xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 2bb27f53e0010d75cce6e020fe8c40edbb45cfcb)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CGCall.h"
18 #include "CGObjCRuntime.h"
19 #include "Mangle.h"
20 #include "clang/Frontend/CompileOptions.h"
21 #include "clang/AST/ASTContext.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/DeclCXX.h"
24 #include "clang/Basic/Builtins.h"
25 #include "clang/Basic/Diagnostic.h"
26 #include "clang/Basic/SourceManager.h"
27 #include "clang/Basic/TargetInfo.h"
28 #include "clang/Basic/ConvertUTF.h"
29 #include "llvm/CallingConv.h"
30 #include "llvm/Module.h"
31 #include "llvm/Intrinsics.h"
32 #include "llvm/Target/TargetData.h"
33 using namespace clang;
34 using namespace CodeGen;
35 
36 
37 CodeGenModule::CodeGenModule(ASTContext &C, const CompileOptions &compileOpts,
38                              llvm::Module &M, const llvm::TargetData &TD,
39                              Diagnostic &diags)
40   : BlockModule(C, M, TD, Types, *this), Context(C),
41     Features(C.getLangOptions()), CompileOpts(compileOpts), TheModule(M),
42     TheTargetData(TD), Diags(diags), Types(C, M, TD), MangleCtx(C),
43     VtableInfo(*this), Runtime(0),
44     MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0),
45     VMContext(M.getContext()) {
46 
47   if (!Features.ObjC1)
48     Runtime = 0;
49   else if (!Features.NeXTRuntime)
50     Runtime = CreateGNUObjCRuntime(*this);
51   else if (Features.ObjCNonFragileABI)
52     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
53   else
54     Runtime = CreateMacObjCRuntime(*this);
55 
56   // If debug info generation is enabled, create the CGDebugInfo object.
57   DebugInfo = CompileOpts.DebugInfo ? new CGDebugInfo(this) : 0;
58 }
59 
60 CodeGenModule::~CodeGenModule() {
61   delete Runtime;
62   delete DebugInfo;
63 }
64 
65 void CodeGenModule::Release() {
66   // We need to call this first because it can add deferred declarations.
67   EmitCXXGlobalInitFunc();
68 
69   EmitDeferred();
70   if (Runtime)
71     if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
72       AddGlobalCtor(ObjCInitFunction);
73   EmitCtorList(GlobalCtors, "llvm.global_ctors");
74   EmitCtorList(GlobalDtors, "llvm.global_dtors");
75   EmitAnnotations();
76   EmitLLVMUsed();
77 }
78 
79 /// ErrorUnsupported - Print out an error that codegen doesn't support the
80 /// specified stmt yet.
81 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
82                                      bool OmitOnError) {
83   if (OmitOnError && getDiags().hasErrorOccurred())
84     return;
85   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
86                                                "cannot compile this %0 yet");
87   std::string Msg = Type;
88   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
89     << Msg << S->getSourceRange();
90 }
91 
92 /// ErrorUnsupported - Print out an error that codegen doesn't support the
93 /// specified decl yet.
94 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
95                                      bool OmitOnError) {
96   if (OmitOnError && getDiags().hasErrorOccurred())
97     return;
98   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
99                                                "cannot compile this %0 yet");
100   std::string Msg = Type;
101   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
102 }
103 
104 LangOptions::VisibilityMode
105 CodeGenModule::getDeclVisibilityMode(const Decl *D) const {
106   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
107     if (VD->getStorageClass() == VarDecl::PrivateExtern)
108       return LangOptions::Hidden;
109 
110   if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) {
111     switch (attr->getVisibility()) {
112     default: assert(0 && "Unknown visibility!");
113     case VisibilityAttr::DefaultVisibility:
114       return LangOptions::Default;
115     case VisibilityAttr::HiddenVisibility:
116       return LangOptions::Hidden;
117     case VisibilityAttr::ProtectedVisibility:
118       return LangOptions::Protected;
119     }
120   }
121 
122   return getLangOptions().getVisibilityMode();
123 }
124 
125 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
126                                         const Decl *D) const {
127   // Internal definitions always have default visibility.
128   if (GV->hasLocalLinkage()) {
129     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
130     return;
131   }
132 
133   switch (getDeclVisibilityMode(D)) {
134   default: assert(0 && "Unknown visibility!");
135   case LangOptions::Default:
136     return GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
137   case LangOptions::Hidden:
138     return GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
139   case LangOptions::Protected:
140     return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
141   }
142 }
143 
144 const char *CodeGenModule::getMangledName(const GlobalDecl &GD) {
145   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
146 
147   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
148     return getMangledCXXCtorName(D, GD.getCtorType());
149   if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
150     return getMangledCXXDtorName(D, GD.getDtorType());
151 
152   return getMangledName(ND);
153 }
154 
155 /// \brief Retrieves the mangled name for the given declaration.
156 ///
157 /// If the given declaration requires a mangled name, returns an
158 /// const char* containing the mangled name.  Otherwise, returns
159 /// the unmangled name.
160 ///
161 const char *CodeGenModule::getMangledName(const NamedDecl *ND) {
162   // In C, functions with no attributes never need to be mangled. Fastpath them.
163   if (!getLangOptions().CPlusPlus && !ND->hasAttrs()) {
164     assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
165     return ND->getNameAsCString();
166   }
167 
168   llvm::SmallString<256> Name;
169   llvm::raw_svector_ostream Out(Name);
170   if (!mangleName(getMangleContext(), ND, Out)) {
171     assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
172     return ND->getNameAsCString();
173   }
174 
175   Name += '\0';
176   return UniqueMangledName(Name.begin(), Name.end());
177 }
178 
179 const char *CodeGenModule::UniqueMangledName(const char *NameStart,
180                                              const char *NameEnd) {
181   assert(*(NameEnd - 1) == '\0' && "Mangled name must be null terminated!");
182 
183   return MangledNames.GetOrCreateValue(NameStart, NameEnd).getKeyData();
184 }
185 
186 /// AddGlobalCtor - Add a function to the list that will be called before
187 /// main() runs.
188 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
189   // FIXME: Type coercion of void()* types.
190   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
191 }
192 
193 /// AddGlobalDtor - Add a function to the list that will be called
194 /// when the module is unloaded.
195 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
196   // FIXME: Type coercion of void()* types.
197   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
198 }
199 
200 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
201   // Ctor function type is void()*.
202   llvm::FunctionType* CtorFTy =
203     llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
204                             std::vector<const llvm::Type*>(),
205                             false);
206   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
207 
208   // Get the type of a ctor entry, { i32, void ()* }.
209   llvm::StructType* CtorStructTy =
210     llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext),
211                           llvm::PointerType::getUnqual(CtorFTy), NULL);
212 
213   // Construct the constructor and destructor arrays.
214   std::vector<llvm::Constant*> Ctors;
215   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
216     std::vector<llvm::Constant*> S;
217     S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
218                 I->second, false));
219     S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
220     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
221   }
222 
223   if (!Ctors.empty()) {
224     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
225     new llvm::GlobalVariable(TheModule, AT, false,
226                              llvm::GlobalValue::AppendingLinkage,
227                              llvm::ConstantArray::get(AT, Ctors),
228                              GlobalName);
229   }
230 }
231 
232 void CodeGenModule::EmitAnnotations() {
233   if (Annotations.empty())
234     return;
235 
236   // Create a new global variable for the ConstantStruct in the Module.
237   llvm::Constant *Array =
238   llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
239                                                 Annotations.size()),
240                            Annotations);
241   llvm::GlobalValue *gv =
242   new llvm::GlobalVariable(TheModule, Array->getType(), false,
243                            llvm::GlobalValue::AppendingLinkage, Array,
244                            "llvm.global.annotations");
245   gv->setSection("llvm.metadata");
246 }
247 
248 static CodeGenModule::GVALinkage
249 GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD,
250                       const LangOptions &Features) {
251   // Everything located semantically within an anonymous namespace is
252   // always internal.
253   if (FD->isInAnonymousNamespace())
254     return CodeGenModule::GVA_Internal;
255 
256   // The kind of external linkage this function will have, if it is not
257   // inline or static.
258   CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal;
259   if (Context.getLangOptions().CPlusPlus &&
260       FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
261     External = CodeGenModule::GVA_TemplateInstantiation;
262 
263   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
264     // C++ member functions defined inside the class are always inline.
265     if (MD->isInline() || !MD->isOutOfLine())
266       return CodeGenModule::GVA_CXXInline;
267 
268     return External;
269   }
270 
271   // "static" functions get internal linkage.
272   if (FD->getStorageClass() == FunctionDecl::Static)
273     return CodeGenModule::GVA_Internal;
274 
275   if (!FD->isInline())
276     return External;
277 
278   if (!Features.CPlusPlus || FD->hasAttr<GNUInlineAttr>()) {
279     // GNU or C99 inline semantics. Determine whether this symbol should be
280     // externally visible.
281     if (FD->isInlineDefinitionExternallyVisible())
282       return External;
283 
284     // C99 inline semantics, where the symbol is not externally visible.
285     return CodeGenModule::GVA_C99Inline;
286   }
287 
288   // C++ inline semantics
289   assert(Features.CPlusPlus && "Must be in C++ mode");
290   return CodeGenModule::GVA_CXXInline;
291 }
292 
293 /// SetFunctionDefinitionAttributes - Set attributes for a global.
294 ///
295 /// FIXME: This is currently only done for aliases and functions, but not for
296 /// variables (these details are set in EmitGlobalVarDefinition for variables).
297 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
298                                                     llvm::GlobalValue *GV) {
299   GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features);
300 
301   if (Linkage == GVA_Internal) {
302     GV->setLinkage(llvm::Function::InternalLinkage);
303   } else if (D->hasAttr<DLLExportAttr>()) {
304     GV->setLinkage(llvm::Function::DLLExportLinkage);
305   } else if (D->hasAttr<WeakAttr>()) {
306     GV->setLinkage(llvm::Function::WeakAnyLinkage);
307   } else if (Linkage == GVA_C99Inline) {
308     // In C99 mode, 'inline' functions are guaranteed to have a strong
309     // definition somewhere else, so we can use available_externally linkage.
310     GV->setLinkage(llvm::Function::AvailableExternallyLinkage);
311   } else if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) {
312     // In C++, the compiler has to emit a definition in every translation unit
313     // that references the function.  We should use linkonce_odr because
314     // a) if all references in this translation unit are optimized away, we
315     // don't need to codegen it.  b) if the function persists, it needs to be
316     // merged with other definitions. c) C++ has the ODR, so we know the
317     // definition is dependable.
318     GV->setLinkage(llvm::Function::LinkOnceODRLinkage);
319   } else {
320     assert(Linkage == GVA_StrongExternal);
321     // Otherwise, we have strong external linkage.
322     GV->setLinkage(llvm::Function::ExternalLinkage);
323   }
324 
325   SetCommonAttributes(D, GV);
326 }
327 
328 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
329                                               const CGFunctionInfo &Info,
330                                               llvm::Function *F) {
331   unsigned CallingConv;
332   AttributeListType AttributeList;
333   ConstructAttributeList(Info, D, AttributeList, CallingConv);
334   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
335                                           AttributeList.size()));
336   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
337 }
338 
339 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
340                                                            llvm::Function *F) {
341   if (!Features.Exceptions && !Features.ObjCNonFragileABI)
342     F->addFnAttr(llvm::Attribute::NoUnwind);
343 
344   if (D->hasAttr<AlwaysInlineAttr>())
345     F->addFnAttr(llvm::Attribute::AlwaysInline);
346 
347   if (D->hasAttr<NoInlineAttr>())
348     F->addFnAttr(llvm::Attribute::NoInline);
349 
350   if (const AlignedAttr *AA = D->getAttr<AlignedAttr>())
351     F->setAlignment(AA->getAlignment()/8);
352   // C++ ABI requires 2-byte alignment for member functions.
353   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
354     F->setAlignment(2);
355 }
356 
357 void CodeGenModule::SetCommonAttributes(const Decl *D,
358                                         llvm::GlobalValue *GV) {
359   setGlobalVisibility(GV, D);
360 
361   if (D->hasAttr<UsedAttr>())
362     AddUsedGlobal(GV);
363 
364   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
365     GV->setSection(SA->getName());
366 }
367 
368 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
369                                                   llvm::Function *F,
370                                                   const CGFunctionInfo &FI) {
371   SetLLVMFunctionAttributes(D, FI, F);
372   SetLLVMFunctionAttributesForDefinition(D, F);
373 
374   F->setLinkage(llvm::Function::InternalLinkage);
375 
376   SetCommonAttributes(D, F);
377 }
378 
379 void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD,
380                                           llvm::Function *F,
381                                           bool IsIncompleteFunction) {
382   if (!IsIncompleteFunction)
383     SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F);
384 
385   // Only a few attributes are set on declarations; these may later be
386   // overridden by a definition.
387 
388   if (FD->hasAttr<DLLImportAttr>()) {
389     F->setLinkage(llvm::Function::DLLImportLinkage);
390   } else if (FD->hasAttr<WeakAttr>() ||
391              FD->hasAttr<WeakImportAttr>()) {
392     // "extern_weak" is overloaded in LLVM; we probably should have
393     // separate linkage types for this.
394     F->setLinkage(llvm::Function::ExternalWeakLinkage);
395   } else {
396     F->setLinkage(llvm::Function::ExternalLinkage);
397   }
398 
399   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
400     F->setSection(SA->getName());
401 }
402 
403 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
404   assert(!GV->isDeclaration() &&
405          "Only globals with definition can force usage.");
406   LLVMUsed.push_back(GV);
407 }
408 
409 void CodeGenModule::EmitLLVMUsed() {
410   // Don't create llvm.used if there is no need.
411   if (LLVMUsed.empty())
412     return;
413 
414   llvm::Type *i8PTy =
415       llvm::PointerType::getUnqual(llvm::Type::getInt8Ty(VMContext));
416 
417   // Convert LLVMUsed to what ConstantArray needs.
418   std::vector<llvm::Constant*> UsedArray;
419   UsedArray.resize(LLVMUsed.size());
420   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
421     UsedArray[i] =
422      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
423                                       i8PTy);
424   }
425 
426   if (UsedArray.empty())
427     return;
428   llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size());
429 
430   llvm::GlobalVariable *GV =
431     new llvm::GlobalVariable(getModule(), ATy, false,
432                              llvm::GlobalValue::AppendingLinkage,
433                              llvm::ConstantArray::get(ATy, UsedArray),
434                              "llvm.used");
435 
436   GV->setSection("llvm.metadata");
437 }
438 
439 void CodeGenModule::EmitDeferred() {
440   // Emit code for any potentially referenced deferred decls.  Since a
441   // previously unused static decl may become used during the generation of code
442   // for a static function, iterate until no  changes are made.
443   while (!DeferredDeclsToEmit.empty()) {
444     GlobalDecl D = DeferredDeclsToEmit.back();
445     DeferredDeclsToEmit.pop_back();
446 
447     // The mangled name for the decl must have been emitted in GlobalDeclMap.
448     // Look it up to see if it was defined with a stronger definition (e.g. an
449     // extern inline function with a strong function redefinition).  If so,
450     // just ignore the deferred decl.
451     llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)];
452     assert(CGRef && "Deferred decl wasn't referenced?");
453 
454     if (!CGRef->isDeclaration())
455       continue;
456 
457     // Otherwise, emit the definition and move on to the next one.
458     EmitGlobalDefinition(D);
459   }
460 }
461 
462 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
463 /// annotation information for a given GlobalValue.  The annotation struct is
464 /// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
465 /// GlobalValue being annotated.  The second field is the constant string
466 /// created from the AnnotateAttr's annotation.  The third field is a constant
467 /// string containing the name of the translation unit.  The fourth field is
468 /// the line number in the file of the annotated value declaration.
469 ///
470 /// FIXME: this does not unique the annotation string constants, as llvm-gcc
471 ///        appears to.
472 ///
473 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
474                                                 const AnnotateAttr *AA,
475                                                 unsigned LineNo) {
476   llvm::Module *M = &getModule();
477 
478   // get [N x i8] constants for the annotation string, and the filename string
479   // which are the 2nd and 3rd elements of the global annotation structure.
480   const llvm::Type *SBP =
481       llvm::PointerType::getUnqual(llvm::Type::getInt8Ty(VMContext));
482   llvm::Constant *anno = llvm::ConstantArray::get(VMContext,
483                                                   AA->getAnnotation(), true);
484   llvm::Constant *unit = llvm::ConstantArray::get(VMContext,
485                                                   M->getModuleIdentifier(),
486                                                   true);
487 
488   // Get the two global values corresponding to the ConstantArrays we just
489   // created to hold the bytes of the strings.
490   llvm::GlobalValue *annoGV =
491     new llvm::GlobalVariable(*M, anno->getType(), false,
492                              llvm::GlobalValue::PrivateLinkage, anno,
493                              GV->getName());
494   // translation unit name string, emitted into the llvm.metadata section.
495   llvm::GlobalValue *unitGV =
496     new llvm::GlobalVariable(*M, unit->getType(), false,
497                              llvm::GlobalValue::PrivateLinkage, unit,
498                              ".str");
499 
500   // Create the ConstantStruct for the global annotation.
501   llvm::Constant *Fields[4] = {
502     llvm::ConstantExpr::getBitCast(GV, SBP),
503     llvm::ConstantExpr::getBitCast(annoGV, SBP),
504     llvm::ConstantExpr::getBitCast(unitGV, SBP),
505     llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo)
506   };
507   return llvm::ConstantStruct::get(VMContext, Fields, 4, false);
508 }
509 
510 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
511   // Never defer when EmitAllDecls is specified or the decl has
512   // attribute used.
513   if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>())
514     return false;
515 
516   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
517     // Constructors and destructors should never be deferred.
518     if (FD->hasAttr<ConstructorAttr>() ||
519         FD->hasAttr<DestructorAttr>())
520       return false;
521 
522     GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features);
523 
524     // static, static inline, always_inline, and extern inline functions can
525     // always be deferred.  Normal inline functions can be deferred in C99/C++.
526     if (Linkage == GVA_Internal || Linkage == GVA_C99Inline ||
527         Linkage == GVA_CXXInline)
528       return true;
529     return false;
530   }
531 
532   const VarDecl *VD = cast<VarDecl>(Global);
533   assert(VD->isFileVarDecl() && "Invalid decl");
534 
535   // We never want to defer structs that have non-trivial constructors or
536   // destructors.
537 
538   // FIXME: Handle references.
539   if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
540     if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
541       if (!RD->hasTrivialConstructor() || !RD->hasTrivialDestructor())
542         return false;
543     }
544   }
545 
546   return VD->getStorageClass() == VarDecl::Static;
547 }
548 
549 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
550   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
551 
552   // If this is an alias definition (which otherwise looks like a declaration)
553   // emit it now.
554   if (Global->hasAttr<AliasAttr>())
555     return EmitAliasDefinition(Global);
556 
557   // Ignore declarations, they will be emitted on their first use.
558   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
559     // Forward declarations are emitted lazily on first use.
560     if (!FD->isThisDeclarationADefinition())
561       return;
562   } else {
563     const VarDecl *VD = cast<VarDecl>(Global);
564     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
565 
566     // In C++, if this is marked "extern", defer code generation.
567     if (getLangOptions().CPlusPlus && !VD->getInit() &&
568         (VD->getStorageClass() == VarDecl::Extern ||
569          VD->isExternC()))
570       return;
571 
572     // In C, if this isn't a definition, defer code generation.
573     if (!getLangOptions().CPlusPlus && !VD->getInit())
574       return;
575   }
576 
577   // Defer code generation when possible if this is a static definition, inline
578   // function etc.  These we only want to emit if they are used.
579   if (MayDeferGeneration(Global)) {
580     // If the value has already been used, add it directly to the
581     // DeferredDeclsToEmit list.
582     const char *MangledName = getMangledName(GD);
583     if (GlobalDeclMap.count(MangledName))
584       DeferredDeclsToEmit.push_back(GD);
585     else {
586       // Otherwise, remember that we saw a deferred decl with this name.  The
587       // first use of the mangled name will cause it to move into
588       // DeferredDeclsToEmit.
589       DeferredDecls[MangledName] = GD;
590     }
591     return;
592   }
593 
594   // Otherwise emit the definition.
595   EmitGlobalDefinition(GD);
596 }
597 
598 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
599   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
600 
601   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
602     EmitCXXConstructor(CD, GD.getCtorType());
603   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
604     EmitCXXDestructor(DD, GD.getDtorType());
605   else if (isa<FunctionDecl>(D))
606     EmitGlobalFunctionDefinition(GD);
607   else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
608     EmitGlobalVarDefinition(VD);
609   else {
610     assert(0 && "Invalid argument to EmitGlobalDefinition()");
611   }
612 }
613 
614 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
615 /// module, create and return an llvm Function with the specified type. If there
616 /// is something in the module with the specified name, return it potentially
617 /// bitcasted to the right type.
618 ///
619 /// If D is non-null, it specifies a decl that correspond to this.  This is used
620 /// to set the attributes on the function when it is first created.
621 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName,
622                                                        const llvm::Type *Ty,
623                                                        GlobalDecl D) {
624   // Lookup the entry, lazily creating it if necessary.
625   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
626   if (Entry) {
627     if (Entry->getType()->getElementType() == Ty)
628       return Entry;
629 
630     // Make sure the result is of the correct type.
631     const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
632     return llvm::ConstantExpr::getBitCast(Entry, PTy);
633   }
634 
635   // This is the first use or definition of a mangled name.  If there is a
636   // deferred decl with this name, remember that we need to emit it at the end
637   // of the file.
638   llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
639     DeferredDecls.find(MangledName);
640   if (DDI != DeferredDecls.end()) {
641     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
642     // list, and remove it from DeferredDecls (since we don't need it anymore).
643     DeferredDeclsToEmit.push_back(DDI->second);
644     DeferredDecls.erase(DDI);
645   } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) {
646     // If this the first reference to a C++ inline function in a class, queue up
647     // the deferred function body for emission.  These are not seen as
648     // top-level declarations.
649     if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD))
650       DeferredDeclsToEmit.push_back(D);
651     // A called constructor which has no definition or declaration need be
652     // synthesized.
653     else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
654       const CXXRecordDecl *ClassDecl =
655         cast<CXXRecordDecl>(CD->getDeclContext());
656       if (CD->isCopyConstructor(getContext()))
657         DeferredCopyConstructorToEmit(D);
658       else if (!ClassDecl->hasUserDeclaredConstructor())
659         DeferredDeclsToEmit.push_back(D);
660     }
661     else if (isa<CXXDestructorDecl>(FD))
662        DeferredDestructorToEmit(D);
663     else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
664            if (MD->isCopyAssignment())
665              DeferredCopyAssignmentToEmit(D);
666   }
667 
668   // This function doesn't have a complete type (for example, the return
669   // type is an incomplete struct). Use a fake type instead, and make
670   // sure not to try to set attributes.
671   bool IsIncompleteFunction = false;
672   if (!isa<llvm::FunctionType>(Ty)) {
673     Ty = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
674                                  std::vector<const llvm::Type*>(), false);
675     IsIncompleteFunction = true;
676   }
677   llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty),
678                                              llvm::Function::ExternalLinkage,
679                                              "", &getModule());
680   F->setName(MangledName);
681   if (D.getDecl())
682     SetFunctionAttributes(cast<FunctionDecl>(D.getDecl()), F,
683                           IsIncompleteFunction);
684   Entry = F;
685   return F;
686 }
687 
688 /// Defer definition of copy constructor(s) which need be implicitly defined.
689 void CodeGenModule::DeferredCopyConstructorToEmit(GlobalDecl CopyCtorDecl) {
690   const CXXConstructorDecl *CD =
691     cast<CXXConstructorDecl>(CopyCtorDecl.getDecl());
692   const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(CD->getDeclContext());
693   if (ClassDecl->hasTrivialCopyConstructor() ||
694       ClassDecl->hasUserDeclaredCopyConstructor())
695     return;
696 
697   // First make sure all direct base classes and virtual bases and non-static
698   // data mebers which need to have their copy constructors implicitly defined
699   // are defined. 12.8.p7
700   for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin();
701        Base != ClassDecl->bases_end(); ++Base) {
702     CXXRecordDecl *BaseClassDecl
703       = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
704     if (CXXConstructorDecl *BaseCopyCtor =
705         BaseClassDecl->getCopyConstructor(Context, 0))
706       GetAddrOfCXXConstructor(BaseCopyCtor, Ctor_Complete);
707   }
708 
709   for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
710        FieldEnd = ClassDecl->field_end();
711        Field != FieldEnd; ++Field) {
712     QualType FieldType = Context.getCanonicalType((*Field)->getType());
713     if (const ArrayType *Array = Context.getAsArrayType(FieldType))
714       FieldType = Array->getElementType();
715     if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
716       if ((*Field)->isAnonymousStructOrUnion())
717         continue;
718       CXXRecordDecl *FieldClassDecl
719         = cast<CXXRecordDecl>(FieldClassType->getDecl());
720       if (CXXConstructorDecl *FieldCopyCtor =
721           FieldClassDecl->getCopyConstructor(Context, 0))
722         GetAddrOfCXXConstructor(FieldCopyCtor, Ctor_Complete);
723     }
724   }
725   DeferredDeclsToEmit.push_back(CopyCtorDecl);
726 }
727 
728 /// Defer definition of copy assignments which need be implicitly defined.
729 void CodeGenModule::DeferredCopyAssignmentToEmit(GlobalDecl CopyAssignDecl) {
730   const CXXMethodDecl *CD = cast<CXXMethodDecl>(CopyAssignDecl.getDecl());
731   const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(CD->getDeclContext());
732 
733   if (ClassDecl->hasTrivialCopyAssignment() ||
734       ClassDecl->hasUserDeclaredCopyAssignment())
735     return;
736 
737   // First make sure all direct base classes and virtual bases and non-static
738   // data mebers which need to have their copy assignments implicitly defined
739   // are defined. 12.8.p12
740   for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin();
741        Base != ClassDecl->bases_end(); ++Base) {
742     CXXRecordDecl *BaseClassDecl
743       = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
744     const CXXMethodDecl *MD = 0;
745     if (!BaseClassDecl->hasTrivialCopyAssignment() &&
746         !BaseClassDecl->hasUserDeclaredCopyAssignment() &&
747         BaseClassDecl->hasConstCopyAssignment(getContext(), MD))
748       GetAddrOfFunction(MD, 0);
749   }
750 
751   for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
752        FieldEnd = ClassDecl->field_end();
753        Field != FieldEnd; ++Field) {
754     QualType FieldType = Context.getCanonicalType((*Field)->getType());
755     if (const ArrayType *Array = Context.getAsArrayType(FieldType))
756       FieldType = Array->getElementType();
757     if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
758       if ((*Field)->isAnonymousStructOrUnion())
759         continue;
760       CXXRecordDecl *FieldClassDecl
761         = cast<CXXRecordDecl>(FieldClassType->getDecl());
762       const CXXMethodDecl *MD = 0;
763       if (!FieldClassDecl->hasTrivialCopyAssignment() &&
764           !FieldClassDecl->hasUserDeclaredCopyAssignment() &&
765           FieldClassDecl->hasConstCopyAssignment(getContext(), MD))
766           GetAddrOfFunction(MD, 0);
767     }
768   }
769   DeferredDeclsToEmit.push_back(CopyAssignDecl);
770 }
771 
772 void CodeGenModule::DeferredDestructorToEmit(GlobalDecl DtorDecl) {
773   const CXXDestructorDecl *DD = cast<CXXDestructorDecl>(DtorDecl.getDecl());
774   const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(DD->getDeclContext());
775   if (ClassDecl->hasTrivialDestructor() ||
776       ClassDecl->hasUserDeclaredDestructor())
777     return;
778 
779   for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin();
780        Base != ClassDecl->bases_end(); ++Base) {
781     CXXRecordDecl *BaseClassDecl
782       = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
783     if (const CXXDestructorDecl *BaseDtor =
784           BaseClassDecl->getDestructor(Context))
785       GetAddrOfCXXDestructor(BaseDtor, Dtor_Complete);
786   }
787 
788   for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
789        FieldEnd = ClassDecl->field_end();
790        Field != FieldEnd; ++Field) {
791     QualType FieldType = Context.getCanonicalType((*Field)->getType());
792     if (const ArrayType *Array = Context.getAsArrayType(FieldType))
793       FieldType = Array->getElementType();
794     if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
795       if ((*Field)->isAnonymousStructOrUnion())
796         continue;
797       CXXRecordDecl *FieldClassDecl
798         = cast<CXXRecordDecl>(FieldClassType->getDecl());
799       if (const CXXDestructorDecl *FieldDtor =
800             FieldClassDecl->getDestructor(Context))
801         GetAddrOfCXXDestructor(FieldDtor, Dtor_Complete);
802     }
803   }
804   DeferredDeclsToEmit.push_back(DtorDecl);
805 }
806 
807 
808 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
809 /// non-null, then this function will use the specified type if it has to
810 /// create it (this occurs when we see a definition of the function).
811 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
812                                                  const llvm::Type *Ty) {
813   // If there was no specific requested type, just convert it now.
814   if (!Ty)
815     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
816   return GetOrCreateLLVMFunction(getMangledName(GD), Ty, GD);
817 }
818 
819 /// CreateRuntimeFunction - Create a new runtime function with the specified
820 /// type and name.
821 llvm::Constant *
822 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
823                                      const char *Name) {
824   // Convert Name to be a uniqued string from the IdentifierInfo table.
825   Name = getContext().Idents.get(Name).getName();
826   return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl());
827 }
828 
829 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
830 /// create and return an llvm GlobalVariable with the specified type.  If there
831 /// is something in the module with the specified name, return it potentially
832 /// bitcasted to the right type.
833 ///
834 /// If D is non-null, it specifies a decl that correspond to this.  This is used
835 /// to set the attributes on the global when it is first created.
836 llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName,
837                                                      const llvm::PointerType*Ty,
838                                                      const VarDecl *D) {
839   // Lookup the entry, lazily creating it if necessary.
840   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
841   if (Entry) {
842     if (Entry->getType() == Ty)
843       return Entry;
844 
845     // Make sure the result is of the correct type.
846     return llvm::ConstantExpr::getBitCast(Entry, Ty);
847   }
848 
849   // This is the first use or definition of a mangled name.  If there is a
850   // deferred decl with this name, remember that we need to emit it at the end
851   // of the file.
852   llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
853     DeferredDecls.find(MangledName);
854   if (DDI != DeferredDecls.end()) {
855     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
856     // list, and remove it from DeferredDecls (since we don't need it anymore).
857     DeferredDeclsToEmit.push_back(DDI->second);
858     DeferredDecls.erase(DDI);
859   }
860 
861   llvm::GlobalVariable *GV =
862     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
863                              llvm::GlobalValue::ExternalLinkage,
864                              0, "", 0,
865                              false, Ty->getAddressSpace());
866   GV->setName(MangledName);
867 
868   // Handle things which are present even on external declarations.
869   if (D) {
870     // FIXME: This code is overly simple and should be merged with other global
871     // handling.
872     GV->setConstant(D->getType().isConstant(Context));
873 
874     // FIXME: Merge with other attribute handling code.
875     if (D->getStorageClass() == VarDecl::PrivateExtern)
876       GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
877 
878     if (D->hasAttr<WeakAttr>() ||
879         D->hasAttr<WeakImportAttr>())
880       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
881 
882     GV->setThreadLocal(D->isThreadSpecified());
883   }
884 
885   return Entry = GV;
886 }
887 
888 
889 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
890 /// given global variable.  If Ty is non-null and if the global doesn't exist,
891 /// then it will be greated with the specified type instead of whatever the
892 /// normal requested type would be.
893 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
894                                                   const llvm::Type *Ty) {
895   assert(D->hasGlobalStorage() && "Not a global variable");
896   QualType ASTTy = D->getType();
897   if (Ty == 0)
898     Ty = getTypes().ConvertTypeForMem(ASTTy);
899 
900   const llvm::PointerType *PTy =
901     llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
902   return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D);
903 }
904 
905 /// CreateRuntimeVariable - Create a new runtime global variable with the
906 /// specified type and name.
907 llvm::Constant *
908 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
909                                      const char *Name) {
910   // Convert Name to be a uniqued string from the IdentifierInfo table.
911   Name = getContext().Idents.get(Name).getName();
912   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0);
913 }
914 
915 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
916   assert(!D->getInit() && "Cannot emit definite definitions here!");
917 
918   if (MayDeferGeneration(D)) {
919     // If we have not seen a reference to this variable yet, place it
920     // into the deferred declarations table to be emitted if needed
921     // later.
922     const char *MangledName = getMangledName(D);
923     if (GlobalDeclMap.count(MangledName) == 0) {
924       DeferredDecls[MangledName] = D;
925       return;
926     }
927   }
928 
929   // The tentative definition is the only definition.
930   EmitGlobalVarDefinition(D);
931 }
932 
933 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
934   llvm::Constant *Init = 0;
935   QualType ASTTy = D->getType();
936 
937   if (D->getInit() == 0) {
938     // This is a tentative definition; tentative definitions are
939     // implicitly initialized with { 0 }.
940     //
941     // Note that tentative definitions are only emitted at the end of
942     // a translation unit, so they should never have incomplete
943     // type. In addition, EmitTentativeDefinition makes sure that we
944     // never attempt to emit a tentative definition if a real one
945     // exists. A use may still exists, however, so we still may need
946     // to do a RAUW.
947     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
948     Init = EmitNullConstant(D->getType());
949   } else {
950     Init = EmitConstantExpr(D->getInit(), D->getType());
951 
952     if (!Init) {
953       QualType T = D->getInit()->getType();
954       if (getLangOptions().CPlusPlus) {
955         CXXGlobalInits.push_back(D);
956         Init = EmitNullConstant(T);
957       } else {
958         ErrorUnsupported(D, "static initializer");
959         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
960       }
961     }
962   }
963 
964   const llvm::Type* InitType = Init->getType();
965   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
966 
967   // Strip off a bitcast if we got one back.
968   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
969     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
970            // all zero index gep.
971            CE->getOpcode() == llvm::Instruction::GetElementPtr);
972     Entry = CE->getOperand(0);
973   }
974 
975   // Entry is now either a Function or GlobalVariable.
976   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
977 
978   // We have a definition after a declaration with the wrong type.
979   // We must make a new GlobalVariable* and update everything that used OldGV
980   // (a declaration or tentative definition) with the new GlobalVariable*
981   // (which will be a definition).
982   //
983   // This happens if there is a prototype for a global (e.g.
984   // "extern int x[];") and then a definition of a different type (e.g.
985   // "int x[10];"). This also happens when an initializer has a different type
986   // from the type of the global (this happens with unions).
987   if (GV == 0 ||
988       GV->getType()->getElementType() != InitType ||
989       GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) {
990 
991     // Remove the old entry from GlobalDeclMap so that we'll create a new one.
992     GlobalDeclMap.erase(getMangledName(D));
993 
994     // Make a new global with the correct type, this is now guaranteed to work.
995     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
996     GV->takeName(cast<llvm::GlobalValue>(Entry));
997 
998     // Replace all uses of the old global with the new global
999     llvm::Constant *NewPtrForOldDecl =
1000         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1001     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1002 
1003     // Erase the old global, since it is no longer used.
1004     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1005   }
1006 
1007   if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
1008     SourceManager &SM = Context.getSourceManager();
1009     AddAnnotation(EmitAnnotateAttr(GV, AA,
1010                               SM.getInstantiationLineNumber(D->getLocation())));
1011   }
1012 
1013   GV->setInitializer(Init);
1014 
1015   // If it is safe to mark the global 'constant', do so now.
1016   GV->setConstant(false);
1017   if (D->getType().isConstant(Context)) {
1018     // FIXME: In C++, if the variable has a non-trivial ctor/dtor or any mutable
1019     // members, it cannot be declared "LLVM const".
1020     GV->setConstant(true);
1021   }
1022 
1023   GV->setAlignment(getContext().getDeclAlignInBytes(D));
1024 
1025   // Set the llvm linkage type as appropriate.
1026   if (D->isInAnonymousNamespace())
1027     GV->setLinkage(llvm::Function::InternalLinkage);
1028   else if (D->getStorageClass() == VarDecl::Static)
1029     GV->setLinkage(llvm::Function::InternalLinkage);
1030   else if (D->hasAttr<DLLImportAttr>())
1031     GV->setLinkage(llvm::Function::DLLImportLinkage);
1032   else if (D->hasAttr<DLLExportAttr>())
1033     GV->setLinkage(llvm::Function::DLLExportLinkage);
1034   else if (D->hasAttr<WeakAttr>()) {
1035     if (GV->isConstant())
1036       GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage);
1037     else
1038       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
1039   } else if (!CompileOpts.NoCommon &&
1040            !D->hasExternalStorage() && !D->getInit() &&
1041            !D->getAttr<SectionAttr>()) {
1042     GV->setLinkage(llvm::GlobalVariable::CommonLinkage);
1043     // common vars aren't constant even if declared const.
1044     GV->setConstant(false);
1045   } else
1046     GV->setLinkage(llvm::GlobalVariable::ExternalLinkage);
1047 
1048   SetCommonAttributes(D, GV);
1049 
1050   // Emit global variable debug information.
1051   if (CGDebugInfo *DI = getDebugInfo()) {
1052     DI->setLocation(D->getLocation());
1053     DI->EmitGlobalVariable(GV, D);
1054   }
1055 }
1056 
1057 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1058 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
1059 /// existing call uses of the old function in the module, this adjusts them to
1060 /// call the new function directly.
1061 ///
1062 /// This is not just a cleanup: the always_inline pass requires direct calls to
1063 /// functions to be able to inline them.  If there is a bitcast in the way, it
1064 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
1065 /// run at -O0.
1066 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1067                                                       llvm::Function *NewFn) {
1068   // If we're redefining a global as a function, don't transform it.
1069   llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1070   if (OldFn == 0) return;
1071 
1072   const llvm::Type *NewRetTy = NewFn->getReturnType();
1073   llvm::SmallVector<llvm::Value*, 4> ArgList;
1074 
1075   for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1076        UI != E; ) {
1077     // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1078     unsigned OpNo = UI.getOperandNo();
1079     llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*UI++);
1080     if (!CI || OpNo != 0) continue;
1081 
1082     // If the return types don't match exactly, and if the call isn't dead, then
1083     // we can't transform this call.
1084     if (CI->getType() != NewRetTy && !CI->use_empty())
1085       continue;
1086 
1087     // If the function was passed too few arguments, don't transform.  If extra
1088     // arguments were passed, we silently drop them.  If any of the types
1089     // mismatch, we don't transform.
1090     unsigned ArgNo = 0;
1091     bool DontTransform = false;
1092     for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1093          E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1094       if (CI->getNumOperands()-1 == ArgNo ||
1095           CI->getOperand(ArgNo+1)->getType() != AI->getType()) {
1096         DontTransform = true;
1097         break;
1098       }
1099     }
1100     if (DontTransform)
1101       continue;
1102 
1103     // Okay, we can transform this.  Create the new call instruction and copy
1104     // over the required information.
1105     ArgList.append(CI->op_begin()+1, CI->op_begin()+1+ArgNo);
1106     llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
1107                                                      ArgList.end(), "", CI);
1108     ArgList.clear();
1109     if (!NewCall->getType()->isVoidTy())
1110       NewCall->takeName(CI);
1111     NewCall->setAttributes(CI->getAttributes());
1112     NewCall->setCallingConv(CI->getCallingConv());
1113 
1114     // Finally, remove the old call, replacing any uses with the new one.
1115     if (!CI->use_empty())
1116       CI->replaceAllUsesWith(NewCall);
1117     CI->eraseFromParent();
1118   }
1119 }
1120 
1121 
1122 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1123   const llvm::FunctionType *Ty;
1124   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1125 
1126   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
1127     bool isVariadic = D->getType()->getAs<FunctionProtoType>()->isVariadic();
1128 
1129     Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic);
1130   } else {
1131     Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType()));
1132 
1133     // As a special case, make sure that definitions of K&R function
1134     // "type foo()" aren't declared as varargs (which forces the backend
1135     // to do unnecessary work).
1136     if (D->getType()->isFunctionNoProtoType()) {
1137       assert(Ty->isVarArg() && "Didn't lower type as expected");
1138       // Due to stret, the lowered function could have arguments.
1139       // Just create the same type as was lowered by ConvertType
1140       // but strip off the varargs bit.
1141       std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end());
1142       Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false);
1143     }
1144   }
1145 
1146   // Get or create the prototype for the function.
1147   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1148 
1149   // Strip off a bitcast if we got one back.
1150   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1151     assert(CE->getOpcode() == llvm::Instruction::BitCast);
1152     Entry = CE->getOperand(0);
1153   }
1154 
1155 
1156   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1157     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1158 
1159     // If the types mismatch then we have to rewrite the definition.
1160     assert(OldFn->isDeclaration() &&
1161            "Shouldn't replace non-declaration");
1162 
1163     // F is the Function* for the one with the wrong type, we must make a new
1164     // Function* and update everything that used F (a declaration) with the new
1165     // Function* (which will be a definition).
1166     //
1167     // This happens if there is a prototype for a function
1168     // (e.g. "int f()") and then a definition of a different type
1169     // (e.g. "int f(int x)").  Start by making a new function of the
1170     // correct type, RAUW, then steal the name.
1171     GlobalDeclMap.erase(getMangledName(D));
1172     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1173     NewFn->takeName(OldFn);
1174 
1175     // If this is an implementation of a function without a prototype, try to
1176     // replace any existing uses of the function (which may be calls) with uses
1177     // of the new function
1178     if (D->getType()->isFunctionNoProtoType()) {
1179       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1180       OldFn->removeDeadConstantUsers();
1181     }
1182 
1183     // Replace uses of F with the Function we will endow with a body.
1184     if (!Entry->use_empty()) {
1185       llvm::Constant *NewPtrForOldDecl =
1186         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1187       Entry->replaceAllUsesWith(NewPtrForOldDecl);
1188     }
1189 
1190     // Ok, delete the old function now, which is dead.
1191     OldFn->eraseFromParent();
1192 
1193     Entry = NewFn;
1194   }
1195 
1196   llvm::Function *Fn = cast<llvm::Function>(Entry);
1197 
1198   CodeGenFunction(*this).GenerateCode(D, Fn);
1199 
1200   SetFunctionDefinitionAttributes(D, Fn);
1201   SetLLVMFunctionAttributesForDefinition(D, Fn);
1202 
1203   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1204     AddGlobalCtor(Fn, CA->getPriority());
1205   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1206     AddGlobalDtor(Fn, DA->getPriority());
1207 }
1208 
1209 void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) {
1210   const AliasAttr *AA = D->getAttr<AliasAttr>();
1211   assert(AA && "Not an alias?");
1212 
1213   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1214 
1215   // Unique the name through the identifier table.
1216   const char *AliaseeName = AA->getAliasee().c_str();
1217   AliaseeName = getContext().Idents.get(AliaseeName).getName();
1218 
1219   // Create a reference to the named value.  This ensures that it is emitted
1220   // if a deferred decl.
1221   llvm::Constant *Aliasee;
1222   if (isa<llvm::FunctionType>(DeclTy))
1223     Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, GlobalDecl());
1224   else
1225     Aliasee = GetOrCreateLLVMGlobal(AliaseeName,
1226                                     llvm::PointerType::getUnqual(DeclTy), 0);
1227 
1228   // Create the new alias itself, but don't set a name yet.
1229   llvm::GlobalValue *GA =
1230     new llvm::GlobalAlias(Aliasee->getType(),
1231                           llvm::Function::ExternalLinkage,
1232                           "", Aliasee, &getModule());
1233 
1234   // See if there is already something with the alias' name in the module.
1235   const char *MangledName = getMangledName(D);
1236   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
1237 
1238   if (Entry && !Entry->isDeclaration()) {
1239     // If there is a definition in the module, then it wins over the alias.
1240     // This is dubious, but allow it to be safe.  Just ignore the alias.
1241     GA->eraseFromParent();
1242     return;
1243   }
1244 
1245   if (Entry) {
1246     // If there is a declaration in the module, then we had an extern followed
1247     // by the alias, as in:
1248     //   extern int test6();
1249     //   ...
1250     //   int test6() __attribute__((alias("test7")));
1251     //
1252     // Remove it and replace uses of it with the alias.
1253 
1254     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1255                                                           Entry->getType()));
1256     Entry->eraseFromParent();
1257   }
1258 
1259   // Now we know that there is no conflict, set the name.
1260   Entry = GA;
1261   GA->setName(MangledName);
1262 
1263   // Set attributes which are particular to an alias; this is a
1264   // specialization of the attributes which may be set on a global
1265   // variable/function.
1266   if (D->hasAttr<DLLExportAttr>()) {
1267     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1268       // The dllexport attribute is ignored for undefined symbols.
1269       if (FD->getBody())
1270         GA->setLinkage(llvm::Function::DLLExportLinkage);
1271     } else {
1272       GA->setLinkage(llvm::Function::DLLExportLinkage);
1273     }
1274   } else if (D->hasAttr<WeakAttr>() ||
1275              D->hasAttr<WeakImportAttr>()) {
1276     GA->setLinkage(llvm::Function::WeakAnyLinkage);
1277   }
1278 
1279   SetCommonAttributes(D, GA);
1280 }
1281 
1282 /// getBuiltinLibFunction - Given a builtin id for a function like
1283 /// "__builtin_fabsf", return a Function* for "fabsf".
1284 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
1285                                                   unsigned BuiltinID) {
1286   assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
1287           Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
1288          "isn't a lib fn");
1289 
1290   // Get the name, skip over the __builtin_ prefix (if necessary).
1291   const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
1292   if (Context.BuiltinInfo.isLibFunction(BuiltinID))
1293     Name += 10;
1294 
1295   // Get the type for the builtin.
1296   ASTContext::GetBuiltinTypeError Error;
1297   QualType Type = Context.GetBuiltinType(BuiltinID, Error);
1298   assert(Error == ASTContext::GE_None && "Can't get builtin type");
1299 
1300   const llvm::FunctionType *Ty =
1301     cast<llvm::FunctionType>(getTypes().ConvertType(Type));
1302 
1303   // Unique the name through the identifier table.
1304   Name = getContext().Idents.get(Name).getName();
1305   return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD));
1306 }
1307 
1308 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
1309                                             unsigned NumTys) {
1310   return llvm::Intrinsic::getDeclaration(&getModule(),
1311                                          (llvm::Intrinsic::ID)IID, Tys, NumTys);
1312 }
1313 
1314 llvm::Function *CodeGenModule::getMemCpyFn() {
1315   if (MemCpyFn) return MemCpyFn;
1316   const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1317   return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1);
1318 }
1319 
1320 llvm::Function *CodeGenModule::getMemMoveFn() {
1321   if (MemMoveFn) return MemMoveFn;
1322   const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1323   return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1);
1324 }
1325 
1326 llvm::Function *CodeGenModule::getMemSetFn() {
1327   if (MemSetFn) return MemSetFn;
1328   const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1329   return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1);
1330 }
1331 
1332 static llvm::StringMapEntry<llvm::Constant*> &
1333 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1334                          const StringLiteral *Literal,
1335                          bool TargetIsLSB,
1336                          bool &IsUTF16,
1337                          unsigned &StringLength) {
1338   unsigned NumBytes = Literal->getByteLength();
1339 
1340   // Check for simple case.
1341   if (!Literal->containsNonAsciiOrNull()) {
1342     StringLength = NumBytes;
1343     return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1344                                                 StringLength));
1345   }
1346 
1347   // Otherwise, convert the UTF8 literals into a byte string.
1348   llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
1349   const UTF8 *FromPtr = (UTF8 *)Literal->getStrData();
1350   UTF16 *ToPtr = &ToBuf[0];
1351 
1352   ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1353                                                &ToPtr, ToPtr + NumBytes,
1354                                                strictConversion);
1355 
1356   // Check for conversion failure.
1357   if (Result != conversionOK) {
1358     // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove
1359     // this duplicate code.
1360     assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed");
1361     StringLength = NumBytes;
1362     return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1363                                                 StringLength));
1364   }
1365 
1366   // ConvertUTF8toUTF16 returns the length in ToPtr.
1367   StringLength = ToPtr - &ToBuf[0];
1368 
1369   // Render the UTF-16 string into a byte array and convert to the target byte
1370   // order.
1371   //
1372   // FIXME: This isn't something we should need to do here.
1373   llvm::SmallString<128> AsBytes;
1374   AsBytes.reserve(StringLength * 2);
1375   for (unsigned i = 0; i != StringLength; ++i) {
1376     unsigned short Val = ToBuf[i];
1377     if (TargetIsLSB) {
1378       AsBytes.push_back(Val & 0xFF);
1379       AsBytes.push_back(Val >> 8);
1380     } else {
1381       AsBytes.push_back(Val >> 8);
1382       AsBytes.push_back(Val & 0xFF);
1383     }
1384   }
1385   // Append one extra null character, the second is automatically added by our
1386   // caller.
1387   AsBytes.push_back(0);
1388 
1389   IsUTF16 = true;
1390   return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size()));
1391 }
1392 
1393 llvm::Constant *
1394 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1395   unsigned StringLength = 0;
1396   bool isUTF16 = false;
1397   llvm::StringMapEntry<llvm::Constant*> &Entry =
1398     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1399                              getTargetData().isLittleEndian(),
1400                              isUTF16, StringLength);
1401 
1402   if (llvm::Constant *C = Entry.getValue())
1403     return C;
1404 
1405   llvm::Constant *Zero =
1406       llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1407   llvm::Constant *Zeros[] = { Zero, Zero };
1408 
1409   // If we don't already have it, get __CFConstantStringClassReference.
1410   if (!CFConstantStringClassRef) {
1411     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1412     Ty = llvm::ArrayType::get(Ty, 0);
1413     llvm::Constant *GV = CreateRuntimeVariable(Ty,
1414                                            "__CFConstantStringClassReference");
1415     // Decay array -> ptr
1416     CFConstantStringClassRef =
1417       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1418   }
1419 
1420   QualType CFTy = getContext().getCFConstantStringType();
1421 
1422   const llvm::StructType *STy =
1423     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1424 
1425   std::vector<llvm::Constant*> Fields(4);
1426 
1427   // Class pointer.
1428   Fields[0] = CFConstantStringClassRef;
1429 
1430   // Flags.
1431   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1432   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
1433     llvm::ConstantInt::get(Ty, 0x07C8);
1434 
1435   // String pointer.
1436   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1437 
1438   const char *Sect, *Prefix;
1439   bool isConstant;
1440   llvm::GlobalValue::LinkageTypes Linkage;
1441   if (isUTF16) {
1442     Prefix = getContext().Target.getUnicodeStringSymbolPrefix();
1443     Sect = getContext().Target.getUnicodeStringSection();
1444     // FIXME: why do utf strings get "l" labels instead of "L" labels?
1445     Linkage = llvm::GlobalValue::InternalLinkage;
1446     // FIXME: Why does GCC not set constant here?
1447     isConstant = false;
1448   } else {
1449     Prefix = ".str";
1450     Sect = getContext().Target.getCFStringDataSection();
1451     Linkage = llvm::GlobalValue::PrivateLinkage;
1452     // FIXME: -fwritable-strings should probably affect this, but we
1453     // are following gcc here.
1454     isConstant = true;
1455   }
1456   llvm::GlobalVariable *GV =
1457     new llvm::GlobalVariable(getModule(), C->getType(), isConstant,
1458                              Linkage, C, Prefix);
1459   if (Sect)
1460     GV->setSection(Sect);
1461   if (isUTF16) {
1462     unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8;
1463     GV->setAlignment(Align);
1464   }
1465   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1466 
1467   // String length.
1468   Ty = getTypes().ConvertType(getContext().LongTy);
1469   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
1470 
1471   // The struct.
1472   C = llvm::ConstantStruct::get(STy, Fields);
1473   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1474                                 llvm::GlobalVariable::PrivateLinkage, C,
1475                                 "_unnamed_cfstring_");
1476   if (const char *Sect = getContext().Target.getCFStringSection())
1477     GV->setSection(Sect);
1478   Entry.setValue(GV);
1479 
1480   return GV;
1481 }
1482 
1483 /// GetStringForStringLiteral - Return the appropriate bytes for a
1484 /// string literal, properly padded to match the literal type.
1485 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1486   const char *StrData = E->getStrData();
1487   unsigned Len = E->getByteLength();
1488 
1489   const ConstantArrayType *CAT =
1490     getContext().getAsConstantArrayType(E->getType());
1491   assert(CAT && "String isn't pointer or array!");
1492 
1493   // Resize the string to the right size.
1494   std::string Str(StrData, StrData+Len);
1495   uint64_t RealLen = CAT->getSize().getZExtValue();
1496 
1497   if (E->isWide())
1498     RealLen *= getContext().Target.getWCharWidth()/8;
1499 
1500   Str.resize(RealLen, '\0');
1501 
1502   return Str;
1503 }
1504 
1505 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1506 /// constant array for the given string literal.
1507 llvm::Constant *
1508 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1509   // FIXME: This can be more efficient.
1510   return GetAddrOfConstantString(GetStringForStringLiteral(S));
1511 }
1512 
1513 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1514 /// array for the given ObjCEncodeExpr node.
1515 llvm::Constant *
1516 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1517   std::string Str;
1518   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1519 
1520   return GetAddrOfConstantCString(Str);
1521 }
1522 
1523 
1524 /// GenerateWritableString -- Creates storage for a string literal.
1525 static llvm::Constant *GenerateStringLiteral(const std::string &str,
1526                                              bool constant,
1527                                              CodeGenModule &CGM,
1528                                              const char *GlobalName) {
1529   // Create Constant for this string literal. Don't add a '\0'.
1530   llvm::Constant *C =
1531       llvm::ConstantArray::get(CGM.getLLVMContext(), str, false);
1532 
1533   // Create a global variable for this string
1534   return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
1535                                   llvm::GlobalValue::PrivateLinkage,
1536                                   C, GlobalName);
1537 }
1538 
1539 /// GetAddrOfConstantString - Returns a pointer to a character array
1540 /// containing the literal. This contents are exactly that of the
1541 /// given string, i.e. it will not be null terminated automatically;
1542 /// see GetAddrOfConstantCString. Note that whether the result is
1543 /// actually a pointer to an LLVM constant depends on
1544 /// Feature.WriteableStrings.
1545 ///
1546 /// The result has pointer to array type.
1547 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str,
1548                                                        const char *GlobalName) {
1549   bool IsConstant = !Features.WritableStrings;
1550 
1551   // Get the default prefix if a name wasn't specified.
1552   if (!GlobalName)
1553     GlobalName = ".str";
1554 
1555   // Don't share any string literals if strings aren't constant.
1556   if (!IsConstant)
1557     return GenerateStringLiteral(str, false, *this, GlobalName);
1558 
1559   llvm::StringMapEntry<llvm::Constant *> &Entry =
1560     ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1561 
1562   if (Entry.getValue())
1563     return Entry.getValue();
1564 
1565   // Create a global variable for this.
1566   llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName);
1567   Entry.setValue(C);
1568   return C;
1569 }
1570 
1571 /// GetAddrOfConstantCString - Returns a pointer to a character
1572 /// array containing the literal and a terminating '\-'
1573 /// character. The result has pointer to array type.
1574 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str,
1575                                                         const char *GlobalName){
1576   return GetAddrOfConstantString(str + '\0', GlobalName);
1577 }
1578 
1579 /// EmitObjCPropertyImplementations - Emit information for synthesized
1580 /// properties for an implementation.
1581 void CodeGenModule::EmitObjCPropertyImplementations(const
1582                                                     ObjCImplementationDecl *D) {
1583   for (ObjCImplementationDecl::propimpl_iterator
1584          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
1585     ObjCPropertyImplDecl *PID = *i;
1586 
1587     // Dynamic is just for type-checking.
1588     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1589       ObjCPropertyDecl *PD = PID->getPropertyDecl();
1590 
1591       // Determine which methods need to be implemented, some may have
1592       // been overridden. Note that ::isSynthesized is not the method
1593       // we want, that just indicates if the decl came from a
1594       // property. What we want to know is if the method is defined in
1595       // this implementation.
1596       if (!D->getInstanceMethod(PD->getGetterName()))
1597         CodeGenFunction(*this).GenerateObjCGetter(
1598                                  const_cast<ObjCImplementationDecl *>(D), PID);
1599       if (!PD->isReadOnly() &&
1600           !D->getInstanceMethod(PD->getSetterName()))
1601         CodeGenFunction(*this).GenerateObjCSetter(
1602                                  const_cast<ObjCImplementationDecl *>(D), PID);
1603     }
1604   }
1605 }
1606 
1607 /// EmitNamespace - Emit all declarations in a namespace.
1608 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
1609   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
1610        I != E; ++I)
1611     EmitTopLevelDecl(*I);
1612 }
1613 
1614 // EmitLinkageSpec - Emit all declarations in a linkage spec.
1615 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
1616   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
1617       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
1618     ErrorUnsupported(LSD, "linkage spec");
1619     return;
1620   }
1621 
1622   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
1623        I != E; ++I)
1624     EmitTopLevelDecl(*I);
1625 }
1626 
1627 /// EmitTopLevelDecl - Emit code for a single top level declaration.
1628 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
1629   // If an error has occurred, stop code generation, but continue
1630   // parsing and semantic analysis (to ensure all warnings and errors
1631   // are emitted).
1632   if (Diags.hasErrorOccurred())
1633     return;
1634 
1635   // Ignore dependent declarations.
1636   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
1637     return;
1638 
1639   switch (D->getKind()) {
1640   case Decl::CXXConversion:
1641   case Decl::CXXMethod:
1642   case Decl::Function:
1643     // Skip function templates
1644     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1645       return;
1646 
1647     EmitGlobal(cast<FunctionDecl>(D));
1648     break;
1649 
1650   case Decl::Var:
1651     EmitGlobal(cast<VarDecl>(D));
1652     break;
1653 
1654   // C++ Decls
1655   case Decl::Namespace:
1656     EmitNamespace(cast<NamespaceDecl>(D));
1657     break;
1658     // No code generation needed.
1659   case Decl::Using:
1660   case Decl::UsingDirective:
1661   case Decl::ClassTemplate:
1662   case Decl::FunctionTemplate:
1663   case Decl::NamespaceAlias:
1664     break;
1665   case Decl::CXXConstructor:
1666     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
1667     break;
1668   case Decl::CXXDestructor:
1669     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
1670     break;
1671 
1672   case Decl::StaticAssert:
1673     // Nothing to do.
1674     break;
1675 
1676   // Objective-C Decls
1677 
1678   // Forward declarations, no (immediate) code generation.
1679   case Decl::ObjCClass:
1680   case Decl::ObjCForwardProtocol:
1681   case Decl::ObjCCategory:
1682   case Decl::ObjCInterface:
1683     break;
1684 
1685   case Decl::ObjCProtocol:
1686     Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
1687     break;
1688 
1689   case Decl::ObjCCategoryImpl:
1690     // Categories have properties but don't support synthesize so we
1691     // can ignore them here.
1692     Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
1693     break;
1694 
1695   case Decl::ObjCImplementation: {
1696     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
1697     EmitObjCPropertyImplementations(OMD);
1698     Runtime->GenerateClass(OMD);
1699     break;
1700   }
1701   case Decl::ObjCMethod: {
1702     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
1703     // If this is not a prototype, emit the body.
1704     if (OMD->getBody())
1705       CodeGenFunction(*this).GenerateObjCMethod(OMD);
1706     break;
1707   }
1708   case Decl::ObjCCompatibleAlias:
1709     // compatibility-alias is a directive and has no code gen.
1710     break;
1711 
1712   case Decl::LinkageSpec:
1713     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
1714     break;
1715 
1716   case Decl::FileScopeAsm: {
1717     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
1718     std::string AsmString(AD->getAsmString()->getStrData(),
1719                           AD->getAsmString()->getByteLength());
1720 
1721     const std::string &S = getModule().getModuleInlineAsm();
1722     if (S.empty())
1723       getModule().setModuleInlineAsm(AsmString);
1724     else
1725       getModule().setModuleInlineAsm(S + '\n' + AsmString);
1726     break;
1727   }
1728 
1729   default:
1730     // Make sure we handled everything we should, every other kind is a
1731     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
1732     // function. Need to recode Decl::Kind to do that easily.
1733     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
1734   }
1735 }
1736