1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CGCall.h" 18 #include "CGObjCRuntime.h" 19 #include "Mangle.h" 20 #include "clang/Frontend/CompileOptions.h" 21 #include "clang/AST/ASTContext.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/AST/DeclCXX.h" 24 #include "clang/Basic/Builtins.h" 25 #include "clang/Basic/Diagnostic.h" 26 #include "clang/Basic/SourceManager.h" 27 #include "clang/Basic/TargetInfo.h" 28 #include "clang/Basic/ConvertUTF.h" 29 #include "llvm/CallingConv.h" 30 #include "llvm/Module.h" 31 #include "llvm/Intrinsics.h" 32 #include "llvm/Target/TargetData.h" 33 using namespace clang; 34 using namespace CodeGen; 35 36 37 CodeGenModule::CodeGenModule(ASTContext &C, const CompileOptions &compileOpts, 38 llvm::Module &M, const llvm::TargetData &TD, 39 Diagnostic &diags) 40 : BlockModule(C, M, TD, Types, *this), Context(C), 41 Features(C.getLangOptions()), CompileOpts(compileOpts), TheModule(M), 42 TheTargetData(TD), Diags(diags), Types(C, M, TD), MangleCtx(C), 43 VtableInfo(*this), Runtime(0), 44 MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0), 45 VMContext(M.getContext()) { 46 47 if (!Features.ObjC1) 48 Runtime = 0; 49 else if (!Features.NeXTRuntime) 50 Runtime = CreateGNUObjCRuntime(*this); 51 else if (Features.ObjCNonFragileABI) 52 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 53 else 54 Runtime = CreateMacObjCRuntime(*this); 55 56 // If debug info generation is enabled, create the CGDebugInfo object. 57 DebugInfo = CompileOpts.DebugInfo ? new CGDebugInfo(this) : 0; 58 } 59 60 CodeGenModule::~CodeGenModule() { 61 delete Runtime; 62 delete DebugInfo; 63 } 64 65 void CodeGenModule::Release() { 66 // We need to call this first because it can add deferred declarations. 67 EmitCXXGlobalInitFunc(); 68 69 EmitDeferred(); 70 if (Runtime) 71 if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction()) 72 AddGlobalCtor(ObjCInitFunction); 73 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 74 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 75 EmitAnnotations(); 76 EmitLLVMUsed(); 77 } 78 79 /// ErrorUnsupported - Print out an error that codegen doesn't support the 80 /// specified stmt yet. 81 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 82 bool OmitOnError) { 83 if (OmitOnError && getDiags().hasErrorOccurred()) 84 return; 85 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 86 "cannot compile this %0 yet"); 87 std::string Msg = Type; 88 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 89 << Msg << S->getSourceRange(); 90 } 91 92 /// ErrorUnsupported - Print out an error that codegen doesn't support the 93 /// specified decl yet. 94 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 95 bool OmitOnError) { 96 if (OmitOnError && getDiags().hasErrorOccurred()) 97 return; 98 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 99 "cannot compile this %0 yet"); 100 std::string Msg = Type; 101 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 102 } 103 104 LangOptions::VisibilityMode 105 CodeGenModule::getDeclVisibilityMode(const Decl *D) const { 106 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 107 if (VD->getStorageClass() == VarDecl::PrivateExtern) 108 return LangOptions::Hidden; 109 110 if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) { 111 switch (attr->getVisibility()) { 112 default: assert(0 && "Unknown visibility!"); 113 case VisibilityAttr::DefaultVisibility: 114 return LangOptions::Default; 115 case VisibilityAttr::HiddenVisibility: 116 return LangOptions::Hidden; 117 case VisibilityAttr::ProtectedVisibility: 118 return LangOptions::Protected; 119 } 120 } 121 122 return getLangOptions().getVisibilityMode(); 123 } 124 125 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 126 const Decl *D) const { 127 // Internal definitions always have default visibility. 128 if (GV->hasLocalLinkage()) { 129 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 130 return; 131 } 132 133 switch (getDeclVisibilityMode(D)) { 134 default: assert(0 && "Unknown visibility!"); 135 case LangOptions::Default: 136 return GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 137 case LangOptions::Hidden: 138 return GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 139 case LangOptions::Protected: 140 return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 141 } 142 } 143 144 const char *CodeGenModule::getMangledName(const GlobalDecl &GD) { 145 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 146 147 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 148 return getMangledCXXCtorName(D, GD.getCtorType()); 149 if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 150 return getMangledCXXDtorName(D, GD.getDtorType()); 151 152 return getMangledName(ND); 153 } 154 155 /// \brief Retrieves the mangled name for the given declaration. 156 /// 157 /// If the given declaration requires a mangled name, returns an 158 /// const char* containing the mangled name. Otherwise, returns 159 /// the unmangled name. 160 /// 161 const char *CodeGenModule::getMangledName(const NamedDecl *ND) { 162 // In C, functions with no attributes never need to be mangled. Fastpath them. 163 if (!getLangOptions().CPlusPlus && !ND->hasAttrs()) { 164 assert(ND->getIdentifier() && "Attempt to mangle unnamed decl."); 165 return ND->getNameAsCString(); 166 } 167 168 llvm::SmallString<256> Name; 169 llvm::raw_svector_ostream Out(Name); 170 if (!mangleName(getMangleContext(), ND, Out)) { 171 assert(ND->getIdentifier() && "Attempt to mangle unnamed decl."); 172 return ND->getNameAsCString(); 173 } 174 175 Name += '\0'; 176 return UniqueMangledName(Name.begin(), Name.end()); 177 } 178 179 const char *CodeGenModule::UniqueMangledName(const char *NameStart, 180 const char *NameEnd) { 181 assert(*(NameEnd - 1) == '\0' && "Mangled name must be null terminated!"); 182 183 return MangledNames.GetOrCreateValue(NameStart, NameEnd).getKeyData(); 184 } 185 186 /// AddGlobalCtor - Add a function to the list that will be called before 187 /// main() runs. 188 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 189 // FIXME: Type coercion of void()* types. 190 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 191 } 192 193 /// AddGlobalDtor - Add a function to the list that will be called 194 /// when the module is unloaded. 195 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 196 // FIXME: Type coercion of void()* types. 197 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 198 } 199 200 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 201 // Ctor function type is void()*. 202 llvm::FunctionType* CtorFTy = 203 llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), 204 std::vector<const llvm::Type*>(), 205 false); 206 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 207 208 // Get the type of a ctor entry, { i32, void ()* }. 209 llvm::StructType* CtorStructTy = 210 llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext), 211 llvm::PointerType::getUnqual(CtorFTy), NULL); 212 213 // Construct the constructor and destructor arrays. 214 std::vector<llvm::Constant*> Ctors; 215 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 216 std::vector<llvm::Constant*> S; 217 S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 218 I->second, false)); 219 S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)); 220 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 221 } 222 223 if (!Ctors.empty()) { 224 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 225 new llvm::GlobalVariable(TheModule, AT, false, 226 llvm::GlobalValue::AppendingLinkage, 227 llvm::ConstantArray::get(AT, Ctors), 228 GlobalName); 229 } 230 } 231 232 void CodeGenModule::EmitAnnotations() { 233 if (Annotations.empty()) 234 return; 235 236 // Create a new global variable for the ConstantStruct in the Module. 237 llvm::Constant *Array = 238 llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(), 239 Annotations.size()), 240 Annotations); 241 llvm::GlobalValue *gv = 242 new llvm::GlobalVariable(TheModule, Array->getType(), false, 243 llvm::GlobalValue::AppendingLinkage, Array, 244 "llvm.global.annotations"); 245 gv->setSection("llvm.metadata"); 246 } 247 248 static CodeGenModule::GVALinkage 249 GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD, 250 const LangOptions &Features) { 251 // Everything located semantically within an anonymous namespace is 252 // always internal. 253 if (FD->isInAnonymousNamespace()) 254 return CodeGenModule::GVA_Internal; 255 256 // The kind of external linkage this function will have, if it is not 257 // inline or static. 258 CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal; 259 if (Context.getLangOptions().CPlusPlus && 260 FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 261 External = CodeGenModule::GVA_TemplateInstantiation; 262 263 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 264 // C++ member functions defined inside the class are always inline. 265 if (MD->isInline() || !MD->isOutOfLine()) 266 return CodeGenModule::GVA_CXXInline; 267 268 return External; 269 } 270 271 // "static" functions get internal linkage. 272 if (FD->getStorageClass() == FunctionDecl::Static) 273 return CodeGenModule::GVA_Internal; 274 275 if (!FD->isInline()) 276 return External; 277 278 if (!Features.CPlusPlus || FD->hasAttr<GNUInlineAttr>()) { 279 // GNU or C99 inline semantics. Determine whether this symbol should be 280 // externally visible. 281 if (FD->isInlineDefinitionExternallyVisible()) 282 return External; 283 284 // C99 inline semantics, where the symbol is not externally visible. 285 return CodeGenModule::GVA_C99Inline; 286 } 287 288 // C++ inline semantics 289 assert(Features.CPlusPlus && "Must be in C++ mode"); 290 return CodeGenModule::GVA_CXXInline; 291 } 292 293 /// SetFunctionDefinitionAttributes - Set attributes for a global. 294 /// 295 /// FIXME: This is currently only done for aliases and functions, but not for 296 /// variables (these details are set in EmitGlobalVarDefinition for variables). 297 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 298 llvm::GlobalValue *GV) { 299 GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features); 300 301 if (Linkage == GVA_Internal) { 302 GV->setLinkage(llvm::Function::InternalLinkage); 303 } else if (D->hasAttr<DLLExportAttr>()) { 304 GV->setLinkage(llvm::Function::DLLExportLinkage); 305 } else if (D->hasAttr<WeakAttr>()) { 306 GV->setLinkage(llvm::Function::WeakAnyLinkage); 307 } else if (Linkage == GVA_C99Inline) { 308 // In C99 mode, 'inline' functions are guaranteed to have a strong 309 // definition somewhere else, so we can use available_externally linkage. 310 GV->setLinkage(llvm::Function::AvailableExternallyLinkage); 311 } else if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) { 312 // In C++, the compiler has to emit a definition in every translation unit 313 // that references the function. We should use linkonce_odr because 314 // a) if all references in this translation unit are optimized away, we 315 // don't need to codegen it. b) if the function persists, it needs to be 316 // merged with other definitions. c) C++ has the ODR, so we know the 317 // definition is dependable. 318 GV->setLinkage(llvm::Function::LinkOnceODRLinkage); 319 } else { 320 assert(Linkage == GVA_StrongExternal); 321 // Otherwise, we have strong external linkage. 322 GV->setLinkage(llvm::Function::ExternalLinkage); 323 } 324 325 SetCommonAttributes(D, GV); 326 } 327 328 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 329 const CGFunctionInfo &Info, 330 llvm::Function *F) { 331 unsigned CallingConv; 332 AttributeListType AttributeList; 333 ConstructAttributeList(Info, D, AttributeList, CallingConv); 334 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), 335 AttributeList.size())); 336 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 337 } 338 339 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 340 llvm::Function *F) { 341 if (!Features.Exceptions && !Features.ObjCNonFragileABI) 342 F->addFnAttr(llvm::Attribute::NoUnwind); 343 344 if (D->hasAttr<AlwaysInlineAttr>()) 345 F->addFnAttr(llvm::Attribute::AlwaysInline); 346 347 if (D->hasAttr<NoInlineAttr>()) 348 F->addFnAttr(llvm::Attribute::NoInline); 349 350 if (const AlignedAttr *AA = D->getAttr<AlignedAttr>()) 351 F->setAlignment(AA->getAlignment()/8); 352 // C++ ABI requires 2-byte alignment for member functions. 353 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 354 F->setAlignment(2); 355 } 356 357 void CodeGenModule::SetCommonAttributes(const Decl *D, 358 llvm::GlobalValue *GV) { 359 setGlobalVisibility(GV, D); 360 361 if (D->hasAttr<UsedAttr>()) 362 AddUsedGlobal(GV); 363 364 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 365 GV->setSection(SA->getName()); 366 } 367 368 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 369 llvm::Function *F, 370 const CGFunctionInfo &FI) { 371 SetLLVMFunctionAttributes(D, FI, F); 372 SetLLVMFunctionAttributesForDefinition(D, F); 373 374 F->setLinkage(llvm::Function::InternalLinkage); 375 376 SetCommonAttributes(D, F); 377 } 378 379 void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD, 380 llvm::Function *F, 381 bool IsIncompleteFunction) { 382 if (!IsIncompleteFunction) 383 SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F); 384 385 // Only a few attributes are set on declarations; these may later be 386 // overridden by a definition. 387 388 if (FD->hasAttr<DLLImportAttr>()) { 389 F->setLinkage(llvm::Function::DLLImportLinkage); 390 } else if (FD->hasAttr<WeakAttr>() || 391 FD->hasAttr<WeakImportAttr>()) { 392 // "extern_weak" is overloaded in LLVM; we probably should have 393 // separate linkage types for this. 394 F->setLinkage(llvm::Function::ExternalWeakLinkage); 395 } else { 396 F->setLinkage(llvm::Function::ExternalLinkage); 397 } 398 399 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 400 F->setSection(SA->getName()); 401 } 402 403 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 404 assert(!GV->isDeclaration() && 405 "Only globals with definition can force usage."); 406 LLVMUsed.push_back(GV); 407 } 408 409 void CodeGenModule::EmitLLVMUsed() { 410 // Don't create llvm.used if there is no need. 411 if (LLVMUsed.empty()) 412 return; 413 414 llvm::Type *i8PTy = 415 llvm::PointerType::getUnqual(llvm::Type::getInt8Ty(VMContext)); 416 417 // Convert LLVMUsed to what ConstantArray needs. 418 std::vector<llvm::Constant*> UsedArray; 419 UsedArray.resize(LLVMUsed.size()); 420 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 421 UsedArray[i] = 422 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), 423 i8PTy); 424 } 425 426 if (UsedArray.empty()) 427 return; 428 llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size()); 429 430 llvm::GlobalVariable *GV = 431 new llvm::GlobalVariable(getModule(), ATy, false, 432 llvm::GlobalValue::AppendingLinkage, 433 llvm::ConstantArray::get(ATy, UsedArray), 434 "llvm.used"); 435 436 GV->setSection("llvm.metadata"); 437 } 438 439 void CodeGenModule::EmitDeferred() { 440 // Emit code for any potentially referenced deferred decls. Since a 441 // previously unused static decl may become used during the generation of code 442 // for a static function, iterate until no changes are made. 443 while (!DeferredDeclsToEmit.empty()) { 444 GlobalDecl D = DeferredDeclsToEmit.back(); 445 DeferredDeclsToEmit.pop_back(); 446 447 // The mangled name for the decl must have been emitted in GlobalDeclMap. 448 // Look it up to see if it was defined with a stronger definition (e.g. an 449 // extern inline function with a strong function redefinition). If so, 450 // just ignore the deferred decl. 451 llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)]; 452 assert(CGRef && "Deferred decl wasn't referenced?"); 453 454 if (!CGRef->isDeclaration()) 455 continue; 456 457 // Otherwise, emit the definition and move on to the next one. 458 EmitGlobalDefinition(D); 459 } 460 } 461 462 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the 463 /// annotation information for a given GlobalValue. The annotation struct is 464 /// {i8 *, i8 *, i8 *, i32}. The first field is a constant expression, the 465 /// GlobalValue being annotated. The second field is the constant string 466 /// created from the AnnotateAttr's annotation. The third field is a constant 467 /// string containing the name of the translation unit. The fourth field is 468 /// the line number in the file of the annotated value declaration. 469 /// 470 /// FIXME: this does not unique the annotation string constants, as llvm-gcc 471 /// appears to. 472 /// 473 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 474 const AnnotateAttr *AA, 475 unsigned LineNo) { 476 llvm::Module *M = &getModule(); 477 478 // get [N x i8] constants for the annotation string, and the filename string 479 // which are the 2nd and 3rd elements of the global annotation structure. 480 const llvm::Type *SBP = 481 llvm::PointerType::getUnqual(llvm::Type::getInt8Ty(VMContext)); 482 llvm::Constant *anno = llvm::ConstantArray::get(VMContext, 483 AA->getAnnotation(), true); 484 llvm::Constant *unit = llvm::ConstantArray::get(VMContext, 485 M->getModuleIdentifier(), 486 true); 487 488 // Get the two global values corresponding to the ConstantArrays we just 489 // created to hold the bytes of the strings. 490 llvm::GlobalValue *annoGV = 491 new llvm::GlobalVariable(*M, anno->getType(), false, 492 llvm::GlobalValue::PrivateLinkage, anno, 493 GV->getName()); 494 // translation unit name string, emitted into the llvm.metadata section. 495 llvm::GlobalValue *unitGV = 496 new llvm::GlobalVariable(*M, unit->getType(), false, 497 llvm::GlobalValue::PrivateLinkage, unit, 498 ".str"); 499 500 // Create the ConstantStruct for the global annotation. 501 llvm::Constant *Fields[4] = { 502 llvm::ConstantExpr::getBitCast(GV, SBP), 503 llvm::ConstantExpr::getBitCast(annoGV, SBP), 504 llvm::ConstantExpr::getBitCast(unitGV, SBP), 505 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo) 506 }; 507 return llvm::ConstantStruct::get(VMContext, Fields, 4, false); 508 } 509 510 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 511 // Never defer when EmitAllDecls is specified or the decl has 512 // attribute used. 513 if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>()) 514 return false; 515 516 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 517 // Constructors and destructors should never be deferred. 518 if (FD->hasAttr<ConstructorAttr>() || 519 FD->hasAttr<DestructorAttr>()) 520 return false; 521 522 GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features); 523 524 // static, static inline, always_inline, and extern inline functions can 525 // always be deferred. Normal inline functions can be deferred in C99/C++. 526 if (Linkage == GVA_Internal || Linkage == GVA_C99Inline || 527 Linkage == GVA_CXXInline) 528 return true; 529 return false; 530 } 531 532 const VarDecl *VD = cast<VarDecl>(Global); 533 assert(VD->isFileVarDecl() && "Invalid decl"); 534 535 // We never want to defer structs that have non-trivial constructors or 536 // destructors. 537 538 // FIXME: Handle references. 539 if (const RecordType *RT = VD->getType()->getAs<RecordType>()) { 540 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 541 if (!RD->hasTrivialConstructor() || !RD->hasTrivialDestructor()) 542 return false; 543 } 544 } 545 546 return VD->getStorageClass() == VarDecl::Static; 547 } 548 549 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 550 const ValueDecl *Global = cast<ValueDecl>(GD.getDecl()); 551 552 // If this is an alias definition (which otherwise looks like a declaration) 553 // emit it now. 554 if (Global->hasAttr<AliasAttr>()) 555 return EmitAliasDefinition(Global); 556 557 // Ignore declarations, they will be emitted on their first use. 558 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 559 // Forward declarations are emitted lazily on first use. 560 if (!FD->isThisDeclarationADefinition()) 561 return; 562 } else { 563 const VarDecl *VD = cast<VarDecl>(Global); 564 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 565 566 // In C++, if this is marked "extern", defer code generation. 567 if (getLangOptions().CPlusPlus && !VD->getInit() && 568 (VD->getStorageClass() == VarDecl::Extern || 569 VD->isExternC())) 570 return; 571 572 // In C, if this isn't a definition, defer code generation. 573 if (!getLangOptions().CPlusPlus && !VD->getInit()) 574 return; 575 } 576 577 // Defer code generation when possible if this is a static definition, inline 578 // function etc. These we only want to emit if they are used. 579 if (MayDeferGeneration(Global)) { 580 // If the value has already been used, add it directly to the 581 // DeferredDeclsToEmit list. 582 const char *MangledName = getMangledName(GD); 583 if (GlobalDeclMap.count(MangledName)) 584 DeferredDeclsToEmit.push_back(GD); 585 else { 586 // Otherwise, remember that we saw a deferred decl with this name. The 587 // first use of the mangled name will cause it to move into 588 // DeferredDeclsToEmit. 589 DeferredDecls[MangledName] = GD; 590 } 591 return; 592 } 593 594 // Otherwise emit the definition. 595 EmitGlobalDefinition(GD); 596 } 597 598 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { 599 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 600 601 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) 602 EmitCXXConstructor(CD, GD.getCtorType()); 603 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) 604 EmitCXXDestructor(DD, GD.getDtorType()); 605 else if (isa<FunctionDecl>(D)) 606 EmitGlobalFunctionDefinition(GD); 607 else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 608 EmitGlobalVarDefinition(VD); 609 else { 610 assert(0 && "Invalid argument to EmitGlobalDefinition()"); 611 } 612 } 613 614 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 615 /// module, create and return an llvm Function with the specified type. If there 616 /// is something in the module with the specified name, return it potentially 617 /// bitcasted to the right type. 618 /// 619 /// If D is non-null, it specifies a decl that correspond to this. This is used 620 /// to set the attributes on the function when it is first created. 621 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName, 622 const llvm::Type *Ty, 623 GlobalDecl D) { 624 // Lookup the entry, lazily creating it if necessary. 625 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 626 if (Entry) { 627 if (Entry->getType()->getElementType() == Ty) 628 return Entry; 629 630 // Make sure the result is of the correct type. 631 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 632 return llvm::ConstantExpr::getBitCast(Entry, PTy); 633 } 634 635 // This is the first use or definition of a mangled name. If there is a 636 // deferred decl with this name, remember that we need to emit it at the end 637 // of the file. 638 llvm::DenseMap<const char*, GlobalDecl>::iterator DDI = 639 DeferredDecls.find(MangledName); 640 if (DDI != DeferredDecls.end()) { 641 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 642 // list, and remove it from DeferredDecls (since we don't need it anymore). 643 DeferredDeclsToEmit.push_back(DDI->second); 644 DeferredDecls.erase(DDI); 645 } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) { 646 // If this the first reference to a C++ inline function in a class, queue up 647 // the deferred function body for emission. These are not seen as 648 // top-level declarations. 649 if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD)) 650 DeferredDeclsToEmit.push_back(D); 651 // A called constructor which has no definition or declaration need be 652 // synthesized. 653 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) { 654 const CXXRecordDecl *ClassDecl = 655 cast<CXXRecordDecl>(CD->getDeclContext()); 656 if (CD->isCopyConstructor(getContext())) 657 DeferredCopyConstructorToEmit(D); 658 else if (!ClassDecl->hasUserDeclaredConstructor()) 659 DeferredDeclsToEmit.push_back(D); 660 } 661 else if (isa<CXXDestructorDecl>(FD)) 662 DeferredDestructorToEmit(D); 663 else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) 664 if (MD->isCopyAssignment()) 665 DeferredCopyAssignmentToEmit(D); 666 } 667 668 // This function doesn't have a complete type (for example, the return 669 // type is an incomplete struct). Use a fake type instead, and make 670 // sure not to try to set attributes. 671 bool IsIncompleteFunction = false; 672 if (!isa<llvm::FunctionType>(Ty)) { 673 Ty = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), 674 std::vector<const llvm::Type*>(), false); 675 IsIncompleteFunction = true; 676 } 677 llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty), 678 llvm::Function::ExternalLinkage, 679 "", &getModule()); 680 F->setName(MangledName); 681 if (D.getDecl()) 682 SetFunctionAttributes(cast<FunctionDecl>(D.getDecl()), F, 683 IsIncompleteFunction); 684 Entry = F; 685 return F; 686 } 687 688 /// Defer definition of copy constructor(s) which need be implicitly defined. 689 void CodeGenModule::DeferredCopyConstructorToEmit(GlobalDecl CopyCtorDecl) { 690 const CXXConstructorDecl *CD = 691 cast<CXXConstructorDecl>(CopyCtorDecl.getDecl()); 692 const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(CD->getDeclContext()); 693 if (ClassDecl->hasTrivialCopyConstructor() || 694 ClassDecl->hasUserDeclaredCopyConstructor()) 695 return; 696 697 // First make sure all direct base classes and virtual bases and non-static 698 // data mebers which need to have their copy constructors implicitly defined 699 // are defined. 12.8.p7 700 for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(); 701 Base != ClassDecl->bases_end(); ++Base) { 702 CXXRecordDecl *BaseClassDecl 703 = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl()); 704 if (CXXConstructorDecl *BaseCopyCtor = 705 BaseClassDecl->getCopyConstructor(Context, 0)) 706 GetAddrOfCXXConstructor(BaseCopyCtor, Ctor_Complete); 707 } 708 709 for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(), 710 FieldEnd = ClassDecl->field_end(); 711 Field != FieldEnd; ++Field) { 712 QualType FieldType = Context.getCanonicalType((*Field)->getType()); 713 if (const ArrayType *Array = Context.getAsArrayType(FieldType)) 714 FieldType = Array->getElementType(); 715 if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) { 716 if ((*Field)->isAnonymousStructOrUnion()) 717 continue; 718 CXXRecordDecl *FieldClassDecl 719 = cast<CXXRecordDecl>(FieldClassType->getDecl()); 720 if (CXXConstructorDecl *FieldCopyCtor = 721 FieldClassDecl->getCopyConstructor(Context, 0)) 722 GetAddrOfCXXConstructor(FieldCopyCtor, Ctor_Complete); 723 } 724 } 725 DeferredDeclsToEmit.push_back(CopyCtorDecl); 726 } 727 728 /// Defer definition of copy assignments which need be implicitly defined. 729 void CodeGenModule::DeferredCopyAssignmentToEmit(GlobalDecl CopyAssignDecl) { 730 const CXXMethodDecl *CD = cast<CXXMethodDecl>(CopyAssignDecl.getDecl()); 731 const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(CD->getDeclContext()); 732 733 if (ClassDecl->hasTrivialCopyAssignment() || 734 ClassDecl->hasUserDeclaredCopyAssignment()) 735 return; 736 737 // First make sure all direct base classes and virtual bases and non-static 738 // data mebers which need to have their copy assignments implicitly defined 739 // are defined. 12.8.p12 740 for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(); 741 Base != ClassDecl->bases_end(); ++Base) { 742 CXXRecordDecl *BaseClassDecl 743 = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl()); 744 const CXXMethodDecl *MD = 0; 745 if (!BaseClassDecl->hasTrivialCopyAssignment() && 746 !BaseClassDecl->hasUserDeclaredCopyAssignment() && 747 BaseClassDecl->hasConstCopyAssignment(getContext(), MD)) 748 GetAddrOfFunction(MD, 0); 749 } 750 751 for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(), 752 FieldEnd = ClassDecl->field_end(); 753 Field != FieldEnd; ++Field) { 754 QualType FieldType = Context.getCanonicalType((*Field)->getType()); 755 if (const ArrayType *Array = Context.getAsArrayType(FieldType)) 756 FieldType = Array->getElementType(); 757 if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) { 758 if ((*Field)->isAnonymousStructOrUnion()) 759 continue; 760 CXXRecordDecl *FieldClassDecl 761 = cast<CXXRecordDecl>(FieldClassType->getDecl()); 762 const CXXMethodDecl *MD = 0; 763 if (!FieldClassDecl->hasTrivialCopyAssignment() && 764 !FieldClassDecl->hasUserDeclaredCopyAssignment() && 765 FieldClassDecl->hasConstCopyAssignment(getContext(), MD)) 766 GetAddrOfFunction(MD, 0); 767 } 768 } 769 DeferredDeclsToEmit.push_back(CopyAssignDecl); 770 } 771 772 void CodeGenModule::DeferredDestructorToEmit(GlobalDecl DtorDecl) { 773 const CXXDestructorDecl *DD = cast<CXXDestructorDecl>(DtorDecl.getDecl()); 774 const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(DD->getDeclContext()); 775 if (ClassDecl->hasTrivialDestructor() || 776 ClassDecl->hasUserDeclaredDestructor()) 777 return; 778 779 for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(); 780 Base != ClassDecl->bases_end(); ++Base) { 781 CXXRecordDecl *BaseClassDecl 782 = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl()); 783 if (const CXXDestructorDecl *BaseDtor = 784 BaseClassDecl->getDestructor(Context)) 785 GetAddrOfCXXDestructor(BaseDtor, Dtor_Complete); 786 } 787 788 for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(), 789 FieldEnd = ClassDecl->field_end(); 790 Field != FieldEnd; ++Field) { 791 QualType FieldType = Context.getCanonicalType((*Field)->getType()); 792 if (const ArrayType *Array = Context.getAsArrayType(FieldType)) 793 FieldType = Array->getElementType(); 794 if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) { 795 if ((*Field)->isAnonymousStructOrUnion()) 796 continue; 797 CXXRecordDecl *FieldClassDecl 798 = cast<CXXRecordDecl>(FieldClassType->getDecl()); 799 if (const CXXDestructorDecl *FieldDtor = 800 FieldClassDecl->getDestructor(Context)) 801 GetAddrOfCXXDestructor(FieldDtor, Dtor_Complete); 802 } 803 } 804 DeferredDeclsToEmit.push_back(DtorDecl); 805 } 806 807 808 /// GetAddrOfFunction - Return the address of the given function. If Ty is 809 /// non-null, then this function will use the specified type if it has to 810 /// create it (this occurs when we see a definition of the function). 811 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 812 const llvm::Type *Ty) { 813 // If there was no specific requested type, just convert it now. 814 if (!Ty) 815 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 816 return GetOrCreateLLVMFunction(getMangledName(GD), Ty, GD); 817 } 818 819 /// CreateRuntimeFunction - Create a new runtime function with the specified 820 /// type and name. 821 llvm::Constant * 822 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy, 823 const char *Name) { 824 // Convert Name to be a uniqued string from the IdentifierInfo table. 825 Name = getContext().Idents.get(Name).getName(); 826 return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl()); 827 } 828 829 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 830 /// create and return an llvm GlobalVariable with the specified type. If there 831 /// is something in the module with the specified name, return it potentially 832 /// bitcasted to the right type. 833 /// 834 /// If D is non-null, it specifies a decl that correspond to this. This is used 835 /// to set the attributes on the global when it is first created. 836 llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName, 837 const llvm::PointerType*Ty, 838 const VarDecl *D) { 839 // Lookup the entry, lazily creating it if necessary. 840 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 841 if (Entry) { 842 if (Entry->getType() == Ty) 843 return Entry; 844 845 // Make sure the result is of the correct type. 846 return llvm::ConstantExpr::getBitCast(Entry, Ty); 847 } 848 849 // This is the first use or definition of a mangled name. If there is a 850 // deferred decl with this name, remember that we need to emit it at the end 851 // of the file. 852 llvm::DenseMap<const char*, GlobalDecl>::iterator DDI = 853 DeferredDecls.find(MangledName); 854 if (DDI != DeferredDecls.end()) { 855 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 856 // list, and remove it from DeferredDecls (since we don't need it anymore). 857 DeferredDeclsToEmit.push_back(DDI->second); 858 DeferredDecls.erase(DDI); 859 } 860 861 llvm::GlobalVariable *GV = 862 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 863 llvm::GlobalValue::ExternalLinkage, 864 0, "", 0, 865 false, Ty->getAddressSpace()); 866 GV->setName(MangledName); 867 868 // Handle things which are present even on external declarations. 869 if (D) { 870 // FIXME: This code is overly simple and should be merged with other global 871 // handling. 872 GV->setConstant(D->getType().isConstant(Context)); 873 874 // FIXME: Merge with other attribute handling code. 875 if (D->getStorageClass() == VarDecl::PrivateExtern) 876 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 877 878 if (D->hasAttr<WeakAttr>() || 879 D->hasAttr<WeakImportAttr>()) 880 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 881 882 GV->setThreadLocal(D->isThreadSpecified()); 883 } 884 885 return Entry = GV; 886 } 887 888 889 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 890 /// given global variable. If Ty is non-null and if the global doesn't exist, 891 /// then it will be greated with the specified type instead of whatever the 892 /// normal requested type would be. 893 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 894 const llvm::Type *Ty) { 895 assert(D->hasGlobalStorage() && "Not a global variable"); 896 QualType ASTTy = D->getType(); 897 if (Ty == 0) 898 Ty = getTypes().ConvertTypeForMem(ASTTy); 899 900 const llvm::PointerType *PTy = 901 llvm::PointerType::get(Ty, ASTTy.getAddressSpace()); 902 return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D); 903 } 904 905 /// CreateRuntimeVariable - Create a new runtime global variable with the 906 /// specified type and name. 907 llvm::Constant * 908 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty, 909 const char *Name) { 910 // Convert Name to be a uniqued string from the IdentifierInfo table. 911 Name = getContext().Idents.get(Name).getName(); 912 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0); 913 } 914 915 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 916 assert(!D->getInit() && "Cannot emit definite definitions here!"); 917 918 if (MayDeferGeneration(D)) { 919 // If we have not seen a reference to this variable yet, place it 920 // into the deferred declarations table to be emitted if needed 921 // later. 922 const char *MangledName = getMangledName(D); 923 if (GlobalDeclMap.count(MangledName) == 0) { 924 DeferredDecls[MangledName] = D; 925 return; 926 } 927 } 928 929 // The tentative definition is the only definition. 930 EmitGlobalVarDefinition(D); 931 } 932 933 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 934 llvm::Constant *Init = 0; 935 QualType ASTTy = D->getType(); 936 937 if (D->getInit() == 0) { 938 // This is a tentative definition; tentative definitions are 939 // implicitly initialized with { 0 }. 940 // 941 // Note that tentative definitions are only emitted at the end of 942 // a translation unit, so they should never have incomplete 943 // type. In addition, EmitTentativeDefinition makes sure that we 944 // never attempt to emit a tentative definition if a real one 945 // exists. A use may still exists, however, so we still may need 946 // to do a RAUW. 947 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 948 Init = EmitNullConstant(D->getType()); 949 } else { 950 Init = EmitConstantExpr(D->getInit(), D->getType()); 951 952 if (!Init) { 953 QualType T = D->getInit()->getType(); 954 if (getLangOptions().CPlusPlus) { 955 CXXGlobalInits.push_back(D); 956 Init = EmitNullConstant(T); 957 } else { 958 ErrorUnsupported(D, "static initializer"); 959 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 960 } 961 } 962 } 963 964 const llvm::Type* InitType = Init->getType(); 965 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 966 967 // Strip off a bitcast if we got one back. 968 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 969 assert(CE->getOpcode() == llvm::Instruction::BitCast || 970 // all zero index gep. 971 CE->getOpcode() == llvm::Instruction::GetElementPtr); 972 Entry = CE->getOperand(0); 973 } 974 975 // Entry is now either a Function or GlobalVariable. 976 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 977 978 // We have a definition after a declaration with the wrong type. 979 // We must make a new GlobalVariable* and update everything that used OldGV 980 // (a declaration or tentative definition) with the new GlobalVariable* 981 // (which will be a definition). 982 // 983 // This happens if there is a prototype for a global (e.g. 984 // "extern int x[];") and then a definition of a different type (e.g. 985 // "int x[10];"). This also happens when an initializer has a different type 986 // from the type of the global (this happens with unions). 987 if (GV == 0 || 988 GV->getType()->getElementType() != InitType || 989 GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) { 990 991 // Remove the old entry from GlobalDeclMap so that we'll create a new one. 992 GlobalDeclMap.erase(getMangledName(D)); 993 994 // Make a new global with the correct type, this is now guaranteed to work. 995 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 996 GV->takeName(cast<llvm::GlobalValue>(Entry)); 997 998 // Replace all uses of the old global with the new global 999 llvm::Constant *NewPtrForOldDecl = 1000 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 1001 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1002 1003 // Erase the old global, since it is no longer used. 1004 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 1005 } 1006 1007 if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) { 1008 SourceManager &SM = Context.getSourceManager(); 1009 AddAnnotation(EmitAnnotateAttr(GV, AA, 1010 SM.getInstantiationLineNumber(D->getLocation()))); 1011 } 1012 1013 GV->setInitializer(Init); 1014 1015 // If it is safe to mark the global 'constant', do so now. 1016 GV->setConstant(false); 1017 if (D->getType().isConstant(Context)) { 1018 // FIXME: In C++, if the variable has a non-trivial ctor/dtor or any mutable 1019 // members, it cannot be declared "LLVM const". 1020 GV->setConstant(true); 1021 } 1022 1023 GV->setAlignment(getContext().getDeclAlignInBytes(D)); 1024 1025 // Set the llvm linkage type as appropriate. 1026 if (D->isInAnonymousNamespace()) 1027 GV->setLinkage(llvm::Function::InternalLinkage); 1028 else if (D->getStorageClass() == VarDecl::Static) 1029 GV->setLinkage(llvm::Function::InternalLinkage); 1030 else if (D->hasAttr<DLLImportAttr>()) 1031 GV->setLinkage(llvm::Function::DLLImportLinkage); 1032 else if (D->hasAttr<DLLExportAttr>()) 1033 GV->setLinkage(llvm::Function::DLLExportLinkage); 1034 else if (D->hasAttr<WeakAttr>()) { 1035 if (GV->isConstant()) 1036 GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage); 1037 else 1038 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 1039 } else if (!CompileOpts.NoCommon && 1040 !D->hasExternalStorage() && !D->getInit() && 1041 !D->getAttr<SectionAttr>()) { 1042 GV->setLinkage(llvm::GlobalVariable::CommonLinkage); 1043 // common vars aren't constant even if declared const. 1044 GV->setConstant(false); 1045 } else 1046 GV->setLinkage(llvm::GlobalVariable::ExternalLinkage); 1047 1048 SetCommonAttributes(D, GV); 1049 1050 // Emit global variable debug information. 1051 if (CGDebugInfo *DI = getDebugInfo()) { 1052 DI->setLocation(D->getLocation()); 1053 DI->EmitGlobalVariable(GV, D); 1054 } 1055 } 1056 1057 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 1058 /// implement a function with no prototype, e.g. "int foo() {}". If there are 1059 /// existing call uses of the old function in the module, this adjusts them to 1060 /// call the new function directly. 1061 /// 1062 /// This is not just a cleanup: the always_inline pass requires direct calls to 1063 /// functions to be able to inline them. If there is a bitcast in the way, it 1064 /// won't inline them. Instcombine normally deletes these calls, but it isn't 1065 /// run at -O0. 1066 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1067 llvm::Function *NewFn) { 1068 // If we're redefining a global as a function, don't transform it. 1069 llvm::Function *OldFn = dyn_cast<llvm::Function>(Old); 1070 if (OldFn == 0) return; 1071 1072 const llvm::Type *NewRetTy = NewFn->getReturnType(); 1073 llvm::SmallVector<llvm::Value*, 4> ArgList; 1074 1075 for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end(); 1076 UI != E; ) { 1077 // TODO: Do invokes ever occur in C code? If so, we should handle them too. 1078 unsigned OpNo = UI.getOperandNo(); 1079 llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*UI++); 1080 if (!CI || OpNo != 0) continue; 1081 1082 // If the return types don't match exactly, and if the call isn't dead, then 1083 // we can't transform this call. 1084 if (CI->getType() != NewRetTy && !CI->use_empty()) 1085 continue; 1086 1087 // If the function was passed too few arguments, don't transform. If extra 1088 // arguments were passed, we silently drop them. If any of the types 1089 // mismatch, we don't transform. 1090 unsigned ArgNo = 0; 1091 bool DontTransform = false; 1092 for (llvm::Function::arg_iterator AI = NewFn->arg_begin(), 1093 E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) { 1094 if (CI->getNumOperands()-1 == ArgNo || 1095 CI->getOperand(ArgNo+1)->getType() != AI->getType()) { 1096 DontTransform = true; 1097 break; 1098 } 1099 } 1100 if (DontTransform) 1101 continue; 1102 1103 // Okay, we can transform this. Create the new call instruction and copy 1104 // over the required information. 1105 ArgList.append(CI->op_begin()+1, CI->op_begin()+1+ArgNo); 1106 llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(), 1107 ArgList.end(), "", CI); 1108 ArgList.clear(); 1109 if (!NewCall->getType()->isVoidTy()) 1110 NewCall->takeName(CI); 1111 NewCall->setAttributes(CI->getAttributes()); 1112 NewCall->setCallingConv(CI->getCallingConv()); 1113 1114 // Finally, remove the old call, replacing any uses with the new one. 1115 if (!CI->use_empty()) 1116 CI->replaceAllUsesWith(NewCall); 1117 CI->eraseFromParent(); 1118 } 1119 } 1120 1121 1122 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { 1123 const llvm::FunctionType *Ty; 1124 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 1125 1126 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) { 1127 bool isVariadic = D->getType()->getAs<FunctionProtoType>()->isVariadic(); 1128 1129 Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic); 1130 } else { 1131 Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType())); 1132 1133 // As a special case, make sure that definitions of K&R function 1134 // "type foo()" aren't declared as varargs (which forces the backend 1135 // to do unnecessary work). 1136 if (D->getType()->isFunctionNoProtoType()) { 1137 assert(Ty->isVarArg() && "Didn't lower type as expected"); 1138 // Due to stret, the lowered function could have arguments. 1139 // Just create the same type as was lowered by ConvertType 1140 // but strip off the varargs bit. 1141 std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end()); 1142 Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false); 1143 } 1144 } 1145 1146 // Get or create the prototype for the function. 1147 llvm::Constant *Entry = GetAddrOfFunction(GD, Ty); 1148 1149 // Strip off a bitcast if we got one back. 1150 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1151 assert(CE->getOpcode() == llvm::Instruction::BitCast); 1152 Entry = CE->getOperand(0); 1153 } 1154 1155 1156 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 1157 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 1158 1159 // If the types mismatch then we have to rewrite the definition. 1160 assert(OldFn->isDeclaration() && 1161 "Shouldn't replace non-declaration"); 1162 1163 // F is the Function* for the one with the wrong type, we must make a new 1164 // Function* and update everything that used F (a declaration) with the new 1165 // Function* (which will be a definition). 1166 // 1167 // This happens if there is a prototype for a function 1168 // (e.g. "int f()") and then a definition of a different type 1169 // (e.g. "int f(int x)"). Start by making a new function of the 1170 // correct type, RAUW, then steal the name. 1171 GlobalDeclMap.erase(getMangledName(D)); 1172 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 1173 NewFn->takeName(OldFn); 1174 1175 // If this is an implementation of a function without a prototype, try to 1176 // replace any existing uses of the function (which may be calls) with uses 1177 // of the new function 1178 if (D->getType()->isFunctionNoProtoType()) { 1179 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 1180 OldFn->removeDeadConstantUsers(); 1181 } 1182 1183 // Replace uses of F with the Function we will endow with a body. 1184 if (!Entry->use_empty()) { 1185 llvm::Constant *NewPtrForOldDecl = 1186 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 1187 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1188 } 1189 1190 // Ok, delete the old function now, which is dead. 1191 OldFn->eraseFromParent(); 1192 1193 Entry = NewFn; 1194 } 1195 1196 llvm::Function *Fn = cast<llvm::Function>(Entry); 1197 1198 CodeGenFunction(*this).GenerateCode(D, Fn); 1199 1200 SetFunctionDefinitionAttributes(D, Fn); 1201 SetLLVMFunctionAttributesForDefinition(D, Fn); 1202 1203 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 1204 AddGlobalCtor(Fn, CA->getPriority()); 1205 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 1206 AddGlobalDtor(Fn, DA->getPriority()); 1207 } 1208 1209 void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) { 1210 const AliasAttr *AA = D->getAttr<AliasAttr>(); 1211 assert(AA && "Not an alias?"); 1212 1213 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 1214 1215 // Unique the name through the identifier table. 1216 const char *AliaseeName = AA->getAliasee().c_str(); 1217 AliaseeName = getContext().Idents.get(AliaseeName).getName(); 1218 1219 // Create a reference to the named value. This ensures that it is emitted 1220 // if a deferred decl. 1221 llvm::Constant *Aliasee; 1222 if (isa<llvm::FunctionType>(DeclTy)) 1223 Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, GlobalDecl()); 1224 else 1225 Aliasee = GetOrCreateLLVMGlobal(AliaseeName, 1226 llvm::PointerType::getUnqual(DeclTy), 0); 1227 1228 // Create the new alias itself, but don't set a name yet. 1229 llvm::GlobalValue *GA = 1230 new llvm::GlobalAlias(Aliasee->getType(), 1231 llvm::Function::ExternalLinkage, 1232 "", Aliasee, &getModule()); 1233 1234 // See if there is already something with the alias' name in the module. 1235 const char *MangledName = getMangledName(D); 1236 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 1237 1238 if (Entry && !Entry->isDeclaration()) { 1239 // If there is a definition in the module, then it wins over the alias. 1240 // This is dubious, but allow it to be safe. Just ignore the alias. 1241 GA->eraseFromParent(); 1242 return; 1243 } 1244 1245 if (Entry) { 1246 // If there is a declaration in the module, then we had an extern followed 1247 // by the alias, as in: 1248 // extern int test6(); 1249 // ... 1250 // int test6() __attribute__((alias("test7"))); 1251 // 1252 // Remove it and replace uses of it with the alias. 1253 1254 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 1255 Entry->getType())); 1256 Entry->eraseFromParent(); 1257 } 1258 1259 // Now we know that there is no conflict, set the name. 1260 Entry = GA; 1261 GA->setName(MangledName); 1262 1263 // Set attributes which are particular to an alias; this is a 1264 // specialization of the attributes which may be set on a global 1265 // variable/function. 1266 if (D->hasAttr<DLLExportAttr>()) { 1267 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1268 // The dllexport attribute is ignored for undefined symbols. 1269 if (FD->getBody()) 1270 GA->setLinkage(llvm::Function::DLLExportLinkage); 1271 } else { 1272 GA->setLinkage(llvm::Function::DLLExportLinkage); 1273 } 1274 } else if (D->hasAttr<WeakAttr>() || 1275 D->hasAttr<WeakImportAttr>()) { 1276 GA->setLinkage(llvm::Function::WeakAnyLinkage); 1277 } 1278 1279 SetCommonAttributes(D, GA); 1280 } 1281 1282 /// getBuiltinLibFunction - Given a builtin id for a function like 1283 /// "__builtin_fabsf", return a Function* for "fabsf". 1284 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD, 1285 unsigned BuiltinID) { 1286 assert((Context.BuiltinInfo.isLibFunction(BuiltinID) || 1287 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) && 1288 "isn't a lib fn"); 1289 1290 // Get the name, skip over the __builtin_ prefix (if necessary). 1291 const char *Name = Context.BuiltinInfo.GetName(BuiltinID); 1292 if (Context.BuiltinInfo.isLibFunction(BuiltinID)) 1293 Name += 10; 1294 1295 // Get the type for the builtin. 1296 ASTContext::GetBuiltinTypeError Error; 1297 QualType Type = Context.GetBuiltinType(BuiltinID, Error); 1298 assert(Error == ASTContext::GE_None && "Can't get builtin type"); 1299 1300 const llvm::FunctionType *Ty = 1301 cast<llvm::FunctionType>(getTypes().ConvertType(Type)); 1302 1303 // Unique the name through the identifier table. 1304 Name = getContext().Idents.get(Name).getName(); 1305 return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD)); 1306 } 1307 1308 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys, 1309 unsigned NumTys) { 1310 return llvm::Intrinsic::getDeclaration(&getModule(), 1311 (llvm::Intrinsic::ID)IID, Tys, NumTys); 1312 } 1313 1314 llvm::Function *CodeGenModule::getMemCpyFn() { 1315 if (MemCpyFn) return MemCpyFn; 1316 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext); 1317 return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1); 1318 } 1319 1320 llvm::Function *CodeGenModule::getMemMoveFn() { 1321 if (MemMoveFn) return MemMoveFn; 1322 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext); 1323 return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1); 1324 } 1325 1326 llvm::Function *CodeGenModule::getMemSetFn() { 1327 if (MemSetFn) return MemSetFn; 1328 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext); 1329 return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1); 1330 } 1331 1332 static llvm::StringMapEntry<llvm::Constant*> & 1333 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1334 const StringLiteral *Literal, 1335 bool TargetIsLSB, 1336 bool &IsUTF16, 1337 unsigned &StringLength) { 1338 unsigned NumBytes = Literal->getByteLength(); 1339 1340 // Check for simple case. 1341 if (!Literal->containsNonAsciiOrNull()) { 1342 StringLength = NumBytes; 1343 return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(), 1344 StringLength)); 1345 } 1346 1347 // Otherwise, convert the UTF8 literals into a byte string. 1348 llvm::SmallVector<UTF16, 128> ToBuf(NumBytes); 1349 const UTF8 *FromPtr = (UTF8 *)Literal->getStrData(); 1350 UTF16 *ToPtr = &ToBuf[0]; 1351 1352 ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 1353 &ToPtr, ToPtr + NumBytes, 1354 strictConversion); 1355 1356 // Check for conversion failure. 1357 if (Result != conversionOK) { 1358 // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove 1359 // this duplicate code. 1360 assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed"); 1361 StringLength = NumBytes; 1362 return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(), 1363 StringLength)); 1364 } 1365 1366 // ConvertUTF8toUTF16 returns the length in ToPtr. 1367 StringLength = ToPtr - &ToBuf[0]; 1368 1369 // Render the UTF-16 string into a byte array and convert to the target byte 1370 // order. 1371 // 1372 // FIXME: This isn't something we should need to do here. 1373 llvm::SmallString<128> AsBytes; 1374 AsBytes.reserve(StringLength * 2); 1375 for (unsigned i = 0; i != StringLength; ++i) { 1376 unsigned short Val = ToBuf[i]; 1377 if (TargetIsLSB) { 1378 AsBytes.push_back(Val & 0xFF); 1379 AsBytes.push_back(Val >> 8); 1380 } else { 1381 AsBytes.push_back(Val >> 8); 1382 AsBytes.push_back(Val & 0xFF); 1383 } 1384 } 1385 // Append one extra null character, the second is automatically added by our 1386 // caller. 1387 AsBytes.push_back(0); 1388 1389 IsUTF16 = true; 1390 return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size())); 1391 } 1392 1393 llvm::Constant * 1394 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 1395 unsigned StringLength = 0; 1396 bool isUTF16 = false; 1397 llvm::StringMapEntry<llvm::Constant*> &Entry = 1398 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1399 getTargetData().isLittleEndian(), 1400 isUTF16, StringLength); 1401 1402 if (llvm::Constant *C = Entry.getValue()) 1403 return C; 1404 1405 llvm::Constant *Zero = 1406 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1407 llvm::Constant *Zeros[] = { Zero, Zero }; 1408 1409 // If we don't already have it, get __CFConstantStringClassReference. 1410 if (!CFConstantStringClassRef) { 1411 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1412 Ty = llvm::ArrayType::get(Ty, 0); 1413 llvm::Constant *GV = CreateRuntimeVariable(Ty, 1414 "__CFConstantStringClassReference"); 1415 // Decay array -> ptr 1416 CFConstantStringClassRef = 1417 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1418 } 1419 1420 QualType CFTy = getContext().getCFConstantStringType(); 1421 1422 const llvm::StructType *STy = 1423 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 1424 1425 std::vector<llvm::Constant*> Fields(4); 1426 1427 // Class pointer. 1428 Fields[0] = CFConstantStringClassRef; 1429 1430 // Flags. 1431 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1432 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 1433 llvm::ConstantInt::get(Ty, 0x07C8); 1434 1435 // String pointer. 1436 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1437 1438 const char *Sect, *Prefix; 1439 bool isConstant; 1440 llvm::GlobalValue::LinkageTypes Linkage; 1441 if (isUTF16) { 1442 Prefix = getContext().Target.getUnicodeStringSymbolPrefix(); 1443 Sect = getContext().Target.getUnicodeStringSection(); 1444 // FIXME: why do utf strings get "l" labels instead of "L" labels? 1445 Linkage = llvm::GlobalValue::InternalLinkage; 1446 // FIXME: Why does GCC not set constant here? 1447 isConstant = false; 1448 } else { 1449 Prefix = ".str"; 1450 Sect = getContext().Target.getCFStringDataSection(); 1451 Linkage = llvm::GlobalValue::PrivateLinkage; 1452 // FIXME: -fwritable-strings should probably affect this, but we 1453 // are following gcc here. 1454 isConstant = true; 1455 } 1456 llvm::GlobalVariable *GV = 1457 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, 1458 Linkage, C, Prefix); 1459 if (Sect) 1460 GV->setSection(Sect); 1461 if (isUTF16) { 1462 unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8; 1463 GV->setAlignment(Align); 1464 } 1465 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1466 1467 // String length. 1468 Ty = getTypes().ConvertType(getContext().LongTy); 1469 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 1470 1471 // The struct. 1472 C = llvm::ConstantStruct::get(STy, Fields); 1473 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1474 llvm::GlobalVariable::PrivateLinkage, C, 1475 "_unnamed_cfstring_"); 1476 if (const char *Sect = getContext().Target.getCFStringSection()) 1477 GV->setSection(Sect); 1478 Entry.setValue(GV); 1479 1480 return GV; 1481 } 1482 1483 /// GetStringForStringLiteral - Return the appropriate bytes for a 1484 /// string literal, properly padded to match the literal type. 1485 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) { 1486 const char *StrData = E->getStrData(); 1487 unsigned Len = E->getByteLength(); 1488 1489 const ConstantArrayType *CAT = 1490 getContext().getAsConstantArrayType(E->getType()); 1491 assert(CAT && "String isn't pointer or array!"); 1492 1493 // Resize the string to the right size. 1494 std::string Str(StrData, StrData+Len); 1495 uint64_t RealLen = CAT->getSize().getZExtValue(); 1496 1497 if (E->isWide()) 1498 RealLen *= getContext().Target.getWCharWidth()/8; 1499 1500 Str.resize(RealLen, '\0'); 1501 1502 return Str; 1503 } 1504 1505 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 1506 /// constant array for the given string literal. 1507 llvm::Constant * 1508 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 1509 // FIXME: This can be more efficient. 1510 return GetAddrOfConstantString(GetStringForStringLiteral(S)); 1511 } 1512 1513 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 1514 /// array for the given ObjCEncodeExpr node. 1515 llvm::Constant * 1516 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 1517 std::string Str; 1518 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 1519 1520 return GetAddrOfConstantCString(Str); 1521 } 1522 1523 1524 /// GenerateWritableString -- Creates storage for a string literal. 1525 static llvm::Constant *GenerateStringLiteral(const std::string &str, 1526 bool constant, 1527 CodeGenModule &CGM, 1528 const char *GlobalName) { 1529 // Create Constant for this string literal. Don't add a '\0'. 1530 llvm::Constant *C = 1531 llvm::ConstantArray::get(CGM.getLLVMContext(), str, false); 1532 1533 // Create a global variable for this string 1534 return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant, 1535 llvm::GlobalValue::PrivateLinkage, 1536 C, GlobalName); 1537 } 1538 1539 /// GetAddrOfConstantString - Returns a pointer to a character array 1540 /// containing the literal. This contents are exactly that of the 1541 /// given string, i.e. it will not be null terminated automatically; 1542 /// see GetAddrOfConstantCString. Note that whether the result is 1543 /// actually a pointer to an LLVM constant depends on 1544 /// Feature.WriteableStrings. 1545 /// 1546 /// The result has pointer to array type. 1547 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str, 1548 const char *GlobalName) { 1549 bool IsConstant = !Features.WritableStrings; 1550 1551 // Get the default prefix if a name wasn't specified. 1552 if (!GlobalName) 1553 GlobalName = ".str"; 1554 1555 // Don't share any string literals if strings aren't constant. 1556 if (!IsConstant) 1557 return GenerateStringLiteral(str, false, *this, GlobalName); 1558 1559 llvm::StringMapEntry<llvm::Constant *> &Entry = 1560 ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 1561 1562 if (Entry.getValue()) 1563 return Entry.getValue(); 1564 1565 // Create a global variable for this. 1566 llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName); 1567 Entry.setValue(C); 1568 return C; 1569 } 1570 1571 /// GetAddrOfConstantCString - Returns a pointer to a character 1572 /// array containing the literal and a terminating '\-' 1573 /// character. The result has pointer to array type. 1574 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str, 1575 const char *GlobalName){ 1576 return GetAddrOfConstantString(str + '\0', GlobalName); 1577 } 1578 1579 /// EmitObjCPropertyImplementations - Emit information for synthesized 1580 /// properties for an implementation. 1581 void CodeGenModule::EmitObjCPropertyImplementations(const 1582 ObjCImplementationDecl *D) { 1583 for (ObjCImplementationDecl::propimpl_iterator 1584 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { 1585 ObjCPropertyImplDecl *PID = *i; 1586 1587 // Dynamic is just for type-checking. 1588 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 1589 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1590 1591 // Determine which methods need to be implemented, some may have 1592 // been overridden. Note that ::isSynthesized is not the method 1593 // we want, that just indicates if the decl came from a 1594 // property. What we want to know is if the method is defined in 1595 // this implementation. 1596 if (!D->getInstanceMethod(PD->getGetterName())) 1597 CodeGenFunction(*this).GenerateObjCGetter( 1598 const_cast<ObjCImplementationDecl *>(D), PID); 1599 if (!PD->isReadOnly() && 1600 !D->getInstanceMethod(PD->getSetterName())) 1601 CodeGenFunction(*this).GenerateObjCSetter( 1602 const_cast<ObjCImplementationDecl *>(D), PID); 1603 } 1604 } 1605 } 1606 1607 /// EmitNamespace - Emit all declarations in a namespace. 1608 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 1609 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); 1610 I != E; ++I) 1611 EmitTopLevelDecl(*I); 1612 } 1613 1614 // EmitLinkageSpec - Emit all declarations in a linkage spec. 1615 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 1616 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 1617 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 1618 ErrorUnsupported(LSD, "linkage spec"); 1619 return; 1620 } 1621 1622 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); 1623 I != E; ++I) 1624 EmitTopLevelDecl(*I); 1625 } 1626 1627 /// EmitTopLevelDecl - Emit code for a single top level declaration. 1628 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 1629 // If an error has occurred, stop code generation, but continue 1630 // parsing and semantic analysis (to ensure all warnings and errors 1631 // are emitted). 1632 if (Diags.hasErrorOccurred()) 1633 return; 1634 1635 // Ignore dependent declarations. 1636 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 1637 return; 1638 1639 switch (D->getKind()) { 1640 case Decl::CXXConversion: 1641 case Decl::CXXMethod: 1642 case Decl::Function: 1643 // Skip function templates 1644 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 1645 return; 1646 1647 EmitGlobal(cast<FunctionDecl>(D)); 1648 break; 1649 1650 case Decl::Var: 1651 EmitGlobal(cast<VarDecl>(D)); 1652 break; 1653 1654 // C++ Decls 1655 case Decl::Namespace: 1656 EmitNamespace(cast<NamespaceDecl>(D)); 1657 break; 1658 // No code generation needed. 1659 case Decl::Using: 1660 case Decl::UsingDirective: 1661 case Decl::ClassTemplate: 1662 case Decl::FunctionTemplate: 1663 case Decl::NamespaceAlias: 1664 break; 1665 case Decl::CXXConstructor: 1666 EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 1667 break; 1668 case Decl::CXXDestructor: 1669 EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 1670 break; 1671 1672 case Decl::StaticAssert: 1673 // Nothing to do. 1674 break; 1675 1676 // Objective-C Decls 1677 1678 // Forward declarations, no (immediate) code generation. 1679 case Decl::ObjCClass: 1680 case Decl::ObjCForwardProtocol: 1681 case Decl::ObjCCategory: 1682 case Decl::ObjCInterface: 1683 break; 1684 1685 case Decl::ObjCProtocol: 1686 Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D)); 1687 break; 1688 1689 case Decl::ObjCCategoryImpl: 1690 // Categories have properties but don't support synthesize so we 1691 // can ignore them here. 1692 Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 1693 break; 1694 1695 case Decl::ObjCImplementation: { 1696 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 1697 EmitObjCPropertyImplementations(OMD); 1698 Runtime->GenerateClass(OMD); 1699 break; 1700 } 1701 case Decl::ObjCMethod: { 1702 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 1703 // If this is not a prototype, emit the body. 1704 if (OMD->getBody()) 1705 CodeGenFunction(*this).GenerateObjCMethod(OMD); 1706 break; 1707 } 1708 case Decl::ObjCCompatibleAlias: 1709 // compatibility-alias is a directive and has no code gen. 1710 break; 1711 1712 case Decl::LinkageSpec: 1713 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 1714 break; 1715 1716 case Decl::FileScopeAsm: { 1717 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 1718 std::string AsmString(AD->getAsmString()->getStrData(), 1719 AD->getAsmString()->getByteLength()); 1720 1721 const std::string &S = getModule().getModuleInlineAsm(); 1722 if (S.empty()) 1723 getModule().setModuleInlineAsm(AsmString); 1724 else 1725 getModule().setModuleInlineAsm(S + '\n' + AsmString); 1726 break; 1727 } 1728 1729 default: 1730 // Make sure we handled everything we should, every other kind is a 1731 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 1732 // function. Need to recode Decl::Kind to do that easily. 1733 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 1734 } 1735 } 1736