1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-module state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenModule.h" 14 #include "CGBlocks.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCall.h" 18 #include "CGDebugInfo.h" 19 #include "CGObjCRuntime.h" 20 #include "CGOpenCLRuntime.h" 21 #include "CGOpenMPRuntime.h" 22 #include "CGOpenMPRuntimeGPU.h" 23 #include "CodeGenFunction.h" 24 #include "CodeGenPGO.h" 25 #include "ConstantEmitter.h" 26 #include "CoverageMappingGen.h" 27 #include "TargetInfo.h" 28 #include "clang/AST/ASTContext.h" 29 #include "clang/AST/CharUnits.h" 30 #include "clang/AST/DeclCXX.h" 31 #include "clang/AST/DeclObjC.h" 32 #include "clang/AST/DeclTemplate.h" 33 #include "clang/AST/Mangle.h" 34 #include "clang/AST/RecordLayout.h" 35 #include "clang/AST/RecursiveASTVisitor.h" 36 #include "clang/AST/StmtVisitor.h" 37 #include "clang/Basic/Builtins.h" 38 #include "clang/Basic/CharInfo.h" 39 #include "clang/Basic/CodeGenOptions.h" 40 #include "clang/Basic/Diagnostic.h" 41 #include "clang/Basic/FileManager.h" 42 #include "clang/Basic/Module.h" 43 #include "clang/Basic/SourceManager.h" 44 #include "clang/Basic/TargetInfo.h" 45 #include "clang/Basic/Version.h" 46 #include "clang/CodeGen/ConstantInitBuilder.h" 47 #include "clang/Frontend/FrontendDiagnostic.h" 48 #include "llvm/ADT/StringSwitch.h" 49 #include "llvm/ADT/Triple.h" 50 #include "llvm/Analysis/TargetLibraryInfo.h" 51 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 52 #include "llvm/IR/CallingConv.h" 53 #include "llvm/IR/DataLayout.h" 54 #include "llvm/IR/Intrinsics.h" 55 #include "llvm/IR/LLVMContext.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/IR/ProfileSummary.h" 58 #include "llvm/ProfileData/InstrProfReader.h" 59 #include "llvm/Support/CodeGen.h" 60 #include "llvm/Support/CommandLine.h" 61 #include "llvm/Support/ConvertUTF.h" 62 #include "llvm/Support/ErrorHandling.h" 63 #include "llvm/Support/MD5.h" 64 #include "llvm/Support/TimeProfiler.h" 65 #include "llvm/Support/X86TargetParser.h" 66 67 using namespace clang; 68 using namespace CodeGen; 69 70 static llvm::cl::opt<bool> LimitedCoverage( 71 "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden, 72 llvm::cl::desc("Emit limited coverage mapping information (experimental)"), 73 llvm::cl::init(false)); 74 75 static const char AnnotationSection[] = "llvm.metadata"; 76 77 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 78 switch (CGM.getContext().getCXXABIKind()) { 79 case TargetCXXABI::AppleARM64: 80 case TargetCXXABI::Fuchsia: 81 case TargetCXXABI::GenericAArch64: 82 case TargetCXXABI::GenericARM: 83 case TargetCXXABI::iOS: 84 case TargetCXXABI::WatchOS: 85 case TargetCXXABI::GenericMIPS: 86 case TargetCXXABI::GenericItanium: 87 case TargetCXXABI::WebAssembly: 88 case TargetCXXABI::XL: 89 return CreateItaniumCXXABI(CGM); 90 case TargetCXXABI::Microsoft: 91 return CreateMicrosoftCXXABI(CGM); 92 } 93 94 llvm_unreachable("invalid C++ ABI kind"); 95 } 96 97 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 98 const PreprocessorOptions &PPO, 99 const CodeGenOptions &CGO, llvm::Module &M, 100 DiagnosticsEngine &diags, 101 CoverageSourceInfo *CoverageInfo) 102 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 103 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 104 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 105 VMContext(M.getContext()), Types(*this), VTables(*this), 106 SanitizerMD(new SanitizerMetadata(*this)) { 107 108 // Initialize the type cache. 109 llvm::LLVMContext &LLVMContext = M.getContext(); 110 VoidTy = llvm::Type::getVoidTy(LLVMContext); 111 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 112 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 113 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 114 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 115 HalfTy = llvm::Type::getHalfTy(LLVMContext); 116 BFloatTy = llvm::Type::getBFloatTy(LLVMContext); 117 FloatTy = llvm::Type::getFloatTy(LLVMContext); 118 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 119 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 120 PointerAlignInBytes = 121 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 122 SizeSizeInBytes = 123 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 124 IntAlignInBytes = 125 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 126 CharTy = 127 llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth()); 128 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 129 IntPtrTy = llvm::IntegerType::get(LLVMContext, 130 C.getTargetInfo().getMaxPointerWidth()); 131 Int8PtrTy = Int8Ty->getPointerTo(0); 132 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 133 const llvm::DataLayout &DL = M.getDataLayout(); 134 AllocaInt8PtrTy = Int8Ty->getPointerTo(DL.getAllocaAddrSpace()); 135 GlobalsInt8PtrTy = Int8Ty->getPointerTo(DL.getDefaultGlobalsAddressSpace()); 136 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 137 138 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 139 140 if (LangOpts.ObjC) 141 createObjCRuntime(); 142 if (LangOpts.OpenCL) 143 createOpenCLRuntime(); 144 if (LangOpts.OpenMP) 145 createOpenMPRuntime(); 146 if (LangOpts.CUDA) 147 createCUDARuntime(); 148 149 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 150 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 151 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 152 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(), 153 getCXXABI().getMangleContext())); 154 155 // If debug info or coverage generation is enabled, create the CGDebugInfo 156 // object. 157 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 158 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 159 DebugInfo.reset(new CGDebugInfo(*this)); 160 161 Block.GlobalUniqueCount = 0; 162 163 if (C.getLangOpts().ObjC) 164 ObjCData.reset(new ObjCEntrypoints()); 165 166 if (CodeGenOpts.hasProfileClangUse()) { 167 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 168 CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile); 169 if (auto E = ReaderOrErr.takeError()) { 170 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 171 "Could not read profile %0: %1"); 172 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) { 173 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 174 << EI.message(); 175 }); 176 } else 177 PGOReader = std::move(ReaderOrErr.get()); 178 } 179 180 // If coverage mapping generation is enabled, create the 181 // CoverageMappingModuleGen object. 182 if (CodeGenOpts.CoverageMapping) 183 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 184 185 // Generate the module name hash here if needed. 186 if (CodeGenOpts.UniqueInternalLinkageNames && 187 !getModule().getSourceFileName().empty()) { 188 std::string Path = getModule().getSourceFileName(); 189 // Check if a path substitution is needed from the MacroPrefixMap. 190 for (const auto &Entry : LangOpts.MacroPrefixMap) 191 if (Path.rfind(Entry.first, 0) != std::string::npos) { 192 Path = Entry.second + Path.substr(Entry.first.size()); 193 break; 194 } 195 llvm::MD5 Md5; 196 Md5.update(Path); 197 llvm::MD5::MD5Result R; 198 Md5.final(R); 199 SmallString<32> Str; 200 llvm::MD5::stringifyResult(R, Str); 201 // Convert MD5hash to Decimal. Demangler suffixes can either contain 202 // numbers or characters but not both. 203 llvm::APInt IntHash(128, Str.str(), 16); 204 // Prepend "__uniq" before the hash for tools like profilers to understand 205 // that this symbol is of internal linkage type. The "__uniq" is the 206 // pre-determined prefix that is used to tell tools that this symbol was 207 // created with -funique-internal-linakge-symbols and the tools can strip or 208 // keep the prefix as needed. 209 ModuleNameHash = (Twine(".__uniq.") + 210 Twine(toString(IntHash, /* Radix = */ 10, /* Signed = */false))).str(); 211 } 212 } 213 214 CodeGenModule::~CodeGenModule() {} 215 216 void CodeGenModule::createObjCRuntime() { 217 // This is just isGNUFamily(), but we want to force implementors of 218 // new ABIs to decide how best to do this. 219 switch (LangOpts.ObjCRuntime.getKind()) { 220 case ObjCRuntime::GNUstep: 221 case ObjCRuntime::GCC: 222 case ObjCRuntime::ObjFW: 223 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 224 return; 225 226 case ObjCRuntime::FragileMacOSX: 227 case ObjCRuntime::MacOSX: 228 case ObjCRuntime::iOS: 229 case ObjCRuntime::WatchOS: 230 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 231 return; 232 } 233 llvm_unreachable("bad runtime kind"); 234 } 235 236 void CodeGenModule::createOpenCLRuntime() { 237 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 238 } 239 240 void CodeGenModule::createOpenMPRuntime() { 241 // Select a specialized code generation class based on the target, if any. 242 // If it does not exist use the default implementation. 243 switch (getTriple().getArch()) { 244 case llvm::Triple::nvptx: 245 case llvm::Triple::nvptx64: 246 case llvm::Triple::amdgcn: 247 assert(getLangOpts().OpenMPIsDevice && 248 "OpenMP AMDGPU/NVPTX is only prepared to deal with device code."); 249 OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this)); 250 break; 251 default: 252 if (LangOpts.OpenMPSimd) 253 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 254 else 255 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 256 break; 257 } 258 } 259 260 void CodeGenModule::createCUDARuntime() { 261 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 262 } 263 264 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 265 Replacements[Name] = C; 266 } 267 268 void CodeGenModule::applyReplacements() { 269 for (auto &I : Replacements) { 270 StringRef MangledName = I.first(); 271 llvm::Constant *Replacement = I.second; 272 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 273 if (!Entry) 274 continue; 275 auto *OldF = cast<llvm::Function>(Entry); 276 auto *NewF = dyn_cast<llvm::Function>(Replacement); 277 if (!NewF) { 278 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 279 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 280 } else { 281 auto *CE = cast<llvm::ConstantExpr>(Replacement); 282 assert(CE->getOpcode() == llvm::Instruction::BitCast || 283 CE->getOpcode() == llvm::Instruction::GetElementPtr); 284 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 285 } 286 } 287 288 // Replace old with new, but keep the old order. 289 OldF->replaceAllUsesWith(Replacement); 290 if (NewF) { 291 NewF->removeFromParent(); 292 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 293 NewF); 294 } 295 OldF->eraseFromParent(); 296 } 297 } 298 299 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 300 GlobalValReplacements.push_back(std::make_pair(GV, C)); 301 } 302 303 void CodeGenModule::applyGlobalValReplacements() { 304 for (auto &I : GlobalValReplacements) { 305 llvm::GlobalValue *GV = I.first; 306 llvm::Constant *C = I.second; 307 308 GV->replaceAllUsesWith(C); 309 GV->eraseFromParent(); 310 } 311 } 312 313 // This is only used in aliases that we created and we know they have a 314 // linear structure. 315 static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) { 316 const llvm::Constant *C; 317 if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV)) 318 C = GA->getAliasee(); 319 else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV)) 320 C = GI->getResolver(); 321 else 322 return GV; 323 324 const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts()); 325 if (!AliaseeGV) 326 return nullptr; 327 328 const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject(); 329 if (FinalGV == GV) 330 return nullptr; 331 332 return FinalGV; 333 } 334 335 static bool checkAliasedGlobal(DiagnosticsEngine &Diags, 336 SourceLocation Location, bool IsIFunc, 337 const llvm::GlobalValue *Alias, 338 const llvm::GlobalValue *&GV) { 339 GV = getAliasedGlobal(Alias); 340 if (!GV) { 341 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 342 return false; 343 } 344 345 if (GV->isDeclaration()) { 346 Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc; 347 return false; 348 } 349 350 if (IsIFunc) { 351 // Check resolver function type. 352 const auto *F = dyn_cast<llvm::Function>(GV); 353 if (!F) { 354 Diags.Report(Location, diag::err_alias_to_undefined) 355 << IsIFunc << IsIFunc; 356 return false; 357 } 358 359 llvm::FunctionType *FTy = F->getFunctionType(); 360 if (!FTy->getReturnType()->isPointerTy()) { 361 Diags.Report(Location, diag::err_ifunc_resolver_return); 362 return false; 363 } 364 } 365 366 return true; 367 } 368 369 void CodeGenModule::checkAliases() { 370 // Check if the constructed aliases are well formed. It is really unfortunate 371 // that we have to do this in CodeGen, but we only construct mangled names 372 // and aliases during codegen. 373 bool Error = false; 374 DiagnosticsEngine &Diags = getDiags(); 375 for (const GlobalDecl &GD : Aliases) { 376 const auto *D = cast<ValueDecl>(GD.getDecl()); 377 SourceLocation Location; 378 bool IsIFunc = D->hasAttr<IFuncAttr>(); 379 if (const Attr *A = D->getDefiningAttr()) 380 Location = A->getLocation(); 381 else 382 llvm_unreachable("Not an alias or ifunc?"); 383 384 StringRef MangledName = getMangledName(GD); 385 llvm::GlobalValue *Alias = GetGlobalValue(MangledName); 386 const llvm::GlobalValue *GV = nullptr; 387 if (!checkAliasedGlobal(Diags, Location, IsIFunc, Alias, GV)) { 388 Error = true; 389 continue; 390 } 391 392 llvm::Constant *Aliasee = 393 IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver() 394 : cast<llvm::GlobalAlias>(Alias)->getAliasee(); 395 396 llvm::GlobalValue *AliaseeGV; 397 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 398 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 399 else 400 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 401 402 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 403 StringRef AliasSection = SA->getName(); 404 if (AliasSection != AliaseeGV->getSection()) 405 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 406 << AliasSection << IsIFunc << IsIFunc; 407 } 408 409 // We have to handle alias to weak aliases in here. LLVM itself disallows 410 // this since the object semantics would not match the IL one. For 411 // compatibility with gcc we implement it by just pointing the alias 412 // to its aliasee's aliasee. We also warn, since the user is probably 413 // expecting the link to be weak. 414 if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) { 415 if (GA->isInterposable()) { 416 Diags.Report(Location, diag::warn_alias_to_weak_alias) 417 << GV->getName() << GA->getName() << IsIFunc; 418 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 419 GA->getAliasee(), Alias->getType()); 420 421 if (IsIFunc) 422 cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee); 423 else 424 cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee); 425 } 426 } 427 } 428 if (!Error) 429 return; 430 431 for (const GlobalDecl &GD : Aliases) { 432 StringRef MangledName = getMangledName(GD); 433 llvm::GlobalValue *Alias = GetGlobalValue(MangledName); 434 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 435 Alias->eraseFromParent(); 436 } 437 } 438 439 void CodeGenModule::clear() { 440 DeferredDeclsToEmit.clear(); 441 if (OpenMPRuntime) 442 OpenMPRuntime->clear(); 443 } 444 445 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 446 StringRef MainFile) { 447 if (!hasDiagnostics()) 448 return; 449 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 450 if (MainFile.empty()) 451 MainFile = "<stdin>"; 452 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 453 } else { 454 if (Mismatched > 0) 455 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 456 457 if (Missing > 0) 458 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 459 } 460 } 461 462 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO, 463 llvm::Module &M) { 464 if (!LO.VisibilityFromDLLStorageClass) 465 return; 466 467 llvm::GlobalValue::VisibilityTypes DLLExportVisibility = 468 CodeGenModule::GetLLVMVisibility(LO.getDLLExportVisibility()); 469 llvm::GlobalValue::VisibilityTypes NoDLLStorageClassVisibility = 470 CodeGenModule::GetLLVMVisibility(LO.getNoDLLStorageClassVisibility()); 471 llvm::GlobalValue::VisibilityTypes ExternDeclDLLImportVisibility = 472 CodeGenModule::GetLLVMVisibility(LO.getExternDeclDLLImportVisibility()); 473 llvm::GlobalValue::VisibilityTypes ExternDeclNoDLLStorageClassVisibility = 474 CodeGenModule::GetLLVMVisibility( 475 LO.getExternDeclNoDLLStorageClassVisibility()); 476 477 for (llvm::GlobalValue &GV : M.global_values()) { 478 if (GV.hasAppendingLinkage() || GV.hasLocalLinkage()) 479 continue; 480 481 // Reset DSO locality before setting the visibility. This removes 482 // any effects that visibility options and annotations may have 483 // had on the DSO locality. Setting the visibility will implicitly set 484 // appropriate globals to DSO Local; however, this will be pessimistic 485 // w.r.t. to the normal compiler IRGen. 486 GV.setDSOLocal(false); 487 488 if (GV.isDeclarationForLinker()) { 489 GV.setVisibility(GV.getDLLStorageClass() == 490 llvm::GlobalValue::DLLImportStorageClass 491 ? ExternDeclDLLImportVisibility 492 : ExternDeclNoDLLStorageClassVisibility); 493 } else { 494 GV.setVisibility(GV.getDLLStorageClass() == 495 llvm::GlobalValue::DLLExportStorageClass 496 ? DLLExportVisibility 497 : NoDLLStorageClassVisibility); 498 } 499 500 GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 501 } 502 } 503 504 void CodeGenModule::Release() { 505 EmitDeferred(); 506 EmitVTablesOpportunistically(); 507 applyGlobalValReplacements(); 508 applyReplacements(); 509 checkAliases(); 510 emitMultiVersionFunctions(); 511 EmitCXXGlobalInitFunc(); 512 EmitCXXGlobalCleanUpFunc(); 513 registerGlobalDtorsWithAtExit(); 514 EmitCXXThreadLocalInitFunc(); 515 if (ObjCRuntime) 516 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 517 AddGlobalCtor(ObjCInitFunction); 518 if (Context.getLangOpts().CUDA && CUDARuntime) { 519 if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule()) 520 AddGlobalCtor(CudaCtorFunction); 521 } 522 if (OpenMPRuntime) { 523 if (llvm::Function *OpenMPRequiresDirectiveRegFun = 524 OpenMPRuntime->emitRequiresDirectiveRegFun()) { 525 AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0); 526 } 527 OpenMPRuntime->createOffloadEntriesAndInfoMetadata(); 528 OpenMPRuntime->clear(); 529 } 530 if (PGOReader) { 531 getModule().setProfileSummary( 532 PGOReader->getSummary(/* UseCS */ false).getMD(VMContext), 533 llvm::ProfileSummary::PSK_Instr); 534 if (PGOStats.hasDiagnostics()) 535 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 536 } 537 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 538 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 539 EmitGlobalAnnotations(); 540 EmitStaticExternCAliases(); 541 EmitDeferredUnusedCoverageMappings(); 542 CodeGenPGO(*this).setValueProfilingFlag(getModule()); 543 if (CoverageMapping) 544 CoverageMapping->emit(); 545 if (CodeGenOpts.SanitizeCfiCrossDso) { 546 CodeGenFunction(*this).EmitCfiCheckFail(); 547 CodeGenFunction(*this).EmitCfiCheckStub(); 548 } 549 emitAtAvailableLinkGuard(); 550 if (Context.getTargetInfo().getTriple().isWasm() && 551 !Context.getTargetInfo().getTriple().isOSEmscripten()) { 552 EmitMainVoidAlias(); 553 } 554 555 // Emit reference of __amdgpu_device_library_preserve_asan_functions to 556 // preserve ASAN functions in bitcode libraries. 557 if (LangOpts.Sanitize.has(SanitizerKind::Address) && getTriple().isAMDGPU()) { 558 auto *FT = llvm::FunctionType::get(VoidTy, {}); 559 auto *F = llvm::Function::Create( 560 FT, llvm::GlobalValue::ExternalLinkage, 561 "__amdgpu_device_library_preserve_asan_functions", &getModule()); 562 auto *Var = new llvm::GlobalVariable( 563 getModule(), FT->getPointerTo(), 564 /*isConstant=*/true, llvm::GlobalValue::WeakAnyLinkage, F, 565 "__amdgpu_device_library_preserve_asan_functions_ptr", nullptr, 566 llvm::GlobalVariable::NotThreadLocal); 567 addCompilerUsedGlobal(Var); 568 getModule().addModuleFlag(llvm::Module::Override, "amdgpu_hostcall", 1); 569 } 570 571 emitLLVMUsed(); 572 if (SanStats) 573 SanStats->finish(); 574 575 if (CodeGenOpts.Autolink && 576 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 577 EmitModuleLinkOptions(); 578 } 579 580 // On ELF we pass the dependent library specifiers directly to the linker 581 // without manipulating them. This is in contrast to other platforms where 582 // they are mapped to a specific linker option by the compiler. This 583 // difference is a result of the greater variety of ELF linkers and the fact 584 // that ELF linkers tend to handle libraries in a more complicated fashion 585 // than on other platforms. This forces us to defer handling the dependent 586 // libs to the linker. 587 // 588 // CUDA/HIP device and host libraries are different. Currently there is no 589 // way to differentiate dependent libraries for host or device. Existing 590 // usage of #pragma comment(lib, *) is intended for host libraries on 591 // Windows. Therefore emit llvm.dependent-libraries only for host. 592 if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) { 593 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries"); 594 for (auto *MD : ELFDependentLibraries) 595 NMD->addOperand(MD); 596 } 597 598 // Record mregparm value now so it is visible through rest of codegen. 599 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 600 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 601 CodeGenOpts.NumRegisterParameters); 602 603 if (CodeGenOpts.DwarfVersion) { 604 getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version", 605 CodeGenOpts.DwarfVersion); 606 } 607 608 if (CodeGenOpts.Dwarf64) 609 getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1); 610 611 if (Context.getLangOpts().SemanticInterposition) 612 // Require various optimization to respect semantic interposition. 613 getModule().setSemanticInterposition(true); 614 615 if (CodeGenOpts.EmitCodeView) { 616 // Indicate that we want CodeView in the metadata. 617 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 618 } 619 if (CodeGenOpts.CodeViewGHash) { 620 getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1); 621 } 622 if (CodeGenOpts.ControlFlowGuard) { 623 // Function ID tables and checks for Control Flow Guard (cfguard=2). 624 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2); 625 } else if (CodeGenOpts.ControlFlowGuardNoChecks) { 626 // Function ID tables for Control Flow Guard (cfguard=1). 627 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1); 628 } 629 if (CodeGenOpts.EHContGuard) { 630 // Function ID tables for EH Continuation Guard. 631 getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1); 632 } 633 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 634 // We don't support LTO with 2 with different StrictVTablePointers 635 // FIXME: we could support it by stripping all the information introduced 636 // by StrictVTablePointers. 637 638 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 639 640 llvm::Metadata *Ops[2] = { 641 llvm::MDString::get(VMContext, "StrictVTablePointers"), 642 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 643 llvm::Type::getInt32Ty(VMContext), 1))}; 644 645 getModule().addModuleFlag(llvm::Module::Require, 646 "StrictVTablePointersRequirement", 647 llvm::MDNode::get(VMContext, Ops)); 648 } 649 if (getModuleDebugInfo()) 650 // We support a single version in the linked module. The LLVM 651 // parser will drop debug info with a different version number 652 // (and warn about it, too). 653 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 654 llvm::DEBUG_METADATA_VERSION); 655 656 // We need to record the widths of enums and wchar_t, so that we can generate 657 // the correct build attributes in the ARM backend. wchar_size is also used by 658 // TargetLibraryInfo. 659 uint64_t WCharWidth = 660 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 661 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 662 663 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 664 if ( Arch == llvm::Triple::arm 665 || Arch == llvm::Triple::armeb 666 || Arch == llvm::Triple::thumb 667 || Arch == llvm::Triple::thumbeb) { 668 // The minimum width of an enum in bytes 669 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 670 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 671 } 672 673 if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) { 674 StringRef ABIStr = Target.getABI(); 675 llvm::LLVMContext &Ctx = TheModule.getContext(); 676 getModule().addModuleFlag(llvm::Module::Error, "target-abi", 677 llvm::MDString::get(Ctx, ABIStr)); 678 } 679 680 if (CodeGenOpts.SanitizeCfiCrossDso) { 681 // Indicate that we want cross-DSO control flow integrity checks. 682 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 683 } 684 685 if (CodeGenOpts.WholeProgramVTables) { 686 // Indicate whether VFE was enabled for this module, so that the 687 // vcall_visibility metadata added under whole program vtables is handled 688 // appropriately in the optimizer. 689 getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim", 690 CodeGenOpts.VirtualFunctionElimination); 691 } 692 693 if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) { 694 getModule().addModuleFlag(llvm::Module::Override, 695 "CFI Canonical Jump Tables", 696 CodeGenOpts.SanitizeCfiCanonicalJumpTables); 697 } 698 699 if (CodeGenOpts.CFProtectionReturn && 700 Target.checkCFProtectionReturnSupported(getDiags())) { 701 // Indicate that we want to instrument return control flow protection. 702 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return", 703 1); 704 } 705 706 if (CodeGenOpts.CFProtectionBranch && 707 Target.checkCFProtectionBranchSupported(getDiags())) { 708 // Indicate that we want to instrument branch control flow protection. 709 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch", 710 1); 711 } 712 713 // Add module metadata for return address signing (ignoring 714 // non-leaf/all) and stack tagging. These are actually turned on by function 715 // attributes, but we use module metadata to emit build attributes. This is 716 // needed for LTO, where the function attributes are inside bitcode 717 // serialised into a global variable by the time build attributes are 718 // emitted, so we can't access them. 719 if (Context.getTargetInfo().hasFeature("ptrauth") && 720 LangOpts.getSignReturnAddressScope() != 721 LangOptions::SignReturnAddressScopeKind::None) 722 getModule().addModuleFlag(llvm::Module::Override, 723 "sign-return-address-buildattr", 1); 724 if (LangOpts.Sanitize.has(SanitizerKind::MemTag)) 725 getModule().addModuleFlag(llvm::Module::Override, 726 "tag-stack-memory-buildattr", 1); 727 728 if (Arch == llvm::Triple::thumb || Arch == llvm::Triple::thumbeb || 729 Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 || 730 Arch == llvm::Triple::aarch64_be) { 731 getModule().addModuleFlag(llvm::Module::Error, "branch-target-enforcement", 732 LangOpts.BranchTargetEnforcement); 733 734 getModule().addModuleFlag(llvm::Module::Error, "sign-return-address", 735 LangOpts.hasSignReturnAddress()); 736 737 getModule().addModuleFlag(llvm::Module::Error, "sign-return-address-all", 738 LangOpts.isSignReturnAddressScopeAll()); 739 740 if (Arch != llvm::Triple::thumb && Arch != llvm::Triple::thumbeb) { 741 getModule().addModuleFlag(llvm::Module::Error, 742 "sign-return-address-with-bkey", 743 !LangOpts.isSignReturnAddressWithAKey()); 744 } 745 } 746 747 if (!CodeGenOpts.MemoryProfileOutput.empty()) { 748 llvm::LLVMContext &Ctx = TheModule.getContext(); 749 getModule().addModuleFlag( 750 llvm::Module::Error, "MemProfProfileFilename", 751 llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput)); 752 } 753 754 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 755 // Indicate whether __nvvm_reflect should be configured to flush denormal 756 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 757 // property.) 758 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 759 CodeGenOpts.FP32DenormalMode.Output != 760 llvm::DenormalMode::IEEE); 761 } 762 763 if (LangOpts.EHAsynch) 764 getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1); 765 766 // Indicate whether this Module was compiled with -fopenmp 767 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 768 getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP); 769 if (getLangOpts().OpenMPIsDevice) 770 getModule().addModuleFlag(llvm::Module::Max, "openmp-device", 771 LangOpts.OpenMP); 772 773 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 774 if (LangOpts.OpenCL) { 775 EmitOpenCLMetadata(); 776 // Emit SPIR version. 777 if (getTriple().isSPIR()) { 778 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 779 // opencl.spir.version named metadata. 780 // C++ for OpenCL has a distinct mapping for version compatibility with 781 // OpenCL. 782 auto Version = LangOpts.getOpenCLCompatibleVersion(); 783 llvm::Metadata *SPIRVerElts[] = { 784 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 785 Int32Ty, Version / 100)), 786 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 787 Int32Ty, (Version / 100 > 1) ? 0 : 2))}; 788 llvm::NamedMDNode *SPIRVerMD = 789 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 790 llvm::LLVMContext &Ctx = TheModule.getContext(); 791 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 792 } 793 } 794 795 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 796 assert(PLevel < 3 && "Invalid PIC Level"); 797 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 798 if (Context.getLangOpts().PIE) 799 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 800 } 801 802 if (getCodeGenOpts().CodeModel.size() > 0) { 803 unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel) 804 .Case("tiny", llvm::CodeModel::Tiny) 805 .Case("small", llvm::CodeModel::Small) 806 .Case("kernel", llvm::CodeModel::Kernel) 807 .Case("medium", llvm::CodeModel::Medium) 808 .Case("large", llvm::CodeModel::Large) 809 .Default(~0u); 810 if (CM != ~0u) { 811 llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM); 812 getModule().setCodeModel(codeModel); 813 } 814 } 815 816 if (CodeGenOpts.NoPLT) 817 getModule().setRtLibUseGOT(); 818 if (CodeGenOpts.UnwindTables) 819 getModule().setUwtable(); 820 821 switch (CodeGenOpts.getFramePointer()) { 822 case CodeGenOptions::FramePointerKind::None: 823 // 0 ("none") is the default. 824 break; 825 case CodeGenOptions::FramePointerKind::NonLeaf: 826 getModule().setFramePointer(llvm::FramePointerKind::NonLeaf); 827 break; 828 case CodeGenOptions::FramePointerKind::All: 829 getModule().setFramePointer(llvm::FramePointerKind::All); 830 break; 831 } 832 833 SimplifyPersonality(); 834 835 if (getCodeGenOpts().EmitDeclMetadata) 836 EmitDeclMetadata(); 837 838 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 839 EmitCoverageFile(); 840 841 if (CGDebugInfo *DI = getModuleDebugInfo()) 842 DI->finalize(); 843 844 if (getCodeGenOpts().EmitVersionIdentMetadata) 845 EmitVersionIdentMetadata(); 846 847 if (!getCodeGenOpts().RecordCommandLine.empty()) 848 EmitCommandLineMetadata(); 849 850 if (!getCodeGenOpts().StackProtectorGuard.empty()) 851 getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard); 852 if (!getCodeGenOpts().StackProtectorGuardReg.empty()) 853 getModule().setStackProtectorGuardReg( 854 getCodeGenOpts().StackProtectorGuardReg); 855 if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX) 856 getModule().setStackProtectorGuardOffset( 857 getCodeGenOpts().StackProtectorGuardOffset); 858 if (getCodeGenOpts().StackAlignment) 859 getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment); 860 if (getCodeGenOpts().SkipRaxSetup) 861 getModule().addModuleFlag(llvm::Module::Override, "SkipRaxSetup", 1); 862 863 getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames); 864 865 EmitBackendOptionsMetadata(getCodeGenOpts()); 866 867 // Set visibility from DLL storage class 868 // We do this at the end of LLVM IR generation; after any operation 869 // that might affect the DLL storage class or the visibility, and 870 // before anything that might act on these. 871 setVisibilityFromDLLStorageClass(LangOpts, getModule()); 872 } 873 874 void CodeGenModule::EmitOpenCLMetadata() { 875 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 876 // opencl.ocl.version named metadata node. 877 // C++ for OpenCL has a distinct mapping for versions compatibile with OpenCL. 878 auto Version = LangOpts.getOpenCLCompatibleVersion(); 879 llvm::Metadata *OCLVerElts[] = { 880 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 881 Int32Ty, Version / 100)), 882 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 883 Int32Ty, (Version % 100) / 10))}; 884 llvm::NamedMDNode *OCLVerMD = 885 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 886 llvm::LLVMContext &Ctx = TheModule.getContext(); 887 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 888 } 889 890 void CodeGenModule::EmitBackendOptionsMetadata( 891 const CodeGenOptions CodeGenOpts) { 892 switch (getTriple().getArch()) { 893 default: 894 break; 895 case llvm::Triple::riscv32: 896 case llvm::Triple::riscv64: 897 getModule().addModuleFlag(llvm::Module::Error, "SmallDataLimit", 898 CodeGenOpts.SmallDataLimit); 899 break; 900 } 901 } 902 903 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 904 // Make sure that this type is translated. 905 Types.UpdateCompletedType(TD); 906 } 907 908 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 909 // Make sure that this type is translated. 910 Types.RefreshTypeCacheForClass(RD); 911 } 912 913 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 914 if (!TBAA) 915 return nullptr; 916 return TBAA->getTypeInfo(QTy); 917 } 918 919 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 920 if (!TBAA) 921 return TBAAAccessInfo(); 922 if (getLangOpts().CUDAIsDevice) { 923 // As CUDA builtin surface/texture types are replaced, skip generating TBAA 924 // access info. 925 if (AccessType->isCUDADeviceBuiltinSurfaceType()) { 926 if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() != 927 nullptr) 928 return TBAAAccessInfo(); 929 } else if (AccessType->isCUDADeviceBuiltinTextureType()) { 930 if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() != 931 nullptr) 932 return TBAAAccessInfo(); 933 } 934 } 935 return TBAA->getAccessInfo(AccessType); 936 } 937 938 TBAAAccessInfo 939 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 940 if (!TBAA) 941 return TBAAAccessInfo(); 942 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 943 } 944 945 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 946 if (!TBAA) 947 return nullptr; 948 return TBAA->getTBAAStructInfo(QTy); 949 } 950 951 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 952 if (!TBAA) 953 return nullptr; 954 return TBAA->getBaseTypeInfo(QTy); 955 } 956 957 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 958 if (!TBAA) 959 return nullptr; 960 return TBAA->getAccessTagInfo(Info); 961 } 962 963 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 964 TBAAAccessInfo TargetInfo) { 965 if (!TBAA) 966 return TBAAAccessInfo(); 967 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 968 } 969 970 TBAAAccessInfo 971 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 972 TBAAAccessInfo InfoB) { 973 if (!TBAA) 974 return TBAAAccessInfo(); 975 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 976 } 977 978 TBAAAccessInfo 979 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, 980 TBAAAccessInfo SrcInfo) { 981 if (!TBAA) 982 return TBAAAccessInfo(); 983 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); 984 } 985 986 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 987 TBAAAccessInfo TBAAInfo) { 988 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 989 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 990 } 991 992 void CodeGenModule::DecorateInstructionWithInvariantGroup( 993 llvm::Instruction *I, const CXXRecordDecl *RD) { 994 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 995 llvm::MDNode::get(getLLVMContext(), {})); 996 } 997 998 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 999 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 1000 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 1001 } 1002 1003 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1004 /// specified stmt yet. 1005 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 1006 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 1007 "cannot compile this %0 yet"); 1008 std::string Msg = Type; 1009 getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID) 1010 << Msg << S->getSourceRange(); 1011 } 1012 1013 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1014 /// specified decl yet. 1015 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 1016 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 1017 "cannot compile this %0 yet"); 1018 std::string Msg = Type; 1019 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 1020 } 1021 1022 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 1023 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 1024 } 1025 1026 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 1027 const NamedDecl *D) const { 1028 if (GV->hasDLLImportStorageClass()) 1029 return; 1030 // Internal definitions always have default visibility. 1031 if (GV->hasLocalLinkage()) { 1032 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1033 return; 1034 } 1035 if (!D) 1036 return; 1037 // Set visibility for definitions, and for declarations if requested globally 1038 // or set explicitly. 1039 LinkageInfo LV = D->getLinkageAndVisibility(); 1040 if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls || 1041 !GV->isDeclarationForLinker()) 1042 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 1043 } 1044 1045 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, 1046 llvm::GlobalValue *GV) { 1047 if (GV->hasLocalLinkage()) 1048 return true; 1049 1050 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()) 1051 return true; 1052 1053 // DLLImport explicitly marks the GV as external. 1054 if (GV->hasDLLImportStorageClass()) 1055 return false; 1056 1057 const llvm::Triple &TT = CGM.getTriple(); 1058 if (TT.isWindowsGNUEnvironment()) { 1059 // In MinGW, variables without DLLImport can still be automatically 1060 // imported from a DLL by the linker; don't mark variables that 1061 // potentially could come from another DLL as DSO local. 1062 1063 // With EmulatedTLS, TLS variables can be autoimported from other DLLs 1064 // (and this actually happens in the public interface of libstdc++), so 1065 // such variables can't be marked as DSO local. (Native TLS variables 1066 // can't be dllimported at all, though.) 1067 if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) && 1068 (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS)) 1069 return false; 1070 } 1071 1072 // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols 1073 // remain unresolved in the link, they can be resolved to zero, which is 1074 // outside the current DSO. 1075 if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage()) 1076 return false; 1077 1078 // Every other GV is local on COFF. 1079 // Make an exception for windows OS in the triple: Some firmware builds use 1080 // *-win32-macho triples. This (accidentally?) produced windows relocations 1081 // without GOT tables in older clang versions; Keep this behaviour. 1082 // FIXME: even thread local variables? 1083 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) 1084 return true; 1085 1086 // Only handle COFF and ELF for now. 1087 if (!TT.isOSBinFormatELF()) 1088 return false; 1089 1090 // If this is not an executable, don't assume anything is local. 1091 const auto &CGOpts = CGM.getCodeGenOpts(); 1092 llvm::Reloc::Model RM = CGOpts.RelocationModel; 1093 const auto &LOpts = CGM.getLangOpts(); 1094 if (RM != llvm::Reloc::Static && !LOpts.PIE) { 1095 // On ELF, if -fno-semantic-interposition is specified and the target 1096 // supports local aliases, there will be neither CC1 1097 // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set 1098 // dso_local on the function if using a local alias is preferable (can avoid 1099 // PLT indirection). 1100 if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias())) 1101 return false; 1102 return !(CGM.getLangOpts().SemanticInterposition || 1103 CGM.getLangOpts().HalfNoSemanticInterposition); 1104 } 1105 1106 // A definition cannot be preempted from an executable. 1107 if (!GV->isDeclarationForLinker()) 1108 return true; 1109 1110 // Most PIC code sequences that assume that a symbol is local cannot produce a 1111 // 0 if it turns out the symbol is undefined. While this is ABI and relocation 1112 // depended, it seems worth it to handle it here. 1113 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) 1114 return false; 1115 1116 // PowerPC64 prefers TOC indirection to avoid copy relocations. 1117 if (TT.isPPC64()) 1118 return false; 1119 1120 if (CGOpts.DirectAccessExternalData) { 1121 // If -fdirect-access-external-data (default for -fno-pic), set dso_local 1122 // for non-thread-local variables. If the symbol is not defined in the 1123 // executable, a copy relocation will be needed at link time. dso_local is 1124 // excluded for thread-local variables because they generally don't support 1125 // copy relocations. 1126 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV)) 1127 if (!Var->isThreadLocal()) 1128 return true; 1129 1130 // -fno-pic sets dso_local on a function declaration to allow direct 1131 // accesses when taking its address (similar to a data symbol). If the 1132 // function is not defined in the executable, a canonical PLT entry will be 1133 // needed at link time. -fno-direct-access-external-data can avoid the 1134 // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as 1135 // it could just cause trouble without providing perceptible benefits. 1136 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) 1137 return true; 1138 } 1139 1140 // If we can use copy relocations we can assume it is local. 1141 1142 // Otherwise don't assume it is local. 1143 return false; 1144 } 1145 1146 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { 1147 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV)); 1148 } 1149 1150 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1151 GlobalDecl GD) const { 1152 const auto *D = dyn_cast<NamedDecl>(GD.getDecl()); 1153 // C++ destructors have a few C++ ABI specific special cases. 1154 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) { 1155 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType()); 1156 return; 1157 } 1158 setDLLImportDLLExport(GV, D); 1159 } 1160 1161 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1162 const NamedDecl *D) const { 1163 if (D && D->isExternallyVisible()) { 1164 if (D->hasAttr<DLLImportAttr>()) 1165 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 1166 else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker()) 1167 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 1168 } 1169 } 1170 1171 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1172 GlobalDecl GD) const { 1173 setDLLImportDLLExport(GV, GD); 1174 setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl())); 1175 } 1176 1177 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1178 const NamedDecl *D) const { 1179 setDLLImportDLLExport(GV, D); 1180 setGVPropertiesAux(GV, D); 1181 } 1182 1183 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV, 1184 const NamedDecl *D) const { 1185 setGlobalVisibility(GV, D); 1186 setDSOLocal(GV); 1187 GV->setPartition(CodeGenOpts.SymbolPartition); 1188 } 1189 1190 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 1191 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 1192 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 1193 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 1194 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 1195 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 1196 } 1197 1198 llvm::GlobalVariable::ThreadLocalMode 1199 CodeGenModule::GetDefaultLLVMTLSModel() const { 1200 switch (CodeGenOpts.getDefaultTLSModel()) { 1201 case CodeGenOptions::GeneralDynamicTLSModel: 1202 return llvm::GlobalVariable::GeneralDynamicTLSModel; 1203 case CodeGenOptions::LocalDynamicTLSModel: 1204 return llvm::GlobalVariable::LocalDynamicTLSModel; 1205 case CodeGenOptions::InitialExecTLSModel: 1206 return llvm::GlobalVariable::InitialExecTLSModel; 1207 case CodeGenOptions::LocalExecTLSModel: 1208 return llvm::GlobalVariable::LocalExecTLSModel; 1209 } 1210 llvm_unreachable("Invalid TLS model!"); 1211 } 1212 1213 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 1214 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 1215 1216 llvm::GlobalValue::ThreadLocalMode TLM; 1217 TLM = GetDefaultLLVMTLSModel(); 1218 1219 // Override the TLS model if it is explicitly specified. 1220 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 1221 TLM = GetLLVMTLSModel(Attr->getModel()); 1222 } 1223 1224 GV->setThreadLocalMode(TLM); 1225 } 1226 1227 static std::string getCPUSpecificMangling(const CodeGenModule &CGM, 1228 StringRef Name) { 1229 const TargetInfo &Target = CGM.getTarget(); 1230 return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str(); 1231 } 1232 1233 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM, 1234 const CPUSpecificAttr *Attr, 1235 unsigned CPUIndex, 1236 raw_ostream &Out) { 1237 // cpu_specific gets the current name, dispatch gets the resolver if IFunc is 1238 // supported. 1239 if (Attr) 1240 Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName()); 1241 else if (CGM.getTarget().supportsIFunc()) 1242 Out << ".resolver"; 1243 } 1244 1245 static void AppendTargetMangling(const CodeGenModule &CGM, 1246 const TargetAttr *Attr, raw_ostream &Out) { 1247 if (Attr->isDefaultVersion()) 1248 return; 1249 1250 Out << '.'; 1251 const TargetInfo &Target = CGM.getTarget(); 1252 ParsedTargetAttr Info = 1253 Attr->parse([&Target](StringRef LHS, StringRef RHS) { 1254 // Multiversioning doesn't allow "no-${feature}", so we can 1255 // only have "+" prefixes here. 1256 assert(LHS.startswith("+") && RHS.startswith("+") && 1257 "Features should always have a prefix."); 1258 return Target.multiVersionSortPriority(LHS.substr(1)) > 1259 Target.multiVersionSortPriority(RHS.substr(1)); 1260 }); 1261 1262 bool IsFirst = true; 1263 1264 if (!Info.Architecture.empty()) { 1265 IsFirst = false; 1266 Out << "arch_" << Info.Architecture; 1267 } 1268 1269 for (StringRef Feat : Info.Features) { 1270 if (!IsFirst) 1271 Out << '_'; 1272 IsFirst = false; 1273 Out << Feat.substr(1); 1274 } 1275 } 1276 1277 // Returns true if GD is a function decl with internal linkage and 1278 // needs a unique suffix after the mangled name. 1279 static bool isUniqueInternalLinkageDecl(GlobalDecl GD, 1280 CodeGenModule &CGM) { 1281 const Decl *D = GD.getDecl(); 1282 return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) && 1283 (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage); 1284 } 1285 1286 static void AppendTargetClonesMangling(const CodeGenModule &CGM, 1287 const TargetClonesAttr *Attr, 1288 unsigned VersionIndex, 1289 raw_ostream &Out) { 1290 Out << '.'; 1291 StringRef FeatureStr = Attr->getFeatureStr(VersionIndex); 1292 if (FeatureStr.startswith("arch=")) 1293 Out << "arch_" << FeatureStr.substr(sizeof("arch=") - 1); 1294 else 1295 Out << FeatureStr; 1296 1297 Out << '.' << Attr->getMangledIndex(VersionIndex); 1298 } 1299 1300 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD, 1301 const NamedDecl *ND, 1302 bool OmitMultiVersionMangling = false) { 1303 SmallString<256> Buffer; 1304 llvm::raw_svector_ostream Out(Buffer); 1305 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 1306 if (!CGM.getModuleNameHash().empty()) 1307 MC.needsUniqueInternalLinkageNames(); 1308 bool ShouldMangle = MC.shouldMangleDeclName(ND); 1309 if (ShouldMangle) 1310 MC.mangleName(GD.getWithDecl(ND), Out); 1311 else { 1312 IdentifierInfo *II = ND->getIdentifier(); 1313 assert(II && "Attempt to mangle unnamed decl."); 1314 const auto *FD = dyn_cast<FunctionDecl>(ND); 1315 1316 if (FD && 1317 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 1318 Out << "__regcall3__" << II->getName(); 1319 } else if (FD && FD->hasAttr<CUDAGlobalAttr>() && 1320 GD.getKernelReferenceKind() == KernelReferenceKind::Stub) { 1321 Out << "__device_stub__" << II->getName(); 1322 } else { 1323 Out << II->getName(); 1324 } 1325 } 1326 1327 // Check if the module name hash should be appended for internal linkage 1328 // symbols. This should come before multi-version target suffixes are 1329 // appended. This is to keep the name and module hash suffix of the 1330 // internal linkage function together. The unique suffix should only be 1331 // added when name mangling is done to make sure that the final name can 1332 // be properly demangled. For example, for C functions without prototypes, 1333 // name mangling is not done and the unique suffix should not be appeneded 1334 // then. 1335 if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) { 1336 assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames && 1337 "Hash computed when not explicitly requested"); 1338 Out << CGM.getModuleNameHash(); 1339 } 1340 1341 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 1342 if (FD->isMultiVersion() && !OmitMultiVersionMangling) { 1343 switch (FD->getMultiVersionKind()) { 1344 case MultiVersionKind::CPUDispatch: 1345 case MultiVersionKind::CPUSpecific: 1346 AppendCPUSpecificCPUDispatchMangling(CGM, 1347 FD->getAttr<CPUSpecificAttr>(), 1348 GD.getMultiVersionIndex(), Out); 1349 break; 1350 case MultiVersionKind::Target: 1351 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out); 1352 break; 1353 case MultiVersionKind::TargetClones: 1354 AppendTargetClonesMangling(CGM, FD->getAttr<TargetClonesAttr>(), 1355 GD.getMultiVersionIndex(), Out); 1356 break; 1357 case MultiVersionKind::None: 1358 llvm_unreachable("None multiversion type isn't valid here"); 1359 } 1360 } 1361 1362 // Make unique name for device side static file-scope variable for HIP. 1363 if (CGM.getContext().shouldExternalizeStaticVar(ND) && 1364 CGM.getLangOpts().GPURelocatableDeviceCode && 1365 CGM.getLangOpts().CUDAIsDevice && !CGM.getLangOpts().CUID.empty()) 1366 CGM.printPostfixForExternalizedStaticVar(Out); 1367 return std::string(Out.str()); 1368 } 1369 1370 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 1371 const FunctionDecl *FD, 1372 StringRef &CurName) { 1373 if (!FD->isMultiVersion()) 1374 return; 1375 1376 // Get the name of what this would be without the 'target' attribute. This 1377 // allows us to lookup the version that was emitted when this wasn't a 1378 // multiversion function. 1379 std::string NonTargetName = 1380 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 1381 GlobalDecl OtherGD; 1382 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 1383 assert(OtherGD.getCanonicalDecl() 1384 .getDecl() 1385 ->getAsFunction() 1386 ->isMultiVersion() && 1387 "Other GD should now be a multiversioned function"); 1388 // OtherFD is the version of this function that was mangled BEFORE 1389 // becoming a MultiVersion function. It potentially needs to be updated. 1390 const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl() 1391 .getDecl() 1392 ->getAsFunction() 1393 ->getMostRecentDecl(); 1394 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 1395 // This is so that if the initial version was already the 'default' 1396 // version, we don't try to update it. 1397 if (OtherName != NonTargetName) { 1398 // Remove instead of erase, since others may have stored the StringRef 1399 // to this. 1400 const auto ExistingRecord = Manglings.find(NonTargetName); 1401 if (ExistingRecord != std::end(Manglings)) 1402 Manglings.remove(&(*ExistingRecord)); 1403 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 1404 StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] = 1405 Result.first->first(); 1406 // If this is the current decl is being created, make sure we update the name. 1407 if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl()) 1408 CurName = OtherNameRef; 1409 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 1410 Entry->setName(OtherName); 1411 } 1412 } 1413 } 1414 1415 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 1416 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 1417 1418 // Some ABIs don't have constructor variants. Make sure that base and 1419 // complete constructors get mangled the same. 1420 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 1421 if (!getTarget().getCXXABI().hasConstructorVariants()) { 1422 CXXCtorType OrigCtorType = GD.getCtorType(); 1423 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 1424 if (OrigCtorType == Ctor_Base) 1425 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 1426 } 1427 } 1428 1429 // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a 1430 // static device variable depends on whether the variable is referenced by 1431 // a host or device host function. Therefore the mangled name cannot be 1432 // cached. 1433 if (!LangOpts.CUDAIsDevice || 1434 !getContext().mayExternalizeStaticVar(GD.getDecl())) { 1435 auto FoundName = MangledDeclNames.find(CanonicalGD); 1436 if (FoundName != MangledDeclNames.end()) 1437 return FoundName->second; 1438 } 1439 1440 // Keep the first result in the case of a mangling collision. 1441 const auto *ND = cast<NamedDecl>(GD.getDecl()); 1442 std::string MangledName = getMangledNameImpl(*this, GD, ND); 1443 1444 // Ensure either we have different ABIs between host and device compilations, 1445 // says host compilation following MSVC ABI but device compilation follows 1446 // Itanium C++ ABI or, if they follow the same ABI, kernel names after 1447 // mangling should be the same after name stubbing. The later checking is 1448 // very important as the device kernel name being mangled in host-compilation 1449 // is used to resolve the device binaries to be executed. Inconsistent naming 1450 // result in undefined behavior. Even though we cannot check that naming 1451 // directly between host- and device-compilations, the host- and 1452 // device-mangling in host compilation could help catching certain ones. 1453 assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() || 1454 getLangOpts().CUDAIsDevice || 1455 (getContext().getAuxTargetInfo() && 1456 (getContext().getAuxTargetInfo()->getCXXABI() != 1457 getContext().getTargetInfo().getCXXABI())) || 1458 getCUDARuntime().getDeviceSideName(ND) == 1459 getMangledNameImpl( 1460 *this, 1461 GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel), 1462 ND)); 1463 1464 auto Result = Manglings.insert(std::make_pair(MangledName, GD)); 1465 return MangledDeclNames[CanonicalGD] = Result.first->first(); 1466 } 1467 1468 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 1469 const BlockDecl *BD) { 1470 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 1471 const Decl *D = GD.getDecl(); 1472 1473 SmallString<256> Buffer; 1474 llvm::raw_svector_ostream Out(Buffer); 1475 if (!D) 1476 MangleCtx.mangleGlobalBlock(BD, 1477 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 1478 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 1479 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 1480 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 1481 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 1482 else 1483 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 1484 1485 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 1486 return Result.first->first(); 1487 } 1488 1489 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 1490 return getModule().getNamedValue(Name); 1491 } 1492 1493 /// AddGlobalCtor - Add a function to the list that will be called before 1494 /// main() runs. 1495 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 1496 llvm::Constant *AssociatedData) { 1497 // FIXME: Type coercion of void()* types. 1498 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 1499 } 1500 1501 /// AddGlobalDtor - Add a function to the list that will be called 1502 /// when the module is unloaded. 1503 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority, 1504 bool IsDtorAttrFunc) { 1505 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit && 1506 (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) { 1507 DtorsUsingAtExit[Priority].push_back(Dtor); 1508 return; 1509 } 1510 1511 // FIXME: Type coercion of void()* types. 1512 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 1513 } 1514 1515 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 1516 if (Fns.empty()) return; 1517 1518 // Ctor function type is void()*. 1519 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 1520 llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy, 1521 TheModule.getDataLayout().getProgramAddressSpace()); 1522 1523 // Get the type of a ctor entry, { i32, void ()*, i8* }. 1524 llvm::StructType *CtorStructTy = llvm::StructType::get( 1525 Int32Ty, CtorPFTy, VoidPtrTy); 1526 1527 // Construct the constructor and destructor arrays. 1528 ConstantInitBuilder builder(*this); 1529 auto ctors = builder.beginArray(CtorStructTy); 1530 for (const auto &I : Fns) { 1531 auto ctor = ctors.beginStruct(CtorStructTy); 1532 ctor.addInt(Int32Ty, I.Priority); 1533 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 1534 if (I.AssociatedData) 1535 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 1536 else 1537 ctor.addNullPointer(VoidPtrTy); 1538 ctor.finishAndAddTo(ctors); 1539 } 1540 1541 auto list = 1542 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 1543 /*constant*/ false, 1544 llvm::GlobalValue::AppendingLinkage); 1545 1546 // The LTO linker doesn't seem to like it when we set an alignment 1547 // on appending variables. Take it off as a workaround. 1548 list->setAlignment(llvm::None); 1549 1550 Fns.clear(); 1551 } 1552 1553 llvm::GlobalValue::LinkageTypes 1554 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 1555 const auto *D = cast<FunctionDecl>(GD.getDecl()); 1556 1557 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 1558 1559 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D)) 1560 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType()); 1561 1562 if (isa<CXXConstructorDecl>(D) && 1563 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 1564 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 1565 // Our approach to inheriting constructors is fundamentally different from 1566 // that used by the MS ABI, so keep our inheriting constructor thunks 1567 // internal rather than trying to pick an unambiguous mangling for them. 1568 return llvm::GlobalValue::InternalLinkage; 1569 } 1570 1571 return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false); 1572 } 1573 1574 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 1575 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 1576 if (!MDS) return nullptr; 1577 1578 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 1579 } 1580 1581 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD, 1582 const CGFunctionInfo &Info, 1583 llvm::Function *F, bool IsThunk) { 1584 unsigned CallingConv; 1585 llvm::AttributeList PAL; 1586 ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, 1587 /*AttrOnCallSite=*/false, IsThunk); 1588 F->setAttributes(PAL); 1589 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 1590 } 1591 1592 static void removeImageAccessQualifier(std::string& TyName) { 1593 std::string ReadOnlyQual("__read_only"); 1594 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 1595 if (ReadOnlyPos != std::string::npos) 1596 // "+ 1" for the space after access qualifier. 1597 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 1598 else { 1599 std::string WriteOnlyQual("__write_only"); 1600 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 1601 if (WriteOnlyPos != std::string::npos) 1602 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 1603 else { 1604 std::string ReadWriteQual("__read_write"); 1605 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 1606 if (ReadWritePos != std::string::npos) 1607 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 1608 } 1609 } 1610 } 1611 1612 // Returns the address space id that should be produced to the 1613 // kernel_arg_addr_space metadata. This is always fixed to the ids 1614 // as specified in the SPIR 2.0 specification in order to differentiate 1615 // for example in clGetKernelArgInfo() implementation between the address 1616 // spaces with targets without unique mapping to the OpenCL address spaces 1617 // (basically all single AS CPUs). 1618 static unsigned ArgInfoAddressSpace(LangAS AS) { 1619 switch (AS) { 1620 case LangAS::opencl_global: 1621 return 1; 1622 case LangAS::opencl_constant: 1623 return 2; 1624 case LangAS::opencl_local: 1625 return 3; 1626 case LangAS::opencl_generic: 1627 return 4; // Not in SPIR 2.0 specs. 1628 case LangAS::opencl_global_device: 1629 return 5; 1630 case LangAS::opencl_global_host: 1631 return 6; 1632 default: 1633 return 0; // Assume private. 1634 } 1635 } 1636 1637 void CodeGenModule::GenOpenCLArgMetadata(llvm::Function *Fn, 1638 const FunctionDecl *FD, 1639 CodeGenFunction *CGF) { 1640 assert(((FD && CGF) || (!FD && !CGF)) && 1641 "Incorrect use - FD and CGF should either be both null or not!"); 1642 // Create MDNodes that represent the kernel arg metadata. 1643 // Each MDNode is a list in the form of "key", N number of values which is 1644 // the same number of values as their are kernel arguments. 1645 1646 const PrintingPolicy &Policy = Context.getPrintingPolicy(); 1647 1648 // MDNode for the kernel argument address space qualifiers. 1649 SmallVector<llvm::Metadata *, 8> addressQuals; 1650 1651 // MDNode for the kernel argument access qualifiers (images only). 1652 SmallVector<llvm::Metadata *, 8> accessQuals; 1653 1654 // MDNode for the kernel argument type names. 1655 SmallVector<llvm::Metadata *, 8> argTypeNames; 1656 1657 // MDNode for the kernel argument base type names. 1658 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 1659 1660 // MDNode for the kernel argument type qualifiers. 1661 SmallVector<llvm::Metadata *, 8> argTypeQuals; 1662 1663 // MDNode for the kernel argument names. 1664 SmallVector<llvm::Metadata *, 8> argNames; 1665 1666 if (FD && CGF) 1667 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 1668 const ParmVarDecl *parm = FD->getParamDecl(i); 1669 QualType ty = parm->getType(); 1670 std::string typeQuals; 1671 1672 // Get image and pipe access qualifier: 1673 if (ty->isImageType() || ty->isPipeType()) { 1674 const Decl *PDecl = parm; 1675 if (auto *TD = dyn_cast<TypedefType>(ty)) 1676 PDecl = TD->getDecl(); 1677 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>(); 1678 if (A && A->isWriteOnly()) 1679 accessQuals.push_back(llvm::MDString::get(VMContext, "write_only")); 1680 else if (A && A->isReadWrite()) 1681 accessQuals.push_back(llvm::MDString::get(VMContext, "read_write")); 1682 else 1683 accessQuals.push_back(llvm::MDString::get(VMContext, "read_only")); 1684 } else 1685 accessQuals.push_back(llvm::MDString::get(VMContext, "none")); 1686 1687 // Get argument name. 1688 argNames.push_back(llvm::MDString::get(VMContext, parm->getName())); 1689 1690 auto getTypeSpelling = [&](QualType Ty) { 1691 auto typeName = Ty.getUnqualifiedType().getAsString(Policy); 1692 1693 if (Ty.isCanonical()) { 1694 StringRef typeNameRef = typeName; 1695 // Turn "unsigned type" to "utype" 1696 if (typeNameRef.consume_front("unsigned ")) 1697 return std::string("u") + typeNameRef.str(); 1698 if (typeNameRef.consume_front("signed ")) 1699 return typeNameRef.str(); 1700 } 1701 1702 return typeName; 1703 }; 1704 1705 if (ty->isPointerType()) { 1706 QualType pointeeTy = ty->getPointeeType(); 1707 1708 // Get address qualifier. 1709 addressQuals.push_back( 1710 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32( 1711 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 1712 1713 // Get argument type name. 1714 std::string typeName = getTypeSpelling(pointeeTy) + "*"; 1715 std::string baseTypeName = 1716 getTypeSpelling(pointeeTy.getCanonicalType()) + "*"; 1717 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 1718 argBaseTypeNames.push_back( 1719 llvm::MDString::get(VMContext, baseTypeName)); 1720 1721 // Get argument type qualifiers: 1722 if (ty.isRestrictQualified()) 1723 typeQuals = "restrict"; 1724 if (pointeeTy.isConstQualified() || 1725 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 1726 typeQuals += typeQuals.empty() ? "const" : " const"; 1727 if (pointeeTy.isVolatileQualified()) 1728 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 1729 } else { 1730 uint32_t AddrSpc = 0; 1731 bool isPipe = ty->isPipeType(); 1732 if (ty->isImageType() || isPipe) 1733 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 1734 1735 addressQuals.push_back( 1736 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc))); 1737 1738 // Get argument type name. 1739 ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty; 1740 std::string typeName = getTypeSpelling(ty); 1741 std::string baseTypeName = getTypeSpelling(ty.getCanonicalType()); 1742 1743 // Remove access qualifiers on images 1744 // (as they are inseparable from type in clang implementation, 1745 // but OpenCL spec provides a special query to get access qualifier 1746 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 1747 if (ty->isImageType()) { 1748 removeImageAccessQualifier(typeName); 1749 removeImageAccessQualifier(baseTypeName); 1750 } 1751 1752 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 1753 argBaseTypeNames.push_back( 1754 llvm::MDString::get(VMContext, baseTypeName)); 1755 1756 if (isPipe) 1757 typeQuals = "pipe"; 1758 } 1759 argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals)); 1760 } 1761 1762 Fn->setMetadata("kernel_arg_addr_space", 1763 llvm::MDNode::get(VMContext, addressQuals)); 1764 Fn->setMetadata("kernel_arg_access_qual", 1765 llvm::MDNode::get(VMContext, accessQuals)); 1766 Fn->setMetadata("kernel_arg_type", 1767 llvm::MDNode::get(VMContext, argTypeNames)); 1768 Fn->setMetadata("kernel_arg_base_type", 1769 llvm::MDNode::get(VMContext, argBaseTypeNames)); 1770 Fn->setMetadata("kernel_arg_type_qual", 1771 llvm::MDNode::get(VMContext, argTypeQuals)); 1772 if (getCodeGenOpts().EmitOpenCLArgMetadata) 1773 Fn->setMetadata("kernel_arg_name", 1774 llvm::MDNode::get(VMContext, argNames)); 1775 } 1776 1777 /// Determines whether the language options require us to model 1778 /// unwind exceptions. We treat -fexceptions as mandating this 1779 /// except under the fragile ObjC ABI with only ObjC exceptions 1780 /// enabled. This means, for example, that C with -fexceptions 1781 /// enables this. 1782 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 1783 // If exceptions are completely disabled, obviously this is false. 1784 if (!LangOpts.Exceptions) return false; 1785 1786 // If C++ exceptions are enabled, this is true. 1787 if (LangOpts.CXXExceptions) return true; 1788 1789 // If ObjC exceptions are enabled, this depends on the ABI. 1790 if (LangOpts.ObjCExceptions) { 1791 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 1792 } 1793 1794 return true; 1795 } 1796 1797 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM, 1798 const CXXMethodDecl *MD) { 1799 // Check that the type metadata can ever actually be used by a call. 1800 if (!CGM.getCodeGenOpts().LTOUnit || 1801 !CGM.HasHiddenLTOVisibility(MD->getParent())) 1802 return false; 1803 1804 // Only functions whose address can be taken with a member function pointer 1805 // need this sort of type metadata. 1806 return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) && 1807 !isa<CXXDestructorDecl>(MD); 1808 } 1809 1810 std::vector<const CXXRecordDecl *> 1811 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) { 1812 llvm::SetVector<const CXXRecordDecl *> MostBases; 1813 1814 std::function<void (const CXXRecordDecl *)> CollectMostBases; 1815 CollectMostBases = [&](const CXXRecordDecl *RD) { 1816 if (RD->getNumBases() == 0) 1817 MostBases.insert(RD); 1818 for (const CXXBaseSpecifier &B : RD->bases()) 1819 CollectMostBases(B.getType()->getAsCXXRecordDecl()); 1820 }; 1821 CollectMostBases(RD); 1822 return MostBases.takeVector(); 1823 } 1824 1825 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 1826 llvm::Function *F) { 1827 llvm::AttrBuilder B(F->getContext()); 1828 1829 if (CodeGenOpts.UnwindTables) 1830 B.addAttribute(llvm::Attribute::UWTable); 1831 1832 if (CodeGenOpts.StackClashProtector) 1833 B.addAttribute("probe-stack", "inline-asm"); 1834 1835 if (!hasUnwindExceptions(LangOpts)) 1836 B.addAttribute(llvm::Attribute::NoUnwind); 1837 1838 if (!D || !D->hasAttr<NoStackProtectorAttr>()) { 1839 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 1840 B.addAttribute(llvm::Attribute::StackProtect); 1841 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 1842 B.addAttribute(llvm::Attribute::StackProtectStrong); 1843 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 1844 B.addAttribute(llvm::Attribute::StackProtectReq); 1845 } 1846 1847 if (!D) { 1848 // If we don't have a declaration to control inlining, the function isn't 1849 // explicitly marked as alwaysinline for semantic reasons, and inlining is 1850 // disabled, mark the function as noinline. 1851 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1852 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 1853 B.addAttribute(llvm::Attribute::NoInline); 1854 1855 F->addFnAttrs(B); 1856 return; 1857 } 1858 1859 // Track whether we need to add the optnone LLVM attribute, 1860 // starting with the default for this optimization level. 1861 bool ShouldAddOptNone = 1862 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 1863 // We can't add optnone in the following cases, it won't pass the verifier. 1864 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 1865 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 1866 1867 // Add optnone, but do so only if the function isn't always_inline. 1868 if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) && 1869 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1870 B.addAttribute(llvm::Attribute::OptimizeNone); 1871 1872 // OptimizeNone implies noinline; we should not be inlining such functions. 1873 B.addAttribute(llvm::Attribute::NoInline); 1874 1875 // We still need to handle naked functions even though optnone subsumes 1876 // much of their semantics. 1877 if (D->hasAttr<NakedAttr>()) 1878 B.addAttribute(llvm::Attribute::Naked); 1879 1880 // OptimizeNone wins over OptimizeForSize and MinSize. 1881 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 1882 F->removeFnAttr(llvm::Attribute::MinSize); 1883 } else if (D->hasAttr<NakedAttr>()) { 1884 // Naked implies noinline: we should not be inlining such functions. 1885 B.addAttribute(llvm::Attribute::Naked); 1886 B.addAttribute(llvm::Attribute::NoInline); 1887 } else if (D->hasAttr<NoDuplicateAttr>()) { 1888 B.addAttribute(llvm::Attribute::NoDuplicate); 1889 } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1890 // Add noinline if the function isn't always_inline. 1891 B.addAttribute(llvm::Attribute::NoInline); 1892 } else if (D->hasAttr<AlwaysInlineAttr>() && 1893 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 1894 // (noinline wins over always_inline, and we can't specify both in IR) 1895 B.addAttribute(llvm::Attribute::AlwaysInline); 1896 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 1897 // If we're not inlining, then force everything that isn't always_inline to 1898 // carry an explicit noinline attribute. 1899 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 1900 B.addAttribute(llvm::Attribute::NoInline); 1901 } else { 1902 // Otherwise, propagate the inline hint attribute and potentially use its 1903 // absence to mark things as noinline. 1904 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1905 // Search function and template pattern redeclarations for inline. 1906 auto CheckForInline = [](const FunctionDecl *FD) { 1907 auto CheckRedeclForInline = [](const FunctionDecl *Redecl) { 1908 return Redecl->isInlineSpecified(); 1909 }; 1910 if (any_of(FD->redecls(), CheckRedeclForInline)) 1911 return true; 1912 const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern(); 1913 if (!Pattern) 1914 return false; 1915 return any_of(Pattern->redecls(), CheckRedeclForInline); 1916 }; 1917 if (CheckForInline(FD)) { 1918 B.addAttribute(llvm::Attribute::InlineHint); 1919 } else if (CodeGenOpts.getInlining() == 1920 CodeGenOptions::OnlyHintInlining && 1921 !FD->isInlined() && 1922 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1923 B.addAttribute(llvm::Attribute::NoInline); 1924 } 1925 } 1926 } 1927 1928 // Add other optimization related attributes if we are optimizing this 1929 // function. 1930 if (!D->hasAttr<OptimizeNoneAttr>()) { 1931 if (D->hasAttr<ColdAttr>()) { 1932 if (!ShouldAddOptNone) 1933 B.addAttribute(llvm::Attribute::OptimizeForSize); 1934 B.addAttribute(llvm::Attribute::Cold); 1935 } 1936 if (D->hasAttr<HotAttr>()) 1937 B.addAttribute(llvm::Attribute::Hot); 1938 if (D->hasAttr<MinSizeAttr>()) 1939 B.addAttribute(llvm::Attribute::MinSize); 1940 } 1941 1942 F->addFnAttrs(B); 1943 1944 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 1945 if (alignment) 1946 F->setAlignment(llvm::Align(alignment)); 1947 1948 if (!D->hasAttr<AlignedAttr>()) 1949 if (LangOpts.FunctionAlignment) 1950 F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment)); 1951 1952 // Some C++ ABIs require 2-byte alignment for member functions, in order to 1953 // reserve a bit for differentiating between virtual and non-virtual member 1954 // functions. If the current target's C++ ABI requires this and this is a 1955 // member function, set its alignment accordingly. 1956 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 1957 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 1958 F->setAlignment(llvm::Align(2)); 1959 } 1960 1961 // In the cross-dso CFI mode with canonical jump tables, we want !type 1962 // attributes on definitions only. 1963 if (CodeGenOpts.SanitizeCfiCrossDso && 1964 CodeGenOpts.SanitizeCfiCanonicalJumpTables) { 1965 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1966 // Skip available_externally functions. They won't be codegen'ed in the 1967 // current module anyway. 1968 if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally) 1969 CreateFunctionTypeMetadataForIcall(FD, F); 1970 } 1971 } 1972 1973 // Emit type metadata on member functions for member function pointer checks. 1974 // These are only ever necessary on definitions; we're guaranteed that the 1975 // definition will be present in the LTO unit as a result of LTO visibility. 1976 auto *MD = dyn_cast<CXXMethodDecl>(D); 1977 if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) { 1978 for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) { 1979 llvm::Metadata *Id = 1980 CreateMetadataIdentifierForType(Context.getMemberPointerType( 1981 MD->getType(), Context.getRecordType(Base).getTypePtr())); 1982 F->addTypeMetadata(0, Id); 1983 } 1984 } 1985 } 1986 1987 void CodeGenModule::setLLVMFunctionFEnvAttributes(const FunctionDecl *D, 1988 llvm::Function *F) { 1989 if (D->hasAttr<StrictFPAttr>()) { 1990 llvm::AttrBuilder FuncAttrs(F->getContext()); 1991 FuncAttrs.addAttribute("strictfp"); 1992 F->addFnAttrs(FuncAttrs); 1993 } 1994 } 1995 1996 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { 1997 const Decl *D = GD.getDecl(); 1998 if (isa_and_nonnull<NamedDecl>(D)) 1999 setGVProperties(GV, GD); 2000 else 2001 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 2002 2003 if (D && D->hasAttr<UsedAttr>()) 2004 addUsedOrCompilerUsedGlobal(GV); 2005 2006 if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) { 2007 const auto *VD = cast<VarDecl>(D); 2008 if (VD->getType().isConstQualified() && 2009 VD->getStorageDuration() == SD_Static) 2010 addUsedOrCompilerUsedGlobal(GV); 2011 } 2012 } 2013 2014 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD, 2015 llvm::AttrBuilder &Attrs) { 2016 // Add target-cpu and target-features attributes to functions. If 2017 // we have a decl for the function and it has a target attribute then 2018 // parse that and add it to the feature set. 2019 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 2020 StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU; 2021 std::vector<std::string> Features; 2022 const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl()); 2023 FD = FD ? FD->getMostRecentDecl() : FD; 2024 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; 2025 const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr; 2026 const auto *TC = FD ? FD->getAttr<TargetClonesAttr>() : nullptr; 2027 bool AddedAttr = false; 2028 if (TD || SD || TC) { 2029 llvm::StringMap<bool> FeatureMap; 2030 getContext().getFunctionFeatureMap(FeatureMap, GD); 2031 2032 // Produce the canonical string for this set of features. 2033 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) 2034 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); 2035 2036 // Now add the target-cpu and target-features to the function. 2037 // While we populated the feature map above, we still need to 2038 // get and parse the target attribute so we can get the cpu for 2039 // the function. 2040 if (TD) { 2041 ParsedTargetAttr ParsedAttr = TD->parse(); 2042 if (!ParsedAttr.Architecture.empty() && 2043 getTarget().isValidCPUName(ParsedAttr.Architecture)) { 2044 TargetCPU = ParsedAttr.Architecture; 2045 TuneCPU = ""; // Clear the tune CPU. 2046 } 2047 if (!ParsedAttr.Tune.empty() && 2048 getTarget().isValidCPUName(ParsedAttr.Tune)) 2049 TuneCPU = ParsedAttr.Tune; 2050 } 2051 } else { 2052 // Otherwise just add the existing target cpu and target features to the 2053 // function. 2054 Features = getTarget().getTargetOpts().Features; 2055 } 2056 2057 if (!TargetCPU.empty()) { 2058 Attrs.addAttribute("target-cpu", TargetCPU); 2059 AddedAttr = true; 2060 } 2061 if (!TuneCPU.empty()) { 2062 Attrs.addAttribute("tune-cpu", TuneCPU); 2063 AddedAttr = true; 2064 } 2065 if (!Features.empty()) { 2066 llvm::sort(Features); 2067 Attrs.addAttribute("target-features", llvm::join(Features, ",")); 2068 AddedAttr = true; 2069 } 2070 2071 return AddedAttr; 2072 } 2073 2074 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD, 2075 llvm::GlobalObject *GO) { 2076 const Decl *D = GD.getDecl(); 2077 SetCommonAttributes(GD, GO); 2078 2079 if (D) { 2080 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 2081 if (D->hasAttr<RetainAttr>()) 2082 addUsedGlobal(GV); 2083 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 2084 GV->addAttribute("bss-section", SA->getName()); 2085 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 2086 GV->addAttribute("data-section", SA->getName()); 2087 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 2088 GV->addAttribute("rodata-section", SA->getName()); 2089 if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>()) 2090 GV->addAttribute("relro-section", SA->getName()); 2091 } 2092 2093 if (auto *F = dyn_cast<llvm::Function>(GO)) { 2094 if (D->hasAttr<RetainAttr>()) 2095 addUsedGlobal(F); 2096 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 2097 if (!D->getAttr<SectionAttr>()) 2098 F->addFnAttr("implicit-section-name", SA->getName()); 2099 2100 llvm::AttrBuilder Attrs(F->getContext()); 2101 if (GetCPUAndFeaturesAttributes(GD, Attrs)) { 2102 // We know that GetCPUAndFeaturesAttributes will always have the 2103 // newest set, since it has the newest possible FunctionDecl, so the 2104 // new ones should replace the old. 2105 llvm::AttributeMask RemoveAttrs; 2106 RemoveAttrs.addAttribute("target-cpu"); 2107 RemoveAttrs.addAttribute("target-features"); 2108 RemoveAttrs.addAttribute("tune-cpu"); 2109 F->removeFnAttrs(RemoveAttrs); 2110 F->addFnAttrs(Attrs); 2111 } 2112 } 2113 2114 if (const auto *CSA = D->getAttr<CodeSegAttr>()) 2115 GO->setSection(CSA->getName()); 2116 else if (const auto *SA = D->getAttr<SectionAttr>()) 2117 GO->setSection(SA->getName()); 2118 } 2119 2120 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 2121 } 2122 2123 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD, 2124 llvm::Function *F, 2125 const CGFunctionInfo &FI) { 2126 const Decl *D = GD.getDecl(); 2127 SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false); 2128 SetLLVMFunctionAttributesForDefinition(D, F); 2129 2130 F->setLinkage(llvm::Function::InternalLinkage); 2131 2132 setNonAliasAttributes(GD, F); 2133 } 2134 2135 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) { 2136 // Set linkage and visibility in case we never see a definition. 2137 LinkageInfo LV = ND->getLinkageAndVisibility(); 2138 // Don't set internal linkage on declarations. 2139 // "extern_weak" is overloaded in LLVM; we probably should have 2140 // separate linkage types for this. 2141 if (isExternallyVisible(LV.getLinkage()) && 2142 (ND->hasAttr<WeakAttr>() || ND->isWeakImported())) 2143 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 2144 } 2145 2146 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD, 2147 llvm::Function *F) { 2148 // Only if we are checking indirect calls. 2149 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 2150 return; 2151 2152 // Non-static class methods are handled via vtable or member function pointer 2153 // checks elsewhere. 2154 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 2155 return; 2156 2157 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 2158 F->addTypeMetadata(0, MD); 2159 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 2160 2161 // Emit a hash-based bit set entry for cross-DSO calls. 2162 if (CodeGenOpts.SanitizeCfiCrossDso) 2163 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 2164 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 2165 } 2166 2167 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 2168 bool IsIncompleteFunction, 2169 bool IsThunk) { 2170 2171 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 2172 // If this is an intrinsic function, set the function's attributes 2173 // to the intrinsic's attributes. 2174 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 2175 return; 2176 } 2177 2178 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2179 2180 if (!IsIncompleteFunction) 2181 SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F, 2182 IsThunk); 2183 2184 // Add the Returned attribute for "this", except for iOS 5 and earlier 2185 // where substantial code, including the libstdc++ dylib, was compiled with 2186 // GCC and does not actually return "this". 2187 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 2188 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 2189 assert(!F->arg_empty() && 2190 F->arg_begin()->getType() 2191 ->canLosslesslyBitCastTo(F->getReturnType()) && 2192 "unexpected this return"); 2193 F->addParamAttr(0, llvm::Attribute::Returned); 2194 } 2195 2196 // Only a few attributes are set on declarations; these may later be 2197 // overridden by a definition. 2198 2199 setLinkageForGV(F, FD); 2200 setGVProperties(F, FD); 2201 2202 // Setup target-specific attributes. 2203 if (!IsIncompleteFunction && F->isDeclaration()) 2204 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); 2205 2206 if (const auto *CSA = FD->getAttr<CodeSegAttr>()) 2207 F->setSection(CSA->getName()); 2208 else if (const auto *SA = FD->getAttr<SectionAttr>()) 2209 F->setSection(SA->getName()); 2210 2211 if (const auto *EA = FD->getAttr<ErrorAttr>()) { 2212 if (EA->isError()) 2213 F->addFnAttr("dontcall-error", EA->getUserDiagnostic()); 2214 else if (EA->isWarning()) 2215 F->addFnAttr("dontcall-warn", EA->getUserDiagnostic()); 2216 } 2217 2218 // If we plan on emitting this inline builtin, we can't treat it as a builtin. 2219 if (FD->isInlineBuiltinDeclaration()) { 2220 const FunctionDecl *FDBody; 2221 bool HasBody = FD->hasBody(FDBody); 2222 (void)HasBody; 2223 assert(HasBody && "Inline builtin declarations should always have an " 2224 "available body!"); 2225 if (shouldEmitFunction(FDBody)) 2226 F->addFnAttr(llvm::Attribute::NoBuiltin); 2227 } 2228 2229 if (FD->isReplaceableGlobalAllocationFunction()) { 2230 // A replaceable global allocation function does not act like a builtin by 2231 // default, only if it is invoked by a new-expression or delete-expression. 2232 F->addFnAttr(llvm::Attribute::NoBuiltin); 2233 } 2234 2235 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 2236 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2237 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 2238 if (MD->isVirtual()) 2239 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2240 2241 // Don't emit entries for function declarations in the cross-DSO mode. This 2242 // is handled with better precision by the receiving DSO. But if jump tables 2243 // are non-canonical then we need type metadata in order to produce the local 2244 // jump table. 2245 if (!CodeGenOpts.SanitizeCfiCrossDso || 2246 !CodeGenOpts.SanitizeCfiCanonicalJumpTables) 2247 CreateFunctionTypeMetadataForIcall(FD, F); 2248 2249 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 2250 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 2251 2252 if (const auto *CB = FD->getAttr<CallbackAttr>()) { 2253 // Annotate the callback behavior as metadata: 2254 // - The callback callee (as argument number). 2255 // - The callback payloads (as argument numbers). 2256 llvm::LLVMContext &Ctx = F->getContext(); 2257 llvm::MDBuilder MDB(Ctx); 2258 2259 // The payload indices are all but the first one in the encoding. The first 2260 // identifies the callback callee. 2261 int CalleeIdx = *CB->encoding_begin(); 2262 ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end()); 2263 F->addMetadata(llvm::LLVMContext::MD_callback, 2264 *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding( 2265 CalleeIdx, PayloadIndices, 2266 /* VarArgsArePassed */ false)})); 2267 } 2268 } 2269 2270 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 2271 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2272 "Only globals with definition can force usage."); 2273 LLVMUsed.emplace_back(GV); 2274 } 2275 2276 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 2277 assert(!GV->isDeclaration() && 2278 "Only globals with definition can force usage."); 2279 LLVMCompilerUsed.emplace_back(GV); 2280 } 2281 2282 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) { 2283 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2284 "Only globals with definition can force usage."); 2285 if (getTriple().isOSBinFormatELF()) 2286 LLVMCompilerUsed.emplace_back(GV); 2287 else 2288 LLVMUsed.emplace_back(GV); 2289 } 2290 2291 static void emitUsed(CodeGenModule &CGM, StringRef Name, 2292 std::vector<llvm::WeakTrackingVH> &List) { 2293 // Don't create llvm.used if there is no need. 2294 if (List.empty()) 2295 return; 2296 2297 // Convert List to what ConstantArray needs. 2298 SmallVector<llvm::Constant*, 8> UsedArray; 2299 UsedArray.resize(List.size()); 2300 for (unsigned i = 0, e = List.size(); i != e; ++i) { 2301 UsedArray[i] = 2302 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 2303 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 2304 } 2305 2306 if (UsedArray.empty()) 2307 return; 2308 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 2309 2310 auto *GV = new llvm::GlobalVariable( 2311 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 2312 llvm::ConstantArray::get(ATy, UsedArray), Name); 2313 2314 GV->setSection("llvm.metadata"); 2315 } 2316 2317 void CodeGenModule::emitLLVMUsed() { 2318 emitUsed(*this, "llvm.used", LLVMUsed); 2319 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 2320 } 2321 2322 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 2323 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 2324 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2325 } 2326 2327 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 2328 llvm::SmallString<32> Opt; 2329 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 2330 if (Opt.empty()) 2331 return; 2332 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2333 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2334 } 2335 2336 void CodeGenModule::AddDependentLib(StringRef Lib) { 2337 auto &C = getLLVMContext(); 2338 if (getTarget().getTriple().isOSBinFormatELF()) { 2339 ELFDependentLibraries.push_back( 2340 llvm::MDNode::get(C, llvm::MDString::get(C, Lib))); 2341 return; 2342 } 2343 2344 llvm::SmallString<24> Opt; 2345 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 2346 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2347 LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts)); 2348 } 2349 2350 /// Add link options implied by the given module, including modules 2351 /// it depends on, using a postorder walk. 2352 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 2353 SmallVectorImpl<llvm::MDNode *> &Metadata, 2354 llvm::SmallPtrSet<Module *, 16> &Visited) { 2355 // Import this module's parent. 2356 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 2357 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 2358 } 2359 2360 // Import this module's dependencies. 2361 for (Module *Import : llvm::reverse(Mod->Imports)) { 2362 if (Visited.insert(Import).second) 2363 addLinkOptionsPostorder(CGM, Import, Metadata, Visited); 2364 } 2365 2366 // Add linker options to link against the libraries/frameworks 2367 // described by this module. 2368 llvm::LLVMContext &Context = CGM.getLLVMContext(); 2369 bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF(); 2370 2371 // For modules that use export_as for linking, use that module 2372 // name instead. 2373 if (Mod->UseExportAsModuleLinkName) 2374 return; 2375 2376 for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) { 2377 // Link against a framework. Frameworks are currently Darwin only, so we 2378 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 2379 if (LL.IsFramework) { 2380 llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"), 2381 llvm::MDString::get(Context, LL.Library)}; 2382 2383 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2384 continue; 2385 } 2386 2387 // Link against a library. 2388 if (IsELF) { 2389 llvm::Metadata *Args[2] = { 2390 llvm::MDString::get(Context, "lib"), 2391 llvm::MDString::get(Context, LL.Library), 2392 }; 2393 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2394 } else { 2395 llvm::SmallString<24> Opt; 2396 CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt); 2397 auto *OptString = llvm::MDString::get(Context, Opt); 2398 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 2399 } 2400 } 2401 } 2402 2403 void CodeGenModule::EmitModuleLinkOptions() { 2404 // Collect the set of all of the modules we want to visit to emit link 2405 // options, which is essentially the imported modules and all of their 2406 // non-explicit child modules. 2407 llvm::SetVector<clang::Module *> LinkModules; 2408 llvm::SmallPtrSet<clang::Module *, 16> Visited; 2409 SmallVector<clang::Module *, 16> Stack; 2410 2411 // Seed the stack with imported modules. 2412 for (Module *M : ImportedModules) { 2413 // Do not add any link flags when an implementation TU of a module imports 2414 // a header of that same module. 2415 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 2416 !getLangOpts().isCompilingModule()) 2417 continue; 2418 if (Visited.insert(M).second) 2419 Stack.push_back(M); 2420 } 2421 2422 // Find all of the modules to import, making a little effort to prune 2423 // non-leaf modules. 2424 while (!Stack.empty()) { 2425 clang::Module *Mod = Stack.pop_back_val(); 2426 2427 bool AnyChildren = false; 2428 2429 // Visit the submodules of this module. 2430 for (const auto &SM : Mod->submodules()) { 2431 // Skip explicit children; they need to be explicitly imported to be 2432 // linked against. 2433 if (SM->IsExplicit) 2434 continue; 2435 2436 if (Visited.insert(SM).second) { 2437 Stack.push_back(SM); 2438 AnyChildren = true; 2439 } 2440 } 2441 2442 // We didn't find any children, so add this module to the list of 2443 // modules to link against. 2444 if (!AnyChildren) { 2445 LinkModules.insert(Mod); 2446 } 2447 } 2448 2449 // Add link options for all of the imported modules in reverse topological 2450 // order. We don't do anything to try to order import link flags with respect 2451 // to linker options inserted by things like #pragma comment(). 2452 SmallVector<llvm::MDNode *, 16> MetadataArgs; 2453 Visited.clear(); 2454 for (Module *M : LinkModules) 2455 if (Visited.insert(M).second) 2456 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 2457 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 2458 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 2459 2460 // Add the linker options metadata flag. 2461 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 2462 for (auto *MD : LinkerOptionsMetadata) 2463 NMD->addOperand(MD); 2464 } 2465 2466 void CodeGenModule::EmitDeferred() { 2467 // Emit deferred declare target declarations. 2468 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 2469 getOpenMPRuntime().emitDeferredTargetDecls(); 2470 2471 // Emit code for any potentially referenced deferred decls. Since a 2472 // previously unused static decl may become used during the generation of code 2473 // for a static function, iterate until no changes are made. 2474 2475 if (!DeferredVTables.empty()) { 2476 EmitDeferredVTables(); 2477 2478 // Emitting a vtable doesn't directly cause more vtables to 2479 // become deferred, although it can cause functions to be 2480 // emitted that then need those vtables. 2481 assert(DeferredVTables.empty()); 2482 } 2483 2484 // Emit CUDA/HIP static device variables referenced by host code only. 2485 // Note we should not clear CUDADeviceVarODRUsedByHost since it is still 2486 // needed for further handling. 2487 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) 2488 for (const auto *V : getContext().CUDADeviceVarODRUsedByHost) 2489 DeferredDeclsToEmit.push_back(V); 2490 2491 // Stop if we're out of both deferred vtables and deferred declarations. 2492 if (DeferredDeclsToEmit.empty()) 2493 return; 2494 2495 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 2496 // work, it will not interfere with this. 2497 std::vector<GlobalDecl> CurDeclsToEmit; 2498 CurDeclsToEmit.swap(DeferredDeclsToEmit); 2499 2500 for (GlobalDecl &D : CurDeclsToEmit) { 2501 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 2502 // to get GlobalValue with exactly the type we need, not something that 2503 // might had been created for another decl with the same mangled name but 2504 // different type. 2505 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 2506 GetAddrOfGlobal(D, ForDefinition)); 2507 2508 // In case of different address spaces, we may still get a cast, even with 2509 // IsForDefinition equal to true. Query mangled names table to get 2510 // GlobalValue. 2511 if (!GV) 2512 GV = GetGlobalValue(getMangledName(D)); 2513 2514 // Make sure GetGlobalValue returned non-null. 2515 assert(GV); 2516 2517 // Check to see if we've already emitted this. This is necessary 2518 // for a couple of reasons: first, decls can end up in the 2519 // deferred-decls queue multiple times, and second, decls can end 2520 // up with definitions in unusual ways (e.g. by an extern inline 2521 // function acquiring a strong function redefinition). Just 2522 // ignore these cases. 2523 if (!GV->isDeclaration()) 2524 continue; 2525 2526 // If this is OpenMP, check if it is legal to emit this global normally. 2527 if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D)) 2528 continue; 2529 2530 // Otherwise, emit the definition and move on to the next one. 2531 EmitGlobalDefinition(D, GV); 2532 2533 // If we found out that we need to emit more decls, do that recursively. 2534 // This has the advantage that the decls are emitted in a DFS and related 2535 // ones are close together, which is convenient for testing. 2536 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 2537 EmitDeferred(); 2538 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 2539 } 2540 } 2541 } 2542 2543 void CodeGenModule::EmitVTablesOpportunistically() { 2544 // Try to emit external vtables as available_externally if they have emitted 2545 // all inlined virtual functions. It runs after EmitDeferred() and therefore 2546 // is not allowed to create new references to things that need to be emitted 2547 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 2548 2549 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 2550 && "Only emit opportunistic vtables with optimizations"); 2551 2552 for (const CXXRecordDecl *RD : OpportunisticVTables) { 2553 assert(getVTables().isVTableExternal(RD) && 2554 "This queue should only contain external vtables"); 2555 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 2556 VTables.GenerateClassData(RD); 2557 } 2558 OpportunisticVTables.clear(); 2559 } 2560 2561 void CodeGenModule::EmitGlobalAnnotations() { 2562 if (Annotations.empty()) 2563 return; 2564 2565 // Create a new global variable for the ConstantStruct in the Module. 2566 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 2567 Annotations[0]->getType(), Annotations.size()), Annotations); 2568 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 2569 llvm::GlobalValue::AppendingLinkage, 2570 Array, "llvm.global.annotations"); 2571 gv->setSection(AnnotationSection); 2572 } 2573 2574 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 2575 llvm::Constant *&AStr = AnnotationStrings[Str]; 2576 if (AStr) 2577 return AStr; 2578 2579 // Not found yet, create a new global. 2580 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 2581 auto *gv = 2582 new llvm::GlobalVariable(getModule(), s->getType(), true, 2583 llvm::GlobalValue::PrivateLinkage, s, ".str"); 2584 gv->setSection(AnnotationSection); 2585 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2586 AStr = gv; 2587 return gv; 2588 } 2589 2590 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 2591 SourceManager &SM = getContext().getSourceManager(); 2592 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 2593 if (PLoc.isValid()) 2594 return EmitAnnotationString(PLoc.getFilename()); 2595 return EmitAnnotationString(SM.getBufferName(Loc)); 2596 } 2597 2598 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 2599 SourceManager &SM = getContext().getSourceManager(); 2600 PresumedLoc PLoc = SM.getPresumedLoc(L); 2601 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 2602 SM.getExpansionLineNumber(L); 2603 return llvm::ConstantInt::get(Int32Ty, LineNo); 2604 } 2605 2606 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) { 2607 ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()}; 2608 if (Exprs.empty()) 2609 return llvm::ConstantPointerNull::get(GlobalsInt8PtrTy); 2610 2611 llvm::FoldingSetNodeID ID; 2612 for (Expr *E : Exprs) { 2613 ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult()); 2614 } 2615 llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()]; 2616 if (Lookup) 2617 return Lookup; 2618 2619 llvm::SmallVector<llvm::Constant *, 4> LLVMArgs; 2620 LLVMArgs.reserve(Exprs.size()); 2621 ConstantEmitter ConstEmiter(*this); 2622 llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) { 2623 const auto *CE = cast<clang::ConstantExpr>(E); 2624 return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(), 2625 CE->getType()); 2626 }); 2627 auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs); 2628 auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true, 2629 llvm::GlobalValue::PrivateLinkage, Struct, 2630 ".args"); 2631 GV->setSection(AnnotationSection); 2632 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2633 auto *Bitcasted = llvm::ConstantExpr::getBitCast(GV, GlobalsInt8PtrTy); 2634 2635 Lookup = Bitcasted; 2636 return Bitcasted; 2637 } 2638 2639 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 2640 const AnnotateAttr *AA, 2641 SourceLocation L) { 2642 // Get the globals for file name, annotation, and the line number. 2643 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 2644 *UnitGV = EmitAnnotationUnit(L), 2645 *LineNoCst = EmitAnnotationLineNo(L), 2646 *Args = EmitAnnotationArgs(AA); 2647 2648 llvm::Constant *GVInGlobalsAS = GV; 2649 if (GV->getAddressSpace() != 2650 getDataLayout().getDefaultGlobalsAddressSpace()) { 2651 GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast( 2652 GV, GV->getValueType()->getPointerTo( 2653 getDataLayout().getDefaultGlobalsAddressSpace())); 2654 } 2655 2656 // Create the ConstantStruct for the global annotation. 2657 llvm::Constant *Fields[] = { 2658 llvm::ConstantExpr::getBitCast(GVInGlobalsAS, GlobalsInt8PtrTy), 2659 llvm::ConstantExpr::getBitCast(AnnoGV, GlobalsInt8PtrTy), 2660 llvm::ConstantExpr::getBitCast(UnitGV, GlobalsInt8PtrTy), 2661 LineNoCst, 2662 Args, 2663 }; 2664 return llvm::ConstantStruct::getAnon(Fields); 2665 } 2666 2667 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 2668 llvm::GlobalValue *GV) { 2669 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2670 // Get the struct elements for these annotations. 2671 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2672 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 2673 } 2674 2675 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn, 2676 SourceLocation Loc) const { 2677 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 2678 // NoSanitize by function name. 2679 if (NoSanitizeL.containsFunction(Kind, Fn->getName())) 2680 return true; 2681 // NoSanitize by location. 2682 if (Loc.isValid()) 2683 return NoSanitizeL.containsLocation(Kind, Loc); 2684 // If location is unknown, this may be a compiler-generated function. Assume 2685 // it's located in the main file. 2686 auto &SM = Context.getSourceManager(); 2687 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 2688 return NoSanitizeL.containsFile(Kind, MainFile->getName()); 2689 } 2690 return false; 2691 } 2692 2693 bool CodeGenModule::isInNoSanitizeList(llvm::GlobalVariable *GV, 2694 SourceLocation Loc, QualType Ty, 2695 StringRef Category) const { 2696 // For now globals can be ignored only in ASan and KASan. 2697 const SanitizerMask EnabledAsanMask = 2698 LangOpts.Sanitize.Mask & 2699 (SanitizerKind::Address | SanitizerKind::KernelAddress | 2700 SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress | 2701 SanitizerKind::MemTag); 2702 if (!EnabledAsanMask) 2703 return false; 2704 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 2705 if (NoSanitizeL.containsGlobal(EnabledAsanMask, GV->getName(), Category)) 2706 return true; 2707 if (NoSanitizeL.containsLocation(EnabledAsanMask, Loc, Category)) 2708 return true; 2709 // Check global type. 2710 if (!Ty.isNull()) { 2711 // Drill down the array types: if global variable of a fixed type is 2712 // not sanitized, we also don't instrument arrays of them. 2713 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 2714 Ty = AT->getElementType(); 2715 Ty = Ty.getCanonicalType().getUnqualifiedType(); 2716 // Only record types (classes, structs etc.) are ignored. 2717 if (Ty->isRecordType()) { 2718 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 2719 if (NoSanitizeL.containsType(EnabledAsanMask, TypeStr, Category)) 2720 return true; 2721 } 2722 } 2723 return false; 2724 } 2725 2726 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 2727 StringRef Category) const { 2728 const auto &XRayFilter = getContext().getXRayFilter(); 2729 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 2730 auto Attr = ImbueAttr::NONE; 2731 if (Loc.isValid()) 2732 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 2733 if (Attr == ImbueAttr::NONE) 2734 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 2735 switch (Attr) { 2736 case ImbueAttr::NONE: 2737 return false; 2738 case ImbueAttr::ALWAYS: 2739 Fn->addFnAttr("function-instrument", "xray-always"); 2740 break; 2741 case ImbueAttr::ALWAYS_ARG1: 2742 Fn->addFnAttr("function-instrument", "xray-always"); 2743 Fn->addFnAttr("xray-log-args", "1"); 2744 break; 2745 case ImbueAttr::NEVER: 2746 Fn->addFnAttr("function-instrument", "xray-never"); 2747 break; 2748 } 2749 return true; 2750 } 2751 2752 bool CodeGenModule::isProfileInstrExcluded(llvm::Function *Fn, 2753 SourceLocation Loc) const { 2754 const auto &ProfileList = getContext().getProfileList(); 2755 // If the profile list is empty, then instrument everything. 2756 if (ProfileList.isEmpty()) 2757 return false; 2758 CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr(); 2759 // First, check the function name. 2760 Optional<bool> V = ProfileList.isFunctionExcluded(Fn->getName(), Kind); 2761 if (V.hasValue()) 2762 return *V; 2763 // Next, check the source location. 2764 if (Loc.isValid()) { 2765 Optional<bool> V = ProfileList.isLocationExcluded(Loc, Kind); 2766 if (V.hasValue()) 2767 return *V; 2768 } 2769 // If location is unknown, this may be a compiler-generated function. Assume 2770 // it's located in the main file. 2771 auto &SM = Context.getSourceManager(); 2772 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 2773 Optional<bool> V = ProfileList.isFileExcluded(MainFile->getName(), Kind); 2774 if (V.hasValue()) 2775 return *V; 2776 } 2777 return ProfileList.getDefault(); 2778 } 2779 2780 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 2781 // Never defer when EmitAllDecls is specified. 2782 if (LangOpts.EmitAllDecls) 2783 return true; 2784 2785 if (CodeGenOpts.KeepStaticConsts) { 2786 const auto *VD = dyn_cast<VarDecl>(Global); 2787 if (VD && VD->getType().isConstQualified() && 2788 VD->getStorageDuration() == SD_Static) 2789 return true; 2790 } 2791 2792 return getContext().DeclMustBeEmitted(Global); 2793 } 2794 2795 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 2796 // In OpenMP 5.0 variables and function may be marked as 2797 // device_type(host/nohost) and we should not emit them eagerly unless we sure 2798 // that they must be emitted on the host/device. To be sure we need to have 2799 // seen a declare target with an explicit mentioning of the function, we know 2800 // we have if the level of the declare target attribute is -1. Note that we 2801 // check somewhere else if we should emit this at all. 2802 if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) { 2803 llvm::Optional<OMPDeclareTargetDeclAttr *> ActiveAttr = 2804 OMPDeclareTargetDeclAttr::getActiveAttr(Global); 2805 if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1) 2806 return false; 2807 } 2808 2809 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 2810 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 2811 // Implicit template instantiations may change linkage if they are later 2812 // explicitly instantiated, so they should not be emitted eagerly. 2813 return false; 2814 } 2815 if (const auto *VD = dyn_cast<VarDecl>(Global)) 2816 if (Context.getInlineVariableDefinitionKind(VD) == 2817 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 2818 // A definition of an inline constexpr static data member may change 2819 // linkage later if it's redeclared outside the class. 2820 return false; 2821 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 2822 // codegen for global variables, because they may be marked as threadprivate. 2823 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 2824 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) && 2825 !isTypeConstant(Global->getType(), false) && 2826 !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global)) 2827 return false; 2828 2829 return true; 2830 } 2831 2832 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) { 2833 StringRef Name = getMangledName(GD); 2834 2835 // The UUID descriptor should be pointer aligned. 2836 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 2837 2838 // Look for an existing global. 2839 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 2840 return ConstantAddress(GV, GV->getValueType(), Alignment); 2841 2842 ConstantEmitter Emitter(*this); 2843 llvm::Constant *Init; 2844 2845 APValue &V = GD->getAsAPValue(); 2846 if (!V.isAbsent()) { 2847 // If possible, emit the APValue version of the initializer. In particular, 2848 // this gets the type of the constant right. 2849 Init = Emitter.emitForInitializer( 2850 GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType()); 2851 } else { 2852 // As a fallback, directly construct the constant. 2853 // FIXME: This may get padding wrong under esoteric struct layout rules. 2854 // MSVC appears to create a complete type 'struct __s_GUID' that it 2855 // presumably uses to represent these constants. 2856 MSGuidDecl::Parts Parts = GD->getParts(); 2857 llvm::Constant *Fields[4] = { 2858 llvm::ConstantInt::get(Int32Ty, Parts.Part1), 2859 llvm::ConstantInt::get(Int16Ty, Parts.Part2), 2860 llvm::ConstantInt::get(Int16Ty, Parts.Part3), 2861 llvm::ConstantDataArray::getRaw( 2862 StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8, 2863 Int8Ty)}; 2864 Init = llvm::ConstantStruct::getAnon(Fields); 2865 } 2866 2867 auto *GV = new llvm::GlobalVariable( 2868 getModule(), Init->getType(), 2869 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 2870 if (supportsCOMDAT()) 2871 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2872 setDSOLocal(GV); 2873 2874 if (!V.isAbsent()) { 2875 Emitter.finalize(GV); 2876 return ConstantAddress(GV, GV->getValueType(), Alignment); 2877 } 2878 2879 llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType()); 2880 llvm::Constant *Addr = llvm::ConstantExpr::getBitCast( 2881 GV, Ty->getPointerTo(GV->getAddressSpace())); 2882 return ConstantAddress(Addr, Ty, Alignment); 2883 } 2884 2885 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject( 2886 const TemplateParamObjectDecl *TPO) { 2887 StringRef Name = getMangledName(TPO); 2888 CharUnits Alignment = getNaturalTypeAlignment(TPO->getType()); 2889 2890 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 2891 return ConstantAddress(GV, GV->getValueType(), Alignment); 2892 2893 ConstantEmitter Emitter(*this); 2894 llvm::Constant *Init = Emitter.emitForInitializer( 2895 TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType()); 2896 2897 if (!Init) { 2898 ErrorUnsupported(TPO, "template parameter object"); 2899 return ConstantAddress::invalid(); 2900 } 2901 2902 auto *GV = new llvm::GlobalVariable( 2903 getModule(), Init->getType(), 2904 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 2905 if (supportsCOMDAT()) 2906 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2907 Emitter.finalize(GV); 2908 2909 return ConstantAddress(GV, GV->getValueType(), Alignment); 2910 } 2911 2912 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 2913 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 2914 assert(AA && "No alias?"); 2915 2916 CharUnits Alignment = getContext().getDeclAlign(VD); 2917 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 2918 2919 // See if there is already something with the target's name in the module. 2920 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 2921 if (Entry) { 2922 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 2923 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 2924 return ConstantAddress(Ptr, DeclTy, Alignment); 2925 } 2926 2927 llvm::Constant *Aliasee; 2928 if (isa<llvm::FunctionType>(DeclTy)) 2929 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 2930 GlobalDecl(cast<FunctionDecl>(VD)), 2931 /*ForVTable=*/false); 2932 else 2933 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default, 2934 nullptr); 2935 2936 auto *F = cast<llvm::GlobalValue>(Aliasee); 2937 F->setLinkage(llvm::Function::ExternalWeakLinkage); 2938 WeakRefReferences.insert(F); 2939 2940 return ConstantAddress(Aliasee, DeclTy, Alignment); 2941 } 2942 2943 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 2944 const auto *Global = cast<ValueDecl>(GD.getDecl()); 2945 2946 // Weak references don't produce any output by themselves. 2947 if (Global->hasAttr<WeakRefAttr>()) 2948 return; 2949 2950 // If this is an alias definition (which otherwise looks like a declaration) 2951 // emit it now. 2952 if (Global->hasAttr<AliasAttr>()) 2953 return EmitAliasDefinition(GD); 2954 2955 // IFunc like an alias whose value is resolved at runtime by calling resolver. 2956 if (Global->hasAttr<IFuncAttr>()) 2957 return emitIFuncDefinition(GD); 2958 2959 // If this is a cpu_dispatch multiversion function, emit the resolver. 2960 if (Global->hasAttr<CPUDispatchAttr>()) 2961 return emitCPUDispatchDefinition(GD); 2962 2963 // If this is CUDA, be selective about which declarations we emit. 2964 if (LangOpts.CUDA) { 2965 if (LangOpts.CUDAIsDevice) { 2966 if (!Global->hasAttr<CUDADeviceAttr>() && 2967 !Global->hasAttr<CUDAGlobalAttr>() && 2968 !Global->hasAttr<CUDAConstantAttr>() && 2969 !Global->hasAttr<CUDASharedAttr>() && 2970 !Global->getType()->isCUDADeviceBuiltinSurfaceType() && 2971 !Global->getType()->isCUDADeviceBuiltinTextureType()) 2972 return; 2973 } else { 2974 // We need to emit host-side 'shadows' for all global 2975 // device-side variables because the CUDA runtime needs their 2976 // size and host-side address in order to provide access to 2977 // their device-side incarnations. 2978 2979 // So device-only functions are the only things we skip. 2980 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 2981 Global->hasAttr<CUDADeviceAttr>()) 2982 return; 2983 2984 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 2985 "Expected Variable or Function"); 2986 } 2987 } 2988 2989 if (LangOpts.OpenMP) { 2990 // If this is OpenMP, check if it is legal to emit this global normally. 2991 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 2992 return; 2993 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 2994 if (MustBeEmitted(Global)) 2995 EmitOMPDeclareReduction(DRD); 2996 return; 2997 } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) { 2998 if (MustBeEmitted(Global)) 2999 EmitOMPDeclareMapper(DMD); 3000 return; 3001 } 3002 } 3003 3004 // Ignore declarations, they will be emitted on their first use. 3005 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 3006 // Forward declarations are emitted lazily on first use. 3007 if (!FD->doesThisDeclarationHaveABody()) { 3008 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 3009 return; 3010 3011 StringRef MangledName = getMangledName(GD); 3012 3013 // Compute the function info and LLVM type. 3014 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3015 llvm::Type *Ty = getTypes().GetFunctionType(FI); 3016 3017 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 3018 /*DontDefer=*/false); 3019 return; 3020 } 3021 } else { 3022 const auto *VD = cast<VarDecl>(Global); 3023 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 3024 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 3025 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 3026 if (LangOpts.OpenMP) { 3027 // Emit declaration of the must-be-emitted declare target variable. 3028 if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 3029 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) { 3030 bool UnifiedMemoryEnabled = 3031 getOpenMPRuntime().hasRequiresUnifiedSharedMemory(); 3032 if (*Res == OMPDeclareTargetDeclAttr::MT_To && 3033 !UnifiedMemoryEnabled) { 3034 (void)GetAddrOfGlobalVar(VD); 3035 } else { 3036 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) || 3037 (*Res == OMPDeclareTargetDeclAttr::MT_To && 3038 UnifiedMemoryEnabled)) && 3039 "Link clause or to clause with unified memory expected."); 3040 (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD); 3041 } 3042 3043 return; 3044 } 3045 } 3046 // If this declaration may have caused an inline variable definition to 3047 // change linkage, make sure that it's emitted. 3048 if (Context.getInlineVariableDefinitionKind(VD) == 3049 ASTContext::InlineVariableDefinitionKind::Strong) 3050 GetAddrOfGlobalVar(VD); 3051 return; 3052 } 3053 } 3054 3055 // Defer code generation to first use when possible, e.g. if this is an inline 3056 // function. If the global must always be emitted, do it eagerly if possible 3057 // to benefit from cache locality. 3058 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 3059 // Emit the definition if it can't be deferred. 3060 EmitGlobalDefinition(GD); 3061 return; 3062 } 3063 3064 // If we're deferring emission of a C++ variable with an 3065 // initializer, remember the order in which it appeared in the file. 3066 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 3067 cast<VarDecl>(Global)->hasInit()) { 3068 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 3069 CXXGlobalInits.push_back(nullptr); 3070 } 3071 3072 StringRef MangledName = getMangledName(GD); 3073 if (GetGlobalValue(MangledName) != nullptr) { 3074 // The value has already been used and should therefore be emitted. 3075 addDeferredDeclToEmit(GD); 3076 } else if (MustBeEmitted(Global)) { 3077 // The value must be emitted, but cannot be emitted eagerly. 3078 assert(!MayBeEmittedEagerly(Global)); 3079 addDeferredDeclToEmit(GD); 3080 } else { 3081 // Otherwise, remember that we saw a deferred decl with this name. The 3082 // first use of the mangled name will cause it to move into 3083 // DeferredDeclsToEmit. 3084 DeferredDecls[MangledName] = GD; 3085 } 3086 } 3087 3088 // Check if T is a class type with a destructor that's not dllimport. 3089 static bool HasNonDllImportDtor(QualType T) { 3090 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 3091 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 3092 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 3093 return true; 3094 3095 return false; 3096 } 3097 3098 namespace { 3099 struct FunctionIsDirectlyRecursive 3100 : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> { 3101 const StringRef Name; 3102 const Builtin::Context &BI; 3103 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) 3104 : Name(N), BI(C) {} 3105 3106 bool VisitCallExpr(const CallExpr *E) { 3107 const FunctionDecl *FD = E->getDirectCallee(); 3108 if (!FD) 3109 return false; 3110 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 3111 if (Attr && Name == Attr->getLabel()) 3112 return true; 3113 unsigned BuiltinID = FD->getBuiltinID(); 3114 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 3115 return false; 3116 StringRef BuiltinName = BI.getName(BuiltinID); 3117 if (BuiltinName.startswith("__builtin_") && 3118 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 3119 return true; 3120 } 3121 return false; 3122 } 3123 3124 bool VisitStmt(const Stmt *S) { 3125 for (const Stmt *Child : S->children()) 3126 if (Child && this->Visit(Child)) 3127 return true; 3128 return false; 3129 } 3130 }; 3131 3132 // Make sure we're not referencing non-imported vars or functions. 3133 struct DLLImportFunctionVisitor 3134 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 3135 bool SafeToInline = true; 3136 3137 bool shouldVisitImplicitCode() const { return true; } 3138 3139 bool VisitVarDecl(VarDecl *VD) { 3140 if (VD->getTLSKind()) { 3141 // A thread-local variable cannot be imported. 3142 SafeToInline = false; 3143 return SafeToInline; 3144 } 3145 3146 // A variable definition might imply a destructor call. 3147 if (VD->isThisDeclarationADefinition()) 3148 SafeToInline = !HasNonDllImportDtor(VD->getType()); 3149 3150 return SafeToInline; 3151 } 3152 3153 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 3154 if (const auto *D = E->getTemporary()->getDestructor()) 3155 SafeToInline = D->hasAttr<DLLImportAttr>(); 3156 return SafeToInline; 3157 } 3158 3159 bool VisitDeclRefExpr(DeclRefExpr *E) { 3160 ValueDecl *VD = E->getDecl(); 3161 if (isa<FunctionDecl>(VD)) 3162 SafeToInline = VD->hasAttr<DLLImportAttr>(); 3163 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 3164 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 3165 return SafeToInline; 3166 } 3167 3168 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 3169 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 3170 return SafeToInline; 3171 } 3172 3173 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 3174 CXXMethodDecl *M = E->getMethodDecl(); 3175 if (!M) { 3176 // Call through a pointer to member function. This is safe to inline. 3177 SafeToInline = true; 3178 } else { 3179 SafeToInline = M->hasAttr<DLLImportAttr>(); 3180 } 3181 return SafeToInline; 3182 } 3183 3184 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 3185 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 3186 return SafeToInline; 3187 } 3188 3189 bool VisitCXXNewExpr(CXXNewExpr *E) { 3190 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 3191 return SafeToInline; 3192 } 3193 }; 3194 } 3195 3196 // isTriviallyRecursive - Check if this function calls another 3197 // decl that, because of the asm attribute or the other decl being a builtin, 3198 // ends up pointing to itself. 3199 bool 3200 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 3201 StringRef Name; 3202 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 3203 // asm labels are a special kind of mangling we have to support. 3204 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 3205 if (!Attr) 3206 return false; 3207 Name = Attr->getLabel(); 3208 } else { 3209 Name = FD->getName(); 3210 } 3211 3212 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 3213 const Stmt *Body = FD->getBody(); 3214 return Body ? Walker.Visit(Body) : false; 3215 } 3216 3217 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 3218 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 3219 return true; 3220 const auto *F = cast<FunctionDecl>(GD.getDecl()); 3221 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 3222 return false; 3223 3224 if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) { 3225 // Check whether it would be safe to inline this dllimport function. 3226 DLLImportFunctionVisitor Visitor; 3227 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 3228 if (!Visitor.SafeToInline) 3229 return false; 3230 3231 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 3232 // Implicit destructor invocations aren't captured in the AST, so the 3233 // check above can't see them. Check for them manually here. 3234 for (const Decl *Member : Dtor->getParent()->decls()) 3235 if (isa<FieldDecl>(Member)) 3236 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 3237 return false; 3238 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 3239 if (HasNonDllImportDtor(B.getType())) 3240 return false; 3241 } 3242 } 3243 3244 // Inline builtins declaration must be emitted. They often are fortified 3245 // functions. 3246 if (F->isInlineBuiltinDeclaration()) 3247 return true; 3248 3249 // PR9614. Avoid cases where the source code is lying to us. An available 3250 // externally function should have an equivalent function somewhere else, 3251 // but a function that calls itself through asm label/`__builtin_` trickery is 3252 // clearly not equivalent to the real implementation. 3253 // This happens in glibc's btowc and in some configure checks. 3254 return !isTriviallyRecursive(F); 3255 } 3256 3257 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 3258 return CodeGenOpts.OptimizationLevel > 0; 3259 } 3260 3261 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD, 3262 llvm::GlobalValue *GV) { 3263 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3264 3265 if (FD->isCPUSpecificMultiVersion()) { 3266 auto *Spec = FD->getAttr<CPUSpecificAttr>(); 3267 for (unsigned I = 0; I < Spec->cpus_size(); ++I) 3268 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 3269 // Requires multiple emits. 3270 } else if (FD->isTargetClonesMultiVersion()) { 3271 auto *Clone = FD->getAttr<TargetClonesAttr>(); 3272 for (unsigned I = 0; I < Clone->featuresStrs_size(); ++I) 3273 if (Clone->isFirstOfVersion(I)) 3274 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 3275 EmitTargetClonesResolver(GD); 3276 } else 3277 EmitGlobalFunctionDefinition(GD, GV); 3278 } 3279 3280 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 3281 const auto *D = cast<ValueDecl>(GD.getDecl()); 3282 3283 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 3284 Context.getSourceManager(), 3285 "Generating code for declaration"); 3286 3287 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 3288 // At -O0, don't generate IR for functions with available_externally 3289 // linkage. 3290 if (!shouldEmitFunction(GD)) 3291 return; 3292 3293 llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() { 3294 std::string Name; 3295 llvm::raw_string_ostream OS(Name); 3296 FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(), 3297 /*Qualified=*/true); 3298 return Name; 3299 }); 3300 3301 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 3302 // Make sure to emit the definition(s) before we emit the thunks. 3303 // This is necessary for the generation of certain thunks. 3304 if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method)) 3305 ABI->emitCXXStructor(GD); 3306 else if (FD->isMultiVersion()) 3307 EmitMultiVersionFunctionDefinition(GD, GV); 3308 else 3309 EmitGlobalFunctionDefinition(GD, GV); 3310 3311 if (Method->isVirtual()) 3312 getVTables().EmitThunks(GD); 3313 3314 return; 3315 } 3316 3317 if (FD->isMultiVersion()) 3318 return EmitMultiVersionFunctionDefinition(GD, GV); 3319 return EmitGlobalFunctionDefinition(GD, GV); 3320 } 3321 3322 if (const auto *VD = dyn_cast<VarDecl>(D)) 3323 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 3324 3325 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 3326 } 3327 3328 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 3329 llvm::Function *NewFn); 3330 3331 static unsigned 3332 TargetMVPriority(const TargetInfo &TI, 3333 const CodeGenFunction::MultiVersionResolverOption &RO) { 3334 unsigned Priority = 0; 3335 for (StringRef Feat : RO.Conditions.Features) 3336 Priority = std::max(Priority, TI.multiVersionSortPriority(Feat)); 3337 3338 if (!RO.Conditions.Architecture.empty()) 3339 Priority = std::max( 3340 Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture)); 3341 return Priority; 3342 } 3343 3344 // Multiversion functions should be at most 'WeakODRLinkage' so that a different 3345 // TU can forward declare the function without causing problems. Particularly 3346 // in the cases of CPUDispatch, this causes issues. This also makes sure we 3347 // work with internal linkage functions, so that the same function name can be 3348 // used with internal linkage in multiple TUs. 3349 llvm::GlobalValue::LinkageTypes getMultiversionLinkage(CodeGenModule &CGM, 3350 GlobalDecl GD) { 3351 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 3352 if (FD->getFormalLinkage() == InternalLinkage) 3353 return llvm::GlobalValue::InternalLinkage; 3354 return llvm::GlobalValue::WeakODRLinkage; 3355 } 3356 3357 void CodeGenModule::EmitTargetClonesResolver(GlobalDecl GD) { 3358 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3359 assert(FD && "Not a FunctionDecl?"); 3360 const auto *TC = FD->getAttr<TargetClonesAttr>(); 3361 assert(TC && "Not a target_clones Function?"); 3362 3363 QualType CanonTy = Context.getCanonicalType(FD->getType()); 3364 llvm::Type *DeclTy = getTypes().ConvertType(CanonTy); 3365 3366 if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) { 3367 const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD); 3368 DeclTy = getTypes().GetFunctionType(FInfo); 3369 } 3370 3371 llvm::Function *ResolverFunc; 3372 if (getTarget().supportsIFunc()) { 3373 auto *IFunc = cast<llvm::GlobalIFunc>( 3374 GetOrCreateMultiVersionResolver(GD, DeclTy, FD)); 3375 ResolverFunc = cast<llvm::Function>(IFunc->getResolver()); 3376 } else 3377 ResolverFunc = 3378 cast<llvm::Function>(GetOrCreateMultiVersionResolver(GD, DeclTy, FD)); 3379 3380 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 3381 for (unsigned VersionIndex = 0; VersionIndex < TC->featuresStrs_size(); 3382 ++VersionIndex) { 3383 if (!TC->isFirstOfVersion(VersionIndex)) 3384 continue; 3385 StringRef Version = TC->getFeatureStr(VersionIndex); 3386 StringRef MangledName = 3387 getMangledName(GD.getWithMultiVersionIndex(VersionIndex)); 3388 llvm::Constant *Func = GetGlobalValue(MangledName); 3389 assert(Func && 3390 "Should have already been created before calling resolver emit"); 3391 3392 StringRef Architecture; 3393 llvm::SmallVector<StringRef, 1> Feature; 3394 3395 if (Version.startswith("arch=")) 3396 Architecture = Version.drop_front(sizeof("arch=") - 1); 3397 else if (Version != "default") 3398 Feature.push_back(Version); 3399 3400 Options.emplace_back(cast<llvm::Function>(Func), Architecture, Feature); 3401 } 3402 3403 const TargetInfo &TI = getTarget(); 3404 std::stable_sort( 3405 Options.begin(), Options.end(), 3406 [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS, 3407 const CodeGenFunction::MultiVersionResolverOption &RHS) { 3408 return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS); 3409 }); 3410 CodeGenFunction CGF(*this); 3411 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 3412 } 3413 3414 void CodeGenModule::emitMultiVersionFunctions() { 3415 std::vector<GlobalDecl> MVFuncsToEmit; 3416 MultiVersionFuncs.swap(MVFuncsToEmit); 3417 for (GlobalDecl GD : MVFuncsToEmit) { 3418 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 3419 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 3420 getContext().forEachMultiversionedFunctionVersion( 3421 FD, [this, &GD, &Options](const FunctionDecl *CurFD) { 3422 GlobalDecl CurGD{ 3423 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)}; 3424 StringRef MangledName = getMangledName(CurGD); 3425 llvm::Constant *Func = GetGlobalValue(MangledName); 3426 if (!Func) { 3427 if (CurFD->isDefined()) { 3428 EmitGlobalFunctionDefinition(CurGD, nullptr); 3429 Func = GetGlobalValue(MangledName); 3430 } else { 3431 const CGFunctionInfo &FI = 3432 getTypes().arrangeGlobalDeclaration(GD); 3433 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3434 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 3435 /*DontDefer=*/false, ForDefinition); 3436 } 3437 assert(Func && "This should have just been created"); 3438 } 3439 3440 const auto *TA = CurFD->getAttr<TargetAttr>(); 3441 llvm::SmallVector<StringRef, 8> Feats; 3442 TA->getAddedFeatures(Feats); 3443 3444 Options.emplace_back(cast<llvm::Function>(Func), 3445 TA->getArchitecture(), Feats); 3446 }); 3447 3448 llvm::Function *ResolverFunc; 3449 const TargetInfo &TI = getTarget(); 3450 3451 if (TI.supportsIFunc() || FD->isTargetMultiVersion()) { 3452 ResolverFunc = cast<llvm::Function>( 3453 GetGlobalValue((getMangledName(GD) + ".resolver").str())); 3454 ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD)); 3455 } else { 3456 ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD))); 3457 } 3458 3459 if (supportsCOMDAT()) 3460 ResolverFunc->setComdat( 3461 getModule().getOrInsertComdat(ResolverFunc->getName())); 3462 3463 llvm::stable_sort( 3464 Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS, 3465 const CodeGenFunction::MultiVersionResolverOption &RHS) { 3466 return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS); 3467 }); 3468 CodeGenFunction CGF(*this); 3469 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 3470 } 3471 3472 // Ensure that any additions to the deferred decls list caused by emitting a 3473 // variant are emitted. This can happen when the variant itself is inline and 3474 // calls a function without linkage. 3475 if (!MVFuncsToEmit.empty()) 3476 EmitDeferred(); 3477 3478 // Ensure that any additions to the multiversion funcs list from either the 3479 // deferred decls or the multiversion functions themselves are emitted. 3480 if (!MultiVersionFuncs.empty()) 3481 emitMultiVersionFunctions(); 3482 } 3483 3484 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) { 3485 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3486 assert(FD && "Not a FunctionDecl?"); 3487 assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?"); 3488 const auto *DD = FD->getAttr<CPUDispatchAttr>(); 3489 assert(DD && "Not a cpu_dispatch Function?"); 3490 llvm::Type *DeclTy = getTypes().ConvertType(FD->getType()); 3491 3492 if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) { 3493 const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD); 3494 DeclTy = getTypes().GetFunctionType(FInfo); 3495 } 3496 3497 StringRef ResolverName = getMangledName(GD); 3498 UpdateMultiVersionNames(GD, FD, ResolverName); 3499 3500 llvm::Type *ResolverType; 3501 GlobalDecl ResolverGD; 3502 if (getTarget().supportsIFunc()) { 3503 ResolverType = llvm::FunctionType::get( 3504 llvm::PointerType::get(DeclTy, 3505 Context.getTargetAddressSpace(FD->getType())), 3506 false); 3507 } 3508 else { 3509 ResolverType = DeclTy; 3510 ResolverGD = GD; 3511 } 3512 3513 auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction( 3514 ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false)); 3515 ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD)); 3516 if (supportsCOMDAT()) 3517 ResolverFunc->setComdat( 3518 getModule().getOrInsertComdat(ResolverFunc->getName())); 3519 3520 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 3521 const TargetInfo &Target = getTarget(); 3522 unsigned Index = 0; 3523 for (const IdentifierInfo *II : DD->cpus()) { 3524 // Get the name of the target function so we can look it up/create it. 3525 std::string MangledName = getMangledNameImpl(*this, GD, FD, true) + 3526 getCPUSpecificMangling(*this, II->getName()); 3527 3528 llvm::Constant *Func = GetGlobalValue(MangledName); 3529 3530 if (!Func) { 3531 GlobalDecl ExistingDecl = Manglings.lookup(MangledName); 3532 if (ExistingDecl.getDecl() && 3533 ExistingDecl.getDecl()->getAsFunction()->isDefined()) { 3534 EmitGlobalFunctionDefinition(ExistingDecl, nullptr); 3535 Func = GetGlobalValue(MangledName); 3536 } else { 3537 if (!ExistingDecl.getDecl()) 3538 ExistingDecl = GD.getWithMultiVersionIndex(Index); 3539 3540 Func = GetOrCreateLLVMFunction( 3541 MangledName, DeclTy, ExistingDecl, 3542 /*ForVTable=*/false, /*DontDefer=*/true, 3543 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition); 3544 } 3545 } 3546 3547 llvm::SmallVector<StringRef, 32> Features; 3548 Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features); 3549 llvm::transform(Features, Features.begin(), 3550 [](StringRef Str) { return Str.substr(1); }); 3551 llvm::erase_if(Features, [&Target](StringRef Feat) { 3552 return !Target.validateCpuSupports(Feat); 3553 }); 3554 Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features); 3555 ++Index; 3556 } 3557 3558 llvm::stable_sort( 3559 Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS, 3560 const CodeGenFunction::MultiVersionResolverOption &RHS) { 3561 return llvm::X86::getCpuSupportsMask(LHS.Conditions.Features) > 3562 llvm::X86::getCpuSupportsMask(RHS.Conditions.Features); 3563 }); 3564 3565 // If the list contains multiple 'default' versions, such as when it contains 3566 // 'pentium' and 'generic', don't emit the call to the generic one (since we 3567 // always run on at least a 'pentium'). We do this by deleting the 'least 3568 // advanced' (read, lowest mangling letter). 3569 while (Options.size() > 1 && 3570 llvm::X86::getCpuSupportsMask( 3571 (Options.end() - 2)->Conditions.Features) == 0) { 3572 StringRef LHSName = (Options.end() - 2)->Function->getName(); 3573 StringRef RHSName = (Options.end() - 1)->Function->getName(); 3574 if (LHSName.compare(RHSName) < 0) 3575 Options.erase(Options.end() - 2); 3576 else 3577 Options.erase(Options.end() - 1); 3578 } 3579 3580 CodeGenFunction CGF(*this); 3581 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 3582 3583 if (getTarget().supportsIFunc()) { 3584 std::string AliasName = getMangledNameImpl( 3585 *this, GD, FD, /*OmitMultiVersionMangling=*/true); 3586 llvm::Constant *AliasFunc = GetGlobalValue(AliasName); 3587 if (!AliasFunc) { 3588 auto *IFunc = cast<llvm::GlobalIFunc>(GetOrCreateLLVMFunction( 3589 AliasName, DeclTy, GD, /*ForVTable=*/false, /*DontDefer=*/true, 3590 /*IsThunk=*/false, llvm::AttributeList(), NotForDefinition)); 3591 auto *GA = llvm::GlobalAlias::create(DeclTy, 0, 3592 getMultiversionLinkage(*this, GD), 3593 AliasName, IFunc, &getModule()); 3594 SetCommonAttributes(GD, GA); 3595 } 3596 } 3597 } 3598 3599 /// If a dispatcher for the specified mangled name is not in the module, create 3600 /// and return an llvm Function with the specified type. 3601 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver( 3602 GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) { 3603 std::string MangledName = 3604 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 3605 3606 // Holds the name of the resolver, in ifunc mode this is the ifunc (which has 3607 // a separate resolver). 3608 std::string ResolverName = MangledName; 3609 if (getTarget().supportsIFunc()) 3610 ResolverName += ".ifunc"; 3611 else if (FD->isTargetMultiVersion()) 3612 ResolverName += ".resolver"; 3613 3614 // If this already exists, just return that one. 3615 if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName)) 3616 return ResolverGV; 3617 3618 // Since this is the first time we've created this IFunc, make sure 3619 // that we put this multiversioned function into the list to be 3620 // replaced later if necessary (target multiversioning only). 3621 if (FD->isTargetMultiVersion()) 3622 MultiVersionFuncs.push_back(GD); 3623 else if (FD->isTargetClonesMultiVersion()) { 3624 // In target_clones multiversioning, make sure we emit this if used. 3625 auto DDI = 3626 DeferredDecls.find(getMangledName(GD.getWithMultiVersionIndex(0))); 3627 if (DDI != DeferredDecls.end()) { 3628 addDeferredDeclToEmit(GD); 3629 DeferredDecls.erase(DDI); 3630 } else { 3631 // Emit the symbol of the 1st variant, so that the deferred decls know we 3632 // need it, otherwise the only global value will be the resolver/ifunc, 3633 // which end up getting broken if we search for them with GetGlobalValue'. 3634 GetOrCreateLLVMFunction( 3635 getMangledName(GD.getWithMultiVersionIndex(0)), DeclTy, FD, 3636 /*ForVTable=*/false, /*DontDefer=*/true, 3637 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition); 3638 } 3639 } 3640 3641 if (getTarget().supportsIFunc()) { 3642 llvm::Type *ResolverType = llvm::FunctionType::get( 3643 llvm::PointerType::get( 3644 DeclTy, getContext().getTargetAddressSpace(FD->getType())), 3645 false); 3646 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 3647 MangledName + ".resolver", ResolverType, GlobalDecl{}, 3648 /*ForVTable=*/false); 3649 llvm::GlobalIFunc *GIF = 3650 llvm::GlobalIFunc::create(DeclTy, 0, getMultiversionLinkage(*this, GD), 3651 "", Resolver, &getModule()); 3652 GIF->setName(ResolverName); 3653 SetCommonAttributes(FD, GIF); 3654 3655 return GIF; 3656 } 3657 3658 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 3659 ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false); 3660 assert(isa<llvm::GlobalValue>(Resolver) && 3661 "Resolver should be created for the first time"); 3662 SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver)); 3663 return Resolver; 3664 } 3665 3666 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 3667 /// module, create and return an llvm Function with the specified type. If there 3668 /// is something in the module with the specified name, return it potentially 3669 /// bitcasted to the right type. 3670 /// 3671 /// If D is non-null, it specifies a decl that correspond to this. This is used 3672 /// to set the attributes on the function when it is first created. 3673 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 3674 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 3675 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 3676 ForDefinition_t IsForDefinition) { 3677 const Decl *D = GD.getDecl(); 3678 3679 // Any attempts to use a MultiVersion function should result in retrieving 3680 // the iFunc instead. Name Mangling will handle the rest of the changes. 3681 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 3682 // For the device mark the function as one that should be emitted. 3683 if (getLangOpts().OpenMPIsDevice && OpenMPRuntime && 3684 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() && 3685 !DontDefer && !IsForDefinition) { 3686 if (const FunctionDecl *FDDef = FD->getDefinition()) { 3687 GlobalDecl GDDef; 3688 if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef)) 3689 GDDef = GlobalDecl(CD, GD.getCtorType()); 3690 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef)) 3691 GDDef = GlobalDecl(DD, GD.getDtorType()); 3692 else 3693 GDDef = GlobalDecl(FDDef); 3694 EmitGlobal(GDDef); 3695 } 3696 } 3697 3698 if (FD->isMultiVersion()) { 3699 UpdateMultiVersionNames(GD, FD, MangledName); 3700 if (!IsForDefinition) 3701 return GetOrCreateMultiVersionResolver(GD, Ty, FD); 3702 } 3703 } 3704 3705 // Lookup the entry, lazily creating it if necessary. 3706 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3707 if (Entry) { 3708 if (WeakRefReferences.erase(Entry)) { 3709 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 3710 if (FD && !FD->hasAttr<WeakAttr>()) 3711 Entry->setLinkage(llvm::Function::ExternalLinkage); 3712 } 3713 3714 // Handle dropped DLL attributes. 3715 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) { 3716 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 3717 setDSOLocal(Entry); 3718 } 3719 3720 // If there are two attempts to define the same mangled name, issue an 3721 // error. 3722 if (IsForDefinition && !Entry->isDeclaration()) { 3723 GlobalDecl OtherGD; 3724 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 3725 // to make sure that we issue an error only once. 3726 if (lookupRepresentativeDecl(MangledName, OtherGD) && 3727 (GD.getCanonicalDecl().getDecl() != 3728 OtherGD.getCanonicalDecl().getDecl()) && 3729 DiagnosedConflictingDefinitions.insert(GD).second) { 3730 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 3731 << MangledName; 3732 getDiags().Report(OtherGD.getDecl()->getLocation(), 3733 diag::note_previous_definition); 3734 } 3735 } 3736 3737 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 3738 (Entry->getValueType() == Ty)) { 3739 return Entry; 3740 } 3741 3742 // Make sure the result is of the correct type. 3743 // (If function is requested for a definition, we always need to create a new 3744 // function, not just return a bitcast.) 3745 if (!IsForDefinition) 3746 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 3747 } 3748 3749 // This function doesn't have a complete type (for example, the return 3750 // type is an incomplete struct). Use a fake type instead, and make 3751 // sure not to try to set attributes. 3752 bool IsIncompleteFunction = false; 3753 3754 llvm::FunctionType *FTy; 3755 if (isa<llvm::FunctionType>(Ty)) { 3756 FTy = cast<llvm::FunctionType>(Ty); 3757 } else { 3758 FTy = llvm::FunctionType::get(VoidTy, false); 3759 IsIncompleteFunction = true; 3760 } 3761 3762 llvm::Function *F = 3763 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 3764 Entry ? StringRef() : MangledName, &getModule()); 3765 3766 // If we already created a function with the same mangled name (but different 3767 // type) before, take its name and add it to the list of functions to be 3768 // replaced with F at the end of CodeGen. 3769 // 3770 // This happens if there is a prototype for a function (e.g. "int f()") and 3771 // then a definition of a different type (e.g. "int f(int x)"). 3772 if (Entry) { 3773 F->takeName(Entry); 3774 3775 // This might be an implementation of a function without a prototype, in 3776 // which case, try to do special replacement of calls which match the new 3777 // prototype. The really key thing here is that we also potentially drop 3778 // arguments from the call site so as to make a direct call, which makes the 3779 // inliner happier and suppresses a number of optimizer warnings (!) about 3780 // dropping arguments. 3781 if (!Entry->use_empty()) { 3782 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 3783 Entry->removeDeadConstantUsers(); 3784 } 3785 3786 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 3787 F, Entry->getValueType()->getPointerTo()); 3788 addGlobalValReplacement(Entry, BC); 3789 } 3790 3791 assert(F->getName() == MangledName && "name was uniqued!"); 3792 if (D) 3793 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 3794 if (ExtraAttrs.hasFnAttrs()) { 3795 llvm::AttrBuilder B(F->getContext(), ExtraAttrs, llvm::AttributeList::FunctionIndex); 3796 F->addFnAttrs(B); 3797 } 3798 3799 if (!DontDefer) { 3800 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 3801 // each other bottoming out with the base dtor. Therefore we emit non-base 3802 // dtors on usage, even if there is no dtor definition in the TU. 3803 if (D && isa<CXXDestructorDecl>(D) && 3804 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 3805 GD.getDtorType())) 3806 addDeferredDeclToEmit(GD); 3807 3808 // This is the first use or definition of a mangled name. If there is a 3809 // deferred decl with this name, remember that we need to emit it at the end 3810 // of the file. 3811 auto DDI = DeferredDecls.find(MangledName); 3812 if (DDI != DeferredDecls.end()) { 3813 // Move the potentially referenced deferred decl to the 3814 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 3815 // don't need it anymore). 3816 addDeferredDeclToEmit(DDI->second); 3817 DeferredDecls.erase(DDI); 3818 3819 // Otherwise, there are cases we have to worry about where we're 3820 // using a declaration for which we must emit a definition but where 3821 // we might not find a top-level definition: 3822 // - member functions defined inline in their classes 3823 // - friend functions defined inline in some class 3824 // - special member functions with implicit definitions 3825 // If we ever change our AST traversal to walk into class methods, 3826 // this will be unnecessary. 3827 // 3828 // We also don't emit a definition for a function if it's going to be an 3829 // entry in a vtable, unless it's already marked as used. 3830 } else if (getLangOpts().CPlusPlus && D) { 3831 // Look for a declaration that's lexically in a record. 3832 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 3833 FD = FD->getPreviousDecl()) { 3834 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 3835 if (FD->doesThisDeclarationHaveABody()) { 3836 addDeferredDeclToEmit(GD.getWithDecl(FD)); 3837 break; 3838 } 3839 } 3840 } 3841 } 3842 } 3843 3844 // Make sure the result is of the requested type. 3845 if (!IsIncompleteFunction) { 3846 assert(F->getFunctionType() == Ty); 3847 return F; 3848 } 3849 3850 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 3851 return llvm::ConstantExpr::getBitCast(F, PTy); 3852 } 3853 3854 /// GetAddrOfFunction - Return the address of the given function. If Ty is 3855 /// non-null, then this function will use the specified type if it has to 3856 /// create it (this occurs when we see a definition of the function). 3857 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 3858 llvm::Type *Ty, 3859 bool ForVTable, 3860 bool DontDefer, 3861 ForDefinition_t IsForDefinition) { 3862 assert(!cast<FunctionDecl>(GD.getDecl())->isConsteval() && 3863 "consteval function should never be emitted"); 3864 // If there was no specific requested type, just convert it now. 3865 if (!Ty) { 3866 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3867 Ty = getTypes().ConvertType(FD->getType()); 3868 } 3869 3870 // Devirtualized destructor calls may come through here instead of via 3871 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead 3872 // of the complete destructor when necessary. 3873 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) { 3874 if (getTarget().getCXXABI().isMicrosoft() && 3875 GD.getDtorType() == Dtor_Complete && 3876 DD->getParent()->getNumVBases() == 0) 3877 GD = GlobalDecl(DD, Dtor_Base); 3878 } 3879 3880 StringRef MangledName = getMangledName(GD); 3881 auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 3882 /*IsThunk=*/false, llvm::AttributeList(), 3883 IsForDefinition); 3884 // Returns kernel handle for HIP kernel stub function. 3885 if (LangOpts.CUDA && !LangOpts.CUDAIsDevice && 3886 cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) { 3887 auto *Handle = getCUDARuntime().getKernelHandle( 3888 cast<llvm::Function>(F->stripPointerCasts()), GD); 3889 if (IsForDefinition) 3890 return F; 3891 return llvm::ConstantExpr::getBitCast(Handle, Ty->getPointerTo()); 3892 } 3893 return F; 3894 } 3895 3896 llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) { 3897 llvm::GlobalValue *F = 3898 cast<llvm::GlobalValue>(GetAddrOfFunction(Decl)->stripPointerCasts()); 3899 3900 return llvm::ConstantExpr::getBitCast(llvm::NoCFIValue::get(F), 3901 llvm::Type::getInt8PtrTy(VMContext)); 3902 } 3903 3904 static const FunctionDecl * 3905 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 3906 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 3907 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 3908 3909 IdentifierInfo &CII = C.Idents.get(Name); 3910 for (const auto *Result : DC->lookup(&CII)) 3911 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 3912 return FD; 3913 3914 if (!C.getLangOpts().CPlusPlus) 3915 return nullptr; 3916 3917 // Demangle the premangled name from getTerminateFn() 3918 IdentifierInfo &CXXII = 3919 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ") 3920 ? C.Idents.get("terminate") 3921 : C.Idents.get(Name); 3922 3923 for (const auto &N : {"__cxxabiv1", "std"}) { 3924 IdentifierInfo &NS = C.Idents.get(N); 3925 for (const auto *Result : DC->lookup(&NS)) { 3926 const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 3927 if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result)) 3928 for (const auto *Result : LSD->lookup(&NS)) 3929 if ((ND = dyn_cast<NamespaceDecl>(Result))) 3930 break; 3931 3932 if (ND) 3933 for (const auto *Result : ND->lookup(&CXXII)) 3934 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 3935 return FD; 3936 } 3937 } 3938 3939 return nullptr; 3940 } 3941 3942 /// CreateRuntimeFunction - Create a new runtime function with the specified 3943 /// type and name. 3944 llvm::FunctionCallee 3945 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 3946 llvm::AttributeList ExtraAttrs, bool Local, 3947 bool AssumeConvergent) { 3948 if (AssumeConvergent) { 3949 ExtraAttrs = 3950 ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent); 3951 } 3952 3953 llvm::Constant *C = 3954 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 3955 /*DontDefer=*/false, /*IsThunk=*/false, 3956 ExtraAttrs); 3957 3958 if (auto *F = dyn_cast<llvm::Function>(C)) { 3959 if (F->empty()) { 3960 F->setCallingConv(getRuntimeCC()); 3961 3962 // In Windows Itanium environments, try to mark runtime functions 3963 // dllimport. For Mingw and MSVC, don't. We don't really know if the user 3964 // will link their standard library statically or dynamically. Marking 3965 // functions imported when they are not imported can cause linker errors 3966 // and warnings. 3967 if (!Local && getTriple().isWindowsItaniumEnvironment() && 3968 !getCodeGenOpts().LTOVisibilityPublicStd) { 3969 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 3970 if (!FD || FD->hasAttr<DLLImportAttr>()) { 3971 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 3972 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 3973 } 3974 } 3975 setDSOLocal(F); 3976 } 3977 } 3978 3979 return {FTy, C}; 3980 } 3981 3982 /// isTypeConstant - Determine whether an object of this type can be emitted 3983 /// as a constant. 3984 /// 3985 /// If ExcludeCtor is true, the duration when the object's constructor runs 3986 /// will not be considered. The caller will need to verify that the object is 3987 /// not written to during its construction. 3988 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 3989 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 3990 return false; 3991 3992 if (Context.getLangOpts().CPlusPlus) { 3993 if (const CXXRecordDecl *Record 3994 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 3995 return ExcludeCtor && !Record->hasMutableFields() && 3996 Record->hasTrivialDestructor(); 3997 } 3998 3999 return true; 4000 } 4001 4002 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 4003 /// create and return an llvm GlobalVariable with the specified type and address 4004 /// space. If there is something in the module with the specified name, return 4005 /// it potentially bitcasted to the right type. 4006 /// 4007 /// If D is non-null, it specifies a decl that correspond to this. This is used 4008 /// to set the attributes on the global when it is first created. 4009 /// 4010 /// If IsForDefinition is true, it is guaranteed that an actual global with 4011 /// type Ty will be returned, not conversion of a variable with the same 4012 /// mangled name but some other type. 4013 llvm::Constant * 4014 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty, 4015 LangAS AddrSpace, const VarDecl *D, 4016 ForDefinition_t IsForDefinition) { 4017 // Lookup the entry, lazily creating it if necessary. 4018 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4019 unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace); 4020 if (Entry) { 4021 if (WeakRefReferences.erase(Entry)) { 4022 if (D && !D->hasAttr<WeakAttr>()) 4023 Entry->setLinkage(llvm::Function::ExternalLinkage); 4024 } 4025 4026 // Handle dropped DLL attributes. 4027 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 4028 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 4029 4030 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D) 4031 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry); 4032 4033 if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS) 4034 return Entry; 4035 4036 // If there are two attempts to define the same mangled name, issue an 4037 // error. 4038 if (IsForDefinition && !Entry->isDeclaration()) { 4039 GlobalDecl OtherGD; 4040 const VarDecl *OtherD; 4041 4042 // Check that D is not yet in DiagnosedConflictingDefinitions is required 4043 // to make sure that we issue an error only once. 4044 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 4045 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 4046 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 4047 OtherD->hasInit() && 4048 DiagnosedConflictingDefinitions.insert(D).second) { 4049 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 4050 << MangledName; 4051 getDiags().Report(OtherGD.getDecl()->getLocation(), 4052 diag::note_previous_definition); 4053 } 4054 } 4055 4056 // Make sure the result is of the correct type. 4057 if (Entry->getType()->getAddressSpace() != TargetAS) { 4058 return llvm::ConstantExpr::getAddrSpaceCast(Entry, 4059 Ty->getPointerTo(TargetAS)); 4060 } 4061 4062 // (If global is requested for a definition, we always need to create a new 4063 // global, not just return a bitcast.) 4064 if (!IsForDefinition) 4065 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo(TargetAS)); 4066 } 4067 4068 auto DAddrSpace = GetGlobalVarAddressSpace(D); 4069 4070 auto *GV = new llvm::GlobalVariable( 4071 getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr, 4072 MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal, 4073 getContext().getTargetAddressSpace(DAddrSpace)); 4074 4075 // If we already created a global with the same mangled name (but different 4076 // type) before, take its name and remove it from its parent. 4077 if (Entry) { 4078 GV->takeName(Entry); 4079 4080 if (!Entry->use_empty()) { 4081 llvm::Constant *NewPtrForOldDecl = 4082 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 4083 Entry->replaceAllUsesWith(NewPtrForOldDecl); 4084 } 4085 4086 Entry->eraseFromParent(); 4087 } 4088 4089 // This is the first use or definition of a mangled name. If there is a 4090 // deferred decl with this name, remember that we need to emit it at the end 4091 // of the file. 4092 auto DDI = DeferredDecls.find(MangledName); 4093 if (DDI != DeferredDecls.end()) { 4094 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 4095 // list, and remove it from DeferredDecls (since we don't need it anymore). 4096 addDeferredDeclToEmit(DDI->second); 4097 DeferredDecls.erase(DDI); 4098 } 4099 4100 // Handle things which are present even on external declarations. 4101 if (D) { 4102 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd) 4103 getOpenMPRuntime().registerTargetGlobalVariable(D, GV); 4104 4105 // FIXME: This code is overly simple and should be merged with other global 4106 // handling. 4107 GV->setConstant(isTypeConstant(D->getType(), false)); 4108 4109 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 4110 4111 setLinkageForGV(GV, D); 4112 4113 if (D->getTLSKind()) { 4114 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 4115 CXXThreadLocals.push_back(D); 4116 setTLSMode(GV, *D); 4117 } 4118 4119 setGVProperties(GV, D); 4120 4121 // If required by the ABI, treat declarations of static data members with 4122 // inline initializers as definitions. 4123 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 4124 EmitGlobalVarDefinition(D); 4125 } 4126 4127 // Emit section information for extern variables. 4128 if (D->hasExternalStorage()) { 4129 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 4130 GV->setSection(SA->getName()); 4131 } 4132 4133 // Handle XCore specific ABI requirements. 4134 if (getTriple().getArch() == llvm::Triple::xcore && 4135 D->getLanguageLinkage() == CLanguageLinkage && 4136 D->getType().isConstant(Context) && 4137 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 4138 GV->setSection(".cp.rodata"); 4139 4140 // Check if we a have a const declaration with an initializer, we may be 4141 // able to emit it as available_externally to expose it's value to the 4142 // optimizer. 4143 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 4144 D->getType().isConstQualified() && !GV->hasInitializer() && 4145 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 4146 const auto *Record = 4147 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 4148 bool HasMutableFields = Record && Record->hasMutableFields(); 4149 if (!HasMutableFields) { 4150 const VarDecl *InitDecl; 4151 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 4152 if (InitExpr) { 4153 ConstantEmitter emitter(*this); 4154 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 4155 if (Init) { 4156 auto *InitType = Init->getType(); 4157 if (GV->getValueType() != InitType) { 4158 // The type of the initializer does not match the definition. 4159 // This happens when an initializer has a different type from 4160 // the type of the global (because of padding at the end of a 4161 // structure for instance). 4162 GV->setName(StringRef()); 4163 // Make a new global with the correct type, this is now guaranteed 4164 // to work. 4165 auto *NewGV = cast<llvm::GlobalVariable>( 4166 GetAddrOfGlobalVar(D, InitType, IsForDefinition) 4167 ->stripPointerCasts()); 4168 4169 // Erase the old global, since it is no longer used. 4170 GV->eraseFromParent(); 4171 GV = NewGV; 4172 } else { 4173 GV->setInitializer(Init); 4174 GV->setConstant(true); 4175 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 4176 } 4177 emitter.finalize(GV); 4178 } 4179 } 4180 } 4181 } 4182 } 4183 4184 if (GV->isDeclaration()) { 4185 getTargetCodeGenInfo().setTargetAttributes(D, GV, *this); 4186 // External HIP managed variables needed to be recorded for transformation 4187 // in both device and host compilations. 4188 if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() && 4189 D->hasExternalStorage()) 4190 getCUDARuntime().handleVarRegistration(D, *GV); 4191 } 4192 4193 LangAS ExpectedAS = 4194 D ? D->getType().getAddressSpace() 4195 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 4196 assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS); 4197 if (DAddrSpace != ExpectedAS) { 4198 return getTargetCodeGenInfo().performAddrSpaceCast( 4199 *this, GV, DAddrSpace, ExpectedAS, Ty->getPointerTo(TargetAS)); 4200 } 4201 4202 return GV; 4203 } 4204 4205 llvm::Constant * 4206 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) { 4207 const Decl *D = GD.getDecl(); 4208 4209 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 4210 return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr, 4211 /*DontDefer=*/false, IsForDefinition); 4212 4213 if (isa<CXXMethodDecl>(D)) { 4214 auto FInfo = 4215 &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D)); 4216 auto Ty = getTypes().GetFunctionType(*FInfo); 4217 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 4218 IsForDefinition); 4219 } 4220 4221 if (isa<FunctionDecl>(D)) { 4222 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4223 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4224 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 4225 IsForDefinition); 4226 } 4227 4228 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition); 4229 } 4230 4231 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable( 4232 StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage, 4233 unsigned Alignment) { 4234 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 4235 llvm::GlobalVariable *OldGV = nullptr; 4236 4237 if (GV) { 4238 // Check if the variable has the right type. 4239 if (GV->getValueType() == Ty) 4240 return GV; 4241 4242 // Because C++ name mangling, the only way we can end up with an already 4243 // existing global with the same name is if it has been declared extern "C". 4244 assert(GV->isDeclaration() && "Declaration has wrong type!"); 4245 OldGV = GV; 4246 } 4247 4248 // Create a new variable. 4249 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 4250 Linkage, nullptr, Name); 4251 4252 if (OldGV) { 4253 // Replace occurrences of the old variable if needed. 4254 GV->takeName(OldGV); 4255 4256 if (!OldGV->use_empty()) { 4257 llvm::Constant *NewPtrForOldDecl = 4258 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 4259 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 4260 } 4261 4262 OldGV->eraseFromParent(); 4263 } 4264 4265 if (supportsCOMDAT() && GV->isWeakForLinker() && 4266 !GV->hasAvailableExternallyLinkage()) 4267 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 4268 4269 GV->setAlignment(llvm::MaybeAlign(Alignment)); 4270 4271 return GV; 4272 } 4273 4274 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 4275 /// given global variable. If Ty is non-null and if the global doesn't exist, 4276 /// then it will be created with the specified type instead of whatever the 4277 /// normal requested type would be. If IsForDefinition is true, it is guaranteed 4278 /// that an actual global with type Ty will be returned, not conversion of a 4279 /// variable with the same mangled name but some other type. 4280 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 4281 llvm::Type *Ty, 4282 ForDefinition_t IsForDefinition) { 4283 assert(D->hasGlobalStorage() && "Not a global variable"); 4284 QualType ASTTy = D->getType(); 4285 if (!Ty) 4286 Ty = getTypes().ConvertTypeForMem(ASTTy); 4287 4288 StringRef MangledName = getMangledName(D); 4289 return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D, 4290 IsForDefinition); 4291 } 4292 4293 /// CreateRuntimeVariable - Create a new runtime global variable with the 4294 /// specified type and name. 4295 llvm::Constant * 4296 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 4297 StringRef Name) { 4298 LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global 4299 : LangAS::Default; 4300 auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr); 4301 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts())); 4302 return Ret; 4303 } 4304 4305 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 4306 assert(!D->getInit() && "Cannot emit definite definitions here!"); 4307 4308 StringRef MangledName = getMangledName(D); 4309 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 4310 4311 // We already have a definition, not declaration, with the same mangled name. 4312 // Emitting of declaration is not required (and actually overwrites emitted 4313 // definition). 4314 if (GV && !GV->isDeclaration()) 4315 return; 4316 4317 // If we have not seen a reference to this variable yet, place it into the 4318 // deferred declarations table to be emitted if needed later. 4319 if (!MustBeEmitted(D) && !GV) { 4320 DeferredDecls[MangledName] = D; 4321 return; 4322 } 4323 4324 // The tentative definition is the only definition. 4325 EmitGlobalVarDefinition(D); 4326 } 4327 4328 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) { 4329 EmitExternalVarDeclaration(D); 4330 } 4331 4332 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 4333 return Context.toCharUnitsFromBits( 4334 getDataLayout().getTypeStoreSizeInBits(Ty)); 4335 } 4336 4337 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 4338 if (LangOpts.OpenCL) { 4339 LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 4340 assert(AS == LangAS::opencl_global || 4341 AS == LangAS::opencl_global_device || 4342 AS == LangAS::opencl_global_host || 4343 AS == LangAS::opencl_constant || 4344 AS == LangAS::opencl_local || 4345 AS >= LangAS::FirstTargetAddressSpace); 4346 return AS; 4347 } 4348 4349 if (LangOpts.SYCLIsDevice && 4350 (!D || D->getType().getAddressSpace() == LangAS::Default)) 4351 return LangAS::sycl_global; 4352 4353 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 4354 if (D && D->hasAttr<CUDAConstantAttr>()) 4355 return LangAS::cuda_constant; 4356 else if (D && D->hasAttr<CUDASharedAttr>()) 4357 return LangAS::cuda_shared; 4358 else if (D && D->hasAttr<CUDADeviceAttr>()) 4359 return LangAS::cuda_device; 4360 else if (D && D->getType().isConstQualified()) 4361 return LangAS::cuda_constant; 4362 else 4363 return LangAS::cuda_device; 4364 } 4365 4366 if (LangOpts.OpenMP) { 4367 LangAS AS; 4368 if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS)) 4369 return AS; 4370 } 4371 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 4372 } 4373 4374 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const { 4375 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 4376 if (LangOpts.OpenCL) 4377 return LangAS::opencl_constant; 4378 if (LangOpts.SYCLIsDevice) 4379 return LangAS::sycl_global; 4380 if (auto AS = getTarget().getConstantAddressSpace()) 4381 return AS.getValue(); 4382 return LangAS::Default; 4383 } 4384 4385 // In address space agnostic languages, string literals are in default address 4386 // space in AST. However, certain targets (e.g. amdgcn) request them to be 4387 // emitted in constant address space in LLVM IR. To be consistent with other 4388 // parts of AST, string literal global variables in constant address space 4389 // need to be casted to default address space before being put into address 4390 // map and referenced by other part of CodeGen. 4391 // In OpenCL, string literals are in constant address space in AST, therefore 4392 // they should not be casted to default address space. 4393 static llvm::Constant * 4394 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM, 4395 llvm::GlobalVariable *GV) { 4396 llvm::Constant *Cast = GV; 4397 if (!CGM.getLangOpts().OpenCL) { 4398 auto AS = CGM.GetGlobalConstantAddressSpace(); 4399 if (AS != LangAS::Default) 4400 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast( 4401 CGM, GV, AS, LangAS::Default, 4402 GV->getValueType()->getPointerTo( 4403 CGM.getContext().getTargetAddressSpace(LangAS::Default))); 4404 } 4405 return Cast; 4406 } 4407 4408 template<typename SomeDecl> 4409 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 4410 llvm::GlobalValue *GV) { 4411 if (!getLangOpts().CPlusPlus) 4412 return; 4413 4414 // Must have 'used' attribute, or else inline assembly can't rely on 4415 // the name existing. 4416 if (!D->template hasAttr<UsedAttr>()) 4417 return; 4418 4419 // Must have internal linkage and an ordinary name. 4420 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 4421 return; 4422 4423 // Must be in an extern "C" context. Entities declared directly within 4424 // a record are not extern "C" even if the record is in such a context. 4425 const SomeDecl *First = D->getFirstDecl(); 4426 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 4427 return; 4428 4429 // OK, this is an internal linkage entity inside an extern "C" linkage 4430 // specification. Make a note of that so we can give it the "expected" 4431 // mangled name if nothing else is using that name. 4432 std::pair<StaticExternCMap::iterator, bool> R = 4433 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 4434 4435 // If we have multiple internal linkage entities with the same name 4436 // in extern "C" regions, none of them gets that name. 4437 if (!R.second) 4438 R.first->second = nullptr; 4439 } 4440 4441 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 4442 if (!CGM.supportsCOMDAT()) 4443 return false; 4444 4445 if (D.hasAttr<SelectAnyAttr>()) 4446 return true; 4447 4448 GVALinkage Linkage; 4449 if (auto *VD = dyn_cast<VarDecl>(&D)) 4450 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 4451 else 4452 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 4453 4454 switch (Linkage) { 4455 case GVA_Internal: 4456 case GVA_AvailableExternally: 4457 case GVA_StrongExternal: 4458 return false; 4459 case GVA_DiscardableODR: 4460 case GVA_StrongODR: 4461 return true; 4462 } 4463 llvm_unreachable("No such linkage"); 4464 } 4465 4466 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 4467 llvm::GlobalObject &GO) { 4468 if (!shouldBeInCOMDAT(*this, D)) 4469 return; 4470 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 4471 } 4472 4473 /// Pass IsTentative as true if you want to create a tentative definition. 4474 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 4475 bool IsTentative) { 4476 // OpenCL global variables of sampler type are translated to function calls, 4477 // therefore no need to be translated. 4478 QualType ASTTy = D->getType(); 4479 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 4480 return; 4481 4482 // If this is OpenMP device, check if it is legal to emit this global 4483 // normally. 4484 if (LangOpts.OpenMPIsDevice && OpenMPRuntime && 4485 OpenMPRuntime->emitTargetGlobalVariable(D)) 4486 return; 4487 4488 llvm::TrackingVH<llvm::Constant> Init; 4489 bool NeedsGlobalCtor = false; 4490 bool NeedsGlobalDtor = 4491 D->needsDestruction(getContext()) == QualType::DK_cxx_destructor; 4492 4493 const VarDecl *InitDecl; 4494 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 4495 4496 Optional<ConstantEmitter> emitter; 4497 4498 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 4499 // as part of their declaration." Sema has already checked for 4500 // error cases, so we just need to set Init to UndefValue. 4501 bool IsCUDASharedVar = 4502 getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>(); 4503 // Shadows of initialized device-side global variables are also left 4504 // undefined. 4505 // Managed Variables should be initialized on both host side and device side. 4506 bool IsCUDAShadowVar = 4507 !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 4508 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() || 4509 D->hasAttr<CUDASharedAttr>()); 4510 bool IsCUDADeviceShadowVar = 4511 getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 4512 (D->getType()->isCUDADeviceBuiltinSurfaceType() || 4513 D->getType()->isCUDADeviceBuiltinTextureType()); 4514 if (getLangOpts().CUDA && 4515 (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar)) 4516 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy)); 4517 else if (D->hasAttr<LoaderUninitializedAttr>()) 4518 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy)); 4519 else if (!InitExpr) { 4520 // This is a tentative definition; tentative definitions are 4521 // implicitly initialized with { 0 }. 4522 // 4523 // Note that tentative definitions are only emitted at the end of 4524 // a translation unit, so they should never have incomplete 4525 // type. In addition, EmitTentativeDefinition makes sure that we 4526 // never attempt to emit a tentative definition if a real one 4527 // exists. A use may still exists, however, so we still may need 4528 // to do a RAUW. 4529 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 4530 Init = EmitNullConstant(D->getType()); 4531 } else { 4532 initializedGlobalDecl = GlobalDecl(D); 4533 emitter.emplace(*this); 4534 llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl); 4535 if (!Initializer) { 4536 QualType T = InitExpr->getType(); 4537 if (D->getType()->isReferenceType()) 4538 T = D->getType(); 4539 4540 if (getLangOpts().CPlusPlus) { 4541 Init = EmitNullConstant(T); 4542 NeedsGlobalCtor = true; 4543 } else { 4544 ErrorUnsupported(D, "static initializer"); 4545 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 4546 } 4547 } else { 4548 Init = Initializer; 4549 // We don't need an initializer, so remove the entry for the delayed 4550 // initializer position (just in case this entry was delayed) if we 4551 // also don't need to register a destructor. 4552 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 4553 DelayedCXXInitPosition.erase(D); 4554 } 4555 } 4556 4557 llvm::Type* InitType = Init->getType(); 4558 llvm::Constant *Entry = 4559 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 4560 4561 // Strip off pointer casts if we got them. 4562 Entry = Entry->stripPointerCasts(); 4563 4564 // Entry is now either a Function or GlobalVariable. 4565 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 4566 4567 // We have a definition after a declaration with the wrong type. 4568 // We must make a new GlobalVariable* and update everything that used OldGV 4569 // (a declaration or tentative definition) with the new GlobalVariable* 4570 // (which will be a definition). 4571 // 4572 // This happens if there is a prototype for a global (e.g. 4573 // "extern int x[];") and then a definition of a different type (e.g. 4574 // "int x[10];"). This also happens when an initializer has a different type 4575 // from the type of the global (this happens with unions). 4576 if (!GV || GV->getValueType() != InitType || 4577 GV->getType()->getAddressSpace() != 4578 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 4579 4580 // Move the old entry aside so that we'll create a new one. 4581 Entry->setName(StringRef()); 4582 4583 // Make a new global with the correct type, this is now guaranteed to work. 4584 GV = cast<llvm::GlobalVariable>( 4585 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)) 4586 ->stripPointerCasts()); 4587 4588 // Replace all uses of the old global with the new global 4589 llvm::Constant *NewPtrForOldDecl = 4590 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, 4591 Entry->getType()); 4592 Entry->replaceAllUsesWith(NewPtrForOldDecl); 4593 4594 // Erase the old global, since it is no longer used. 4595 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 4596 } 4597 4598 MaybeHandleStaticInExternC(D, GV); 4599 4600 if (D->hasAttr<AnnotateAttr>()) 4601 AddGlobalAnnotations(D, GV); 4602 4603 // Set the llvm linkage type as appropriate. 4604 llvm::GlobalValue::LinkageTypes Linkage = 4605 getLLVMLinkageVarDefinition(D, GV->isConstant()); 4606 4607 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 4608 // the device. [...]" 4609 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 4610 // __device__, declares a variable that: [...] 4611 // Is accessible from all the threads within the grid and from the host 4612 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 4613 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 4614 if (GV && LangOpts.CUDA) { 4615 if (LangOpts.CUDAIsDevice) { 4616 if (Linkage != llvm::GlobalValue::InternalLinkage && 4617 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() || 4618 D->getType()->isCUDADeviceBuiltinSurfaceType() || 4619 D->getType()->isCUDADeviceBuiltinTextureType())) 4620 GV->setExternallyInitialized(true); 4621 } else { 4622 getCUDARuntime().internalizeDeviceSideVar(D, Linkage); 4623 } 4624 getCUDARuntime().handleVarRegistration(D, *GV); 4625 } 4626 4627 GV->setInitializer(Init); 4628 if (emitter) 4629 emitter->finalize(GV); 4630 4631 // If it is safe to mark the global 'constant', do so now. 4632 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 4633 isTypeConstant(D->getType(), true)); 4634 4635 // If it is in a read-only section, mark it 'constant'. 4636 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 4637 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 4638 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 4639 GV->setConstant(true); 4640 } 4641 4642 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 4643 4644 // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper 4645 // function is only defined alongside the variable, not also alongside 4646 // callers. Normally, all accesses to a thread_local go through the 4647 // thread-wrapper in order to ensure initialization has occurred, underlying 4648 // variable will never be used other than the thread-wrapper, so it can be 4649 // converted to internal linkage. 4650 // 4651 // However, if the variable has the 'constinit' attribute, it _can_ be 4652 // referenced directly, without calling the thread-wrapper, so the linkage 4653 // must not be changed. 4654 // 4655 // Additionally, if the variable isn't plain external linkage, e.g. if it's 4656 // weak or linkonce, the de-duplication semantics are important to preserve, 4657 // so we don't change the linkage. 4658 if (D->getTLSKind() == VarDecl::TLS_Dynamic && 4659 Linkage == llvm::GlobalValue::ExternalLinkage && 4660 Context.getTargetInfo().getTriple().isOSDarwin() && 4661 !D->hasAttr<ConstInitAttr>()) 4662 Linkage = llvm::GlobalValue::InternalLinkage; 4663 4664 GV->setLinkage(Linkage); 4665 if (D->hasAttr<DLLImportAttr>()) 4666 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 4667 else if (D->hasAttr<DLLExportAttr>()) 4668 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 4669 else 4670 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 4671 4672 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 4673 // common vars aren't constant even if declared const. 4674 GV->setConstant(false); 4675 // Tentative definition of global variables may be initialized with 4676 // non-zero null pointers. In this case they should have weak linkage 4677 // since common linkage must have zero initializer and must not have 4678 // explicit section therefore cannot have non-zero initial value. 4679 if (!GV->getInitializer()->isNullValue()) 4680 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 4681 } 4682 4683 setNonAliasAttributes(D, GV); 4684 4685 if (D->getTLSKind() && !GV->isThreadLocal()) { 4686 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 4687 CXXThreadLocals.push_back(D); 4688 setTLSMode(GV, *D); 4689 } 4690 4691 maybeSetTrivialComdat(*D, *GV); 4692 4693 // Emit the initializer function if necessary. 4694 if (NeedsGlobalCtor || NeedsGlobalDtor) 4695 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 4696 4697 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 4698 4699 // Emit global variable debug information. 4700 if (CGDebugInfo *DI = getModuleDebugInfo()) 4701 if (getCodeGenOpts().hasReducedDebugInfo()) 4702 DI->EmitGlobalVariable(GV, D); 4703 } 4704 4705 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) { 4706 if (CGDebugInfo *DI = getModuleDebugInfo()) 4707 if (getCodeGenOpts().hasReducedDebugInfo()) { 4708 QualType ASTTy = D->getType(); 4709 llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType()); 4710 llvm::Constant *GV = 4711 GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D); 4712 DI->EmitExternalVariable( 4713 cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D); 4714 } 4715 } 4716 4717 static bool isVarDeclStrongDefinition(const ASTContext &Context, 4718 CodeGenModule &CGM, const VarDecl *D, 4719 bool NoCommon) { 4720 // Don't give variables common linkage if -fno-common was specified unless it 4721 // was overridden by a NoCommon attribute. 4722 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 4723 return true; 4724 4725 // C11 6.9.2/2: 4726 // A declaration of an identifier for an object that has file scope without 4727 // an initializer, and without a storage-class specifier or with the 4728 // storage-class specifier static, constitutes a tentative definition. 4729 if (D->getInit() || D->hasExternalStorage()) 4730 return true; 4731 4732 // A variable cannot be both common and exist in a section. 4733 if (D->hasAttr<SectionAttr>()) 4734 return true; 4735 4736 // A variable cannot be both common and exist in a section. 4737 // We don't try to determine which is the right section in the front-end. 4738 // If no specialized section name is applicable, it will resort to default. 4739 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 4740 D->hasAttr<PragmaClangDataSectionAttr>() || 4741 D->hasAttr<PragmaClangRelroSectionAttr>() || 4742 D->hasAttr<PragmaClangRodataSectionAttr>()) 4743 return true; 4744 4745 // Thread local vars aren't considered common linkage. 4746 if (D->getTLSKind()) 4747 return true; 4748 4749 // Tentative definitions marked with WeakImportAttr are true definitions. 4750 if (D->hasAttr<WeakImportAttr>()) 4751 return true; 4752 4753 // A variable cannot be both common and exist in a comdat. 4754 if (shouldBeInCOMDAT(CGM, *D)) 4755 return true; 4756 4757 // Declarations with a required alignment do not have common linkage in MSVC 4758 // mode. 4759 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 4760 if (D->hasAttr<AlignedAttr>()) 4761 return true; 4762 QualType VarType = D->getType(); 4763 if (Context.isAlignmentRequired(VarType)) 4764 return true; 4765 4766 if (const auto *RT = VarType->getAs<RecordType>()) { 4767 const RecordDecl *RD = RT->getDecl(); 4768 for (const FieldDecl *FD : RD->fields()) { 4769 if (FD->isBitField()) 4770 continue; 4771 if (FD->hasAttr<AlignedAttr>()) 4772 return true; 4773 if (Context.isAlignmentRequired(FD->getType())) 4774 return true; 4775 } 4776 } 4777 } 4778 4779 // Microsoft's link.exe doesn't support alignments greater than 32 bytes for 4780 // common symbols, so symbols with greater alignment requirements cannot be 4781 // common. 4782 // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two 4783 // alignments for common symbols via the aligncomm directive, so this 4784 // restriction only applies to MSVC environments. 4785 if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() && 4786 Context.getTypeAlignIfKnown(D->getType()) > 4787 Context.toBits(CharUnits::fromQuantity(32))) 4788 return true; 4789 4790 return false; 4791 } 4792 4793 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 4794 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 4795 if (Linkage == GVA_Internal) 4796 return llvm::Function::InternalLinkage; 4797 4798 if (D->hasAttr<WeakAttr>()) { 4799 if (IsConstantVariable) 4800 return llvm::GlobalVariable::WeakODRLinkage; 4801 else 4802 return llvm::GlobalVariable::WeakAnyLinkage; 4803 } 4804 4805 if (const auto *FD = D->getAsFunction()) 4806 if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally) 4807 return llvm::GlobalVariable::LinkOnceAnyLinkage; 4808 4809 // We are guaranteed to have a strong definition somewhere else, 4810 // so we can use available_externally linkage. 4811 if (Linkage == GVA_AvailableExternally) 4812 return llvm::GlobalValue::AvailableExternallyLinkage; 4813 4814 // Note that Apple's kernel linker doesn't support symbol 4815 // coalescing, so we need to avoid linkonce and weak linkages there. 4816 // Normally, this means we just map to internal, but for explicit 4817 // instantiations we'll map to external. 4818 4819 // In C++, the compiler has to emit a definition in every translation unit 4820 // that references the function. We should use linkonce_odr because 4821 // a) if all references in this translation unit are optimized away, we 4822 // don't need to codegen it. b) if the function persists, it needs to be 4823 // merged with other definitions. c) C++ has the ODR, so we know the 4824 // definition is dependable. 4825 if (Linkage == GVA_DiscardableODR) 4826 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 4827 : llvm::Function::InternalLinkage; 4828 4829 // An explicit instantiation of a template has weak linkage, since 4830 // explicit instantiations can occur in multiple translation units 4831 // and must all be equivalent. However, we are not allowed to 4832 // throw away these explicit instantiations. 4833 // 4834 // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU, 4835 // so say that CUDA templates are either external (for kernels) or internal. 4836 // This lets llvm perform aggressive inter-procedural optimizations. For 4837 // -fgpu-rdc case, device function calls across multiple TU's are allowed, 4838 // therefore we need to follow the normal linkage paradigm. 4839 if (Linkage == GVA_StrongODR) { 4840 if (getLangOpts().AppleKext) 4841 return llvm::Function::ExternalLinkage; 4842 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 4843 !getLangOpts().GPURelocatableDeviceCode) 4844 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 4845 : llvm::Function::InternalLinkage; 4846 return llvm::Function::WeakODRLinkage; 4847 } 4848 4849 // C++ doesn't have tentative definitions and thus cannot have common 4850 // linkage. 4851 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 4852 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 4853 CodeGenOpts.NoCommon)) 4854 return llvm::GlobalVariable::CommonLinkage; 4855 4856 // selectany symbols are externally visible, so use weak instead of 4857 // linkonce. MSVC optimizes away references to const selectany globals, so 4858 // all definitions should be the same and ODR linkage should be used. 4859 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 4860 if (D->hasAttr<SelectAnyAttr>()) 4861 return llvm::GlobalVariable::WeakODRLinkage; 4862 4863 // Otherwise, we have strong external linkage. 4864 assert(Linkage == GVA_StrongExternal); 4865 return llvm::GlobalVariable::ExternalLinkage; 4866 } 4867 4868 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 4869 const VarDecl *VD, bool IsConstant) { 4870 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 4871 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 4872 } 4873 4874 /// Replace the uses of a function that was declared with a non-proto type. 4875 /// We want to silently drop extra arguments from call sites 4876 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 4877 llvm::Function *newFn) { 4878 // Fast path. 4879 if (old->use_empty()) return; 4880 4881 llvm::Type *newRetTy = newFn->getReturnType(); 4882 SmallVector<llvm::Value*, 4> newArgs; 4883 4884 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 4885 ui != ue; ) { 4886 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 4887 llvm::User *user = use->getUser(); 4888 4889 // Recognize and replace uses of bitcasts. Most calls to 4890 // unprototyped functions will use bitcasts. 4891 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 4892 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 4893 replaceUsesOfNonProtoConstant(bitcast, newFn); 4894 continue; 4895 } 4896 4897 // Recognize calls to the function. 4898 llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user); 4899 if (!callSite) continue; 4900 if (!callSite->isCallee(&*use)) 4901 continue; 4902 4903 // If the return types don't match exactly, then we can't 4904 // transform this call unless it's dead. 4905 if (callSite->getType() != newRetTy && !callSite->use_empty()) 4906 continue; 4907 4908 // Get the call site's attribute list. 4909 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 4910 llvm::AttributeList oldAttrs = callSite->getAttributes(); 4911 4912 // If the function was passed too few arguments, don't transform. 4913 unsigned newNumArgs = newFn->arg_size(); 4914 if (callSite->arg_size() < newNumArgs) 4915 continue; 4916 4917 // If extra arguments were passed, we silently drop them. 4918 // If any of the types mismatch, we don't transform. 4919 unsigned argNo = 0; 4920 bool dontTransform = false; 4921 for (llvm::Argument &A : newFn->args()) { 4922 if (callSite->getArgOperand(argNo)->getType() != A.getType()) { 4923 dontTransform = true; 4924 break; 4925 } 4926 4927 // Add any parameter attributes. 4928 newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo)); 4929 argNo++; 4930 } 4931 if (dontTransform) 4932 continue; 4933 4934 // Okay, we can transform this. Create the new call instruction and copy 4935 // over the required information. 4936 newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo); 4937 4938 // Copy over any operand bundles. 4939 SmallVector<llvm::OperandBundleDef, 1> newBundles; 4940 callSite->getOperandBundlesAsDefs(newBundles); 4941 4942 llvm::CallBase *newCall; 4943 if (isa<llvm::CallInst>(callSite)) { 4944 newCall = 4945 llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite); 4946 } else { 4947 auto *oldInvoke = cast<llvm::InvokeInst>(callSite); 4948 newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(), 4949 oldInvoke->getUnwindDest(), newArgs, 4950 newBundles, "", callSite); 4951 } 4952 newArgs.clear(); // for the next iteration 4953 4954 if (!newCall->getType()->isVoidTy()) 4955 newCall->takeName(callSite); 4956 newCall->setAttributes( 4957 llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(), 4958 oldAttrs.getRetAttrs(), newArgAttrs)); 4959 newCall->setCallingConv(callSite->getCallingConv()); 4960 4961 // Finally, remove the old call, replacing any uses with the new one. 4962 if (!callSite->use_empty()) 4963 callSite->replaceAllUsesWith(newCall); 4964 4965 // Copy debug location attached to CI. 4966 if (callSite->getDebugLoc()) 4967 newCall->setDebugLoc(callSite->getDebugLoc()); 4968 4969 callSite->eraseFromParent(); 4970 } 4971 } 4972 4973 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 4974 /// implement a function with no prototype, e.g. "int foo() {}". If there are 4975 /// existing call uses of the old function in the module, this adjusts them to 4976 /// call the new function directly. 4977 /// 4978 /// This is not just a cleanup: the always_inline pass requires direct calls to 4979 /// functions to be able to inline them. If there is a bitcast in the way, it 4980 /// won't inline them. Instcombine normally deletes these calls, but it isn't 4981 /// run at -O0. 4982 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 4983 llvm::Function *NewFn) { 4984 // If we're redefining a global as a function, don't transform it. 4985 if (!isa<llvm::Function>(Old)) return; 4986 4987 replaceUsesOfNonProtoConstant(Old, NewFn); 4988 } 4989 4990 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 4991 auto DK = VD->isThisDeclarationADefinition(); 4992 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 4993 return; 4994 4995 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 4996 // If we have a definition, this might be a deferred decl. If the 4997 // instantiation is explicit, make sure we emit it at the end. 4998 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 4999 GetAddrOfGlobalVar(VD); 5000 5001 EmitTopLevelDecl(VD); 5002 } 5003 5004 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 5005 llvm::GlobalValue *GV) { 5006 const auto *D = cast<FunctionDecl>(GD.getDecl()); 5007 5008 // Compute the function info and LLVM type. 5009 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 5010 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 5011 5012 // Get or create the prototype for the function. 5013 if (!GV || (GV->getValueType() != Ty)) 5014 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 5015 /*DontDefer=*/true, 5016 ForDefinition)); 5017 5018 // Already emitted. 5019 if (!GV->isDeclaration()) 5020 return; 5021 5022 // We need to set linkage and visibility on the function before 5023 // generating code for it because various parts of IR generation 5024 // want to propagate this information down (e.g. to local static 5025 // declarations). 5026 auto *Fn = cast<llvm::Function>(GV); 5027 setFunctionLinkage(GD, Fn); 5028 5029 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 5030 setGVProperties(Fn, GD); 5031 5032 MaybeHandleStaticInExternC(D, Fn); 5033 5034 maybeSetTrivialComdat(*D, *Fn); 5035 5036 // Set CodeGen attributes that represent floating point environment. 5037 setLLVMFunctionFEnvAttributes(D, Fn); 5038 5039 CodeGenFunction(*this).GenerateCode(GD, Fn, FI); 5040 5041 setNonAliasAttributes(GD, Fn); 5042 SetLLVMFunctionAttributesForDefinition(D, Fn); 5043 5044 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 5045 AddGlobalCtor(Fn, CA->getPriority()); 5046 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 5047 AddGlobalDtor(Fn, DA->getPriority(), true); 5048 if (D->hasAttr<AnnotateAttr>()) 5049 AddGlobalAnnotations(D, Fn); 5050 } 5051 5052 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 5053 const auto *D = cast<ValueDecl>(GD.getDecl()); 5054 const AliasAttr *AA = D->getAttr<AliasAttr>(); 5055 assert(AA && "Not an alias?"); 5056 5057 StringRef MangledName = getMangledName(GD); 5058 5059 if (AA->getAliasee() == MangledName) { 5060 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 5061 return; 5062 } 5063 5064 // If there is a definition in the module, then it wins over the alias. 5065 // This is dubious, but allow it to be safe. Just ignore the alias. 5066 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 5067 if (Entry && !Entry->isDeclaration()) 5068 return; 5069 5070 Aliases.push_back(GD); 5071 5072 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 5073 5074 // Create a reference to the named value. This ensures that it is emitted 5075 // if a deferred decl. 5076 llvm::Constant *Aliasee; 5077 llvm::GlobalValue::LinkageTypes LT; 5078 if (isa<llvm::FunctionType>(DeclTy)) { 5079 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 5080 /*ForVTable=*/false); 5081 LT = getFunctionLinkage(GD); 5082 } else { 5083 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default, 5084 /*D=*/nullptr); 5085 if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl())) 5086 LT = getLLVMLinkageVarDefinition(VD, D->getType().isConstQualified()); 5087 else 5088 LT = getFunctionLinkage(GD); 5089 } 5090 5091 // Create the new alias itself, but don't set a name yet. 5092 unsigned AS = Aliasee->getType()->getPointerAddressSpace(); 5093 auto *GA = 5094 llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule()); 5095 5096 if (Entry) { 5097 if (GA->getAliasee() == Entry) { 5098 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 5099 return; 5100 } 5101 5102 assert(Entry->isDeclaration()); 5103 5104 // If there is a declaration in the module, then we had an extern followed 5105 // by the alias, as in: 5106 // extern int test6(); 5107 // ... 5108 // int test6() __attribute__((alias("test7"))); 5109 // 5110 // Remove it and replace uses of it with the alias. 5111 GA->takeName(Entry); 5112 5113 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 5114 Entry->getType())); 5115 Entry->eraseFromParent(); 5116 } else { 5117 GA->setName(MangledName); 5118 } 5119 5120 // Set attributes which are particular to an alias; this is a 5121 // specialization of the attributes which may be set on a global 5122 // variable/function. 5123 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 5124 D->isWeakImported()) { 5125 GA->setLinkage(llvm::Function::WeakAnyLinkage); 5126 } 5127 5128 if (const auto *VD = dyn_cast<VarDecl>(D)) 5129 if (VD->getTLSKind()) 5130 setTLSMode(GA, *VD); 5131 5132 SetCommonAttributes(GD, GA); 5133 } 5134 5135 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 5136 const auto *D = cast<ValueDecl>(GD.getDecl()); 5137 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 5138 assert(IFA && "Not an ifunc?"); 5139 5140 StringRef MangledName = getMangledName(GD); 5141 5142 if (IFA->getResolver() == MangledName) { 5143 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 5144 return; 5145 } 5146 5147 // Report an error if some definition overrides ifunc. 5148 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 5149 if (Entry && !Entry->isDeclaration()) { 5150 GlobalDecl OtherGD; 5151 if (lookupRepresentativeDecl(MangledName, OtherGD) && 5152 DiagnosedConflictingDefinitions.insert(GD).second) { 5153 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name) 5154 << MangledName; 5155 Diags.Report(OtherGD.getDecl()->getLocation(), 5156 diag::note_previous_definition); 5157 } 5158 return; 5159 } 5160 5161 Aliases.push_back(GD); 5162 5163 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 5164 llvm::Type *ResolverTy = llvm::GlobalIFunc::getResolverFunctionType(DeclTy); 5165 llvm::Constant *Resolver = 5166 GetOrCreateLLVMFunction(IFA->getResolver(), ResolverTy, {}, 5167 /*ForVTable=*/false); 5168 llvm::GlobalIFunc *GIF = 5169 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 5170 "", Resolver, &getModule()); 5171 if (Entry) { 5172 if (GIF->getResolver() == Entry) { 5173 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 5174 return; 5175 } 5176 assert(Entry->isDeclaration()); 5177 5178 // If there is a declaration in the module, then we had an extern followed 5179 // by the ifunc, as in: 5180 // extern int test(); 5181 // ... 5182 // int test() __attribute__((ifunc("resolver"))); 5183 // 5184 // Remove it and replace uses of it with the ifunc. 5185 GIF->takeName(Entry); 5186 5187 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 5188 Entry->getType())); 5189 Entry->eraseFromParent(); 5190 } else 5191 GIF->setName(MangledName); 5192 5193 SetCommonAttributes(GD, GIF); 5194 } 5195 5196 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 5197 ArrayRef<llvm::Type*> Tys) { 5198 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 5199 Tys); 5200 } 5201 5202 static llvm::StringMapEntry<llvm::GlobalVariable *> & 5203 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 5204 const StringLiteral *Literal, bool TargetIsLSB, 5205 bool &IsUTF16, unsigned &StringLength) { 5206 StringRef String = Literal->getString(); 5207 unsigned NumBytes = String.size(); 5208 5209 // Check for simple case. 5210 if (!Literal->containsNonAsciiOrNull()) { 5211 StringLength = NumBytes; 5212 return *Map.insert(std::make_pair(String, nullptr)).first; 5213 } 5214 5215 // Otherwise, convert the UTF8 literals into a string of shorts. 5216 IsUTF16 = true; 5217 5218 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 5219 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 5220 llvm::UTF16 *ToPtr = &ToBuf[0]; 5221 5222 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 5223 ToPtr + NumBytes, llvm::strictConversion); 5224 5225 // ConvertUTF8toUTF16 returns the length in ToPtr. 5226 StringLength = ToPtr - &ToBuf[0]; 5227 5228 // Add an explicit null. 5229 *ToPtr = 0; 5230 return *Map.insert(std::make_pair( 5231 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 5232 (StringLength + 1) * 2), 5233 nullptr)).first; 5234 } 5235 5236 ConstantAddress 5237 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 5238 unsigned StringLength = 0; 5239 bool isUTF16 = false; 5240 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 5241 GetConstantCFStringEntry(CFConstantStringMap, Literal, 5242 getDataLayout().isLittleEndian(), isUTF16, 5243 StringLength); 5244 5245 if (auto *C = Entry.second) 5246 return ConstantAddress( 5247 C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment())); 5248 5249 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 5250 llvm::Constant *Zeros[] = { Zero, Zero }; 5251 5252 const ASTContext &Context = getContext(); 5253 const llvm::Triple &Triple = getTriple(); 5254 5255 const auto CFRuntime = getLangOpts().CFRuntime; 5256 const bool IsSwiftABI = 5257 static_cast<unsigned>(CFRuntime) >= 5258 static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift); 5259 const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1; 5260 5261 // If we don't already have it, get __CFConstantStringClassReference. 5262 if (!CFConstantStringClassRef) { 5263 const char *CFConstantStringClassName = "__CFConstantStringClassReference"; 5264 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 5265 Ty = llvm::ArrayType::get(Ty, 0); 5266 5267 switch (CFRuntime) { 5268 default: break; 5269 case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH; 5270 case LangOptions::CoreFoundationABI::Swift5_0: 5271 CFConstantStringClassName = 5272 Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN" 5273 : "$s10Foundation19_NSCFConstantStringCN"; 5274 Ty = IntPtrTy; 5275 break; 5276 case LangOptions::CoreFoundationABI::Swift4_2: 5277 CFConstantStringClassName = 5278 Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN" 5279 : "$S10Foundation19_NSCFConstantStringCN"; 5280 Ty = IntPtrTy; 5281 break; 5282 case LangOptions::CoreFoundationABI::Swift4_1: 5283 CFConstantStringClassName = 5284 Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN" 5285 : "__T010Foundation19_NSCFConstantStringCN"; 5286 Ty = IntPtrTy; 5287 break; 5288 } 5289 5290 llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName); 5291 5292 if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) { 5293 llvm::GlobalValue *GV = nullptr; 5294 5295 if ((GV = dyn_cast<llvm::GlobalValue>(C))) { 5296 IdentifierInfo &II = Context.Idents.get(GV->getName()); 5297 TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl(); 5298 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 5299 5300 const VarDecl *VD = nullptr; 5301 for (const auto *Result : DC->lookup(&II)) 5302 if ((VD = dyn_cast<VarDecl>(Result))) 5303 break; 5304 5305 if (Triple.isOSBinFormatELF()) { 5306 if (!VD) 5307 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 5308 } else { 5309 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 5310 if (!VD || !VD->hasAttr<DLLExportAttr>()) 5311 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 5312 else 5313 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 5314 } 5315 5316 setDSOLocal(GV); 5317 } 5318 } 5319 5320 // Decay array -> ptr 5321 CFConstantStringClassRef = 5322 IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) 5323 : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros); 5324 } 5325 5326 QualType CFTy = Context.getCFConstantStringType(); 5327 5328 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 5329 5330 ConstantInitBuilder Builder(*this); 5331 auto Fields = Builder.beginStruct(STy); 5332 5333 // Class pointer. 5334 Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef)); 5335 5336 // Flags. 5337 if (IsSwiftABI) { 5338 Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01); 5339 Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8); 5340 } else { 5341 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 5342 } 5343 5344 // String pointer. 5345 llvm::Constant *C = nullptr; 5346 if (isUTF16) { 5347 auto Arr = llvm::makeArrayRef( 5348 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 5349 Entry.first().size() / 2); 5350 C = llvm::ConstantDataArray::get(VMContext, Arr); 5351 } else { 5352 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 5353 } 5354 5355 // Note: -fwritable-strings doesn't make the backing store strings of 5356 // CFStrings writable. (See <rdar://problem/10657500>) 5357 auto *GV = 5358 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 5359 llvm::GlobalValue::PrivateLinkage, C, ".str"); 5360 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 5361 // Don't enforce the target's minimum global alignment, since the only use 5362 // of the string is via this class initializer. 5363 CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy) 5364 : Context.getTypeAlignInChars(Context.CharTy); 5365 GV->setAlignment(Align.getAsAlign()); 5366 5367 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 5368 // Without it LLVM can merge the string with a non unnamed_addr one during 5369 // LTO. Doing that changes the section it ends in, which surprises ld64. 5370 if (Triple.isOSBinFormatMachO()) 5371 GV->setSection(isUTF16 ? "__TEXT,__ustring" 5372 : "__TEXT,__cstring,cstring_literals"); 5373 // Make sure the literal ends up in .rodata to allow for safe ICF and for 5374 // the static linker to adjust permissions to read-only later on. 5375 else if (Triple.isOSBinFormatELF()) 5376 GV->setSection(".rodata"); 5377 5378 // String. 5379 llvm::Constant *Str = 5380 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 5381 5382 if (isUTF16) 5383 // Cast the UTF16 string to the correct type. 5384 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 5385 Fields.add(Str); 5386 5387 // String length. 5388 llvm::IntegerType *LengthTy = 5389 llvm::IntegerType::get(getModule().getContext(), 5390 Context.getTargetInfo().getLongWidth()); 5391 if (IsSwiftABI) { 5392 if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 || 5393 CFRuntime == LangOptions::CoreFoundationABI::Swift4_2) 5394 LengthTy = Int32Ty; 5395 else 5396 LengthTy = IntPtrTy; 5397 } 5398 Fields.addInt(LengthTy, StringLength); 5399 5400 // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is 5401 // properly aligned on 32-bit platforms. 5402 CharUnits Alignment = 5403 IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign(); 5404 5405 // The struct. 5406 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 5407 /*isConstant=*/false, 5408 llvm::GlobalVariable::PrivateLinkage); 5409 GV->addAttribute("objc_arc_inert"); 5410 switch (Triple.getObjectFormat()) { 5411 case llvm::Triple::UnknownObjectFormat: 5412 llvm_unreachable("unknown file format"); 5413 case llvm::Triple::GOFF: 5414 llvm_unreachable("GOFF is not yet implemented"); 5415 case llvm::Triple::XCOFF: 5416 llvm_unreachable("XCOFF is not yet implemented"); 5417 case llvm::Triple::COFF: 5418 case llvm::Triple::ELF: 5419 case llvm::Triple::Wasm: 5420 GV->setSection("cfstring"); 5421 break; 5422 case llvm::Triple::MachO: 5423 GV->setSection("__DATA,__cfstring"); 5424 break; 5425 } 5426 Entry.second = GV; 5427 5428 return ConstantAddress(GV, GV->getValueType(), Alignment); 5429 } 5430 5431 bool CodeGenModule::getExpressionLocationsEnabled() const { 5432 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 5433 } 5434 5435 QualType CodeGenModule::getObjCFastEnumerationStateType() { 5436 if (ObjCFastEnumerationStateType.isNull()) { 5437 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 5438 D->startDefinition(); 5439 5440 QualType FieldTypes[] = { 5441 Context.UnsignedLongTy, 5442 Context.getPointerType(Context.getObjCIdType()), 5443 Context.getPointerType(Context.UnsignedLongTy), 5444 Context.getConstantArrayType(Context.UnsignedLongTy, 5445 llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0) 5446 }; 5447 5448 for (size_t i = 0; i < 4; ++i) { 5449 FieldDecl *Field = FieldDecl::Create(Context, 5450 D, 5451 SourceLocation(), 5452 SourceLocation(), nullptr, 5453 FieldTypes[i], /*TInfo=*/nullptr, 5454 /*BitWidth=*/nullptr, 5455 /*Mutable=*/false, 5456 ICIS_NoInit); 5457 Field->setAccess(AS_public); 5458 D->addDecl(Field); 5459 } 5460 5461 D->completeDefinition(); 5462 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 5463 } 5464 5465 return ObjCFastEnumerationStateType; 5466 } 5467 5468 llvm::Constant * 5469 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 5470 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 5471 5472 // Don't emit it as the address of the string, emit the string data itself 5473 // as an inline array. 5474 if (E->getCharByteWidth() == 1) { 5475 SmallString<64> Str(E->getString()); 5476 5477 // Resize the string to the right size, which is indicated by its type. 5478 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 5479 Str.resize(CAT->getSize().getZExtValue()); 5480 return llvm::ConstantDataArray::getString(VMContext, Str, false); 5481 } 5482 5483 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 5484 llvm::Type *ElemTy = AType->getElementType(); 5485 unsigned NumElements = AType->getNumElements(); 5486 5487 // Wide strings have either 2-byte or 4-byte elements. 5488 if (ElemTy->getPrimitiveSizeInBits() == 16) { 5489 SmallVector<uint16_t, 32> Elements; 5490 Elements.reserve(NumElements); 5491 5492 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 5493 Elements.push_back(E->getCodeUnit(i)); 5494 Elements.resize(NumElements); 5495 return llvm::ConstantDataArray::get(VMContext, Elements); 5496 } 5497 5498 assert(ElemTy->getPrimitiveSizeInBits() == 32); 5499 SmallVector<uint32_t, 32> Elements; 5500 Elements.reserve(NumElements); 5501 5502 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 5503 Elements.push_back(E->getCodeUnit(i)); 5504 Elements.resize(NumElements); 5505 return llvm::ConstantDataArray::get(VMContext, Elements); 5506 } 5507 5508 static llvm::GlobalVariable * 5509 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 5510 CodeGenModule &CGM, StringRef GlobalName, 5511 CharUnits Alignment) { 5512 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace( 5513 CGM.GetGlobalConstantAddressSpace()); 5514 5515 llvm::Module &M = CGM.getModule(); 5516 // Create a global variable for this string 5517 auto *GV = new llvm::GlobalVariable( 5518 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 5519 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 5520 GV->setAlignment(Alignment.getAsAlign()); 5521 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 5522 if (GV->isWeakForLinker()) { 5523 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 5524 GV->setComdat(M.getOrInsertComdat(GV->getName())); 5525 } 5526 CGM.setDSOLocal(GV); 5527 5528 return GV; 5529 } 5530 5531 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 5532 /// constant array for the given string literal. 5533 ConstantAddress 5534 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 5535 StringRef Name) { 5536 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 5537 5538 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 5539 llvm::GlobalVariable **Entry = nullptr; 5540 if (!LangOpts.WritableStrings) { 5541 Entry = &ConstantStringMap[C]; 5542 if (auto GV = *Entry) { 5543 if (uint64_t(Alignment.getQuantity()) > GV->getAlignment()) 5544 GV->setAlignment(Alignment.getAsAlign()); 5545 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5546 GV->getValueType(), Alignment); 5547 } 5548 } 5549 5550 SmallString<256> MangledNameBuffer; 5551 StringRef GlobalVariableName; 5552 llvm::GlobalValue::LinkageTypes LT; 5553 5554 // Mangle the string literal if that's how the ABI merges duplicate strings. 5555 // Don't do it if they are writable, since we don't want writes in one TU to 5556 // affect strings in another. 5557 if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) && 5558 !LangOpts.WritableStrings) { 5559 llvm::raw_svector_ostream Out(MangledNameBuffer); 5560 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 5561 LT = llvm::GlobalValue::LinkOnceODRLinkage; 5562 GlobalVariableName = MangledNameBuffer; 5563 } else { 5564 LT = llvm::GlobalValue::PrivateLinkage; 5565 GlobalVariableName = Name; 5566 } 5567 5568 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 5569 if (Entry) 5570 *Entry = GV; 5571 5572 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 5573 QualType()); 5574 5575 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5576 GV->getValueType(), Alignment); 5577 } 5578 5579 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 5580 /// array for the given ObjCEncodeExpr node. 5581 ConstantAddress 5582 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 5583 std::string Str; 5584 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 5585 5586 return GetAddrOfConstantCString(Str); 5587 } 5588 5589 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 5590 /// the literal and a terminating '\0' character. 5591 /// The result has pointer to array type. 5592 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 5593 const std::string &Str, const char *GlobalName) { 5594 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 5595 CharUnits Alignment = 5596 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 5597 5598 llvm::Constant *C = 5599 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 5600 5601 // Don't share any string literals if strings aren't constant. 5602 llvm::GlobalVariable **Entry = nullptr; 5603 if (!LangOpts.WritableStrings) { 5604 Entry = &ConstantStringMap[C]; 5605 if (auto GV = *Entry) { 5606 if (uint64_t(Alignment.getQuantity()) > GV->getAlignment()) 5607 GV->setAlignment(Alignment.getAsAlign()); 5608 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5609 GV->getValueType(), Alignment); 5610 } 5611 } 5612 5613 // Get the default prefix if a name wasn't specified. 5614 if (!GlobalName) 5615 GlobalName = ".str"; 5616 // Create a global variable for this. 5617 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 5618 GlobalName, Alignment); 5619 if (Entry) 5620 *Entry = GV; 5621 5622 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5623 GV->getValueType(), Alignment); 5624 } 5625 5626 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 5627 const MaterializeTemporaryExpr *E, const Expr *Init) { 5628 assert((E->getStorageDuration() == SD_Static || 5629 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 5630 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 5631 5632 // If we're not materializing a subobject of the temporary, keep the 5633 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 5634 QualType MaterializedType = Init->getType(); 5635 if (Init == E->getSubExpr()) 5636 MaterializedType = E->getType(); 5637 5638 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 5639 5640 auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr}); 5641 if (!InsertResult.second) { 5642 // We've seen this before: either we already created it or we're in the 5643 // process of doing so. 5644 if (!InsertResult.first->second) { 5645 // We recursively re-entered this function, probably during emission of 5646 // the initializer. Create a placeholder. We'll clean this up in the 5647 // outer call, at the end of this function. 5648 llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType); 5649 InsertResult.first->second = new llvm::GlobalVariable( 5650 getModule(), Type, false, llvm::GlobalVariable::InternalLinkage, 5651 nullptr); 5652 } 5653 return ConstantAddress( 5654 InsertResult.first->second, 5655 InsertResult.first->second->getType()->getPointerElementType(), Align); 5656 } 5657 5658 // FIXME: If an externally-visible declaration extends multiple temporaries, 5659 // we need to give each temporary the same name in every translation unit (and 5660 // we also need to make the temporaries externally-visible). 5661 SmallString<256> Name; 5662 llvm::raw_svector_ostream Out(Name); 5663 getCXXABI().getMangleContext().mangleReferenceTemporary( 5664 VD, E->getManglingNumber(), Out); 5665 5666 APValue *Value = nullptr; 5667 if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) { 5668 // If the initializer of the extending declaration is a constant 5669 // initializer, we should have a cached constant initializer for this 5670 // temporary. Note that this might have a different value from the value 5671 // computed by evaluating the initializer if the surrounding constant 5672 // expression modifies the temporary. 5673 Value = E->getOrCreateValue(false); 5674 } 5675 5676 // Try evaluating it now, it might have a constant initializer. 5677 Expr::EvalResult EvalResult; 5678 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 5679 !EvalResult.hasSideEffects()) 5680 Value = &EvalResult.Val; 5681 5682 LangAS AddrSpace = 5683 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace(); 5684 5685 Optional<ConstantEmitter> emitter; 5686 llvm::Constant *InitialValue = nullptr; 5687 bool Constant = false; 5688 llvm::Type *Type; 5689 if (Value) { 5690 // The temporary has a constant initializer, use it. 5691 emitter.emplace(*this); 5692 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 5693 MaterializedType); 5694 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 5695 Type = InitialValue->getType(); 5696 } else { 5697 // No initializer, the initialization will be provided when we 5698 // initialize the declaration which performed lifetime extension. 5699 Type = getTypes().ConvertTypeForMem(MaterializedType); 5700 } 5701 5702 // Create a global variable for this lifetime-extended temporary. 5703 llvm::GlobalValue::LinkageTypes Linkage = 5704 getLLVMLinkageVarDefinition(VD, Constant); 5705 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 5706 const VarDecl *InitVD; 5707 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 5708 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 5709 // Temporaries defined inside a class get linkonce_odr linkage because the 5710 // class can be defined in multiple translation units. 5711 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 5712 } else { 5713 // There is no need for this temporary to have external linkage if the 5714 // VarDecl has external linkage. 5715 Linkage = llvm::GlobalVariable::InternalLinkage; 5716 } 5717 } 5718 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 5719 auto *GV = new llvm::GlobalVariable( 5720 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 5721 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 5722 if (emitter) emitter->finalize(GV); 5723 setGVProperties(GV, VD); 5724 GV->setAlignment(Align.getAsAlign()); 5725 if (supportsCOMDAT() && GV->isWeakForLinker()) 5726 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 5727 if (VD->getTLSKind()) 5728 setTLSMode(GV, *VD); 5729 llvm::Constant *CV = GV; 5730 if (AddrSpace != LangAS::Default) 5731 CV = getTargetCodeGenInfo().performAddrSpaceCast( 5732 *this, GV, AddrSpace, LangAS::Default, 5733 Type->getPointerTo( 5734 getContext().getTargetAddressSpace(LangAS::Default))); 5735 5736 // Update the map with the new temporary. If we created a placeholder above, 5737 // replace it with the new global now. 5738 llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E]; 5739 if (Entry) { 5740 Entry->replaceAllUsesWith( 5741 llvm::ConstantExpr::getBitCast(CV, Entry->getType())); 5742 llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent(); 5743 } 5744 Entry = CV; 5745 5746 return ConstantAddress(CV, Type, Align); 5747 } 5748 5749 /// EmitObjCPropertyImplementations - Emit information for synthesized 5750 /// properties for an implementation. 5751 void CodeGenModule::EmitObjCPropertyImplementations(const 5752 ObjCImplementationDecl *D) { 5753 for (const auto *PID : D->property_impls()) { 5754 // Dynamic is just for type-checking. 5755 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 5756 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 5757 5758 // Determine which methods need to be implemented, some may have 5759 // been overridden. Note that ::isPropertyAccessor is not the method 5760 // we want, that just indicates if the decl came from a 5761 // property. What we want to know is if the method is defined in 5762 // this implementation. 5763 auto *Getter = PID->getGetterMethodDecl(); 5764 if (!Getter || Getter->isSynthesizedAccessorStub()) 5765 CodeGenFunction(*this).GenerateObjCGetter( 5766 const_cast<ObjCImplementationDecl *>(D), PID); 5767 auto *Setter = PID->getSetterMethodDecl(); 5768 if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub())) 5769 CodeGenFunction(*this).GenerateObjCSetter( 5770 const_cast<ObjCImplementationDecl *>(D), PID); 5771 } 5772 } 5773 } 5774 5775 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 5776 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 5777 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 5778 ivar; ivar = ivar->getNextIvar()) 5779 if (ivar->getType().isDestructedType()) 5780 return true; 5781 5782 return false; 5783 } 5784 5785 static bool AllTrivialInitializers(CodeGenModule &CGM, 5786 ObjCImplementationDecl *D) { 5787 CodeGenFunction CGF(CGM); 5788 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 5789 E = D->init_end(); B != E; ++B) { 5790 CXXCtorInitializer *CtorInitExp = *B; 5791 Expr *Init = CtorInitExp->getInit(); 5792 if (!CGF.isTrivialInitializer(Init)) 5793 return false; 5794 } 5795 return true; 5796 } 5797 5798 /// EmitObjCIvarInitializations - Emit information for ivar initialization 5799 /// for an implementation. 5800 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 5801 // We might need a .cxx_destruct even if we don't have any ivar initializers. 5802 if (needsDestructMethod(D)) { 5803 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 5804 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 5805 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create( 5806 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 5807 getContext().VoidTy, nullptr, D, 5808 /*isInstance=*/true, /*isVariadic=*/false, 5809 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 5810 /*isImplicitlyDeclared=*/true, 5811 /*isDefined=*/false, ObjCMethodDecl::Required); 5812 D->addInstanceMethod(DTORMethod); 5813 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 5814 D->setHasDestructors(true); 5815 } 5816 5817 // If the implementation doesn't have any ivar initializers, we don't need 5818 // a .cxx_construct. 5819 if (D->getNumIvarInitializers() == 0 || 5820 AllTrivialInitializers(*this, D)) 5821 return; 5822 5823 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 5824 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 5825 // The constructor returns 'self'. 5826 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create( 5827 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 5828 getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true, 5829 /*isVariadic=*/false, 5830 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 5831 /*isImplicitlyDeclared=*/true, 5832 /*isDefined=*/false, ObjCMethodDecl::Required); 5833 D->addInstanceMethod(CTORMethod); 5834 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 5835 D->setHasNonZeroConstructors(true); 5836 } 5837 5838 // EmitLinkageSpec - Emit all declarations in a linkage spec. 5839 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 5840 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 5841 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 5842 ErrorUnsupported(LSD, "linkage spec"); 5843 return; 5844 } 5845 5846 EmitDeclContext(LSD); 5847 } 5848 5849 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 5850 for (auto *I : DC->decls()) { 5851 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 5852 // are themselves considered "top-level", so EmitTopLevelDecl on an 5853 // ObjCImplDecl does not recursively visit them. We need to do that in 5854 // case they're nested inside another construct (LinkageSpecDecl / 5855 // ExportDecl) that does stop them from being considered "top-level". 5856 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 5857 for (auto *M : OID->methods()) 5858 EmitTopLevelDecl(M); 5859 } 5860 5861 EmitTopLevelDecl(I); 5862 } 5863 } 5864 5865 /// EmitTopLevelDecl - Emit code for a single top level declaration. 5866 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 5867 // Ignore dependent declarations. 5868 if (D->isTemplated()) 5869 return; 5870 5871 // Consteval function shouldn't be emitted. 5872 if (auto *FD = dyn_cast<FunctionDecl>(D)) 5873 if (FD->isConsteval()) 5874 return; 5875 5876 switch (D->getKind()) { 5877 case Decl::CXXConversion: 5878 case Decl::CXXMethod: 5879 case Decl::Function: 5880 EmitGlobal(cast<FunctionDecl>(D)); 5881 // Always provide some coverage mapping 5882 // even for the functions that aren't emitted. 5883 AddDeferredUnusedCoverageMapping(D); 5884 break; 5885 5886 case Decl::CXXDeductionGuide: 5887 // Function-like, but does not result in code emission. 5888 break; 5889 5890 case Decl::Var: 5891 case Decl::Decomposition: 5892 case Decl::VarTemplateSpecialization: 5893 EmitGlobal(cast<VarDecl>(D)); 5894 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 5895 for (auto *B : DD->bindings()) 5896 if (auto *HD = B->getHoldingVar()) 5897 EmitGlobal(HD); 5898 break; 5899 5900 // Indirect fields from global anonymous structs and unions can be 5901 // ignored; only the actual variable requires IR gen support. 5902 case Decl::IndirectField: 5903 break; 5904 5905 // C++ Decls 5906 case Decl::Namespace: 5907 EmitDeclContext(cast<NamespaceDecl>(D)); 5908 break; 5909 case Decl::ClassTemplateSpecialization: { 5910 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 5911 if (CGDebugInfo *DI = getModuleDebugInfo()) 5912 if (Spec->getSpecializationKind() == 5913 TSK_ExplicitInstantiationDefinition && 5914 Spec->hasDefinition()) 5915 DI->completeTemplateDefinition(*Spec); 5916 } LLVM_FALLTHROUGH; 5917 case Decl::CXXRecord: { 5918 CXXRecordDecl *CRD = cast<CXXRecordDecl>(D); 5919 if (CGDebugInfo *DI = getModuleDebugInfo()) { 5920 if (CRD->hasDefinition()) 5921 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 5922 if (auto *ES = D->getASTContext().getExternalSource()) 5923 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 5924 DI->completeUnusedClass(*CRD); 5925 } 5926 // Emit any static data members, they may be definitions. 5927 for (auto *I : CRD->decls()) 5928 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 5929 EmitTopLevelDecl(I); 5930 break; 5931 } 5932 // No code generation needed. 5933 case Decl::UsingShadow: 5934 case Decl::ClassTemplate: 5935 case Decl::VarTemplate: 5936 case Decl::Concept: 5937 case Decl::VarTemplatePartialSpecialization: 5938 case Decl::FunctionTemplate: 5939 case Decl::TypeAliasTemplate: 5940 case Decl::Block: 5941 case Decl::Empty: 5942 case Decl::Binding: 5943 break; 5944 case Decl::Using: // using X; [C++] 5945 if (CGDebugInfo *DI = getModuleDebugInfo()) 5946 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 5947 break; 5948 case Decl::UsingEnum: // using enum X; [C++] 5949 if (CGDebugInfo *DI = getModuleDebugInfo()) 5950 DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D)); 5951 break; 5952 case Decl::NamespaceAlias: 5953 if (CGDebugInfo *DI = getModuleDebugInfo()) 5954 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 5955 break; 5956 case Decl::UsingDirective: // using namespace X; [C++] 5957 if (CGDebugInfo *DI = getModuleDebugInfo()) 5958 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 5959 break; 5960 case Decl::CXXConstructor: 5961 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 5962 break; 5963 case Decl::CXXDestructor: 5964 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 5965 break; 5966 5967 case Decl::StaticAssert: 5968 // Nothing to do. 5969 break; 5970 5971 // Objective-C Decls 5972 5973 // Forward declarations, no (immediate) code generation. 5974 case Decl::ObjCInterface: 5975 case Decl::ObjCCategory: 5976 break; 5977 5978 case Decl::ObjCProtocol: { 5979 auto *Proto = cast<ObjCProtocolDecl>(D); 5980 if (Proto->isThisDeclarationADefinition()) 5981 ObjCRuntime->GenerateProtocol(Proto); 5982 break; 5983 } 5984 5985 case Decl::ObjCCategoryImpl: 5986 // Categories have properties but don't support synthesize so we 5987 // can ignore them here. 5988 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 5989 break; 5990 5991 case Decl::ObjCImplementation: { 5992 auto *OMD = cast<ObjCImplementationDecl>(D); 5993 EmitObjCPropertyImplementations(OMD); 5994 EmitObjCIvarInitializations(OMD); 5995 ObjCRuntime->GenerateClass(OMD); 5996 // Emit global variable debug information. 5997 if (CGDebugInfo *DI = getModuleDebugInfo()) 5998 if (getCodeGenOpts().hasReducedDebugInfo()) 5999 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 6000 OMD->getClassInterface()), OMD->getLocation()); 6001 break; 6002 } 6003 case Decl::ObjCMethod: { 6004 auto *OMD = cast<ObjCMethodDecl>(D); 6005 // If this is not a prototype, emit the body. 6006 if (OMD->getBody()) 6007 CodeGenFunction(*this).GenerateObjCMethod(OMD); 6008 break; 6009 } 6010 case Decl::ObjCCompatibleAlias: 6011 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 6012 break; 6013 6014 case Decl::PragmaComment: { 6015 const auto *PCD = cast<PragmaCommentDecl>(D); 6016 switch (PCD->getCommentKind()) { 6017 case PCK_Unknown: 6018 llvm_unreachable("unexpected pragma comment kind"); 6019 case PCK_Linker: 6020 AppendLinkerOptions(PCD->getArg()); 6021 break; 6022 case PCK_Lib: 6023 AddDependentLib(PCD->getArg()); 6024 break; 6025 case PCK_Compiler: 6026 case PCK_ExeStr: 6027 case PCK_User: 6028 break; // We ignore all of these. 6029 } 6030 break; 6031 } 6032 6033 case Decl::PragmaDetectMismatch: { 6034 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 6035 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 6036 break; 6037 } 6038 6039 case Decl::LinkageSpec: 6040 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 6041 break; 6042 6043 case Decl::FileScopeAsm: { 6044 // File-scope asm is ignored during device-side CUDA compilation. 6045 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 6046 break; 6047 // File-scope asm is ignored during device-side OpenMP compilation. 6048 if (LangOpts.OpenMPIsDevice) 6049 break; 6050 // File-scope asm is ignored during device-side SYCL compilation. 6051 if (LangOpts.SYCLIsDevice) 6052 break; 6053 auto *AD = cast<FileScopeAsmDecl>(D); 6054 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 6055 break; 6056 } 6057 6058 case Decl::Import: { 6059 auto *Import = cast<ImportDecl>(D); 6060 6061 // If we've already imported this module, we're done. 6062 if (!ImportedModules.insert(Import->getImportedModule())) 6063 break; 6064 6065 // Emit debug information for direct imports. 6066 if (!Import->getImportedOwningModule()) { 6067 if (CGDebugInfo *DI = getModuleDebugInfo()) 6068 DI->EmitImportDecl(*Import); 6069 } 6070 6071 // Find all of the submodules and emit the module initializers. 6072 llvm::SmallPtrSet<clang::Module *, 16> Visited; 6073 SmallVector<clang::Module *, 16> Stack; 6074 Visited.insert(Import->getImportedModule()); 6075 Stack.push_back(Import->getImportedModule()); 6076 6077 while (!Stack.empty()) { 6078 clang::Module *Mod = Stack.pop_back_val(); 6079 if (!EmittedModuleInitializers.insert(Mod).second) 6080 continue; 6081 6082 for (auto *D : Context.getModuleInitializers(Mod)) 6083 EmitTopLevelDecl(D); 6084 6085 // Visit the submodules of this module. 6086 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 6087 SubEnd = Mod->submodule_end(); 6088 Sub != SubEnd; ++Sub) { 6089 // Skip explicit children; they need to be explicitly imported to emit 6090 // the initializers. 6091 if ((*Sub)->IsExplicit) 6092 continue; 6093 6094 if (Visited.insert(*Sub).second) 6095 Stack.push_back(*Sub); 6096 } 6097 } 6098 break; 6099 } 6100 6101 case Decl::Export: 6102 EmitDeclContext(cast<ExportDecl>(D)); 6103 break; 6104 6105 case Decl::OMPThreadPrivate: 6106 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 6107 break; 6108 6109 case Decl::OMPAllocate: 6110 EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D)); 6111 break; 6112 6113 case Decl::OMPDeclareReduction: 6114 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 6115 break; 6116 6117 case Decl::OMPDeclareMapper: 6118 EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D)); 6119 break; 6120 6121 case Decl::OMPRequires: 6122 EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D)); 6123 break; 6124 6125 case Decl::Typedef: 6126 case Decl::TypeAlias: // using foo = bar; [C++11] 6127 if (CGDebugInfo *DI = getModuleDebugInfo()) 6128 DI->EmitAndRetainType( 6129 getContext().getTypedefType(cast<TypedefNameDecl>(D))); 6130 break; 6131 6132 case Decl::Record: 6133 if (CGDebugInfo *DI = getModuleDebugInfo()) 6134 if (cast<RecordDecl>(D)->getDefinition()) 6135 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 6136 break; 6137 6138 case Decl::Enum: 6139 if (CGDebugInfo *DI = getModuleDebugInfo()) 6140 if (cast<EnumDecl>(D)->getDefinition()) 6141 DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D))); 6142 break; 6143 6144 default: 6145 // Make sure we handled everything we should, every other kind is a 6146 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 6147 // function. Need to recode Decl::Kind to do that easily. 6148 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 6149 break; 6150 } 6151 } 6152 6153 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 6154 // Do we need to generate coverage mapping? 6155 if (!CodeGenOpts.CoverageMapping) 6156 return; 6157 switch (D->getKind()) { 6158 case Decl::CXXConversion: 6159 case Decl::CXXMethod: 6160 case Decl::Function: 6161 case Decl::ObjCMethod: 6162 case Decl::CXXConstructor: 6163 case Decl::CXXDestructor: { 6164 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 6165 break; 6166 SourceManager &SM = getContext().getSourceManager(); 6167 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc())) 6168 break; 6169 auto I = DeferredEmptyCoverageMappingDecls.find(D); 6170 if (I == DeferredEmptyCoverageMappingDecls.end()) 6171 DeferredEmptyCoverageMappingDecls[D] = true; 6172 break; 6173 } 6174 default: 6175 break; 6176 }; 6177 } 6178 6179 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 6180 // Do we need to generate coverage mapping? 6181 if (!CodeGenOpts.CoverageMapping) 6182 return; 6183 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 6184 if (Fn->isTemplateInstantiation()) 6185 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 6186 } 6187 auto I = DeferredEmptyCoverageMappingDecls.find(D); 6188 if (I == DeferredEmptyCoverageMappingDecls.end()) 6189 DeferredEmptyCoverageMappingDecls[D] = false; 6190 else 6191 I->second = false; 6192 } 6193 6194 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 6195 // We call takeVector() here to avoid use-after-free. 6196 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 6197 // we deserialize function bodies to emit coverage info for them, and that 6198 // deserializes more declarations. How should we handle that case? 6199 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 6200 if (!Entry.second) 6201 continue; 6202 const Decl *D = Entry.first; 6203 switch (D->getKind()) { 6204 case Decl::CXXConversion: 6205 case Decl::CXXMethod: 6206 case Decl::Function: 6207 case Decl::ObjCMethod: { 6208 CodeGenPGO PGO(*this); 6209 GlobalDecl GD(cast<FunctionDecl>(D)); 6210 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 6211 getFunctionLinkage(GD)); 6212 break; 6213 } 6214 case Decl::CXXConstructor: { 6215 CodeGenPGO PGO(*this); 6216 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 6217 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 6218 getFunctionLinkage(GD)); 6219 break; 6220 } 6221 case Decl::CXXDestructor: { 6222 CodeGenPGO PGO(*this); 6223 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 6224 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 6225 getFunctionLinkage(GD)); 6226 break; 6227 } 6228 default: 6229 break; 6230 }; 6231 } 6232 } 6233 6234 void CodeGenModule::EmitMainVoidAlias() { 6235 // In order to transition away from "__original_main" gracefully, emit an 6236 // alias for "main" in the no-argument case so that libc can detect when 6237 // new-style no-argument main is in used. 6238 if (llvm::Function *F = getModule().getFunction("main")) { 6239 if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() && 6240 F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) 6241 addUsedGlobal(llvm::GlobalAlias::create("__main_void", F)); 6242 } 6243 } 6244 6245 /// Turns the given pointer into a constant. 6246 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 6247 const void *Ptr) { 6248 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 6249 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 6250 return llvm::ConstantInt::get(i64, PtrInt); 6251 } 6252 6253 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 6254 llvm::NamedMDNode *&GlobalMetadata, 6255 GlobalDecl D, 6256 llvm::GlobalValue *Addr) { 6257 if (!GlobalMetadata) 6258 GlobalMetadata = 6259 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 6260 6261 // TODO: should we report variant information for ctors/dtors? 6262 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 6263 llvm::ConstantAsMetadata::get(GetPointerConstant( 6264 CGM.getLLVMContext(), D.getDecl()))}; 6265 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 6266 } 6267 6268 /// For each function which is declared within an extern "C" region and marked 6269 /// as 'used', but has internal linkage, create an alias from the unmangled 6270 /// name to the mangled name if possible. People expect to be able to refer 6271 /// to such functions with an unmangled name from inline assembly within the 6272 /// same translation unit. 6273 void CodeGenModule::EmitStaticExternCAliases() { 6274 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases()) 6275 return; 6276 for (auto &I : StaticExternCValues) { 6277 IdentifierInfo *Name = I.first; 6278 llvm::GlobalValue *Val = I.second; 6279 if (Val && !getModule().getNamedValue(Name->getName())) 6280 addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 6281 } 6282 } 6283 6284 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 6285 GlobalDecl &Result) const { 6286 auto Res = Manglings.find(MangledName); 6287 if (Res == Manglings.end()) 6288 return false; 6289 Result = Res->getValue(); 6290 return true; 6291 } 6292 6293 /// Emits metadata nodes associating all the global values in the 6294 /// current module with the Decls they came from. This is useful for 6295 /// projects using IR gen as a subroutine. 6296 /// 6297 /// Since there's currently no way to associate an MDNode directly 6298 /// with an llvm::GlobalValue, we create a global named metadata 6299 /// with the name 'clang.global.decl.ptrs'. 6300 void CodeGenModule::EmitDeclMetadata() { 6301 llvm::NamedMDNode *GlobalMetadata = nullptr; 6302 6303 for (auto &I : MangledDeclNames) { 6304 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 6305 // Some mangled names don't necessarily have an associated GlobalValue 6306 // in this module, e.g. if we mangled it for DebugInfo. 6307 if (Addr) 6308 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 6309 } 6310 } 6311 6312 /// Emits metadata nodes for all the local variables in the current 6313 /// function. 6314 void CodeGenFunction::EmitDeclMetadata() { 6315 if (LocalDeclMap.empty()) return; 6316 6317 llvm::LLVMContext &Context = getLLVMContext(); 6318 6319 // Find the unique metadata ID for this name. 6320 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 6321 6322 llvm::NamedMDNode *GlobalMetadata = nullptr; 6323 6324 for (auto &I : LocalDeclMap) { 6325 const Decl *D = I.first; 6326 llvm::Value *Addr = I.second.getPointer(); 6327 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 6328 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 6329 Alloca->setMetadata( 6330 DeclPtrKind, llvm::MDNode::get( 6331 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 6332 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 6333 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 6334 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 6335 } 6336 } 6337 } 6338 6339 void CodeGenModule::EmitVersionIdentMetadata() { 6340 llvm::NamedMDNode *IdentMetadata = 6341 TheModule.getOrInsertNamedMetadata("llvm.ident"); 6342 std::string Version = getClangFullVersion(); 6343 llvm::LLVMContext &Ctx = TheModule.getContext(); 6344 6345 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 6346 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 6347 } 6348 6349 void CodeGenModule::EmitCommandLineMetadata() { 6350 llvm::NamedMDNode *CommandLineMetadata = 6351 TheModule.getOrInsertNamedMetadata("llvm.commandline"); 6352 std::string CommandLine = getCodeGenOpts().RecordCommandLine; 6353 llvm::LLVMContext &Ctx = TheModule.getContext(); 6354 6355 llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)}; 6356 CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode)); 6357 } 6358 6359 void CodeGenModule::EmitCoverageFile() { 6360 if (getCodeGenOpts().CoverageDataFile.empty() && 6361 getCodeGenOpts().CoverageNotesFile.empty()) 6362 return; 6363 6364 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 6365 if (!CUNode) 6366 return; 6367 6368 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 6369 llvm::LLVMContext &Ctx = TheModule.getContext(); 6370 auto *CoverageDataFile = 6371 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 6372 auto *CoverageNotesFile = 6373 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 6374 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 6375 llvm::MDNode *CU = CUNode->getOperand(i); 6376 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 6377 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 6378 } 6379 } 6380 6381 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 6382 bool ForEH) { 6383 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 6384 // FIXME: should we even be calling this method if RTTI is disabled 6385 // and it's not for EH? 6386 if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice || 6387 (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice && 6388 getTriple().isNVPTX())) 6389 return llvm::Constant::getNullValue(Int8PtrTy); 6390 6391 if (ForEH && Ty->isObjCObjectPointerType() && 6392 LangOpts.ObjCRuntime.isGNUFamily()) 6393 return ObjCRuntime->GetEHType(Ty); 6394 6395 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 6396 } 6397 6398 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 6399 // Do not emit threadprivates in simd-only mode. 6400 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 6401 return; 6402 for (auto RefExpr : D->varlists()) { 6403 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 6404 bool PerformInit = 6405 VD->getAnyInitializer() && 6406 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 6407 /*ForRef=*/false); 6408 6409 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 6410 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 6411 VD, Addr, RefExpr->getBeginLoc(), PerformInit)) 6412 CXXGlobalInits.push_back(InitFunction); 6413 } 6414 } 6415 6416 llvm::Metadata * 6417 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map, 6418 StringRef Suffix) { 6419 if (auto *FnType = T->getAs<FunctionProtoType>()) 6420 T = getContext().getFunctionType( 6421 FnType->getReturnType(), FnType->getParamTypes(), 6422 FnType->getExtProtoInfo().withExceptionSpec(EST_None)); 6423 6424 llvm::Metadata *&InternalId = Map[T.getCanonicalType()]; 6425 if (InternalId) 6426 return InternalId; 6427 6428 if (isExternallyVisible(T->getLinkage())) { 6429 std::string OutName; 6430 llvm::raw_string_ostream Out(OutName); 6431 getCXXABI().getMangleContext().mangleTypeName(T, Out); 6432 Out << Suffix; 6433 6434 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 6435 } else { 6436 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 6437 llvm::ArrayRef<llvm::Metadata *>()); 6438 } 6439 6440 return InternalId; 6441 } 6442 6443 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 6444 return CreateMetadataIdentifierImpl(T, MetadataIdMap, ""); 6445 } 6446 6447 llvm::Metadata * 6448 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) { 6449 return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual"); 6450 } 6451 6452 // Generalize pointer types to a void pointer with the qualifiers of the 6453 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 6454 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 6455 // 'void *'. 6456 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 6457 if (!Ty->isPointerType()) 6458 return Ty; 6459 6460 return Ctx.getPointerType( 6461 QualType(Ctx.VoidTy).withCVRQualifiers( 6462 Ty->getPointeeType().getCVRQualifiers())); 6463 } 6464 6465 // Apply type generalization to a FunctionType's return and argument types 6466 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 6467 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 6468 SmallVector<QualType, 8> GeneralizedParams; 6469 for (auto &Param : FnType->param_types()) 6470 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 6471 6472 return Ctx.getFunctionType( 6473 GeneralizeType(Ctx, FnType->getReturnType()), 6474 GeneralizedParams, FnType->getExtProtoInfo()); 6475 } 6476 6477 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 6478 return Ctx.getFunctionNoProtoType( 6479 GeneralizeType(Ctx, FnType->getReturnType())); 6480 6481 llvm_unreachable("Encountered unknown FunctionType"); 6482 } 6483 6484 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 6485 return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T), 6486 GeneralizedMetadataIdMap, ".generalized"); 6487 } 6488 6489 /// Returns whether this module needs the "all-vtables" type identifier. 6490 bool CodeGenModule::NeedAllVtablesTypeId() const { 6491 // Returns true if at least one of vtable-based CFI checkers is enabled and 6492 // is not in the trapping mode. 6493 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 6494 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 6495 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 6496 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 6497 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 6498 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 6499 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 6500 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 6501 } 6502 6503 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 6504 CharUnits Offset, 6505 const CXXRecordDecl *RD) { 6506 llvm::Metadata *MD = 6507 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 6508 VTable->addTypeMetadata(Offset.getQuantity(), MD); 6509 6510 if (CodeGenOpts.SanitizeCfiCrossDso) 6511 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 6512 VTable->addTypeMetadata(Offset.getQuantity(), 6513 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 6514 6515 if (NeedAllVtablesTypeId()) { 6516 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 6517 VTable->addTypeMetadata(Offset.getQuantity(), MD); 6518 } 6519 } 6520 6521 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 6522 if (!SanStats) 6523 SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule()); 6524 6525 return *SanStats; 6526 } 6527 6528 llvm::Value * 6529 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 6530 CodeGenFunction &CGF) { 6531 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 6532 auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 6533 auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 6534 auto *Call = CGF.EmitRuntimeCall( 6535 CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C}); 6536 return Call; 6537 } 6538 6539 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment( 6540 QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) { 6541 return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo, 6542 /* forPointeeType= */ true); 6543 } 6544 6545 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T, 6546 LValueBaseInfo *BaseInfo, 6547 TBAAAccessInfo *TBAAInfo, 6548 bool forPointeeType) { 6549 if (TBAAInfo) 6550 *TBAAInfo = getTBAAAccessInfo(T); 6551 6552 // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But 6553 // that doesn't return the information we need to compute BaseInfo. 6554 6555 // Honor alignment typedef attributes even on incomplete types. 6556 // We also honor them straight for C++ class types, even as pointees; 6557 // there's an expressivity gap here. 6558 if (auto TT = T->getAs<TypedefType>()) { 6559 if (auto Align = TT->getDecl()->getMaxAlignment()) { 6560 if (BaseInfo) 6561 *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType); 6562 return getContext().toCharUnitsFromBits(Align); 6563 } 6564 } 6565 6566 bool AlignForArray = T->isArrayType(); 6567 6568 // Analyze the base element type, so we don't get confused by incomplete 6569 // array types. 6570 T = getContext().getBaseElementType(T); 6571 6572 if (T->isIncompleteType()) { 6573 // We could try to replicate the logic from 6574 // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the 6575 // type is incomplete, so it's impossible to test. We could try to reuse 6576 // getTypeAlignIfKnown, but that doesn't return the information we need 6577 // to set BaseInfo. So just ignore the possibility that the alignment is 6578 // greater than one. 6579 if (BaseInfo) 6580 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 6581 return CharUnits::One(); 6582 } 6583 6584 if (BaseInfo) 6585 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 6586 6587 CharUnits Alignment; 6588 const CXXRecordDecl *RD; 6589 if (T.getQualifiers().hasUnaligned()) { 6590 Alignment = CharUnits::One(); 6591 } else if (forPointeeType && !AlignForArray && 6592 (RD = T->getAsCXXRecordDecl())) { 6593 // For C++ class pointees, we don't know whether we're pointing at a 6594 // base or a complete object, so we generally need to use the 6595 // non-virtual alignment. 6596 Alignment = getClassPointerAlignment(RD); 6597 } else { 6598 Alignment = getContext().getTypeAlignInChars(T); 6599 } 6600 6601 // Cap to the global maximum type alignment unless the alignment 6602 // was somehow explicit on the type. 6603 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 6604 if (Alignment.getQuantity() > MaxAlign && 6605 !getContext().isAlignmentRequired(T)) 6606 Alignment = CharUnits::fromQuantity(MaxAlign); 6607 } 6608 return Alignment; 6609 } 6610 6611 bool CodeGenModule::stopAutoInit() { 6612 unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter; 6613 if (StopAfter) { 6614 // This number is positive only when -ftrivial-auto-var-init-stop-after=* is 6615 // used 6616 if (NumAutoVarInit >= StopAfter) { 6617 return true; 6618 } 6619 if (!NumAutoVarInit) { 6620 unsigned DiagID = getDiags().getCustomDiagID( 6621 DiagnosticsEngine::Warning, 6622 "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the " 6623 "number of times ftrivial-auto-var-init=%1 gets applied."); 6624 getDiags().Report(DiagID) 6625 << StopAfter 6626 << (getContext().getLangOpts().getTrivialAutoVarInit() == 6627 LangOptions::TrivialAutoVarInitKind::Zero 6628 ? "zero" 6629 : "pattern"); 6630 } 6631 ++NumAutoVarInit; 6632 } 6633 return false; 6634 } 6635 6636 void CodeGenModule::printPostfixForExternalizedStaticVar( 6637 llvm::raw_ostream &OS) const { 6638 OS << "__static__" << getContext().getCUIDHash(); 6639 } 6640