1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGBlocks.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGCall.h" 19 #include "CGDebugInfo.h" 20 #include "CGObjCRuntime.h" 21 #include "CGOpenCLRuntime.h" 22 #include "CGOpenMPRuntime.h" 23 #include "CGOpenMPRuntimeNVPTX.h" 24 #include "CodeGenFunction.h" 25 #include "CodeGenPGO.h" 26 #include "CodeGenTBAA.h" 27 #include "CoverageMappingGen.h" 28 #include "TargetInfo.h" 29 #include "clang/AST/ASTContext.h" 30 #include "clang/AST/CharUnits.h" 31 #include "clang/AST/DeclCXX.h" 32 #include "clang/AST/DeclObjC.h" 33 #include "clang/AST/DeclTemplate.h" 34 #include "clang/AST/Mangle.h" 35 #include "clang/AST/RecordLayout.h" 36 #include "clang/AST/RecursiveASTVisitor.h" 37 #include "clang/Basic/Builtins.h" 38 #include "clang/Basic/CharInfo.h" 39 #include "clang/Basic/Diagnostic.h" 40 #include "clang/Basic/Module.h" 41 #include "clang/Basic/SourceManager.h" 42 #include "clang/Basic/TargetInfo.h" 43 #include "clang/Basic/Version.h" 44 #include "clang/Frontend/CodeGenOptions.h" 45 #include "clang/Sema/SemaDiagnostic.h" 46 #include "llvm/ADT/APSInt.h" 47 #include "llvm/ADT/Triple.h" 48 #include "llvm/IR/CallSite.h" 49 #include "llvm/IR/CallingConv.h" 50 #include "llvm/IR/DataLayout.h" 51 #include "llvm/IR/Intrinsics.h" 52 #include "llvm/IR/LLVMContext.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/ProfileData/InstrProfReader.h" 55 #include "llvm/Support/ConvertUTF.h" 56 #include "llvm/Support/ErrorHandling.h" 57 #include "llvm/Support/MD5.h" 58 59 using namespace clang; 60 using namespace CodeGen; 61 62 static const char AnnotationSection[] = "llvm.metadata"; 63 64 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 65 switch (CGM.getTarget().getCXXABI().getKind()) { 66 case TargetCXXABI::GenericAArch64: 67 case TargetCXXABI::GenericARM: 68 case TargetCXXABI::iOS: 69 case TargetCXXABI::iOS64: 70 case TargetCXXABI::WatchOS: 71 case TargetCXXABI::GenericMIPS: 72 case TargetCXXABI::GenericItanium: 73 case TargetCXXABI::WebAssembly: 74 return CreateItaniumCXXABI(CGM); 75 case TargetCXXABI::Microsoft: 76 return CreateMicrosoftCXXABI(CGM); 77 } 78 79 llvm_unreachable("invalid C++ ABI kind"); 80 } 81 82 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 83 const PreprocessorOptions &PPO, 84 const CodeGenOptions &CGO, llvm::Module &M, 85 DiagnosticsEngine &diags, 86 CoverageSourceInfo *CoverageInfo) 87 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 88 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 89 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 90 VMContext(M.getContext()), TBAA(nullptr), TheTargetCodeGenInfo(nullptr), 91 Types(*this), VTables(*this), ObjCRuntime(nullptr), 92 OpenCLRuntime(nullptr), OpenMPRuntime(nullptr), CUDARuntime(nullptr), 93 DebugInfo(nullptr), ObjCData(nullptr), 94 NoObjCARCExceptionsMetadata(nullptr), PGOReader(nullptr), 95 CFConstantStringClassRef(nullptr), ConstantStringClassRef(nullptr), 96 NSConstantStringType(nullptr), NSConcreteGlobalBlock(nullptr), 97 NSConcreteStackBlock(nullptr), BlockObjectAssign(nullptr), 98 BlockObjectDispose(nullptr), BlockDescriptorType(nullptr), 99 GenericBlockLiteralType(nullptr), LifetimeStartFn(nullptr), 100 LifetimeEndFn(nullptr), SanitizerMD(new SanitizerMetadata(*this)), 101 WholeProgramVTablesBlacklist(CGO.WholeProgramVTablesBlacklistFiles, 102 C.getSourceManager()) { 103 104 // Initialize the type cache. 105 llvm::LLVMContext &LLVMContext = M.getContext(); 106 VoidTy = llvm::Type::getVoidTy(LLVMContext); 107 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 108 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 109 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 110 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 111 FloatTy = llvm::Type::getFloatTy(LLVMContext); 112 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 113 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 114 PointerAlignInBytes = 115 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 116 IntAlignInBytes = 117 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 118 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 119 IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits); 120 Int8PtrTy = Int8Ty->getPointerTo(0); 121 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 122 123 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 124 BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC(); 125 126 if (LangOpts.ObjC1) 127 createObjCRuntime(); 128 if (LangOpts.OpenCL) 129 createOpenCLRuntime(); 130 if (LangOpts.OpenMP) 131 createOpenMPRuntime(); 132 if (LangOpts.CUDA) 133 createCUDARuntime(); 134 135 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 136 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 137 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 138 TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(), 139 getCXXABI().getMangleContext()); 140 141 // If debug info or coverage generation is enabled, create the CGDebugInfo 142 // object. 143 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 144 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 145 DebugInfo = new CGDebugInfo(*this); 146 147 Block.GlobalUniqueCount = 0; 148 149 if (C.getLangOpts().ObjC1) 150 ObjCData = new ObjCEntrypoints(); 151 152 if (CodeGenOpts.hasProfileClangUse()) { 153 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 154 CodeGenOpts.ProfileInstrumentUsePath); 155 if (std::error_code EC = ReaderOrErr.getError()) { 156 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 157 "Could not read profile %0: %1"); 158 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 159 << EC.message(); 160 } else 161 PGOReader = std::move(ReaderOrErr.get()); 162 } 163 164 // If coverage mapping generation is enabled, create the 165 // CoverageMappingModuleGen object. 166 if (CodeGenOpts.CoverageMapping) 167 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 168 } 169 170 CodeGenModule::~CodeGenModule() { 171 delete ObjCRuntime; 172 delete OpenCLRuntime; 173 delete OpenMPRuntime; 174 delete CUDARuntime; 175 delete TheTargetCodeGenInfo; 176 delete TBAA; 177 delete DebugInfo; 178 delete ObjCData; 179 } 180 181 void CodeGenModule::createObjCRuntime() { 182 // This is just isGNUFamily(), but we want to force implementors of 183 // new ABIs to decide how best to do this. 184 switch (LangOpts.ObjCRuntime.getKind()) { 185 case ObjCRuntime::GNUstep: 186 case ObjCRuntime::GCC: 187 case ObjCRuntime::ObjFW: 188 ObjCRuntime = CreateGNUObjCRuntime(*this); 189 return; 190 191 case ObjCRuntime::FragileMacOSX: 192 case ObjCRuntime::MacOSX: 193 case ObjCRuntime::iOS: 194 case ObjCRuntime::WatchOS: 195 ObjCRuntime = CreateMacObjCRuntime(*this); 196 return; 197 } 198 llvm_unreachable("bad runtime kind"); 199 } 200 201 void CodeGenModule::createOpenCLRuntime() { 202 OpenCLRuntime = new CGOpenCLRuntime(*this); 203 } 204 205 void CodeGenModule::createOpenMPRuntime() { 206 // Select a specialized code generation class based on the target, if any. 207 // If it does not exist use the default implementation. 208 switch (getTarget().getTriple().getArch()) { 209 210 case llvm::Triple::nvptx: 211 case llvm::Triple::nvptx64: 212 assert(getLangOpts().OpenMPIsDevice && 213 "OpenMP NVPTX is only prepared to deal with device code."); 214 OpenMPRuntime = new CGOpenMPRuntimeNVPTX(*this); 215 break; 216 default: 217 OpenMPRuntime = new CGOpenMPRuntime(*this); 218 break; 219 } 220 } 221 222 void CodeGenModule::createCUDARuntime() { 223 CUDARuntime = CreateNVCUDARuntime(*this); 224 } 225 226 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 227 Replacements[Name] = C; 228 } 229 230 void CodeGenModule::applyReplacements() { 231 for (auto &I : Replacements) { 232 StringRef MangledName = I.first(); 233 llvm::Constant *Replacement = I.second; 234 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 235 if (!Entry) 236 continue; 237 auto *OldF = cast<llvm::Function>(Entry); 238 auto *NewF = dyn_cast<llvm::Function>(Replacement); 239 if (!NewF) { 240 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 241 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 242 } else { 243 auto *CE = cast<llvm::ConstantExpr>(Replacement); 244 assert(CE->getOpcode() == llvm::Instruction::BitCast || 245 CE->getOpcode() == llvm::Instruction::GetElementPtr); 246 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 247 } 248 } 249 250 // Replace old with new, but keep the old order. 251 OldF->replaceAllUsesWith(Replacement); 252 if (NewF) { 253 NewF->removeFromParent(); 254 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 255 NewF); 256 } 257 OldF->eraseFromParent(); 258 } 259 } 260 261 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 262 GlobalValReplacements.push_back(std::make_pair(GV, C)); 263 } 264 265 void CodeGenModule::applyGlobalValReplacements() { 266 for (auto &I : GlobalValReplacements) { 267 llvm::GlobalValue *GV = I.first; 268 llvm::Constant *C = I.second; 269 270 GV->replaceAllUsesWith(C); 271 GV->eraseFromParent(); 272 } 273 } 274 275 // This is only used in aliases that we created and we know they have a 276 // linear structure. 277 static const llvm::GlobalObject *getAliasedGlobal(const llvm::GlobalAlias &GA) { 278 llvm::SmallPtrSet<const llvm::GlobalAlias*, 4> Visited; 279 const llvm::Constant *C = &GA; 280 for (;;) { 281 C = C->stripPointerCasts(); 282 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 283 return GO; 284 // stripPointerCasts will not walk over weak aliases. 285 auto *GA2 = dyn_cast<llvm::GlobalAlias>(C); 286 if (!GA2) 287 return nullptr; 288 if (!Visited.insert(GA2).second) 289 return nullptr; 290 C = GA2->getAliasee(); 291 } 292 } 293 294 void CodeGenModule::checkAliases() { 295 // Check if the constructed aliases are well formed. It is really unfortunate 296 // that we have to do this in CodeGen, but we only construct mangled names 297 // and aliases during codegen. 298 bool Error = false; 299 DiagnosticsEngine &Diags = getDiags(); 300 for (const GlobalDecl &GD : Aliases) { 301 const auto *D = cast<ValueDecl>(GD.getDecl()); 302 const AliasAttr *AA = D->getAttr<AliasAttr>(); 303 StringRef MangledName = getMangledName(GD); 304 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 305 auto *Alias = cast<llvm::GlobalAlias>(Entry); 306 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 307 if (!GV) { 308 Error = true; 309 Diags.Report(AA->getLocation(), diag::err_cyclic_alias); 310 } else if (GV->isDeclaration()) { 311 Error = true; 312 Diags.Report(AA->getLocation(), diag::err_alias_to_undefined); 313 } 314 315 llvm::Constant *Aliasee = Alias->getAliasee(); 316 llvm::GlobalValue *AliaseeGV; 317 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 318 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 319 else 320 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 321 322 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 323 StringRef AliasSection = SA->getName(); 324 if (AliasSection != AliaseeGV->getSection()) 325 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 326 << AliasSection; 327 } 328 329 // We have to handle alias to weak aliases in here. LLVM itself disallows 330 // this since the object semantics would not match the IL one. For 331 // compatibility with gcc we implement it by just pointing the alias 332 // to its aliasee's aliasee. We also warn, since the user is probably 333 // expecting the link to be weak. 334 if (auto GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) { 335 if (GA->mayBeOverridden()) { 336 Diags.Report(AA->getLocation(), diag::warn_alias_to_weak_alias) 337 << GV->getName() << GA->getName(); 338 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 339 GA->getAliasee(), Alias->getType()); 340 Alias->setAliasee(Aliasee); 341 } 342 } 343 } 344 if (!Error) 345 return; 346 347 for (const GlobalDecl &GD : Aliases) { 348 StringRef MangledName = getMangledName(GD); 349 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 350 auto *Alias = cast<llvm::GlobalAlias>(Entry); 351 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 352 Alias->eraseFromParent(); 353 } 354 } 355 356 void CodeGenModule::clear() { 357 DeferredDeclsToEmit.clear(); 358 if (OpenMPRuntime) 359 OpenMPRuntime->clear(); 360 } 361 362 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 363 StringRef MainFile) { 364 if (!hasDiagnostics()) 365 return; 366 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 367 if (MainFile.empty()) 368 MainFile = "<stdin>"; 369 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 370 } else 371 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Missing 372 << Mismatched; 373 } 374 375 void CodeGenModule::Release() { 376 EmitDeferred(); 377 applyGlobalValReplacements(); 378 applyReplacements(); 379 checkAliases(); 380 EmitCXXGlobalInitFunc(); 381 EmitCXXGlobalDtorFunc(); 382 EmitCXXThreadLocalInitFunc(); 383 if (ObjCRuntime) 384 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 385 AddGlobalCtor(ObjCInitFunction); 386 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice && 387 CUDARuntime) { 388 if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction()) 389 AddGlobalCtor(CudaCtorFunction); 390 if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction()) 391 AddGlobalDtor(CudaDtorFunction); 392 } 393 if (OpenMPRuntime) 394 if (llvm::Function *OpenMPRegistrationFunction = 395 OpenMPRuntime->emitRegistrationFunction()) 396 AddGlobalCtor(OpenMPRegistrationFunction, 0); 397 if (PGOReader) { 398 getModule().setMaximumFunctionCount(PGOReader->getMaximumFunctionCount()); 399 getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext)); 400 if (PGOStats.hasDiagnostics()) 401 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 402 } 403 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 404 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 405 EmitGlobalAnnotations(); 406 EmitStaticExternCAliases(); 407 EmitDeferredUnusedCoverageMappings(); 408 if (CoverageMapping) 409 CoverageMapping->emit(); 410 if (CodeGenOpts.SanitizeCfiCrossDso) 411 CodeGenFunction(*this).EmitCfiCheckFail(); 412 emitLLVMUsed(); 413 if (SanStats) 414 SanStats->finish(); 415 416 if (CodeGenOpts.Autolink && 417 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 418 EmitModuleLinkOptions(); 419 } 420 if (CodeGenOpts.DwarfVersion) { 421 // We actually want the latest version when there are conflicts. 422 // We can change from Warning to Latest if such mode is supported. 423 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 424 CodeGenOpts.DwarfVersion); 425 } 426 if (CodeGenOpts.EmitCodeView) { 427 // Indicate that we want CodeView in the metadata. 428 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 429 } 430 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 431 // We don't support LTO with 2 with different StrictVTablePointers 432 // FIXME: we could support it by stripping all the information introduced 433 // by StrictVTablePointers. 434 435 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 436 437 llvm::Metadata *Ops[2] = { 438 llvm::MDString::get(VMContext, "StrictVTablePointers"), 439 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 440 llvm::Type::getInt32Ty(VMContext), 1))}; 441 442 getModule().addModuleFlag(llvm::Module::Require, 443 "StrictVTablePointersRequirement", 444 llvm::MDNode::get(VMContext, Ops)); 445 } 446 if (DebugInfo) 447 // We support a single version in the linked module. The LLVM 448 // parser will drop debug info with a different version number 449 // (and warn about it, too). 450 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 451 llvm::DEBUG_METADATA_VERSION); 452 453 // We need to record the widths of enums and wchar_t, so that we can generate 454 // the correct build attributes in the ARM backend. 455 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 456 if ( Arch == llvm::Triple::arm 457 || Arch == llvm::Triple::armeb 458 || Arch == llvm::Triple::thumb 459 || Arch == llvm::Triple::thumbeb) { 460 // Width of wchar_t in bytes 461 uint64_t WCharWidth = 462 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 463 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 464 465 // The minimum width of an enum in bytes 466 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 467 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 468 } 469 470 if (CodeGenOpts.SanitizeCfiCrossDso) { 471 // Indicate that we want cross-DSO control flow integrity checks. 472 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 473 } 474 475 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 476 llvm::PICLevel::Level PL = llvm::PICLevel::Default; 477 switch (PLevel) { 478 case 0: break; 479 case 1: PL = llvm::PICLevel::Small; break; 480 case 2: PL = llvm::PICLevel::Large; break; 481 default: llvm_unreachable("Invalid PIC Level"); 482 } 483 484 getModule().setPICLevel(PL); 485 } 486 487 SimplifyPersonality(); 488 489 if (getCodeGenOpts().EmitDeclMetadata) 490 EmitDeclMetadata(); 491 492 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 493 EmitCoverageFile(); 494 495 if (DebugInfo) 496 DebugInfo->finalize(); 497 498 EmitVersionIdentMetadata(); 499 500 EmitTargetMetadata(); 501 } 502 503 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 504 // Make sure that this type is translated. 505 Types.UpdateCompletedType(TD); 506 } 507 508 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 509 // Make sure that this type is translated. 510 Types.RefreshTypeCacheForClass(RD); 511 } 512 513 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 514 if (!TBAA) 515 return nullptr; 516 return TBAA->getTBAAInfo(QTy); 517 } 518 519 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() { 520 if (!TBAA) 521 return nullptr; 522 return TBAA->getTBAAInfoForVTablePtr(); 523 } 524 525 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 526 if (!TBAA) 527 return nullptr; 528 return TBAA->getTBAAStructInfo(QTy); 529 } 530 531 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy, 532 llvm::MDNode *AccessN, 533 uint64_t O) { 534 if (!TBAA) 535 return nullptr; 536 return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O); 537 } 538 539 /// Decorate the instruction with a TBAA tag. For both scalar TBAA 540 /// and struct-path aware TBAA, the tag has the same format: 541 /// base type, access type and offset. 542 /// When ConvertTypeToTag is true, we create a tag based on the scalar type. 543 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 544 llvm::MDNode *TBAAInfo, 545 bool ConvertTypeToTag) { 546 if (ConvertTypeToTag && TBAA) 547 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, 548 TBAA->getTBAAScalarTagInfo(TBAAInfo)); 549 else 550 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 551 } 552 553 void CodeGenModule::DecorateInstructionWithInvariantGroup( 554 llvm::Instruction *I, const CXXRecordDecl *RD) { 555 llvm::Metadata *MD = CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 556 auto *MetaDataNode = dyn_cast<llvm::MDNode>(MD); 557 // Check if we have to wrap MDString in MDNode. 558 if (!MetaDataNode) 559 MetaDataNode = llvm::MDNode::get(getLLVMContext(), MD); 560 I->setMetadata(llvm::LLVMContext::MD_invariant_group, MetaDataNode); 561 } 562 563 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 564 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 565 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 566 } 567 568 /// ErrorUnsupported - Print out an error that codegen doesn't support the 569 /// specified stmt yet. 570 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 571 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 572 "cannot compile this %0 yet"); 573 std::string Msg = Type; 574 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 575 << Msg << S->getSourceRange(); 576 } 577 578 /// ErrorUnsupported - Print out an error that codegen doesn't support the 579 /// specified decl yet. 580 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 581 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 582 "cannot compile this %0 yet"); 583 std::string Msg = Type; 584 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 585 } 586 587 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 588 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 589 } 590 591 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 592 const NamedDecl *D) const { 593 // Internal definitions always have default visibility. 594 if (GV->hasLocalLinkage()) { 595 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 596 return; 597 } 598 599 // Set visibility for definitions. 600 LinkageInfo LV = D->getLinkageAndVisibility(); 601 if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 602 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 603 } 604 605 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 606 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 607 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 608 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 609 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 610 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 611 } 612 613 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 614 CodeGenOptions::TLSModel M) { 615 switch (M) { 616 case CodeGenOptions::GeneralDynamicTLSModel: 617 return llvm::GlobalVariable::GeneralDynamicTLSModel; 618 case CodeGenOptions::LocalDynamicTLSModel: 619 return llvm::GlobalVariable::LocalDynamicTLSModel; 620 case CodeGenOptions::InitialExecTLSModel: 621 return llvm::GlobalVariable::InitialExecTLSModel; 622 case CodeGenOptions::LocalExecTLSModel: 623 return llvm::GlobalVariable::LocalExecTLSModel; 624 } 625 llvm_unreachable("Invalid TLS model!"); 626 } 627 628 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 629 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 630 631 llvm::GlobalValue::ThreadLocalMode TLM; 632 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 633 634 // Override the TLS model if it is explicitly specified. 635 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 636 TLM = GetLLVMTLSModel(Attr->getModel()); 637 } 638 639 GV->setThreadLocalMode(TLM); 640 } 641 642 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 643 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 644 645 // Some ABIs don't have constructor variants. Make sure that base and 646 // complete constructors get mangled the same. 647 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 648 if (!getTarget().getCXXABI().hasConstructorVariants()) { 649 CXXCtorType OrigCtorType = GD.getCtorType(); 650 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 651 if (OrigCtorType == Ctor_Base) 652 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 653 } 654 } 655 656 StringRef &FoundStr = MangledDeclNames[CanonicalGD]; 657 if (!FoundStr.empty()) 658 return FoundStr; 659 660 const auto *ND = cast<NamedDecl>(GD.getDecl()); 661 SmallString<256> Buffer; 662 StringRef Str; 663 if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 664 llvm::raw_svector_ostream Out(Buffer); 665 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) 666 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 667 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) 668 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 669 else 670 getCXXABI().getMangleContext().mangleName(ND, Out); 671 Str = Out.str(); 672 } else { 673 IdentifierInfo *II = ND->getIdentifier(); 674 assert(II && "Attempt to mangle unnamed decl."); 675 Str = II->getName(); 676 } 677 678 // Keep the first result in the case of a mangling collision. 679 auto Result = Manglings.insert(std::make_pair(Str, GD)); 680 return FoundStr = Result.first->first(); 681 } 682 683 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 684 const BlockDecl *BD) { 685 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 686 const Decl *D = GD.getDecl(); 687 688 SmallString<256> Buffer; 689 llvm::raw_svector_ostream Out(Buffer); 690 if (!D) 691 MangleCtx.mangleGlobalBlock(BD, 692 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 693 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 694 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 695 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 696 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 697 else 698 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 699 700 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 701 return Result.first->first(); 702 } 703 704 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 705 return getModule().getNamedValue(Name); 706 } 707 708 /// AddGlobalCtor - Add a function to the list that will be called before 709 /// main() runs. 710 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 711 llvm::Constant *AssociatedData) { 712 // FIXME: Type coercion of void()* types. 713 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 714 } 715 716 /// AddGlobalDtor - Add a function to the list that will be called 717 /// when the module is unloaded. 718 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 719 // FIXME: Type coercion of void()* types. 720 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 721 } 722 723 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 724 // Ctor function type is void()*. 725 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 726 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 727 728 // Get the type of a ctor entry, { i32, void ()*, i8* }. 729 llvm::StructType *CtorStructTy = llvm::StructType::get( 730 Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy, nullptr); 731 732 // Construct the constructor and destructor arrays. 733 SmallVector<llvm::Constant *, 8> Ctors; 734 for (const auto &I : Fns) { 735 llvm::Constant *S[] = { 736 llvm::ConstantInt::get(Int32Ty, I.Priority, false), 737 llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy), 738 (I.AssociatedData 739 ? llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy) 740 : llvm::Constant::getNullValue(VoidPtrTy))}; 741 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 742 } 743 744 if (!Ctors.empty()) { 745 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 746 new llvm::GlobalVariable(TheModule, AT, false, 747 llvm::GlobalValue::AppendingLinkage, 748 llvm::ConstantArray::get(AT, Ctors), 749 GlobalName); 750 } 751 } 752 753 llvm::GlobalValue::LinkageTypes 754 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 755 const auto *D = cast<FunctionDecl>(GD.getDecl()); 756 757 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 758 759 if (isa<CXXDestructorDecl>(D) && 760 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 761 GD.getDtorType())) { 762 // Destructor variants in the Microsoft C++ ABI are always internal or 763 // linkonce_odr thunks emitted on an as-needed basis. 764 return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage 765 : llvm::GlobalValue::LinkOnceODRLinkage; 766 } 767 768 return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false); 769 } 770 771 void CodeGenModule::setFunctionDLLStorageClass(GlobalDecl GD, llvm::Function *F) { 772 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 773 774 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) { 775 if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) { 776 // Don't dllexport/import destructor thunks. 777 F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 778 return; 779 } 780 } 781 782 if (FD->hasAttr<DLLImportAttr>()) 783 F->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 784 else if (FD->hasAttr<DLLExportAttr>()) 785 F->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 786 else 787 F->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 788 } 789 790 llvm::ConstantInt * 791 CodeGenModule::CreateCfiIdForTypeMetadata(llvm::Metadata *MD) { 792 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 793 if (!MDS) return nullptr; 794 795 llvm::MD5 md5; 796 llvm::MD5::MD5Result result; 797 md5.update(MDS->getString()); 798 md5.final(result); 799 uint64_t id = 0; 800 for (int i = 0; i < 8; ++i) 801 id |= static_cast<uint64_t>(result[i]) << (i * 8); 802 return llvm::ConstantInt::get(Int64Ty, id); 803 } 804 805 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D, 806 llvm::Function *F) { 807 setNonAliasAttributes(D, F); 808 } 809 810 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 811 const CGFunctionInfo &Info, 812 llvm::Function *F) { 813 unsigned CallingConv; 814 AttributeListType AttributeList; 815 ConstructAttributeList(F->getName(), Info, D, AttributeList, CallingConv, 816 false); 817 F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList)); 818 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 819 } 820 821 /// Determines whether the language options require us to model 822 /// unwind exceptions. We treat -fexceptions as mandating this 823 /// except under the fragile ObjC ABI with only ObjC exceptions 824 /// enabled. This means, for example, that C with -fexceptions 825 /// enables this. 826 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 827 // If exceptions are completely disabled, obviously this is false. 828 if (!LangOpts.Exceptions) return false; 829 830 // If C++ exceptions are enabled, this is true. 831 if (LangOpts.CXXExceptions) return true; 832 833 // If ObjC exceptions are enabled, this depends on the ABI. 834 if (LangOpts.ObjCExceptions) { 835 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 836 } 837 838 return true; 839 } 840 841 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 842 llvm::Function *F) { 843 llvm::AttrBuilder B; 844 845 if (CodeGenOpts.UnwindTables) 846 B.addAttribute(llvm::Attribute::UWTable); 847 848 if (!hasUnwindExceptions(LangOpts)) 849 B.addAttribute(llvm::Attribute::NoUnwind); 850 851 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 852 B.addAttribute(llvm::Attribute::StackProtect); 853 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 854 B.addAttribute(llvm::Attribute::StackProtectStrong); 855 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 856 B.addAttribute(llvm::Attribute::StackProtectReq); 857 858 if (!D) { 859 F->addAttributes(llvm::AttributeSet::FunctionIndex, 860 llvm::AttributeSet::get( 861 F->getContext(), 862 llvm::AttributeSet::FunctionIndex, B)); 863 return; 864 } 865 866 if (D->hasAttr<NakedAttr>()) { 867 // Naked implies noinline: we should not be inlining such functions. 868 B.addAttribute(llvm::Attribute::Naked); 869 B.addAttribute(llvm::Attribute::NoInline); 870 } else if (D->hasAttr<NoDuplicateAttr>()) { 871 B.addAttribute(llvm::Attribute::NoDuplicate); 872 } else if (D->hasAttr<NoInlineAttr>()) { 873 B.addAttribute(llvm::Attribute::NoInline); 874 } else if (D->hasAttr<AlwaysInlineAttr>() && 875 !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex, 876 llvm::Attribute::NoInline)) { 877 // (noinline wins over always_inline, and we can't specify both in IR) 878 B.addAttribute(llvm::Attribute::AlwaysInline); 879 } 880 881 if (D->hasAttr<ColdAttr>()) { 882 if (!D->hasAttr<OptimizeNoneAttr>()) 883 B.addAttribute(llvm::Attribute::OptimizeForSize); 884 B.addAttribute(llvm::Attribute::Cold); 885 } 886 887 if (D->hasAttr<MinSizeAttr>()) 888 B.addAttribute(llvm::Attribute::MinSize); 889 890 F->addAttributes(llvm::AttributeSet::FunctionIndex, 891 llvm::AttributeSet::get( 892 F->getContext(), llvm::AttributeSet::FunctionIndex, B)); 893 894 if (D->hasAttr<OptimizeNoneAttr>()) { 895 // OptimizeNone implies noinline; we should not be inlining such functions. 896 F->addFnAttr(llvm::Attribute::OptimizeNone); 897 F->addFnAttr(llvm::Attribute::NoInline); 898 899 // OptimizeNone wins over OptimizeForSize, MinSize, AlwaysInline. 900 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 901 F->removeFnAttr(llvm::Attribute::MinSize); 902 assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 903 "OptimizeNone and AlwaysInline on same function!"); 904 905 // Attribute 'inlinehint' has no effect on 'optnone' functions. 906 // Explicitly remove it from the set of function attributes. 907 F->removeFnAttr(llvm::Attribute::InlineHint); 908 } 909 910 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 911 if (alignment) 912 F->setAlignment(alignment); 913 914 // Some C++ ABIs require 2-byte alignment for member functions, in order to 915 // reserve a bit for differentiating between virtual and non-virtual member 916 // functions. If the current target's C++ ABI requires this and this is a 917 // member function, set its alignment accordingly. 918 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 919 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 920 F->setAlignment(2); 921 } 922 } 923 924 void CodeGenModule::SetCommonAttributes(const Decl *D, 925 llvm::GlobalValue *GV) { 926 if (const auto *ND = dyn_cast_or_null<NamedDecl>(D)) 927 setGlobalVisibility(GV, ND); 928 else 929 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 930 931 if (D && D->hasAttr<UsedAttr>()) 932 addUsedGlobal(GV); 933 } 934 935 void CodeGenModule::setAliasAttributes(const Decl *D, 936 llvm::GlobalValue *GV) { 937 SetCommonAttributes(D, GV); 938 939 // Process the dllexport attribute based on whether the original definition 940 // (not necessarily the aliasee) was exported. 941 if (D->hasAttr<DLLExportAttr>()) 942 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 943 } 944 945 void CodeGenModule::setNonAliasAttributes(const Decl *D, 946 llvm::GlobalObject *GO) { 947 SetCommonAttributes(D, GO); 948 949 if (D) 950 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 951 GO->setSection(SA->getName()); 952 953 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 954 } 955 956 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 957 llvm::Function *F, 958 const CGFunctionInfo &FI) { 959 SetLLVMFunctionAttributes(D, FI, F); 960 SetLLVMFunctionAttributesForDefinition(D, F); 961 962 F->setLinkage(llvm::Function::InternalLinkage); 963 964 setNonAliasAttributes(D, F); 965 } 966 967 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV, 968 const NamedDecl *ND) { 969 // Set linkage and visibility in case we never see a definition. 970 LinkageInfo LV = ND->getLinkageAndVisibility(); 971 if (LV.getLinkage() != ExternalLinkage) { 972 // Don't set internal linkage on declarations. 973 } else { 974 if (ND->hasAttr<DLLImportAttr>()) { 975 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 976 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 977 } else if (ND->hasAttr<DLLExportAttr>()) { 978 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 979 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 980 } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) { 981 // "extern_weak" is overloaded in LLVM; we probably should have 982 // separate linkage types for this. 983 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 984 } 985 986 // Set visibility on a declaration only if it's explicit. 987 if (LV.isVisibilityExplicit()) 988 GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility())); 989 } 990 } 991 992 void CodeGenModule::CreateFunctionBitSetEntry(const FunctionDecl *FD, 993 llvm::Function *F) { 994 // Only if we are checking indirect calls. 995 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 996 return; 997 998 // Non-static class methods are handled via vtable pointer checks elsewhere. 999 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 1000 return; 1001 1002 // Additionally, if building with cross-DSO support... 1003 if (CodeGenOpts.SanitizeCfiCrossDso) { 1004 // Don't emit entries for function declarations. In cross-DSO mode these are 1005 // handled with better precision at run time. 1006 if (!FD->hasBody()) 1007 return; 1008 // Skip available_externally functions. They won't be codegen'ed in the 1009 // current module anyway. 1010 if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally) 1011 return; 1012 } 1013 1014 llvm::NamedMDNode *BitsetsMD = 1015 getModule().getOrInsertNamedMetadata("llvm.bitsets"); 1016 1017 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 1018 llvm::Metadata *BitsetOps[] = { 1019 MD, llvm::ConstantAsMetadata::get(F), 1020 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(Int64Ty, 0))}; 1021 BitsetsMD->addOperand(llvm::MDTuple::get(getLLVMContext(), BitsetOps)); 1022 1023 // Emit a hash-based bit set entry for cross-DSO calls. 1024 if (CodeGenOpts.SanitizeCfiCrossDso) { 1025 if (auto TypeId = CreateCfiIdForTypeMetadata(MD)) { 1026 llvm::Metadata *BitsetOps2[] = { 1027 llvm::ConstantAsMetadata::get(TypeId), 1028 llvm::ConstantAsMetadata::get(F), 1029 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(Int64Ty, 0))}; 1030 BitsetsMD->addOperand(llvm::MDTuple::get(getLLVMContext(), BitsetOps2)); 1031 } 1032 } 1033 } 1034 1035 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 1036 bool IsIncompleteFunction, 1037 bool IsThunk) { 1038 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 1039 // If this is an intrinsic function, set the function's attributes 1040 // to the intrinsic's attributes. 1041 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 1042 return; 1043 } 1044 1045 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 1046 1047 if (!IsIncompleteFunction) 1048 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 1049 1050 // Add the Returned attribute for "this", except for iOS 5 and earlier 1051 // where substantial code, including the libstdc++ dylib, was compiled with 1052 // GCC and does not actually return "this". 1053 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 1054 !(getTarget().getTriple().isiOS() && 1055 getTarget().getTriple().isOSVersionLT(6))) { 1056 assert(!F->arg_empty() && 1057 F->arg_begin()->getType() 1058 ->canLosslesslyBitCastTo(F->getReturnType()) && 1059 "unexpected this return"); 1060 F->addAttribute(1, llvm::Attribute::Returned); 1061 } 1062 1063 // Only a few attributes are set on declarations; these may later be 1064 // overridden by a definition. 1065 1066 setLinkageAndVisibilityForGV(F, FD); 1067 1068 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 1069 F->setSection(SA->getName()); 1070 1071 // A replaceable global allocation function does not act like a builtin by 1072 // default, only if it is invoked by a new-expression or delete-expression. 1073 if (FD->isReplaceableGlobalAllocationFunction()) 1074 F->addAttribute(llvm::AttributeSet::FunctionIndex, 1075 llvm::Attribute::NoBuiltin); 1076 1077 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 1078 F->setUnnamedAddr(true); 1079 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 1080 if (MD->isVirtual()) 1081 F->setUnnamedAddr(true); 1082 1083 CreateFunctionBitSetEntry(FD, F); 1084 } 1085 1086 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 1087 assert(!GV->isDeclaration() && 1088 "Only globals with definition can force usage."); 1089 LLVMUsed.emplace_back(GV); 1090 } 1091 1092 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 1093 assert(!GV->isDeclaration() && 1094 "Only globals with definition can force usage."); 1095 LLVMCompilerUsed.emplace_back(GV); 1096 } 1097 1098 static void emitUsed(CodeGenModule &CGM, StringRef Name, 1099 std::vector<llvm::WeakVH> &List) { 1100 // Don't create llvm.used if there is no need. 1101 if (List.empty()) 1102 return; 1103 1104 // Convert List to what ConstantArray needs. 1105 SmallVector<llvm::Constant*, 8> UsedArray; 1106 UsedArray.resize(List.size()); 1107 for (unsigned i = 0, e = List.size(); i != e; ++i) { 1108 UsedArray[i] = 1109 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 1110 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 1111 } 1112 1113 if (UsedArray.empty()) 1114 return; 1115 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 1116 1117 auto *GV = new llvm::GlobalVariable( 1118 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 1119 llvm::ConstantArray::get(ATy, UsedArray), Name); 1120 1121 GV->setSection("llvm.metadata"); 1122 } 1123 1124 void CodeGenModule::emitLLVMUsed() { 1125 emitUsed(*this, "llvm.used", LLVMUsed); 1126 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 1127 } 1128 1129 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 1130 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 1131 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1132 } 1133 1134 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 1135 llvm::SmallString<32> Opt; 1136 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 1137 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1138 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1139 } 1140 1141 void CodeGenModule::AddDependentLib(StringRef Lib) { 1142 llvm::SmallString<24> Opt; 1143 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 1144 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1145 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1146 } 1147 1148 /// \brief Add link options implied by the given module, including modules 1149 /// it depends on, using a postorder walk. 1150 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 1151 SmallVectorImpl<llvm::Metadata *> &Metadata, 1152 llvm::SmallPtrSet<Module *, 16> &Visited) { 1153 // Import this module's parent. 1154 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 1155 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 1156 } 1157 1158 // Import this module's dependencies. 1159 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 1160 if (Visited.insert(Mod->Imports[I - 1]).second) 1161 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 1162 } 1163 1164 // Add linker options to link against the libraries/frameworks 1165 // described by this module. 1166 llvm::LLVMContext &Context = CGM.getLLVMContext(); 1167 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 1168 // Link against a framework. Frameworks are currently Darwin only, so we 1169 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 1170 if (Mod->LinkLibraries[I-1].IsFramework) { 1171 llvm::Metadata *Args[2] = { 1172 llvm::MDString::get(Context, "-framework"), 1173 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 1174 1175 Metadata.push_back(llvm::MDNode::get(Context, Args)); 1176 continue; 1177 } 1178 1179 // Link against a library. 1180 llvm::SmallString<24> Opt; 1181 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 1182 Mod->LinkLibraries[I-1].Library, Opt); 1183 auto *OptString = llvm::MDString::get(Context, Opt); 1184 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 1185 } 1186 } 1187 1188 void CodeGenModule::EmitModuleLinkOptions() { 1189 // Collect the set of all of the modules we want to visit to emit link 1190 // options, which is essentially the imported modules and all of their 1191 // non-explicit child modules. 1192 llvm::SetVector<clang::Module *> LinkModules; 1193 llvm::SmallPtrSet<clang::Module *, 16> Visited; 1194 SmallVector<clang::Module *, 16> Stack; 1195 1196 // Seed the stack with imported modules. 1197 for (Module *M : ImportedModules) 1198 if (Visited.insert(M).second) 1199 Stack.push_back(M); 1200 1201 // Find all of the modules to import, making a little effort to prune 1202 // non-leaf modules. 1203 while (!Stack.empty()) { 1204 clang::Module *Mod = Stack.pop_back_val(); 1205 1206 bool AnyChildren = false; 1207 1208 // Visit the submodules of this module. 1209 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 1210 SubEnd = Mod->submodule_end(); 1211 Sub != SubEnd; ++Sub) { 1212 // Skip explicit children; they need to be explicitly imported to be 1213 // linked against. 1214 if ((*Sub)->IsExplicit) 1215 continue; 1216 1217 if (Visited.insert(*Sub).second) { 1218 Stack.push_back(*Sub); 1219 AnyChildren = true; 1220 } 1221 } 1222 1223 // We didn't find any children, so add this module to the list of 1224 // modules to link against. 1225 if (!AnyChildren) { 1226 LinkModules.insert(Mod); 1227 } 1228 } 1229 1230 // Add link options for all of the imported modules in reverse topological 1231 // order. We don't do anything to try to order import link flags with respect 1232 // to linker options inserted by things like #pragma comment(). 1233 SmallVector<llvm::Metadata *, 16> MetadataArgs; 1234 Visited.clear(); 1235 for (Module *M : LinkModules) 1236 if (Visited.insert(M).second) 1237 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 1238 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 1239 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 1240 1241 // Add the linker options metadata flag. 1242 getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options", 1243 llvm::MDNode::get(getLLVMContext(), 1244 LinkerOptionsMetadata)); 1245 } 1246 1247 void CodeGenModule::EmitDeferred() { 1248 // Emit code for any potentially referenced deferred decls. Since a 1249 // previously unused static decl may become used during the generation of code 1250 // for a static function, iterate until no changes are made. 1251 1252 if (!DeferredVTables.empty()) { 1253 EmitDeferredVTables(); 1254 1255 // Emitting a vtable doesn't directly cause more vtables to 1256 // become deferred, although it can cause functions to be 1257 // emitted that then need those vtables. 1258 assert(DeferredVTables.empty()); 1259 } 1260 1261 // Stop if we're out of both deferred vtables and deferred declarations. 1262 if (DeferredDeclsToEmit.empty()) 1263 return; 1264 1265 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 1266 // work, it will not interfere with this. 1267 std::vector<DeferredGlobal> CurDeclsToEmit; 1268 CurDeclsToEmit.swap(DeferredDeclsToEmit); 1269 1270 for (DeferredGlobal &G : CurDeclsToEmit) { 1271 GlobalDecl D = G.GD; 1272 G.GV = nullptr; 1273 1274 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 1275 // to get GlobalValue with exactly the type we need, not something that 1276 // might had been created for another decl with the same mangled name but 1277 // different type. 1278 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 1279 GetAddrOfGlobal(D, /*IsForDefinition=*/true)); 1280 1281 // In case of different address spaces, we may still get a cast, even with 1282 // IsForDefinition equal to true. Query mangled names table to get 1283 // GlobalValue. 1284 if (!GV) 1285 GV = GetGlobalValue(getMangledName(D)); 1286 1287 // Make sure GetGlobalValue returned non-null. 1288 assert(GV); 1289 1290 // Check to see if we've already emitted this. This is necessary 1291 // for a couple of reasons: first, decls can end up in the 1292 // deferred-decls queue multiple times, and second, decls can end 1293 // up with definitions in unusual ways (e.g. by an extern inline 1294 // function acquiring a strong function redefinition). Just 1295 // ignore these cases. 1296 if (!GV->isDeclaration()) 1297 continue; 1298 1299 // Otherwise, emit the definition and move on to the next one. 1300 EmitGlobalDefinition(D, GV); 1301 1302 // If we found out that we need to emit more decls, do that recursively. 1303 // This has the advantage that the decls are emitted in a DFS and related 1304 // ones are close together, which is convenient for testing. 1305 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 1306 EmitDeferred(); 1307 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 1308 } 1309 } 1310 } 1311 1312 void CodeGenModule::EmitGlobalAnnotations() { 1313 if (Annotations.empty()) 1314 return; 1315 1316 // Create a new global variable for the ConstantStruct in the Module. 1317 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 1318 Annotations[0]->getType(), Annotations.size()), Annotations); 1319 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 1320 llvm::GlobalValue::AppendingLinkage, 1321 Array, "llvm.global.annotations"); 1322 gv->setSection(AnnotationSection); 1323 } 1324 1325 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 1326 llvm::Constant *&AStr = AnnotationStrings[Str]; 1327 if (AStr) 1328 return AStr; 1329 1330 // Not found yet, create a new global. 1331 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 1332 auto *gv = 1333 new llvm::GlobalVariable(getModule(), s->getType(), true, 1334 llvm::GlobalValue::PrivateLinkage, s, ".str"); 1335 gv->setSection(AnnotationSection); 1336 gv->setUnnamedAddr(true); 1337 AStr = gv; 1338 return gv; 1339 } 1340 1341 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1342 SourceManager &SM = getContext().getSourceManager(); 1343 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1344 if (PLoc.isValid()) 1345 return EmitAnnotationString(PLoc.getFilename()); 1346 return EmitAnnotationString(SM.getBufferName(Loc)); 1347 } 1348 1349 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1350 SourceManager &SM = getContext().getSourceManager(); 1351 PresumedLoc PLoc = SM.getPresumedLoc(L); 1352 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1353 SM.getExpansionLineNumber(L); 1354 return llvm::ConstantInt::get(Int32Ty, LineNo); 1355 } 1356 1357 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1358 const AnnotateAttr *AA, 1359 SourceLocation L) { 1360 // Get the globals for file name, annotation, and the line number. 1361 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1362 *UnitGV = EmitAnnotationUnit(L), 1363 *LineNoCst = EmitAnnotationLineNo(L); 1364 1365 // Create the ConstantStruct for the global annotation. 1366 llvm::Constant *Fields[4] = { 1367 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1368 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1369 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1370 LineNoCst 1371 }; 1372 return llvm::ConstantStruct::getAnon(Fields); 1373 } 1374 1375 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1376 llvm::GlobalValue *GV) { 1377 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1378 // Get the struct elements for these annotations. 1379 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1380 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 1381 } 1382 1383 bool CodeGenModule::isInSanitizerBlacklist(llvm::Function *Fn, 1384 SourceLocation Loc) const { 1385 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1386 // Blacklist by function name. 1387 if (SanitizerBL.isBlacklistedFunction(Fn->getName())) 1388 return true; 1389 // Blacklist by location. 1390 if (Loc.isValid()) 1391 return SanitizerBL.isBlacklistedLocation(Loc); 1392 // If location is unknown, this may be a compiler-generated function. Assume 1393 // it's located in the main file. 1394 auto &SM = Context.getSourceManager(); 1395 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 1396 return SanitizerBL.isBlacklistedFile(MainFile->getName()); 1397 } 1398 return false; 1399 } 1400 1401 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 1402 SourceLocation Loc, QualType Ty, 1403 StringRef Category) const { 1404 // For now globals can be blacklisted only in ASan and KASan. 1405 if (!LangOpts.Sanitize.hasOneOf( 1406 SanitizerKind::Address | SanitizerKind::KernelAddress)) 1407 return false; 1408 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1409 if (SanitizerBL.isBlacklistedGlobal(GV->getName(), Category)) 1410 return true; 1411 if (SanitizerBL.isBlacklistedLocation(Loc, Category)) 1412 return true; 1413 // Check global type. 1414 if (!Ty.isNull()) { 1415 // Drill down the array types: if global variable of a fixed type is 1416 // blacklisted, we also don't instrument arrays of them. 1417 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 1418 Ty = AT->getElementType(); 1419 Ty = Ty.getCanonicalType().getUnqualifiedType(); 1420 // We allow to blacklist only record types (classes, structs etc.) 1421 if (Ty->isRecordType()) { 1422 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 1423 if (SanitizerBL.isBlacklistedType(TypeStr, Category)) 1424 return true; 1425 } 1426 } 1427 return false; 1428 } 1429 1430 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 1431 // Never defer when EmitAllDecls is specified. 1432 if (LangOpts.EmitAllDecls) 1433 return true; 1434 1435 return getContext().DeclMustBeEmitted(Global); 1436 } 1437 1438 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 1439 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) 1440 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 1441 // Implicit template instantiations may change linkage if they are later 1442 // explicitly instantiated, so they should not be emitted eagerly. 1443 return false; 1444 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 1445 // codegen for global variables, because they may be marked as threadprivate. 1446 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 1447 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global)) 1448 return false; 1449 1450 return true; 1451 } 1452 1453 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor( 1454 const CXXUuidofExpr* E) { 1455 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 1456 // well-formed. 1457 StringRef Uuid = E->getUuidAsStringRef(); 1458 std::string Name = "_GUID_" + Uuid.lower(); 1459 std::replace(Name.begin(), Name.end(), '-', '_'); 1460 1461 // Contains a 32-bit field. 1462 CharUnits Alignment = CharUnits::fromQuantity(4); 1463 1464 // Look for an existing global. 1465 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 1466 return ConstantAddress(GV, Alignment); 1467 1468 llvm::Constant *Init = EmitUuidofInitializer(Uuid); 1469 assert(Init && "failed to initialize as constant"); 1470 1471 auto *GV = new llvm::GlobalVariable( 1472 getModule(), Init->getType(), 1473 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 1474 if (supportsCOMDAT()) 1475 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 1476 return ConstantAddress(GV, Alignment); 1477 } 1478 1479 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 1480 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 1481 assert(AA && "No alias?"); 1482 1483 CharUnits Alignment = getContext().getDeclAlign(VD); 1484 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 1485 1486 // See if there is already something with the target's name in the module. 1487 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 1488 if (Entry) { 1489 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 1490 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 1491 return ConstantAddress(Ptr, Alignment); 1492 } 1493 1494 llvm::Constant *Aliasee; 1495 if (isa<llvm::FunctionType>(DeclTy)) 1496 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 1497 GlobalDecl(cast<FunctionDecl>(VD)), 1498 /*ForVTable=*/false); 1499 else 1500 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1501 llvm::PointerType::getUnqual(DeclTy), 1502 nullptr); 1503 1504 auto *F = cast<llvm::GlobalValue>(Aliasee); 1505 F->setLinkage(llvm::Function::ExternalWeakLinkage); 1506 WeakRefReferences.insert(F); 1507 1508 return ConstantAddress(Aliasee, Alignment); 1509 } 1510 1511 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 1512 const auto *Global = cast<ValueDecl>(GD.getDecl()); 1513 1514 // Weak references don't produce any output by themselves. 1515 if (Global->hasAttr<WeakRefAttr>()) 1516 return; 1517 1518 // If this is an alias definition (which otherwise looks like a declaration) 1519 // emit it now. 1520 if (Global->hasAttr<AliasAttr>()) 1521 return EmitAliasDefinition(GD); 1522 1523 // If this is CUDA, be selective about which declarations we emit. 1524 if (LangOpts.CUDA) { 1525 if (LangOpts.CUDAIsDevice) { 1526 if (!Global->hasAttr<CUDADeviceAttr>() && 1527 !Global->hasAttr<CUDAGlobalAttr>() && 1528 !Global->hasAttr<CUDAConstantAttr>() && 1529 !Global->hasAttr<CUDASharedAttr>()) 1530 return; 1531 } else { 1532 // We need to emit host-side 'shadows' for all global 1533 // device-side variables because the CUDA runtime needs their 1534 // size and host-side address in order to provide access to 1535 // their device-side incarnations. 1536 1537 // So device-only functions are the only things we skip. 1538 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 1539 Global->hasAttr<CUDADeviceAttr>()) 1540 return; 1541 1542 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 1543 "Expected Variable or Function"); 1544 } 1545 } 1546 1547 if (LangOpts.OpenMP) { 1548 // If this is OpenMP device, check if it is legal to emit this global 1549 // normally. 1550 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 1551 return; 1552 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 1553 if (MustBeEmitted(Global)) 1554 EmitOMPDeclareReduction(DRD); 1555 return; 1556 } 1557 } 1558 1559 // Ignore declarations, they will be emitted on their first use. 1560 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 1561 // Forward declarations are emitted lazily on first use. 1562 if (!FD->doesThisDeclarationHaveABody()) { 1563 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 1564 return; 1565 1566 StringRef MangledName = getMangledName(GD); 1567 1568 // Compute the function info and LLVM type. 1569 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 1570 llvm::Type *Ty = getTypes().GetFunctionType(FI); 1571 1572 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 1573 /*DontDefer=*/false); 1574 return; 1575 } 1576 } else { 1577 const auto *VD = cast<VarDecl>(Global); 1578 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 1579 // We need to emit device-side global CUDA variables even if a 1580 // variable does not have a definition -- we still need to define 1581 // host-side shadow for it. 1582 bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice && 1583 !VD->hasDefinition() && 1584 (VD->hasAttr<CUDAConstantAttr>() || 1585 VD->hasAttr<CUDADeviceAttr>()); 1586 if (!MustEmitForCuda && 1587 VD->isThisDeclarationADefinition() != VarDecl::Definition && 1588 !Context.isMSStaticDataMemberInlineDefinition(VD)) 1589 return; 1590 } 1591 1592 // Defer code generation to first use when possible, e.g. if this is an inline 1593 // function. If the global must always be emitted, do it eagerly if possible 1594 // to benefit from cache locality. 1595 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 1596 // Emit the definition if it can't be deferred. 1597 EmitGlobalDefinition(GD); 1598 return; 1599 } 1600 1601 // If we're deferring emission of a C++ variable with an 1602 // initializer, remember the order in which it appeared in the file. 1603 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 1604 cast<VarDecl>(Global)->hasInit()) { 1605 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 1606 CXXGlobalInits.push_back(nullptr); 1607 } 1608 1609 StringRef MangledName = getMangledName(GD); 1610 if (llvm::GlobalValue *GV = GetGlobalValue(MangledName)) { 1611 // The value has already been used and should therefore be emitted. 1612 addDeferredDeclToEmit(GV, GD); 1613 } else if (MustBeEmitted(Global)) { 1614 // The value must be emitted, but cannot be emitted eagerly. 1615 assert(!MayBeEmittedEagerly(Global)); 1616 addDeferredDeclToEmit(/*GV=*/nullptr, GD); 1617 } else { 1618 // Otherwise, remember that we saw a deferred decl with this name. The 1619 // first use of the mangled name will cause it to move into 1620 // DeferredDeclsToEmit. 1621 DeferredDecls[MangledName] = GD; 1622 } 1623 } 1624 1625 namespace { 1626 struct FunctionIsDirectlyRecursive : 1627 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 1628 const StringRef Name; 1629 const Builtin::Context &BI; 1630 bool Result; 1631 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 1632 Name(N), BI(C), Result(false) { 1633 } 1634 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 1635 1636 bool TraverseCallExpr(CallExpr *E) { 1637 const FunctionDecl *FD = E->getDirectCallee(); 1638 if (!FD) 1639 return true; 1640 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1641 if (Attr && Name == Attr->getLabel()) { 1642 Result = true; 1643 return false; 1644 } 1645 unsigned BuiltinID = FD->getBuiltinID(); 1646 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 1647 return true; 1648 StringRef BuiltinName = BI.getName(BuiltinID); 1649 if (BuiltinName.startswith("__builtin_") && 1650 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 1651 Result = true; 1652 return false; 1653 } 1654 return true; 1655 } 1656 }; 1657 1658 struct DLLImportFunctionVisitor 1659 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 1660 bool SafeToInline = true; 1661 1662 bool VisitVarDecl(VarDecl *VD) { 1663 // A thread-local variable cannot be imported. 1664 SafeToInline = !VD->getTLSKind(); 1665 return SafeToInline; 1666 } 1667 1668 // Make sure we're not referencing non-imported vars or functions. 1669 bool VisitDeclRefExpr(DeclRefExpr *E) { 1670 ValueDecl *VD = E->getDecl(); 1671 if (isa<FunctionDecl>(VD)) 1672 SafeToInline = VD->hasAttr<DLLImportAttr>(); 1673 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 1674 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 1675 return SafeToInline; 1676 } 1677 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 1678 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 1679 return SafeToInline; 1680 } 1681 bool VisitCXXNewExpr(CXXNewExpr *E) { 1682 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 1683 return SafeToInline; 1684 } 1685 }; 1686 } 1687 1688 // isTriviallyRecursive - Check if this function calls another 1689 // decl that, because of the asm attribute or the other decl being a builtin, 1690 // ends up pointing to itself. 1691 bool 1692 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 1693 StringRef Name; 1694 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 1695 // asm labels are a special kind of mangling we have to support. 1696 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1697 if (!Attr) 1698 return false; 1699 Name = Attr->getLabel(); 1700 } else { 1701 Name = FD->getName(); 1702 } 1703 1704 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 1705 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 1706 return Walker.Result; 1707 } 1708 1709 bool 1710 CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 1711 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 1712 return true; 1713 const auto *F = cast<FunctionDecl>(GD.getDecl()); 1714 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 1715 return false; 1716 1717 if (F->hasAttr<DLLImportAttr>()) { 1718 // Check whether it would be safe to inline this dllimport function. 1719 DLLImportFunctionVisitor Visitor; 1720 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 1721 if (!Visitor.SafeToInline) 1722 return false; 1723 } 1724 1725 // PR9614. Avoid cases where the source code is lying to us. An available 1726 // externally function should have an equivalent function somewhere else, 1727 // but a function that calls itself is clearly not equivalent to the real 1728 // implementation. 1729 // This happens in glibc's btowc and in some configure checks. 1730 return !isTriviallyRecursive(F); 1731 } 1732 1733 /// If the type for the method's class was generated by 1734 /// CGDebugInfo::createContextChain(), the cache contains only a 1735 /// limited DIType without any declarations. Since EmitFunctionStart() 1736 /// needs to find the canonical declaration for each method, we need 1737 /// to construct the complete type prior to emitting the method. 1738 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) { 1739 if (!D->isInstance()) 1740 return; 1741 1742 if (CGDebugInfo *DI = getModuleDebugInfo()) 1743 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) { 1744 const auto *ThisPtr = cast<PointerType>(D->getThisType(getContext())); 1745 DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation()); 1746 } 1747 } 1748 1749 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 1750 const auto *D = cast<ValueDecl>(GD.getDecl()); 1751 1752 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 1753 Context.getSourceManager(), 1754 "Generating code for declaration"); 1755 1756 if (isa<FunctionDecl>(D)) { 1757 // At -O0, don't generate IR for functions with available_externally 1758 // linkage. 1759 if (!shouldEmitFunction(GD)) 1760 return; 1761 1762 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 1763 CompleteDIClassType(Method); 1764 // Make sure to emit the definition(s) before we emit the thunks. 1765 // This is necessary for the generation of certain thunks. 1766 if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method)) 1767 ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType())); 1768 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method)) 1769 ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType())); 1770 else 1771 EmitGlobalFunctionDefinition(GD, GV); 1772 1773 if (Method->isVirtual()) 1774 getVTables().EmitThunks(GD); 1775 1776 return; 1777 } 1778 1779 return EmitGlobalFunctionDefinition(GD, GV); 1780 } 1781 1782 if (const auto *VD = dyn_cast<VarDecl>(D)) 1783 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 1784 1785 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 1786 } 1787 1788 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1789 llvm::Function *NewFn); 1790 1791 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 1792 /// module, create and return an llvm Function with the specified type. If there 1793 /// is something in the module with the specified name, return it potentially 1794 /// bitcasted to the right type. 1795 /// 1796 /// If D is non-null, it specifies a decl that correspond to this. This is used 1797 /// to set the attributes on the function when it is first created. 1798 llvm::Constant * 1799 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName, 1800 llvm::Type *Ty, 1801 GlobalDecl GD, bool ForVTable, 1802 bool DontDefer, bool IsThunk, 1803 llvm::AttributeSet ExtraAttrs, 1804 bool IsForDefinition) { 1805 const Decl *D = GD.getDecl(); 1806 1807 // Lookup the entry, lazily creating it if necessary. 1808 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1809 if (Entry) { 1810 if (WeakRefReferences.erase(Entry)) { 1811 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 1812 if (FD && !FD->hasAttr<WeakAttr>()) 1813 Entry->setLinkage(llvm::Function::ExternalLinkage); 1814 } 1815 1816 // Handle dropped DLL attributes. 1817 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 1818 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 1819 1820 // If there are two attempts to define the same mangled name, issue an 1821 // error. 1822 if (IsForDefinition && !Entry->isDeclaration()) { 1823 GlobalDecl OtherGD; 1824 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 1825 // to make sure that we issue an error only once. 1826 if (lookupRepresentativeDecl(MangledName, OtherGD) && 1827 (GD.getCanonicalDecl().getDecl() != 1828 OtherGD.getCanonicalDecl().getDecl()) && 1829 DiagnosedConflictingDefinitions.insert(GD).second) { 1830 getDiags().Report(D->getLocation(), 1831 diag::err_duplicate_mangled_name); 1832 getDiags().Report(OtherGD.getDecl()->getLocation(), 1833 diag::note_previous_definition); 1834 } 1835 } 1836 1837 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 1838 (Entry->getType()->getElementType() == Ty)) { 1839 return Entry; 1840 } 1841 1842 // Make sure the result is of the correct type. 1843 // (If function is requested for a definition, we always need to create a new 1844 // function, not just return a bitcast.) 1845 if (!IsForDefinition) 1846 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 1847 } 1848 1849 // This function doesn't have a complete type (for example, the return 1850 // type is an incomplete struct). Use a fake type instead, and make 1851 // sure not to try to set attributes. 1852 bool IsIncompleteFunction = false; 1853 1854 llvm::FunctionType *FTy; 1855 if (isa<llvm::FunctionType>(Ty)) { 1856 FTy = cast<llvm::FunctionType>(Ty); 1857 } else { 1858 FTy = llvm::FunctionType::get(VoidTy, false); 1859 IsIncompleteFunction = true; 1860 } 1861 1862 llvm::Function *F = 1863 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 1864 Entry ? StringRef() : MangledName, &getModule()); 1865 1866 // If we already created a function with the same mangled name (but different 1867 // type) before, take its name and add it to the list of functions to be 1868 // replaced with F at the end of CodeGen. 1869 // 1870 // This happens if there is a prototype for a function (e.g. "int f()") and 1871 // then a definition of a different type (e.g. "int f(int x)"). 1872 if (Entry) { 1873 F->takeName(Entry); 1874 1875 // This might be an implementation of a function without a prototype, in 1876 // which case, try to do special replacement of calls which match the new 1877 // prototype. The really key thing here is that we also potentially drop 1878 // arguments from the call site so as to make a direct call, which makes the 1879 // inliner happier and suppresses a number of optimizer warnings (!) about 1880 // dropping arguments. 1881 if (!Entry->use_empty()) { 1882 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 1883 Entry->removeDeadConstantUsers(); 1884 } 1885 1886 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 1887 F, Entry->getType()->getElementType()->getPointerTo()); 1888 addGlobalValReplacement(Entry, BC); 1889 } 1890 1891 assert(F->getName() == MangledName && "name was uniqued!"); 1892 if (D) 1893 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 1894 if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) { 1895 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex); 1896 F->addAttributes(llvm::AttributeSet::FunctionIndex, 1897 llvm::AttributeSet::get(VMContext, 1898 llvm::AttributeSet::FunctionIndex, 1899 B)); 1900 } 1901 1902 if (!DontDefer) { 1903 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 1904 // each other bottoming out with the base dtor. Therefore we emit non-base 1905 // dtors on usage, even if there is no dtor definition in the TU. 1906 if (D && isa<CXXDestructorDecl>(D) && 1907 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 1908 GD.getDtorType())) 1909 addDeferredDeclToEmit(F, GD); 1910 1911 // This is the first use or definition of a mangled name. If there is a 1912 // deferred decl with this name, remember that we need to emit it at the end 1913 // of the file. 1914 auto DDI = DeferredDecls.find(MangledName); 1915 if (DDI != DeferredDecls.end()) { 1916 // Move the potentially referenced deferred decl to the 1917 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 1918 // don't need it anymore). 1919 addDeferredDeclToEmit(F, DDI->second); 1920 DeferredDecls.erase(DDI); 1921 1922 // Otherwise, there are cases we have to worry about where we're 1923 // using a declaration for which we must emit a definition but where 1924 // we might not find a top-level definition: 1925 // - member functions defined inline in their classes 1926 // - friend functions defined inline in some class 1927 // - special member functions with implicit definitions 1928 // If we ever change our AST traversal to walk into class methods, 1929 // this will be unnecessary. 1930 // 1931 // We also don't emit a definition for a function if it's going to be an 1932 // entry in a vtable, unless it's already marked as used. 1933 } else if (getLangOpts().CPlusPlus && D) { 1934 // Look for a declaration that's lexically in a record. 1935 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 1936 FD = FD->getPreviousDecl()) { 1937 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 1938 if (FD->doesThisDeclarationHaveABody()) { 1939 addDeferredDeclToEmit(F, GD.getWithDecl(FD)); 1940 break; 1941 } 1942 } 1943 } 1944 } 1945 } 1946 1947 // Make sure the result is of the requested type. 1948 if (!IsIncompleteFunction) { 1949 assert(F->getType()->getElementType() == Ty); 1950 return F; 1951 } 1952 1953 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 1954 return llvm::ConstantExpr::getBitCast(F, PTy); 1955 } 1956 1957 /// GetAddrOfFunction - Return the address of the given function. If Ty is 1958 /// non-null, then this function will use the specified type if it has to 1959 /// create it (this occurs when we see a definition of the function). 1960 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 1961 llvm::Type *Ty, 1962 bool ForVTable, 1963 bool DontDefer, 1964 bool IsForDefinition) { 1965 // If there was no specific requested type, just convert it now. 1966 if (!Ty) { 1967 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 1968 auto CanonTy = Context.getCanonicalType(FD->getType()); 1969 Ty = getTypes().ConvertFunctionType(CanonTy, FD); 1970 } 1971 1972 StringRef MangledName = getMangledName(GD); 1973 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 1974 /*IsThunk=*/false, llvm::AttributeSet(), 1975 IsForDefinition); 1976 } 1977 1978 /// CreateRuntimeFunction - Create a new runtime function with the specified 1979 /// type and name. 1980 llvm::Constant * 1981 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, 1982 StringRef Name, 1983 llvm::AttributeSet ExtraAttrs) { 1984 llvm::Constant *C = 1985 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 1986 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); 1987 if (auto *F = dyn_cast<llvm::Function>(C)) 1988 if (F->empty()) 1989 F->setCallingConv(getRuntimeCC()); 1990 return C; 1991 } 1992 1993 /// CreateBuiltinFunction - Create a new builtin function with the specified 1994 /// type and name. 1995 llvm::Constant * 1996 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, 1997 StringRef Name, 1998 llvm::AttributeSet ExtraAttrs) { 1999 llvm::Constant *C = 2000 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 2001 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); 2002 if (auto *F = dyn_cast<llvm::Function>(C)) 2003 if (F->empty()) 2004 F->setCallingConv(getBuiltinCC()); 2005 return C; 2006 } 2007 2008 /// isTypeConstant - Determine whether an object of this type can be emitted 2009 /// as a constant. 2010 /// 2011 /// If ExcludeCtor is true, the duration when the object's constructor runs 2012 /// will not be considered. The caller will need to verify that the object is 2013 /// not written to during its construction. 2014 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 2015 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 2016 return false; 2017 2018 if (Context.getLangOpts().CPlusPlus) { 2019 if (const CXXRecordDecl *Record 2020 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 2021 return ExcludeCtor && !Record->hasMutableFields() && 2022 Record->hasTrivialDestructor(); 2023 } 2024 2025 return true; 2026 } 2027 2028 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 2029 /// create and return an llvm GlobalVariable with the specified type. If there 2030 /// is something in the module with the specified name, return it potentially 2031 /// bitcasted to the right type. 2032 /// 2033 /// If D is non-null, it specifies a decl that correspond to this. This is used 2034 /// to set the attributes on the global when it is first created. 2035 /// 2036 /// If IsForDefinition is true, it is guranteed that an actual global with 2037 /// type Ty will be returned, not conversion of a variable with the same 2038 /// mangled name but some other type. 2039 llvm::Constant * 2040 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 2041 llvm::PointerType *Ty, 2042 const VarDecl *D, 2043 bool IsForDefinition) { 2044 // Lookup the entry, lazily creating it if necessary. 2045 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2046 if (Entry) { 2047 if (WeakRefReferences.erase(Entry)) { 2048 if (D && !D->hasAttr<WeakAttr>()) 2049 Entry->setLinkage(llvm::Function::ExternalLinkage); 2050 } 2051 2052 // Handle dropped DLL attributes. 2053 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 2054 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 2055 2056 if (Entry->getType() == Ty) 2057 return Entry; 2058 2059 // If there are two attempts to define the same mangled name, issue an 2060 // error. 2061 if (IsForDefinition && !Entry->isDeclaration()) { 2062 GlobalDecl OtherGD; 2063 const VarDecl *OtherD; 2064 2065 // Check that D is not yet in DiagnosedConflictingDefinitions is required 2066 // to make sure that we issue an error only once. 2067 if (lookupRepresentativeDecl(MangledName, OtherGD) && 2068 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 2069 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 2070 OtherD->hasInit() && 2071 DiagnosedConflictingDefinitions.insert(D).second) { 2072 getDiags().Report(D->getLocation(), 2073 diag::err_duplicate_mangled_name); 2074 getDiags().Report(OtherGD.getDecl()->getLocation(), 2075 diag::note_previous_definition); 2076 } 2077 } 2078 2079 // Make sure the result is of the correct type. 2080 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 2081 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 2082 2083 // (If global is requested for a definition, we always need to create a new 2084 // global, not just return a bitcast.) 2085 if (!IsForDefinition) 2086 return llvm::ConstantExpr::getBitCast(Entry, Ty); 2087 } 2088 2089 unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace()); 2090 auto *GV = new llvm::GlobalVariable( 2091 getModule(), Ty->getElementType(), false, 2092 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 2093 llvm::GlobalVariable::NotThreadLocal, AddrSpace); 2094 2095 // If we already created a global with the same mangled name (but different 2096 // type) before, take its name and remove it from its parent. 2097 if (Entry) { 2098 GV->takeName(Entry); 2099 2100 if (!Entry->use_empty()) { 2101 llvm::Constant *NewPtrForOldDecl = 2102 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2103 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2104 } 2105 2106 Entry->eraseFromParent(); 2107 } 2108 2109 // This is the first use or definition of a mangled name. If there is a 2110 // deferred decl with this name, remember that we need to emit it at the end 2111 // of the file. 2112 auto DDI = DeferredDecls.find(MangledName); 2113 if (DDI != DeferredDecls.end()) { 2114 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 2115 // list, and remove it from DeferredDecls (since we don't need it anymore). 2116 addDeferredDeclToEmit(GV, DDI->second); 2117 DeferredDecls.erase(DDI); 2118 } 2119 2120 // Handle things which are present even on external declarations. 2121 if (D) { 2122 // FIXME: This code is overly simple and should be merged with other global 2123 // handling. 2124 GV->setConstant(isTypeConstant(D->getType(), false)); 2125 2126 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2127 2128 setLinkageAndVisibilityForGV(GV, D); 2129 2130 if (D->getTLSKind()) { 2131 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2132 CXXThreadLocals.push_back(D); 2133 setTLSMode(GV, *D); 2134 } 2135 2136 // If required by the ABI, treat declarations of static data members with 2137 // inline initializers as definitions. 2138 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 2139 EmitGlobalVarDefinition(D); 2140 } 2141 2142 // Handle XCore specific ABI requirements. 2143 if (getTarget().getTriple().getArch() == llvm::Triple::xcore && 2144 D->getLanguageLinkage() == CLanguageLinkage && 2145 D->getType().isConstant(Context) && 2146 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 2147 GV->setSection(".cp.rodata"); 2148 } 2149 2150 if (AddrSpace != Ty->getAddressSpace()) 2151 return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty); 2152 2153 return GV; 2154 } 2155 2156 llvm::Constant * 2157 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, 2158 bool IsForDefinition) { 2159 if (isa<CXXConstructorDecl>(GD.getDecl())) 2160 return getAddrOfCXXStructor(cast<CXXConstructorDecl>(GD.getDecl()), 2161 getFromCtorType(GD.getCtorType()), 2162 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2163 /*DontDefer=*/false, IsForDefinition); 2164 else if (isa<CXXDestructorDecl>(GD.getDecl())) 2165 return getAddrOfCXXStructor(cast<CXXDestructorDecl>(GD.getDecl()), 2166 getFromDtorType(GD.getDtorType()), 2167 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2168 /*DontDefer=*/false, IsForDefinition); 2169 else if (isa<CXXMethodDecl>(GD.getDecl())) { 2170 auto FInfo = &getTypes().arrangeCXXMethodDeclaration( 2171 cast<CXXMethodDecl>(GD.getDecl())); 2172 auto Ty = getTypes().GetFunctionType(*FInfo); 2173 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2174 IsForDefinition); 2175 } else if (isa<FunctionDecl>(GD.getDecl())) { 2176 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2177 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2178 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2179 IsForDefinition); 2180 } else 2181 return GetAddrOfGlobalVar(cast<VarDecl>(GD.getDecl()), /*Ty=*/nullptr, 2182 IsForDefinition); 2183 } 2184 2185 llvm::GlobalVariable * 2186 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 2187 llvm::Type *Ty, 2188 llvm::GlobalValue::LinkageTypes Linkage) { 2189 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 2190 llvm::GlobalVariable *OldGV = nullptr; 2191 2192 if (GV) { 2193 // Check if the variable has the right type. 2194 if (GV->getType()->getElementType() == Ty) 2195 return GV; 2196 2197 // Because C++ name mangling, the only way we can end up with an already 2198 // existing global with the same name is if it has been declared extern "C". 2199 assert(GV->isDeclaration() && "Declaration has wrong type!"); 2200 OldGV = GV; 2201 } 2202 2203 // Create a new variable. 2204 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 2205 Linkage, nullptr, Name); 2206 2207 if (OldGV) { 2208 // Replace occurrences of the old variable if needed. 2209 GV->takeName(OldGV); 2210 2211 if (!OldGV->use_empty()) { 2212 llvm::Constant *NewPtrForOldDecl = 2213 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 2214 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 2215 } 2216 2217 OldGV->eraseFromParent(); 2218 } 2219 2220 if (supportsCOMDAT() && GV->isWeakForLinker() && 2221 !GV->hasAvailableExternallyLinkage()) 2222 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2223 2224 return GV; 2225 } 2226 2227 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 2228 /// given global variable. If Ty is non-null and if the global doesn't exist, 2229 /// then it will be created with the specified type instead of whatever the 2230 /// normal requested type would be. If IsForDefinition is true, it is guranteed 2231 /// that an actual global with type Ty will be returned, not conversion of a 2232 /// variable with the same mangled name but some other type. 2233 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 2234 llvm::Type *Ty, 2235 bool IsForDefinition) { 2236 assert(D->hasGlobalStorage() && "Not a global variable"); 2237 QualType ASTTy = D->getType(); 2238 if (!Ty) 2239 Ty = getTypes().ConvertTypeForMem(ASTTy); 2240 2241 llvm::PointerType *PTy = 2242 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 2243 2244 StringRef MangledName = getMangledName(D); 2245 return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition); 2246 } 2247 2248 /// CreateRuntimeVariable - Create a new runtime global variable with the 2249 /// specified type and name. 2250 llvm::Constant * 2251 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 2252 StringRef Name) { 2253 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr); 2254 } 2255 2256 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 2257 assert(!D->getInit() && "Cannot emit definite definitions here!"); 2258 2259 StringRef MangledName = getMangledName(D); 2260 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 2261 2262 // We already have a definition, not declaration, with the same mangled name. 2263 // Emitting of declaration is not required (and actually overwrites emitted 2264 // definition). 2265 if (GV && !GV->isDeclaration()) 2266 return; 2267 2268 // If we have not seen a reference to this variable yet, place it into the 2269 // deferred declarations table to be emitted if needed later. 2270 if (!MustBeEmitted(D) && !GV) { 2271 DeferredDecls[MangledName] = D; 2272 return; 2273 } 2274 2275 // The tentative definition is the only definition. 2276 EmitGlobalVarDefinition(D); 2277 } 2278 2279 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 2280 return Context.toCharUnitsFromBits( 2281 getDataLayout().getTypeStoreSizeInBits(Ty)); 2282 } 2283 2284 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D, 2285 unsigned AddrSpace) { 2286 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 2287 if (D->hasAttr<CUDAConstantAttr>()) 2288 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant); 2289 else if (D->hasAttr<CUDASharedAttr>()) 2290 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared); 2291 else 2292 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device); 2293 } 2294 2295 return AddrSpace; 2296 } 2297 2298 template<typename SomeDecl> 2299 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 2300 llvm::GlobalValue *GV) { 2301 if (!getLangOpts().CPlusPlus) 2302 return; 2303 2304 // Must have 'used' attribute, or else inline assembly can't rely on 2305 // the name existing. 2306 if (!D->template hasAttr<UsedAttr>()) 2307 return; 2308 2309 // Must have internal linkage and an ordinary name. 2310 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 2311 return; 2312 2313 // Must be in an extern "C" context. Entities declared directly within 2314 // a record are not extern "C" even if the record is in such a context. 2315 const SomeDecl *First = D->getFirstDecl(); 2316 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 2317 return; 2318 2319 // OK, this is an internal linkage entity inside an extern "C" linkage 2320 // specification. Make a note of that so we can give it the "expected" 2321 // mangled name if nothing else is using that name. 2322 std::pair<StaticExternCMap::iterator, bool> R = 2323 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 2324 2325 // If we have multiple internal linkage entities with the same name 2326 // in extern "C" regions, none of them gets that name. 2327 if (!R.second) 2328 R.first->second = nullptr; 2329 } 2330 2331 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 2332 if (!CGM.supportsCOMDAT()) 2333 return false; 2334 2335 if (D.hasAttr<SelectAnyAttr>()) 2336 return true; 2337 2338 GVALinkage Linkage; 2339 if (auto *VD = dyn_cast<VarDecl>(&D)) 2340 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 2341 else 2342 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 2343 2344 switch (Linkage) { 2345 case GVA_Internal: 2346 case GVA_AvailableExternally: 2347 case GVA_StrongExternal: 2348 return false; 2349 case GVA_DiscardableODR: 2350 case GVA_StrongODR: 2351 return true; 2352 } 2353 llvm_unreachable("No such linkage"); 2354 } 2355 2356 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 2357 llvm::GlobalObject &GO) { 2358 if (!shouldBeInCOMDAT(*this, D)) 2359 return; 2360 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 2361 } 2362 2363 /// Pass IsTentative as true if you want to create a tentative definition. 2364 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 2365 bool IsTentative) { 2366 llvm::Constant *Init = nullptr; 2367 QualType ASTTy = D->getType(); 2368 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 2369 bool NeedsGlobalCtor = false; 2370 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 2371 2372 const VarDecl *InitDecl; 2373 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 2374 2375 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 2376 // as part of their declaration." Sema has already checked for 2377 // error cases, so we just need to set Init to UndefValue. 2378 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 2379 D->hasAttr<CUDASharedAttr>()) 2380 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 2381 else if (!InitExpr) { 2382 // This is a tentative definition; tentative definitions are 2383 // implicitly initialized with { 0 }. 2384 // 2385 // Note that tentative definitions are only emitted at the end of 2386 // a translation unit, so they should never have incomplete 2387 // type. In addition, EmitTentativeDefinition makes sure that we 2388 // never attempt to emit a tentative definition if a real one 2389 // exists. A use may still exists, however, so we still may need 2390 // to do a RAUW. 2391 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 2392 Init = EmitNullConstant(D->getType()); 2393 } else { 2394 initializedGlobalDecl = GlobalDecl(D); 2395 Init = EmitConstantInit(*InitDecl); 2396 2397 if (!Init) { 2398 QualType T = InitExpr->getType(); 2399 if (D->getType()->isReferenceType()) 2400 T = D->getType(); 2401 2402 if (getLangOpts().CPlusPlus) { 2403 Init = EmitNullConstant(T); 2404 NeedsGlobalCtor = true; 2405 } else { 2406 ErrorUnsupported(D, "static initializer"); 2407 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 2408 } 2409 } else { 2410 // We don't need an initializer, so remove the entry for the delayed 2411 // initializer position (just in case this entry was delayed) if we 2412 // also don't need to register a destructor. 2413 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 2414 DelayedCXXInitPosition.erase(D); 2415 } 2416 } 2417 2418 llvm::Type* InitType = Init->getType(); 2419 llvm::Constant *Entry = 2420 GetAddrOfGlobalVar(D, InitType, /*IsForDefinition=*/!IsTentative); 2421 2422 // Strip off a bitcast if we got one back. 2423 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 2424 assert(CE->getOpcode() == llvm::Instruction::BitCast || 2425 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 2426 // All zero index gep. 2427 CE->getOpcode() == llvm::Instruction::GetElementPtr); 2428 Entry = CE->getOperand(0); 2429 } 2430 2431 // Entry is now either a Function or GlobalVariable. 2432 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 2433 2434 // We have a definition after a declaration with the wrong type. 2435 // We must make a new GlobalVariable* and update everything that used OldGV 2436 // (a declaration or tentative definition) with the new GlobalVariable* 2437 // (which will be a definition). 2438 // 2439 // This happens if there is a prototype for a global (e.g. 2440 // "extern int x[];") and then a definition of a different type (e.g. 2441 // "int x[10];"). This also happens when an initializer has a different type 2442 // from the type of the global (this happens with unions). 2443 if (!GV || 2444 GV->getType()->getElementType() != InitType || 2445 GV->getType()->getAddressSpace() != 2446 GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) { 2447 2448 // Move the old entry aside so that we'll create a new one. 2449 Entry->setName(StringRef()); 2450 2451 // Make a new global with the correct type, this is now guaranteed to work. 2452 GV = cast<llvm::GlobalVariable>( 2453 GetAddrOfGlobalVar(D, InitType, /*IsForDefinition=*/!IsTentative)); 2454 2455 // Replace all uses of the old global with the new global 2456 llvm::Constant *NewPtrForOldDecl = 2457 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2458 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2459 2460 // Erase the old global, since it is no longer used. 2461 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 2462 } 2463 2464 MaybeHandleStaticInExternC(D, GV); 2465 2466 if (D->hasAttr<AnnotateAttr>()) 2467 AddGlobalAnnotations(D, GV); 2468 2469 // Set the llvm linkage type as appropriate. 2470 llvm::GlobalValue::LinkageTypes Linkage = 2471 getLLVMLinkageVarDefinition(D, GV->isConstant()); 2472 2473 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 2474 // the device. [...]" 2475 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 2476 // __device__, declares a variable that: [...] 2477 // Is accessible from all the threads within the grid and from the host 2478 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 2479 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 2480 if (GV && LangOpts.CUDA) { 2481 if (LangOpts.CUDAIsDevice) { 2482 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) 2483 GV->setExternallyInitialized(true); 2484 } else { 2485 // Host-side shadows of external declarations of device-side 2486 // global variables become internal definitions. These have to 2487 // be internal in order to prevent name conflicts with global 2488 // host variables with the same name in a different TUs. 2489 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) { 2490 Linkage = llvm::GlobalValue::InternalLinkage; 2491 2492 // Shadow variables and their properties must be registered 2493 // with CUDA runtime. 2494 unsigned Flags = 0; 2495 if (!D->hasDefinition()) 2496 Flags |= CGCUDARuntime::ExternDeviceVar; 2497 if (D->hasAttr<CUDAConstantAttr>()) 2498 Flags |= CGCUDARuntime::ConstantDeviceVar; 2499 getCUDARuntime().registerDeviceVar(*GV, Flags); 2500 } else if (D->hasAttr<CUDASharedAttr>()) 2501 // __shared__ variables are odd. Shadows do get created, but 2502 // they are not registered with the CUDA runtime, so they 2503 // can't really be used to access their device-side 2504 // counterparts. It's not clear yet whether it's nvcc's bug or 2505 // a feature, but we've got to do the same for compatibility. 2506 Linkage = llvm::GlobalValue::InternalLinkage; 2507 } 2508 } 2509 GV->setInitializer(Init); 2510 2511 // If it is safe to mark the global 'constant', do so now. 2512 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 2513 isTypeConstant(D->getType(), true)); 2514 2515 // If it is in a read-only section, mark it 'constant'. 2516 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 2517 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 2518 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 2519 GV->setConstant(true); 2520 } 2521 2522 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2523 2524 2525 // On Darwin, if the normal linkage of a C++ thread_local variable is 2526 // LinkOnce or Weak, we keep the normal linkage to prevent multiple 2527 // copies within a linkage unit; otherwise, the backing variable has 2528 // internal linkage and all accesses should just be calls to the 2529 // Itanium-specified entry point, which has the normal linkage of the 2530 // variable. This is to preserve the ability to change the implementation 2531 // behind the scenes. 2532 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic && 2533 Context.getTargetInfo().getTriple().isOSDarwin() && 2534 !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) && 2535 !llvm::GlobalVariable::isWeakLinkage(Linkage)) 2536 Linkage = llvm::GlobalValue::InternalLinkage; 2537 2538 GV->setLinkage(Linkage); 2539 if (D->hasAttr<DLLImportAttr>()) 2540 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 2541 else if (D->hasAttr<DLLExportAttr>()) 2542 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 2543 else 2544 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 2545 2546 if (Linkage == llvm::GlobalVariable::CommonLinkage) 2547 // common vars aren't constant even if declared const. 2548 GV->setConstant(false); 2549 2550 setNonAliasAttributes(D, GV); 2551 2552 if (D->getTLSKind() && !GV->isThreadLocal()) { 2553 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2554 CXXThreadLocals.push_back(D); 2555 setTLSMode(GV, *D); 2556 } 2557 2558 maybeSetTrivialComdat(*D, *GV); 2559 2560 // Emit the initializer function if necessary. 2561 if (NeedsGlobalCtor || NeedsGlobalDtor) 2562 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 2563 2564 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 2565 2566 // Emit global variable debug information. 2567 if (CGDebugInfo *DI = getModuleDebugInfo()) 2568 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 2569 DI->EmitGlobalVariable(GV, D); 2570 } 2571 2572 static bool isVarDeclStrongDefinition(const ASTContext &Context, 2573 CodeGenModule &CGM, const VarDecl *D, 2574 bool NoCommon) { 2575 // Don't give variables common linkage if -fno-common was specified unless it 2576 // was overridden by a NoCommon attribute. 2577 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 2578 return true; 2579 2580 // C11 6.9.2/2: 2581 // A declaration of an identifier for an object that has file scope without 2582 // an initializer, and without a storage-class specifier or with the 2583 // storage-class specifier static, constitutes a tentative definition. 2584 if (D->getInit() || D->hasExternalStorage()) 2585 return true; 2586 2587 // A variable cannot be both common and exist in a section. 2588 if (D->hasAttr<SectionAttr>()) 2589 return true; 2590 2591 // Thread local vars aren't considered common linkage. 2592 if (D->getTLSKind()) 2593 return true; 2594 2595 // Tentative definitions marked with WeakImportAttr are true definitions. 2596 if (D->hasAttr<WeakImportAttr>()) 2597 return true; 2598 2599 // A variable cannot be both common and exist in a comdat. 2600 if (shouldBeInCOMDAT(CGM, *D)) 2601 return true; 2602 2603 // Declarations with a required alignment do not have common linakge in MSVC 2604 // mode. 2605 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 2606 if (D->hasAttr<AlignedAttr>()) 2607 return true; 2608 QualType VarType = D->getType(); 2609 if (Context.isAlignmentRequired(VarType)) 2610 return true; 2611 2612 if (const auto *RT = VarType->getAs<RecordType>()) { 2613 const RecordDecl *RD = RT->getDecl(); 2614 for (const FieldDecl *FD : RD->fields()) { 2615 if (FD->isBitField()) 2616 continue; 2617 if (FD->hasAttr<AlignedAttr>()) 2618 return true; 2619 if (Context.isAlignmentRequired(FD->getType())) 2620 return true; 2621 } 2622 } 2623 } 2624 2625 return false; 2626 } 2627 2628 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 2629 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 2630 if (Linkage == GVA_Internal) 2631 return llvm::Function::InternalLinkage; 2632 2633 if (D->hasAttr<WeakAttr>()) { 2634 if (IsConstantVariable) 2635 return llvm::GlobalVariable::WeakODRLinkage; 2636 else 2637 return llvm::GlobalVariable::WeakAnyLinkage; 2638 } 2639 2640 // We are guaranteed to have a strong definition somewhere else, 2641 // so we can use available_externally linkage. 2642 if (Linkage == GVA_AvailableExternally) 2643 return llvm::Function::AvailableExternallyLinkage; 2644 2645 // Note that Apple's kernel linker doesn't support symbol 2646 // coalescing, so we need to avoid linkonce and weak linkages there. 2647 // Normally, this means we just map to internal, but for explicit 2648 // instantiations we'll map to external. 2649 2650 // In C++, the compiler has to emit a definition in every translation unit 2651 // that references the function. We should use linkonce_odr because 2652 // a) if all references in this translation unit are optimized away, we 2653 // don't need to codegen it. b) if the function persists, it needs to be 2654 // merged with other definitions. c) C++ has the ODR, so we know the 2655 // definition is dependable. 2656 if (Linkage == GVA_DiscardableODR) 2657 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 2658 : llvm::Function::InternalLinkage; 2659 2660 // An explicit instantiation of a template has weak linkage, since 2661 // explicit instantiations can occur in multiple translation units 2662 // and must all be equivalent. However, we are not allowed to 2663 // throw away these explicit instantiations. 2664 if (Linkage == GVA_StrongODR) 2665 return !Context.getLangOpts().AppleKext ? llvm::Function::WeakODRLinkage 2666 : llvm::Function::ExternalLinkage; 2667 2668 // C++ doesn't have tentative definitions and thus cannot have common 2669 // linkage. 2670 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 2671 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 2672 CodeGenOpts.NoCommon)) 2673 return llvm::GlobalVariable::CommonLinkage; 2674 2675 // selectany symbols are externally visible, so use weak instead of 2676 // linkonce. MSVC optimizes away references to const selectany globals, so 2677 // all definitions should be the same and ODR linkage should be used. 2678 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 2679 if (D->hasAttr<SelectAnyAttr>()) 2680 return llvm::GlobalVariable::WeakODRLinkage; 2681 2682 // Otherwise, we have strong external linkage. 2683 assert(Linkage == GVA_StrongExternal); 2684 return llvm::GlobalVariable::ExternalLinkage; 2685 } 2686 2687 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 2688 const VarDecl *VD, bool IsConstant) { 2689 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 2690 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 2691 } 2692 2693 /// Replace the uses of a function that was declared with a non-proto type. 2694 /// We want to silently drop extra arguments from call sites 2695 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 2696 llvm::Function *newFn) { 2697 // Fast path. 2698 if (old->use_empty()) return; 2699 2700 llvm::Type *newRetTy = newFn->getReturnType(); 2701 SmallVector<llvm::Value*, 4> newArgs; 2702 SmallVector<llvm::OperandBundleDef, 1> newBundles; 2703 2704 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 2705 ui != ue; ) { 2706 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 2707 llvm::User *user = use->getUser(); 2708 2709 // Recognize and replace uses of bitcasts. Most calls to 2710 // unprototyped functions will use bitcasts. 2711 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 2712 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 2713 replaceUsesOfNonProtoConstant(bitcast, newFn); 2714 continue; 2715 } 2716 2717 // Recognize calls to the function. 2718 llvm::CallSite callSite(user); 2719 if (!callSite) continue; 2720 if (!callSite.isCallee(&*use)) continue; 2721 2722 // If the return types don't match exactly, then we can't 2723 // transform this call unless it's dead. 2724 if (callSite->getType() != newRetTy && !callSite->use_empty()) 2725 continue; 2726 2727 // Get the call site's attribute list. 2728 SmallVector<llvm::AttributeSet, 8> newAttrs; 2729 llvm::AttributeSet oldAttrs = callSite.getAttributes(); 2730 2731 // Collect any return attributes from the call. 2732 if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex)) 2733 newAttrs.push_back( 2734 llvm::AttributeSet::get(newFn->getContext(), 2735 oldAttrs.getRetAttributes())); 2736 2737 // If the function was passed too few arguments, don't transform. 2738 unsigned newNumArgs = newFn->arg_size(); 2739 if (callSite.arg_size() < newNumArgs) continue; 2740 2741 // If extra arguments were passed, we silently drop them. 2742 // If any of the types mismatch, we don't transform. 2743 unsigned argNo = 0; 2744 bool dontTransform = false; 2745 for (llvm::Function::arg_iterator ai = newFn->arg_begin(), 2746 ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) { 2747 if (callSite.getArgument(argNo)->getType() != ai->getType()) { 2748 dontTransform = true; 2749 break; 2750 } 2751 2752 // Add any parameter attributes. 2753 if (oldAttrs.hasAttributes(argNo + 1)) 2754 newAttrs. 2755 push_back(llvm:: 2756 AttributeSet::get(newFn->getContext(), 2757 oldAttrs.getParamAttributes(argNo + 1))); 2758 } 2759 if (dontTransform) 2760 continue; 2761 2762 if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) 2763 newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(), 2764 oldAttrs.getFnAttributes())); 2765 2766 // Okay, we can transform this. Create the new call instruction and copy 2767 // over the required information. 2768 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 2769 2770 // Copy over any operand bundles. 2771 callSite.getOperandBundlesAsDefs(newBundles); 2772 2773 llvm::CallSite newCall; 2774 if (callSite.isCall()) { 2775 newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "", 2776 callSite.getInstruction()); 2777 } else { 2778 auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction()); 2779 newCall = llvm::InvokeInst::Create(newFn, 2780 oldInvoke->getNormalDest(), 2781 oldInvoke->getUnwindDest(), 2782 newArgs, newBundles, "", 2783 callSite.getInstruction()); 2784 } 2785 newArgs.clear(); // for the next iteration 2786 2787 if (!newCall->getType()->isVoidTy()) 2788 newCall->takeName(callSite.getInstruction()); 2789 newCall.setAttributes( 2790 llvm::AttributeSet::get(newFn->getContext(), newAttrs)); 2791 newCall.setCallingConv(callSite.getCallingConv()); 2792 2793 // Finally, remove the old call, replacing any uses with the new one. 2794 if (!callSite->use_empty()) 2795 callSite->replaceAllUsesWith(newCall.getInstruction()); 2796 2797 // Copy debug location attached to CI. 2798 if (callSite->getDebugLoc()) 2799 newCall->setDebugLoc(callSite->getDebugLoc()); 2800 2801 callSite->eraseFromParent(); 2802 } 2803 } 2804 2805 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 2806 /// implement a function with no prototype, e.g. "int foo() {}". If there are 2807 /// existing call uses of the old function in the module, this adjusts them to 2808 /// call the new function directly. 2809 /// 2810 /// This is not just a cleanup: the always_inline pass requires direct calls to 2811 /// functions to be able to inline them. If there is a bitcast in the way, it 2812 /// won't inline them. Instcombine normally deletes these calls, but it isn't 2813 /// run at -O0. 2814 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2815 llvm::Function *NewFn) { 2816 // If we're redefining a global as a function, don't transform it. 2817 if (!isa<llvm::Function>(Old)) return; 2818 2819 replaceUsesOfNonProtoConstant(Old, NewFn); 2820 } 2821 2822 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 2823 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 2824 // If we have a definition, this might be a deferred decl. If the 2825 // instantiation is explicit, make sure we emit it at the end. 2826 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 2827 GetAddrOfGlobalVar(VD); 2828 2829 EmitTopLevelDecl(VD); 2830 } 2831 2832 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 2833 llvm::GlobalValue *GV) { 2834 const auto *D = cast<FunctionDecl>(GD.getDecl()); 2835 2836 // Compute the function info and LLVM type. 2837 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2838 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2839 2840 // Get or create the prototype for the function. 2841 if (!GV || (GV->getType()->getElementType() != Ty)) 2842 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 2843 /*DontDefer=*/true, 2844 /*IsForDefinition=*/true)); 2845 2846 // Already emitted. 2847 if (!GV->isDeclaration()) 2848 return; 2849 2850 // We need to set linkage and visibility on the function before 2851 // generating code for it because various parts of IR generation 2852 // want to propagate this information down (e.g. to local static 2853 // declarations). 2854 auto *Fn = cast<llvm::Function>(GV); 2855 setFunctionLinkage(GD, Fn); 2856 setFunctionDLLStorageClass(GD, Fn); 2857 2858 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 2859 setGlobalVisibility(Fn, D); 2860 2861 MaybeHandleStaticInExternC(D, Fn); 2862 2863 maybeSetTrivialComdat(*D, *Fn); 2864 2865 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 2866 2867 setFunctionDefinitionAttributes(D, Fn); 2868 SetLLVMFunctionAttributesForDefinition(D, Fn); 2869 2870 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 2871 AddGlobalCtor(Fn, CA->getPriority()); 2872 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 2873 AddGlobalDtor(Fn, DA->getPriority()); 2874 if (D->hasAttr<AnnotateAttr>()) 2875 AddGlobalAnnotations(D, Fn); 2876 } 2877 2878 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 2879 const auto *D = cast<ValueDecl>(GD.getDecl()); 2880 const AliasAttr *AA = D->getAttr<AliasAttr>(); 2881 assert(AA && "Not an alias?"); 2882 2883 StringRef MangledName = getMangledName(GD); 2884 2885 if (AA->getAliasee() == MangledName) { 2886 Diags.Report(AA->getLocation(), diag::err_cyclic_alias); 2887 return; 2888 } 2889 2890 // If there is a definition in the module, then it wins over the alias. 2891 // This is dubious, but allow it to be safe. Just ignore the alias. 2892 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2893 if (Entry && !Entry->isDeclaration()) 2894 return; 2895 2896 Aliases.push_back(GD); 2897 2898 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 2899 2900 // Create a reference to the named value. This ensures that it is emitted 2901 // if a deferred decl. 2902 llvm::Constant *Aliasee; 2903 if (isa<llvm::FunctionType>(DeclTy)) 2904 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 2905 /*ForVTable=*/false); 2906 else 2907 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2908 llvm::PointerType::getUnqual(DeclTy), 2909 /*D=*/nullptr); 2910 2911 // Create the new alias itself, but don't set a name yet. 2912 auto *GA = llvm::GlobalAlias::create( 2913 DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule()); 2914 2915 if (Entry) { 2916 if (GA->getAliasee() == Entry) { 2917 Diags.Report(AA->getLocation(), diag::err_cyclic_alias); 2918 return; 2919 } 2920 2921 assert(Entry->isDeclaration()); 2922 2923 // If there is a declaration in the module, then we had an extern followed 2924 // by the alias, as in: 2925 // extern int test6(); 2926 // ... 2927 // int test6() __attribute__((alias("test7"))); 2928 // 2929 // Remove it and replace uses of it with the alias. 2930 GA->takeName(Entry); 2931 2932 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 2933 Entry->getType())); 2934 Entry->eraseFromParent(); 2935 } else { 2936 GA->setName(MangledName); 2937 } 2938 2939 // Set attributes which are particular to an alias; this is a 2940 // specialization of the attributes which may be set on a global 2941 // variable/function. 2942 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 2943 D->isWeakImported()) { 2944 GA->setLinkage(llvm::Function::WeakAnyLinkage); 2945 } 2946 2947 if (const auto *VD = dyn_cast<VarDecl>(D)) 2948 if (VD->getTLSKind()) 2949 setTLSMode(GA, *VD); 2950 2951 setAliasAttributes(D, GA); 2952 } 2953 2954 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 2955 ArrayRef<llvm::Type*> Tys) { 2956 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 2957 Tys); 2958 } 2959 2960 static llvm::StringMapEntry<llvm::GlobalVariable *> & 2961 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 2962 const StringLiteral *Literal, bool TargetIsLSB, 2963 bool &IsUTF16, unsigned &StringLength) { 2964 StringRef String = Literal->getString(); 2965 unsigned NumBytes = String.size(); 2966 2967 // Check for simple case. 2968 if (!Literal->containsNonAsciiOrNull()) { 2969 StringLength = NumBytes; 2970 return *Map.insert(std::make_pair(String, nullptr)).first; 2971 } 2972 2973 // Otherwise, convert the UTF8 literals into a string of shorts. 2974 IsUTF16 = true; 2975 2976 SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 2977 const UTF8 *FromPtr = (const UTF8 *)String.data(); 2978 UTF16 *ToPtr = &ToBuf[0]; 2979 2980 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 2981 &ToPtr, ToPtr + NumBytes, 2982 strictConversion); 2983 2984 // ConvertUTF8toUTF16 returns the length in ToPtr. 2985 StringLength = ToPtr - &ToBuf[0]; 2986 2987 // Add an explicit null. 2988 *ToPtr = 0; 2989 return *Map.insert(std::make_pair( 2990 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 2991 (StringLength + 1) * 2), 2992 nullptr)).first; 2993 } 2994 2995 static llvm::StringMapEntry<llvm::GlobalVariable *> & 2996 GetConstantStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 2997 const StringLiteral *Literal, unsigned &StringLength) { 2998 StringRef String = Literal->getString(); 2999 StringLength = String.size(); 3000 return *Map.insert(std::make_pair(String, nullptr)).first; 3001 } 3002 3003 ConstantAddress 3004 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 3005 unsigned StringLength = 0; 3006 bool isUTF16 = false; 3007 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 3008 GetConstantCFStringEntry(CFConstantStringMap, Literal, 3009 getDataLayout().isLittleEndian(), isUTF16, 3010 StringLength); 3011 3012 if (auto *C = Entry.second) 3013 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 3014 3015 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 3016 llvm::Constant *Zeros[] = { Zero, Zero }; 3017 llvm::Value *V; 3018 3019 // If we don't already have it, get __CFConstantStringClassReference. 3020 if (!CFConstantStringClassRef) { 3021 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 3022 Ty = llvm::ArrayType::get(Ty, 0); 3023 llvm::Constant *GV = CreateRuntimeVariable(Ty, 3024 "__CFConstantStringClassReference"); 3025 // Decay array -> ptr 3026 V = llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros); 3027 CFConstantStringClassRef = V; 3028 } 3029 else 3030 V = CFConstantStringClassRef; 3031 3032 QualType CFTy = getContext().getCFConstantStringType(); 3033 3034 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 3035 3036 llvm::Constant *Fields[4]; 3037 3038 // Class pointer. 3039 Fields[0] = cast<llvm::ConstantExpr>(V); 3040 3041 // Flags. 3042 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 3043 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 3044 llvm::ConstantInt::get(Ty, 0x07C8); 3045 3046 // String pointer. 3047 llvm::Constant *C = nullptr; 3048 if (isUTF16) { 3049 auto Arr = llvm::makeArrayRef( 3050 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 3051 Entry.first().size() / 2); 3052 C = llvm::ConstantDataArray::get(VMContext, Arr); 3053 } else { 3054 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 3055 } 3056 3057 // Note: -fwritable-strings doesn't make the backing store strings of 3058 // CFStrings writable. (See <rdar://problem/10657500>) 3059 auto *GV = 3060 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 3061 llvm::GlobalValue::PrivateLinkage, C, ".str"); 3062 GV->setUnnamedAddr(true); 3063 // Don't enforce the target's minimum global alignment, since the only use 3064 // of the string is via this class initializer. 3065 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. Without 3066 // it LLVM can merge the string with a non unnamed_addr one during LTO. Doing 3067 // that changes the section it ends in, which surprises ld64. 3068 if (isUTF16) { 3069 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 3070 GV->setAlignment(Align.getQuantity()); 3071 GV->setSection("__TEXT,__ustring"); 3072 } else { 3073 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 3074 GV->setAlignment(Align.getQuantity()); 3075 GV->setSection("__TEXT,__cstring,cstring_literals"); 3076 } 3077 3078 // String. 3079 Fields[2] = 3080 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 3081 3082 if (isUTF16) 3083 // Cast the UTF16 string to the correct type. 3084 Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy); 3085 3086 // String length. 3087 Ty = getTypes().ConvertType(getContext().LongTy); 3088 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 3089 3090 CharUnits Alignment = getPointerAlign(); 3091 3092 // The struct. 3093 C = llvm::ConstantStruct::get(STy, Fields); 3094 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 3095 llvm::GlobalVariable::PrivateLinkage, C, 3096 "_unnamed_cfstring_"); 3097 GV->setSection("__DATA,__cfstring"); 3098 GV->setAlignment(Alignment.getQuantity()); 3099 Entry.second = GV; 3100 3101 return ConstantAddress(GV, Alignment); 3102 } 3103 3104 ConstantAddress 3105 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) { 3106 unsigned StringLength = 0; 3107 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 3108 GetConstantStringEntry(CFConstantStringMap, Literal, StringLength); 3109 3110 if (auto *C = Entry.second) 3111 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 3112 3113 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 3114 llvm::Constant *Zeros[] = { Zero, Zero }; 3115 llvm::Value *V; 3116 // If we don't already have it, get _NSConstantStringClassReference. 3117 if (!ConstantStringClassRef) { 3118 std::string StringClass(getLangOpts().ObjCConstantStringClass); 3119 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 3120 llvm::Constant *GV; 3121 if (LangOpts.ObjCRuntime.isNonFragile()) { 3122 std::string str = 3123 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString" 3124 : "OBJC_CLASS_$_" + StringClass; 3125 GV = getObjCRuntime().GetClassGlobal(str); 3126 // Make sure the result is of the correct type. 3127 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 3128 V = llvm::ConstantExpr::getBitCast(GV, PTy); 3129 ConstantStringClassRef = V; 3130 } else { 3131 std::string str = 3132 StringClass.empty() ? "_NSConstantStringClassReference" 3133 : "_" + StringClass + "ClassReference"; 3134 llvm::Type *PTy = llvm::ArrayType::get(Ty, 0); 3135 GV = CreateRuntimeVariable(PTy, str); 3136 // Decay array -> ptr 3137 V = llvm::ConstantExpr::getGetElementPtr(PTy, GV, Zeros); 3138 ConstantStringClassRef = V; 3139 } 3140 } else 3141 V = ConstantStringClassRef; 3142 3143 if (!NSConstantStringType) { 3144 // Construct the type for a constant NSString. 3145 RecordDecl *D = Context.buildImplicitRecord("__builtin_NSString"); 3146 D->startDefinition(); 3147 3148 QualType FieldTypes[3]; 3149 3150 // const int *isa; 3151 FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst()); 3152 // const char *str; 3153 FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst()); 3154 // unsigned int length; 3155 FieldTypes[2] = Context.UnsignedIntTy; 3156 3157 // Create fields 3158 for (unsigned i = 0; i < 3; ++i) { 3159 FieldDecl *Field = FieldDecl::Create(Context, D, 3160 SourceLocation(), 3161 SourceLocation(), nullptr, 3162 FieldTypes[i], /*TInfo=*/nullptr, 3163 /*BitWidth=*/nullptr, 3164 /*Mutable=*/false, 3165 ICIS_NoInit); 3166 Field->setAccess(AS_public); 3167 D->addDecl(Field); 3168 } 3169 3170 D->completeDefinition(); 3171 QualType NSTy = Context.getTagDeclType(D); 3172 NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 3173 } 3174 3175 llvm::Constant *Fields[3]; 3176 3177 // Class pointer. 3178 Fields[0] = cast<llvm::ConstantExpr>(V); 3179 3180 // String pointer. 3181 llvm::Constant *C = 3182 llvm::ConstantDataArray::getString(VMContext, Entry.first()); 3183 3184 llvm::GlobalValue::LinkageTypes Linkage; 3185 bool isConstant; 3186 Linkage = llvm::GlobalValue::PrivateLinkage; 3187 isConstant = !LangOpts.WritableStrings; 3188 3189 auto *GV = new llvm::GlobalVariable(getModule(), C->getType(), isConstant, 3190 Linkage, C, ".str"); 3191 GV->setUnnamedAddr(true); 3192 // Don't enforce the target's minimum global alignment, since the only use 3193 // of the string is via this class initializer. 3194 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 3195 GV->setAlignment(Align.getQuantity()); 3196 Fields[1] = 3197 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 3198 3199 // String length. 3200 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 3201 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 3202 3203 // The struct. 3204 CharUnits Alignment = getPointerAlign(); 3205 C = llvm::ConstantStruct::get(NSConstantStringType, Fields); 3206 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 3207 llvm::GlobalVariable::PrivateLinkage, C, 3208 "_unnamed_nsstring_"); 3209 GV->setAlignment(Alignment.getQuantity()); 3210 const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip"; 3211 const char *NSStringNonFragileABISection = 3212 "__DATA,__objc_stringobj,regular,no_dead_strip"; 3213 // FIXME. Fix section. 3214 GV->setSection(LangOpts.ObjCRuntime.isNonFragile() 3215 ? NSStringNonFragileABISection 3216 : NSStringSection); 3217 Entry.second = GV; 3218 3219 return ConstantAddress(GV, Alignment); 3220 } 3221 3222 QualType CodeGenModule::getObjCFastEnumerationStateType() { 3223 if (ObjCFastEnumerationStateType.isNull()) { 3224 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 3225 D->startDefinition(); 3226 3227 QualType FieldTypes[] = { 3228 Context.UnsignedLongTy, 3229 Context.getPointerType(Context.getObjCIdType()), 3230 Context.getPointerType(Context.UnsignedLongTy), 3231 Context.getConstantArrayType(Context.UnsignedLongTy, 3232 llvm::APInt(32, 5), ArrayType::Normal, 0) 3233 }; 3234 3235 for (size_t i = 0; i < 4; ++i) { 3236 FieldDecl *Field = FieldDecl::Create(Context, 3237 D, 3238 SourceLocation(), 3239 SourceLocation(), nullptr, 3240 FieldTypes[i], /*TInfo=*/nullptr, 3241 /*BitWidth=*/nullptr, 3242 /*Mutable=*/false, 3243 ICIS_NoInit); 3244 Field->setAccess(AS_public); 3245 D->addDecl(Field); 3246 } 3247 3248 D->completeDefinition(); 3249 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 3250 } 3251 3252 return ObjCFastEnumerationStateType; 3253 } 3254 3255 llvm::Constant * 3256 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 3257 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 3258 3259 // Don't emit it as the address of the string, emit the string data itself 3260 // as an inline array. 3261 if (E->getCharByteWidth() == 1) { 3262 SmallString<64> Str(E->getString()); 3263 3264 // Resize the string to the right size, which is indicated by its type. 3265 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 3266 Str.resize(CAT->getSize().getZExtValue()); 3267 return llvm::ConstantDataArray::getString(VMContext, Str, false); 3268 } 3269 3270 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 3271 llvm::Type *ElemTy = AType->getElementType(); 3272 unsigned NumElements = AType->getNumElements(); 3273 3274 // Wide strings have either 2-byte or 4-byte elements. 3275 if (ElemTy->getPrimitiveSizeInBits() == 16) { 3276 SmallVector<uint16_t, 32> Elements; 3277 Elements.reserve(NumElements); 3278 3279 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3280 Elements.push_back(E->getCodeUnit(i)); 3281 Elements.resize(NumElements); 3282 return llvm::ConstantDataArray::get(VMContext, Elements); 3283 } 3284 3285 assert(ElemTy->getPrimitiveSizeInBits() == 32); 3286 SmallVector<uint32_t, 32> Elements; 3287 Elements.reserve(NumElements); 3288 3289 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3290 Elements.push_back(E->getCodeUnit(i)); 3291 Elements.resize(NumElements); 3292 return llvm::ConstantDataArray::get(VMContext, Elements); 3293 } 3294 3295 static llvm::GlobalVariable * 3296 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 3297 CodeGenModule &CGM, StringRef GlobalName, 3298 CharUnits Alignment) { 3299 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 3300 unsigned AddrSpace = 0; 3301 if (CGM.getLangOpts().OpenCL) 3302 AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant); 3303 3304 llvm::Module &M = CGM.getModule(); 3305 // Create a global variable for this string 3306 auto *GV = new llvm::GlobalVariable( 3307 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 3308 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 3309 GV->setAlignment(Alignment.getQuantity()); 3310 GV->setUnnamedAddr(true); 3311 if (GV->isWeakForLinker()) { 3312 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 3313 GV->setComdat(M.getOrInsertComdat(GV->getName())); 3314 } 3315 3316 return GV; 3317 } 3318 3319 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 3320 /// constant array for the given string literal. 3321 ConstantAddress 3322 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 3323 StringRef Name) { 3324 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 3325 3326 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 3327 llvm::GlobalVariable **Entry = nullptr; 3328 if (!LangOpts.WritableStrings) { 3329 Entry = &ConstantStringMap[C]; 3330 if (auto GV = *Entry) { 3331 if (Alignment.getQuantity() > GV->getAlignment()) 3332 GV->setAlignment(Alignment.getQuantity()); 3333 return ConstantAddress(GV, Alignment); 3334 } 3335 } 3336 3337 SmallString<256> MangledNameBuffer; 3338 StringRef GlobalVariableName; 3339 llvm::GlobalValue::LinkageTypes LT; 3340 3341 // Mangle the string literal if the ABI allows for it. However, we cannot 3342 // do this if we are compiling with ASan or -fwritable-strings because they 3343 // rely on strings having normal linkage. 3344 if (!LangOpts.WritableStrings && 3345 !LangOpts.Sanitize.has(SanitizerKind::Address) && 3346 getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) { 3347 llvm::raw_svector_ostream Out(MangledNameBuffer); 3348 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 3349 3350 LT = llvm::GlobalValue::LinkOnceODRLinkage; 3351 GlobalVariableName = MangledNameBuffer; 3352 } else { 3353 LT = llvm::GlobalValue::PrivateLinkage; 3354 GlobalVariableName = Name; 3355 } 3356 3357 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 3358 if (Entry) 3359 *Entry = GV; 3360 3361 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 3362 QualType()); 3363 return ConstantAddress(GV, Alignment); 3364 } 3365 3366 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 3367 /// array for the given ObjCEncodeExpr node. 3368 ConstantAddress 3369 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 3370 std::string Str; 3371 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 3372 3373 return GetAddrOfConstantCString(Str); 3374 } 3375 3376 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 3377 /// the literal and a terminating '\0' character. 3378 /// The result has pointer to array type. 3379 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 3380 const std::string &Str, const char *GlobalName) { 3381 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 3382 CharUnits Alignment = 3383 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 3384 3385 llvm::Constant *C = 3386 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 3387 3388 // Don't share any string literals if strings aren't constant. 3389 llvm::GlobalVariable **Entry = nullptr; 3390 if (!LangOpts.WritableStrings) { 3391 Entry = &ConstantStringMap[C]; 3392 if (auto GV = *Entry) { 3393 if (Alignment.getQuantity() > GV->getAlignment()) 3394 GV->setAlignment(Alignment.getQuantity()); 3395 return ConstantAddress(GV, Alignment); 3396 } 3397 } 3398 3399 // Get the default prefix if a name wasn't specified. 3400 if (!GlobalName) 3401 GlobalName = ".str"; 3402 // Create a global variable for this. 3403 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 3404 GlobalName, Alignment); 3405 if (Entry) 3406 *Entry = GV; 3407 return ConstantAddress(GV, Alignment); 3408 } 3409 3410 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 3411 const MaterializeTemporaryExpr *E, const Expr *Init) { 3412 assert((E->getStorageDuration() == SD_Static || 3413 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 3414 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 3415 3416 // If we're not materializing a subobject of the temporary, keep the 3417 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 3418 QualType MaterializedType = Init->getType(); 3419 if (Init == E->GetTemporaryExpr()) 3420 MaterializedType = E->getType(); 3421 3422 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 3423 3424 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E]) 3425 return ConstantAddress(Slot, Align); 3426 3427 // FIXME: If an externally-visible declaration extends multiple temporaries, 3428 // we need to give each temporary the same name in every translation unit (and 3429 // we also need to make the temporaries externally-visible). 3430 SmallString<256> Name; 3431 llvm::raw_svector_ostream Out(Name); 3432 getCXXABI().getMangleContext().mangleReferenceTemporary( 3433 VD, E->getManglingNumber(), Out); 3434 3435 APValue *Value = nullptr; 3436 if (E->getStorageDuration() == SD_Static) { 3437 // We might have a cached constant initializer for this temporary. Note 3438 // that this might have a different value from the value computed by 3439 // evaluating the initializer if the surrounding constant expression 3440 // modifies the temporary. 3441 Value = getContext().getMaterializedTemporaryValue(E, false); 3442 if (Value && Value->isUninit()) 3443 Value = nullptr; 3444 } 3445 3446 // Try evaluating it now, it might have a constant initializer. 3447 Expr::EvalResult EvalResult; 3448 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 3449 !EvalResult.hasSideEffects()) 3450 Value = &EvalResult.Val; 3451 3452 llvm::Constant *InitialValue = nullptr; 3453 bool Constant = false; 3454 llvm::Type *Type; 3455 if (Value) { 3456 // The temporary has a constant initializer, use it. 3457 InitialValue = EmitConstantValue(*Value, MaterializedType, nullptr); 3458 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 3459 Type = InitialValue->getType(); 3460 } else { 3461 // No initializer, the initialization will be provided when we 3462 // initialize the declaration which performed lifetime extension. 3463 Type = getTypes().ConvertTypeForMem(MaterializedType); 3464 } 3465 3466 // Create a global variable for this lifetime-extended temporary. 3467 llvm::GlobalValue::LinkageTypes Linkage = 3468 getLLVMLinkageVarDefinition(VD, Constant); 3469 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 3470 const VarDecl *InitVD; 3471 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 3472 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 3473 // Temporaries defined inside a class get linkonce_odr linkage because the 3474 // class can be defined in multipe translation units. 3475 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 3476 } else { 3477 // There is no need for this temporary to have external linkage if the 3478 // VarDecl has external linkage. 3479 Linkage = llvm::GlobalVariable::InternalLinkage; 3480 } 3481 } 3482 unsigned AddrSpace = GetGlobalVarAddressSpace( 3483 VD, getContext().getTargetAddressSpace(MaterializedType)); 3484 auto *GV = new llvm::GlobalVariable( 3485 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 3486 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, 3487 AddrSpace); 3488 setGlobalVisibility(GV, VD); 3489 GV->setAlignment(Align.getQuantity()); 3490 if (supportsCOMDAT() && GV->isWeakForLinker()) 3491 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3492 if (VD->getTLSKind()) 3493 setTLSMode(GV, *VD); 3494 MaterializedGlobalTemporaryMap[E] = GV; 3495 return ConstantAddress(GV, Align); 3496 } 3497 3498 /// EmitObjCPropertyImplementations - Emit information for synthesized 3499 /// properties for an implementation. 3500 void CodeGenModule::EmitObjCPropertyImplementations(const 3501 ObjCImplementationDecl *D) { 3502 for (const auto *PID : D->property_impls()) { 3503 // Dynamic is just for type-checking. 3504 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 3505 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 3506 3507 // Determine which methods need to be implemented, some may have 3508 // been overridden. Note that ::isPropertyAccessor is not the method 3509 // we want, that just indicates if the decl came from a 3510 // property. What we want to know is if the method is defined in 3511 // this implementation. 3512 if (!D->getInstanceMethod(PD->getGetterName())) 3513 CodeGenFunction(*this).GenerateObjCGetter( 3514 const_cast<ObjCImplementationDecl *>(D), PID); 3515 if (!PD->isReadOnly() && 3516 !D->getInstanceMethod(PD->getSetterName())) 3517 CodeGenFunction(*this).GenerateObjCSetter( 3518 const_cast<ObjCImplementationDecl *>(D), PID); 3519 } 3520 } 3521 } 3522 3523 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 3524 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 3525 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 3526 ivar; ivar = ivar->getNextIvar()) 3527 if (ivar->getType().isDestructedType()) 3528 return true; 3529 3530 return false; 3531 } 3532 3533 static bool AllTrivialInitializers(CodeGenModule &CGM, 3534 ObjCImplementationDecl *D) { 3535 CodeGenFunction CGF(CGM); 3536 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 3537 E = D->init_end(); B != E; ++B) { 3538 CXXCtorInitializer *CtorInitExp = *B; 3539 Expr *Init = CtorInitExp->getInit(); 3540 if (!CGF.isTrivialInitializer(Init)) 3541 return false; 3542 } 3543 return true; 3544 } 3545 3546 /// EmitObjCIvarInitializations - Emit information for ivar initialization 3547 /// for an implementation. 3548 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 3549 // We might need a .cxx_destruct even if we don't have any ivar initializers. 3550 if (needsDestructMethod(D)) { 3551 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 3552 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3553 ObjCMethodDecl *DTORMethod = 3554 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 3555 cxxSelector, getContext().VoidTy, nullptr, D, 3556 /*isInstance=*/true, /*isVariadic=*/false, 3557 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 3558 /*isDefined=*/false, ObjCMethodDecl::Required); 3559 D->addInstanceMethod(DTORMethod); 3560 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 3561 D->setHasDestructors(true); 3562 } 3563 3564 // If the implementation doesn't have any ivar initializers, we don't need 3565 // a .cxx_construct. 3566 if (D->getNumIvarInitializers() == 0 || 3567 AllTrivialInitializers(*this, D)) 3568 return; 3569 3570 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 3571 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3572 // The constructor returns 'self'. 3573 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 3574 D->getLocation(), 3575 D->getLocation(), 3576 cxxSelector, 3577 getContext().getObjCIdType(), 3578 nullptr, D, /*isInstance=*/true, 3579 /*isVariadic=*/false, 3580 /*isPropertyAccessor=*/true, 3581 /*isImplicitlyDeclared=*/true, 3582 /*isDefined=*/false, 3583 ObjCMethodDecl::Required); 3584 D->addInstanceMethod(CTORMethod); 3585 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 3586 D->setHasNonZeroConstructors(true); 3587 } 3588 3589 /// EmitNamespace - Emit all declarations in a namespace. 3590 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 3591 for (auto *I : ND->decls()) { 3592 if (const auto *VD = dyn_cast<VarDecl>(I)) 3593 if (VD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization && 3594 VD->getTemplateSpecializationKind() != TSK_Undeclared) 3595 continue; 3596 EmitTopLevelDecl(I); 3597 } 3598 } 3599 3600 // EmitLinkageSpec - Emit all declarations in a linkage spec. 3601 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 3602 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 3603 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 3604 ErrorUnsupported(LSD, "linkage spec"); 3605 return; 3606 } 3607 3608 for (auto *I : LSD->decls()) { 3609 // Meta-data for ObjC class includes references to implemented methods. 3610 // Generate class's method definitions first. 3611 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 3612 for (auto *M : OID->methods()) 3613 EmitTopLevelDecl(M); 3614 } 3615 EmitTopLevelDecl(I); 3616 } 3617 } 3618 3619 /// EmitTopLevelDecl - Emit code for a single top level declaration. 3620 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 3621 // Ignore dependent declarations. 3622 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 3623 return; 3624 3625 switch (D->getKind()) { 3626 case Decl::CXXConversion: 3627 case Decl::CXXMethod: 3628 case Decl::Function: 3629 // Skip function templates 3630 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3631 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3632 return; 3633 3634 EmitGlobal(cast<FunctionDecl>(D)); 3635 // Always provide some coverage mapping 3636 // even for the functions that aren't emitted. 3637 AddDeferredUnusedCoverageMapping(D); 3638 break; 3639 3640 case Decl::Var: 3641 // Skip variable templates 3642 if (cast<VarDecl>(D)->getDescribedVarTemplate()) 3643 return; 3644 case Decl::VarTemplateSpecialization: 3645 EmitGlobal(cast<VarDecl>(D)); 3646 break; 3647 3648 // Indirect fields from global anonymous structs and unions can be 3649 // ignored; only the actual variable requires IR gen support. 3650 case Decl::IndirectField: 3651 break; 3652 3653 // C++ Decls 3654 case Decl::Namespace: 3655 EmitNamespace(cast<NamespaceDecl>(D)); 3656 break; 3657 // No code generation needed. 3658 case Decl::UsingShadow: 3659 case Decl::ClassTemplate: 3660 case Decl::VarTemplate: 3661 case Decl::VarTemplatePartialSpecialization: 3662 case Decl::FunctionTemplate: 3663 case Decl::TypeAliasTemplate: 3664 case Decl::Block: 3665 case Decl::Empty: 3666 break; 3667 case Decl::Using: // using X; [C++] 3668 if (CGDebugInfo *DI = getModuleDebugInfo()) 3669 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 3670 return; 3671 case Decl::NamespaceAlias: 3672 if (CGDebugInfo *DI = getModuleDebugInfo()) 3673 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 3674 return; 3675 case Decl::UsingDirective: // using namespace X; [C++] 3676 if (CGDebugInfo *DI = getModuleDebugInfo()) 3677 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 3678 return; 3679 case Decl::CXXConstructor: 3680 // Skip function templates 3681 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3682 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3683 return; 3684 3685 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 3686 break; 3687 case Decl::CXXDestructor: 3688 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 3689 return; 3690 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 3691 break; 3692 3693 case Decl::StaticAssert: 3694 // Nothing to do. 3695 break; 3696 3697 // Objective-C Decls 3698 3699 // Forward declarations, no (immediate) code generation. 3700 case Decl::ObjCInterface: 3701 case Decl::ObjCCategory: 3702 break; 3703 3704 case Decl::ObjCProtocol: { 3705 auto *Proto = cast<ObjCProtocolDecl>(D); 3706 if (Proto->isThisDeclarationADefinition()) 3707 ObjCRuntime->GenerateProtocol(Proto); 3708 break; 3709 } 3710 3711 case Decl::ObjCCategoryImpl: 3712 // Categories have properties but don't support synthesize so we 3713 // can ignore them here. 3714 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 3715 break; 3716 3717 case Decl::ObjCImplementation: { 3718 auto *OMD = cast<ObjCImplementationDecl>(D); 3719 EmitObjCPropertyImplementations(OMD); 3720 EmitObjCIvarInitializations(OMD); 3721 ObjCRuntime->GenerateClass(OMD); 3722 // Emit global variable debug information. 3723 if (CGDebugInfo *DI = getModuleDebugInfo()) 3724 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 3725 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 3726 OMD->getClassInterface()), OMD->getLocation()); 3727 break; 3728 } 3729 case Decl::ObjCMethod: { 3730 auto *OMD = cast<ObjCMethodDecl>(D); 3731 // If this is not a prototype, emit the body. 3732 if (OMD->getBody()) 3733 CodeGenFunction(*this).GenerateObjCMethod(OMD); 3734 break; 3735 } 3736 case Decl::ObjCCompatibleAlias: 3737 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 3738 break; 3739 3740 case Decl::PragmaComment: { 3741 const auto *PCD = cast<PragmaCommentDecl>(D); 3742 switch (PCD->getCommentKind()) { 3743 case PCK_Unknown: 3744 llvm_unreachable("unexpected pragma comment kind"); 3745 case PCK_Linker: 3746 AppendLinkerOptions(PCD->getArg()); 3747 break; 3748 case PCK_Lib: 3749 AddDependentLib(PCD->getArg()); 3750 break; 3751 case PCK_Compiler: 3752 case PCK_ExeStr: 3753 case PCK_User: 3754 break; // We ignore all of these. 3755 } 3756 break; 3757 } 3758 3759 case Decl::PragmaDetectMismatch: { 3760 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 3761 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 3762 break; 3763 } 3764 3765 case Decl::LinkageSpec: 3766 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 3767 break; 3768 3769 case Decl::FileScopeAsm: { 3770 // File-scope asm is ignored during device-side CUDA compilation. 3771 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 3772 break; 3773 // File-scope asm is ignored during device-side OpenMP compilation. 3774 if (LangOpts.OpenMPIsDevice) 3775 break; 3776 auto *AD = cast<FileScopeAsmDecl>(D); 3777 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 3778 break; 3779 } 3780 3781 case Decl::Import: { 3782 auto *Import = cast<ImportDecl>(D); 3783 3784 // Ignore import declarations that come from imported modules. 3785 if (Import->getImportedOwningModule()) 3786 break; 3787 if (CGDebugInfo *DI = getModuleDebugInfo()) 3788 DI->EmitImportDecl(*Import); 3789 3790 ImportedModules.insert(Import->getImportedModule()); 3791 break; 3792 } 3793 3794 case Decl::OMPThreadPrivate: 3795 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 3796 break; 3797 3798 case Decl::ClassTemplateSpecialization: { 3799 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 3800 if (DebugInfo && 3801 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition && 3802 Spec->hasDefinition()) 3803 DebugInfo->completeTemplateDefinition(*Spec); 3804 break; 3805 } 3806 3807 case Decl::OMPDeclareReduction: 3808 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 3809 break; 3810 3811 default: 3812 // Make sure we handled everything we should, every other kind is a 3813 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 3814 // function. Need to recode Decl::Kind to do that easily. 3815 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 3816 break; 3817 } 3818 } 3819 3820 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 3821 // Do we need to generate coverage mapping? 3822 if (!CodeGenOpts.CoverageMapping) 3823 return; 3824 switch (D->getKind()) { 3825 case Decl::CXXConversion: 3826 case Decl::CXXMethod: 3827 case Decl::Function: 3828 case Decl::ObjCMethod: 3829 case Decl::CXXConstructor: 3830 case Decl::CXXDestructor: { 3831 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 3832 return; 3833 auto I = DeferredEmptyCoverageMappingDecls.find(D); 3834 if (I == DeferredEmptyCoverageMappingDecls.end()) 3835 DeferredEmptyCoverageMappingDecls[D] = true; 3836 break; 3837 } 3838 default: 3839 break; 3840 }; 3841 } 3842 3843 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 3844 // Do we need to generate coverage mapping? 3845 if (!CodeGenOpts.CoverageMapping) 3846 return; 3847 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 3848 if (Fn->isTemplateInstantiation()) 3849 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 3850 } 3851 auto I = DeferredEmptyCoverageMappingDecls.find(D); 3852 if (I == DeferredEmptyCoverageMappingDecls.end()) 3853 DeferredEmptyCoverageMappingDecls[D] = false; 3854 else 3855 I->second = false; 3856 } 3857 3858 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 3859 std::vector<const Decl *> DeferredDecls; 3860 for (const auto &I : DeferredEmptyCoverageMappingDecls) { 3861 if (!I.second) 3862 continue; 3863 DeferredDecls.push_back(I.first); 3864 } 3865 // Sort the declarations by their location to make sure that the tests get a 3866 // predictable order for the coverage mapping for the unused declarations. 3867 if (CodeGenOpts.DumpCoverageMapping) 3868 std::sort(DeferredDecls.begin(), DeferredDecls.end(), 3869 [] (const Decl *LHS, const Decl *RHS) { 3870 return LHS->getLocStart() < RHS->getLocStart(); 3871 }); 3872 for (const auto *D : DeferredDecls) { 3873 switch (D->getKind()) { 3874 case Decl::CXXConversion: 3875 case Decl::CXXMethod: 3876 case Decl::Function: 3877 case Decl::ObjCMethod: { 3878 CodeGenPGO PGO(*this); 3879 GlobalDecl GD(cast<FunctionDecl>(D)); 3880 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 3881 getFunctionLinkage(GD)); 3882 break; 3883 } 3884 case Decl::CXXConstructor: { 3885 CodeGenPGO PGO(*this); 3886 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 3887 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 3888 getFunctionLinkage(GD)); 3889 break; 3890 } 3891 case Decl::CXXDestructor: { 3892 CodeGenPGO PGO(*this); 3893 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 3894 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 3895 getFunctionLinkage(GD)); 3896 break; 3897 } 3898 default: 3899 break; 3900 }; 3901 } 3902 } 3903 3904 /// Turns the given pointer into a constant. 3905 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 3906 const void *Ptr) { 3907 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 3908 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 3909 return llvm::ConstantInt::get(i64, PtrInt); 3910 } 3911 3912 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 3913 llvm::NamedMDNode *&GlobalMetadata, 3914 GlobalDecl D, 3915 llvm::GlobalValue *Addr) { 3916 if (!GlobalMetadata) 3917 GlobalMetadata = 3918 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 3919 3920 // TODO: should we report variant information for ctors/dtors? 3921 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 3922 llvm::ConstantAsMetadata::get(GetPointerConstant( 3923 CGM.getLLVMContext(), D.getDecl()))}; 3924 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 3925 } 3926 3927 /// For each function which is declared within an extern "C" region and marked 3928 /// as 'used', but has internal linkage, create an alias from the unmangled 3929 /// name to the mangled name if possible. People expect to be able to refer 3930 /// to such functions with an unmangled name from inline assembly within the 3931 /// same translation unit. 3932 void CodeGenModule::EmitStaticExternCAliases() { 3933 // Don't do anything if we're generating CUDA device code -- the NVPTX 3934 // assembly target doesn't support aliases. 3935 if (Context.getTargetInfo().getTriple().isNVPTX()) 3936 return; 3937 for (auto &I : StaticExternCValues) { 3938 IdentifierInfo *Name = I.first; 3939 llvm::GlobalValue *Val = I.second; 3940 if (Val && !getModule().getNamedValue(Name->getName())) 3941 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 3942 } 3943 } 3944 3945 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 3946 GlobalDecl &Result) const { 3947 auto Res = Manglings.find(MangledName); 3948 if (Res == Manglings.end()) 3949 return false; 3950 Result = Res->getValue(); 3951 return true; 3952 } 3953 3954 /// Emits metadata nodes associating all the global values in the 3955 /// current module with the Decls they came from. This is useful for 3956 /// projects using IR gen as a subroutine. 3957 /// 3958 /// Since there's currently no way to associate an MDNode directly 3959 /// with an llvm::GlobalValue, we create a global named metadata 3960 /// with the name 'clang.global.decl.ptrs'. 3961 void CodeGenModule::EmitDeclMetadata() { 3962 llvm::NamedMDNode *GlobalMetadata = nullptr; 3963 3964 for (auto &I : MangledDeclNames) { 3965 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 3966 // Some mangled names don't necessarily have an associated GlobalValue 3967 // in this module, e.g. if we mangled it for DebugInfo. 3968 if (Addr) 3969 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 3970 } 3971 } 3972 3973 /// Emits metadata nodes for all the local variables in the current 3974 /// function. 3975 void CodeGenFunction::EmitDeclMetadata() { 3976 if (LocalDeclMap.empty()) return; 3977 3978 llvm::LLVMContext &Context = getLLVMContext(); 3979 3980 // Find the unique metadata ID for this name. 3981 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 3982 3983 llvm::NamedMDNode *GlobalMetadata = nullptr; 3984 3985 for (auto &I : LocalDeclMap) { 3986 const Decl *D = I.first; 3987 llvm::Value *Addr = I.second.getPointer(); 3988 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 3989 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 3990 Alloca->setMetadata( 3991 DeclPtrKind, llvm::MDNode::get( 3992 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 3993 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 3994 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 3995 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 3996 } 3997 } 3998 } 3999 4000 void CodeGenModule::EmitVersionIdentMetadata() { 4001 llvm::NamedMDNode *IdentMetadata = 4002 TheModule.getOrInsertNamedMetadata("llvm.ident"); 4003 std::string Version = getClangFullVersion(); 4004 llvm::LLVMContext &Ctx = TheModule.getContext(); 4005 4006 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 4007 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 4008 } 4009 4010 void CodeGenModule::EmitTargetMetadata() { 4011 // Warning, new MangledDeclNames may be appended within this loop. 4012 // We rely on MapVector insertions adding new elements to the end 4013 // of the container. 4014 // FIXME: Move this loop into the one target that needs it, and only 4015 // loop over those declarations for which we couldn't emit the target 4016 // metadata when we emitted the declaration. 4017 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 4018 auto Val = *(MangledDeclNames.begin() + I); 4019 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 4020 llvm::GlobalValue *GV = GetGlobalValue(Val.second); 4021 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 4022 } 4023 } 4024 4025 void CodeGenModule::EmitCoverageFile() { 4026 if (!getCodeGenOpts().CoverageFile.empty()) { 4027 if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) { 4028 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 4029 llvm::LLVMContext &Ctx = TheModule.getContext(); 4030 llvm::MDString *CoverageFile = 4031 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile); 4032 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 4033 llvm::MDNode *CU = CUNode->getOperand(i); 4034 llvm::Metadata *Elts[] = {CoverageFile, CU}; 4035 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 4036 } 4037 } 4038 } 4039 } 4040 4041 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) { 4042 // Sema has checked that all uuid strings are of the form 4043 // "12345678-1234-1234-1234-1234567890ab". 4044 assert(Uuid.size() == 36); 4045 for (unsigned i = 0; i < 36; ++i) { 4046 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 4047 else assert(isHexDigit(Uuid[i])); 4048 } 4049 4050 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab". 4051 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 4052 4053 llvm::Constant *Field3[8]; 4054 for (unsigned Idx = 0; Idx < 8; ++Idx) 4055 Field3[Idx] = llvm::ConstantInt::get( 4056 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 4057 4058 llvm::Constant *Fields[4] = { 4059 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 4060 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 4061 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 4062 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 4063 }; 4064 4065 return llvm::ConstantStruct::getAnon(Fields); 4066 } 4067 4068 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 4069 bool ForEH) { 4070 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 4071 // FIXME: should we even be calling this method if RTTI is disabled 4072 // and it's not for EH? 4073 if (!ForEH && !getLangOpts().RTTI) 4074 return llvm::Constant::getNullValue(Int8PtrTy); 4075 4076 if (ForEH && Ty->isObjCObjectPointerType() && 4077 LangOpts.ObjCRuntime.isGNUFamily()) 4078 return ObjCRuntime->GetEHType(Ty); 4079 4080 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 4081 } 4082 4083 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 4084 for (auto RefExpr : D->varlists()) { 4085 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 4086 bool PerformInit = 4087 VD->getAnyInitializer() && 4088 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 4089 /*ForRef=*/false); 4090 4091 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 4092 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 4093 VD, Addr, RefExpr->getLocStart(), PerformInit)) 4094 CXXGlobalInits.push_back(InitFunction); 4095 } 4096 } 4097 4098 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 4099 llvm::Metadata *&InternalId = MetadataIdMap[T.getCanonicalType()]; 4100 if (InternalId) 4101 return InternalId; 4102 4103 if (isExternallyVisible(T->getLinkage())) { 4104 std::string OutName; 4105 llvm::raw_string_ostream Out(OutName); 4106 getCXXABI().getMangleContext().mangleTypeName(T, Out); 4107 4108 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 4109 } else { 4110 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 4111 llvm::ArrayRef<llvm::Metadata *>()); 4112 } 4113 4114 return InternalId; 4115 } 4116 4117 /// Returns whether this module needs the "all-vtables" bitset. 4118 bool CodeGenModule::NeedAllVtablesBitSet() const { 4119 // Returns true if at least one of vtable-based CFI checkers is enabled and 4120 // is not in the trapping mode. 4121 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 4122 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 4123 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 4124 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 4125 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 4126 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 4127 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 4128 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 4129 } 4130 4131 void CodeGenModule::CreateVTableBitSetEntry(llvm::NamedMDNode *BitsetsMD, 4132 llvm::GlobalVariable *VTable, 4133 CharUnits Offset, 4134 const CXXRecordDecl *RD) { 4135 llvm::Metadata *MD = 4136 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 4137 llvm::Metadata *BitsetOps[] = { 4138 MD, llvm::ConstantAsMetadata::get(VTable), 4139 llvm::ConstantAsMetadata::get( 4140 llvm::ConstantInt::get(Int64Ty, Offset.getQuantity()))}; 4141 BitsetsMD->addOperand(llvm::MDTuple::get(getLLVMContext(), BitsetOps)); 4142 4143 if (CodeGenOpts.SanitizeCfiCrossDso) { 4144 if (auto TypeId = CreateCfiIdForTypeMetadata(MD)) { 4145 llvm::Metadata *BitsetOps2[] = { 4146 llvm::ConstantAsMetadata::get(TypeId), 4147 llvm::ConstantAsMetadata::get(VTable), 4148 llvm::ConstantAsMetadata::get( 4149 llvm::ConstantInt::get(Int64Ty, Offset.getQuantity()))}; 4150 BitsetsMD->addOperand(llvm::MDTuple::get(getLLVMContext(), BitsetOps2)); 4151 } 4152 } 4153 4154 if (NeedAllVtablesBitSet()) { 4155 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 4156 llvm::Metadata *BitsetOps[] = { 4157 MD, llvm::ConstantAsMetadata::get(VTable), 4158 llvm::ConstantAsMetadata::get( 4159 llvm::ConstantInt::get(Int64Ty, Offset.getQuantity()))}; 4160 // Avoid adding a node to BitsetsMD twice. 4161 if (!llvm::MDTuple::getIfExists(getLLVMContext(), BitsetOps)) 4162 BitsetsMD->addOperand(llvm::MDTuple::get(getLLVMContext(), BitsetOps)); 4163 } 4164 } 4165 4166 // Fills in the supplied string map with the set of target features for the 4167 // passed in function. 4168 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap, 4169 const FunctionDecl *FD) { 4170 StringRef TargetCPU = Target.getTargetOpts().CPU; 4171 if (const auto *TD = FD->getAttr<TargetAttr>()) { 4172 // If we have a TargetAttr build up the feature map based on that. 4173 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 4174 4175 // Make a copy of the features as passed on the command line into the 4176 // beginning of the additional features from the function to override. 4177 ParsedAttr.first.insert(ParsedAttr.first.begin(), 4178 Target.getTargetOpts().FeaturesAsWritten.begin(), 4179 Target.getTargetOpts().FeaturesAsWritten.end()); 4180 4181 if (ParsedAttr.second != "") 4182 TargetCPU = ParsedAttr.second; 4183 4184 // Now populate the feature map, first with the TargetCPU which is either 4185 // the default or a new one from the target attribute string. Then we'll use 4186 // the passed in features (FeaturesAsWritten) along with the new ones from 4187 // the attribute. 4188 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, ParsedAttr.first); 4189 } else { 4190 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 4191 Target.getTargetOpts().Features); 4192 } 4193 } 4194 4195 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 4196 if (!SanStats) 4197 SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule()); 4198 4199 return *SanStats; 4200 } 4201