285 286 // This is only used in aliases that we created and we know they have a 287 // linear structure. 288 static const llvm::GlobalObject *getAliasedGlobal( 289 const llvm::GlobalIndirectSymbol &GIS) { 290 llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited; 291 const llvm::Constant *C = &GIS; 292 for (;;) { 293 C = C->stripPointerCasts(); 294 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 295 return GO; 296 // stripPointerCasts will not walk over weak aliases. 297 auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C); 298 if (!GIS2) 299 return nullptr; 300 if (!Visited.insert(GIS2).second) 301 return nullptr; 302 C = GIS2->getIndirectSymbol(); 303 } 304 } 305 306 void CodeGenModule::checkAliases() { 307 // Check if the constructed aliases are well formed. It is really unfortunate 308 // that we have to do this in CodeGen, but we only construct mangled names 309 // and aliases during codegen. 310 bool Error = false; 311 DiagnosticsEngine &Diags = getDiags(); 312 for (const GlobalDecl &GD : Aliases) { 313 const auto *D = cast<ValueDecl>(GD.getDecl()); 314 SourceLocation Location; 315 bool IsIFunc = D->hasAttr<IFuncAttr>(); 316 if (const Attr *A = D->getDefiningAttr()) 317 Location = A->getLocation(); 318 else 319 llvm_unreachable("Not an alias or ifunc?"); 320 StringRef MangledName = getMangledName(GD); 321 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 322 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry); 323 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 324 if (!GV) { 325 Error = true; 326 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 327 } else if (GV->isDeclaration()) { 328 Error = true; 329 Diags.Report(Location, diag::err_alias_to_undefined) 330 << IsIFunc << IsIFunc; 331 } else if (IsIFunc) { 332 // Check resolver function type. 333 llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>( 334 GV->getType()->getPointerElementType()); 335 assert(FTy); 336 if (!FTy->getReturnType()->isPointerTy()) 337 Diags.Report(Location, diag::err_ifunc_resolver_return); 338 } 339 340 llvm::Constant *Aliasee = Alias->getIndirectSymbol(); 341 llvm::GlobalValue *AliaseeGV; 342 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 343 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 344 else 345 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 346 347 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 348 StringRef AliasSection = SA->getName(); 349 if (AliasSection != AliaseeGV->getSection()) 350 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 351 << AliasSection << IsIFunc << IsIFunc; 352 } 353 354 // We have to handle alias to weak aliases in here. LLVM itself disallows 355 // this since the object semantics would not match the IL one. For 356 // compatibility with gcc we implement it by just pointing the alias 357 // to its aliasee's aliasee. We also warn, since the user is probably 358 // expecting the link to be weak. 359 if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) { 360 if (GA->isInterposable()) { 361 Diags.Report(Location, diag::warn_alias_to_weak_alias) 362 << GV->getName() << GA->getName() << IsIFunc; 363 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 364 GA->getIndirectSymbol(), Alias->getType()); 365 Alias->setIndirectSymbol(Aliasee); 366 } 367 } 368 } 369 if (!Error) 370 return; 371 372 for (const GlobalDecl &GD : Aliases) { 373 StringRef MangledName = getMangledName(GD); 374 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 375 auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry); 376 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 377 Alias->eraseFromParent(); 378 } 379 } 380 381 void CodeGenModule::clear() { 382 DeferredDeclsToEmit.clear(); 383 if (OpenMPRuntime) 384 OpenMPRuntime->clear(); 385 } 386 387 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 388 StringRef MainFile) { 389 if (!hasDiagnostics()) 390 return; 391 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 392 if (MainFile.empty()) 393 MainFile = "<stdin>"; 394 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 395 } else { 396 if (Mismatched > 0) 397 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 398 399 if (Missing > 0) 400 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 401 } 402 } 403 404 void CodeGenModule::Release() { 405 EmitDeferred(); 406 EmitVTablesOpportunistically(); 407 applyGlobalValReplacements(); 408 applyReplacements(); 409 checkAliases(); 410 emitMultiVersionFunctions(); 411 EmitCXXGlobalInitFunc(); 412 EmitCXXGlobalCleanUpFunc(); 413 registerGlobalDtorsWithAtExit(); 414 EmitCXXThreadLocalInitFunc(); 415 if (ObjCRuntime) 416 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 417 AddGlobalCtor(ObjCInitFunction); 418 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice && 419 CUDARuntime) { 420 if (llvm::Function *CudaCtorFunction = 421 CUDARuntime->makeModuleCtorFunction()) 422 AddGlobalCtor(CudaCtorFunction); 423 } 424 if (OpenMPRuntime) { 425 if (llvm::Function *OpenMPRequiresDirectiveRegFun = 426 OpenMPRuntime->emitRequiresDirectiveRegFun()) { 427 AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0); 428 } 429 OpenMPRuntime->createOffloadEntriesAndInfoMetadata(); 430 OpenMPRuntime->clear(); 431 } 432 if (PGOReader) { 433 getModule().setProfileSummary( 434 PGOReader->getSummary(/* UseCS */ false).getMD(VMContext), 435 llvm::ProfileSummary::PSK_Instr); 436 if (PGOStats.hasDiagnostics()) 437 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 438 } 439 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 440 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 441 EmitGlobalAnnotations(); 442 EmitStaticExternCAliases(); 443 EmitDeferredUnusedCoverageMappings(); 444 if (CoverageMapping) 445 CoverageMapping->emit(); 446 if (CodeGenOpts.SanitizeCfiCrossDso) { 447 CodeGenFunction(*this).EmitCfiCheckFail(); 448 CodeGenFunction(*this).EmitCfiCheckStub(); 449 } 450 emitAtAvailableLinkGuard(); 451 if (Context.getTargetInfo().getTriple().isWasm() && 452 !Context.getTargetInfo().getTriple().isOSEmscripten()) { 453 EmitMainVoidAlias(); 454 } 455 emitLLVMUsed(); 456 if (SanStats) 457 SanStats->finish(); 458 459 if (CodeGenOpts.Autolink && 460 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 461 EmitModuleLinkOptions(); 462 } 463 464 // On ELF we pass the dependent library specifiers directly to the linker 465 // without manipulating them. This is in contrast to other platforms where 466 // they are mapped to a specific linker option by the compiler. This 467 // difference is a result of the greater variety of ELF linkers and the fact 468 // that ELF linkers tend to handle libraries in a more complicated fashion 469 // than on other platforms. This forces us to defer handling the dependent 470 // libs to the linker. 471 // 472 // CUDA/HIP device and host libraries are different. Currently there is no 473 // way to differentiate dependent libraries for host or device. Existing 474 // usage of #pragma comment(lib, *) is intended for host libraries on 475 // Windows. Therefore emit llvm.dependent-libraries only for host. 476 if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) { 477 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries"); 478 for (auto *MD : ELFDependentLibraries) 479 NMD->addOperand(MD); 480 } 481 482 // Record mregparm value now so it is visible through rest of codegen. 483 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 484 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 485 CodeGenOpts.NumRegisterParameters); 486 487 if (CodeGenOpts.DwarfVersion) { 488 getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version", 489 CodeGenOpts.DwarfVersion); 490 } 491 492 if (Context.getLangOpts().SemanticInterposition) 493 // Require various optimization to respect semantic interposition. 494 getModule().setSemanticInterposition(1); 495 else if (Context.getLangOpts().ExplicitNoSemanticInterposition) 496 // Allow dso_local on applicable targets. 497 getModule().setSemanticInterposition(0); 498 499 if (CodeGenOpts.EmitCodeView) { 500 // Indicate that we want CodeView in the metadata. 501 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 502 } 503 if (CodeGenOpts.CodeViewGHash) { 504 getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1); 505 } 506 if (CodeGenOpts.ControlFlowGuard) { 507 // Function ID tables and checks for Control Flow Guard (cfguard=2). 508 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2); 509 } else if (CodeGenOpts.ControlFlowGuardNoChecks) { 510 // Function ID tables for Control Flow Guard (cfguard=1). 511 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1); 512 } 513 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 514 // We don't support LTO with 2 with different StrictVTablePointers 515 // FIXME: we could support it by stripping all the information introduced 516 // by StrictVTablePointers. 517 518 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 519 520 llvm::Metadata *Ops[2] = { 521 llvm::MDString::get(VMContext, "StrictVTablePointers"), 522 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 523 llvm::Type::getInt32Ty(VMContext), 1))}; 524 525 getModule().addModuleFlag(llvm::Module::Require, 526 "StrictVTablePointersRequirement", 527 llvm::MDNode::get(VMContext, Ops)); 528 } 529 if (getModuleDebugInfo()) 530 // We support a single version in the linked module. The LLVM 531 // parser will drop debug info with a different version number 532 // (and warn about it, too). 533 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 534 llvm::DEBUG_METADATA_VERSION); 535 536 // We need to record the widths of enums and wchar_t, so that we can generate 537 // the correct build attributes in the ARM backend. wchar_size is also used by 538 // TargetLibraryInfo. 539 uint64_t WCharWidth = 540 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 541 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 542 543 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 544 if ( Arch == llvm::Triple::arm 545 || Arch == llvm::Triple::armeb 546 || Arch == llvm::Triple::thumb 547 || Arch == llvm::Triple::thumbeb) { 548 // The minimum width of an enum in bytes 549 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 550 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 551 } 552 553 if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) { 554 StringRef ABIStr = Target.getABI(); 555 llvm::LLVMContext &Ctx = TheModule.getContext(); 556 getModule().addModuleFlag(llvm::Module::Error, "target-abi", 557 llvm::MDString::get(Ctx, ABIStr)); 558 } 559 560 if (CodeGenOpts.SanitizeCfiCrossDso) { 561 // Indicate that we want cross-DSO control flow integrity checks. 562 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 563 } 564 565 if (CodeGenOpts.WholeProgramVTables) { 566 // Indicate whether VFE was enabled for this module, so that the 567 // vcall_visibility metadata added under whole program vtables is handled 568 // appropriately in the optimizer. 569 getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim", 570 CodeGenOpts.VirtualFunctionElimination); 571 } 572 573 if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) { 574 getModule().addModuleFlag(llvm::Module::Override, 575 "CFI Canonical Jump Tables", 576 CodeGenOpts.SanitizeCfiCanonicalJumpTables); 577 } 578 579 if (CodeGenOpts.CFProtectionReturn && 580 Target.checkCFProtectionReturnSupported(getDiags())) { 581 // Indicate that we want to instrument return control flow protection. 582 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return", 583 1); 584 } 585 586 if (CodeGenOpts.CFProtectionBranch && 587 Target.checkCFProtectionBranchSupported(getDiags())) { 588 // Indicate that we want to instrument branch control flow protection. 589 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch", 590 1); 591 } 592 593 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 594 // Indicate whether __nvvm_reflect should be configured to flush denormal 595 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 596 // property.) 597 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 598 CodeGenOpts.FP32DenormalMode.Output != 599 llvm::DenormalMode::IEEE); 600 } 601 602 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 603 if (LangOpts.OpenCL) { 604 EmitOpenCLMetadata(); 605 // Emit SPIR version. 606 if (getTriple().isSPIR()) { 607 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 608 // opencl.spir.version named metadata. 609 // C++ is backwards compatible with OpenCL v2.0. 610 auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion; 611 llvm::Metadata *SPIRVerElts[] = { 612 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 613 Int32Ty, Version / 100)), 614 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 615 Int32Ty, (Version / 100 > 1) ? 0 : 2))}; 616 llvm::NamedMDNode *SPIRVerMD = 617 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 618 llvm::LLVMContext &Ctx = TheModule.getContext(); 619 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 620 } 621 } 622 623 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 624 assert(PLevel < 3 && "Invalid PIC Level"); 625 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 626 if (Context.getLangOpts().PIE) 627 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 628 } 629 630 if (getCodeGenOpts().CodeModel.size() > 0) { 631 unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel) 632 .Case("tiny", llvm::CodeModel::Tiny) 633 .Case("small", llvm::CodeModel::Small) 634 .Case("kernel", llvm::CodeModel::Kernel) 635 .Case("medium", llvm::CodeModel::Medium) 636 .Case("large", llvm::CodeModel::Large) 637 .Default(~0u); 638 if (CM != ~0u) { 639 llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM); 640 getModule().setCodeModel(codeModel); 641 } 642 } 643 644 if (CodeGenOpts.NoPLT) 645 getModule().setRtLibUseGOT(); 646 647 SimplifyPersonality(); 648 649 if (getCodeGenOpts().EmitDeclMetadata) 650 EmitDeclMetadata(); 651 652 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 653 EmitCoverageFile(); 654 655 if (CGDebugInfo *DI = getModuleDebugInfo()) 656 DI->finalize(); 657 658 if (getCodeGenOpts().EmitVersionIdentMetadata) 659 EmitVersionIdentMetadata(); 660 661 if (!getCodeGenOpts().RecordCommandLine.empty()) 662 EmitCommandLineMetadata(); 663 664 getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames); 665 666 EmitBackendOptionsMetadata(getCodeGenOpts()); 667 } 668 669 void CodeGenModule::EmitOpenCLMetadata() { 670 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 671 // opencl.ocl.version named metadata node. 672 // C++ is backwards compatible with OpenCL v2.0. 673 // FIXME: We might need to add CXX version at some point too? 674 auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion; 675 llvm::Metadata *OCLVerElts[] = { 676 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 677 Int32Ty, Version / 100)), 678 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 679 Int32Ty, (Version % 100) / 10))}; 680 llvm::NamedMDNode *OCLVerMD = 681 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 682 llvm::LLVMContext &Ctx = TheModule.getContext(); 683 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 684 } 685 686 void CodeGenModule::EmitBackendOptionsMetadata( 687 const CodeGenOptions CodeGenOpts) { 688 switch (getTriple().getArch()) { 689 default: 690 break; 691 case llvm::Triple::riscv32: 692 case llvm::Triple::riscv64: 693 getModule().addModuleFlag(llvm::Module::Error, "SmallDataLimit", 694 CodeGenOpts.SmallDataLimit); 695 break; 696 } 697 } 698 699 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 700 // Make sure that this type is translated. 701 Types.UpdateCompletedType(TD); 702 } 703 704 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 705 // Make sure that this type is translated. 706 Types.RefreshTypeCacheForClass(RD); 707 } 708 709 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 710 if (!TBAA) 711 return nullptr; 712 return TBAA->getTypeInfo(QTy); 713 } 714 715 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 716 if (!TBAA) 717 return TBAAAccessInfo(); 718 if (getLangOpts().CUDAIsDevice) { 719 // As CUDA builtin surface/texture types are replaced, skip generating TBAA 720 // access info. 721 if (AccessType->isCUDADeviceBuiltinSurfaceType()) { 722 if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() != 723 nullptr) 724 return TBAAAccessInfo(); 725 } else if (AccessType->isCUDADeviceBuiltinTextureType()) { 726 if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() != 727 nullptr) 728 return TBAAAccessInfo(); 729 } 730 } 731 return TBAA->getAccessInfo(AccessType); 732 } 733 734 TBAAAccessInfo 735 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 736 if (!TBAA) 737 return TBAAAccessInfo(); 738 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 739 } 740 741 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 742 if (!TBAA) 743 return nullptr; 744 return TBAA->getTBAAStructInfo(QTy); 745 } 746 747 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 748 if (!TBAA) 749 return nullptr; 750 return TBAA->getBaseTypeInfo(QTy); 751 } 752 753 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 754 if (!TBAA) 755 return nullptr; 756 return TBAA->getAccessTagInfo(Info); 757 } 758 759 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 760 TBAAAccessInfo TargetInfo) { 761 if (!TBAA) 762 return TBAAAccessInfo(); 763 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 764 } 765 766 TBAAAccessInfo 767 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 768 TBAAAccessInfo InfoB) { 769 if (!TBAA) 770 return TBAAAccessInfo(); 771 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 772 } 773 774 TBAAAccessInfo 775 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, 776 TBAAAccessInfo SrcInfo) { 777 if (!TBAA) 778 return TBAAAccessInfo(); 779 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); 780 } 781 782 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 783 TBAAAccessInfo TBAAInfo) { 784 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 785 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 786 } 787 788 void CodeGenModule::DecorateInstructionWithInvariantGroup( 789 llvm::Instruction *I, const CXXRecordDecl *RD) { 790 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 791 llvm::MDNode::get(getLLVMContext(), {})); 792 } 793 794 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 795 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 796 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 797 } 798 799 /// ErrorUnsupported - Print out an error that codegen doesn't support the 800 /// specified stmt yet. 801 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 802 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 803 "cannot compile this %0 yet"); 804 std::string Msg = Type; 805 getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID) 806 << Msg << S->getSourceRange(); 807 } 808 809 /// ErrorUnsupported - Print out an error that codegen doesn't support the 810 /// specified decl yet. 811 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 812 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 813 "cannot compile this %0 yet"); 814 std::string Msg = Type; 815 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 816 } 817 818 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 819 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 820 } 821 822 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 823 const NamedDecl *D) const { 824 if (GV->hasDLLImportStorageClass()) 825 return; 826 // Internal definitions always have default visibility. 827 if (GV->hasLocalLinkage()) { 828 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 829 return; 830 } 831 if (!D) 832 return; 833 // Set visibility for definitions, and for declarations if requested globally 834 // or set explicitly. 835 LinkageInfo LV = D->getLinkageAndVisibility(); 836 if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls || 837 !GV->isDeclarationForLinker()) 838 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 839 } 840 841 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, 842 llvm::GlobalValue *GV) { 843 if (GV->hasLocalLinkage()) 844 return true; 845 846 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()) 847 return true; 848 849 // DLLImport explicitly marks the GV as external. 850 if (GV->hasDLLImportStorageClass()) 851 return false; 852 853 const llvm::Triple &TT = CGM.getTriple(); 854 if (TT.isWindowsGNUEnvironment()) { 855 // In MinGW, variables without DLLImport can still be automatically 856 // imported from a DLL by the linker; don't mark variables that 857 // potentially could come from another DLL as DSO local. 858 if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) && 859 !GV->isThreadLocal()) 860 return false; 861 } 862 863 // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols 864 // remain unresolved in the link, they can be resolved to zero, which is 865 // outside the current DSO. 866 if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage()) 867 return false; 868 869 // Every other GV is local on COFF. 870 // Make an exception for windows OS in the triple: Some firmware builds use 871 // *-win32-macho triples. This (accidentally?) produced windows relocations 872 // without GOT tables in older clang versions; Keep this behaviour. 873 // FIXME: even thread local variables? 874 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) 875 return true; 876 877 // Only handle COFF and ELF for now. 878 if (!TT.isOSBinFormatELF()) 879 return false; 880 881 // If this is not an executable, don't assume anything is local. 882 const auto &CGOpts = CGM.getCodeGenOpts(); 883 llvm::Reloc::Model RM = CGOpts.RelocationModel; 884 const auto &LOpts = CGM.getLangOpts(); 885 if (RM != llvm::Reloc::Static && !LOpts.PIE) 886 return false; 887 888 // A definition cannot be preempted from an executable. 889 if (!GV->isDeclarationForLinker()) 890 return true; 891 892 // Most PIC code sequences that assume that a symbol is local cannot produce a 893 // 0 if it turns out the symbol is undefined. While this is ABI and relocation 894 // depended, it seems worth it to handle it here. 895 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) 896 return false; 897 898 // PPC has no copy relocations and cannot use a plt entry as a symbol address. 899 llvm::Triple::ArchType Arch = TT.getArch(); 900 if (Arch == llvm::Triple::ppc || Arch == llvm::Triple::ppc64 || 901 Arch == llvm::Triple::ppc64le) 902 return false; 903 904 // If we can use copy relocations we can assume it is local. 905 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV)) 906 if (!Var->isThreadLocal() && 907 (RM == llvm::Reloc::Static || CGOpts.PIECopyRelocations)) 908 return true; 909 910 // If we can use a plt entry as the symbol address we can assume it 911 // is local. 912 // FIXME: This should work for PIE, but the gold linker doesn't support it. 913 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) 914 return true; 915 916 // Otherwise don't assume it is local. 917 return false; 918 } 919 920 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { 921 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV)); 922 } 923 924 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 925 GlobalDecl GD) const { 926 const auto *D = dyn_cast<NamedDecl>(GD.getDecl()); 927 // C++ destructors have a few C++ ABI specific special cases. 928 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) { 929 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType()); 930 return; 931 } 932 setDLLImportDLLExport(GV, D); 933 } 934 935 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 936 const NamedDecl *D) const { 937 if (D && D->isExternallyVisible()) { 938 if (D->hasAttr<DLLImportAttr>()) 939 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 940 else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker()) 941 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 942 } 943 } 944 945 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 946 GlobalDecl GD) const { 947 setDLLImportDLLExport(GV, GD); 948 setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl())); 949 } 950 951 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 952 const NamedDecl *D) const { 953 setDLLImportDLLExport(GV, D); 954 setGVPropertiesAux(GV, D); 955 } 956 957 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV, 958 const NamedDecl *D) const { 959 setGlobalVisibility(GV, D); 960 setDSOLocal(GV); 961 GV->setPartition(CodeGenOpts.SymbolPartition); 962 } 963 964 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 965 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 966 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 967 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 968 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 969 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 970 } 971 972 llvm::GlobalVariable::ThreadLocalMode 973 CodeGenModule::GetDefaultLLVMTLSModel() const { 974 switch (CodeGenOpts.getDefaultTLSModel()) { 975 case CodeGenOptions::GeneralDynamicTLSModel: 976 return llvm::GlobalVariable::GeneralDynamicTLSModel; 977 case CodeGenOptions::LocalDynamicTLSModel: 978 return llvm::GlobalVariable::LocalDynamicTLSModel; 979 case CodeGenOptions::InitialExecTLSModel: 980 return llvm::GlobalVariable::InitialExecTLSModel; 981 case CodeGenOptions::LocalExecTLSModel: 982 return llvm::GlobalVariable::LocalExecTLSModel; 983 } 984 llvm_unreachable("Invalid TLS model!"); 985 } 986 987 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 988 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 989 990 llvm::GlobalValue::ThreadLocalMode TLM; 991 TLM = GetDefaultLLVMTLSModel(); 992 993 // Override the TLS model if it is explicitly specified. 994 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 995 TLM = GetLLVMTLSModel(Attr->getModel()); 996 } 997 998 GV->setThreadLocalMode(TLM); 999 } 1000 1001 static std::string getCPUSpecificMangling(const CodeGenModule &CGM, 1002 StringRef Name) { 1003 const TargetInfo &Target = CGM.getTarget(); 1004 return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str(); 1005 } 1006 1007 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM, 1008 const CPUSpecificAttr *Attr, 1009 unsigned CPUIndex, 1010 raw_ostream &Out) { 1011 // cpu_specific gets the current name, dispatch gets the resolver if IFunc is 1012 // supported. 1013 if (Attr) 1014 Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName()); 1015 else if (CGM.getTarget().supportsIFunc()) 1016 Out << ".resolver"; 1017 } 1018 1019 static void AppendTargetMangling(const CodeGenModule &CGM, 1020 const TargetAttr *Attr, raw_ostream &Out) { 1021 if (Attr->isDefaultVersion()) 1022 return; 1023 1024 Out << '.'; 1025 const TargetInfo &Target = CGM.getTarget(); 1026 ParsedTargetAttr Info = 1027 Attr->parse([&Target](StringRef LHS, StringRef RHS) { 1028 // Multiversioning doesn't allow "no-${feature}", so we can 1029 // only have "+" prefixes here. 1030 assert(LHS.startswith("+") && RHS.startswith("+") && 1031 "Features should always have a prefix."); 1032 return Target.multiVersionSortPriority(LHS.substr(1)) > 1033 Target.multiVersionSortPriority(RHS.substr(1)); 1034 }); 1035 1036 bool IsFirst = true; 1037 1038 if (!Info.Architecture.empty()) { 1039 IsFirst = false; 1040 Out << "arch_" << Info.Architecture; 1041 } 1042 1043 for (StringRef Feat : Info.Features) { 1044 if (!IsFirst) 1045 Out << '_'; 1046 IsFirst = false; 1047 Out << Feat.substr(1); 1048 } 1049 } 1050 1051 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD, 1052 const NamedDecl *ND, 1053 bool OmitMultiVersionMangling = false) { 1054 SmallString<256> Buffer; 1055 llvm::raw_svector_ostream Out(Buffer); 1056 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 1057 if (MC.shouldMangleDeclName(ND)) 1058 MC.mangleName(GD.getWithDecl(ND), Out); 1059 else { 1060 IdentifierInfo *II = ND->getIdentifier(); 1061 assert(II && "Attempt to mangle unnamed decl."); 1062 const auto *FD = dyn_cast<FunctionDecl>(ND); 1063 1064 if (FD && 1065 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 1066 Out << "__regcall3__" << II->getName(); 1067 } else if (FD && FD->hasAttr<CUDAGlobalAttr>() && 1068 GD.getKernelReferenceKind() == KernelReferenceKind::Stub) { 1069 Out << "__device_stub__" << II->getName(); 1070 } else { 1071 Out << II->getName(); 1072 } 1073 } 1074 1075 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 1076 if (FD->isMultiVersion() && !OmitMultiVersionMangling) { 1077 switch (FD->getMultiVersionKind()) { 1078 case MultiVersionKind::CPUDispatch: 1079 case MultiVersionKind::CPUSpecific: 1080 AppendCPUSpecificCPUDispatchMangling(CGM, 1081 FD->getAttr<CPUSpecificAttr>(), 1082 GD.getMultiVersionIndex(), Out); 1083 break; 1084 case MultiVersionKind::Target: 1085 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out); 1086 break; 1087 case MultiVersionKind::None: 1088 llvm_unreachable("None multiversion type isn't valid here"); 1089 } 1090 } 1091 1092 return std::string(Out.str()); 1093 } 1094 1095 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 1096 const FunctionDecl *FD) { 1097 if (!FD->isMultiVersion()) 1098 return; 1099 1100 // Get the name of what this would be without the 'target' attribute. This 1101 // allows us to lookup the version that was emitted when this wasn't a 1102 // multiversion function. 1103 std::string NonTargetName = 1104 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 1105 GlobalDecl OtherGD; 1106 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 1107 assert(OtherGD.getCanonicalDecl() 1108 .getDecl() 1109 ->getAsFunction() 1110 ->isMultiVersion() && 1111 "Other GD should now be a multiversioned function"); 1112 // OtherFD is the version of this function that was mangled BEFORE 1113 // becoming a MultiVersion function. It potentially needs to be updated. 1114 const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl() 1115 .getDecl() 1116 ->getAsFunction() 1117 ->getMostRecentDecl(); 1118 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 1119 // This is so that if the initial version was already the 'default' 1120 // version, we don't try to update it. 1121 if (OtherName != NonTargetName) { 1122 // Remove instead of erase, since others may have stored the StringRef 1123 // to this. 1124 const auto ExistingRecord = Manglings.find(NonTargetName); 1125 if (ExistingRecord != std::end(Manglings)) 1126 Manglings.remove(&(*ExistingRecord)); 1127 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 1128 MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first(); 1129 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 1130 Entry->setName(OtherName); 1131 } 1132 } 1133 } 1134 1135 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 1136 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 1137 1138 // Some ABIs don't have constructor variants. Make sure that base and 1139 // complete constructors get mangled the same. 1140 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 1141 if (!getTarget().getCXXABI().hasConstructorVariants()) { 1142 CXXCtorType OrigCtorType = GD.getCtorType(); 1143 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 1144 if (OrigCtorType == Ctor_Base) 1145 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 1146 } 1147 } 1148 1149 auto FoundName = MangledDeclNames.find(CanonicalGD); 1150 if (FoundName != MangledDeclNames.end()) 1151 return FoundName->second; 1152 1153 // Keep the first result in the case of a mangling collision. 1154 const auto *ND = cast<NamedDecl>(GD.getDecl()); 1155 std::string MangledName = getMangledNameImpl(*this, GD, ND); 1156 1157 // Ensure either we have different ABIs between host and device compilations, 1158 // says host compilation following MSVC ABI but device compilation follows 1159 // Itanium C++ ABI or, if they follow the same ABI, kernel names after 1160 // mangling should be the same after name stubbing. The later checking is 1161 // very important as the device kernel name being mangled in host-compilation 1162 // is used to resolve the device binaries to be executed. Inconsistent naming 1163 // result in undefined behavior. Even though we cannot check that naming 1164 // directly between host- and device-compilations, the host- and 1165 // device-mangling in host compilation could help catching certain ones. 1166 assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() || 1167 getLangOpts().CUDAIsDevice || 1168 (getContext().getAuxTargetInfo() && 1169 (getContext().getAuxTargetInfo()->getCXXABI() != 1170 getContext().getTargetInfo().getCXXABI())) || 1171 getCUDARuntime().getDeviceSideName(ND) == 1172 getMangledNameImpl( 1173 *this, 1174 GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel), 1175 ND)); 1176 1177 auto Result = Manglings.insert(std::make_pair(MangledName, GD)); 1178 return MangledDeclNames[CanonicalGD] = Result.first->first(); 1179 } 1180 1181 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 1182 const BlockDecl *BD) { 1183 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 1184 const Decl *D = GD.getDecl(); 1185 1186 SmallString<256> Buffer; 1187 llvm::raw_svector_ostream Out(Buffer); 1188 if (!D) 1189 MangleCtx.mangleGlobalBlock(BD, 1190 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 1191 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 1192 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 1193 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 1194 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 1195 else 1196 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 1197 1198 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 1199 return Result.first->first(); 1200 } 1201 1202 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 1203 return getModule().getNamedValue(Name); 1204 } 1205 1206 /// AddGlobalCtor - Add a function to the list that will be called before 1207 /// main() runs. 1208 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 1209 llvm::Constant *AssociatedData) { 1210 // FIXME: Type coercion of void()* types. 1211 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 1212 } 1213 1214 /// AddGlobalDtor - Add a function to the list that will be called 1215 /// when the module is unloaded. 1216 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 1217 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit) { 1218 if (getCXXABI().useSinitAndSterm()) 1219 llvm::report_fatal_error( 1220 "register global dtors with atexit() is not supported yet"); 1221 DtorsUsingAtExit[Priority].push_back(Dtor); 1222 return; 1223 } 1224 1225 // FIXME: Type coercion of void()* types. 1226 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 1227 } 1228 1229 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 1230 if (Fns.empty()) return; 1231 1232 // Ctor function type is void()*. 1233 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 1234 llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy, 1235 TheModule.getDataLayout().getProgramAddressSpace()); 1236 1237 // Get the type of a ctor entry, { i32, void ()*, i8* }. 1238 llvm::StructType *CtorStructTy = llvm::StructType::get( 1239 Int32Ty, CtorPFTy, VoidPtrTy); 1240 1241 // Construct the constructor and destructor arrays. 1242 ConstantInitBuilder builder(*this); 1243 auto ctors = builder.beginArray(CtorStructTy); 1244 for (const auto &I : Fns) { 1245 auto ctor = ctors.beginStruct(CtorStructTy); 1246 ctor.addInt(Int32Ty, I.Priority); 1247 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 1248 if (I.AssociatedData) 1249 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 1250 else 1251 ctor.addNullPointer(VoidPtrTy); 1252 ctor.finishAndAddTo(ctors); 1253 } 1254 1255 auto list = 1256 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 1257 /*constant*/ false, 1258 llvm::GlobalValue::AppendingLinkage); 1259 1260 // The LTO linker doesn't seem to like it when we set an alignment 1261 // on appending variables. Take it off as a workaround. 1262 list->setAlignment(llvm::None); 1263 1264 Fns.clear(); 1265 } 1266 1267 llvm::GlobalValue::LinkageTypes 1268 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 1269 const auto *D = cast<FunctionDecl>(GD.getDecl()); 1270 1271 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 1272 1273 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D)) 1274 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType()); 1275 1276 if (isa<CXXConstructorDecl>(D) && 1277 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 1278 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 1279 // Our approach to inheriting constructors is fundamentally different from 1280 // that used by the MS ABI, so keep our inheriting constructor thunks 1281 // internal rather than trying to pick an unambiguous mangling for them. 1282 return llvm::GlobalValue::InternalLinkage; 1283 } 1284 1285 return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false); 1286 } 1287 1288 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 1289 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 1290 if (!MDS) return nullptr; 1291 1292 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 1293 } 1294 1295 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD, 1296 const CGFunctionInfo &Info, 1297 llvm::Function *F) { 1298 unsigned CallingConv; 1299 llvm::AttributeList PAL; 1300 ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, false); 1301 F->setAttributes(PAL); 1302 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 1303 } 1304 1305 static void removeImageAccessQualifier(std::string& TyName) { 1306 std::string ReadOnlyQual("__read_only"); 1307 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 1308 if (ReadOnlyPos != std::string::npos) 1309 // "+ 1" for the space after access qualifier. 1310 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 1311 else { 1312 std::string WriteOnlyQual("__write_only"); 1313 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 1314 if (WriteOnlyPos != std::string::npos) 1315 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 1316 else { 1317 std::string ReadWriteQual("__read_write"); 1318 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 1319 if (ReadWritePos != std::string::npos) 1320 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 1321 } 1322 } 1323 } 1324 1325 // Returns the address space id that should be produced to the 1326 // kernel_arg_addr_space metadata. This is always fixed to the ids 1327 // as specified in the SPIR 2.0 specification in order to differentiate 1328 // for example in clGetKernelArgInfo() implementation between the address 1329 // spaces with targets without unique mapping to the OpenCL address spaces 1330 // (basically all single AS CPUs). 1331 static unsigned ArgInfoAddressSpace(LangAS AS) { 1332 switch (AS) { 1333 case LangAS::opencl_global: 1334 return 1; 1335 case LangAS::opencl_constant: 1336 return 2; 1337 case LangAS::opencl_local: 1338 return 3; 1339 case LangAS::opencl_generic: 1340 return 4; // Not in SPIR 2.0 specs. 1341 case LangAS::opencl_global_device: 1342 return 5; 1343 case LangAS::opencl_global_host: 1344 return 6; 1345 default: 1346 return 0; // Assume private. 1347 } 1348 } 1349 1350 void CodeGenModule::GenOpenCLArgMetadata(llvm::Function *Fn, 1351 const FunctionDecl *FD, 1352 CodeGenFunction *CGF) { 1353 assert(((FD && CGF) || (!FD && !CGF)) && 1354 "Incorrect use - FD and CGF should either be both null or not!"); 1355 // Create MDNodes that represent the kernel arg metadata. 1356 // Each MDNode is a list in the form of "key", N number of values which is 1357 // the same number of values as their are kernel arguments. 1358 1359 const PrintingPolicy &Policy = Context.getPrintingPolicy(); 1360 1361 // MDNode for the kernel argument address space qualifiers. 1362 SmallVector<llvm::Metadata *, 8> addressQuals; 1363 1364 // MDNode for the kernel argument access qualifiers (images only). 1365 SmallVector<llvm::Metadata *, 8> accessQuals; 1366 1367 // MDNode for the kernel argument type names. 1368 SmallVector<llvm::Metadata *, 8> argTypeNames; 1369 1370 // MDNode for the kernel argument base type names. 1371 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 1372 1373 // MDNode for the kernel argument type qualifiers. 1374 SmallVector<llvm::Metadata *, 8> argTypeQuals; 1375 1376 // MDNode for the kernel argument names. 1377 SmallVector<llvm::Metadata *, 8> argNames; 1378 1379 if (FD && CGF) 1380 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 1381 const ParmVarDecl *parm = FD->getParamDecl(i); 1382 QualType ty = parm->getType(); 1383 std::string typeQuals; 1384 1385 if (ty->isPointerType()) { 1386 QualType pointeeTy = ty->getPointeeType(); 1387 1388 // Get address qualifier. 1389 addressQuals.push_back( 1390 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32( 1391 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 1392 1393 // Get argument type name. 1394 std::string typeName = 1395 pointeeTy.getUnqualifiedType().getAsString(Policy) + "*"; 1396 1397 // Turn "unsigned type" to "utype" 1398 std::string::size_type pos = typeName.find("unsigned"); 1399 if (pointeeTy.isCanonical() && pos != std::string::npos) 1400 typeName.erase(pos + 1, 8); 1401 1402 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 1403 1404 std::string baseTypeName = 1405 pointeeTy.getUnqualifiedType().getCanonicalType().getAsString( 1406 Policy) + 1407 "*"; 1408 1409 // Turn "unsigned type" to "utype" 1410 pos = baseTypeName.find("unsigned"); 1411 if (pos != std::string::npos) 1412 baseTypeName.erase(pos + 1, 8); 1413 1414 argBaseTypeNames.push_back( 1415 llvm::MDString::get(VMContext, baseTypeName)); 1416 1417 // Get argument type qualifiers: 1418 if (ty.isRestrictQualified()) 1419 typeQuals = "restrict"; 1420 if (pointeeTy.isConstQualified() || 1421 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 1422 typeQuals += typeQuals.empty() ? "const" : " const"; 1423 if (pointeeTy.isVolatileQualified()) 1424 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 1425 } else { 1426 uint32_t AddrSpc = 0; 1427 bool isPipe = ty->isPipeType(); 1428 if (ty->isImageType() || isPipe) 1429 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 1430 1431 addressQuals.push_back( 1432 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc))); 1433 1434 // Get argument type name. 1435 std::string typeName; 1436 if (isPipe) 1437 typeName = ty.getCanonicalType() 1438 ->castAs<PipeType>() 1439 ->getElementType() 1440 .getAsString(Policy); 1441 else 1442 typeName = ty.getUnqualifiedType().getAsString(Policy); 1443 1444 // Turn "unsigned type" to "utype" 1445 std::string::size_type pos = typeName.find("unsigned"); 1446 if (ty.isCanonical() && pos != std::string::npos) 1447 typeName.erase(pos + 1, 8); 1448 1449 std::string baseTypeName; 1450 if (isPipe) 1451 baseTypeName = ty.getCanonicalType() 1452 ->castAs<PipeType>() 1453 ->getElementType() 1454 .getCanonicalType() 1455 .getAsString(Policy); 1456 else 1457 baseTypeName = 1458 ty.getUnqualifiedType().getCanonicalType().getAsString(Policy); 1459 1460 // Remove access qualifiers on images 1461 // (as they are inseparable from type in clang implementation, 1462 // but OpenCL spec provides a special query to get access qualifier 1463 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 1464 if (ty->isImageType()) { 1465 removeImageAccessQualifier(typeName); 1466 removeImageAccessQualifier(baseTypeName); 1467 } 1468 1469 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 1470 1471 // Turn "unsigned type" to "utype" 1472 pos = baseTypeName.find("unsigned"); 1473 if (pos != std::string::npos) 1474 baseTypeName.erase(pos + 1, 8); 1475 1476 argBaseTypeNames.push_back( 1477 llvm::MDString::get(VMContext, baseTypeName)); 1478 1479 if (isPipe) 1480 typeQuals = "pipe"; 1481 } 1482 1483 argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals)); 1484 1485 // Get image and pipe access qualifier: 1486 if (ty->isImageType() || ty->isPipeType()) { 1487 const Decl *PDecl = parm; 1488 if (auto *TD = dyn_cast<TypedefType>(ty)) 1489 PDecl = TD->getDecl(); 1490 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>(); 1491 if (A && A->isWriteOnly()) 1492 accessQuals.push_back(llvm::MDString::get(VMContext, "write_only")); 1493 else if (A && A->isReadWrite()) 1494 accessQuals.push_back(llvm::MDString::get(VMContext, "read_write")); 1495 else 1496 accessQuals.push_back(llvm::MDString::get(VMContext, "read_only")); 1497 } else 1498 accessQuals.push_back(llvm::MDString::get(VMContext, "none")); 1499 1500 // Get argument name. 1501 argNames.push_back(llvm::MDString::get(VMContext, parm->getName())); 1502 } 1503 1504 Fn->setMetadata("kernel_arg_addr_space", 1505 llvm::MDNode::get(VMContext, addressQuals)); 1506 Fn->setMetadata("kernel_arg_access_qual", 1507 llvm::MDNode::get(VMContext, accessQuals)); 1508 Fn->setMetadata("kernel_arg_type", 1509 llvm::MDNode::get(VMContext, argTypeNames)); 1510 Fn->setMetadata("kernel_arg_base_type", 1511 llvm::MDNode::get(VMContext, argBaseTypeNames)); 1512 Fn->setMetadata("kernel_arg_type_qual", 1513 llvm::MDNode::get(VMContext, argTypeQuals)); 1514 if (getCodeGenOpts().EmitOpenCLArgMetadata) 1515 Fn->setMetadata("kernel_arg_name", 1516 llvm::MDNode::get(VMContext, argNames)); 1517 } 1518 1519 /// Determines whether the language options require us to model 1520 /// unwind exceptions. We treat -fexceptions as mandating this 1521 /// except under the fragile ObjC ABI with only ObjC exceptions 1522 /// enabled. This means, for example, that C with -fexceptions 1523 /// enables this. 1524 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 1525 // If exceptions are completely disabled, obviously this is false. 1526 if (!LangOpts.Exceptions) return false; 1527 1528 // If C++ exceptions are enabled, this is true. 1529 if (LangOpts.CXXExceptions) return true; 1530 1531 // If ObjC exceptions are enabled, this depends on the ABI. 1532 if (LangOpts.ObjCExceptions) { 1533 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 1534 } 1535 1536 return true; 1537 } 1538 1539 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM, 1540 const CXXMethodDecl *MD) { 1541 // Check that the type metadata can ever actually be used by a call. 1542 if (!CGM.getCodeGenOpts().LTOUnit || 1543 !CGM.HasHiddenLTOVisibility(MD->getParent())) 1544 return false; 1545 1546 // Only functions whose address can be taken with a member function pointer 1547 // need this sort of type metadata. 1548 return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) && 1549 !isa<CXXDestructorDecl>(MD); 1550 } 1551 1552 std::vector<const CXXRecordDecl *> 1553 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) { 1554 llvm::SetVector<const CXXRecordDecl *> MostBases; 1555 1556 std::function<void (const CXXRecordDecl *)> CollectMostBases; 1557 CollectMostBases = [&](const CXXRecordDecl *RD) { 1558 if (RD->getNumBases() == 0) 1559 MostBases.insert(RD); 1560 for (const CXXBaseSpecifier &B : RD->bases()) 1561 CollectMostBases(B.getType()->getAsCXXRecordDecl()); 1562 }; 1563 CollectMostBases(RD); 1564 return MostBases.takeVector(); 1565 } 1566 1567 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 1568 llvm::Function *F) { 1569 llvm::AttrBuilder B; 1570 1571 if (CodeGenOpts.UnwindTables) 1572 B.addAttribute(llvm::Attribute::UWTable); 1573 1574 if (CodeGenOpts.StackClashProtector) 1575 B.addAttribute("probe-stack", "inline-asm"); 1576 1577 if (!hasUnwindExceptions(LangOpts)) 1578 B.addAttribute(llvm::Attribute::NoUnwind); 1579 1580 if (!D || !D->hasAttr<NoStackProtectorAttr>()) { 1581 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 1582 B.addAttribute(llvm::Attribute::StackProtect); 1583 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 1584 B.addAttribute(llvm::Attribute::StackProtectStrong); 1585 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 1586 B.addAttribute(llvm::Attribute::StackProtectReq); 1587 } 1588 1589 if (!D) { 1590 // If we don't have a declaration to control inlining, the function isn't 1591 // explicitly marked as alwaysinline for semantic reasons, and inlining is 1592 // disabled, mark the function as noinline. 1593 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1594 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 1595 B.addAttribute(llvm::Attribute::NoInline); 1596 1597 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1598 return; 1599 } 1600 1601 // Track whether we need to add the optnone LLVM attribute, 1602 // starting with the default for this optimization level. 1603 bool ShouldAddOptNone = 1604 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 1605 // We can't add optnone in the following cases, it won't pass the verifier. 1606 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 1607 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 1608 1609 // Add optnone, but do so only if the function isn't always_inline. 1610 if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) && 1611 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1612 B.addAttribute(llvm::Attribute::OptimizeNone); 1613 1614 // OptimizeNone implies noinline; we should not be inlining such functions. 1615 B.addAttribute(llvm::Attribute::NoInline); 1616 1617 // We still need to handle naked functions even though optnone subsumes 1618 // much of their semantics. 1619 if (D->hasAttr<NakedAttr>()) 1620 B.addAttribute(llvm::Attribute::Naked); 1621 1622 // OptimizeNone wins over OptimizeForSize and MinSize. 1623 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 1624 F->removeFnAttr(llvm::Attribute::MinSize); 1625 } else if (D->hasAttr<NakedAttr>()) { 1626 // Naked implies noinline: we should not be inlining such functions. 1627 B.addAttribute(llvm::Attribute::Naked); 1628 B.addAttribute(llvm::Attribute::NoInline); 1629 } else if (D->hasAttr<NoDuplicateAttr>()) { 1630 B.addAttribute(llvm::Attribute::NoDuplicate); 1631 } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1632 // Add noinline if the function isn't always_inline. 1633 B.addAttribute(llvm::Attribute::NoInline); 1634 } else if (D->hasAttr<AlwaysInlineAttr>() && 1635 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 1636 // (noinline wins over always_inline, and we can't specify both in IR) 1637 B.addAttribute(llvm::Attribute::AlwaysInline); 1638 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 1639 // If we're not inlining, then force everything that isn't always_inline to 1640 // carry an explicit noinline attribute. 1641 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 1642 B.addAttribute(llvm::Attribute::NoInline); 1643 } else { 1644 // Otherwise, propagate the inline hint attribute and potentially use its 1645 // absence to mark things as noinline. 1646 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1647 // Search function and template pattern redeclarations for inline. 1648 auto CheckForInline = [](const FunctionDecl *FD) { 1649 auto CheckRedeclForInline = [](const FunctionDecl *Redecl) { 1650 return Redecl->isInlineSpecified(); 1651 }; 1652 if (any_of(FD->redecls(), CheckRedeclForInline)) 1653 return true; 1654 const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern(); 1655 if (!Pattern) 1656 return false; 1657 return any_of(Pattern->redecls(), CheckRedeclForInline); 1658 }; 1659 if (CheckForInline(FD)) { 1660 B.addAttribute(llvm::Attribute::InlineHint); 1661 } else if (CodeGenOpts.getInlining() == 1662 CodeGenOptions::OnlyHintInlining && 1663 !FD->isInlined() && 1664 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1665 B.addAttribute(llvm::Attribute::NoInline); 1666 } 1667 } 1668 } 1669 1670 // Add other optimization related attributes if we are optimizing this 1671 // function. 1672 if (!D->hasAttr<OptimizeNoneAttr>()) { 1673 if (D->hasAttr<ColdAttr>()) { 1674 if (!ShouldAddOptNone) 1675 B.addAttribute(llvm::Attribute::OptimizeForSize); 1676 B.addAttribute(llvm::Attribute::Cold); 1677 } 1678 1679 if (D->hasAttr<MinSizeAttr>()) 1680 B.addAttribute(llvm::Attribute::MinSize); 1681 } 1682 1683 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1684 1685 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 1686 if (alignment) 1687 F->setAlignment(llvm::Align(alignment)); 1688 1689 if (!D->hasAttr<AlignedAttr>()) 1690 if (LangOpts.FunctionAlignment) 1691 F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment)); 1692 1693 // Some C++ ABIs require 2-byte alignment for member functions, in order to 1694 // reserve a bit for differentiating between virtual and non-virtual member 1695 // functions. If the current target's C++ ABI requires this and this is a 1696 // member function, set its alignment accordingly. 1697 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 1698 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 1699 F->setAlignment(llvm::Align(2)); 1700 } 1701 1702 // In the cross-dso CFI mode with canonical jump tables, we want !type 1703 // attributes on definitions only. 1704 if (CodeGenOpts.SanitizeCfiCrossDso && 1705 CodeGenOpts.SanitizeCfiCanonicalJumpTables) { 1706 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1707 // Skip available_externally functions. They won't be codegen'ed in the 1708 // current module anyway. 1709 if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally) 1710 CreateFunctionTypeMetadataForIcall(FD, F); 1711 } 1712 } 1713 1714 // Emit type metadata on member functions for member function pointer checks. 1715 // These are only ever necessary on definitions; we're guaranteed that the 1716 // definition will be present in the LTO unit as a result of LTO visibility. 1717 auto *MD = dyn_cast<CXXMethodDecl>(D); 1718 if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) { 1719 for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) { 1720 llvm::Metadata *Id = 1721 CreateMetadataIdentifierForType(Context.getMemberPointerType( 1722 MD->getType(), Context.getRecordType(Base).getTypePtr())); 1723 F->addTypeMetadata(0, Id); 1724 } 1725 } 1726 } 1727 1728 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { 1729 const Decl *D = GD.getDecl(); 1730 if (dyn_cast_or_null<NamedDecl>(D)) 1731 setGVProperties(GV, GD); 1732 else 1733 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1734 1735 if (D && D->hasAttr<UsedAttr>()) 1736 addUsedGlobal(GV); 1737 1738 if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) { 1739 const auto *VD = cast<VarDecl>(D); 1740 if (VD->getType().isConstQualified() && 1741 VD->getStorageDuration() == SD_Static) 1742 addUsedGlobal(GV); 1743 } 1744 } 1745 1746 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD, 1747 llvm::AttrBuilder &Attrs) { 1748 // Add target-cpu and target-features attributes to functions. If 1749 // we have a decl for the function and it has a target attribute then 1750 // parse that and add it to the feature set. 1751 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 1752 StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU; 1753 std::vector<std::string> Features; 1754 const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl()); 1755 FD = FD ? FD->getMostRecentDecl() : FD; 1756 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; 1757 const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr; 1758 bool AddedAttr = false; 1759 if (TD || SD) { 1760 llvm::StringMap<bool> FeatureMap; 1761 getContext().getFunctionFeatureMap(FeatureMap, GD); 1762 1763 // Produce the canonical string for this set of features. 1764 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) 1765 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); 1766 1767 // Now add the target-cpu and target-features to the function. 1768 // While we populated the feature map above, we still need to 1769 // get and parse the target attribute so we can get the cpu for 1770 // the function. 1771 if (TD) { 1772 ParsedTargetAttr ParsedAttr = TD->parse(); 1773 if (!ParsedAttr.Architecture.empty() && 1774 getTarget().isValidCPUName(ParsedAttr.Architecture)) { 1775 TargetCPU = ParsedAttr.Architecture; 1776 TuneCPU = ""; // Clear the tune CPU. 1777 } 1778 if (!ParsedAttr.Tune.empty() && 1779 getTarget().isValidCPUName(ParsedAttr.Tune)) 1780 TuneCPU = ParsedAttr.Tune; 1781 } 1782 } else { 1783 // Otherwise just add the existing target cpu and target features to the 1784 // function. 1785 Features = getTarget().getTargetOpts().Features; 1786 } 1787 1788 if (!TargetCPU.empty()) { 1789 Attrs.addAttribute("target-cpu", TargetCPU); 1790 AddedAttr = true; 1791 } 1792 if (!TuneCPU.empty()) { 1793 Attrs.addAttribute("tune-cpu", TuneCPU); 1794 AddedAttr = true; 1795 } 1796 if (!Features.empty()) { 1797 llvm::sort(Features); 1798 Attrs.addAttribute("target-features", llvm::join(Features, ",")); 1799 AddedAttr = true; 1800 } 1801 1802 return AddedAttr; 1803 } 1804 1805 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD, 1806 llvm::GlobalObject *GO) { 1807 const Decl *D = GD.getDecl(); 1808 SetCommonAttributes(GD, GO); 1809 1810 if (D) { 1811 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 1812 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 1813 GV->addAttribute("bss-section", SA->getName()); 1814 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 1815 GV->addAttribute("data-section", SA->getName()); 1816 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 1817 GV->addAttribute("rodata-section", SA->getName()); 1818 if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>()) 1819 GV->addAttribute("relro-section", SA->getName()); 1820 } 1821 1822 if (auto *F = dyn_cast<llvm::Function>(GO)) { 1823 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 1824 if (!D->getAttr<SectionAttr>()) 1825 F->addFnAttr("implicit-section-name", SA->getName()); 1826 1827 llvm::AttrBuilder Attrs; 1828 if (GetCPUAndFeaturesAttributes(GD, Attrs)) { 1829 // We know that GetCPUAndFeaturesAttributes will always have the 1830 // newest set, since it has the newest possible FunctionDecl, so the 1831 // new ones should replace the old. 1832 llvm::AttrBuilder RemoveAttrs; 1833 RemoveAttrs.addAttribute("target-cpu"); 1834 RemoveAttrs.addAttribute("target-features"); 1835 RemoveAttrs.addAttribute("tune-cpu"); 1836 F->removeAttributes(llvm::AttributeList::FunctionIndex, RemoveAttrs); 1837 F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs); 1838 } 1839 } 1840 1841 if (const auto *CSA = D->getAttr<CodeSegAttr>()) 1842 GO->setSection(CSA->getName()); 1843 else if (const auto *SA = D->getAttr<SectionAttr>()) 1844 GO->setSection(SA->getName()); 1845 } 1846 1847 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 1848 } 1849 1850 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD, 1851 llvm::Function *F, 1852 const CGFunctionInfo &FI) { 1853 const Decl *D = GD.getDecl(); 1854 SetLLVMFunctionAttributes(GD, FI, F); 1855 SetLLVMFunctionAttributesForDefinition(D, F); 1856 1857 F->setLinkage(llvm::Function::InternalLinkage); 1858 1859 setNonAliasAttributes(GD, F); 1860 } 1861 1862 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) { 1863 // Set linkage and visibility in case we never see a definition. 1864 LinkageInfo LV = ND->getLinkageAndVisibility(); 1865 // Don't set internal linkage on declarations. 1866 // "extern_weak" is overloaded in LLVM; we probably should have 1867 // separate linkage types for this. 1868 if (isExternallyVisible(LV.getLinkage()) && 1869 (ND->hasAttr<WeakAttr>() || ND->isWeakImported())) 1870 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1871 } 1872 1873 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD, 1874 llvm::Function *F) { 1875 // Only if we are checking indirect calls. 1876 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 1877 return; 1878 1879 // Non-static class methods are handled via vtable or member function pointer 1880 // checks elsewhere. 1881 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 1882 return; 1883 1884 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 1885 F->addTypeMetadata(0, MD); 1886 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 1887 1888 // Emit a hash-based bit set entry for cross-DSO calls. 1889 if (CodeGenOpts.SanitizeCfiCrossDso) 1890 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 1891 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 1892 } 1893 1894 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 1895 bool IsIncompleteFunction, 1896 bool IsThunk) { 1897 1898 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 1899 // If this is an intrinsic function, set the function's attributes 1900 // to the intrinsic's attributes. 1901 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 1902 return; 1903 } 1904 1905 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 1906 1907 if (!IsIncompleteFunction) 1908 SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F); 1909 1910 // Add the Returned attribute for "this", except for iOS 5 and earlier 1911 // where substantial code, including the libstdc++ dylib, was compiled with 1912 // GCC and does not actually return "this". 1913 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 1914 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 1915 assert(!F->arg_empty() && 1916 F->arg_begin()->getType() 1917 ->canLosslesslyBitCastTo(F->getReturnType()) && 1918 "unexpected this return"); 1919 F->addAttribute(1, llvm::Attribute::Returned); 1920 } 1921 1922 // Only a few attributes are set on declarations; these may later be 1923 // overridden by a definition. 1924 1925 setLinkageForGV(F, FD); 1926 setGVProperties(F, FD); 1927 1928 // Setup target-specific attributes. 1929 if (!IsIncompleteFunction && F->isDeclaration()) 1930 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); 1931 1932 if (const auto *CSA = FD->getAttr<CodeSegAttr>()) 1933 F->setSection(CSA->getName()); 1934 else if (const auto *SA = FD->getAttr<SectionAttr>()) 1935 F->setSection(SA->getName()); 1936 1937 // If we plan on emitting this inline builtin, we can't treat it as a builtin. 1938 if (FD->isInlineBuiltinDeclaration()) { 1939 const FunctionDecl *FDBody; 1940 bool HasBody = FD->hasBody(FDBody); 1941 (void)HasBody; 1942 assert(HasBody && "Inline builtin declarations should always have an " 1943 "available body!"); 1944 if (shouldEmitFunction(FDBody)) 1945 F->addAttribute(llvm::AttributeList::FunctionIndex, 1946 llvm::Attribute::NoBuiltin); 1947 } 1948 1949 if (FD->isReplaceableGlobalAllocationFunction()) { 1950 // A replaceable global allocation function does not act like a builtin by 1951 // default, only if it is invoked by a new-expression or delete-expression. 1952 F->addAttribute(llvm::AttributeList::FunctionIndex, 1953 llvm::Attribute::NoBuiltin); 1954 } 1955 1956 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 1957 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1958 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 1959 if (MD->isVirtual()) 1960 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1961 1962 // Don't emit entries for function declarations in the cross-DSO mode. This 1963 // is handled with better precision by the receiving DSO. But if jump tables 1964 // are non-canonical then we need type metadata in order to produce the local 1965 // jump table. 1966 if (!CodeGenOpts.SanitizeCfiCrossDso || 1967 !CodeGenOpts.SanitizeCfiCanonicalJumpTables) 1968 CreateFunctionTypeMetadataForIcall(FD, F); 1969 1970 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 1971 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 1972 1973 if (const auto *CB = FD->getAttr<CallbackAttr>()) { 1974 // Annotate the callback behavior as metadata: 1975 // - The callback callee (as argument number). 1976 // - The callback payloads (as argument numbers). 1977 llvm::LLVMContext &Ctx = F->getContext(); 1978 llvm::MDBuilder MDB(Ctx); 1979 1980 // The payload indices are all but the first one in the encoding. The first 1981 // identifies the callback callee. 1982 int CalleeIdx = *CB->encoding_begin(); 1983 ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end()); 1984 F->addMetadata(llvm::LLVMContext::MD_callback, 1985 *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding( 1986 CalleeIdx, PayloadIndices, 1987 /* VarArgsArePassed */ false)})); 1988 } 1989 } 1990 1991 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 1992 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 1993 "Only globals with definition can force usage."); 1994 LLVMUsed.emplace_back(GV); 1995 } 1996 1997 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 1998 assert(!GV->isDeclaration() && 1999 "Only globals with definition can force usage."); 2000 LLVMCompilerUsed.emplace_back(GV); 2001 } 2002 2003 static void emitUsed(CodeGenModule &CGM, StringRef Name, 2004 std::vector<llvm::WeakTrackingVH> &List) { 2005 // Don't create llvm.used if there is no need. 2006 if (List.empty()) 2007 return; 2008 2009 // Convert List to what ConstantArray needs. 2010 SmallVector<llvm::Constant*, 8> UsedArray; 2011 UsedArray.resize(List.size()); 2012 for (unsigned i = 0, e = List.size(); i != e; ++i) { 2013 UsedArray[i] = 2014 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 2015 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 2016 } 2017 2018 if (UsedArray.empty()) 2019 return; 2020 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 2021 2022 auto *GV = new llvm::GlobalVariable( 2023 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 2024 llvm::ConstantArray::get(ATy, UsedArray), Name); 2025 2026 GV->setSection("llvm.metadata"); 2027 } 2028 2029 void CodeGenModule::emitLLVMUsed() { 2030 emitUsed(*this, "llvm.used", LLVMUsed); 2031 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 2032 } 2033 2034 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 2035 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 2036 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2037 } 2038 2039 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 2040 llvm::SmallString<32> Opt; 2041 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 2042 if (Opt.empty()) 2043 return; 2044 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2045 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2046 } 2047 2048 void CodeGenModule::AddDependentLib(StringRef Lib) { 2049 auto &C = getLLVMContext(); 2050 if (getTarget().getTriple().isOSBinFormatELF()) { 2051 ELFDependentLibraries.push_back( 2052 llvm::MDNode::get(C, llvm::MDString::get(C, Lib))); 2053 return; 2054 } 2055 2056 llvm::SmallString<24> Opt; 2057 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 2058 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2059 LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts)); 2060 } 2061 2062 /// Add link options implied by the given module, including modules 2063 /// it depends on, using a postorder walk. 2064 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 2065 SmallVectorImpl<llvm::MDNode *> &Metadata, 2066 llvm::SmallPtrSet<Module *, 16> &Visited) { 2067 // Import this module's parent. 2068 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 2069 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 2070 } 2071 2072 // Import this module's dependencies. 2073 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 2074 if (Visited.insert(Mod->Imports[I - 1]).second) 2075 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 2076 } 2077 2078 // Add linker options to link against the libraries/frameworks 2079 // described by this module. 2080 llvm::LLVMContext &Context = CGM.getLLVMContext(); 2081 bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF(); 2082 2083 // For modules that use export_as for linking, use that module 2084 // name instead. 2085 if (Mod->UseExportAsModuleLinkName) 2086 return; 2087 2088 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 2089 // Link against a framework. Frameworks are currently Darwin only, so we 2090 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 2091 if (Mod->LinkLibraries[I-1].IsFramework) { 2092 llvm::Metadata *Args[2] = { 2093 llvm::MDString::get(Context, "-framework"), 2094 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 2095 2096 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2097 continue; 2098 } 2099 2100 // Link against a library. 2101 if (IsELF) { 2102 llvm::Metadata *Args[2] = { 2103 llvm::MDString::get(Context, "lib"), 2104 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library), 2105 }; 2106 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2107 } else { 2108 llvm::SmallString<24> Opt; 2109 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 2110 Mod->LinkLibraries[I - 1].Library, Opt); 2111 auto *OptString = llvm::MDString::get(Context, Opt); 2112 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 2113 } 2114 } 2115 } 2116 2117 void CodeGenModule::EmitModuleLinkOptions() { 2118 // Collect the set of all of the modules we want to visit to emit link 2119 // options, which is essentially the imported modules and all of their 2120 // non-explicit child modules. 2121 llvm::SetVector<clang::Module *> LinkModules; 2122 llvm::SmallPtrSet<clang::Module *, 16> Visited; 2123 SmallVector<clang::Module *, 16> Stack; 2124 2125 // Seed the stack with imported modules. 2126 for (Module *M : ImportedModules) { 2127 // Do not add any link flags when an implementation TU of a module imports 2128 // a header of that same module. 2129 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 2130 !getLangOpts().isCompilingModule()) 2131 continue; 2132 if (Visited.insert(M).second) 2133 Stack.push_back(M); 2134 } 2135 2136 // Find all of the modules to import, making a little effort to prune 2137 // non-leaf modules. 2138 while (!Stack.empty()) { 2139 clang::Module *Mod = Stack.pop_back_val(); 2140 2141 bool AnyChildren = false; 2142 2143 // Visit the submodules of this module. 2144 for (const auto &SM : Mod->submodules()) { 2145 // Skip explicit children; they need to be explicitly imported to be 2146 // linked against. 2147 if (SM->IsExplicit) 2148 continue; 2149 2150 if (Visited.insert(SM).second) { 2151 Stack.push_back(SM); 2152 AnyChildren = true; 2153 } 2154 } 2155 2156 // We didn't find any children, so add this module to the list of 2157 // modules to link against. 2158 if (!AnyChildren) { 2159 LinkModules.insert(Mod); 2160 } 2161 } 2162 2163 // Add link options for all of the imported modules in reverse topological 2164 // order. We don't do anything to try to order import link flags with respect 2165 // to linker options inserted by things like #pragma comment(). 2166 SmallVector<llvm::MDNode *, 16> MetadataArgs; 2167 Visited.clear(); 2168 for (Module *M : LinkModules) 2169 if (Visited.insert(M).second) 2170 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 2171 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 2172 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 2173 2174 // Add the linker options metadata flag. 2175 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 2176 for (auto *MD : LinkerOptionsMetadata) 2177 NMD->addOperand(MD); 2178 } 2179 2180 void CodeGenModule::EmitDeferred() { 2181 // Emit deferred declare target declarations. 2182 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 2183 getOpenMPRuntime().emitDeferredTargetDecls(); 2184 2185 // Emit code for any potentially referenced deferred decls. Since a 2186 // previously unused static decl may become used during the generation of code 2187 // for a static function, iterate until no changes are made. 2188 2189 if (!DeferredVTables.empty()) { 2190 EmitDeferredVTables(); 2191 2192 // Emitting a vtable doesn't directly cause more vtables to 2193 // become deferred, although it can cause functions to be 2194 // emitted that then need those vtables. 2195 assert(DeferredVTables.empty()); 2196 } 2197 2198 // Stop if we're out of both deferred vtables and deferred declarations. 2199 if (DeferredDeclsToEmit.empty()) 2200 return; 2201 2202 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 2203 // work, it will not interfere with this. 2204 std::vector<GlobalDecl> CurDeclsToEmit; 2205 CurDeclsToEmit.swap(DeferredDeclsToEmit); 2206 2207 for (GlobalDecl &D : CurDeclsToEmit) { 2208 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 2209 // to get GlobalValue with exactly the type we need, not something that 2210 // might had been created for another decl with the same mangled name but 2211 // different type. 2212 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 2213 GetAddrOfGlobal(D, ForDefinition)); 2214 2215 // In case of different address spaces, we may still get a cast, even with 2216 // IsForDefinition equal to true. Query mangled names table to get 2217 // GlobalValue. 2218 if (!GV) 2219 GV = GetGlobalValue(getMangledName(D)); 2220 2221 // Make sure GetGlobalValue returned non-null. 2222 assert(GV); 2223 2224 // Check to see if we've already emitted this. This is necessary 2225 // for a couple of reasons: first, decls can end up in the 2226 // deferred-decls queue multiple times, and second, decls can end 2227 // up with definitions in unusual ways (e.g. by an extern inline 2228 // function acquiring a strong function redefinition). Just 2229 // ignore these cases. 2230 if (!GV->isDeclaration()) 2231 continue; 2232 2233 // If this is OpenMP, check if it is legal to emit this global normally. 2234 if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D)) 2235 continue; 2236 2237 // Otherwise, emit the definition and move on to the next one. 2238 EmitGlobalDefinition(D, GV); 2239 2240 // If we found out that we need to emit more decls, do that recursively. 2241 // This has the advantage that the decls are emitted in a DFS and related 2242 // ones are close together, which is convenient for testing. 2243 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 2244 EmitDeferred(); 2245 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 2246 } 2247 } 2248 } 2249 2250 void CodeGenModule::EmitVTablesOpportunistically() { 2251 // Try to emit external vtables as available_externally if they have emitted 2252 // all inlined virtual functions. It runs after EmitDeferred() and therefore 2253 // is not allowed to create new references to things that need to be emitted 2254 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 2255 2256 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 2257 && "Only emit opportunistic vtables with optimizations"); 2258 2259 for (const CXXRecordDecl *RD : OpportunisticVTables) { 2260 assert(getVTables().isVTableExternal(RD) && 2261 "This queue should only contain external vtables"); 2262 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 2263 VTables.GenerateClassData(RD); 2264 } 2265 OpportunisticVTables.clear(); 2266 } 2267 2268 void CodeGenModule::EmitGlobalAnnotations() { 2269 if (Annotations.empty()) 2270 return; 2271 2272 // Create a new global variable for the ConstantStruct in the Module. 2273 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 2274 Annotations[0]->getType(), Annotations.size()), Annotations); 2275 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 2276 llvm::GlobalValue::AppendingLinkage, 2277 Array, "llvm.global.annotations"); 2278 gv->setSection(AnnotationSection); 2279 } 2280 2281 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 2282 llvm::Constant *&AStr = AnnotationStrings[Str]; 2283 if (AStr) 2284 return AStr; 2285 2286 // Not found yet, create a new global. 2287 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 2288 auto *gv = 2289 new llvm::GlobalVariable(getModule(), s->getType(), true, 2290 llvm::GlobalValue::PrivateLinkage, s, ".str"); 2291 gv->setSection(AnnotationSection); 2292 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2293 AStr = gv; 2294 return gv; 2295 } 2296 2297 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 2298 SourceManager &SM = getContext().getSourceManager(); 2299 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 2300 if (PLoc.isValid()) 2301 return EmitAnnotationString(PLoc.getFilename()); 2302 return EmitAnnotationString(SM.getBufferName(Loc)); 2303 } 2304 2305 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 2306 SourceManager &SM = getContext().getSourceManager(); 2307 PresumedLoc PLoc = SM.getPresumedLoc(L); 2308 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 2309 SM.getExpansionLineNumber(L); 2310 return llvm::ConstantInt::get(Int32Ty, LineNo); 2311 } 2312 2313 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 2314 const AnnotateAttr *AA, 2315 SourceLocation L) { 2316 // Get the globals for file name, annotation, and the line number. 2317 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 2318 *UnitGV = EmitAnnotationUnit(L), 2319 *LineNoCst = EmitAnnotationLineNo(L); 2320 2321 llvm::Constant *ASZeroGV = GV; 2322 if (GV->getAddressSpace() != 0) { 2323 ASZeroGV = llvm::ConstantExpr::getAddrSpaceCast( 2324 GV, GV->getValueType()->getPointerTo(0)); 2325 } 2326 2327 // Create the ConstantStruct for the global annotation. 2328 llvm::Constant *Fields[4] = { 2329 llvm::ConstantExpr::getBitCast(ASZeroGV, Int8PtrTy), 2330 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 2331 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 2332 LineNoCst 2333 }; 2334 return llvm::ConstantStruct::getAnon(Fields); 2335 } 2336 2337 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 2338 llvm::GlobalValue *GV) { 2339 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2340 // Get the struct elements for these annotations. 2341 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2342 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 2343 } 2344 2345 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind, 2346 llvm::Function *Fn, 2347 SourceLocation Loc) const { 2348 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 2349 // Blacklist by function name. 2350 if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName())) 2351 return true; 2352 // Blacklist by location. 2353 if (Loc.isValid()) 2354 return SanitizerBL.isBlacklistedLocation(Kind, Loc); 2355 // If location is unknown, this may be a compiler-generated function. Assume 2356 // it's located in the main file. 2357 auto &SM = Context.getSourceManager(); 2358 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 2359 return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName()); 2360 } 2361 return false; 2362 } 2363 2364 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 2365 SourceLocation Loc, QualType Ty, 2366 StringRef Category) const { 2367 // For now globals can be blacklisted only in ASan and KASan. 2368 const SanitizerMask EnabledAsanMask = 2369 LangOpts.Sanitize.Mask & 2370 (SanitizerKind::Address | SanitizerKind::KernelAddress | 2371 SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress | 2372 SanitizerKind::MemTag); 2373 if (!EnabledAsanMask) 2374 return false; 2375 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 2376 if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category)) 2377 return true; 2378 if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category)) 2379 return true; 2380 // Check global type. 2381 if (!Ty.isNull()) { 2382 // Drill down the array types: if global variable of a fixed type is 2383 // blacklisted, we also don't instrument arrays of them. 2384 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 2385 Ty = AT->getElementType(); 2386 Ty = Ty.getCanonicalType().getUnqualifiedType(); 2387 // We allow to blacklist only record types (classes, structs etc.) 2388 if (Ty->isRecordType()) { 2389 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 2390 if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category)) 2391 return true; 2392 } 2393 } 2394 return false; 2395 } 2396 2397 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 2398 StringRef Category) const { 2399 const auto &XRayFilter = getContext().getXRayFilter(); 2400 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 2401 auto Attr = ImbueAttr::NONE; 2402 if (Loc.isValid()) 2403 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 2404 if (Attr == ImbueAttr::NONE) 2405 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 2406 switch (Attr) { 2407 case ImbueAttr::NONE: 2408 return false; 2409 case ImbueAttr::ALWAYS: 2410 Fn->addFnAttr("function-instrument", "xray-always"); 2411 break; 2412 case ImbueAttr::ALWAYS_ARG1: 2413 Fn->addFnAttr("function-instrument", "xray-always"); 2414 Fn->addFnAttr("xray-log-args", "1"); 2415 break; 2416 case ImbueAttr::NEVER: 2417 Fn->addFnAttr("function-instrument", "xray-never"); 2418 break; 2419 } 2420 return true; 2421 } 2422 2423 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 2424 // Never defer when EmitAllDecls is specified. 2425 if (LangOpts.EmitAllDecls) 2426 return true; 2427 2428 if (CodeGenOpts.KeepStaticConsts) { 2429 const auto *VD = dyn_cast<VarDecl>(Global); 2430 if (VD && VD->getType().isConstQualified() && 2431 VD->getStorageDuration() == SD_Static) 2432 return true; 2433 } 2434 2435 return getContext().DeclMustBeEmitted(Global); 2436 } 2437 2438 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 2439 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 2440 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 2441 // Implicit template instantiations may change linkage if they are later 2442 // explicitly instantiated, so they should not be emitted eagerly. 2443 return false; 2444 // In OpenMP 5.0 function may be marked as device_type(nohost) and we should 2445 // not emit them eagerly unless we sure that the function must be emitted on 2446 // the host. 2447 if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd && 2448 !LangOpts.OpenMPIsDevice && 2449 !OMPDeclareTargetDeclAttr::getDeviceType(FD) && 2450 !FD->isUsed(/*CheckUsedAttr=*/false) && !FD->isReferenced()) 2451 return false; 2452 } 2453 if (const auto *VD = dyn_cast<VarDecl>(Global)) 2454 if (Context.getInlineVariableDefinitionKind(VD) == 2455 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 2456 // A definition of an inline constexpr static data member may change 2457 // linkage later if it's redeclared outside the class. 2458 return false; 2459 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 2460 // codegen for global variables, because they may be marked as threadprivate. 2461 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 2462 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) && 2463 !isTypeConstant(Global->getType(), false) && 2464 !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global)) 2465 return false; 2466 2467 return true; 2468 } 2469 2470 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) { 2471 StringRef Name = getMangledName(GD); 2472 2473 // The UUID descriptor should be pointer aligned. 2474 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 2475 2476 // Look for an existing global. 2477 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 2478 return ConstantAddress(GV, Alignment); 2479 2480 ConstantEmitter Emitter(*this); 2481 llvm::Constant *Init; 2482 2483 APValue &V = GD->getAsAPValue(); 2484 if (!V.isAbsent()) { 2485 // If possible, emit the APValue version of the initializer. In particular, 2486 // this gets the type of the constant right. 2487 Init = Emitter.emitForInitializer( 2488 GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType()); 2489 } else { 2490 // As a fallback, directly construct the constant. 2491 // FIXME: This may get padding wrong under esoteric struct layout rules. 2492 // MSVC appears to create a complete type 'struct __s_GUID' that it 2493 // presumably uses to represent these constants. 2494 MSGuidDecl::Parts Parts = GD->getParts(); 2495 llvm::Constant *Fields[4] = { 2496 llvm::ConstantInt::get(Int32Ty, Parts.Part1), 2497 llvm::ConstantInt::get(Int16Ty, Parts.Part2), 2498 llvm::ConstantInt::get(Int16Ty, Parts.Part3), 2499 llvm::ConstantDataArray::getRaw( 2500 StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8, 2501 Int8Ty)}; 2502 Init = llvm::ConstantStruct::getAnon(Fields); 2503 } 2504 2505 auto *GV = new llvm::GlobalVariable( 2506 getModule(), Init->getType(), 2507 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 2508 if (supportsCOMDAT()) 2509 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2510 setDSOLocal(GV); 2511 2512 llvm::Constant *Addr = GV; 2513 if (!V.isAbsent()) { 2514 Emitter.finalize(GV); 2515 } else { 2516 llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType()); 2517 Addr = llvm::ConstantExpr::getBitCast( 2518 GV, Ty->getPointerTo(GV->getAddressSpace())); 2519 } 2520 return ConstantAddress(Addr, Alignment); 2521 } 2522 2523 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 2524 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 2525 assert(AA && "No alias?"); 2526 2527 CharUnits Alignment = getContext().getDeclAlign(VD); 2528 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 2529 2530 // See if there is already something with the target's name in the module. 2531 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 2532 if (Entry) { 2533 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 2534 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 2535 return ConstantAddress(Ptr, Alignment); 2536 } 2537 2538 llvm::Constant *Aliasee; 2539 if (isa<llvm::FunctionType>(DeclTy)) 2540 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 2541 GlobalDecl(cast<FunctionDecl>(VD)), 2542 /*ForVTable=*/false); 2543 else 2544 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2545 llvm::PointerType::getUnqual(DeclTy), 2546 nullptr); 2547 2548 auto *F = cast<llvm::GlobalValue>(Aliasee); 2549 F->setLinkage(llvm::Function::ExternalWeakLinkage); 2550 WeakRefReferences.insert(F); 2551 2552 return ConstantAddress(Aliasee, Alignment); 2553 } 2554 2555 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 2556 const auto *Global = cast<ValueDecl>(GD.getDecl()); 2557 2558 // Weak references don't produce any output by themselves. 2559 if (Global->hasAttr<WeakRefAttr>()) 2560 return; 2561 2562 // If this is an alias definition (which otherwise looks like a declaration) 2563 // emit it now. 2564 if (Global->hasAttr<AliasAttr>()) 2565 return EmitAliasDefinition(GD); 2566 2567 // IFunc like an alias whose value is resolved at runtime by calling resolver. 2568 if (Global->hasAttr<IFuncAttr>()) 2569 return emitIFuncDefinition(GD); 2570 2571 // If this is a cpu_dispatch multiversion function, emit the resolver. 2572 if (Global->hasAttr<CPUDispatchAttr>()) 2573 return emitCPUDispatchDefinition(GD); 2574 2575 // If this is CUDA, be selective about which declarations we emit. 2576 if (LangOpts.CUDA) { 2577 if (LangOpts.CUDAIsDevice) { 2578 if (!Global->hasAttr<CUDADeviceAttr>() && 2579 !Global->hasAttr<CUDAGlobalAttr>() && 2580 !Global->hasAttr<CUDAConstantAttr>() && 2581 !Global->hasAttr<CUDASharedAttr>() && 2582 !Global->getType()->isCUDADeviceBuiltinSurfaceType() && 2583 !Global->getType()->isCUDADeviceBuiltinTextureType()) 2584 return; 2585 } else { 2586 // We need to emit host-side 'shadows' for all global 2587 // device-side variables because the CUDA runtime needs their 2588 // size and host-side address in order to provide access to 2589 // their device-side incarnations. 2590 2591 // So device-only functions are the only things we skip. 2592 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 2593 Global->hasAttr<CUDADeviceAttr>()) 2594 return; 2595 2596 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 2597 "Expected Variable or Function"); 2598 } 2599 } 2600 2601 if (LangOpts.OpenMP) { 2602 // If this is OpenMP, check if it is legal to emit this global normally. 2603 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 2604 return; 2605 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 2606 if (MustBeEmitted(Global)) 2607 EmitOMPDeclareReduction(DRD); 2608 return; 2609 } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) { 2610 if (MustBeEmitted(Global)) 2611 EmitOMPDeclareMapper(DMD); 2612 return; 2613 } 2614 } 2615 2616 // Ignore declarations, they will be emitted on their first use. 2617 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 2618 // Forward declarations are emitted lazily on first use. 2619 if (!FD->doesThisDeclarationHaveABody()) { 2620 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 2621 return; 2622 2623 StringRef MangledName = getMangledName(GD); 2624 2625 // Compute the function info and LLVM type. 2626 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2627 llvm::Type *Ty = getTypes().GetFunctionType(FI); 2628 2629 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 2630 /*DontDefer=*/false); 2631 return; 2632 } 2633 } else { 2634 const auto *VD = cast<VarDecl>(Global); 2635 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 2636 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 2637 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 2638 if (LangOpts.OpenMP) { 2639 // Emit declaration of the must-be-emitted declare target variable. 2640 if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 2641 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) { 2642 bool UnifiedMemoryEnabled = 2643 getOpenMPRuntime().hasRequiresUnifiedSharedMemory(); 2644 if (*Res == OMPDeclareTargetDeclAttr::MT_To && 2645 !UnifiedMemoryEnabled) { 2646 (void)GetAddrOfGlobalVar(VD); 2647 } else { 2648 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) || 2649 (*Res == OMPDeclareTargetDeclAttr::MT_To && 2650 UnifiedMemoryEnabled)) && 2651 "Link clause or to clause with unified memory expected."); 2652 (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD); 2653 } 2654 2655 return; 2656 } 2657 } 2658 // If this declaration may have caused an inline variable definition to 2659 // change linkage, make sure that it's emitted. 2660 if (Context.getInlineVariableDefinitionKind(VD) == 2661 ASTContext::InlineVariableDefinitionKind::Strong) 2662 GetAddrOfGlobalVar(VD); 2663 return; 2664 } 2665 } 2666 2667 // Defer code generation to first use when possible, e.g. if this is an inline 2668 // function. If the global must always be emitted, do it eagerly if possible 2669 // to benefit from cache locality. 2670 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 2671 // Emit the definition if it can't be deferred. 2672 EmitGlobalDefinition(GD); 2673 return; 2674 } 2675 2676 // If we're deferring emission of a C++ variable with an 2677 // initializer, remember the order in which it appeared in the file. 2678 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 2679 cast<VarDecl>(Global)->hasInit()) { 2680 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 2681 CXXGlobalInits.push_back(nullptr); 2682 } 2683 2684 StringRef MangledName = getMangledName(GD); 2685 if (GetGlobalValue(MangledName) != nullptr) { 2686 // The value has already been used and should therefore be emitted. 2687 addDeferredDeclToEmit(GD); 2688 } else if (MustBeEmitted(Global)) { 2689 // The value must be emitted, but cannot be emitted eagerly. 2690 assert(!MayBeEmittedEagerly(Global)); 2691 addDeferredDeclToEmit(GD); 2692 } else { 2693 // Otherwise, remember that we saw a deferred decl with this name. The 2694 // first use of the mangled name will cause it to move into 2695 // DeferredDeclsToEmit. 2696 DeferredDecls[MangledName] = GD; 2697 } 2698 } 2699 2700 // Check if T is a class type with a destructor that's not dllimport. 2701 static bool HasNonDllImportDtor(QualType T) { 2702 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 2703 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 2704 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 2705 return true; 2706 2707 return false; 2708 } 2709 2710 namespace { 2711 struct FunctionIsDirectlyRecursive 2712 : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> { 2713 const StringRef Name; 2714 const Builtin::Context &BI; 2715 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) 2716 : Name(N), BI(C) {} 2717 2718 bool VisitCallExpr(const CallExpr *E) { 2719 const FunctionDecl *FD = E->getDirectCallee(); 2720 if (!FD) 2721 return false; 2722 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2723 if (Attr && Name == Attr->getLabel()) 2724 return true; 2725 unsigned BuiltinID = FD->getBuiltinID(); 2726 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 2727 return false; 2728 StringRef BuiltinName = BI.getName(BuiltinID); 2729 if (BuiltinName.startswith("__builtin_") && 2730 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 2731 return true; 2732 } 2733 return false; 2734 } 2735 2736 bool VisitStmt(const Stmt *S) { 2737 for (const Stmt *Child : S->children()) 2738 if (Child && this->Visit(Child)) 2739 return true; 2740 return false; 2741 } 2742 }; 2743 2744 // Make sure we're not referencing non-imported vars or functions. 2745 struct DLLImportFunctionVisitor 2746 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 2747 bool SafeToInline = true; 2748 2749 bool shouldVisitImplicitCode() const { return true; } 2750 2751 bool VisitVarDecl(VarDecl *VD) { 2752 if (VD->getTLSKind()) { 2753 // A thread-local variable cannot be imported. 2754 SafeToInline = false; 2755 return SafeToInline; 2756 } 2757 2758 // A variable definition might imply a destructor call. 2759 if (VD->isThisDeclarationADefinition()) 2760 SafeToInline = !HasNonDllImportDtor(VD->getType()); 2761 2762 return SafeToInline; 2763 } 2764 2765 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 2766 if (const auto *D = E->getTemporary()->getDestructor()) 2767 SafeToInline = D->hasAttr<DLLImportAttr>(); 2768 return SafeToInline; 2769 } 2770 2771 bool VisitDeclRefExpr(DeclRefExpr *E) { 2772 ValueDecl *VD = E->getDecl(); 2773 if (isa<FunctionDecl>(VD)) 2774 SafeToInline = VD->hasAttr<DLLImportAttr>(); 2775 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 2776 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 2777 return SafeToInline; 2778 } 2779 2780 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 2781 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 2782 return SafeToInline; 2783 } 2784 2785 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 2786 CXXMethodDecl *M = E->getMethodDecl(); 2787 if (!M) { 2788 // Call through a pointer to member function. This is safe to inline. 2789 SafeToInline = true; 2790 } else { 2791 SafeToInline = M->hasAttr<DLLImportAttr>(); 2792 } 2793 return SafeToInline; 2794 } 2795 2796 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 2797 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 2798 return SafeToInline; 2799 } 2800 2801 bool VisitCXXNewExpr(CXXNewExpr *E) { 2802 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 2803 return SafeToInline; 2804 } 2805 }; 2806 } 2807 2808 // isTriviallyRecursive - Check if this function calls another 2809 // decl that, because of the asm attribute or the other decl being a builtin, 2810 // ends up pointing to itself. 2811 bool 2812 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 2813 StringRef Name; 2814 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 2815 // asm labels are a special kind of mangling we have to support. 2816 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2817 if (!Attr) 2818 return false; 2819 Name = Attr->getLabel(); 2820 } else { 2821 Name = FD->getName(); 2822 } 2823 2824 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 2825 const Stmt *Body = FD->getBody(); 2826 return Body ? Walker.Visit(Body) : false; 2827 } 2828 2829 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 2830 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 2831 return true; 2832 const auto *F = cast<FunctionDecl>(GD.getDecl()); 2833 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 2834 return false; 2835 2836 if (F->hasAttr<DLLImportAttr>()) { 2837 // Check whether it would be safe to inline this dllimport function. 2838 DLLImportFunctionVisitor Visitor; 2839 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 2840 if (!Visitor.SafeToInline) 2841 return false; 2842 2843 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 2844 // Implicit destructor invocations aren't captured in the AST, so the 2845 // check above can't see them. Check for them manually here. 2846 for (const Decl *Member : Dtor->getParent()->decls()) 2847 if (isa<FieldDecl>(Member)) 2848 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 2849 return false; 2850 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 2851 if (HasNonDllImportDtor(B.getType())) 2852 return false; 2853 } 2854 } 2855 2856 // PR9614. Avoid cases where the source code is lying to us. An available 2857 // externally function should have an equivalent function somewhere else, 2858 // but a function that calls itself through asm label/`__builtin_` trickery is 2859 // clearly not equivalent to the real implementation. 2860 // This happens in glibc's btowc and in some configure checks. 2861 return !isTriviallyRecursive(F); 2862 } 2863 2864 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 2865 return CodeGenOpts.OptimizationLevel > 0; 2866 } 2867 2868 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD, 2869 llvm::GlobalValue *GV) { 2870 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2871 2872 if (FD->isCPUSpecificMultiVersion()) { 2873 auto *Spec = FD->getAttr<CPUSpecificAttr>(); 2874 for (unsigned I = 0; I < Spec->cpus_size(); ++I) 2875 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 2876 // Requires multiple emits. 2877 } else 2878 EmitGlobalFunctionDefinition(GD, GV); 2879 } 2880 2881 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 2882 const auto *D = cast<ValueDecl>(GD.getDecl()); 2883 2884 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 2885 Context.getSourceManager(), 2886 "Generating code for declaration"); 2887 2888 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 2889 // At -O0, don't generate IR for functions with available_externally 2890 // linkage. 2891 if (!shouldEmitFunction(GD)) 2892 return; 2893 2894 llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() { 2895 std::string Name; 2896 llvm::raw_string_ostream OS(Name); 2897 FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(), 2898 /*Qualified=*/true); 2899 return Name; 2900 }); 2901 2902 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 2903 // Make sure to emit the definition(s) before we emit the thunks. 2904 // This is necessary for the generation of certain thunks. 2905 if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method)) 2906 ABI->emitCXXStructor(GD); 2907 else if (FD->isMultiVersion()) 2908 EmitMultiVersionFunctionDefinition(GD, GV); 2909 else 2910 EmitGlobalFunctionDefinition(GD, GV); 2911 2912 if (Method->isVirtual()) 2913 getVTables().EmitThunks(GD); 2914 2915 return; 2916 } 2917 2918 if (FD->isMultiVersion()) 2919 return EmitMultiVersionFunctionDefinition(GD, GV); 2920 return EmitGlobalFunctionDefinition(GD, GV); 2921 } 2922 2923 if (const auto *VD = dyn_cast<VarDecl>(D)) 2924 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 2925 2926 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 2927 } 2928 2929 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2930 llvm::Function *NewFn); 2931 2932 static unsigned 2933 TargetMVPriority(const TargetInfo &TI, 2934 const CodeGenFunction::MultiVersionResolverOption &RO) { 2935 unsigned Priority = 0; 2936 for (StringRef Feat : RO.Conditions.Features) 2937 Priority = std::max(Priority, TI.multiVersionSortPriority(Feat)); 2938 2939 if (!RO.Conditions.Architecture.empty()) 2940 Priority = std::max( 2941 Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture)); 2942 return Priority; 2943 } 2944 2945 void CodeGenModule::emitMultiVersionFunctions() { 2946 for (GlobalDecl GD : MultiVersionFuncs) { 2947 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 2948 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 2949 getContext().forEachMultiversionedFunctionVersion( 2950 FD, [this, &GD, &Options](const FunctionDecl *CurFD) { 2951 GlobalDecl CurGD{ 2952 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)}; 2953 StringRef MangledName = getMangledName(CurGD); 2954 llvm::Constant *Func = GetGlobalValue(MangledName); 2955 if (!Func) { 2956 if (CurFD->isDefined()) { 2957 EmitGlobalFunctionDefinition(CurGD, nullptr); 2958 Func = GetGlobalValue(MangledName); 2959 } else { 2960 const CGFunctionInfo &FI = 2961 getTypes().arrangeGlobalDeclaration(GD); 2962 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2963 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 2964 /*DontDefer=*/false, ForDefinition); 2965 } 2966 assert(Func && "This should have just been created"); 2967 } 2968 2969 const auto *TA = CurFD->getAttr<TargetAttr>(); 2970 llvm::SmallVector<StringRef, 8> Feats; 2971 TA->getAddedFeatures(Feats); 2972 2973 Options.emplace_back(cast<llvm::Function>(Func), 2974 TA->getArchitecture(), Feats); 2975 }); 2976 2977 llvm::Function *ResolverFunc; 2978 const TargetInfo &TI = getTarget(); 2979 2980 if (TI.supportsIFunc() || FD->isTargetMultiVersion()) { 2981 ResolverFunc = cast<llvm::Function>( 2982 GetGlobalValue((getMangledName(GD) + ".resolver").str())); 2983 ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage); 2984 } else { 2985 ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD))); 2986 } 2987 2988 if (supportsCOMDAT()) 2989 ResolverFunc->setComdat( 2990 getModule().getOrInsertComdat(ResolverFunc->getName())); 2991 2992 llvm::stable_sort( 2993 Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS, 2994 const CodeGenFunction::MultiVersionResolverOption &RHS) { 2995 return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS); 2996 }); 2997 CodeGenFunction CGF(*this); 2998 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 2999 } 3000 } 3001 3002 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) { 3003 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3004 assert(FD && "Not a FunctionDecl?"); 3005 const auto *DD = FD->getAttr<CPUDispatchAttr>(); 3006 assert(DD && "Not a cpu_dispatch Function?"); 3007 llvm::Type *DeclTy = getTypes().ConvertType(FD->getType()); 3008 3009 if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) { 3010 const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD); 3011 DeclTy = getTypes().GetFunctionType(FInfo); 3012 } 3013 3014 StringRef ResolverName = getMangledName(GD); 3015 3016 llvm::Type *ResolverType; 3017 GlobalDecl ResolverGD; 3018 if (getTarget().supportsIFunc()) 3019 ResolverType = llvm::FunctionType::get( 3020 llvm::PointerType::get(DeclTy, 3021 Context.getTargetAddressSpace(FD->getType())), 3022 false); 3023 else { 3024 ResolverType = DeclTy; 3025 ResolverGD = GD; 3026 } 3027 3028 auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction( 3029 ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false)); 3030 ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage); 3031 if (supportsCOMDAT()) 3032 ResolverFunc->setComdat( 3033 getModule().getOrInsertComdat(ResolverFunc->getName())); 3034 3035 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 3036 const TargetInfo &Target = getTarget(); 3037 unsigned Index = 0; 3038 for (const IdentifierInfo *II : DD->cpus()) { 3039 // Get the name of the target function so we can look it up/create it. 3040 std::string MangledName = getMangledNameImpl(*this, GD, FD, true) + 3041 getCPUSpecificMangling(*this, II->getName()); 3042 3043 llvm::Constant *Func = GetGlobalValue(MangledName); 3044 3045 if (!Func) { 3046 GlobalDecl ExistingDecl = Manglings.lookup(MangledName); 3047 if (ExistingDecl.getDecl() && 3048 ExistingDecl.getDecl()->getAsFunction()->isDefined()) { 3049 EmitGlobalFunctionDefinition(ExistingDecl, nullptr); 3050 Func = GetGlobalValue(MangledName); 3051 } else { 3052 if (!ExistingDecl.getDecl()) 3053 ExistingDecl = GD.getWithMultiVersionIndex(Index); 3054 3055 Func = GetOrCreateLLVMFunction( 3056 MangledName, DeclTy, ExistingDecl, 3057 /*ForVTable=*/false, /*DontDefer=*/true, 3058 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition); 3059 } 3060 } 3061 3062 llvm::SmallVector<StringRef, 32> Features; 3063 Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features); 3064 llvm::transform(Features, Features.begin(), 3065 [](StringRef Str) { return Str.substr(1); }); 3066 Features.erase(std::remove_if( 3067 Features.begin(), Features.end(), [&Target](StringRef Feat) { 3068 return !Target.validateCpuSupports(Feat); 3069 }), Features.end()); 3070 Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features); 3071 ++Index; 3072 } 3073 3074 llvm::sort( 3075 Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS, 3076 const CodeGenFunction::MultiVersionResolverOption &RHS) { 3077 return CodeGenFunction::GetX86CpuSupportsMask(LHS.Conditions.Features) > 3078 CodeGenFunction::GetX86CpuSupportsMask(RHS.Conditions.Features); 3079 }); 3080 3081 // If the list contains multiple 'default' versions, such as when it contains 3082 // 'pentium' and 'generic', don't emit the call to the generic one (since we 3083 // always run on at least a 'pentium'). We do this by deleting the 'least 3084 // advanced' (read, lowest mangling letter). 3085 while (Options.size() > 1 && 3086 CodeGenFunction::GetX86CpuSupportsMask( 3087 (Options.end() - 2)->Conditions.Features) == 0) { 3088 StringRef LHSName = (Options.end() - 2)->Function->getName(); 3089 StringRef RHSName = (Options.end() - 1)->Function->getName(); 3090 if (LHSName.compare(RHSName) < 0) 3091 Options.erase(Options.end() - 2); 3092 else 3093 Options.erase(Options.end() - 1); 3094 } 3095 3096 CodeGenFunction CGF(*this); 3097 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 3098 3099 if (getTarget().supportsIFunc()) { 3100 std::string AliasName = getMangledNameImpl( 3101 *this, GD, FD, /*OmitMultiVersionMangling=*/true); 3102 llvm::Constant *AliasFunc = GetGlobalValue(AliasName); 3103 if (!AliasFunc) { 3104 auto *IFunc = cast<llvm::GlobalIFunc>(GetOrCreateLLVMFunction( 3105 AliasName, DeclTy, GD, /*ForVTable=*/false, /*DontDefer=*/true, 3106 /*IsThunk=*/false, llvm::AttributeList(), NotForDefinition)); 3107 auto *GA = llvm::GlobalAlias::create( 3108 DeclTy, 0, getFunctionLinkage(GD), AliasName, IFunc, &getModule()); 3109 GA->setLinkage(llvm::Function::WeakODRLinkage); 3110 SetCommonAttributes(GD, GA); 3111 } 3112 } 3113 } 3114 3115 /// If a dispatcher for the specified mangled name is not in the module, create 3116 /// and return an llvm Function with the specified type. 3117 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver( 3118 GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) { 3119 std::string MangledName = 3120 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 3121 3122 // Holds the name of the resolver, in ifunc mode this is the ifunc (which has 3123 // a separate resolver). 3124 std::string ResolverName = MangledName; 3125 if (getTarget().supportsIFunc()) 3126 ResolverName += ".ifunc"; 3127 else if (FD->isTargetMultiVersion()) 3128 ResolverName += ".resolver"; 3129 3130 // If this already exists, just return that one. 3131 if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName)) 3132 return ResolverGV; 3133 3134 // Since this is the first time we've created this IFunc, make sure 3135 // that we put this multiversioned function into the list to be 3136 // replaced later if necessary (target multiversioning only). 3137 if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion()) 3138 MultiVersionFuncs.push_back(GD); 3139 3140 if (getTarget().supportsIFunc()) { 3141 llvm::Type *ResolverType = llvm::FunctionType::get( 3142 llvm::PointerType::get( 3143 DeclTy, getContext().getTargetAddressSpace(FD->getType())), 3144 false); 3145 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 3146 MangledName + ".resolver", ResolverType, GlobalDecl{}, 3147 /*ForVTable=*/false); 3148 llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create( 3149 DeclTy, 0, llvm::Function::WeakODRLinkage, "", Resolver, &getModule()); 3150 GIF->setName(ResolverName); 3151 SetCommonAttributes(FD, GIF); 3152 3153 return GIF; 3154 } 3155 3156 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 3157 ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false); 3158 assert(isa<llvm::GlobalValue>(Resolver) && 3159 "Resolver should be created for the first time"); 3160 SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver)); 3161 return Resolver; 3162 } 3163 3164 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 3165 /// module, create and return an llvm Function with the specified type. If there 3166 /// is something in the module with the specified name, return it potentially 3167 /// bitcasted to the right type. 3168 /// 3169 /// If D is non-null, it specifies a decl that correspond to this. This is used 3170 /// to set the attributes on the function when it is first created. 3171 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 3172 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 3173 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 3174 ForDefinition_t IsForDefinition) { 3175 const Decl *D = GD.getDecl(); 3176 3177 // Any attempts to use a MultiVersion function should result in retrieving 3178 // the iFunc instead. Name Mangling will handle the rest of the changes. 3179 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 3180 // For the device mark the function as one that should be emitted. 3181 if (getLangOpts().OpenMPIsDevice && OpenMPRuntime && 3182 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() && 3183 !DontDefer && !IsForDefinition) { 3184 if (const FunctionDecl *FDDef = FD->getDefinition()) { 3185 GlobalDecl GDDef; 3186 if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef)) 3187 GDDef = GlobalDecl(CD, GD.getCtorType()); 3188 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef)) 3189 GDDef = GlobalDecl(DD, GD.getDtorType()); 3190 else 3191 GDDef = GlobalDecl(FDDef); 3192 EmitGlobal(GDDef); 3193 } 3194 } 3195 3196 if (FD->isMultiVersion()) { 3197 if (FD->hasAttr<TargetAttr>()) 3198 UpdateMultiVersionNames(GD, FD); 3199 if (!IsForDefinition) 3200 return GetOrCreateMultiVersionResolver(GD, Ty, FD); 3201 } 3202 } 3203 3204 // Lookup the entry, lazily creating it if necessary. 3205 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3206 if (Entry) { 3207 if (WeakRefReferences.erase(Entry)) { 3208 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 3209 if (FD && !FD->hasAttr<WeakAttr>()) 3210 Entry->setLinkage(llvm::Function::ExternalLinkage); 3211 } 3212 3213 // Handle dropped DLL attributes. 3214 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) { 3215 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 3216 setDSOLocal(Entry); 3217 } 3218 3219 // If there are two attempts to define the same mangled name, issue an 3220 // error. 3221 if (IsForDefinition && !Entry->isDeclaration()) { 3222 GlobalDecl OtherGD; 3223 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 3224 // to make sure that we issue an error only once. 3225 if (lookupRepresentativeDecl(MangledName, OtherGD) && 3226 (GD.getCanonicalDecl().getDecl() != 3227 OtherGD.getCanonicalDecl().getDecl()) && 3228 DiagnosedConflictingDefinitions.insert(GD).second) { 3229 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 3230 << MangledName; 3231 getDiags().Report(OtherGD.getDecl()->getLocation(), 3232 diag::note_previous_definition); 3233 } 3234 } 3235 3236 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 3237 (Entry->getValueType() == Ty)) { 3238 return Entry; 3239 } 3240 3241 // Make sure the result is of the correct type. 3242 // (If function is requested for a definition, we always need to create a new 3243 // function, not just return a bitcast.) 3244 if (!IsForDefinition) 3245 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 3246 } 3247 3248 // This function doesn't have a complete type (for example, the return 3249 // type is an incomplete struct). Use a fake type instead, and make 3250 // sure not to try to set attributes. 3251 bool IsIncompleteFunction = false; 3252 3253 llvm::FunctionType *FTy; 3254 if (isa<llvm::FunctionType>(Ty)) { 3255 FTy = cast<llvm::FunctionType>(Ty); 3256 } else { 3257 FTy = llvm::FunctionType::get(VoidTy, false); 3258 IsIncompleteFunction = true; 3259 } 3260 3261 llvm::Function *F = 3262 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 3263 Entry ? StringRef() : MangledName, &getModule()); 3264 3265 // If we already created a function with the same mangled name (but different 3266 // type) before, take its name and add it to the list of functions to be 3267 // replaced with F at the end of CodeGen. 3268 // 3269 // This happens if there is a prototype for a function (e.g. "int f()") and 3270 // then a definition of a different type (e.g. "int f(int x)"). 3271 if (Entry) { 3272 F->takeName(Entry); 3273 3274 // This might be an implementation of a function without a prototype, in 3275 // which case, try to do special replacement of calls which match the new 3276 // prototype. The really key thing here is that we also potentially drop 3277 // arguments from the call site so as to make a direct call, which makes the 3278 // inliner happier and suppresses a number of optimizer warnings (!) about 3279 // dropping arguments. 3280 if (!Entry->use_empty()) { 3281 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 3282 Entry->removeDeadConstantUsers(); 3283 } 3284 3285 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 3286 F, Entry->getValueType()->getPointerTo()); 3287 addGlobalValReplacement(Entry, BC); 3288 } 3289 3290 assert(F->getName() == MangledName && "name was uniqued!"); 3291 if (D) 3292 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 3293 if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) { 3294 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex); 3295 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 3296 } 3297 3298 if (!DontDefer) { 3299 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 3300 // each other bottoming out with the base dtor. Therefore we emit non-base 3301 // dtors on usage, even if there is no dtor definition in the TU. 3302 if (D && isa<CXXDestructorDecl>(D) && 3303 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 3304 GD.getDtorType())) 3305 addDeferredDeclToEmit(GD); 3306 3307 // This is the first use or definition of a mangled name. If there is a 3308 // deferred decl with this name, remember that we need to emit it at the end 3309 // of the file. 3310 auto DDI = DeferredDecls.find(MangledName); 3311 if (DDI != DeferredDecls.end()) { 3312 // Move the potentially referenced deferred decl to the 3313 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 3314 // don't need it anymore). 3315 addDeferredDeclToEmit(DDI->second); 3316 DeferredDecls.erase(DDI); 3317 3318 // Otherwise, there are cases we have to worry about where we're 3319 // using a declaration for which we must emit a definition but where 3320 // we might not find a top-level definition: 3321 // - member functions defined inline in their classes 3322 // - friend functions defined inline in some class 3323 // - special member functions with implicit definitions 3324 // If we ever change our AST traversal to walk into class methods, 3325 // this will be unnecessary. 3326 // 3327 // We also don't emit a definition for a function if it's going to be an 3328 // entry in a vtable, unless it's already marked as used. 3329 } else if (getLangOpts().CPlusPlus && D) { 3330 // Look for a declaration that's lexically in a record. 3331 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 3332 FD = FD->getPreviousDecl()) { 3333 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 3334 if (FD->doesThisDeclarationHaveABody()) { 3335 addDeferredDeclToEmit(GD.getWithDecl(FD)); 3336 break; 3337 } 3338 } 3339 } 3340 } 3341 } 3342 3343 // Make sure the result is of the requested type. 3344 if (!IsIncompleteFunction) { 3345 assert(F->getFunctionType() == Ty); 3346 return F; 3347 } 3348 3349 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 3350 return llvm::ConstantExpr::getBitCast(F, PTy); 3351 } 3352 3353 /// GetAddrOfFunction - Return the address of the given function. If Ty is 3354 /// non-null, then this function will use the specified type if it has to 3355 /// create it (this occurs when we see a definition of the function). 3356 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 3357 llvm::Type *Ty, 3358 bool ForVTable, 3359 bool DontDefer, 3360 ForDefinition_t IsForDefinition) { 3361 assert(!cast<FunctionDecl>(GD.getDecl())->isConsteval() && 3362 "consteval function should never be emitted"); 3363 // If there was no specific requested type, just convert it now. 3364 if (!Ty) { 3365 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3366 Ty = getTypes().ConvertType(FD->getType()); 3367 } 3368 3369 // Devirtualized destructor calls may come through here instead of via 3370 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead 3371 // of the complete destructor when necessary. 3372 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) { 3373 if (getTarget().getCXXABI().isMicrosoft() && 3374 GD.getDtorType() == Dtor_Complete && 3375 DD->getParent()->getNumVBases() == 0) 3376 GD = GlobalDecl(DD, Dtor_Base); 3377 } 3378 3379 StringRef MangledName = getMangledName(GD); 3380 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 3381 /*IsThunk=*/false, llvm::AttributeList(), 3382 IsForDefinition); 3383 } 3384 3385 static const FunctionDecl * 3386 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 3387 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 3388 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 3389 3390 IdentifierInfo &CII = C.Idents.get(Name); 3391 for (const auto &Result : DC->lookup(&CII)) 3392 if (const auto FD = dyn_cast<FunctionDecl>(Result)) 3393 return FD; 3394 3395 if (!C.getLangOpts().CPlusPlus) 3396 return nullptr; 3397 3398 // Demangle the premangled name from getTerminateFn() 3399 IdentifierInfo &CXXII = 3400 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ") 3401 ? C.Idents.get("terminate") 3402 : C.Idents.get(Name); 3403 3404 for (const auto &N : {"__cxxabiv1", "std"}) { 3405 IdentifierInfo &NS = C.Idents.get(N); 3406 for (const auto &Result : DC->lookup(&NS)) { 3407 NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 3408 if (auto LSD = dyn_cast<LinkageSpecDecl>(Result)) 3409 for (const auto &Result : LSD->lookup(&NS)) 3410 if ((ND = dyn_cast<NamespaceDecl>(Result))) 3411 break; 3412 3413 if (ND) 3414 for (const auto &Result : ND->lookup(&CXXII)) 3415 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 3416 return FD; 3417 } 3418 } 3419 3420 return nullptr; 3421 } 3422 3423 /// CreateRuntimeFunction - Create a new runtime function with the specified 3424 /// type and name. 3425 llvm::FunctionCallee 3426 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 3427 llvm::AttributeList ExtraAttrs, bool Local, 3428 bool AssumeConvergent) { 3429 if (AssumeConvergent) { 3430 ExtraAttrs = 3431 ExtraAttrs.addAttribute(VMContext, llvm::AttributeList::FunctionIndex, 3432 llvm::Attribute::Convergent); 3433 } 3434 3435 llvm::Constant *C = 3436 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 3437 /*DontDefer=*/false, /*IsThunk=*/false, 3438 ExtraAttrs); 3439 3440 if (auto *F = dyn_cast<llvm::Function>(C)) { 3441 if (F->empty()) { 3442 F->setCallingConv(getRuntimeCC()); 3443 3444 // In Windows Itanium environments, try to mark runtime functions 3445 // dllimport. For Mingw and MSVC, don't. We don't really know if the user 3446 // will link their standard library statically or dynamically. Marking 3447 // functions imported when they are not imported can cause linker errors 3448 // and warnings. 3449 if (!Local && getTriple().isWindowsItaniumEnvironment() && 3450 !getCodeGenOpts().LTOVisibilityPublicStd) { 3451 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 3452 if (!FD || FD->hasAttr<DLLImportAttr>()) { 3453 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 3454 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 3455 } 3456 } 3457 setDSOLocal(F); 3458 } 3459 } 3460 3461 return {FTy, C}; 3462 } 3463 3464 /// isTypeConstant - Determine whether an object of this type can be emitted 3465 /// as a constant. 3466 /// 3467 /// If ExcludeCtor is true, the duration when the object's constructor runs 3468 /// will not be considered. The caller will need to verify that the object is 3469 /// not written to during its construction. 3470 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 3471 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 3472 return false; 3473 3474 if (Context.getLangOpts().CPlusPlus) { 3475 if (const CXXRecordDecl *Record 3476 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 3477 return ExcludeCtor && !Record->hasMutableFields() && 3478 Record->hasTrivialDestructor(); 3479 } 3480 3481 return true; 3482 } 3483 3484 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 3485 /// create and return an llvm GlobalVariable with the specified type. If there 3486 /// is something in the module with the specified name, return it potentially 3487 /// bitcasted to the right type. 3488 /// 3489 /// If D is non-null, it specifies a decl that correspond to this. This is used 3490 /// to set the attributes on the global when it is first created. 3491 /// 3492 /// If IsForDefinition is true, it is guaranteed that an actual global with 3493 /// type Ty will be returned, not conversion of a variable with the same 3494 /// mangled name but some other type. 3495 llvm::Constant * 3496 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 3497 llvm::PointerType *Ty, 3498 const VarDecl *D, 3499 ForDefinition_t IsForDefinition) { 3500 // Lookup the entry, lazily creating it if necessary. 3501 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3502 if (Entry) { 3503 if (WeakRefReferences.erase(Entry)) { 3504 if (D && !D->hasAttr<WeakAttr>()) 3505 Entry->setLinkage(llvm::Function::ExternalLinkage); 3506 } 3507 3508 // Handle dropped DLL attributes. 3509 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 3510 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 3511 3512 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D) 3513 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry); 3514 3515 if (Entry->getType() == Ty) 3516 return Entry; 3517 3518 // If there are two attempts to define the same mangled name, issue an 3519 // error. 3520 if (IsForDefinition && !Entry->isDeclaration()) { 3521 GlobalDecl OtherGD; 3522 const VarDecl *OtherD; 3523 3524 // Check that D is not yet in DiagnosedConflictingDefinitions is required 3525 // to make sure that we issue an error only once. 3526 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 3527 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 3528 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 3529 OtherD->hasInit() && 3530 DiagnosedConflictingDefinitions.insert(D).second) { 3531 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 3532 << MangledName; 3533 getDiags().Report(OtherGD.getDecl()->getLocation(), 3534 diag::note_previous_definition); 3535 } 3536 } 3537 3538 // Make sure the result is of the correct type. 3539 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 3540 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 3541 3542 // (If global is requested for a definition, we always need to create a new 3543 // global, not just return a bitcast.) 3544 if (!IsForDefinition) 3545 return llvm::ConstantExpr::getBitCast(Entry, Ty); 3546 } 3547 3548 auto AddrSpace = GetGlobalVarAddressSpace(D); 3549 auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace); 3550 3551 auto *GV = new llvm::GlobalVariable( 3552 getModule(), Ty->getElementType(), false, 3553 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 3554 llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace); 3555 3556 // If we already created a global with the same mangled name (but different 3557 // type) before, take its name and remove it from its parent. 3558 if (Entry) { 3559 GV->takeName(Entry); 3560 3561 if (!Entry->use_empty()) { 3562 llvm::Constant *NewPtrForOldDecl = 3563 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 3564 Entry->replaceAllUsesWith(NewPtrForOldDecl); 3565 } 3566 3567 Entry->eraseFromParent(); 3568 } 3569 3570 // This is the first use or definition of a mangled name. If there is a 3571 // deferred decl with this name, remember that we need to emit it at the end 3572 // of the file. 3573 auto DDI = DeferredDecls.find(MangledName); 3574 if (DDI != DeferredDecls.end()) { 3575 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 3576 // list, and remove it from DeferredDecls (since we don't need it anymore). 3577 addDeferredDeclToEmit(DDI->second); 3578 DeferredDecls.erase(DDI); 3579 } 3580 3581 // Handle things which are present even on external declarations. 3582 if (D) { 3583 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd) 3584 getOpenMPRuntime().registerTargetGlobalVariable(D, GV); 3585 3586 // FIXME: This code is overly simple and should be merged with other global 3587 // handling. 3588 GV->setConstant(isTypeConstant(D->getType(), false)); 3589 3590 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 3591 3592 setLinkageForGV(GV, D); 3593 3594 if (D->getTLSKind()) { 3595 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 3596 CXXThreadLocals.push_back(D); 3597 setTLSMode(GV, *D); 3598 } 3599 3600 setGVProperties(GV, D); 3601 3602 // If required by the ABI, treat declarations of static data members with 3603 // inline initializers as definitions. 3604 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 3605 EmitGlobalVarDefinition(D); 3606 } 3607 3608 // Emit section information for extern variables. 3609 if (D->hasExternalStorage()) { 3610 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 3611 GV->setSection(SA->getName()); 3612 } 3613 3614 // Handle XCore specific ABI requirements. 3615 if (getTriple().getArch() == llvm::Triple::xcore && 3616 D->getLanguageLinkage() == CLanguageLinkage && 3617 D->getType().isConstant(Context) && 3618 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 3619 GV->setSection(".cp.rodata"); 3620 3621 // Check if we a have a const declaration with an initializer, we may be 3622 // able to emit it as available_externally to expose it's value to the 3623 // optimizer. 3624 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 3625 D->getType().isConstQualified() && !GV->hasInitializer() && 3626 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 3627 const auto *Record = 3628 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 3629 bool HasMutableFields = Record && Record->hasMutableFields(); 3630 if (!HasMutableFields) { 3631 const VarDecl *InitDecl; 3632 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 3633 if (InitExpr) { 3634 ConstantEmitter emitter(*this); 3635 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 3636 if (Init) { 3637 auto *InitType = Init->getType(); 3638 if (GV->getValueType() != InitType) { 3639 // The type of the initializer does not match the definition. 3640 // This happens when an initializer has a different type from 3641 // the type of the global (because of padding at the end of a 3642 // structure for instance). 3643 GV->setName(StringRef()); 3644 // Make a new global with the correct type, this is now guaranteed 3645 // to work. 3646 auto *NewGV = cast<llvm::GlobalVariable>( 3647 GetAddrOfGlobalVar(D, InitType, IsForDefinition) 3648 ->stripPointerCasts()); 3649 3650 // Erase the old global, since it is no longer used. 3651 GV->eraseFromParent(); 3652 GV = NewGV; 3653 } else { 3654 GV->setInitializer(Init); 3655 GV->setConstant(true); 3656 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 3657 } 3658 emitter.finalize(GV); 3659 } 3660 } 3661 } 3662 } 3663 } 3664 3665 if (GV->isDeclaration()) 3666 getTargetCodeGenInfo().setTargetAttributes(D, GV, *this); 3667 3668 LangAS ExpectedAS = 3669 D ? D->getType().getAddressSpace() 3670 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 3671 assert(getContext().getTargetAddressSpace(ExpectedAS) == 3672 Ty->getPointerAddressSpace()); 3673 if (AddrSpace != ExpectedAS) 3674 return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace, 3675 ExpectedAS, Ty); 3676 3677 return GV; 3678 } 3679 3680 llvm::Constant * 3681 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) { 3682 const Decl *D = GD.getDecl(); 3683 3684 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 3685 return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr, 3686 /*DontDefer=*/false, IsForDefinition); 3687 3688 if (isa<CXXMethodDecl>(D)) { 3689 auto FInfo = 3690 &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D)); 3691 auto Ty = getTypes().GetFunctionType(*FInfo); 3692 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 3693 IsForDefinition); 3694 } 3695 3696 if (isa<FunctionDecl>(D)) { 3697 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3698 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3699 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 3700 IsForDefinition); 3701 } 3702 3703 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition); 3704 } 3705 3706 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable( 3707 StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage, 3708 unsigned Alignment) { 3709 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 3710 llvm::GlobalVariable *OldGV = nullptr; 3711 3712 if (GV) { 3713 // Check if the variable has the right type. 3714 if (GV->getValueType() == Ty) 3715 return GV; 3716 3717 // Because C++ name mangling, the only way we can end up with an already 3718 // existing global with the same name is if it has been declared extern "C". 3719 assert(GV->isDeclaration() && "Declaration has wrong type!"); 3720 OldGV = GV; 3721 } 3722 3723 // Create a new variable. 3724 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 3725 Linkage, nullptr, Name); 3726 3727 if (OldGV) { 3728 // Replace occurrences of the old variable if needed. 3729 GV->takeName(OldGV); 3730 3731 if (!OldGV->use_empty()) { 3732 llvm::Constant *NewPtrForOldDecl = 3733 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 3734 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 3735 } 3736 3737 OldGV->eraseFromParent(); 3738 } 3739 3740 if (supportsCOMDAT() && GV->isWeakForLinker() && 3741 !GV->hasAvailableExternallyLinkage()) 3742 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3743 3744 GV->setAlignment(llvm::MaybeAlign(Alignment)); 3745 3746 return GV; 3747 } 3748 3749 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 3750 /// given global variable. If Ty is non-null and if the global doesn't exist, 3751 /// then it will be created with the specified type instead of whatever the 3752 /// normal requested type would be. If IsForDefinition is true, it is guaranteed 3753 /// that an actual global with type Ty will be returned, not conversion of a 3754 /// variable with the same mangled name but some other type. 3755 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 3756 llvm::Type *Ty, 3757 ForDefinition_t IsForDefinition) { 3758 assert(D->hasGlobalStorage() && "Not a global variable"); 3759 QualType ASTTy = D->getType(); 3760 if (!Ty) 3761 Ty = getTypes().ConvertTypeForMem(ASTTy); 3762 3763 llvm::PointerType *PTy = 3764 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 3765 3766 StringRef MangledName = getMangledName(D); 3767 return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition); 3768 } 3769 3770 /// CreateRuntimeVariable - Create a new runtime global variable with the 3771 /// specified type and name. 3772 llvm::Constant * 3773 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 3774 StringRef Name) { 3775 auto PtrTy = 3776 getContext().getLangOpts().OpenCL 3777 ? llvm::PointerType::get( 3778 Ty, getContext().getTargetAddressSpace(LangAS::opencl_global)) 3779 : llvm::PointerType::getUnqual(Ty); 3780 auto *Ret = GetOrCreateLLVMGlobal(Name, PtrTy, nullptr); 3781 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts())); 3782 return Ret; 3783 } 3784 3785 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 3786 assert(!D->getInit() && "Cannot emit definite definitions here!"); 3787 3788 StringRef MangledName = getMangledName(D); 3789 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 3790 3791 // We already have a definition, not declaration, with the same mangled name. 3792 // Emitting of declaration is not required (and actually overwrites emitted 3793 // definition). 3794 if (GV && !GV->isDeclaration()) 3795 return; 3796 3797 // If we have not seen a reference to this variable yet, place it into the 3798 // deferred declarations table to be emitted if needed later. 3799 if (!MustBeEmitted(D) && !GV) { 3800 DeferredDecls[MangledName] = D; 3801 return; 3802 } 3803 3804 // The tentative definition is the only definition. 3805 EmitGlobalVarDefinition(D); 3806 } 3807 3808 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) { 3809 EmitExternalVarDeclaration(D); 3810 } 3811 3812 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 3813 return Context.toCharUnitsFromBits( 3814 getDataLayout().getTypeStoreSizeInBits(Ty)); 3815 } 3816 3817 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 3818 LangAS AddrSpace = LangAS::Default; 3819 if (LangOpts.OpenCL) { 3820 AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 3821 assert(AddrSpace == LangAS::opencl_global || 3822 AddrSpace == LangAS::opencl_global_device || 3823 AddrSpace == LangAS::opencl_global_host || 3824 AddrSpace == LangAS::opencl_constant || 3825 AddrSpace == LangAS::opencl_local || 3826 AddrSpace >= LangAS::FirstTargetAddressSpace); 3827 return AddrSpace; 3828 } 3829 3830 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 3831 if (D && D->hasAttr<CUDAConstantAttr>()) 3832 return LangAS::cuda_constant; 3833 else if (D && D->hasAttr<CUDASharedAttr>()) 3834 return LangAS::cuda_shared; 3835 else if (D && D->hasAttr<CUDADeviceAttr>()) 3836 return LangAS::cuda_device; 3837 else if (D && D->getType().isConstQualified()) 3838 return LangAS::cuda_constant; 3839 else 3840 return LangAS::cuda_device; 3841 } 3842 3843 if (LangOpts.OpenMP) { 3844 LangAS AS; 3845 if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS)) 3846 return AS; 3847 } 3848 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 3849 } 3850 3851 LangAS CodeGenModule::getStringLiteralAddressSpace() const { 3852 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 3853 if (LangOpts.OpenCL) 3854 return LangAS::opencl_constant; 3855 if (auto AS = getTarget().getConstantAddressSpace()) 3856 return AS.getValue(); 3857 return LangAS::Default; 3858 } 3859 3860 // In address space agnostic languages, string literals are in default address 3861 // space in AST. However, certain targets (e.g. amdgcn) request them to be 3862 // emitted in constant address space in LLVM IR. To be consistent with other 3863 // parts of AST, string literal global variables in constant address space 3864 // need to be casted to default address space before being put into address 3865 // map and referenced by other part of CodeGen. 3866 // In OpenCL, string literals are in constant address space in AST, therefore 3867 // they should not be casted to default address space. 3868 static llvm::Constant * 3869 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM, 3870 llvm::GlobalVariable *GV) { 3871 llvm::Constant *Cast = GV; 3872 if (!CGM.getLangOpts().OpenCL) { 3873 if (auto AS = CGM.getTarget().getConstantAddressSpace()) { 3874 if (AS != LangAS::Default) 3875 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast( 3876 CGM, GV, AS.getValue(), LangAS::Default, 3877 GV->getValueType()->getPointerTo( 3878 CGM.getContext().getTargetAddressSpace(LangAS::Default))); 3879 } 3880 } 3881 return Cast; 3882 } 3883 3884 template<typename SomeDecl> 3885 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 3886 llvm::GlobalValue *GV) { 3887 if (!getLangOpts().CPlusPlus) 3888 return; 3889 3890 // Must have 'used' attribute, or else inline assembly can't rely on 3891 // the name existing. 3892 if (!D->template hasAttr<UsedAttr>()) 3893 return; 3894 3895 // Must have internal linkage and an ordinary name. 3896 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 3897 return; 3898 3899 // Must be in an extern "C" context. Entities declared directly within 3900 // a record are not extern "C" even if the record is in such a context. 3901 const SomeDecl *First = D->getFirstDecl(); 3902 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 3903 return; 3904 3905 // OK, this is an internal linkage entity inside an extern "C" linkage 3906 // specification. Make a note of that so we can give it the "expected" 3907 // mangled name if nothing else is using that name. 3908 std::pair<StaticExternCMap::iterator, bool> R = 3909 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 3910 3911 // If we have multiple internal linkage entities with the same name 3912 // in extern "C" regions, none of them gets that name. 3913 if (!R.second) 3914 R.first->second = nullptr; 3915 } 3916 3917 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 3918 if (!CGM.supportsCOMDAT()) 3919 return false; 3920 3921 // Do not set COMDAT attribute for CUDA/HIP stub functions to prevent 3922 // them being "merged" by the COMDAT Folding linker optimization. 3923 if (D.hasAttr<CUDAGlobalAttr>()) 3924 return false; 3925 3926 if (D.hasAttr<SelectAnyAttr>()) 3927 return true; 3928 3929 GVALinkage Linkage; 3930 if (auto *VD = dyn_cast<VarDecl>(&D)) 3931 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 3932 else 3933 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 3934 3935 switch (Linkage) { 3936 case GVA_Internal: 3937 case GVA_AvailableExternally: 3938 case GVA_StrongExternal: 3939 return false; 3940 case GVA_DiscardableODR: 3941 case GVA_StrongODR: 3942 return true; 3943 } 3944 llvm_unreachable("No such linkage"); 3945 } 3946 3947 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 3948 llvm::GlobalObject &GO) { 3949 if (!shouldBeInCOMDAT(*this, D)) 3950 return; 3951 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 3952 } 3953 3954 /// Pass IsTentative as true if you want to create a tentative definition. 3955 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 3956 bool IsTentative) { 3957 // OpenCL global variables of sampler type are translated to function calls, 3958 // therefore no need to be translated. 3959 QualType ASTTy = D->getType(); 3960 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 3961 return; 3962 3963 // If this is OpenMP device, check if it is legal to emit this global 3964 // normally. 3965 if (LangOpts.OpenMPIsDevice && OpenMPRuntime && 3966 OpenMPRuntime->emitTargetGlobalVariable(D)) 3967 return; 3968 3969 llvm::Constant *Init = nullptr; 3970 bool NeedsGlobalCtor = false; 3971 bool NeedsGlobalDtor = 3972 D->needsDestruction(getContext()) == QualType::DK_cxx_destructor; 3973 3974 const VarDecl *InitDecl; 3975 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 3976 3977 Optional<ConstantEmitter> emitter; 3978 3979 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 3980 // as part of their declaration." Sema has already checked for 3981 // error cases, so we just need to set Init to UndefValue. 3982 bool IsCUDASharedVar = 3983 getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>(); 3984 // Shadows of initialized device-side global variables are also left 3985 // undefined. 3986 bool IsCUDAShadowVar = 3987 !getLangOpts().CUDAIsDevice && 3988 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() || 3989 D->hasAttr<CUDASharedAttr>()); 3990 bool IsCUDADeviceShadowVar = 3991 getLangOpts().CUDAIsDevice && 3992 (D->getType()->isCUDADeviceBuiltinSurfaceType() || 3993 D->getType()->isCUDADeviceBuiltinTextureType()); 3994 // HIP pinned shadow of initialized host-side global variables are also 3995 // left undefined. 3996 if (getLangOpts().CUDA && 3997 (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar)) 3998 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 3999 else if (D->hasAttr<LoaderUninitializedAttr>()) 4000 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 4001 else if (!InitExpr) { 4002 // This is a tentative definition; tentative definitions are 4003 // implicitly initialized with { 0 }. 4004 // 4005 // Note that tentative definitions are only emitted at the end of 4006 // a translation unit, so they should never have incomplete 4007 // type. In addition, EmitTentativeDefinition makes sure that we 4008 // never attempt to emit a tentative definition if a real one 4009 // exists. A use may still exists, however, so we still may need 4010 // to do a RAUW. 4011 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 4012 Init = EmitNullConstant(D->getType()); 4013 } else { 4014 initializedGlobalDecl = GlobalDecl(D); 4015 emitter.emplace(*this); 4016 Init = emitter->tryEmitForInitializer(*InitDecl); 4017 4018 if (!Init) { 4019 QualType T = InitExpr->getType(); 4020 if (D->getType()->isReferenceType()) 4021 T = D->getType(); 4022 4023 if (getLangOpts().CPlusPlus) { 4024 Init = EmitNullConstant(T); 4025 NeedsGlobalCtor = true; 4026 } else { 4027 ErrorUnsupported(D, "static initializer"); 4028 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 4029 } 4030 } else { 4031 // We don't need an initializer, so remove the entry for the delayed 4032 // initializer position (just in case this entry was delayed) if we 4033 // also don't need to register a destructor. 4034 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 4035 DelayedCXXInitPosition.erase(D); 4036 } 4037 } 4038 4039 llvm::Type* InitType = Init->getType(); 4040 llvm::Constant *Entry = 4041 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 4042 4043 // Strip off pointer casts if we got them. 4044 Entry = Entry->stripPointerCasts(); 4045 4046 // Entry is now either a Function or GlobalVariable. 4047 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 4048 4049 // We have a definition after a declaration with the wrong type. 4050 // We must make a new GlobalVariable* and update everything that used OldGV 4051 // (a declaration or tentative definition) with the new GlobalVariable* 4052 // (which will be a definition). 4053 // 4054 // This happens if there is a prototype for a global (e.g. 4055 // "extern int x[];") and then a definition of a different type (e.g. 4056 // "int x[10];"). This also happens when an initializer has a different type 4057 // from the type of the global (this happens with unions). 4058 if (!GV || GV->getValueType() != InitType || 4059 GV->getType()->getAddressSpace() != 4060 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 4061 4062 // Move the old entry aside so that we'll create a new one. 4063 Entry->setName(StringRef()); 4064 4065 // Make a new global with the correct type, this is now guaranteed to work. 4066 GV = cast<llvm::GlobalVariable>( 4067 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)) 4068 ->stripPointerCasts()); 4069 4070 // Replace all uses of the old global with the new global 4071 llvm::Constant *NewPtrForOldDecl = 4072 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 4073 Entry->replaceAllUsesWith(NewPtrForOldDecl); 4074 4075 // Erase the old global, since it is no longer used. 4076 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 4077 } 4078 4079 MaybeHandleStaticInExternC(D, GV); 4080 4081 if (D->hasAttr<AnnotateAttr>()) 4082 AddGlobalAnnotations(D, GV); 4083 4084 // Set the llvm linkage type as appropriate. 4085 llvm::GlobalValue::LinkageTypes Linkage = 4086 getLLVMLinkageVarDefinition(D, GV->isConstant()); 4087 4088 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 4089 // the device. [...]" 4090 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 4091 // __device__, declares a variable that: [...] 4092 // Is accessible from all the threads within the grid and from the host 4093 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 4094 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 4095 if (GV && LangOpts.CUDA) { 4096 if (LangOpts.CUDAIsDevice) { 4097 if (Linkage != llvm::GlobalValue::InternalLinkage && 4098 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>())) 4099 GV->setExternallyInitialized(true); 4100 } else { 4101 // Host-side shadows of external declarations of device-side 4102 // global variables become internal definitions. These have to 4103 // be internal in order to prevent name conflicts with global 4104 // host variables with the same name in a different TUs. 4105 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) { 4106 Linkage = llvm::GlobalValue::InternalLinkage; 4107 // Shadow variables and their properties must be registered with CUDA 4108 // runtime. Skip Extern global variables, which will be registered in 4109 // the TU where they are defined. 4110 if (!D->hasExternalStorage()) 4111 getCUDARuntime().registerDeviceVar(D, *GV, !D->hasDefinition(), 4112 D->hasAttr<CUDAConstantAttr>()); 4113 } else if (D->hasAttr<CUDASharedAttr>()) { 4114 // __shared__ variables are odd. Shadows do get created, but 4115 // they are not registered with the CUDA runtime, so they 4116 // can't really be used to access their device-side 4117 // counterparts. It's not clear yet whether it's nvcc's bug or 4118 // a feature, but we've got to do the same for compatibility. 4119 Linkage = llvm::GlobalValue::InternalLinkage; 4120 } else if (D->getType()->isCUDADeviceBuiltinSurfaceType() || 4121 D->getType()->isCUDADeviceBuiltinTextureType()) { 4122 // Builtin surfaces and textures and their template arguments are 4123 // also registered with CUDA runtime. 4124 Linkage = llvm::GlobalValue::InternalLinkage; 4125 const ClassTemplateSpecializationDecl *TD = 4126 cast<ClassTemplateSpecializationDecl>( 4127 D->getType()->getAs<RecordType>()->getDecl()); 4128 const TemplateArgumentList &Args = TD->getTemplateArgs(); 4129 if (TD->hasAttr<CUDADeviceBuiltinSurfaceTypeAttr>()) { 4130 assert(Args.size() == 2 && 4131 "Unexpected number of template arguments of CUDA device " 4132 "builtin surface type."); 4133 auto SurfType = Args[1].getAsIntegral(); 4134 if (!D->hasExternalStorage()) 4135 getCUDARuntime().registerDeviceSurf(D, *GV, !D->hasDefinition(), 4136 SurfType.getSExtValue()); 4137 } else { 4138 assert(Args.size() == 3 && 4139 "Unexpected number of template arguments of CUDA device " 4140 "builtin texture type."); 4141 auto TexType = Args[1].getAsIntegral(); 4142 auto Normalized = Args[2].getAsIntegral(); 4143 if (!D->hasExternalStorage()) 4144 getCUDARuntime().registerDeviceTex(D, *GV, !D->hasDefinition(), 4145 TexType.getSExtValue(), 4146 Normalized.getZExtValue()); 4147 } 4148 } 4149 } 4150 } 4151 4152 GV->setInitializer(Init); 4153 if (emitter) 4154 emitter->finalize(GV); 4155 4156 // If it is safe to mark the global 'constant', do so now. 4157 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 4158 isTypeConstant(D->getType(), true)); 4159 4160 // If it is in a read-only section, mark it 'constant'. 4161 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 4162 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 4163 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 4164 GV->setConstant(true); 4165 } 4166 4167 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 4168 4169 // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper 4170 // function is only defined alongside the variable, not also alongside 4171 // callers. Normally, all accesses to a thread_local go through the 4172 // thread-wrapper in order to ensure initialization has occurred, underlying 4173 // variable will never be used other than the thread-wrapper, so it can be 4174 // converted to internal linkage. 4175 // 4176 // However, if the variable has the 'constinit' attribute, it _can_ be 4177 // referenced directly, without calling the thread-wrapper, so the linkage 4178 // must not be changed. 4179 // 4180 // Additionally, if the variable isn't plain external linkage, e.g. if it's 4181 // weak or linkonce, the de-duplication semantics are important to preserve, 4182 // so we don't change the linkage. 4183 if (D->getTLSKind() == VarDecl::TLS_Dynamic && 4184 Linkage == llvm::GlobalValue::ExternalLinkage && 4185 Context.getTargetInfo().getTriple().isOSDarwin() && 4186 !D->hasAttr<ConstInitAttr>()) 4187 Linkage = llvm::GlobalValue::InternalLinkage; 4188 4189 GV->setLinkage(Linkage); 4190 if (D->hasAttr<DLLImportAttr>()) 4191 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 4192 else if (D->hasAttr<DLLExportAttr>()) 4193 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 4194 else 4195 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 4196 4197 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 4198 // common vars aren't constant even if declared const. 4199 GV->setConstant(false); 4200 // Tentative definition of global variables may be initialized with 4201 // non-zero null pointers. In this case they should have weak linkage 4202 // since common linkage must have zero initializer and must not have 4203 // explicit section therefore cannot have non-zero initial value. 4204 if (!GV->getInitializer()->isNullValue()) 4205 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 4206 } 4207 4208 setNonAliasAttributes(D, GV); 4209 4210 if (D->getTLSKind() && !GV->isThreadLocal()) { 4211 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 4212 CXXThreadLocals.push_back(D); 4213 setTLSMode(GV, *D); 4214 } 4215 4216 maybeSetTrivialComdat(*D, *GV); 4217 4218 // Emit the initializer function if necessary. 4219 if (NeedsGlobalCtor || NeedsGlobalDtor) 4220 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 4221 4222 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 4223 4224 // Emit global variable debug information. 4225 if (CGDebugInfo *DI = getModuleDebugInfo()) 4226 if (getCodeGenOpts().hasReducedDebugInfo()) 4227 DI->EmitGlobalVariable(GV, D); 4228 } 4229 4230 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) { 4231 if (CGDebugInfo *DI = getModuleDebugInfo()) 4232 if (getCodeGenOpts().hasReducedDebugInfo()) { 4233 QualType ASTTy = D->getType(); 4234 llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType()); 4235 llvm::PointerType *PTy = 4236 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 4237 llvm::Constant *GV = GetOrCreateLLVMGlobal(D->getName(), PTy, D); 4238 DI->EmitExternalVariable( 4239 cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D); 4240 } 4241 } 4242 4243 static bool isVarDeclStrongDefinition(const ASTContext &Context, 4244 CodeGenModule &CGM, const VarDecl *D, 4245 bool NoCommon) { 4246 // Don't give variables common linkage if -fno-common was specified unless it 4247 // was overridden by a NoCommon attribute. 4248 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 4249 return true; 4250 4251 // C11 6.9.2/2: 4252 // A declaration of an identifier for an object that has file scope without 4253 // an initializer, and without a storage-class specifier or with the 4254 // storage-class specifier static, constitutes a tentative definition. 4255 if (D->getInit() || D->hasExternalStorage()) 4256 return true; 4257 4258 // A variable cannot be both common and exist in a section. 4259 if (D->hasAttr<SectionAttr>()) 4260 return true; 4261 4262 // A variable cannot be both common and exist in a section. 4263 // We don't try to determine which is the right section in the front-end. 4264 // If no specialized section name is applicable, it will resort to default. 4265 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 4266 D->hasAttr<PragmaClangDataSectionAttr>() || 4267 D->hasAttr<PragmaClangRelroSectionAttr>() || 4268 D->hasAttr<PragmaClangRodataSectionAttr>()) 4269 return true; 4270 4271 // Thread local vars aren't considered common linkage. 4272 if (D->getTLSKind()) 4273 return true; 4274 4275 // Tentative definitions marked with WeakImportAttr are true definitions. 4276 if (D->hasAttr<WeakImportAttr>()) 4277 return true; 4278 4279 // A variable cannot be both common and exist in a comdat. 4280 if (shouldBeInCOMDAT(CGM, *D)) 4281 return true; 4282 4283 // Declarations with a required alignment do not have common linkage in MSVC 4284 // mode. 4285 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 4286 if (D->hasAttr<AlignedAttr>()) 4287 return true; 4288 QualType VarType = D->getType(); 4289 if (Context.isAlignmentRequired(VarType)) 4290 return true; 4291 4292 if (const auto *RT = VarType->getAs<RecordType>()) { 4293 const RecordDecl *RD = RT->getDecl(); 4294 for (const FieldDecl *FD : RD->fields()) { 4295 if (FD->isBitField()) 4296 continue; 4297 if (FD->hasAttr<AlignedAttr>()) 4298 return true; 4299 if (Context.isAlignmentRequired(FD->getType())) 4300 return true; 4301 } 4302 } 4303 } 4304 4305 // Microsoft's link.exe doesn't support alignments greater than 32 bytes for 4306 // common symbols, so symbols with greater alignment requirements cannot be 4307 // common. 4308 // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two 4309 // alignments for common symbols via the aligncomm directive, so this 4310 // restriction only applies to MSVC environments. 4311 if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() && 4312 Context.getTypeAlignIfKnown(D->getType()) > 4313 Context.toBits(CharUnits::fromQuantity(32))) 4314 return true; 4315 4316 return false; 4317 } 4318 4319 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 4320 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 4321 if (Linkage == GVA_Internal) 4322 return llvm::Function::InternalLinkage; 4323 4324 if (D->hasAttr<WeakAttr>()) { 4325 if (IsConstantVariable) 4326 return llvm::GlobalVariable::WeakODRLinkage; 4327 else 4328 return llvm::GlobalVariable::WeakAnyLinkage; 4329 } 4330 4331 if (const auto *FD = D->getAsFunction()) 4332 if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally) 4333 return llvm::GlobalVariable::LinkOnceAnyLinkage; 4334 4335 // We are guaranteed to have a strong definition somewhere else, 4336 // so we can use available_externally linkage. 4337 if (Linkage == GVA_AvailableExternally) 4338 return llvm::GlobalValue::AvailableExternallyLinkage; 4339 4340 // Note that Apple's kernel linker doesn't support symbol 4341 // coalescing, so we need to avoid linkonce and weak linkages there. 4342 // Normally, this means we just map to internal, but for explicit 4343 // instantiations we'll map to external. 4344 4345 // In C++, the compiler has to emit a definition in every translation unit 4346 // that references the function. We should use linkonce_odr because 4347 // a) if all references in this translation unit are optimized away, we 4348 // don't need to codegen it. b) if the function persists, it needs to be 4349 // merged with other definitions. c) C++ has the ODR, so we know the 4350 // definition is dependable. 4351 if (Linkage == GVA_DiscardableODR) 4352 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 4353 : llvm::Function::InternalLinkage; 4354 4355 // An explicit instantiation of a template has weak linkage, since 4356 // explicit instantiations can occur in multiple translation units 4357 // and must all be equivalent. However, we are not allowed to 4358 // throw away these explicit instantiations. 4359 // 4360 // We don't currently support CUDA device code spread out across multiple TUs, 4361 // so say that CUDA templates are either external (for kernels) or internal. 4362 // This lets llvm perform aggressive inter-procedural optimizations. 4363 if (Linkage == GVA_StrongODR) { 4364 if (Context.getLangOpts().AppleKext) 4365 return llvm::Function::ExternalLinkage; 4366 if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice) 4367 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 4368 : llvm::Function::InternalLinkage; 4369 return llvm::Function::WeakODRLinkage; 4370 } 4371 4372 // C++ doesn't have tentative definitions and thus cannot have common 4373 // linkage. 4374 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 4375 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 4376 CodeGenOpts.NoCommon)) 4377 return llvm::GlobalVariable::CommonLinkage; 4378 4379 // selectany symbols are externally visible, so use weak instead of 4380 // linkonce. MSVC optimizes away references to const selectany globals, so 4381 // all definitions should be the same and ODR linkage should be used. 4382 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 4383 if (D->hasAttr<SelectAnyAttr>()) 4384 return llvm::GlobalVariable::WeakODRLinkage; 4385 4386 // Otherwise, we have strong external linkage. 4387 assert(Linkage == GVA_StrongExternal); 4388 return llvm::GlobalVariable::ExternalLinkage; 4389 } 4390 4391 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 4392 const VarDecl *VD, bool IsConstant) { 4393 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 4394 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 4395 } 4396 4397 /// Replace the uses of a function that was declared with a non-proto type. 4398 /// We want to silently drop extra arguments from call sites 4399 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 4400 llvm::Function *newFn) { 4401 // Fast path. 4402 if (old->use_empty()) return; 4403 4404 llvm::Type *newRetTy = newFn->getReturnType(); 4405 SmallVector<llvm::Value*, 4> newArgs; 4406 SmallVector<llvm::OperandBundleDef, 1> newBundles; 4407 4408 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 4409 ui != ue; ) { 4410 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 4411 llvm::User *user = use->getUser(); 4412 4413 // Recognize and replace uses of bitcasts. Most calls to 4414 // unprototyped functions will use bitcasts. 4415 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 4416 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 4417 replaceUsesOfNonProtoConstant(bitcast, newFn); 4418 continue; 4419 } 4420 4421 // Recognize calls to the function. 4422 llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user); 4423 if (!callSite) continue; 4424 if (!callSite->isCallee(&*use)) 4425 continue; 4426 4427 // If the return types don't match exactly, then we can't 4428 // transform this call unless it's dead. 4429 if (callSite->getType() != newRetTy && !callSite->use_empty()) 4430 continue; 4431 4432 // Get the call site's attribute list. 4433 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 4434 llvm::AttributeList oldAttrs = callSite->getAttributes(); 4435 4436 // If the function was passed too few arguments, don't transform. 4437 unsigned newNumArgs = newFn->arg_size(); 4438 if (callSite->arg_size() < newNumArgs) 4439 continue; 4440 4441 // If extra arguments were passed, we silently drop them. 4442 // If any of the types mismatch, we don't transform. 4443 unsigned argNo = 0; 4444 bool dontTransform = false; 4445 for (llvm::Argument &A : newFn->args()) { 4446 if (callSite->getArgOperand(argNo)->getType() != A.getType()) { 4447 dontTransform = true; 4448 break; 4449 } 4450 4451 // Add any parameter attributes. 4452 newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo)); 4453 argNo++; 4454 } 4455 if (dontTransform) 4456 continue; 4457 4458 // Okay, we can transform this. Create the new call instruction and copy 4459 // over the required information. 4460 newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo); 4461 4462 // Copy over any operand bundles. 4463 callSite->getOperandBundlesAsDefs(newBundles); 4464 4465 llvm::CallBase *newCall; 4466 if (dyn_cast<llvm::CallInst>(callSite)) { 4467 newCall = 4468 llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite); 4469 } else { 4470 auto *oldInvoke = cast<llvm::InvokeInst>(callSite); 4471 newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(), 4472 oldInvoke->getUnwindDest(), newArgs, 4473 newBundles, "", callSite); 4474 } 4475 newArgs.clear(); // for the next iteration 4476 4477 if (!newCall->getType()->isVoidTy()) 4478 newCall->takeName(callSite); 4479 newCall->setAttributes(llvm::AttributeList::get( 4480 newFn->getContext(), oldAttrs.getFnAttributes(), 4481 oldAttrs.getRetAttributes(), newArgAttrs)); 4482 newCall->setCallingConv(callSite->getCallingConv()); 4483 4484 // Finally, remove the old call, replacing any uses with the new one. 4485 if (!callSite->use_empty()) 4486 callSite->replaceAllUsesWith(newCall); 4487 4488 // Copy debug location attached to CI. 4489 if (callSite->getDebugLoc()) 4490 newCall->setDebugLoc(callSite->getDebugLoc()); 4491 4492 callSite->eraseFromParent(); 4493 } 4494 } 4495 4496 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 4497 /// implement a function with no prototype, e.g. "int foo() {}". If there are 4498 /// existing call uses of the old function in the module, this adjusts them to 4499 /// call the new function directly. 4500 /// 4501 /// This is not just a cleanup: the always_inline pass requires direct calls to 4502 /// functions to be able to inline them. If there is a bitcast in the way, it 4503 /// won't inline them. Instcombine normally deletes these calls, but it isn't 4504 /// run at -O0. 4505 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 4506 llvm::Function *NewFn) { 4507 // If we're redefining a global as a function, don't transform it. 4508 if (!isa<llvm::Function>(Old)) return; 4509 4510 replaceUsesOfNonProtoConstant(Old, NewFn); 4511 } 4512 4513 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 4514 auto DK = VD->isThisDeclarationADefinition(); 4515 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 4516 return; 4517 4518 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 4519 // If we have a definition, this might be a deferred decl. If the 4520 // instantiation is explicit, make sure we emit it at the end. 4521 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 4522 GetAddrOfGlobalVar(VD); 4523 4524 EmitTopLevelDecl(VD); 4525 } 4526 4527 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 4528 llvm::GlobalValue *GV) { 4529 const auto *D = cast<FunctionDecl>(GD.getDecl()); 4530 4531 // Compute the function info and LLVM type. 4532 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4533 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4534 4535 // Get or create the prototype for the function. 4536 if (!GV || (GV->getValueType() != Ty)) 4537 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 4538 /*DontDefer=*/true, 4539 ForDefinition)); 4540 4541 // Already emitted. 4542 if (!GV->isDeclaration()) 4543 return; 4544 4545 // We need to set linkage and visibility on the function before 4546 // generating code for it because various parts of IR generation 4547 // want to propagate this information down (e.g. to local static 4548 // declarations). 4549 auto *Fn = cast<llvm::Function>(GV); 4550 setFunctionLinkage(GD, Fn); 4551 4552 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 4553 setGVProperties(Fn, GD); 4554 4555 MaybeHandleStaticInExternC(D, Fn); 4556 4557 4558 maybeSetTrivialComdat(*D, *Fn); 4559 4560 CodeGenFunction(*this).GenerateCode(GD, Fn, FI); 4561 4562 setNonAliasAttributes(GD, Fn); 4563 SetLLVMFunctionAttributesForDefinition(D, Fn); 4564 4565 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 4566 AddGlobalCtor(Fn, CA->getPriority()); 4567 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 4568 AddGlobalDtor(Fn, DA->getPriority()); 4569 if (D->hasAttr<AnnotateAttr>()) 4570 AddGlobalAnnotations(D, Fn); 4571 } 4572 4573 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 4574 const auto *D = cast<ValueDecl>(GD.getDecl()); 4575 const AliasAttr *AA = D->getAttr<AliasAttr>(); 4576 assert(AA && "Not an alias?"); 4577 4578 StringRef MangledName = getMangledName(GD); 4579 4580 if (AA->getAliasee() == MangledName) { 4581 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 4582 return; 4583 } 4584 4585 // If there is a definition in the module, then it wins over the alias. 4586 // This is dubious, but allow it to be safe. Just ignore the alias. 4587 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4588 if (Entry && !Entry->isDeclaration()) 4589 return; 4590 4591 Aliases.push_back(GD); 4592 4593 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 4594 4595 // Create a reference to the named value. This ensures that it is emitted 4596 // if a deferred decl. 4597 llvm::Constant *Aliasee; 4598 llvm::GlobalValue::LinkageTypes LT; 4599 if (isa<llvm::FunctionType>(DeclTy)) { 4600 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 4601 /*ForVTable=*/false); 4602 LT = getFunctionLinkage(GD); 4603 } else { 4604 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 4605 llvm::PointerType::getUnqual(DeclTy), 4606 /*D=*/nullptr); 4607 LT = getLLVMLinkageVarDefinition(cast<VarDecl>(GD.getDecl()), 4608 D->getType().isConstQualified()); 4609 } 4610 4611 // Create the new alias itself, but don't set a name yet. 4612 unsigned AS = Aliasee->getType()->getPointerAddressSpace(); 4613 auto *GA = 4614 llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule()); 4615 4616 if (Entry) { 4617 if (GA->getAliasee() == Entry) { 4618 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 4619 return; 4620 } 4621 4622 assert(Entry->isDeclaration()); 4623 4624 // If there is a declaration in the module, then we had an extern followed 4625 // by the alias, as in: 4626 // extern int test6(); 4627 // ... 4628 // int test6() __attribute__((alias("test7"))); 4629 // 4630 // Remove it and replace uses of it with the alias. 4631 GA->takeName(Entry); 4632 4633 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 4634 Entry->getType())); 4635 Entry->eraseFromParent(); 4636 } else { 4637 GA->setName(MangledName); 4638 } 4639 4640 // Set attributes which are particular to an alias; this is a 4641 // specialization of the attributes which may be set on a global 4642 // variable/function. 4643 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 4644 D->isWeakImported()) { 4645 GA->setLinkage(llvm::Function::WeakAnyLinkage); 4646 } 4647 4648 if (const auto *VD = dyn_cast<VarDecl>(D)) 4649 if (VD->getTLSKind()) 4650 setTLSMode(GA, *VD); 4651 4652 SetCommonAttributes(GD, GA); 4653 } 4654 4655 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 4656 const auto *D = cast<ValueDecl>(GD.getDecl()); 4657 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 4658 assert(IFA && "Not an ifunc?"); 4659 4660 StringRef MangledName = getMangledName(GD); 4661 4662 if (IFA->getResolver() == MangledName) { 4663 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 4664 return; 4665 } 4666 4667 // Report an error if some definition overrides ifunc. 4668 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4669 if (Entry && !Entry->isDeclaration()) { 4670 GlobalDecl OtherGD; 4671 if (lookupRepresentativeDecl(MangledName, OtherGD) && 4672 DiagnosedConflictingDefinitions.insert(GD).second) { 4673 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name) 4674 << MangledName; 4675 Diags.Report(OtherGD.getDecl()->getLocation(), 4676 diag::note_previous_definition); 4677 } 4678 return; 4679 } 4680 4681 Aliases.push_back(GD); 4682 4683 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 4684 llvm::Constant *Resolver = 4685 GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD, 4686 /*ForVTable=*/false); 4687 llvm::GlobalIFunc *GIF = 4688 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 4689 "", Resolver, &getModule()); 4690 if (Entry) { 4691 if (GIF->getResolver() == Entry) { 4692 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 4693 return; 4694 } 4695 assert(Entry->isDeclaration()); 4696 4697 // If there is a declaration in the module, then we had an extern followed 4698 // by the ifunc, as in: 4699 // extern int test(); 4700 // ... 4701 // int test() __attribute__((ifunc("resolver"))); 4702 // 4703 // Remove it and replace uses of it with the ifunc. 4704 GIF->takeName(Entry); 4705 4706 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 4707 Entry->getType())); 4708 Entry->eraseFromParent(); 4709 } else 4710 GIF->setName(MangledName); 4711 4712 SetCommonAttributes(GD, GIF); 4713 } 4714 4715 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 4716 ArrayRef<llvm::Type*> Tys) { 4717 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 4718 Tys); 4719 } 4720 4721 static llvm::StringMapEntry<llvm::GlobalVariable *> & 4722 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 4723 const StringLiteral *Literal, bool TargetIsLSB, 4724 bool &IsUTF16, unsigned &StringLength) { 4725 StringRef String = Literal->getString(); 4726 unsigned NumBytes = String.size(); 4727 4728 // Check for simple case. 4729 if (!Literal->containsNonAsciiOrNull()) { 4730 StringLength = NumBytes; 4731 return *Map.insert(std::make_pair(String, nullptr)).first; 4732 } 4733 4734 // Otherwise, convert the UTF8 literals into a string of shorts. 4735 IsUTF16 = true; 4736 4737 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 4738 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 4739 llvm::UTF16 *ToPtr = &ToBuf[0]; 4740 4741 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 4742 ToPtr + NumBytes, llvm::strictConversion); 4743 4744 // ConvertUTF8toUTF16 returns the length in ToPtr. 4745 StringLength = ToPtr - &ToBuf[0]; 4746 4747 // Add an explicit null. 4748 *ToPtr = 0; 4749 return *Map.insert(std::make_pair( 4750 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 4751 (StringLength + 1) * 2), 4752 nullptr)).first; 4753 } 4754 4755 ConstantAddress 4756 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 4757 unsigned StringLength = 0; 4758 bool isUTF16 = false; 4759 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 4760 GetConstantCFStringEntry(CFConstantStringMap, Literal, 4761 getDataLayout().isLittleEndian(), isUTF16, 4762 StringLength); 4763 4764 if (auto *C = Entry.second) 4765 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 4766 4767 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 4768 llvm::Constant *Zeros[] = { Zero, Zero }; 4769 4770 const ASTContext &Context = getContext(); 4771 const llvm::Triple &Triple = getTriple(); 4772 4773 const auto CFRuntime = getLangOpts().CFRuntime; 4774 const bool IsSwiftABI = 4775 static_cast<unsigned>(CFRuntime) >= 4776 static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift); 4777 const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1; 4778 4779 // If we don't already have it, get __CFConstantStringClassReference. 4780 if (!CFConstantStringClassRef) { 4781 const char *CFConstantStringClassName = "__CFConstantStringClassReference"; 4782 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 4783 Ty = llvm::ArrayType::get(Ty, 0); 4784 4785 switch (CFRuntime) { 4786 default: break; 4787 case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH; 4788 case LangOptions::CoreFoundationABI::Swift5_0: 4789 CFConstantStringClassName = 4790 Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN" 4791 : "$s10Foundation19_NSCFConstantStringCN"; 4792 Ty = IntPtrTy; 4793 break; 4794 case LangOptions::CoreFoundationABI::Swift4_2: 4795 CFConstantStringClassName = 4796 Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN" 4797 : "$S10Foundation19_NSCFConstantStringCN"; 4798 Ty = IntPtrTy; 4799 break; 4800 case LangOptions::CoreFoundationABI::Swift4_1: 4801 CFConstantStringClassName = 4802 Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN" 4803 : "__T010Foundation19_NSCFConstantStringCN"; 4804 Ty = IntPtrTy; 4805 break; 4806 } 4807 4808 llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName); 4809 4810 if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) { 4811 llvm::GlobalValue *GV = nullptr; 4812 4813 if ((GV = dyn_cast<llvm::GlobalValue>(C))) { 4814 IdentifierInfo &II = Context.Idents.get(GV->getName()); 4815 TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl(); 4816 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 4817 4818 const VarDecl *VD = nullptr; 4819 for (const auto &Result : DC->lookup(&II)) 4820 if ((VD = dyn_cast<VarDecl>(Result))) 4821 break; 4822 4823 if (Triple.isOSBinFormatELF()) { 4824 if (!VD) 4825 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 4826 } else { 4827 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 4828 if (!VD || !VD->hasAttr<DLLExportAttr>()) 4829 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 4830 else 4831 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 4832 } 4833 4834 setDSOLocal(GV); 4835 } 4836 } 4837 4838 // Decay array -> ptr 4839 CFConstantStringClassRef = 4840 IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) 4841 : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros); 4842 } 4843 4844 QualType CFTy = Context.getCFConstantStringType(); 4845 4846 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 4847 4848 ConstantInitBuilder Builder(*this); 4849 auto Fields = Builder.beginStruct(STy); 4850 4851 // Class pointer. 4852 Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef)); 4853 4854 // Flags. 4855 if (IsSwiftABI) { 4856 Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01); 4857 Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8); 4858 } else { 4859 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 4860 } 4861 4862 // String pointer. 4863 llvm::Constant *C = nullptr; 4864 if (isUTF16) { 4865 auto Arr = llvm::makeArrayRef( 4866 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 4867 Entry.first().size() / 2); 4868 C = llvm::ConstantDataArray::get(VMContext, Arr); 4869 } else { 4870 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 4871 } 4872 4873 // Note: -fwritable-strings doesn't make the backing store strings of 4874 // CFStrings writable. (See <rdar://problem/10657500>) 4875 auto *GV = 4876 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 4877 llvm::GlobalValue::PrivateLinkage, C, ".str"); 4878 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 4879 // Don't enforce the target's minimum global alignment, since the only use 4880 // of the string is via this class initializer. 4881 CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy) 4882 : Context.getTypeAlignInChars(Context.CharTy); 4883 GV->setAlignment(Align.getAsAlign()); 4884 4885 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 4886 // Without it LLVM can merge the string with a non unnamed_addr one during 4887 // LTO. Doing that changes the section it ends in, which surprises ld64. 4888 if (Triple.isOSBinFormatMachO()) 4889 GV->setSection(isUTF16 ? "__TEXT,__ustring" 4890 : "__TEXT,__cstring,cstring_literals"); 4891 // Make sure the literal ends up in .rodata to allow for safe ICF and for 4892 // the static linker to adjust permissions to read-only later on. 4893 else if (Triple.isOSBinFormatELF()) 4894 GV->setSection(".rodata"); 4895 4896 // String. 4897 llvm::Constant *Str = 4898 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 4899 4900 if (isUTF16) 4901 // Cast the UTF16 string to the correct type. 4902 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 4903 Fields.add(Str); 4904 4905 // String length. 4906 llvm::IntegerType *LengthTy = 4907 llvm::IntegerType::get(getModule().getContext(), 4908 Context.getTargetInfo().getLongWidth()); 4909 if (IsSwiftABI) { 4910 if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 || 4911 CFRuntime == LangOptions::CoreFoundationABI::Swift4_2) 4912 LengthTy = Int32Ty; 4913 else 4914 LengthTy = IntPtrTy; 4915 } 4916 Fields.addInt(LengthTy, StringLength); 4917 4918 // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is 4919 // properly aligned on 32-bit platforms. 4920 CharUnits Alignment = 4921 IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign(); 4922 4923 // The struct. 4924 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 4925 /*isConstant=*/false, 4926 llvm::GlobalVariable::PrivateLinkage); 4927 GV->addAttribute("objc_arc_inert"); 4928 switch (Triple.getObjectFormat()) { 4929 case llvm::Triple::UnknownObjectFormat: 4930 llvm_unreachable("unknown file format"); 4931 case llvm::Triple::GOFF: 4932 llvm_unreachable("GOFF is not yet implemented"); 4933 case llvm::Triple::XCOFF: 4934 llvm_unreachable("XCOFF is not yet implemented"); 4935 case llvm::Triple::COFF: 4936 case llvm::Triple::ELF: 4937 case llvm::Triple::Wasm: 4938 GV->setSection("cfstring"); 4939 break; 4940 case llvm::Triple::MachO: 4941 GV->setSection("__DATA,__cfstring"); 4942 break; 4943 } 4944 Entry.second = GV; 4945 4946 return ConstantAddress(GV, Alignment); 4947 } 4948 4949 bool CodeGenModule::getExpressionLocationsEnabled() const { 4950 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 4951 } 4952 4953 QualType CodeGenModule::getObjCFastEnumerationStateType() { 4954 if (ObjCFastEnumerationStateType.isNull()) { 4955 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 4956 D->startDefinition(); 4957 4958 QualType FieldTypes[] = { 4959 Context.UnsignedLongTy, 4960 Context.getPointerType(Context.getObjCIdType()), 4961 Context.getPointerType(Context.UnsignedLongTy), 4962 Context.getConstantArrayType(Context.UnsignedLongTy, 4963 llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0) 4964 }; 4965 4966 for (size_t i = 0; i < 4; ++i) { 4967 FieldDecl *Field = FieldDecl::Create(Context, 4968 D, 4969 SourceLocation(), 4970 SourceLocation(), nullptr, 4971 FieldTypes[i], /*TInfo=*/nullptr, 4972 /*BitWidth=*/nullptr, 4973 /*Mutable=*/false, 4974 ICIS_NoInit); 4975 Field->setAccess(AS_public); 4976 D->addDecl(Field); 4977 } 4978 4979 D->completeDefinition(); 4980 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 4981 } 4982 4983 return ObjCFastEnumerationStateType; 4984 } 4985 4986 llvm::Constant * 4987 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 4988 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 4989 4990 // Don't emit it as the address of the string, emit the string data itself 4991 // as an inline array. 4992 if (E->getCharByteWidth() == 1) { 4993 SmallString<64> Str(E->getString()); 4994 4995 // Resize the string to the right size, which is indicated by its type. 4996 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 4997 Str.resize(CAT->getSize().getZExtValue()); 4998 return llvm::ConstantDataArray::getString(VMContext, Str, false); 4999 } 5000 5001 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 5002 llvm::Type *ElemTy = AType->getElementType(); 5003 unsigned NumElements = AType->getNumElements(); 5004 5005 // Wide strings have either 2-byte or 4-byte elements. 5006 if (ElemTy->getPrimitiveSizeInBits() == 16) { 5007 SmallVector<uint16_t, 32> Elements; 5008 Elements.reserve(NumElements); 5009 5010 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 5011 Elements.push_back(E->getCodeUnit(i)); 5012 Elements.resize(NumElements); 5013 return llvm::ConstantDataArray::get(VMContext, Elements); 5014 } 5015 5016 assert(ElemTy->getPrimitiveSizeInBits() == 32); 5017 SmallVector<uint32_t, 32> Elements; 5018 Elements.reserve(NumElements); 5019 5020 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 5021 Elements.push_back(E->getCodeUnit(i)); 5022 Elements.resize(NumElements); 5023 return llvm::ConstantDataArray::get(VMContext, Elements); 5024 } 5025 5026 static llvm::GlobalVariable * 5027 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 5028 CodeGenModule &CGM, StringRef GlobalName, 5029 CharUnits Alignment) { 5030 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace( 5031 CGM.getStringLiteralAddressSpace()); 5032 5033 llvm::Module &M = CGM.getModule(); 5034 // Create a global variable for this string 5035 auto *GV = new llvm::GlobalVariable( 5036 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 5037 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 5038 GV->setAlignment(Alignment.getAsAlign()); 5039 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 5040 if (GV->isWeakForLinker()) { 5041 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 5042 GV->setComdat(M.getOrInsertComdat(GV->getName())); 5043 } 5044 CGM.setDSOLocal(GV); 5045 5046 return GV; 5047 } 5048 5049 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 5050 /// constant array for the given string literal. 5051 ConstantAddress 5052 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 5053 StringRef Name) { 5054 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 5055 5056 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 5057 llvm::GlobalVariable **Entry = nullptr; 5058 if (!LangOpts.WritableStrings) { 5059 Entry = &ConstantStringMap[C]; 5060 if (auto GV = *Entry) { 5061 if (Alignment.getQuantity() > GV->getAlignment()) 5062 GV->setAlignment(Alignment.getAsAlign()); 5063 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5064 Alignment); 5065 } 5066 } 5067 5068 SmallString<256> MangledNameBuffer; 5069 StringRef GlobalVariableName; 5070 llvm::GlobalValue::LinkageTypes LT; 5071 5072 // Mangle the string literal if that's how the ABI merges duplicate strings. 5073 // Don't do it if they are writable, since we don't want writes in one TU to 5074 // affect strings in another. 5075 if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) && 5076 !LangOpts.WritableStrings) { 5077 llvm::raw_svector_ostream Out(MangledNameBuffer); 5078 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 5079 LT = llvm::GlobalValue::LinkOnceODRLinkage; 5080 GlobalVariableName = MangledNameBuffer; 5081 } else { 5082 LT = llvm::GlobalValue::PrivateLinkage; 5083 GlobalVariableName = Name; 5084 } 5085 5086 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 5087 if (Entry) 5088 *Entry = GV; 5089 5090 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 5091 QualType()); 5092 5093 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5094 Alignment); 5095 } 5096 5097 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 5098 /// array for the given ObjCEncodeExpr node. 5099 ConstantAddress 5100 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 5101 std::string Str; 5102 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 5103 5104 return GetAddrOfConstantCString(Str); 5105 } 5106 5107 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 5108 /// the literal and a terminating '\0' character. 5109 /// The result has pointer to array type. 5110 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 5111 const std::string &Str, const char *GlobalName) { 5112 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 5113 CharUnits Alignment = 5114 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 5115 5116 llvm::Constant *C = 5117 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 5118 5119 // Don't share any string literals if strings aren't constant. 5120 llvm::GlobalVariable **Entry = nullptr; 5121 if (!LangOpts.WritableStrings) { 5122 Entry = &ConstantStringMap[C]; 5123 if (auto GV = *Entry) { 5124 if (Alignment.getQuantity() > GV->getAlignment()) 5125 GV->setAlignment(Alignment.getAsAlign()); 5126 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5127 Alignment); 5128 } 5129 } 5130 5131 // Get the default prefix if a name wasn't specified. 5132 if (!GlobalName) 5133 GlobalName = ".str"; 5134 // Create a global variable for this. 5135 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 5136 GlobalName, Alignment); 5137 if (Entry) 5138 *Entry = GV; 5139 5140 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5141 Alignment); 5142 } 5143 5144 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 5145 const MaterializeTemporaryExpr *E, const Expr *Init) { 5146 assert((E->getStorageDuration() == SD_Static || 5147 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 5148 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 5149 5150 // If we're not materializing a subobject of the temporary, keep the 5151 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 5152 QualType MaterializedType = Init->getType(); 5153 if (Init == E->getSubExpr()) 5154 MaterializedType = E->getType(); 5155 5156 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 5157 5158 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E]) 5159 return ConstantAddress(Slot, Align); 5160 5161 // FIXME: If an externally-visible declaration extends multiple temporaries, 5162 // we need to give each temporary the same name in every translation unit (and 5163 // we also need to make the temporaries externally-visible). 5164 SmallString<256> Name; 5165 llvm::raw_svector_ostream Out(Name); 5166 getCXXABI().getMangleContext().mangleReferenceTemporary( 5167 VD, E->getManglingNumber(), Out); 5168 5169 APValue *Value = nullptr; 5170 if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) { 5171 // If the initializer of the extending declaration is a constant 5172 // initializer, we should have a cached constant initializer for this 5173 // temporary. Note that this might have a different value from the value 5174 // computed by evaluating the initializer if the surrounding constant 5175 // expression modifies the temporary. 5176 Value = E->getOrCreateValue(false); 5177 } 5178 5179 // Try evaluating it now, it might have a constant initializer. 5180 Expr::EvalResult EvalResult; 5181 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 5182 !EvalResult.hasSideEffects()) 5183 Value = &EvalResult.Val; 5184 5185 LangAS AddrSpace = 5186 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace(); 5187 5188 Optional<ConstantEmitter> emitter; 5189 llvm::Constant *InitialValue = nullptr; 5190 bool Constant = false; 5191 llvm::Type *Type; 5192 if (Value) { 5193 // The temporary has a constant initializer, use it. 5194 emitter.emplace(*this); 5195 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 5196 MaterializedType); 5197 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 5198 Type = InitialValue->getType(); 5199 } else { 5200 // No initializer, the initialization will be provided when we 5201 // initialize the declaration which performed lifetime extension. 5202 Type = getTypes().ConvertTypeForMem(MaterializedType); 5203 } 5204 5205 // Create a global variable for this lifetime-extended temporary. 5206 llvm::GlobalValue::LinkageTypes Linkage = 5207 getLLVMLinkageVarDefinition(VD, Constant); 5208 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 5209 const VarDecl *InitVD; 5210 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 5211 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 5212 // Temporaries defined inside a class get linkonce_odr linkage because the 5213 // class can be defined in multiple translation units. 5214 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 5215 } else { 5216 // There is no need for this temporary to have external linkage if the 5217 // VarDecl has external linkage. 5218 Linkage = llvm::GlobalVariable::InternalLinkage; 5219 } 5220 } 5221 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 5222 auto *GV = new llvm::GlobalVariable( 5223 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 5224 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 5225 if (emitter) emitter->finalize(GV); 5226 setGVProperties(GV, VD); 5227 GV->setAlignment(Align.getAsAlign()); 5228 if (supportsCOMDAT() && GV->isWeakForLinker()) 5229 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 5230 if (VD->getTLSKind()) 5231 setTLSMode(GV, *VD); 5232 llvm::Constant *CV = GV; 5233 if (AddrSpace != LangAS::Default) 5234 CV = getTargetCodeGenInfo().performAddrSpaceCast( 5235 *this, GV, AddrSpace, LangAS::Default, 5236 Type->getPointerTo( 5237 getContext().getTargetAddressSpace(LangAS::Default))); 5238 MaterializedGlobalTemporaryMap[E] = CV; 5239 return ConstantAddress(CV, Align); 5240 } 5241 5242 /// EmitObjCPropertyImplementations - Emit information for synthesized 5243 /// properties for an implementation. 5244 void CodeGenModule::EmitObjCPropertyImplementations(const 5245 ObjCImplementationDecl *D) { 5246 for (const auto *PID : D->property_impls()) { 5247 // Dynamic is just for type-checking. 5248 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 5249 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 5250 5251 // Determine which methods need to be implemented, some may have 5252 // been overridden. Note that ::isPropertyAccessor is not the method 5253 // we want, that just indicates if the decl came from a 5254 // property. What we want to know is if the method is defined in 5255 // this implementation. 5256 auto *Getter = PID->getGetterMethodDecl(); 5257 if (!Getter || Getter->isSynthesizedAccessorStub()) 5258 CodeGenFunction(*this).GenerateObjCGetter( 5259 const_cast<ObjCImplementationDecl *>(D), PID); 5260 auto *Setter = PID->getSetterMethodDecl(); 5261 if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub())) 5262 CodeGenFunction(*this).GenerateObjCSetter( 5263 const_cast<ObjCImplementationDecl *>(D), PID); 5264 } 5265 } 5266 } 5267 5268 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 5269 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 5270 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 5271 ivar; ivar = ivar->getNextIvar()) 5272 if (ivar->getType().isDestructedType()) 5273 return true; 5274 5275 return false; 5276 } 5277 5278 static bool AllTrivialInitializers(CodeGenModule &CGM, 5279 ObjCImplementationDecl *D) { 5280 CodeGenFunction CGF(CGM); 5281 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 5282 E = D->init_end(); B != E; ++B) { 5283 CXXCtorInitializer *CtorInitExp = *B; 5284 Expr *Init = CtorInitExp->getInit(); 5285 if (!CGF.isTrivialInitializer(Init)) 5286 return false; 5287 } 5288 return true; 5289 } 5290 5291 /// EmitObjCIvarInitializations - Emit information for ivar initialization 5292 /// for an implementation. 5293 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 5294 // We might need a .cxx_destruct even if we don't have any ivar initializers. 5295 if (needsDestructMethod(D)) { 5296 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 5297 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 5298 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create( 5299 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 5300 getContext().VoidTy, nullptr, D, 5301 /*isInstance=*/true, /*isVariadic=*/false, 5302 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 5303 /*isImplicitlyDeclared=*/true, 5304 /*isDefined=*/false, ObjCMethodDecl::Required); 5305 D->addInstanceMethod(DTORMethod); 5306 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 5307 D->setHasDestructors(true); 5308 } 5309 5310 // If the implementation doesn't have any ivar initializers, we don't need 5311 // a .cxx_construct. 5312 if (D->getNumIvarInitializers() == 0 || 5313 AllTrivialInitializers(*this, D)) 5314 return; 5315 5316 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 5317 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 5318 // The constructor returns 'self'. 5319 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create( 5320 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 5321 getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true, 5322 /*isVariadic=*/false, 5323 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 5324 /*isImplicitlyDeclared=*/true, 5325 /*isDefined=*/false, ObjCMethodDecl::Required); 5326 D->addInstanceMethod(CTORMethod); 5327 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 5328 D->setHasNonZeroConstructors(true); 5329 } 5330 5331 // EmitLinkageSpec - Emit all declarations in a linkage spec. 5332 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 5333 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 5334 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 5335 ErrorUnsupported(LSD, "linkage spec"); 5336 return; 5337 } 5338 5339 EmitDeclContext(LSD); 5340 } 5341 5342 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 5343 for (auto *I : DC->decls()) { 5344 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 5345 // are themselves considered "top-level", so EmitTopLevelDecl on an 5346 // ObjCImplDecl does not recursively visit them. We need to do that in 5347 // case they're nested inside another construct (LinkageSpecDecl / 5348 // ExportDecl) that does stop them from being considered "top-level". 5349 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 5350 for (auto *M : OID->methods()) 5351 EmitTopLevelDecl(M); 5352 } 5353 5354 EmitTopLevelDecl(I); 5355 } 5356 } 5357 5358 /// EmitTopLevelDecl - Emit code for a single top level declaration. 5359 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 5360 // Ignore dependent declarations. 5361 if (D->isTemplated()) 5362 return; 5363 5364 // Consteval function shouldn't be emitted. 5365 if (auto *FD = dyn_cast<FunctionDecl>(D)) 5366 if (FD->isConsteval()) 5367 return; 5368 5369 switch (D->getKind()) { 5370 case Decl::CXXConversion: 5371 case Decl::CXXMethod: 5372 case Decl::Function: 5373 EmitGlobal(cast<FunctionDecl>(D)); 5374 // Always provide some coverage mapping 5375 // even for the functions that aren't emitted. 5376 AddDeferredUnusedCoverageMapping(D); 5377 break; 5378 5379 case Decl::CXXDeductionGuide: 5380 // Function-like, but does not result in code emission. 5381 break; 5382 5383 case Decl::Var: 5384 case Decl::Decomposition: 5385 case Decl::VarTemplateSpecialization: 5386 EmitGlobal(cast<VarDecl>(D)); 5387 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 5388 for (auto *B : DD->bindings()) 5389 if (auto *HD = B->getHoldingVar()) 5390 EmitGlobal(HD); 5391 break; 5392 5393 // Indirect fields from global anonymous structs and unions can be 5394 // ignored; only the actual variable requires IR gen support. 5395 case Decl::IndirectField: 5396 break; 5397 5398 // C++ Decls 5399 case Decl::Namespace: 5400 EmitDeclContext(cast<NamespaceDecl>(D)); 5401 break; 5402 case Decl::ClassTemplateSpecialization: { 5403 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 5404 if (CGDebugInfo *DI = getModuleDebugInfo()) 5405 if (Spec->getSpecializationKind() == 5406 TSK_ExplicitInstantiationDefinition && 5407 Spec->hasDefinition()) 5408 DI->completeTemplateDefinition(*Spec); 5409 } LLVM_FALLTHROUGH; 5410 case Decl::CXXRecord: { 5411 CXXRecordDecl *CRD = cast<CXXRecordDecl>(D); 5412 if (CGDebugInfo *DI = getModuleDebugInfo()) { 5413 if (CRD->hasDefinition()) 5414 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 5415 if (auto *ES = D->getASTContext().getExternalSource()) 5416 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 5417 DI->completeUnusedClass(*CRD); 5418 } 5419 // Emit any static data members, they may be definitions. 5420 for (auto *I : CRD->decls()) 5421 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 5422 EmitTopLevelDecl(I); 5423 break; 5424 } 5425 // No code generation needed. 5426 case Decl::UsingShadow: 5427 case Decl::ClassTemplate: 5428 case Decl::VarTemplate: 5429 case Decl::Concept: 5430 case Decl::VarTemplatePartialSpecialization: 5431 case Decl::FunctionTemplate: 5432 case Decl::TypeAliasTemplate: 5433 case Decl::Block: 5434 case Decl::Empty: 5435 case Decl::Binding: 5436 break; 5437 case Decl::Using: // using X; [C++] 5438 if (CGDebugInfo *DI = getModuleDebugInfo()) 5439 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 5440 break; 5441 case Decl::NamespaceAlias: 5442 if (CGDebugInfo *DI = getModuleDebugInfo()) 5443 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 5444 break; 5445 case Decl::UsingDirective: // using namespace X; [C++] 5446 if (CGDebugInfo *DI = getModuleDebugInfo()) 5447 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 5448 break; 5449 case Decl::CXXConstructor: 5450 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 5451 break; 5452 case Decl::CXXDestructor: 5453 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 5454 break; 5455 5456 case Decl::StaticAssert: 5457 // Nothing to do. 5458 break; 5459 5460 // Objective-C Decls 5461 5462 // Forward declarations, no (immediate) code generation. 5463 case Decl::ObjCInterface: 5464 case Decl::ObjCCategory: 5465 break; 5466 5467 case Decl::ObjCProtocol: { 5468 auto *Proto = cast<ObjCProtocolDecl>(D); 5469 if (Proto->isThisDeclarationADefinition()) 5470 ObjCRuntime->GenerateProtocol(Proto); 5471 break; 5472 } 5473 5474 case Decl::ObjCCategoryImpl: 5475 // Categories have properties but don't support synthesize so we 5476 // can ignore them here. 5477 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 5478 break; 5479 5480 case Decl::ObjCImplementation: { 5481 auto *OMD = cast<ObjCImplementationDecl>(D); 5482 EmitObjCPropertyImplementations(OMD); 5483 EmitObjCIvarInitializations(OMD); 5484 ObjCRuntime->GenerateClass(OMD); 5485 // Emit global variable debug information. 5486 if (CGDebugInfo *DI = getModuleDebugInfo()) 5487 if (getCodeGenOpts().hasReducedDebugInfo()) 5488 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 5489 OMD->getClassInterface()), OMD->getLocation()); 5490 break; 5491 } 5492 case Decl::ObjCMethod: { 5493 auto *OMD = cast<ObjCMethodDecl>(D); 5494 // If this is not a prototype, emit the body. 5495 if (OMD->getBody()) 5496 CodeGenFunction(*this).GenerateObjCMethod(OMD); 5497 break; 5498 } 5499 case Decl::ObjCCompatibleAlias: 5500 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 5501 break; 5502 5503 case Decl::PragmaComment: { 5504 const auto *PCD = cast<PragmaCommentDecl>(D); 5505 switch (PCD->getCommentKind()) { 5506 case PCK_Unknown: 5507 llvm_unreachable("unexpected pragma comment kind"); 5508 case PCK_Linker: 5509 AppendLinkerOptions(PCD->getArg()); 5510 break; 5511 case PCK_Lib: 5512 AddDependentLib(PCD->getArg()); 5513 break; 5514 case PCK_Compiler: 5515 case PCK_ExeStr: 5516 case PCK_User: 5517 break; // We ignore all of these. 5518 } 5519 break; 5520 } 5521 5522 case Decl::PragmaDetectMismatch: { 5523 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 5524 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 5525 break; 5526 } 5527 5528 case Decl::LinkageSpec: 5529 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 5530 break; 5531 5532 case Decl::FileScopeAsm: { 5533 // File-scope asm is ignored during device-side CUDA compilation. 5534 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 5535 break; 5536 // File-scope asm is ignored during device-side OpenMP compilation. 5537 if (LangOpts.OpenMPIsDevice) 5538 break; 5539 auto *AD = cast<FileScopeAsmDecl>(D); 5540 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 5541 break; 5542 } 5543 5544 case Decl::Import: { 5545 auto *Import = cast<ImportDecl>(D); 5546 5547 // If we've already imported this module, we're done. 5548 if (!ImportedModules.insert(Import->getImportedModule())) 5549 break; 5550 5551 // Emit debug information for direct imports. 5552 if (!Import->getImportedOwningModule()) { 5553 if (CGDebugInfo *DI = getModuleDebugInfo()) 5554 DI->EmitImportDecl(*Import); 5555 } 5556 5557 // Find all of the submodules and emit the module initializers. 5558 llvm::SmallPtrSet<clang::Module *, 16> Visited; 5559 SmallVector<clang::Module *, 16> Stack; 5560 Visited.insert(Import->getImportedModule()); 5561 Stack.push_back(Import->getImportedModule()); 5562 5563 while (!Stack.empty()) { 5564 clang::Module *Mod = Stack.pop_back_val(); 5565 if (!EmittedModuleInitializers.insert(Mod).second) 5566 continue; 5567 5568 for (auto *D : Context.getModuleInitializers(Mod)) 5569 EmitTopLevelDecl(D); 5570 5571 // Visit the submodules of this module. 5572 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 5573 SubEnd = Mod->submodule_end(); 5574 Sub != SubEnd; ++Sub) { 5575 // Skip explicit children; they need to be explicitly imported to emit 5576 // the initializers. 5577 if ((*Sub)->IsExplicit) 5578 continue; 5579 5580 if (Visited.insert(*Sub).second) 5581 Stack.push_back(*Sub); 5582 } 5583 } 5584 break; 5585 } 5586 5587 case Decl::Export: 5588 EmitDeclContext(cast<ExportDecl>(D)); 5589 break; 5590 5591 case Decl::OMPThreadPrivate: 5592 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 5593 break; 5594 5595 case Decl::OMPAllocate: 5596 break; 5597 5598 case Decl::OMPDeclareReduction: 5599 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 5600 break; 5601 5602 case Decl::OMPDeclareMapper: 5603 EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D)); 5604 break; 5605 5606 case Decl::OMPRequires: 5607 EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D)); 5608 break; 5609 5610 case Decl::Typedef: 5611 case Decl::TypeAlias: // using foo = bar; [C++11] 5612 if (CGDebugInfo *DI = getModuleDebugInfo()) 5613 DI->EmitAndRetainType( 5614 getContext().getTypedefType(cast<TypedefNameDecl>(D))); 5615 break; 5616 5617 case Decl::Record: 5618 if (CGDebugInfo *DI = getModuleDebugInfo()) 5619 if (cast<RecordDecl>(D)->getDefinition()) 5620 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 5621 break; 5622 5623 case Decl::Enum: 5624 if (CGDebugInfo *DI = getModuleDebugInfo()) 5625 if (cast<EnumDecl>(D)->getDefinition()) 5626 DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D))); 5627 break; 5628 5629 default: 5630 // Make sure we handled everything we should, every other kind is a 5631 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 5632 // function. Need to recode Decl::Kind to do that easily. 5633 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 5634 break; 5635 } 5636 } 5637 5638 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 5639 // Do we need to generate coverage mapping? 5640 if (!CodeGenOpts.CoverageMapping) 5641 return; 5642 switch (D->getKind()) { 5643 case Decl::CXXConversion: 5644 case Decl::CXXMethod: 5645 case Decl::Function: 5646 case Decl::ObjCMethod: 5647 case Decl::CXXConstructor: 5648 case Decl::CXXDestructor: { 5649 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 5650 break; 5651 SourceManager &SM = getContext().getSourceManager(); 5652 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc())) 5653 break; 5654 auto I = DeferredEmptyCoverageMappingDecls.find(D); 5655 if (I == DeferredEmptyCoverageMappingDecls.end()) 5656 DeferredEmptyCoverageMappingDecls[D] = true; 5657 break; 5658 } 5659 default: 5660 break; 5661 }; 5662 } 5663 5664 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 5665 // Do we need to generate coverage mapping? 5666 if (!CodeGenOpts.CoverageMapping) 5667 return; 5668 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 5669 if (Fn->isTemplateInstantiation()) 5670 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 5671 } 5672 auto I = DeferredEmptyCoverageMappingDecls.find(D); 5673 if (I == DeferredEmptyCoverageMappingDecls.end()) 5674 DeferredEmptyCoverageMappingDecls[D] = false; 5675 else 5676 I->second = false; 5677 } 5678 5679 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 5680 // We call takeVector() here to avoid use-after-free. 5681 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 5682 // we deserialize function bodies to emit coverage info for them, and that 5683 // deserializes more declarations. How should we handle that case? 5684 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 5685 if (!Entry.second) 5686 continue; 5687 const Decl *D = Entry.first; 5688 switch (D->getKind()) { 5689 case Decl::CXXConversion: 5690 case Decl::CXXMethod: 5691 case Decl::Function: 5692 case Decl::ObjCMethod: { 5693 CodeGenPGO PGO(*this); 5694 GlobalDecl GD(cast<FunctionDecl>(D)); 5695 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5696 getFunctionLinkage(GD)); 5697 break; 5698 } 5699 case Decl::CXXConstructor: { 5700 CodeGenPGO PGO(*this); 5701 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 5702 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5703 getFunctionLinkage(GD)); 5704 break; 5705 } 5706 case Decl::CXXDestructor: { 5707 CodeGenPGO PGO(*this); 5708 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 5709 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5710 getFunctionLinkage(GD)); 5711 break; 5712 } 5713 default: 5714 break; 5715 }; 5716 } 5717 } 5718 5719 void CodeGenModule::EmitMainVoidAlias() { 5720 // In order to transition away from "__original_main" gracefully, emit an 5721 // alias for "main" in the no-argument case so that libc can detect when 5722 // new-style no-argument main is in used. 5723 if (llvm::Function *F = getModule().getFunction("main")) { 5724 if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() && 5725 F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) 5726 addUsedGlobal(llvm::GlobalAlias::create("__main_void", F)); 5727 } 5728 } 5729 5730 /// Turns the given pointer into a constant. 5731 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 5732 const void *Ptr) { 5733 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 5734 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 5735 return llvm::ConstantInt::get(i64, PtrInt); 5736 } 5737 5738 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 5739 llvm::NamedMDNode *&GlobalMetadata, 5740 GlobalDecl D, 5741 llvm::GlobalValue *Addr) { 5742 if (!GlobalMetadata) 5743 GlobalMetadata = 5744 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 5745 5746 // TODO: should we report variant information for ctors/dtors? 5747 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 5748 llvm::ConstantAsMetadata::get(GetPointerConstant( 5749 CGM.getLLVMContext(), D.getDecl()))}; 5750 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 5751 } 5752 5753 /// For each function which is declared within an extern "C" region and marked 5754 /// as 'used', but has internal linkage, create an alias from the unmangled 5755 /// name to the mangled name if possible. People expect to be able to refer 5756 /// to such functions with an unmangled name from inline assembly within the 5757 /// same translation unit. 5758 void CodeGenModule::EmitStaticExternCAliases() { 5759 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases()) 5760 return; 5761 for (auto &I : StaticExternCValues) { 5762 IdentifierInfo *Name = I.first; 5763 llvm::GlobalValue *Val = I.second; 5764 if (Val && !getModule().getNamedValue(Name->getName())) 5765 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 5766 } 5767 } 5768 5769 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 5770 GlobalDecl &Result) const { 5771 auto Res = Manglings.find(MangledName); 5772 if (Res == Manglings.end()) 5773 return false; 5774 Result = Res->getValue(); 5775 return true; 5776 } 5777 5778 /// Emits metadata nodes associating all the global values in the 5779 /// current module with the Decls they came from. This is useful for 5780 /// projects using IR gen as a subroutine. 5781 /// 5782 /// Since there's currently no way to associate an MDNode directly 5783 /// with an llvm::GlobalValue, we create a global named metadata 5784 /// with the name 'clang.global.decl.ptrs'. 5785 void CodeGenModule::EmitDeclMetadata() { 5786 llvm::NamedMDNode *GlobalMetadata = nullptr; 5787 5788 for (auto &I : MangledDeclNames) { 5789 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 5790 // Some mangled names don't necessarily have an associated GlobalValue 5791 // in this module, e.g. if we mangled it for DebugInfo. 5792 if (Addr) 5793 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 5794 } 5795 } 5796 5797 /// Emits metadata nodes for all the local variables in the current 5798 /// function. 5799 void CodeGenFunction::EmitDeclMetadata() { 5800 if (LocalDeclMap.empty()) return; 5801 5802 llvm::LLVMContext &Context = getLLVMContext(); 5803 5804 // Find the unique metadata ID for this name. 5805 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 5806 5807 llvm::NamedMDNode *GlobalMetadata = nullptr; 5808 5809 for (auto &I : LocalDeclMap) { 5810 const Decl *D = I.first; 5811 llvm::Value *Addr = I.second.getPointer(); 5812 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 5813 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 5814 Alloca->setMetadata( 5815 DeclPtrKind, llvm::MDNode::get( 5816 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 5817 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 5818 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 5819 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 5820 } 5821 } 5822 } 5823 5824 void CodeGenModule::EmitVersionIdentMetadata() { 5825 llvm::NamedMDNode *IdentMetadata = 5826 TheModule.getOrInsertNamedMetadata("llvm.ident"); 5827 std::string Version = getClangFullVersion(); 5828 llvm::LLVMContext &Ctx = TheModule.getContext(); 5829 5830 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 5831 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 5832 } 5833 5834 void CodeGenModule::EmitCommandLineMetadata() { 5835 llvm::NamedMDNode *CommandLineMetadata = 5836 TheModule.getOrInsertNamedMetadata("llvm.commandline"); 5837 std::string CommandLine = getCodeGenOpts().RecordCommandLine; 5838 llvm::LLVMContext &Ctx = TheModule.getContext(); 5839 5840 llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)}; 5841 CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode)); 5842 } 5843 5844 void CodeGenModule::EmitCoverageFile() { 5845 if (getCodeGenOpts().CoverageDataFile.empty() && 5846 getCodeGenOpts().CoverageNotesFile.empty()) 5847 return; 5848 5849 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 5850 if (!CUNode) 5851 return; 5852 5853 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 5854 llvm::LLVMContext &Ctx = TheModule.getContext(); 5855 auto *CoverageDataFile = 5856 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 5857 auto *CoverageNotesFile = 5858 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 5859 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 5860 llvm::MDNode *CU = CUNode->getOperand(i); 5861 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 5862 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 5863 } 5864 } 5865 5866 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 5867 bool ForEH) { 5868 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 5869 // FIXME: should we even be calling this method if RTTI is disabled 5870 // and it's not for EH? 5871 if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice || 5872 (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice && 5873 getTriple().isNVPTX())) 5874 return llvm::Constant::getNullValue(Int8PtrTy); 5875 5876 if (ForEH && Ty->isObjCObjectPointerType() && 5877 LangOpts.ObjCRuntime.isGNUFamily()) 5878 return ObjCRuntime->GetEHType(Ty); 5879 5880 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 5881 } 5882 5883 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 5884 // Do not emit threadprivates in simd-only mode. 5885 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 5886 return; 5887 for (auto RefExpr : D->varlists()) { 5888 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 5889 bool PerformInit = 5890 VD->getAnyInitializer() && 5891 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 5892 /*ForRef=*/false); 5893 5894 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 5895 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 5896 VD, Addr, RefExpr->getBeginLoc(), PerformInit)) 5897 CXXGlobalInits.push_back(InitFunction); 5898 } 5899 } 5900 5901 llvm::Metadata * 5902 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map, 5903 StringRef Suffix) { 5904 llvm::Metadata *&InternalId = Map[T.getCanonicalType()]; 5905 if (InternalId) 5906 return InternalId; 5907 5908 if (isExternallyVisible(T->getLinkage())) { 5909 std::string OutName; 5910 llvm::raw_string_ostream Out(OutName); 5911 getCXXABI().getMangleContext().mangleTypeName(T, Out); 5912 Out << Suffix; 5913 5914 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 5915 } else { 5916 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 5917 llvm::ArrayRef<llvm::Metadata *>()); 5918 } 5919 5920 return InternalId; 5921 } 5922 5923 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 5924 return CreateMetadataIdentifierImpl(T, MetadataIdMap, ""); 5925 } 5926 5927 llvm::Metadata * 5928 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) { 5929 return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual"); 5930 } 5931 5932 // Generalize pointer types to a void pointer with the qualifiers of the 5933 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 5934 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 5935 // 'void *'. 5936 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 5937 if (!Ty->isPointerType()) 5938 return Ty; 5939 5940 return Ctx.getPointerType( 5941 QualType(Ctx.VoidTy).withCVRQualifiers( 5942 Ty->getPointeeType().getCVRQualifiers())); 5943 } 5944 5945 // Apply type generalization to a FunctionType's return and argument types 5946 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 5947 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 5948 SmallVector<QualType, 8> GeneralizedParams; 5949 for (auto &Param : FnType->param_types()) 5950 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 5951 5952 return Ctx.getFunctionType( 5953 GeneralizeType(Ctx, FnType->getReturnType()), 5954 GeneralizedParams, FnType->getExtProtoInfo()); 5955 } 5956 5957 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 5958 return Ctx.getFunctionNoProtoType( 5959 GeneralizeType(Ctx, FnType->getReturnType())); 5960 5961 llvm_unreachable("Encountered unknown FunctionType"); 5962 } 5963 5964 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 5965 return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T), 5966 GeneralizedMetadataIdMap, ".generalized"); 5967 } 5968 5969 /// Returns whether this module needs the "all-vtables" type identifier. 5970 bool CodeGenModule::NeedAllVtablesTypeId() const { 5971 // Returns true if at least one of vtable-based CFI checkers is enabled and 5972 // is not in the trapping mode. 5973 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 5974 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 5975 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 5976 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 5977 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 5978 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 5979 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 5980 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 5981 } 5982 5983 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 5984 CharUnits Offset, 5985 const CXXRecordDecl *RD) { 5986 llvm::Metadata *MD = 5987 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 5988 VTable->addTypeMetadata(Offset.getQuantity(), MD); 5989 5990 if (CodeGenOpts.SanitizeCfiCrossDso) 5991 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 5992 VTable->addTypeMetadata(Offset.getQuantity(), 5993 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 5994 5995 if (NeedAllVtablesTypeId()) { 5996 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 5997 VTable->addTypeMetadata(Offset.getQuantity(), MD); 5998 } 5999 } 6000 6001 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 6002 if (!SanStats) 6003 SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule()); 6004 6005 return *SanStats; 6006 } 6007 llvm::Value * 6008 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 6009 CodeGenFunction &CGF) { 6010 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 6011 auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 6012 auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 6013 return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy, 6014 "__translate_sampler_initializer"), 6015 {C}); 6016 } 6017 6018 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment( 6019 QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) { 6020 return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo, 6021 /* forPointeeType= */ true); 6022 } 6023 6024 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T, 6025 LValueBaseInfo *BaseInfo, 6026 TBAAAccessInfo *TBAAInfo, 6027 bool forPointeeType) { 6028 if (TBAAInfo) 6029 *TBAAInfo = getTBAAAccessInfo(T); 6030 6031 // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But 6032 // that doesn't return the information we need to compute BaseInfo. 6033 6034 // Honor alignment typedef attributes even on incomplete types. 6035 // We also honor them straight for C++ class types, even as pointees; 6036 // there's an expressivity gap here. 6037 if (auto TT = T->getAs<TypedefType>()) { 6038 if (auto Align = TT->getDecl()->getMaxAlignment()) { 6039 if (BaseInfo) 6040 *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType); 6041 return getContext().toCharUnitsFromBits(Align); 6042 } 6043 } 6044 6045 bool AlignForArray = T->isArrayType(); 6046 6047 // Analyze the base element type, so we don't get confused by incomplete 6048 // array types. 6049 T = getContext().getBaseElementType(T); 6050 6051 if (T->isIncompleteType()) { 6052 // We could try to replicate the logic from 6053 // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the 6054 // type is incomplete, so it's impossible to test. We could try to reuse 6055 // getTypeAlignIfKnown, but that doesn't return the information we need 6056 // to set BaseInfo. So just ignore the possibility that the alignment is 6057 // greater than one. 6058 if (BaseInfo) 6059 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 6060 return CharUnits::One(); 6061 } 6062 6063 if (BaseInfo) 6064 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 6065 6066 CharUnits Alignment; 6067 // For C++ class pointees, we don't know whether we're pointing at a 6068 // base or a complete object, so we generally need to use the 6069 // non-virtual alignment. 6070 const CXXRecordDecl *RD; 6071 if (forPointeeType && !AlignForArray && (RD = T->getAsCXXRecordDecl())) { 6072 Alignment = getClassPointerAlignment(RD); 6073 } else { 6074 Alignment = getContext().getTypeAlignInChars(T); 6075 if (T.getQualifiers().hasUnaligned()) 6076 Alignment = CharUnits::One(); 6077 } 6078 6079 // Cap to the global maximum type alignment unless the alignment 6080 // was somehow explicit on the type. 6081 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 6082 if (Alignment.getQuantity() > MaxAlign && 6083 !getContext().isAlignmentRequired(T)) 6084 Alignment = CharUnits::fromQuantity(MaxAlign); 6085 } 6086 return Alignment; 6087 } 6088 6089 bool CodeGenModule::stopAutoInit() { 6090 unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter; 6091 if (StopAfter) { 6092 // This number is positive only when -ftrivial-auto-var-init-stop-after=* is 6093 // used 6094 if (NumAutoVarInit >= StopAfter) { 6095 return true; 6096 } 6097 if (!NumAutoVarInit) { 6098 unsigned DiagID = getDiags().getCustomDiagID( 6099 DiagnosticsEngine::Warning, 6100 "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the " 6101 "number of times ftrivial-auto-var-init=%1 gets applied."); 6102 getDiags().Report(DiagID) 6103 << StopAfter 6104 << (getContext().getLangOpts().getTrivialAutoVarInit() == 6105 LangOptions::TrivialAutoVarInitKind::Zero 6106 ? "zero" 6107 : "pattern"); 6108 } 6109 ++NumAutoVarInit; 6110 } 6111 return false; 6112 } 6113