1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-module state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenModule.h" 14 #include "CGBlocks.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCall.h" 18 #include "CGDebugInfo.h" 19 #include "CGObjCRuntime.h" 20 #include "CGOpenCLRuntime.h" 21 #include "CGOpenMPRuntime.h" 22 #include "CGOpenMPRuntimeGPU.h" 23 #include "CodeGenFunction.h" 24 #include "CodeGenPGO.h" 25 #include "ConstantEmitter.h" 26 #include "CoverageMappingGen.h" 27 #include "TargetInfo.h" 28 #include "clang/AST/ASTContext.h" 29 #include "clang/AST/CharUnits.h" 30 #include "clang/AST/DeclCXX.h" 31 #include "clang/AST/DeclObjC.h" 32 #include "clang/AST/DeclTemplate.h" 33 #include "clang/AST/Mangle.h" 34 #include "clang/AST/RecordLayout.h" 35 #include "clang/AST/RecursiveASTVisitor.h" 36 #include "clang/AST/StmtVisitor.h" 37 #include "clang/Basic/Builtins.h" 38 #include "clang/Basic/CharInfo.h" 39 #include "clang/Basic/CodeGenOptions.h" 40 #include "clang/Basic/Diagnostic.h" 41 #include "clang/Basic/FileManager.h" 42 #include "clang/Basic/Module.h" 43 #include "clang/Basic/SourceManager.h" 44 #include "clang/Basic/TargetInfo.h" 45 #include "clang/Basic/Version.h" 46 #include "clang/CodeGen/ConstantInitBuilder.h" 47 #include "clang/Frontend/FrontendDiagnostic.h" 48 #include "llvm/ADT/StringSwitch.h" 49 #include "llvm/ADT/Triple.h" 50 #include "llvm/Analysis/TargetLibraryInfo.h" 51 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 52 #include "llvm/IR/CallingConv.h" 53 #include "llvm/IR/DataLayout.h" 54 #include "llvm/IR/Intrinsics.h" 55 #include "llvm/IR/LLVMContext.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/IR/ProfileSummary.h" 58 #include "llvm/ProfileData/InstrProfReader.h" 59 #include "llvm/Support/CodeGen.h" 60 #include "llvm/Support/CommandLine.h" 61 #include "llvm/Support/ConvertUTF.h" 62 #include "llvm/Support/ErrorHandling.h" 63 #include "llvm/Support/MD5.h" 64 #include "llvm/Support/TimeProfiler.h" 65 #include "llvm/Support/X86TargetParser.h" 66 67 using namespace clang; 68 using namespace CodeGen; 69 70 static llvm::cl::opt<bool> LimitedCoverage( 71 "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden, 72 llvm::cl::desc("Emit limited coverage mapping information (experimental)"), 73 llvm::cl::init(false)); 74 75 static const char AnnotationSection[] = "llvm.metadata"; 76 77 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 78 switch (CGM.getContext().getCXXABIKind()) { 79 case TargetCXXABI::AppleARM64: 80 case TargetCXXABI::Fuchsia: 81 case TargetCXXABI::GenericAArch64: 82 case TargetCXXABI::GenericARM: 83 case TargetCXXABI::iOS: 84 case TargetCXXABI::WatchOS: 85 case TargetCXXABI::GenericMIPS: 86 case TargetCXXABI::GenericItanium: 87 case TargetCXXABI::WebAssembly: 88 case TargetCXXABI::XL: 89 return CreateItaniumCXXABI(CGM); 90 case TargetCXXABI::Microsoft: 91 return CreateMicrosoftCXXABI(CGM); 92 } 93 94 llvm_unreachable("invalid C++ ABI kind"); 95 } 96 97 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 98 const PreprocessorOptions &PPO, 99 const CodeGenOptions &CGO, llvm::Module &M, 100 DiagnosticsEngine &diags, 101 CoverageSourceInfo *CoverageInfo) 102 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 103 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 104 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 105 VMContext(M.getContext()), Types(*this), VTables(*this), 106 SanitizerMD(new SanitizerMetadata(*this)) { 107 108 // Initialize the type cache. 109 llvm::LLVMContext &LLVMContext = M.getContext(); 110 VoidTy = llvm::Type::getVoidTy(LLVMContext); 111 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 112 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 113 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 114 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 115 HalfTy = llvm::Type::getHalfTy(LLVMContext); 116 BFloatTy = llvm::Type::getBFloatTy(LLVMContext); 117 FloatTy = llvm::Type::getFloatTy(LLVMContext); 118 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 119 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 120 PointerAlignInBytes = 121 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 122 SizeSizeInBytes = 123 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 124 IntAlignInBytes = 125 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 126 CharTy = 127 llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth()); 128 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 129 IntPtrTy = llvm::IntegerType::get(LLVMContext, 130 C.getTargetInfo().getMaxPointerWidth()); 131 Int8PtrTy = Int8Ty->getPointerTo(0); 132 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 133 const llvm::DataLayout &DL = M.getDataLayout(); 134 AllocaInt8PtrTy = Int8Ty->getPointerTo(DL.getAllocaAddrSpace()); 135 GlobalsInt8PtrTy = Int8Ty->getPointerTo(DL.getDefaultGlobalsAddressSpace()); 136 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 137 138 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 139 140 if (LangOpts.ObjC) 141 createObjCRuntime(); 142 if (LangOpts.OpenCL) 143 createOpenCLRuntime(); 144 if (LangOpts.OpenMP) 145 createOpenMPRuntime(); 146 if (LangOpts.CUDA) 147 createCUDARuntime(); 148 149 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 150 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 151 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 152 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(), 153 getCXXABI().getMangleContext())); 154 155 // If debug info or coverage generation is enabled, create the CGDebugInfo 156 // object. 157 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 158 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 159 DebugInfo.reset(new CGDebugInfo(*this)); 160 161 Block.GlobalUniqueCount = 0; 162 163 if (C.getLangOpts().ObjC) 164 ObjCData.reset(new ObjCEntrypoints()); 165 166 if (CodeGenOpts.hasProfileClangUse()) { 167 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 168 CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile); 169 if (auto E = ReaderOrErr.takeError()) { 170 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 171 "Could not read profile %0: %1"); 172 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) { 173 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 174 << EI.message(); 175 }); 176 } else 177 PGOReader = std::move(ReaderOrErr.get()); 178 } 179 180 // If coverage mapping generation is enabled, create the 181 // CoverageMappingModuleGen object. 182 if (CodeGenOpts.CoverageMapping) 183 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 184 185 // Generate the module name hash here if needed. 186 if (CodeGenOpts.UniqueInternalLinkageNames && 187 !getModule().getSourceFileName().empty()) { 188 std::string Path = getModule().getSourceFileName(); 189 // Check if a path substitution is needed from the MacroPrefixMap. 190 for (const auto &Entry : LangOpts.MacroPrefixMap) 191 if (Path.rfind(Entry.first, 0) != std::string::npos) { 192 Path = Entry.second + Path.substr(Entry.first.size()); 193 break; 194 } 195 llvm::MD5 Md5; 196 Md5.update(Path); 197 llvm::MD5::MD5Result R; 198 Md5.final(R); 199 SmallString<32> Str; 200 llvm::MD5::stringifyResult(R, Str); 201 // Convert MD5hash to Decimal. Demangler suffixes can either contain 202 // numbers or characters but not both. 203 llvm::APInt IntHash(128, Str.str(), 16); 204 // Prepend "__uniq" before the hash for tools like profilers to understand 205 // that this symbol is of internal linkage type. The "__uniq" is the 206 // pre-determined prefix that is used to tell tools that this symbol was 207 // created with -funique-internal-linakge-symbols and the tools can strip or 208 // keep the prefix as needed. 209 ModuleNameHash = (Twine(".__uniq.") + 210 Twine(toString(IntHash, /* Radix = */ 10, /* Signed = */false))).str(); 211 } 212 } 213 214 CodeGenModule::~CodeGenModule() {} 215 216 void CodeGenModule::createObjCRuntime() { 217 // This is just isGNUFamily(), but we want to force implementors of 218 // new ABIs to decide how best to do this. 219 switch (LangOpts.ObjCRuntime.getKind()) { 220 case ObjCRuntime::GNUstep: 221 case ObjCRuntime::GCC: 222 case ObjCRuntime::ObjFW: 223 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 224 return; 225 226 case ObjCRuntime::FragileMacOSX: 227 case ObjCRuntime::MacOSX: 228 case ObjCRuntime::iOS: 229 case ObjCRuntime::WatchOS: 230 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 231 return; 232 } 233 llvm_unreachable("bad runtime kind"); 234 } 235 236 void CodeGenModule::createOpenCLRuntime() { 237 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 238 } 239 240 void CodeGenModule::createOpenMPRuntime() { 241 // Select a specialized code generation class based on the target, if any. 242 // If it does not exist use the default implementation. 243 switch (getTriple().getArch()) { 244 case llvm::Triple::nvptx: 245 case llvm::Triple::nvptx64: 246 case llvm::Triple::amdgcn: 247 assert(getLangOpts().OpenMPIsDevice && 248 "OpenMP AMDGPU/NVPTX is only prepared to deal with device code."); 249 OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this)); 250 break; 251 default: 252 if (LangOpts.OpenMPSimd) 253 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 254 else 255 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 256 break; 257 } 258 } 259 260 void CodeGenModule::createCUDARuntime() { 261 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 262 } 263 264 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 265 Replacements[Name] = C; 266 } 267 268 void CodeGenModule::applyReplacements() { 269 for (auto &I : Replacements) { 270 StringRef MangledName = I.first(); 271 llvm::Constant *Replacement = I.second; 272 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 273 if (!Entry) 274 continue; 275 auto *OldF = cast<llvm::Function>(Entry); 276 auto *NewF = dyn_cast<llvm::Function>(Replacement); 277 if (!NewF) { 278 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 279 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 280 } else { 281 auto *CE = cast<llvm::ConstantExpr>(Replacement); 282 assert(CE->getOpcode() == llvm::Instruction::BitCast || 283 CE->getOpcode() == llvm::Instruction::GetElementPtr); 284 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 285 } 286 } 287 288 // Replace old with new, but keep the old order. 289 OldF->replaceAllUsesWith(Replacement); 290 if (NewF) { 291 NewF->removeFromParent(); 292 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 293 NewF); 294 } 295 OldF->eraseFromParent(); 296 } 297 } 298 299 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 300 GlobalValReplacements.push_back(std::make_pair(GV, C)); 301 } 302 303 void CodeGenModule::applyGlobalValReplacements() { 304 for (auto &I : GlobalValReplacements) { 305 llvm::GlobalValue *GV = I.first; 306 llvm::Constant *C = I.second; 307 308 GV->replaceAllUsesWith(C); 309 GV->eraseFromParent(); 310 } 311 } 312 313 // This is only used in aliases that we created and we know they have a 314 // linear structure. 315 static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) { 316 const llvm::Constant *C; 317 if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV)) 318 C = GA->getAliasee(); 319 else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV)) 320 C = GI->getResolver(); 321 else 322 return GV; 323 324 const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts()); 325 if (!AliaseeGV) 326 return nullptr; 327 328 const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject(); 329 if (FinalGV == GV) 330 return nullptr; 331 332 return FinalGV; 333 } 334 335 static bool checkAliasedGlobal(DiagnosticsEngine &Diags, 336 SourceLocation Location, bool IsIFunc, 337 const llvm::GlobalValue *Alias, 338 const llvm::GlobalValue *&GV) { 339 GV = getAliasedGlobal(Alias); 340 if (!GV) { 341 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 342 return false; 343 } 344 345 if (GV->isDeclaration()) { 346 Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc; 347 return false; 348 } 349 350 if (IsIFunc) { 351 // Check resolver function type. 352 const auto *F = dyn_cast<llvm::Function>(GV); 353 if (!F) { 354 Diags.Report(Location, diag::err_alias_to_undefined) 355 << IsIFunc << IsIFunc; 356 return false; 357 } 358 359 llvm::FunctionType *FTy = F->getFunctionType(); 360 if (!FTy->getReturnType()->isPointerTy()) { 361 Diags.Report(Location, diag::err_ifunc_resolver_return); 362 return false; 363 } 364 } 365 366 return true; 367 } 368 369 void CodeGenModule::checkAliases() { 370 // Check if the constructed aliases are well formed. It is really unfortunate 371 // that we have to do this in CodeGen, but we only construct mangled names 372 // and aliases during codegen. 373 bool Error = false; 374 DiagnosticsEngine &Diags = getDiags(); 375 for (const GlobalDecl &GD : Aliases) { 376 const auto *D = cast<ValueDecl>(GD.getDecl()); 377 SourceLocation Location; 378 bool IsIFunc = D->hasAttr<IFuncAttr>(); 379 if (const Attr *A = D->getDefiningAttr()) 380 Location = A->getLocation(); 381 else 382 llvm_unreachable("Not an alias or ifunc?"); 383 384 StringRef MangledName = getMangledName(GD); 385 llvm::GlobalValue *Alias = GetGlobalValue(MangledName); 386 const llvm::GlobalValue *GV = nullptr; 387 if (!checkAliasedGlobal(Diags, Location, IsIFunc, Alias, GV)) { 388 Error = true; 389 continue; 390 } 391 392 llvm::Constant *Aliasee = 393 IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver() 394 : cast<llvm::GlobalAlias>(Alias)->getAliasee(); 395 396 llvm::GlobalValue *AliaseeGV; 397 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 398 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 399 else 400 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 401 402 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 403 StringRef AliasSection = SA->getName(); 404 if (AliasSection != AliaseeGV->getSection()) 405 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 406 << AliasSection << IsIFunc << IsIFunc; 407 } 408 409 // We have to handle alias to weak aliases in here. LLVM itself disallows 410 // this since the object semantics would not match the IL one. For 411 // compatibility with gcc we implement it by just pointing the alias 412 // to its aliasee's aliasee. We also warn, since the user is probably 413 // expecting the link to be weak. 414 if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) { 415 if (GA->isInterposable()) { 416 Diags.Report(Location, diag::warn_alias_to_weak_alias) 417 << GV->getName() << GA->getName() << IsIFunc; 418 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 419 GA->getAliasee(), Alias->getType()); 420 421 if (IsIFunc) 422 cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee); 423 else 424 cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee); 425 } 426 } 427 } 428 if (!Error) 429 return; 430 431 for (const GlobalDecl &GD : Aliases) { 432 StringRef MangledName = getMangledName(GD); 433 llvm::GlobalValue *Alias = GetGlobalValue(MangledName); 434 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 435 Alias->eraseFromParent(); 436 } 437 } 438 439 void CodeGenModule::clear() { 440 DeferredDeclsToEmit.clear(); 441 if (OpenMPRuntime) 442 OpenMPRuntime->clear(); 443 } 444 445 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 446 StringRef MainFile) { 447 if (!hasDiagnostics()) 448 return; 449 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 450 if (MainFile.empty()) 451 MainFile = "<stdin>"; 452 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 453 } else { 454 if (Mismatched > 0) 455 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 456 457 if (Missing > 0) 458 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 459 } 460 } 461 462 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO, 463 llvm::Module &M) { 464 if (!LO.VisibilityFromDLLStorageClass) 465 return; 466 467 llvm::GlobalValue::VisibilityTypes DLLExportVisibility = 468 CodeGenModule::GetLLVMVisibility(LO.getDLLExportVisibility()); 469 llvm::GlobalValue::VisibilityTypes NoDLLStorageClassVisibility = 470 CodeGenModule::GetLLVMVisibility(LO.getNoDLLStorageClassVisibility()); 471 llvm::GlobalValue::VisibilityTypes ExternDeclDLLImportVisibility = 472 CodeGenModule::GetLLVMVisibility(LO.getExternDeclDLLImportVisibility()); 473 llvm::GlobalValue::VisibilityTypes ExternDeclNoDLLStorageClassVisibility = 474 CodeGenModule::GetLLVMVisibility( 475 LO.getExternDeclNoDLLStorageClassVisibility()); 476 477 for (llvm::GlobalValue &GV : M.global_values()) { 478 if (GV.hasAppendingLinkage() || GV.hasLocalLinkage()) 479 continue; 480 481 // Reset DSO locality before setting the visibility. This removes 482 // any effects that visibility options and annotations may have 483 // had on the DSO locality. Setting the visibility will implicitly set 484 // appropriate globals to DSO Local; however, this will be pessimistic 485 // w.r.t. to the normal compiler IRGen. 486 GV.setDSOLocal(false); 487 488 if (GV.isDeclarationForLinker()) { 489 GV.setVisibility(GV.getDLLStorageClass() == 490 llvm::GlobalValue::DLLImportStorageClass 491 ? ExternDeclDLLImportVisibility 492 : ExternDeclNoDLLStorageClassVisibility); 493 } else { 494 GV.setVisibility(GV.getDLLStorageClass() == 495 llvm::GlobalValue::DLLExportStorageClass 496 ? DLLExportVisibility 497 : NoDLLStorageClassVisibility); 498 } 499 500 GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 501 } 502 } 503 504 void CodeGenModule::Release() { 505 EmitDeferred(); 506 EmitVTablesOpportunistically(); 507 applyGlobalValReplacements(); 508 applyReplacements(); 509 checkAliases(); 510 emitMultiVersionFunctions(); 511 EmitCXXGlobalInitFunc(); 512 EmitCXXGlobalCleanUpFunc(); 513 registerGlobalDtorsWithAtExit(); 514 EmitCXXThreadLocalInitFunc(); 515 if (ObjCRuntime) 516 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 517 AddGlobalCtor(ObjCInitFunction); 518 if (Context.getLangOpts().CUDA && CUDARuntime) { 519 if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule()) 520 AddGlobalCtor(CudaCtorFunction); 521 } 522 if (OpenMPRuntime) { 523 if (llvm::Function *OpenMPRequiresDirectiveRegFun = 524 OpenMPRuntime->emitRequiresDirectiveRegFun()) { 525 AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0); 526 } 527 OpenMPRuntime->createOffloadEntriesAndInfoMetadata(); 528 OpenMPRuntime->clear(); 529 } 530 if (PGOReader) { 531 getModule().setProfileSummary( 532 PGOReader->getSummary(/* UseCS */ false).getMD(VMContext), 533 llvm::ProfileSummary::PSK_Instr); 534 if (PGOStats.hasDiagnostics()) 535 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 536 } 537 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 538 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 539 EmitGlobalAnnotations(); 540 EmitStaticExternCAliases(); 541 EmitDeferredUnusedCoverageMappings(); 542 CodeGenPGO(*this).setValueProfilingFlag(getModule()); 543 if (CoverageMapping) 544 CoverageMapping->emit(); 545 if (CodeGenOpts.SanitizeCfiCrossDso) { 546 CodeGenFunction(*this).EmitCfiCheckFail(); 547 CodeGenFunction(*this).EmitCfiCheckStub(); 548 } 549 emitAtAvailableLinkGuard(); 550 if (Context.getTargetInfo().getTriple().isWasm() && 551 !Context.getTargetInfo().getTriple().isOSEmscripten()) { 552 EmitMainVoidAlias(); 553 } 554 555 if (getTriple().isAMDGPU()) { 556 // Emit reference of __amdgpu_device_library_preserve_asan_functions to 557 // preserve ASAN functions in bitcode libraries. 558 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 559 auto *FT = llvm::FunctionType::get(VoidTy, {}); 560 auto *F = llvm::Function::Create( 561 FT, llvm::GlobalValue::ExternalLinkage, 562 "__amdgpu_device_library_preserve_asan_functions", &getModule()); 563 auto *Var = new llvm::GlobalVariable( 564 getModule(), FT->getPointerTo(), 565 /*isConstant=*/true, llvm::GlobalValue::WeakAnyLinkage, F, 566 "__amdgpu_device_library_preserve_asan_functions_ptr", nullptr, 567 llvm::GlobalVariable::NotThreadLocal); 568 addCompilerUsedGlobal(Var); 569 if (!getModule().getModuleFlag("amdgpu_hostcall")) { 570 getModule().addModuleFlag(llvm::Module::Override, "amdgpu_hostcall", 1); 571 } 572 } 573 // Emit amdgpu_code_object_version module flag, which is code object version 574 // times 100. 575 // ToDo: Enable module flag for all code object version when ROCm device 576 // library is ready. 577 if (getTarget().getTargetOpts().CodeObjectVersion == TargetOptions::COV_5) { 578 getModule().addModuleFlag(llvm::Module::Error, 579 "amdgpu_code_object_version", 580 getTarget().getTargetOpts().CodeObjectVersion); 581 } 582 } 583 584 emitLLVMUsed(); 585 if (SanStats) 586 SanStats->finish(); 587 588 if (CodeGenOpts.Autolink && 589 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 590 EmitModuleLinkOptions(); 591 } 592 593 // On ELF we pass the dependent library specifiers directly to the linker 594 // without manipulating them. This is in contrast to other platforms where 595 // they are mapped to a specific linker option by the compiler. This 596 // difference is a result of the greater variety of ELF linkers and the fact 597 // that ELF linkers tend to handle libraries in a more complicated fashion 598 // than on other platforms. This forces us to defer handling the dependent 599 // libs to the linker. 600 // 601 // CUDA/HIP device and host libraries are different. Currently there is no 602 // way to differentiate dependent libraries for host or device. Existing 603 // usage of #pragma comment(lib, *) is intended for host libraries on 604 // Windows. Therefore emit llvm.dependent-libraries only for host. 605 if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) { 606 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries"); 607 for (auto *MD : ELFDependentLibraries) 608 NMD->addOperand(MD); 609 } 610 611 // Record mregparm value now so it is visible through rest of codegen. 612 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 613 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 614 CodeGenOpts.NumRegisterParameters); 615 616 if (CodeGenOpts.DwarfVersion) { 617 getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version", 618 CodeGenOpts.DwarfVersion); 619 } 620 621 if (CodeGenOpts.Dwarf64) 622 getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1); 623 624 if (Context.getLangOpts().SemanticInterposition) 625 // Require various optimization to respect semantic interposition. 626 getModule().setSemanticInterposition(true); 627 628 if (CodeGenOpts.EmitCodeView) { 629 // Indicate that we want CodeView in the metadata. 630 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 631 } 632 if (CodeGenOpts.CodeViewGHash) { 633 getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1); 634 } 635 if (CodeGenOpts.ControlFlowGuard) { 636 // Function ID tables and checks for Control Flow Guard (cfguard=2). 637 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2); 638 } else if (CodeGenOpts.ControlFlowGuardNoChecks) { 639 // Function ID tables for Control Flow Guard (cfguard=1). 640 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1); 641 } 642 if (CodeGenOpts.EHContGuard) { 643 // Function ID tables for EH Continuation Guard. 644 getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1); 645 } 646 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 647 // We don't support LTO with 2 with different StrictVTablePointers 648 // FIXME: we could support it by stripping all the information introduced 649 // by StrictVTablePointers. 650 651 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 652 653 llvm::Metadata *Ops[2] = { 654 llvm::MDString::get(VMContext, "StrictVTablePointers"), 655 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 656 llvm::Type::getInt32Ty(VMContext), 1))}; 657 658 getModule().addModuleFlag(llvm::Module::Require, 659 "StrictVTablePointersRequirement", 660 llvm::MDNode::get(VMContext, Ops)); 661 } 662 if (getModuleDebugInfo()) 663 // We support a single version in the linked module. The LLVM 664 // parser will drop debug info with a different version number 665 // (and warn about it, too). 666 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 667 llvm::DEBUG_METADATA_VERSION); 668 669 // We need to record the widths of enums and wchar_t, so that we can generate 670 // the correct build attributes in the ARM backend. wchar_size is also used by 671 // TargetLibraryInfo. 672 uint64_t WCharWidth = 673 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 674 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 675 676 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 677 if ( Arch == llvm::Triple::arm 678 || Arch == llvm::Triple::armeb 679 || Arch == llvm::Triple::thumb 680 || Arch == llvm::Triple::thumbeb) { 681 // The minimum width of an enum in bytes 682 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 683 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 684 } 685 686 if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) { 687 StringRef ABIStr = Target.getABI(); 688 llvm::LLVMContext &Ctx = TheModule.getContext(); 689 getModule().addModuleFlag(llvm::Module::Error, "target-abi", 690 llvm::MDString::get(Ctx, ABIStr)); 691 } 692 693 if (CodeGenOpts.SanitizeCfiCrossDso) { 694 // Indicate that we want cross-DSO control flow integrity checks. 695 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 696 } 697 698 if (CodeGenOpts.WholeProgramVTables) { 699 // Indicate whether VFE was enabled for this module, so that the 700 // vcall_visibility metadata added under whole program vtables is handled 701 // appropriately in the optimizer. 702 getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim", 703 CodeGenOpts.VirtualFunctionElimination); 704 } 705 706 if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) { 707 getModule().addModuleFlag(llvm::Module::Override, 708 "CFI Canonical Jump Tables", 709 CodeGenOpts.SanitizeCfiCanonicalJumpTables); 710 } 711 712 if (CodeGenOpts.CFProtectionReturn && 713 Target.checkCFProtectionReturnSupported(getDiags())) { 714 // Indicate that we want to instrument return control flow protection. 715 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return", 716 1); 717 } 718 719 if (CodeGenOpts.CFProtectionBranch && 720 Target.checkCFProtectionBranchSupported(getDiags())) { 721 // Indicate that we want to instrument branch control flow protection. 722 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch", 723 1); 724 } 725 726 if (CodeGenOpts.IBTSeal) 727 getModule().addModuleFlag(llvm::Module::Override, "ibt-seal", 1); 728 729 // Add module metadata for return address signing (ignoring 730 // non-leaf/all) and stack tagging. These are actually turned on by function 731 // attributes, but we use module metadata to emit build attributes. This is 732 // needed for LTO, where the function attributes are inside bitcode 733 // serialised into a global variable by the time build attributes are 734 // emitted, so we can't access them. 735 if (Context.getTargetInfo().hasFeature("ptrauth") && 736 LangOpts.getSignReturnAddressScope() != 737 LangOptions::SignReturnAddressScopeKind::None) 738 getModule().addModuleFlag(llvm::Module::Override, 739 "sign-return-address-buildattr", 1); 740 if (LangOpts.Sanitize.has(SanitizerKind::MemTag)) 741 getModule().addModuleFlag(llvm::Module::Override, 742 "tag-stack-memory-buildattr", 1); 743 744 if (Arch == llvm::Triple::thumb || Arch == llvm::Triple::thumbeb || 745 Arch == llvm::Triple::arm || Arch == llvm::Triple::armeb || 746 Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 || 747 Arch == llvm::Triple::aarch64_be) { 748 getModule().addModuleFlag(llvm::Module::Error, "branch-target-enforcement", 749 LangOpts.BranchTargetEnforcement); 750 751 getModule().addModuleFlag(llvm::Module::Error, "sign-return-address", 752 LangOpts.hasSignReturnAddress()); 753 754 getModule().addModuleFlag(llvm::Module::Error, "sign-return-address-all", 755 LangOpts.isSignReturnAddressScopeAll()); 756 757 getModule().addModuleFlag(llvm::Module::Error, 758 "sign-return-address-with-bkey", 759 !LangOpts.isSignReturnAddressWithAKey()); 760 } 761 762 if (!CodeGenOpts.MemoryProfileOutput.empty()) { 763 llvm::LLVMContext &Ctx = TheModule.getContext(); 764 getModule().addModuleFlag( 765 llvm::Module::Error, "MemProfProfileFilename", 766 llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput)); 767 } 768 769 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 770 // Indicate whether __nvvm_reflect should be configured to flush denormal 771 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 772 // property.) 773 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 774 CodeGenOpts.FP32DenormalMode.Output != 775 llvm::DenormalMode::IEEE); 776 } 777 778 if (LangOpts.EHAsynch) 779 getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1); 780 781 // Indicate whether this Module was compiled with -fopenmp 782 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 783 getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP); 784 if (getLangOpts().OpenMPIsDevice) 785 getModule().addModuleFlag(llvm::Module::Max, "openmp-device", 786 LangOpts.OpenMP); 787 788 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 789 if (LangOpts.OpenCL) { 790 EmitOpenCLMetadata(); 791 // Emit SPIR version. 792 if (getTriple().isSPIR()) { 793 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 794 // opencl.spir.version named metadata. 795 // C++ for OpenCL has a distinct mapping for version compatibility with 796 // OpenCL. 797 auto Version = LangOpts.getOpenCLCompatibleVersion(); 798 llvm::Metadata *SPIRVerElts[] = { 799 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 800 Int32Ty, Version / 100)), 801 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 802 Int32Ty, (Version / 100 > 1) ? 0 : 2))}; 803 llvm::NamedMDNode *SPIRVerMD = 804 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 805 llvm::LLVMContext &Ctx = TheModule.getContext(); 806 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 807 } 808 } 809 810 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 811 assert(PLevel < 3 && "Invalid PIC Level"); 812 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 813 if (Context.getLangOpts().PIE) 814 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 815 } 816 817 if (getCodeGenOpts().CodeModel.size() > 0) { 818 unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel) 819 .Case("tiny", llvm::CodeModel::Tiny) 820 .Case("small", llvm::CodeModel::Small) 821 .Case("kernel", llvm::CodeModel::Kernel) 822 .Case("medium", llvm::CodeModel::Medium) 823 .Case("large", llvm::CodeModel::Large) 824 .Default(~0u); 825 if (CM != ~0u) { 826 llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM); 827 getModule().setCodeModel(codeModel); 828 } 829 } 830 831 if (CodeGenOpts.NoPLT) 832 getModule().setRtLibUseGOT(); 833 if (CodeGenOpts.UnwindTables) 834 getModule().setUwtable(); 835 836 switch (CodeGenOpts.getFramePointer()) { 837 case CodeGenOptions::FramePointerKind::None: 838 // 0 ("none") is the default. 839 break; 840 case CodeGenOptions::FramePointerKind::NonLeaf: 841 getModule().setFramePointer(llvm::FramePointerKind::NonLeaf); 842 break; 843 case CodeGenOptions::FramePointerKind::All: 844 getModule().setFramePointer(llvm::FramePointerKind::All); 845 break; 846 } 847 848 SimplifyPersonality(); 849 850 if (getCodeGenOpts().EmitDeclMetadata) 851 EmitDeclMetadata(); 852 853 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 854 EmitCoverageFile(); 855 856 if (CGDebugInfo *DI = getModuleDebugInfo()) 857 DI->finalize(); 858 859 if (getCodeGenOpts().EmitVersionIdentMetadata) 860 EmitVersionIdentMetadata(); 861 862 if (!getCodeGenOpts().RecordCommandLine.empty()) 863 EmitCommandLineMetadata(); 864 865 if (!getCodeGenOpts().StackProtectorGuard.empty()) 866 getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard); 867 if (!getCodeGenOpts().StackProtectorGuardReg.empty()) 868 getModule().setStackProtectorGuardReg( 869 getCodeGenOpts().StackProtectorGuardReg); 870 if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX) 871 getModule().setStackProtectorGuardOffset( 872 getCodeGenOpts().StackProtectorGuardOffset); 873 if (getCodeGenOpts().StackAlignment) 874 getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment); 875 if (getCodeGenOpts().SkipRaxSetup) 876 getModule().addModuleFlag(llvm::Module::Override, "SkipRaxSetup", 1); 877 878 getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames); 879 880 EmitBackendOptionsMetadata(getCodeGenOpts()); 881 882 // Set visibility from DLL storage class 883 // We do this at the end of LLVM IR generation; after any operation 884 // that might affect the DLL storage class or the visibility, and 885 // before anything that might act on these. 886 setVisibilityFromDLLStorageClass(LangOpts, getModule()); 887 } 888 889 void CodeGenModule::EmitOpenCLMetadata() { 890 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 891 // opencl.ocl.version named metadata node. 892 // C++ for OpenCL has a distinct mapping for versions compatibile with OpenCL. 893 auto Version = LangOpts.getOpenCLCompatibleVersion(); 894 llvm::Metadata *OCLVerElts[] = { 895 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 896 Int32Ty, Version / 100)), 897 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 898 Int32Ty, (Version % 100) / 10))}; 899 llvm::NamedMDNode *OCLVerMD = 900 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 901 llvm::LLVMContext &Ctx = TheModule.getContext(); 902 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 903 } 904 905 void CodeGenModule::EmitBackendOptionsMetadata( 906 const CodeGenOptions CodeGenOpts) { 907 switch (getTriple().getArch()) { 908 default: 909 break; 910 case llvm::Triple::riscv32: 911 case llvm::Triple::riscv64: 912 getModule().addModuleFlag(llvm::Module::Error, "SmallDataLimit", 913 CodeGenOpts.SmallDataLimit); 914 break; 915 } 916 } 917 918 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 919 // Make sure that this type is translated. 920 Types.UpdateCompletedType(TD); 921 } 922 923 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 924 // Make sure that this type is translated. 925 Types.RefreshTypeCacheForClass(RD); 926 } 927 928 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 929 if (!TBAA) 930 return nullptr; 931 return TBAA->getTypeInfo(QTy); 932 } 933 934 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 935 if (!TBAA) 936 return TBAAAccessInfo(); 937 if (getLangOpts().CUDAIsDevice) { 938 // As CUDA builtin surface/texture types are replaced, skip generating TBAA 939 // access info. 940 if (AccessType->isCUDADeviceBuiltinSurfaceType()) { 941 if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() != 942 nullptr) 943 return TBAAAccessInfo(); 944 } else if (AccessType->isCUDADeviceBuiltinTextureType()) { 945 if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() != 946 nullptr) 947 return TBAAAccessInfo(); 948 } 949 } 950 return TBAA->getAccessInfo(AccessType); 951 } 952 953 TBAAAccessInfo 954 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 955 if (!TBAA) 956 return TBAAAccessInfo(); 957 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 958 } 959 960 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 961 if (!TBAA) 962 return nullptr; 963 return TBAA->getTBAAStructInfo(QTy); 964 } 965 966 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 967 if (!TBAA) 968 return nullptr; 969 return TBAA->getBaseTypeInfo(QTy); 970 } 971 972 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 973 if (!TBAA) 974 return nullptr; 975 return TBAA->getAccessTagInfo(Info); 976 } 977 978 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 979 TBAAAccessInfo TargetInfo) { 980 if (!TBAA) 981 return TBAAAccessInfo(); 982 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 983 } 984 985 TBAAAccessInfo 986 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 987 TBAAAccessInfo InfoB) { 988 if (!TBAA) 989 return TBAAAccessInfo(); 990 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 991 } 992 993 TBAAAccessInfo 994 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, 995 TBAAAccessInfo SrcInfo) { 996 if (!TBAA) 997 return TBAAAccessInfo(); 998 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); 999 } 1000 1001 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 1002 TBAAAccessInfo TBAAInfo) { 1003 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 1004 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 1005 } 1006 1007 void CodeGenModule::DecorateInstructionWithInvariantGroup( 1008 llvm::Instruction *I, const CXXRecordDecl *RD) { 1009 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 1010 llvm::MDNode::get(getLLVMContext(), {})); 1011 } 1012 1013 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 1014 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 1015 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 1016 } 1017 1018 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1019 /// specified stmt yet. 1020 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 1021 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 1022 "cannot compile this %0 yet"); 1023 std::string Msg = Type; 1024 getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID) 1025 << Msg << S->getSourceRange(); 1026 } 1027 1028 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1029 /// specified decl yet. 1030 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 1031 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 1032 "cannot compile this %0 yet"); 1033 std::string Msg = Type; 1034 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 1035 } 1036 1037 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 1038 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 1039 } 1040 1041 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 1042 const NamedDecl *D) const { 1043 if (GV->hasDLLImportStorageClass()) 1044 return; 1045 // Internal definitions always have default visibility. 1046 if (GV->hasLocalLinkage()) { 1047 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1048 return; 1049 } 1050 if (!D) 1051 return; 1052 // Set visibility for definitions, and for declarations if requested globally 1053 // or set explicitly. 1054 LinkageInfo LV = D->getLinkageAndVisibility(); 1055 if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls || 1056 !GV->isDeclarationForLinker()) 1057 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 1058 } 1059 1060 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, 1061 llvm::GlobalValue *GV) { 1062 if (GV->hasLocalLinkage()) 1063 return true; 1064 1065 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()) 1066 return true; 1067 1068 // DLLImport explicitly marks the GV as external. 1069 if (GV->hasDLLImportStorageClass()) 1070 return false; 1071 1072 const llvm::Triple &TT = CGM.getTriple(); 1073 if (TT.isWindowsGNUEnvironment()) { 1074 // In MinGW, variables without DLLImport can still be automatically 1075 // imported from a DLL by the linker; don't mark variables that 1076 // potentially could come from another DLL as DSO local. 1077 1078 // With EmulatedTLS, TLS variables can be autoimported from other DLLs 1079 // (and this actually happens in the public interface of libstdc++), so 1080 // such variables can't be marked as DSO local. (Native TLS variables 1081 // can't be dllimported at all, though.) 1082 if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) && 1083 (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS)) 1084 return false; 1085 } 1086 1087 // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols 1088 // remain unresolved in the link, they can be resolved to zero, which is 1089 // outside the current DSO. 1090 if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage()) 1091 return false; 1092 1093 // Every other GV is local on COFF. 1094 // Make an exception for windows OS in the triple: Some firmware builds use 1095 // *-win32-macho triples. This (accidentally?) produced windows relocations 1096 // without GOT tables in older clang versions; Keep this behaviour. 1097 // FIXME: even thread local variables? 1098 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) 1099 return true; 1100 1101 // Only handle COFF and ELF for now. 1102 if (!TT.isOSBinFormatELF()) 1103 return false; 1104 1105 // If this is not an executable, don't assume anything is local. 1106 const auto &CGOpts = CGM.getCodeGenOpts(); 1107 llvm::Reloc::Model RM = CGOpts.RelocationModel; 1108 const auto &LOpts = CGM.getLangOpts(); 1109 if (RM != llvm::Reloc::Static && !LOpts.PIE) { 1110 // On ELF, if -fno-semantic-interposition is specified and the target 1111 // supports local aliases, there will be neither CC1 1112 // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set 1113 // dso_local on the function if using a local alias is preferable (can avoid 1114 // PLT indirection). 1115 if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias())) 1116 return false; 1117 return !(CGM.getLangOpts().SemanticInterposition || 1118 CGM.getLangOpts().HalfNoSemanticInterposition); 1119 } 1120 1121 // A definition cannot be preempted from an executable. 1122 if (!GV->isDeclarationForLinker()) 1123 return true; 1124 1125 // Most PIC code sequences that assume that a symbol is local cannot produce a 1126 // 0 if it turns out the symbol is undefined. While this is ABI and relocation 1127 // depended, it seems worth it to handle it here. 1128 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) 1129 return false; 1130 1131 // PowerPC64 prefers TOC indirection to avoid copy relocations. 1132 if (TT.isPPC64()) 1133 return false; 1134 1135 if (CGOpts.DirectAccessExternalData) { 1136 // If -fdirect-access-external-data (default for -fno-pic), set dso_local 1137 // for non-thread-local variables. If the symbol is not defined in the 1138 // executable, a copy relocation will be needed at link time. dso_local is 1139 // excluded for thread-local variables because they generally don't support 1140 // copy relocations. 1141 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV)) 1142 if (!Var->isThreadLocal()) 1143 return true; 1144 1145 // -fno-pic sets dso_local on a function declaration to allow direct 1146 // accesses when taking its address (similar to a data symbol). If the 1147 // function is not defined in the executable, a canonical PLT entry will be 1148 // needed at link time. -fno-direct-access-external-data can avoid the 1149 // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as 1150 // it could just cause trouble without providing perceptible benefits. 1151 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) 1152 return true; 1153 } 1154 1155 // If we can use copy relocations we can assume it is local. 1156 1157 // Otherwise don't assume it is local. 1158 return false; 1159 } 1160 1161 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { 1162 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV)); 1163 } 1164 1165 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1166 GlobalDecl GD) const { 1167 const auto *D = dyn_cast<NamedDecl>(GD.getDecl()); 1168 // C++ destructors have a few C++ ABI specific special cases. 1169 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) { 1170 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType()); 1171 return; 1172 } 1173 setDLLImportDLLExport(GV, D); 1174 } 1175 1176 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1177 const NamedDecl *D) const { 1178 if (D && D->isExternallyVisible()) { 1179 if (D->hasAttr<DLLImportAttr>()) 1180 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 1181 else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker()) 1182 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 1183 } 1184 } 1185 1186 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1187 GlobalDecl GD) const { 1188 setDLLImportDLLExport(GV, GD); 1189 setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl())); 1190 } 1191 1192 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1193 const NamedDecl *D) const { 1194 setDLLImportDLLExport(GV, D); 1195 setGVPropertiesAux(GV, D); 1196 } 1197 1198 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV, 1199 const NamedDecl *D) const { 1200 setGlobalVisibility(GV, D); 1201 setDSOLocal(GV); 1202 GV->setPartition(CodeGenOpts.SymbolPartition); 1203 } 1204 1205 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 1206 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 1207 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 1208 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 1209 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 1210 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 1211 } 1212 1213 llvm::GlobalVariable::ThreadLocalMode 1214 CodeGenModule::GetDefaultLLVMTLSModel() const { 1215 switch (CodeGenOpts.getDefaultTLSModel()) { 1216 case CodeGenOptions::GeneralDynamicTLSModel: 1217 return llvm::GlobalVariable::GeneralDynamicTLSModel; 1218 case CodeGenOptions::LocalDynamicTLSModel: 1219 return llvm::GlobalVariable::LocalDynamicTLSModel; 1220 case CodeGenOptions::InitialExecTLSModel: 1221 return llvm::GlobalVariable::InitialExecTLSModel; 1222 case CodeGenOptions::LocalExecTLSModel: 1223 return llvm::GlobalVariable::LocalExecTLSModel; 1224 } 1225 llvm_unreachable("Invalid TLS model!"); 1226 } 1227 1228 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 1229 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 1230 1231 llvm::GlobalValue::ThreadLocalMode TLM; 1232 TLM = GetDefaultLLVMTLSModel(); 1233 1234 // Override the TLS model if it is explicitly specified. 1235 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 1236 TLM = GetLLVMTLSModel(Attr->getModel()); 1237 } 1238 1239 GV->setThreadLocalMode(TLM); 1240 } 1241 1242 static std::string getCPUSpecificMangling(const CodeGenModule &CGM, 1243 StringRef Name) { 1244 const TargetInfo &Target = CGM.getTarget(); 1245 return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str(); 1246 } 1247 1248 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM, 1249 const CPUSpecificAttr *Attr, 1250 unsigned CPUIndex, 1251 raw_ostream &Out) { 1252 // cpu_specific gets the current name, dispatch gets the resolver if IFunc is 1253 // supported. 1254 if (Attr) 1255 Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName()); 1256 else if (CGM.getTarget().supportsIFunc()) 1257 Out << ".resolver"; 1258 } 1259 1260 static void AppendTargetMangling(const CodeGenModule &CGM, 1261 const TargetAttr *Attr, raw_ostream &Out) { 1262 if (Attr->isDefaultVersion()) 1263 return; 1264 1265 Out << '.'; 1266 const TargetInfo &Target = CGM.getTarget(); 1267 ParsedTargetAttr Info = 1268 Attr->parse([&Target](StringRef LHS, StringRef RHS) { 1269 // Multiversioning doesn't allow "no-${feature}", so we can 1270 // only have "+" prefixes here. 1271 assert(LHS.startswith("+") && RHS.startswith("+") && 1272 "Features should always have a prefix."); 1273 return Target.multiVersionSortPriority(LHS.substr(1)) > 1274 Target.multiVersionSortPriority(RHS.substr(1)); 1275 }); 1276 1277 bool IsFirst = true; 1278 1279 if (!Info.Architecture.empty()) { 1280 IsFirst = false; 1281 Out << "arch_" << Info.Architecture; 1282 } 1283 1284 for (StringRef Feat : Info.Features) { 1285 if (!IsFirst) 1286 Out << '_'; 1287 IsFirst = false; 1288 Out << Feat.substr(1); 1289 } 1290 } 1291 1292 // Returns true if GD is a function decl with internal linkage and 1293 // needs a unique suffix after the mangled name. 1294 static bool isUniqueInternalLinkageDecl(GlobalDecl GD, 1295 CodeGenModule &CGM) { 1296 const Decl *D = GD.getDecl(); 1297 return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) && 1298 (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage); 1299 } 1300 1301 static void AppendTargetClonesMangling(const CodeGenModule &CGM, 1302 const TargetClonesAttr *Attr, 1303 unsigned VersionIndex, 1304 raw_ostream &Out) { 1305 Out << '.'; 1306 StringRef FeatureStr = Attr->getFeatureStr(VersionIndex); 1307 if (FeatureStr.startswith("arch=")) 1308 Out << "arch_" << FeatureStr.substr(sizeof("arch=") - 1); 1309 else 1310 Out << FeatureStr; 1311 1312 Out << '.' << Attr->getMangledIndex(VersionIndex); 1313 } 1314 1315 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD, 1316 const NamedDecl *ND, 1317 bool OmitMultiVersionMangling = false) { 1318 SmallString<256> Buffer; 1319 llvm::raw_svector_ostream Out(Buffer); 1320 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 1321 if (!CGM.getModuleNameHash().empty()) 1322 MC.needsUniqueInternalLinkageNames(); 1323 bool ShouldMangle = MC.shouldMangleDeclName(ND); 1324 if (ShouldMangle) 1325 MC.mangleName(GD.getWithDecl(ND), Out); 1326 else { 1327 IdentifierInfo *II = ND->getIdentifier(); 1328 assert(II && "Attempt to mangle unnamed decl."); 1329 const auto *FD = dyn_cast<FunctionDecl>(ND); 1330 1331 if (FD && 1332 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 1333 Out << "__regcall3__" << II->getName(); 1334 } else if (FD && FD->hasAttr<CUDAGlobalAttr>() && 1335 GD.getKernelReferenceKind() == KernelReferenceKind::Stub) { 1336 Out << "__device_stub__" << II->getName(); 1337 } else { 1338 Out << II->getName(); 1339 } 1340 } 1341 1342 // Check if the module name hash should be appended for internal linkage 1343 // symbols. This should come before multi-version target suffixes are 1344 // appended. This is to keep the name and module hash suffix of the 1345 // internal linkage function together. The unique suffix should only be 1346 // added when name mangling is done to make sure that the final name can 1347 // be properly demangled. For example, for C functions without prototypes, 1348 // name mangling is not done and the unique suffix should not be appeneded 1349 // then. 1350 if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) { 1351 assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames && 1352 "Hash computed when not explicitly requested"); 1353 Out << CGM.getModuleNameHash(); 1354 } 1355 1356 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 1357 if (FD->isMultiVersion() && !OmitMultiVersionMangling) { 1358 switch (FD->getMultiVersionKind()) { 1359 case MultiVersionKind::CPUDispatch: 1360 case MultiVersionKind::CPUSpecific: 1361 AppendCPUSpecificCPUDispatchMangling(CGM, 1362 FD->getAttr<CPUSpecificAttr>(), 1363 GD.getMultiVersionIndex(), Out); 1364 break; 1365 case MultiVersionKind::Target: 1366 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out); 1367 break; 1368 case MultiVersionKind::TargetClones: 1369 AppendTargetClonesMangling(CGM, FD->getAttr<TargetClonesAttr>(), 1370 GD.getMultiVersionIndex(), Out); 1371 break; 1372 case MultiVersionKind::None: 1373 llvm_unreachable("None multiversion type isn't valid here"); 1374 } 1375 } 1376 1377 // Make unique name for device side static file-scope variable for HIP. 1378 if (CGM.getContext().shouldExternalizeStaticVar(ND) && 1379 CGM.getLangOpts().GPURelocatableDeviceCode && 1380 CGM.getLangOpts().CUDAIsDevice && !CGM.getLangOpts().CUID.empty()) 1381 CGM.printPostfixForExternalizedStaticVar(Out); 1382 return std::string(Out.str()); 1383 } 1384 1385 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 1386 const FunctionDecl *FD, 1387 StringRef &CurName) { 1388 if (!FD->isMultiVersion()) 1389 return; 1390 1391 // Get the name of what this would be without the 'target' attribute. This 1392 // allows us to lookup the version that was emitted when this wasn't a 1393 // multiversion function. 1394 std::string NonTargetName = 1395 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 1396 GlobalDecl OtherGD; 1397 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 1398 assert(OtherGD.getCanonicalDecl() 1399 .getDecl() 1400 ->getAsFunction() 1401 ->isMultiVersion() && 1402 "Other GD should now be a multiversioned function"); 1403 // OtherFD is the version of this function that was mangled BEFORE 1404 // becoming a MultiVersion function. It potentially needs to be updated. 1405 const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl() 1406 .getDecl() 1407 ->getAsFunction() 1408 ->getMostRecentDecl(); 1409 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 1410 // This is so that if the initial version was already the 'default' 1411 // version, we don't try to update it. 1412 if (OtherName != NonTargetName) { 1413 // Remove instead of erase, since others may have stored the StringRef 1414 // to this. 1415 const auto ExistingRecord = Manglings.find(NonTargetName); 1416 if (ExistingRecord != std::end(Manglings)) 1417 Manglings.remove(&(*ExistingRecord)); 1418 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 1419 StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] = 1420 Result.first->first(); 1421 // If this is the current decl is being created, make sure we update the name. 1422 if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl()) 1423 CurName = OtherNameRef; 1424 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 1425 Entry->setName(OtherName); 1426 } 1427 } 1428 } 1429 1430 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 1431 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 1432 1433 // Some ABIs don't have constructor variants. Make sure that base and 1434 // complete constructors get mangled the same. 1435 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 1436 if (!getTarget().getCXXABI().hasConstructorVariants()) { 1437 CXXCtorType OrigCtorType = GD.getCtorType(); 1438 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 1439 if (OrigCtorType == Ctor_Base) 1440 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 1441 } 1442 } 1443 1444 // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a 1445 // static device variable depends on whether the variable is referenced by 1446 // a host or device host function. Therefore the mangled name cannot be 1447 // cached. 1448 if (!LangOpts.CUDAIsDevice || 1449 !getContext().mayExternalizeStaticVar(GD.getDecl())) { 1450 auto FoundName = MangledDeclNames.find(CanonicalGD); 1451 if (FoundName != MangledDeclNames.end()) 1452 return FoundName->second; 1453 } 1454 1455 // Keep the first result in the case of a mangling collision. 1456 const auto *ND = cast<NamedDecl>(GD.getDecl()); 1457 std::string MangledName = getMangledNameImpl(*this, GD, ND); 1458 1459 // Ensure either we have different ABIs between host and device compilations, 1460 // says host compilation following MSVC ABI but device compilation follows 1461 // Itanium C++ ABI or, if they follow the same ABI, kernel names after 1462 // mangling should be the same after name stubbing. The later checking is 1463 // very important as the device kernel name being mangled in host-compilation 1464 // is used to resolve the device binaries to be executed. Inconsistent naming 1465 // result in undefined behavior. Even though we cannot check that naming 1466 // directly between host- and device-compilations, the host- and 1467 // device-mangling in host compilation could help catching certain ones. 1468 assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() || 1469 getLangOpts().CUDAIsDevice || 1470 (getContext().getAuxTargetInfo() && 1471 (getContext().getAuxTargetInfo()->getCXXABI() != 1472 getContext().getTargetInfo().getCXXABI())) || 1473 getCUDARuntime().getDeviceSideName(ND) == 1474 getMangledNameImpl( 1475 *this, 1476 GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel), 1477 ND)); 1478 1479 auto Result = Manglings.insert(std::make_pair(MangledName, GD)); 1480 return MangledDeclNames[CanonicalGD] = Result.first->first(); 1481 } 1482 1483 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 1484 const BlockDecl *BD) { 1485 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 1486 const Decl *D = GD.getDecl(); 1487 1488 SmallString<256> Buffer; 1489 llvm::raw_svector_ostream Out(Buffer); 1490 if (!D) 1491 MangleCtx.mangleGlobalBlock(BD, 1492 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 1493 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 1494 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 1495 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 1496 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 1497 else 1498 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 1499 1500 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 1501 return Result.first->first(); 1502 } 1503 1504 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 1505 return getModule().getNamedValue(Name); 1506 } 1507 1508 /// AddGlobalCtor - Add a function to the list that will be called before 1509 /// main() runs. 1510 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 1511 llvm::Constant *AssociatedData) { 1512 // FIXME: Type coercion of void()* types. 1513 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 1514 } 1515 1516 /// AddGlobalDtor - Add a function to the list that will be called 1517 /// when the module is unloaded. 1518 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority, 1519 bool IsDtorAttrFunc) { 1520 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit && 1521 (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) { 1522 DtorsUsingAtExit[Priority].push_back(Dtor); 1523 return; 1524 } 1525 1526 // FIXME: Type coercion of void()* types. 1527 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 1528 } 1529 1530 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 1531 if (Fns.empty()) return; 1532 1533 // Ctor function type is void()*. 1534 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 1535 llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy, 1536 TheModule.getDataLayout().getProgramAddressSpace()); 1537 1538 // Get the type of a ctor entry, { i32, void ()*, i8* }. 1539 llvm::StructType *CtorStructTy = llvm::StructType::get( 1540 Int32Ty, CtorPFTy, VoidPtrTy); 1541 1542 // Construct the constructor and destructor arrays. 1543 ConstantInitBuilder builder(*this); 1544 auto ctors = builder.beginArray(CtorStructTy); 1545 for (const auto &I : Fns) { 1546 auto ctor = ctors.beginStruct(CtorStructTy); 1547 ctor.addInt(Int32Ty, I.Priority); 1548 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 1549 if (I.AssociatedData) 1550 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 1551 else 1552 ctor.addNullPointer(VoidPtrTy); 1553 ctor.finishAndAddTo(ctors); 1554 } 1555 1556 auto list = 1557 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 1558 /*constant*/ false, 1559 llvm::GlobalValue::AppendingLinkage); 1560 1561 // The LTO linker doesn't seem to like it when we set an alignment 1562 // on appending variables. Take it off as a workaround. 1563 list->setAlignment(llvm::None); 1564 1565 Fns.clear(); 1566 } 1567 1568 llvm::GlobalValue::LinkageTypes 1569 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 1570 const auto *D = cast<FunctionDecl>(GD.getDecl()); 1571 1572 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 1573 1574 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D)) 1575 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType()); 1576 1577 if (isa<CXXConstructorDecl>(D) && 1578 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 1579 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 1580 // Our approach to inheriting constructors is fundamentally different from 1581 // that used by the MS ABI, so keep our inheriting constructor thunks 1582 // internal rather than trying to pick an unambiguous mangling for them. 1583 return llvm::GlobalValue::InternalLinkage; 1584 } 1585 1586 return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false); 1587 } 1588 1589 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 1590 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 1591 if (!MDS) return nullptr; 1592 1593 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 1594 } 1595 1596 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD, 1597 const CGFunctionInfo &Info, 1598 llvm::Function *F, bool IsThunk) { 1599 unsigned CallingConv; 1600 llvm::AttributeList PAL; 1601 ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, 1602 /*AttrOnCallSite=*/false, IsThunk); 1603 F->setAttributes(PAL); 1604 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 1605 } 1606 1607 static void removeImageAccessQualifier(std::string& TyName) { 1608 std::string ReadOnlyQual("__read_only"); 1609 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 1610 if (ReadOnlyPos != std::string::npos) 1611 // "+ 1" for the space after access qualifier. 1612 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 1613 else { 1614 std::string WriteOnlyQual("__write_only"); 1615 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 1616 if (WriteOnlyPos != std::string::npos) 1617 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 1618 else { 1619 std::string ReadWriteQual("__read_write"); 1620 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 1621 if (ReadWritePos != std::string::npos) 1622 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 1623 } 1624 } 1625 } 1626 1627 // Returns the address space id that should be produced to the 1628 // kernel_arg_addr_space metadata. This is always fixed to the ids 1629 // as specified in the SPIR 2.0 specification in order to differentiate 1630 // for example in clGetKernelArgInfo() implementation between the address 1631 // spaces with targets without unique mapping to the OpenCL address spaces 1632 // (basically all single AS CPUs). 1633 static unsigned ArgInfoAddressSpace(LangAS AS) { 1634 switch (AS) { 1635 case LangAS::opencl_global: 1636 return 1; 1637 case LangAS::opencl_constant: 1638 return 2; 1639 case LangAS::opencl_local: 1640 return 3; 1641 case LangAS::opencl_generic: 1642 return 4; // Not in SPIR 2.0 specs. 1643 case LangAS::opencl_global_device: 1644 return 5; 1645 case LangAS::opencl_global_host: 1646 return 6; 1647 default: 1648 return 0; // Assume private. 1649 } 1650 } 1651 1652 void CodeGenModule::GenOpenCLArgMetadata(llvm::Function *Fn, 1653 const FunctionDecl *FD, 1654 CodeGenFunction *CGF) { 1655 assert(((FD && CGF) || (!FD && !CGF)) && 1656 "Incorrect use - FD and CGF should either be both null or not!"); 1657 // Create MDNodes that represent the kernel arg metadata. 1658 // Each MDNode is a list in the form of "key", N number of values which is 1659 // the same number of values as their are kernel arguments. 1660 1661 const PrintingPolicy &Policy = Context.getPrintingPolicy(); 1662 1663 // MDNode for the kernel argument address space qualifiers. 1664 SmallVector<llvm::Metadata *, 8> addressQuals; 1665 1666 // MDNode for the kernel argument access qualifiers (images only). 1667 SmallVector<llvm::Metadata *, 8> accessQuals; 1668 1669 // MDNode for the kernel argument type names. 1670 SmallVector<llvm::Metadata *, 8> argTypeNames; 1671 1672 // MDNode for the kernel argument base type names. 1673 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 1674 1675 // MDNode for the kernel argument type qualifiers. 1676 SmallVector<llvm::Metadata *, 8> argTypeQuals; 1677 1678 // MDNode for the kernel argument names. 1679 SmallVector<llvm::Metadata *, 8> argNames; 1680 1681 if (FD && CGF) 1682 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 1683 const ParmVarDecl *parm = FD->getParamDecl(i); 1684 QualType ty = parm->getType(); 1685 std::string typeQuals; 1686 1687 // Get image and pipe access qualifier: 1688 if (ty->isImageType() || ty->isPipeType()) { 1689 const Decl *PDecl = parm; 1690 if (auto *TD = dyn_cast<TypedefType>(ty)) 1691 PDecl = TD->getDecl(); 1692 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>(); 1693 if (A && A->isWriteOnly()) 1694 accessQuals.push_back(llvm::MDString::get(VMContext, "write_only")); 1695 else if (A && A->isReadWrite()) 1696 accessQuals.push_back(llvm::MDString::get(VMContext, "read_write")); 1697 else 1698 accessQuals.push_back(llvm::MDString::get(VMContext, "read_only")); 1699 } else 1700 accessQuals.push_back(llvm::MDString::get(VMContext, "none")); 1701 1702 // Get argument name. 1703 argNames.push_back(llvm::MDString::get(VMContext, parm->getName())); 1704 1705 auto getTypeSpelling = [&](QualType Ty) { 1706 auto typeName = Ty.getUnqualifiedType().getAsString(Policy); 1707 1708 if (Ty.isCanonical()) { 1709 StringRef typeNameRef = typeName; 1710 // Turn "unsigned type" to "utype" 1711 if (typeNameRef.consume_front("unsigned ")) 1712 return std::string("u") + typeNameRef.str(); 1713 if (typeNameRef.consume_front("signed ")) 1714 return typeNameRef.str(); 1715 } 1716 1717 return typeName; 1718 }; 1719 1720 if (ty->isPointerType()) { 1721 QualType pointeeTy = ty->getPointeeType(); 1722 1723 // Get address qualifier. 1724 addressQuals.push_back( 1725 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32( 1726 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 1727 1728 // Get argument type name. 1729 std::string typeName = getTypeSpelling(pointeeTy) + "*"; 1730 std::string baseTypeName = 1731 getTypeSpelling(pointeeTy.getCanonicalType()) + "*"; 1732 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 1733 argBaseTypeNames.push_back( 1734 llvm::MDString::get(VMContext, baseTypeName)); 1735 1736 // Get argument type qualifiers: 1737 if (ty.isRestrictQualified()) 1738 typeQuals = "restrict"; 1739 if (pointeeTy.isConstQualified() || 1740 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 1741 typeQuals += typeQuals.empty() ? "const" : " const"; 1742 if (pointeeTy.isVolatileQualified()) 1743 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 1744 } else { 1745 uint32_t AddrSpc = 0; 1746 bool isPipe = ty->isPipeType(); 1747 if (ty->isImageType() || isPipe) 1748 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 1749 1750 addressQuals.push_back( 1751 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc))); 1752 1753 // Get argument type name. 1754 ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty; 1755 std::string typeName = getTypeSpelling(ty); 1756 std::string baseTypeName = getTypeSpelling(ty.getCanonicalType()); 1757 1758 // Remove access qualifiers on images 1759 // (as they are inseparable from type in clang implementation, 1760 // but OpenCL spec provides a special query to get access qualifier 1761 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 1762 if (ty->isImageType()) { 1763 removeImageAccessQualifier(typeName); 1764 removeImageAccessQualifier(baseTypeName); 1765 } 1766 1767 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 1768 argBaseTypeNames.push_back( 1769 llvm::MDString::get(VMContext, baseTypeName)); 1770 1771 if (isPipe) 1772 typeQuals = "pipe"; 1773 } 1774 argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals)); 1775 } 1776 1777 Fn->setMetadata("kernel_arg_addr_space", 1778 llvm::MDNode::get(VMContext, addressQuals)); 1779 Fn->setMetadata("kernel_arg_access_qual", 1780 llvm::MDNode::get(VMContext, accessQuals)); 1781 Fn->setMetadata("kernel_arg_type", 1782 llvm::MDNode::get(VMContext, argTypeNames)); 1783 Fn->setMetadata("kernel_arg_base_type", 1784 llvm::MDNode::get(VMContext, argBaseTypeNames)); 1785 Fn->setMetadata("kernel_arg_type_qual", 1786 llvm::MDNode::get(VMContext, argTypeQuals)); 1787 if (getCodeGenOpts().EmitOpenCLArgMetadata) 1788 Fn->setMetadata("kernel_arg_name", 1789 llvm::MDNode::get(VMContext, argNames)); 1790 } 1791 1792 /// Determines whether the language options require us to model 1793 /// unwind exceptions. We treat -fexceptions as mandating this 1794 /// except under the fragile ObjC ABI with only ObjC exceptions 1795 /// enabled. This means, for example, that C with -fexceptions 1796 /// enables this. 1797 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 1798 // If exceptions are completely disabled, obviously this is false. 1799 if (!LangOpts.Exceptions) return false; 1800 1801 // If C++ exceptions are enabled, this is true. 1802 if (LangOpts.CXXExceptions) return true; 1803 1804 // If ObjC exceptions are enabled, this depends on the ABI. 1805 if (LangOpts.ObjCExceptions) { 1806 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 1807 } 1808 1809 return true; 1810 } 1811 1812 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM, 1813 const CXXMethodDecl *MD) { 1814 // Check that the type metadata can ever actually be used by a call. 1815 if (!CGM.getCodeGenOpts().LTOUnit || 1816 !CGM.HasHiddenLTOVisibility(MD->getParent())) 1817 return false; 1818 1819 // Only functions whose address can be taken with a member function pointer 1820 // need this sort of type metadata. 1821 return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) && 1822 !isa<CXXDestructorDecl>(MD); 1823 } 1824 1825 std::vector<const CXXRecordDecl *> 1826 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) { 1827 llvm::SetVector<const CXXRecordDecl *> MostBases; 1828 1829 std::function<void (const CXXRecordDecl *)> CollectMostBases; 1830 CollectMostBases = [&](const CXXRecordDecl *RD) { 1831 if (RD->getNumBases() == 0) 1832 MostBases.insert(RD); 1833 for (const CXXBaseSpecifier &B : RD->bases()) 1834 CollectMostBases(B.getType()->getAsCXXRecordDecl()); 1835 }; 1836 CollectMostBases(RD); 1837 return MostBases.takeVector(); 1838 } 1839 1840 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 1841 llvm::Function *F) { 1842 llvm::AttrBuilder B(F->getContext()); 1843 1844 if (CodeGenOpts.UnwindTables) 1845 B.addAttribute(llvm::Attribute::UWTable); 1846 1847 if (CodeGenOpts.StackClashProtector) 1848 B.addAttribute("probe-stack", "inline-asm"); 1849 1850 if (!hasUnwindExceptions(LangOpts)) 1851 B.addAttribute(llvm::Attribute::NoUnwind); 1852 1853 if (!D || !D->hasAttr<NoStackProtectorAttr>()) { 1854 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 1855 B.addAttribute(llvm::Attribute::StackProtect); 1856 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 1857 B.addAttribute(llvm::Attribute::StackProtectStrong); 1858 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 1859 B.addAttribute(llvm::Attribute::StackProtectReq); 1860 } 1861 1862 if (!D) { 1863 // If we don't have a declaration to control inlining, the function isn't 1864 // explicitly marked as alwaysinline for semantic reasons, and inlining is 1865 // disabled, mark the function as noinline. 1866 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1867 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 1868 B.addAttribute(llvm::Attribute::NoInline); 1869 1870 F->addFnAttrs(B); 1871 return; 1872 } 1873 1874 // Track whether we need to add the optnone LLVM attribute, 1875 // starting with the default for this optimization level. 1876 bool ShouldAddOptNone = 1877 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 1878 // We can't add optnone in the following cases, it won't pass the verifier. 1879 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 1880 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 1881 1882 // Add optnone, but do so only if the function isn't always_inline. 1883 if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) && 1884 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1885 B.addAttribute(llvm::Attribute::OptimizeNone); 1886 1887 // OptimizeNone implies noinline; we should not be inlining such functions. 1888 B.addAttribute(llvm::Attribute::NoInline); 1889 1890 // We still need to handle naked functions even though optnone subsumes 1891 // much of their semantics. 1892 if (D->hasAttr<NakedAttr>()) 1893 B.addAttribute(llvm::Attribute::Naked); 1894 1895 // OptimizeNone wins over OptimizeForSize and MinSize. 1896 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 1897 F->removeFnAttr(llvm::Attribute::MinSize); 1898 } else if (D->hasAttr<NakedAttr>()) { 1899 // Naked implies noinline: we should not be inlining such functions. 1900 B.addAttribute(llvm::Attribute::Naked); 1901 B.addAttribute(llvm::Attribute::NoInline); 1902 } else if (D->hasAttr<NoDuplicateAttr>()) { 1903 B.addAttribute(llvm::Attribute::NoDuplicate); 1904 } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1905 // Add noinline if the function isn't always_inline. 1906 B.addAttribute(llvm::Attribute::NoInline); 1907 } else if (D->hasAttr<AlwaysInlineAttr>() && 1908 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 1909 // (noinline wins over always_inline, and we can't specify both in IR) 1910 B.addAttribute(llvm::Attribute::AlwaysInline); 1911 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 1912 // If we're not inlining, then force everything that isn't always_inline to 1913 // carry an explicit noinline attribute. 1914 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 1915 B.addAttribute(llvm::Attribute::NoInline); 1916 } else { 1917 // Otherwise, propagate the inline hint attribute and potentially use its 1918 // absence to mark things as noinline. 1919 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1920 // Search function and template pattern redeclarations for inline. 1921 auto CheckForInline = [](const FunctionDecl *FD) { 1922 auto CheckRedeclForInline = [](const FunctionDecl *Redecl) { 1923 return Redecl->isInlineSpecified(); 1924 }; 1925 if (any_of(FD->redecls(), CheckRedeclForInline)) 1926 return true; 1927 const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern(); 1928 if (!Pattern) 1929 return false; 1930 return any_of(Pattern->redecls(), CheckRedeclForInline); 1931 }; 1932 if (CheckForInline(FD)) { 1933 B.addAttribute(llvm::Attribute::InlineHint); 1934 } else if (CodeGenOpts.getInlining() == 1935 CodeGenOptions::OnlyHintInlining && 1936 !FD->isInlined() && 1937 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1938 B.addAttribute(llvm::Attribute::NoInline); 1939 } 1940 } 1941 } 1942 1943 // Add other optimization related attributes if we are optimizing this 1944 // function. 1945 if (!D->hasAttr<OptimizeNoneAttr>()) { 1946 if (D->hasAttr<ColdAttr>()) { 1947 if (!ShouldAddOptNone) 1948 B.addAttribute(llvm::Attribute::OptimizeForSize); 1949 B.addAttribute(llvm::Attribute::Cold); 1950 } 1951 if (D->hasAttr<HotAttr>()) 1952 B.addAttribute(llvm::Attribute::Hot); 1953 if (D->hasAttr<MinSizeAttr>()) 1954 B.addAttribute(llvm::Attribute::MinSize); 1955 } 1956 1957 F->addFnAttrs(B); 1958 1959 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 1960 if (alignment) 1961 F->setAlignment(llvm::Align(alignment)); 1962 1963 if (!D->hasAttr<AlignedAttr>()) 1964 if (LangOpts.FunctionAlignment) 1965 F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment)); 1966 1967 // Some C++ ABIs require 2-byte alignment for member functions, in order to 1968 // reserve a bit for differentiating between virtual and non-virtual member 1969 // functions. If the current target's C++ ABI requires this and this is a 1970 // member function, set its alignment accordingly. 1971 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 1972 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 1973 F->setAlignment(llvm::Align(2)); 1974 } 1975 1976 // In the cross-dso CFI mode with canonical jump tables, we want !type 1977 // attributes on definitions only. 1978 if (CodeGenOpts.SanitizeCfiCrossDso && 1979 CodeGenOpts.SanitizeCfiCanonicalJumpTables) { 1980 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1981 // Skip available_externally functions. They won't be codegen'ed in the 1982 // current module anyway. 1983 if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally) 1984 CreateFunctionTypeMetadataForIcall(FD, F); 1985 } 1986 } 1987 1988 // Emit type metadata on member functions for member function pointer checks. 1989 // These are only ever necessary on definitions; we're guaranteed that the 1990 // definition will be present in the LTO unit as a result of LTO visibility. 1991 auto *MD = dyn_cast<CXXMethodDecl>(D); 1992 if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) { 1993 for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) { 1994 llvm::Metadata *Id = 1995 CreateMetadataIdentifierForType(Context.getMemberPointerType( 1996 MD->getType(), Context.getRecordType(Base).getTypePtr())); 1997 F->addTypeMetadata(0, Id); 1998 } 1999 } 2000 } 2001 2002 void CodeGenModule::setLLVMFunctionFEnvAttributes(const FunctionDecl *D, 2003 llvm::Function *F) { 2004 if (D->hasAttr<StrictFPAttr>()) { 2005 llvm::AttrBuilder FuncAttrs(F->getContext()); 2006 FuncAttrs.addAttribute("strictfp"); 2007 F->addFnAttrs(FuncAttrs); 2008 } 2009 } 2010 2011 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { 2012 const Decl *D = GD.getDecl(); 2013 if (isa_and_nonnull<NamedDecl>(D)) 2014 setGVProperties(GV, GD); 2015 else 2016 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 2017 2018 if (D && D->hasAttr<UsedAttr>()) 2019 addUsedOrCompilerUsedGlobal(GV); 2020 2021 if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) { 2022 const auto *VD = cast<VarDecl>(D); 2023 if (VD->getType().isConstQualified() && 2024 VD->getStorageDuration() == SD_Static) 2025 addUsedOrCompilerUsedGlobal(GV); 2026 } 2027 } 2028 2029 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD, 2030 llvm::AttrBuilder &Attrs) { 2031 // Add target-cpu and target-features attributes to functions. If 2032 // we have a decl for the function and it has a target attribute then 2033 // parse that and add it to the feature set. 2034 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 2035 StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU; 2036 std::vector<std::string> Features; 2037 const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl()); 2038 FD = FD ? FD->getMostRecentDecl() : FD; 2039 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; 2040 const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr; 2041 const auto *TC = FD ? FD->getAttr<TargetClonesAttr>() : nullptr; 2042 bool AddedAttr = false; 2043 if (TD || SD || TC) { 2044 llvm::StringMap<bool> FeatureMap; 2045 getContext().getFunctionFeatureMap(FeatureMap, GD); 2046 2047 // Produce the canonical string for this set of features. 2048 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) 2049 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); 2050 2051 // Now add the target-cpu and target-features to the function. 2052 // While we populated the feature map above, we still need to 2053 // get and parse the target attribute so we can get the cpu for 2054 // the function. 2055 if (TD) { 2056 ParsedTargetAttr ParsedAttr = TD->parse(); 2057 if (!ParsedAttr.Architecture.empty() && 2058 getTarget().isValidCPUName(ParsedAttr.Architecture)) { 2059 TargetCPU = ParsedAttr.Architecture; 2060 TuneCPU = ""; // Clear the tune CPU. 2061 } 2062 if (!ParsedAttr.Tune.empty() && 2063 getTarget().isValidCPUName(ParsedAttr.Tune)) 2064 TuneCPU = ParsedAttr.Tune; 2065 } 2066 } else { 2067 // Otherwise just add the existing target cpu and target features to the 2068 // function. 2069 Features = getTarget().getTargetOpts().Features; 2070 } 2071 2072 if (!TargetCPU.empty()) { 2073 Attrs.addAttribute("target-cpu", TargetCPU); 2074 AddedAttr = true; 2075 } 2076 if (!TuneCPU.empty()) { 2077 Attrs.addAttribute("tune-cpu", TuneCPU); 2078 AddedAttr = true; 2079 } 2080 if (!Features.empty()) { 2081 llvm::sort(Features); 2082 Attrs.addAttribute("target-features", llvm::join(Features, ",")); 2083 AddedAttr = true; 2084 } 2085 2086 return AddedAttr; 2087 } 2088 2089 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD, 2090 llvm::GlobalObject *GO) { 2091 const Decl *D = GD.getDecl(); 2092 SetCommonAttributes(GD, GO); 2093 2094 if (D) { 2095 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 2096 if (D->hasAttr<RetainAttr>()) 2097 addUsedGlobal(GV); 2098 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 2099 GV->addAttribute("bss-section", SA->getName()); 2100 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 2101 GV->addAttribute("data-section", SA->getName()); 2102 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 2103 GV->addAttribute("rodata-section", SA->getName()); 2104 if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>()) 2105 GV->addAttribute("relro-section", SA->getName()); 2106 } 2107 2108 if (auto *F = dyn_cast<llvm::Function>(GO)) { 2109 if (D->hasAttr<RetainAttr>()) 2110 addUsedGlobal(F); 2111 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 2112 if (!D->getAttr<SectionAttr>()) 2113 F->addFnAttr("implicit-section-name", SA->getName()); 2114 2115 llvm::AttrBuilder Attrs(F->getContext()); 2116 if (GetCPUAndFeaturesAttributes(GD, Attrs)) { 2117 // We know that GetCPUAndFeaturesAttributes will always have the 2118 // newest set, since it has the newest possible FunctionDecl, so the 2119 // new ones should replace the old. 2120 llvm::AttributeMask RemoveAttrs; 2121 RemoveAttrs.addAttribute("target-cpu"); 2122 RemoveAttrs.addAttribute("target-features"); 2123 RemoveAttrs.addAttribute("tune-cpu"); 2124 F->removeFnAttrs(RemoveAttrs); 2125 F->addFnAttrs(Attrs); 2126 } 2127 } 2128 2129 if (const auto *CSA = D->getAttr<CodeSegAttr>()) 2130 GO->setSection(CSA->getName()); 2131 else if (const auto *SA = D->getAttr<SectionAttr>()) 2132 GO->setSection(SA->getName()); 2133 } 2134 2135 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 2136 } 2137 2138 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD, 2139 llvm::Function *F, 2140 const CGFunctionInfo &FI) { 2141 const Decl *D = GD.getDecl(); 2142 SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false); 2143 SetLLVMFunctionAttributesForDefinition(D, F); 2144 2145 F->setLinkage(llvm::Function::InternalLinkage); 2146 2147 setNonAliasAttributes(GD, F); 2148 } 2149 2150 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) { 2151 // Set linkage and visibility in case we never see a definition. 2152 LinkageInfo LV = ND->getLinkageAndVisibility(); 2153 // Don't set internal linkage on declarations. 2154 // "extern_weak" is overloaded in LLVM; we probably should have 2155 // separate linkage types for this. 2156 if (isExternallyVisible(LV.getLinkage()) && 2157 (ND->hasAttr<WeakAttr>() || ND->isWeakImported())) 2158 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 2159 } 2160 2161 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD, 2162 llvm::Function *F) { 2163 // Only if we are checking indirect calls. 2164 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 2165 return; 2166 2167 // Non-static class methods are handled via vtable or member function pointer 2168 // checks elsewhere. 2169 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 2170 return; 2171 2172 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 2173 F->addTypeMetadata(0, MD); 2174 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 2175 2176 // Emit a hash-based bit set entry for cross-DSO calls. 2177 if (CodeGenOpts.SanitizeCfiCrossDso) 2178 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 2179 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 2180 } 2181 2182 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 2183 bool IsIncompleteFunction, 2184 bool IsThunk) { 2185 2186 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 2187 // If this is an intrinsic function, set the function's attributes 2188 // to the intrinsic's attributes. 2189 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 2190 return; 2191 } 2192 2193 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2194 2195 if (!IsIncompleteFunction) 2196 SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F, 2197 IsThunk); 2198 2199 // Add the Returned attribute for "this", except for iOS 5 and earlier 2200 // where substantial code, including the libstdc++ dylib, was compiled with 2201 // GCC and does not actually return "this". 2202 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 2203 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 2204 assert(!F->arg_empty() && 2205 F->arg_begin()->getType() 2206 ->canLosslesslyBitCastTo(F->getReturnType()) && 2207 "unexpected this return"); 2208 F->addParamAttr(0, llvm::Attribute::Returned); 2209 } 2210 2211 // Only a few attributes are set on declarations; these may later be 2212 // overridden by a definition. 2213 2214 setLinkageForGV(F, FD); 2215 setGVProperties(F, FD); 2216 2217 // Setup target-specific attributes. 2218 if (!IsIncompleteFunction && F->isDeclaration()) 2219 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); 2220 2221 if (const auto *CSA = FD->getAttr<CodeSegAttr>()) 2222 F->setSection(CSA->getName()); 2223 else if (const auto *SA = FD->getAttr<SectionAttr>()) 2224 F->setSection(SA->getName()); 2225 2226 if (const auto *EA = FD->getAttr<ErrorAttr>()) { 2227 if (EA->isError()) 2228 F->addFnAttr("dontcall-error", EA->getUserDiagnostic()); 2229 else if (EA->isWarning()) 2230 F->addFnAttr("dontcall-warn", EA->getUserDiagnostic()); 2231 } 2232 2233 // If we plan on emitting this inline builtin, we can't treat it as a builtin. 2234 if (FD->isInlineBuiltinDeclaration()) { 2235 const FunctionDecl *FDBody; 2236 bool HasBody = FD->hasBody(FDBody); 2237 (void)HasBody; 2238 assert(HasBody && "Inline builtin declarations should always have an " 2239 "available body!"); 2240 if (shouldEmitFunction(FDBody)) 2241 F->addFnAttr(llvm::Attribute::NoBuiltin); 2242 } 2243 2244 if (FD->isReplaceableGlobalAllocationFunction()) { 2245 // A replaceable global allocation function does not act like a builtin by 2246 // default, only if it is invoked by a new-expression or delete-expression. 2247 F->addFnAttr(llvm::Attribute::NoBuiltin); 2248 } 2249 2250 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 2251 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2252 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 2253 if (MD->isVirtual()) 2254 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2255 2256 // Don't emit entries for function declarations in the cross-DSO mode. This 2257 // is handled with better precision by the receiving DSO. But if jump tables 2258 // are non-canonical then we need type metadata in order to produce the local 2259 // jump table. 2260 if (!CodeGenOpts.SanitizeCfiCrossDso || 2261 !CodeGenOpts.SanitizeCfiCanonicalJumpTables) 2262 CreateFunctionTypeMetadataForIcall(FD, F); 2263 2264 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 2265 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 2266 2267 if (const auto *CB = FD->getAttr<CallbackAttr>()) { 2268 // Annotate the callback behavior as metadata: 2269 // - The callback callee (as argument number). 2270 // - The callback payloads (as argument numbers). 2271 llvm::LLVMContext &Ctx = F->getContext(); 2272 llvm::MDBuilder MDB(Ctx); 2273 2274 // The payload indices are all but the first one in the encoding. The first 2275 // identifies the callback callee. 2276 int CalleeIdx = *CB->encoding_begin(); 2277 ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end()); 2278 F->addMetadata(llvm::LLVMContext::MD_callback, 2279 *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding( 2280 CalleeIdx, PayloadIndices, 2281 /* VarArgsArePassed */ false)})); 2282 } 2283 } 2284 2285 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 2286 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2287 "Only globals with definition can force usage."); 2288 LLVMUsed.emplace_back(GV); 2289 } 2290 2291 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 2292 assert(!GV->isDeclaration() && 2293 "Only globals with definition can force usage."); 2294 LLVMCompilerUsed.emplace_back(GV); 2295 } 2296 2297 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) { 2298 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2299 "Only globals with definition can force usage."); 2300 if (getTriple().isOSBinFormatELF()) 2301 LLVMCompilerUsed.emplace_back(GV); 2302 else 2303 LLVMUsed.emplace_back(GV); 2304 } 2305 2306 static void emitUsed(CodeGenModule &CGM, StringRef Name, 2307 std::vector<llvm::WeakTrackingVH> &List) { 2308 // Don't create llvm.used if there is no need. 2309 if (List.empty()) 2310 return; 2311 2312 // Convert List to what ConstantArray needs. 2313 SmallVector<llvm::Constant*, 8> UsedArray; 2314 UsedArray.resize(List.size()); 2315 for (unsigned i = 0, e = List.size(); i != e; ++i) { 2316 UsedArray[i] = 2317 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 2318 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 2319 } 2320 2321 if (UsedArray.empty()) 2322 return; 2323 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 2324 2325 auto *GV = new llvm::GlobalVariable( 2326 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 2327 llvm::ConstantArray::get(ATy, UsedArray), Name); 2328 2329 GV->setSection("llvm.metadata"); 2330 } 2331 2332 void CodeGenModule::emitLLVMUsed() { 2333 emitUsed(*this, "llvm.used", LLVMUsed); 2334 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 2335 } 2336 2337 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 2338 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 2339 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2340 } 2341 2342 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 2343 llvm::SmallString<32> Opt; 2344 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 2345 if (Opt.empty()) 2346 return; 2347 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2348 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2349 } 2350 2351 void CodeGenModule::AddDependentLib(StringRef Lib) { 2352 auto &C = getLLVMContext(); 2353 if (getTarget().getTriple().isOSBinFormatELF()) { 2354 ELFDependentLibraries.push_back( 2355 llvm::MDNode::get(C, llvm::MDString::get(C, Lib))); 2356 return; 2357 } 2358 2359 llvm::SmallString<24> Opt; 2360 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 2361 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2362 LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts)); 2363 } 2364 2365 /// Add link options implied by the given module, including modules 2366 /// it depends on, using a postorder walk. 2367 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 2368 SmallVectorImpl<llvm::MDNode *> &Metadata, 2369 llvm::SmallPtrSet<Module *, 16> &Visited) { 2370 // Import this module's parent. 2371 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 2372 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 2373 } 2374 2375 // Import this module's dependencies. 2376 for (Module *Import : llvm::reverse(Mod->Imports)) { 2377 if (Visited.insert(Import).second) 2378 addLinkOptionsPostorder(CGM, Import, Metadata, Visited); 2379 } 2380 2381 // Add linker options to link against the libraries/frameworks 2382 // described by this module. 2383 llvm::LLVMContext &Context = CGM.getLLVMContext(); 2384 bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF(); 2385 2386 // For modules that use export_as for linking, use that module 2387 // name instead. 2388 if (Mod->UseExportAsModuleLinkName) 2389 return; 2390 2391 for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) { 2392 // Link against a framework. Frameworks are currently Darwin only, so we 2393 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 2394 if (LL.IsFramework) { 2395 llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"), 2396 llvm::MDString::get(Context, LL.Library)}; 2397 2398 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2399 continue; 2400 } 2401 2402 // Link against a library. 2403 if (IsELF) { 2404 llvm::Metadata *Args[2] = { 2405 llvm::MDString::get(Context, "lib"), 2406 llvm::MDString::get(Context, LL.Library), 2407 }; 2408 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2409 } else { 2410 llvm::SmallString<24> Opt; 2411 CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt); 2412 auto *OptString = llvm::MDString::get(Context, Opt); 2413 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 2414 } 2415 } 2416 } 2417 2418 void CodeGenModule::EmitModuleLinkOptions() { 2419 // Collect the set of all of the modules we want to visit to emit link 2420 // options, which is essentially the imported modules and all of their 2421 // non-explicit child modules. 2422 llvm::SetVector<clang::Module *> LinkModules; 2423 llvm::SmallPtrSet<clang::Module *, 16> Visited; 2424 SmallVector<clang::Module *, 16> Stack; 2425 2426 // Seed the stack with imported modules. 2427 for (Module *M : ImportedModules) { 2428 // Do not add any link flags when an implementation TU of a module imports 2429 // a header of that same module. 2430 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 2431 !getLangOpts().isCompilingModule()) 2432 continue; 2433 if (Visited.insert(M).second) 2434 Stack.push_back(M); 2435 } 2436 2437 // Find all of the modules to import, making a little effort to prune 2438 // non-leaf modules. 2439 while (!Stack.empty()) { 2440 clang::Module *Mod = Stack.pop_back_val(); 2441 2442 bool AnyChildren = false; 2443 2444 // Visit the submodules of this module. 2445 for (const auto &SM : Mod->submodules()) { 2446 // Skip explicit children; they need to be explicitly imported to be 2447 // linked against. 2448 if (SM->IsExplicit) 2449 continue; 2450 2451 if (Visited.insert(SM).second) { 2452 Stack.push_back(SM); 2453 AnyChildren = true; 2454 } 2455 } 2456 2457 // We didn't find any children, so add this module to the list of 2458 // modules to link against. 2459 if (!AnyChildren) { 2460 LinkModules.insert(Mod); 2461 } 2462 } 2463 2464 // Add link options for all of the imported modules in reverse topological 2465 // order. We don't do anything to try to order import link flags with respect 2466 // to linker options inserted by things like #pragma comment(). 2467 SmallVector<llvm::MDNode *, 16> MetadataArgs; 2468 Visited.clear(); 2469 for (Module *M : LinkModules) 2470 if (Visited.insert(M).second) 2471 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 2472 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 2473 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 2474 2475 // Add the linker options metadata flag. 2476 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 2477 for (auto *MD : LinkerOptionsMetadata) 2478 NMD->addOperand(MD); 2479 } 2480 2481 void CodeGenModule::EmitDeferred() { 2482 // Emit deferred declare target declarations. 2483 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 2484 getOpenMPRuntime().emitDeferredTargetDecls(); 2485 2486 // Emit code for any potentially referenced deferred decls. Since a 2487 // previously unused static decl may become used during the generation of code 2488 // for a static function, iterate until no changes are made. 2489 2490 if (!DeferredVTables.empty()) { 2491 EmitDeferredVTables(); 2492 2493 // Emitting a vtable doesn't directly cause more vtables to 2494 // become deferred, although it can cause functions to be 2495 // emitted that then need those vtables. 2496 assert(DeferredVTables.empty()); 2497 } 2498 2499 // Emit CUDA/HIP static device variables referenced by host code only. 2500 // Note we should not clear CUDADeviceVarODRUsedByHost since it is still 2501 // needed for further handling. 2502 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) 2503 for (const auto *V : getContext().CUDADeviceVarODRUsedByHost) 2504 DeferredDeclsToEmit.push_back(V); 2505 2506 // Stop if we're out of both deferred vtables and deferred declarations. 2507 if (DeferredDeclsToEmit.empty()) 2508 return; 2509 2510 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 2511 // work, it will not interfere with this. 2512 std::vector<GlobalDecl> CurDeclsToEmit; 2513 CurDeclsToEmit.swap(DeferredDeclsToEmit); 2514 2515 for (GlobalDecl &D : CurDeclsToEmit) { 2516 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 2517 // to get GlobalValue with exactly the type we need, not something that 2518 // might had been created for another decl with the same mangled name but 2519 // different type. 2520 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 2521 GetAddrOfGlobal(D, ForDefinition)); 2522 2523 // In case of different address spaces, we may still get a cast, even with 2524 // IsForDefinition equal to true. Query mangled names table to get 2525 // GlobalValue. 2526 if (!GV) 2527 GV = GetGlobalValue(getMangledName(D)); 2528 2529 // Make sure GetGlobalValue returned non-null. 2530 assert(GV); 2531 2532 // Check to see if we've already emitted this. This is necessary 2533 // for a couple of reasons: first, decls can end up in the 2534 // deferred-decls queue multiple times, and second, decls can end 2535 // up with definitions in unusual ways (e.g. by an extern inline 2536 // function acquiring a strong function redefinition). Just 2537 // ignore these cases. 2538 if (!GV->isDeclaration()) 2539 continue; 2540 2541 // If this is OpenMP, check if it is legal to emit this global normally. 2542 if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D)) 2543 continue; 2544 2545 // Otherwise, emit the definition and move on to the next one. 2546 EmitGlobalDefinition(D, GV); 2547 2548 // If we found out that we need to emit more decls, do that recursively. 2549 // This has the advantage that the decls are emitted in a DFS and related 2550 // ones are close together, which is convenient for testing. 2551 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 2552 EmitDeferred(); 2553 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 2554 } 2555 } 2556 } 2557 2558 void CodeGenModule::EmitVTablesOpportunistically() { 2559 // Try to emit external vtables as available_externally if they have emitted 2560 // all inlined virtual functions. It runs after EmitDeferred() and therefore 2561 // is not allowed to create new references to things that need to be emitted 2562 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 2563 2564 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 2565 && "Only emit opportunistic vtables with optimizations"); 2566 2567 for (const CXXRecordDecl *RD : OpportunisticVTables) { 2568 assert(getVTables().isVTableExternal(RD) && 2569 "This queue should only contain external vtables"); 2570 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 2571 VTables.GenerateClassData(RD); 2572 } 2573 OpportunisticVTables.clear(); 2574 } 2575 2576 void CodeGenModule::EmitGlobalAnnotations() { 2577 if (Annotations.empty()) 2578 return; 2579 2580 // Create a new global variable for the ConstantStruct in the Module. 2581 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 2582 Annotations[0]->getType(), Annotations.size()), Annotations); 2583 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 2584 llvm::GlobalValue::AppendingLinkage, 2585 Array, "llvm.global.annotations"); 2586 gv->setSection(AnnotationSection); 2587 } 2588 2589 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 2590 llvm::Constant *&AStr = AnnotationStrings[Str]; 2591 if (AStr) 2592 return AStr; 2593 2594 // Not found yet, create a new global. 2595 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 2596 auto *gv = 2597 new llvm::GlobalVariable(getModule(), s->getType(), true, 2598 llvm::GlobalValue::PrivateLinkage, s, ".str"); 2599 gv->setSection(AnnotationSection); 2600 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2601 AStr = gv; 2602 return gv; 2603 } 2604 2605 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 2606 SourceManager &SM = getContext().getSourceManager(); 2607 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 2608 if (PLoc.isValid()) 2609 return EmitAnnotationString(PLoc.getFilename()); 2610 return EmitAnnotationString(SM.getBufferName(Loc)); 2611 } 2612 2613 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 2614 SourceManager &SM = getContext().getSourceManager(); 2615 PresumedLoc PLoc = SM.getPresumedLoc(L); 2616 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 2617 SM.getExpansionLineNumber(L); 2618 return llvm::ConstantInt::get(Int32Ty, LineNo); 2619 } 2620 2621 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) { 2622 ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()}; 2623 if (Exprs.empty()) 2624 return llvm::ConstantPointerNull::get(GlobalsInt8PtrTy); 2625 2626 llvm::FoldingSetNodeID ID; 2627 for (Expr *E : Exprs) { 2628 ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult()); 2629 } 2630 llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()]; 2631 if (Lookup) 2632 return Lookup; 2633 2634 llvm::SmallVector<llvm::Constant *, 4> LLVMArgs; 2635 LLVMArgs.reserve(Exprs.size()); 2636 ConstantEmitter ConstEmiter(*this); 2637 llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) { 2638 const auto *CE = cast<clang::ConstantExpr>(E); 2639 return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(), 2640 CE->getType()); 2641 }); 2642 auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs); 2643 auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true, 2644 llvm::GlobalValue::PrivateLinkage, Struct, 2645 ".args"); 2646 GV->setSection(AnnotationSection); 2647 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2648 auto *Bitcasted = llvm::ConstantExpr::getBitCast(GV, GlobalsInt8PtrTy); 2649 2650 Lookup = Bitcasted; 2651 return Bitcasted; 2652 } 2653 2654 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 2655 const AnnotateAttr *AA, 2656 SourceLocation L) { 2657 // Get the globals for file name, annotation, and the line number. 2658 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 2659 *UnitGV = EmitAnnotationUnit(L), 2660 *LineNoCst = EmitAnnotationLineNo(L), 2661 *Args = EmitAnnotationArgs(AA); 2662 2663 llvm::Constant *GVInGlobalsAS = GV; 2664 if (GV->getAddressSpace() != 2665 getDataLayout().getDefaultGlobalsAddressSpace()) { 2666 GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast( 2667 GV, GV->getValueType()->getPointerTo( 2668 getDataLayout().getDefaultGlobalsAddressSpace())); 2669 } 2670 2671 // Create the ConstantStruct for the global annotation. 2672 llvm::Constant *Fields[] = { 2673 llvm::ConstantExpr::getBitCast(GVInGlobalsAS, GlobalsInt8PtrTy), 2674 llvm::ConstantExpr::getBitCast(AnnoGV, GlobalsInt8PtrTy), 2675 llvm::ConstantExpr::getBitCast(UnitGV, GlobalsInt8PtrTy), 2676 LineNoCst, 2677 Args, 2678 }; 2679 return llvm::ConstantStruct::getAnon(Fields); 2680 } 2681 2682 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 2683 llvm::GlobalValue *GV) { 2684 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2685 // Get the struct elements for these annotations. 2686 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2687 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 2688 } 2689 2690 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn, 2691 SourceLocation Loc) const { 2692 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 2693 // NoSanitize by function name. 2694 if (NoSanitizeL.containsFunction(Kind, Fn->getName())) 2695 return true; 2696 // NoSanitize by location. 2697 if (Loc.isValid()) 2698 return NoSanitizeL.containsLocation(Kind, Loc); 2699 // If location is unknown, this may be a compiler-generated function. Assume 2700 // it's located in the main file. 2701 auto &SM = Context.getSourceManager(); 2702 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 2703 return NoSanitizeL.containsFile(Kind, MainFile->getName()); 2704 } 2705 return false; 2706 } 2707 2708 bool CodeGenModule::isInNoSanitizeList(llvm::GlobalVariable *GV, 2709 SourceLocation Loc, QualType Ty, 2710 StringRef Category) const { 2711 // For now globals can be ignored only in ASan and KASan. 2712 const SanitizerMask EnabledAsanMask = 2713 LangOpts.Sanitize.Mask & 2714 (SanitizerKind::Address | SanitizerKind::KernelAddress | 2715 SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress | 2716 SanitizerKind::MemTag); 2717 if (!EnabledAsanMask) 2718 return false; 2719 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 2720 if (NoSanitizeL.containsGlobal(EnabledAsanMask, GV->getName(), Category)) 2721 return true; 2722 if (NoSanitizeL.containsLocation(EnabledAsanMask, Loc, Category)) 2723 return true; 2724 // Check global type. 2725 if (!Ty.isNull()) { 2726 // Drill down the array types: if global variable of a fixed type is 2727 // not sanitized, we also don't instrument arrays of them. 2728 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 2729 Ty = AT->getElementType(); 2730 Ty = Ty.getCanonicalType().getUnqualifiedType(); 2731 // Only record types (classes, structs etc.) are ignored. 2732 if (Ty->isRecordType()) { 2733 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 2734 if (NoSanitizeL.containsType(EnabledAsanMask, TypeStr, Category)) 2735 return true; 2736 } 2737 } 2738 return false; 2739 } 2740 2741 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 2742 StringRef Category) const { 2743 const auto &XRayFilter = getContext().getXRayFilter(); 2744 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 2745 auto Attr = ImbueAttr::NONE; 2746 if (Loc.isValid()) 2747 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 2748 if (Attr == ImbueAttr::NONE) 2749 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 2750 switch (Attr) { 2751 case ImbueAttr::NONE: 2752 return false; 2753 case ImbueAttr::ALWAYS: 2754 Fn->addFnAttr("function-instrument", "xray-always"); 2755 break; 2756 case ImbueAttr::ALWAYS_ARG1: 2757 Fn->addFnAttr("function-instrument", "xray-always"); 2758 Fn->addFnAttr("xray-log-args", "1"); 2759 break; 2760 case ImbueAttr::NEVER: 2761 Fn->addFnAttr("function-instrument", "xray-never"); 2762 break; 2763 } 2764 return true; 2765 } 2766 2767 bool CodeGenModule::isProfileInstrExcluded(llvm::Function *Fn, 2768 SourceLocation Loc) const { 2769 const auto &ProfileList = getContext().getProfileList(); 2770 // If the profile list is empty, then instrument everything. 2771 if (ProfileList.isEmpty()) 2772 return false; 2773 CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr(); 2774 // First, check the function name. 2775 Optional<bool> V = ProfileList.isFunctionExcluded(Fn->getName(), Kind); 2776 if (V.hasValue()) 2777 return *V; 2778 // Next, check the source location. 2779 if (Loc.isValid()) { 2780 Optional<bool> V = ProfileList.isLocationExcluded(Loc, Kind); 2781 if (V.hasValue()) 2782 return *V; 2783 } 2784 // If location is unknown, this may be a compiler-generated function. Assume 2785 // it's located in the main file. 2786 auto &SM = Context.getSourceManager(); 2787 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 2788 Optional<bool> V = ProfileList.isFileExcluded(MainFile->getName(), Kind); 2789 if (V.hasValue()) 2790 return *V; 2791 } 2792 return ProfileList.getDefault(); 2793 } 2794 2795 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 2796 // Never defer when EmitAllDecls is specified. 2797 if (LangOpts.EmitAllDecls) 2798 return true; 2799 2800 if (CodeGenOpts.KeepStaticConsts) { 2801 const auto *VD = dyn_cast<VarDecl>(Global); 2802 if (VD && VD->getType().isConstQualified() && 2803 VD->getStorageDuration() == SD_Static) 2804 return true; 2805 } 2806 2807 return getContext().DeclMustBeEmitted(Global); 2808 } 2809 2810 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 2811 // In OpenMP 5.0 variables and function may be marked as 2812 // device_type(host/nohost) and we should not emit them eagerly unless we sure 2813 // that they must be emitted on the host/device. To be sure we need to have 2814 // seen a declare target with an explicit mentioning of the function, we know 2815 // we have if the level of the declare target attribute is -1. Note that we 2816 // check somewhere else if we should emit this at all. 2817 if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) { 2818 llvm::Optional<OMPDeclareTargetDeclAttr *> ActiveAttr = 2819 OMPDeclareTargetDeclAttr::getActiveAttr(Global); 2820 if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1) 2821 return false; 2822 } 2823 2824 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 2825 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 2826 // Implicit template instantiations may change linkage if they are later 2827 // explicitly instantiated, so they should not be emitted eagerly. 2828 return false; 2829 } 2830 if (const auto *VD = dyn_cast<VarDecl>(Global)) 2831 if (Context.getInlineVariableDefinitionKind(VD) == 2832 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 2833 // A definition of an inline constexpr static data member may change 2834 // linkage later if it's redeclared outside the class. 2835 return false; 2836 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 2837 // codegen for global variables, because they may be marked as threadprivate. 2838 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 2839 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) && 2840 !isTypeConstant(Global->getType(), false) && 2841 !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global)) 2842 return false; 2843 2844 return true; 2845 } 2846 2847 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) { 2848 StringRef Name = getMangledName(GD); 2849 2850 // The UUID descriptor should be pointer aligned. 2851 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 2852 2853 // Look for an existing global. 2854 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 2855 return ConstantAddress(GV, GV->getValueType(), Alignment); 2856 2857 ConstantEmitter Emitter(*this); 2858 llvm::Constant *Init; 2859 2860 APValue &V = GD->getAsAPValue(); 2861 if (!V.isAbsent()) { 2862 // If possible, emit the APValue version of the initializer. In particular, 2863 // this gets the type of the constant right. 2864 Init = Emitter.emitForInitializer( 2865 GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType()); 2866 } else { 2867 // As a fallback, directly construct the constant. 2868 // FIXME: This may get padding wrong under esoteric struct layout rules. 2869 // MSVC appears to create a complete type 'struct __s_GUID' that it 2870 // presumably uses to represent these constants. 2871 MSGuidDecl::Parts Parts = GD->getParts(); 2872 llvm::Constant *Fields[4] = { 2873 llvm::ConstantInt::get(Int32Ty, Parts.Part1), 2874 llvm::ConstantInt::get(Int16Ty, Parts.Part2), 2875 llvm::ConstantInt::get(Int16Ty, Parts.Part3), 2876 llvm::ConstantDataArray::getRaw( 2877 StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8, 2878 Int8Ty)}; 2879 Init = llvm::ConstantStruct::getAnon(Fields); 2880 } 2881 2882 auto *GV = new llvm::GlobalVariable( 2883 getModule(), Init->getType(), 2884 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 2885 if (supportsCOMDAT()) 2886 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2887 setDSOLocal(GV); 2888 2889 if (!V.isAbsent()) { 2890 Emitter.finalize(GV); 2891 return ConstantAddress(GV, GV->getValueType(), Alignment); 2892 } 2893 2894 llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType()); 2895 llvm::Constant *Addr = llvm::ConstantExpr::getBitCast( 2896 GV, Ty->getPointerTo(GV->getAddressSpace())); 2897 return ConstantAddress(Addr, Ty, Alignment); 2898 } 2899 2900 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject( 2901 const TemplateParamObjectDecl *TPO) { 2902 StringRef Name = getMangledName(TPO); 2903 CharUnits Alignment = getNaturalTypeAlignment(TPO->getType()); 2904 2905 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 2906 return ConstantAddress(GV, GV->getValueType(), Alignment); 2907 2908 ConstantEmitter Emitter(*this); 2909 llvm::Constant *Init = Emitter.emitForInitializer( 2910 TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType()); 2911 2912 if (!Init) { 2913 ErrorUnsupported(TPO, "template parameter object"); 2914 return ConstantAddress::invalid(); 2915 } 2916 2917 auto *GV = new llvm::GlobalVariable( 2918 getModule(), Init->getType(), 2919 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 2920 if (supportsCOMDAT()) 2921 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2922 Emitter.finalize(GV); 2923 2924 return ConstantAddress(GV, GV->getValueType(), Alignment); 2925 } 2926 2927 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 2928 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 2929 assert(AA && "No alias?"); 2930 2931 CharUnits Alignment = getContext().getDeclAlign(VD); 2932 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 2933 2934 // See if there is already something with the target's name in the module. 2935 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 2936 if (Entry) { 2937 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 2938 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 2939 return ConstantAddress(Ptr, DeclTy, Alignment); 2940 } 2941 2942 llvm::Constant *Aliasee; 2943 if (isa<llvm::FunctionType>(DeclTy)) 2944 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 2945 GlobalDecl(cast<FunctionDecl>(VD)), 2946 /*ForVTable=*/false); 2947 else 2948 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default, 2949 nullptr); 2950 2951 auto *F = cast<llvm::GlobalValue>(Aliasee); 2952 F->setLinkage(llvm::Function::ExternalWeakLinkage); 2953 WeakRefReferences.insert(F); 2954 2955 return ConstantAddress(Aliasee, DeclTy, Alignment); 2956 } 2957 2958 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 2959 const auto *Global = cast<ValueDecl>(GD.getDecl()); 2960 2961 // Weak references don't produce any output by themselves. 2962 if (Global->hasAttr<WeakRefAttr>()) 2963 return; 2964 2965 // If this is an alias definition (which otherwise looks like a declaration) 2966 // emit it now. 2967 if (Global->hasAttr<AliasAttr>()) 2968 return EmitAliasDefinition(GD); 2969 2970 // IFunc like an alias whose value is resolved at runtime by calling resolver. 2971 if (Global->hasAttr<IFuncAttr>()) 2972 return emitIFuncDefinition(GD); 2973 2974 // If this is a cpu_dispatch multiversion function, emit the resolver. 2975 if (Global->hasAttr<CPUDispatchAttr>()) 2976 return emitCPUDispatchDefinition(GD); 2977 2978 // If this is CUDA, be selective about which declarations we emit. 2979 if (LangOpts.CUDA) { 2980 if (LangOpts.CUDAIsDevice) { 2981 if (!Global->hasAttr<CUDADeviceAttr>() && 2982 !Global->hasAttr<CUDAGlobalAttr>() && 2983 !Global->hasAttr<CUDAConstantAttr>() && 2984 !Global->hasAttr<CUDASharedAttr>() && 2985 !Global->getType()->isCUDADeviceBuiltinSurfaceType() && 2986 !Global->getType()->isCUDADeviceBuiltinTextureType()) 2987 return; 2988 } else { 2989 // We need to emit host-side 'shadows' for all global 2990 // device-side variables because the CUDA runtime needs their 2991 // size and host-side address in order to provide access to 2992 // their device-side incarnations. 2993 2994 // So device-only functions are the only things we skip. 2995 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 2996 Global->hasAttr<CUDADeviceAttr>()) 2997 return; 2998 2999 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 3000 "Expected Variable or Function"); 3001 } 3002 } 3003 3004 if (LangOpts.OpenMP) { 3005 // If this is OpenMP, check if it is legal to emit this global normally. 3006 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 3007 return; 3008 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 3009 if (MustBeEmitted(Global)) 3010 EmitOMPDeclareReduction(DRD); 3011 return; 3012 } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) { 3013 if (MustBeEmitted(Global)) 3014 EmitOMPDeclareMapper(DMD); 3015 return; 3016 } 3017 } 3018 3019 // Ignore declarations, they will be emitted on their first use. 3020 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 3021 // Forward declarations are emitted lazily on first use. 3022 if (!FD->doesThisDeclarationHaveABody()) { 3023 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 3024 return; 3025 3026 StringRef MangledName = getMangledName(GD); 3027 3028 // Compute the function info and LLVM type. 3029 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3030 llvm::Type *Ty = getTypes().GetFunctionType(FI); 3031 3032 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 3033 /*DontDefer=*/false); 3034 return; 3035 } 3036 } else { 3037 const auto *VD = cast<VarDecl>(Global); 3038 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 3039 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 3040 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 3041 if (LangOpts.OpenMP) { 3042 // Emit declaration of the must-be-emitted declare target variable. 3043 if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 3044 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) { 3045 bool UnifiedMemoryEnabled = 3046 getOpenMPRuntime().hasRequiresUnifiedSharedMemory(); 3047 if (*Res == OMPDeclareTargetDeclAttr::MT_To && 3048 !UnifiedMemoryEnabled) { 3049 (void)GetAddrOfGlobalVar(VD); 3050 } else { 3051 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) || 3052 (*Res == OMPDeclareTargetDeclAttr::MT_To && 3053 UnifiedMemoryEnabled)) && 3054 "Link clause or to clause with unified memory expected."); 3055 (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD); 3056 } 3057 3058 return; 3059 } 3060 } 3061 // If this declaration may have caused an inline variable definition to 3062 // change linkage, make sure that it's emitted. 3063 if (Context.getInlineVariableDefinitionKind(VD) == 3064 ASTContext::InlineVariableDefinitionKind::Strong) 3065 GetAddrOfGlobalVar(VD); 3066 return; 3067 } 3068 } 3069 3070 // Defer code generation to first use when possible, e.g. if this is an inline 3071 // function. If the global must always be emitted, do it eagerly if possible 3072 // to benefit from cache locality. 3073 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 3074 // Emit the definition if it can't be deferred. 3075 EmitGlobalDefinition(GD); 3076 return; 3077 } 3078 3079 // If we're deferring emission of a C++ variable with an 3080 // initializer, remember the order in which it appeared in the file. 3081 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 3082 cast<VarDecl>(Global)->hasInit()) { 3083 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 3084 CXXGlobalInits.push_back(nullptr); 3085 } 3086 3087 StringRef MangledName = getMangledName(GD); 3088 if (GetGlobalValue(MangledName) != nullptr) { 3089 // The value has already been used and should therefore be emitted. 3090 addDeferredDeclToEmit(GD); 3091 } else if (MustBeEmitted(Global)) { 3092 // The value must be emitted, but cannot be emitted eagerly. 3093 assert(!MayBeEmittedEagerly(Global)); 3094 addDeferredDeclToEmit(GD); 3095 } else { 3096 // Otherwise, remember that we saw a deferred decl with this name. The 3097 // first use of the mangled name will cause it to move into 3098 // DeferredDeclsToEmit. 3099 DeferredDecls[MangledName] = GD; 3100 } 3101 } 3102 3103 // Check if T is a class type with a destructor that's not dllimport. 3104 static bool HasNonDllImportDtor(QualType T) { 3105 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 3106 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 3107 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 3108 return true; 3109 3110 return false; 3111 } 3112 3113 namespace { 3114 struct FunctionIsDirectlyRecursive 3115 : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> { 3116 const StringRef Name; 3117 const Builtin::Context &BI; 3118 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) 3119 : Name(N), BI(C) {} 3120 3121 bool VisitCallExpr(const CallExpr *E) { 3122 const FunctionDecl *FD = E->getDirectCallee(); 3123 if (!FD) 3124 return false; 3125 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 3126 if (Attr && Name == Attr->getLabel()) 3127 return true; 3128 unsigned BuiltinID = FD->getBuiltinID(); 3129 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 3130 return false; 3131 StringRef BuiltinName = BI.getName(BuiltinID); 3132 if (BuiltinName.startswith("__builtin_") && 3133 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 3134 return true; 3135 } 3136 return false; 3137 } 3138 3139 bool VisitStmt(const Stmt *S) { 3140 for (const Stmt *Child : S->children()) 3141 if (Child && this->Visit(Child)) 3142 return true; 3143 return false; 3144 } 3145 }; 3146 3147 // Make sure we're not referencing non-imported vars or functions. 3148 struct DLLImportFunctionVisitor 3149 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 3150 bool SafeToInline = true; 3151 3152 bool shouldVisitImplicitCode() const { return true; } 3153 3154 bool VisitVarDecl(VarDecl *VD) { 3155 if (VD->getTLSKind()) { 3156 // A thread-local variable cannot be imported. 3157 SafeToInline = false; 3158 return SafeToInline; 3159 } 3160 3161 // A variable definition might imply a destructor call. 3162 if (VD->isThisDeclarationADefinition()) 3163 SafeToInline = !HasNonDllImportDtor(VD->getType()); 3164 3165 return SafeToInline; 3166 } 3167 3168 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 3169 if (const auto *D = E->getTemporary()->getDestructor()) 3170 SafeToInline = D->hasAttr<DLLImportAttr>(); 3171 return SafeToInline; 3172 } 3173 3174 bool VisitDeclRefExpr(DeclRefExpr *E) { 3175 ValueDecl *VD = E->getDecl(); 3176 if (isa<FunctionDecl>(VD)) 3177 SafeToInline = VD->hasAttr<DLLImportAttr>(); 3178 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 3179 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 3180 return SafeToInline; 3181 } 3182 3183 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 3184 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 3185 return SafeToInline; 3186 } 3187 3188 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 3189 CXXMethodDecl *M = E->getMethodDecl(); 3190 if (!M) { 3191 // Call through a pointer to member function. This is safe to inline. 3192 SafeToInline = true; 3193 } else { 3194 SafeToInline = M->hasAttr<DLLImportAttr>(); 3195 } 3196 return SafeToInline; 3197 } 3198 3199 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 3200 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 3201 return SafeToInline; 3202 } 3203 3204 bool VisitCXXNewExpr(CXXNewExpr *E) { 3205 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 3206 return SafeToInline; 3207 } 3208 }; 3209 } 3210 3211 // isTriviallyRecursive - Check if this function calls another 3212 // decl that, because of the asm attribute or the other decl being a builtin, 3213 // ends up pointing to itself. 3214 bool 3215 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 3216 StringRef Name; 3217 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 3218 // asm labels are a special kind of mangling we have to support. 3219 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 3220 if (!Attr) 3221 return false; 3222 Name = Attr->getLabel(); 3223 } else { 3224 Name = FD->getName(); 3225 } 3226 3227 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 3228 const Stmt *Body = FD->getBody(); 3229 return Body ? Walker.Visit(Body) : false; 3230 } 3231 3232 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 3233 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 3234 return true; 3235 const auto *F = cast<FunctionDecl>(GD.getDecl()); 3236 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 3237 return false; 3238 3239 if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) { 3240 // Check whether it would be safe to inline this dllimport function. 3241 DLLImportFunctionVisitor Visitor; 3242 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 3243 if (!Visitor.SafeToInline) 3244 return false; 3245 3246 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 3247 // Implicit destructor invocations aren't captured in the AST, so the 3248 // check above can't see them. Check for them manually here. 3249 for (const Decl *Member : Dtor->getParent()->decls()) 3250 if (isa<FieldDecl>(Member)) 3251 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 3252 return false; 3253 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 3254 if (HasNonDllImportDtor(B.getType())) 3255 return false; 3256 } 3257 } 3258 3259 // Inline builtins declaration must be emitted. They often are fortified 3260 // functions. 3261 if (F->isInlineBuiltinDeclaration()) 3262 return true; 3263 3264 // PR9614. Avoid cases where the source code is lying to us. An available 3265 // externally function should have an equivalent function somewhere else, 3266 // but a function that calls itself through asm label/`__builtin_` trickery is 3267 // clearly not equivalent to the real implementation. 3268 // This happens in glibc's btowc and in some configure checks. 3269 return !isTriviallyRecursive(F); 3270 } 3271 3272 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 3273 return CodeGenOpts.OptimizationLevel > 0; 3274 } 3275 3276 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD, 3277 llvm::GlobalValue *GV) { 3278 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3279 3280 if (FD->isCPUSpecificMultiVersion()) { 3281 auto *Spec = FD->getAttr<CPUSpecificAttr>(); 3282 for (unsigned I = 0; I < Spec->cpus_size(); ++I) 3283 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 3284 // Requires multiple emits. 3285 } else if (FD->isTargetClonesMultiVersion()) { 3286 auto *Clone = FD->getAttr<TargetClonesAttr>(); 3287 for (unsigned I = 0; I < Clone->featuresStrs_size(); ++I) 3288 if (Clone->isFirstOfVersion(I)) 3289 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 3290 EmitTargetClonesResolver(GD); 3291 } else 3292 EmitGlobalFunctionDefinition(GD, GV); 3293 } 3294 3295 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 3296 const auto *D = cast<ValueDecl>(GD.getDecl()); 3297 3298 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 3299 Context.getSourceManager(), 3300 "Generating code for declaration"); 3301 3302 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 3303 // At -O0, don't generate IR for functions with available_externally 3304 // linkage. 3305 if (!shouldEmitFunction(GD)) 3306 return; 3307 3308 llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() { 3309 std::string Name; 3310 llvm::raw_string_ostream OS(Name); 3311 FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(), 3312 /*Qualified=*/true); 3313 return Name; 3314 }); 3315 3316 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 3317 // Make sure to emit the definition(s) before we emit the thunks. 3318 // This is necessary for the generation of certain thunks. 3319 if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method)) 3320 ABI->emitCXXStructor(GD); 3321 else if (FD->isMultiVersion()) 3322 EmitMultiVersionFunctionDefinition(GD, GV); 3323 else 3324 EmitGlobalFunctionDefinition(GD, GV); 3325 3326 if (Method->isVirtual()) 3327 getVTables().EmitThunks(GD); 3328 3329 return; 3330 } 3331 3332 if (FD->isMultiVersion()) 3333 return EmitMultiVersionFunctionDefinition(GD, GV); 3334 return EmitGlobalFunctionDefinition(GD, GV); 3335 } 3336 3337 if (const auto *VD = dyn_cast<VarDecl>(D)) 3338 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 3339 3340 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 3341 } 3342 3343 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 3344 llvm::Function *NewFn); 3345 3346 static unsigned 3347 TargetMVPriority(const TargetInfo &TI, 3348 const CodeGenFunction::MultiVersionResolverOption &RO) { 3349 unsigned Priority = 0; 3350 for (StringRef Feat : RO.Conditions.Features) 3351 Priority = std::max(Priority, TI.multiVersionSortPriority(Feat)); 3352 3353 if (!RO.Conditions.Architecture.empty()) 3354 Priority = std::max( 3355 Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture)); 3356 return Priority; 3357 } 3358 3359 // Multiversion functions should be at most 'WeakODRLinkage' so that a different 3360 // TU can forward declare the function without causing problems. Particularly 3361 // in the cases of CPUDispatch, this causes issues. This also makes sure we 3362 // work with internal linkage functions, so that the same function name can be 3363 // used with internal linkage in multiple TUs. 3364 llvm::GlobalValue::LinkageTypes getMultiversionLinkage(CodeGenModule &CGM, 3365 GlobalDecl GD) { 3366 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 3367 if (FD->getFormalLinkage() == InternalLinkage) 3368 return llvm::GlobalValue::InternalLinkage; 3369 return llvm::GlobalValue::WeakODRLinkage; 3370 } 3371 3372 void CodeGenModule::EmitTargetClonesResolver(GlobalDecl GD) { 3373 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3374 assert(FD && "Not a FunctionDecl?"); 3375 const auto *TC = FD->getAttr<TargetClonesAttr>(); 3376 assert(TC && "Not a target_clones Function?"); 3377 3378 QualType CanonTy = Context.getCanonicalType(FD->getType()); 3379 llvm::Type *DeclTy = getTypes().ConvertType(CanonTy); 3380 3381 if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) { 3382 const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD); 3383 DeclTy = getTypes().GetFunctionType(FInfo); 3384 } 3385 3386 llvm::Function *ResolverFunc; 3387 if (getTarget().supportsIFunc()) { 3388 auto *IFunc = cast<llvm::GlobalIFunc>( 3389 GetOrCreateMultiVersionResolver(GD, DeclTy, FD)); 3390 ResolverFunc = cast<llvm::Function>(IFunc->getResolver()); 3391 } else 3392 ResolverFunc = 3393 cast<llvm::Function>(GetOrCreateMultiVersionResolver(GD, DeclTy, FD)); 3394 3395 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 3396 for (unsigned VersionIndex = 0; VersionIndex < TC->featuresStrs_size(); 3397 ++VersionIndex) { 3398 if (!TC->isFirstOfVersion(VersionIndex)) 3399 continue; 3400 StringRef Version = TC->getFeatureStr(VersionIndex); 3401 StringRef MangledName = 3402 getMangledName(GD.getWithMultiVersionIndex(VersionIndex)); 3403 llvm::Constant *Func = GetGlobalValue(MangledName); 3404 assert(Func && 3405 "Should have already been created before calling resolver emit"); 3406 3407 StringRef Architecture; 3408 llvm::SmallVector<StringRef, 1> Feature; 3409 3410 if (Version.startswith("arch=")) 3411 Architecture = Version.drop_front(sizeof("arch=") - 1); 3412 else if (Version != "default") 3413 Feature.push_back(Version); 3414 3415 Options.emplace_back(cast<llvm::Function>(Func), Architecture, Feature); 3416 } 3417 3418 const TargetInfo &TI = getTarget(); 3419 std::stable_sort( 3420 Options.begin(), Options.end(), 3421 [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS, 3422 const CodeGenFunction::MultiVersionResolverOption &RHS) { 3423 return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS); 3424 }); 3425 CodeGenFunction CGF(*this); 3426 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 3427 } 3428 3429 void CodeGenModule::emitMultiVersionFunctions() { 3430 std::vector<GlobalDecl> MVFuncsToEmit; 3431 MultiVersionFuncs.swap(MVFuncsToEmit); 3432 for (GlobalDecl GD : MVFuncsToEmit) { 3433 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 3434 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 3435 getContext().forEachMultiversionedFunctionVersion( 3436 FD, [this, &GD, &Options](const FunctionDecl *CurFD) { 3437 GlobalDecl CurGD{ 3438 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)}; 3439 StringRef MangledName = getMangledName(CurGD); 3440 llvm::Constant *Func = GetGlobalValue(MangledName); 3441 if (!Func) { 3442 if (CurFD->isDefined()) { 3443 EmitGlobalFunctionDefinition(CurGD, nullptr); 3444 Func = GetGlobalValue(MangledName); 3445 } else { 3446 const CGFunctionInfo &FI = 3447 getTypes().arrangeGlobalDeclaration(GD); 3448 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3449 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 3450 /*DontDefer=*/false, ForDefinition); 3451 } 3452 assert(Func && "This should have just been created"); 3453 } 3454 3455 const auto *TA = CurFD->getAttr<TargetAttr>(); 3456 llvm::SmallVector<StringRef, 8> Feats; 3457 TA->getAddedFeatures(Feats); 3458 3459 Options.emplace_back(cast<llvm::Function>(Func), 3460 TA->getArchitecture(), Feats); 3461 }); 3462 3463 llvm::Function *ResolverFunc; 3464 const TargetInfo &TI = getTarget(); 3465 3466 if (TI.supportsIFunc() || FD->isTargetMultiVersion()) { 3467 ResolverFunc = cast<llvm::Function>( 3468 GetGlobalValue((getMangledName(GD) + ".resolver").str())); 3469 ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD)); 3470 } else { 3471 ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD))); 3472 } 3473 3474 if (supportsCOMDAT()) 3475 ResolverFunc->setComdat( 3476 getModule().getOrInsertComdat(ResolverFunc->getName())); 3477 3478 llvm::stable_sort( 3479 Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS, 3480 const CodeGenFunction::MultiVersionResolverOption &RHS) { 3481 return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS); 3482 }); 3483 CodeGenFunction CGF(*this); 3484 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 3485 } 3486 3487 // Ensure that any additions to the deferred decls list caused by emitting a 3488 // variant are emitted. This can happen when the variant itself is inline and 3489 // calls a function without linkage. 3490 if (!MVFuncsToEmit.empty()) 3491 EmitDeferred(); 3492 3493 // Ensure that any additions to the multiversion funcs list from either the 3494 // deferred decls or the multiversion functions themselves are emitted. 3495 if (!MultiVersionFuncs.empty()) 3496 emitMultiVersionFunctions(); 3497 } 3498 3499 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) { 3500 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3501 assert(FD && "Not a FunctionDecl?"); 3502 assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?"); 3503 const auto *DD = FD->getAttr<CPUDispatchAttr>(); 3504 assert(DD && "Not a cpu_dispatch Function?"); 3505 llvm::Type *DeclTy = getTypes().ConvertType(FD->getType()); 3506 3507 if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) { 3508 const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD); 3509 DeclTy = getTypes().GetFunctionType(FInfo); 3510 } 3511 3512 StringRef ResolverName = getMangledName(GD); 3513 UpdateMultiVersionNames(GD, FD, ResolverName); 3514 3515 llvm::Type *ResolverType; 3516 GlobalDecl ResolverGD; 3517 if (getTarget().supportsIFunc()) { 3518 ResolverType = llvm::FunctionType::get( 3519 llvm::PointerType::get(DeclTy, 3520 Context.getTargetAddressSpace(FD->getType())), 3521 false); 3522 } 3523 else { 3524 ResolverType = DeclTy; 3525 ResolverGD = GD; 3526 } 3527 3528 auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction( 3529 ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false)); 3530 ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD)); 3531 if (supportsCOMDAT()) 3532 ResolverFunc->setComdat( 3533 getModule().getOrInsertComdat(ResolverFunc->getName())); 3534 3535 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 3536 const TargetInfo &Target = getTarget(); 3537 unsigned Index = 0; 3538 for (const IdentifierInfo *II : DD->cpus()) { 3539 // Get the name of the target function so we can look it up/create it. 3540 std::string MangledName = getMangledNameImpl(*this, GD, FD, true) + 3541 getCPUSpecificMangling(*this, II->getName()); 3542 3543 llvm::Constant *Func = GetGlobalValue(MangledName); 3544 3545 if (!Func) { 3546 GlobalDecl ExistingDecl = Manglings.lookup(MangledName); 3547 if (ExistingDecl.getDecl() && 3548 ExistingDecl.getDecl()->getAsFunction()->isDefined()) { 3549 EmitGlobalFunctionDefinition(ExistingDecl, nullptr); 3550 Func = GetGlobalValue(MangledName); 3551 } else { 3552 if (!ExistingDecl.getDecl()) 3553 ExistingDecl = GD.getWithMultiVersionIndex(Index); 3554 3555 Func = GetOrCreateLLVMFunction( 3556 MangledName, DeclTy, ExistingDecl, 3557 /*ForVTable=*/false, /*DontDefer=*/true, 3558 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition); 3559 } 3560 } 3561 3562 llvm::SmallVector<StringRef, 32> Features; 3563 Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features); 3564 llvm::transform(Features, Features.begin(), 3565 [](StringRef Str) { return Str.substr(1); }); 3566 llvm::erase_if(Features, [&Target](StringRef Feat) { 3567 return !Target.validateCpuSupports(Feat); 3568 }); 3569 Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features); 3570 ++Index; 3571 } 3572 3573 llvm::stable_sort( 3574 Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS, 3575 const CodeGenFunction::MultiVersionResolverOption &RHS) { 3576 return llvm::X86::getCpuSupportsMask(LHS.Conditions.Features) > 3577 llvm::X86::getCpuSupportsMask(RHS.Conditions.Features); 3578 }); 3579 3580 // If the list contains multiple 'default' versions, such as when it contains 3581 // 'pentium' and 'generic', don't emit the call to the generic one (since we 3582 // always run on at least a 'pentium'). We do this by deleting the 'least 3583 // advanced' (read, lowest mangling letter). 3584 while (Options.size() > 1 && 3585 llvm::X86::getCpuSupportsMask( 3586 (Options.end() - 2)->Conditions.Features) == 0) { 3587 StringRef LHSName = (Options.end() - 2)->Function->getName(); 3588 StringRef RHSName = (Options.end() - 1)->Function->getName(); 3589 if (LHSName.compare(RHSName) < 0) 3590 Options.erase(Options.end() - 2); 3591 else 3592 Options.erase(Options.end() - 1); 3593 } 3594 3595 CodeGenFunction CGF(*this); 3596 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 3597 3598 if (getTarget().supportsIFunc()) { 3599 std::string AliasName = getMangledNameImpl( 3600 *this, GD, FD, /*OmitMultiVersionMangling=*/true); 3601 llvm::Constant *AliasFunc = GetGlobalValue(AliasName); 3602 if (!AliasFunc) { 3603 auto *IFunc = cast<llvm::GlobalIFunc>(GetOrCreateLLVMFunction( 3604 AliasName, DeclTy, GD, /*ForVTable=*/false, /*DontDefer=*/true, 3605 /*IsThunk=*/false, llvm::AttributeList(), NotForDefinition)); 3606 auto *GA = llvm::GlobalAlias::create(DeclTy, 0, 3607 getMultiversionLinkage(*this, GD), 3608 AliasName, IFunc, &getModule()); 3609 SetCommonAttributes(GD, GA); 3610 } 3611 } 3612 } 3613 3614 /// If a dispatcher for the specified mangled name is not in the module, create 3615 /// and return an llvm Function with the specified type. 3616 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver( 3617 GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) { 3618 std::string MangledName = 3619 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 3620 3621 // Holds the name of the resolver, in ifunc mode this is the ifunc (which has 3622 // a separate resolver). 3623 std::string ResolverName = MangledName; 3624 if (getTarget().supportsIFunc()) 3625 ResolverName += ".ifunc"; 3626 else if (FD->isTargetMultiVersion()) 3627 ResolverName += ".resolver"; 3628 3629 // If this already exists, just return that one. 3630 if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName)) 3631 return ResolverGV; 3632 3633 // Since this is the first time we've created this IFunc, make sure 3634 // that we put this multiversioned function into the list to be 3635 // replaced later if necessary (target multiversioning only). 3636 if (FD->isTargetMultiVersion()) 3637 MultiVersionFuncs.push_back(GD); 3638 else if (FD->isTargetClonesMultiVersion()) { 3639 // In target_clones multiversioning, make sure we emit this if used. 3640 auto DDI = 3641 DeferredDecls.find(getMangledName(GD.getWithMultiVersionIndex(0))); 3642 if (DDI != DeferredDecls.end()) { 3643 addDeferredDeclToEmit(GD); 3644 DeferredDecls.erase(DDI); 3645 } else { 3646 // Emit the symbol of the 1st variant, so that the deferred decls know we 3647 // need it, otherwise the only global value will be the resolver/ifunc, 3648 // which end up getting broken if we search for them with GetGlobalValue'. 3649 GetOrCreateLLVMFunction( 3650 getMangledName(GD.getWithMultiVersionIndex(0)), DeclTy, FD, 3651 /*ForVTable=*/false, /*DontDefer=*/true, 3652 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition); 3653 } 3654 } 3655 3656 if (getTarget().supportsIFunc()) { 3657 llvm::Type *ResolverType = llvm::FunctionType::get( 3658 llvm::PointerType::get( 3659 DeclTy, getContext().getTargetAddressSpace(FD->getType())), 3660 false); 3661 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 3662 MangledName + ".resolver", ResolverType, GlobalDecl{}, 3663 /*ForVTable=*/false); 3664 llvm::GlobalIFunc *GIF = 3665 llvm::GlobalIFunc::create(DeclTy, 0, getMultiversionLinkage(*this, GD), 3666 "", Resolver, &getModule()); 3667 GIF->setName(ResolverName); 3668 SetCommonAttributes(FD, GIF); 3669 3670 return GIF; 3671 } 3672 3673 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 3674 ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false); 3675 assert(isa<llvm::GlobalValue>(Resolver) && 3676 "Resolver should be created for the first time"); 3677 SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver)); 3678 return Resolver; 3679 } 3680 3681 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 3682 /// module, create and return an llvm Function with the specified type. If there 3683 /// is something in the module with the specified name, return it potentially 3684 /// bitcasted to the right type. 3685 /// 3686 /// If D is non-null, it specifies a decl that correspond to this. This is used 3687 /// to set the attributes on the function when it is first created. 3688 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 3689 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 3690 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 3691 ForDefinition_t IsForDefinition) { 3692 const Decl *D = GD.getDecl(); 3693 3694 // Any attempts to use a MultiVersion function should result in retrieving 3695 // the iFunc instead. Name Mangling will handle the rest of the changes. 3696 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 3697 // For the device mark the function as one that should be emitted. 3698 if (getLangOpts().OpenMPIsDevice && OpenMPRuntime && 3699 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() && 3700 !DontDefer && !IsForDefinition) { 3701 if (const FunctionDecl *FDDef = FD->getDefinition()) { 3702 GlobalDecl GDDef; 3703 if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef)) 3704 GDDef = GlobalDecl(CD, GD.getCtorType()); 3705 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef)) 3706 GDDef = GlobalDecl(DD, GD.getDtorType()); 3707 else 3708 GDDef = GlobalDecl(FDDef); 3709 EmitGlobal(GDDef); 3710 } 3711 } 3712 3713 if (FD->isMultiVersion()) { 3714 UpdateMultiVersionNames(GD, FD, MangledName); 3715 if (!IsForDefinition) 3716 return GetOrCreateMultiVersionResolver(GD, Ty, FD); 3717 } 3718 } 3719 3720 // Lookup the entry, lazily creating it if necessary. 3721 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3722 if (Entry) { 3723 if (WeakRefReferences.erase(Entry)) { 3724 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 3725 if (FD && !FD->hasAttr<WeakAttr>()) 3726 Entry->setLinkage(llvm::Function::ExternalLinkage); 3727 } 3728 3729 // Handle dropped DLL attributes. 3730 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) { 3731 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 3732 setDSOLocal(Entry); 3733 } 3734 3735 // If there are two attempts to define the same mangled name, issue an 3736 // error. 3737 if (IsForDefinition && !Entry->isDeclaration()) { 3738 GlobalDecl OtherGD; 3739 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 3740 // to make sure that we issue an error only once. 3741 if (lookupRepresentativeDecl(MangledName, OtherGD) && 3742 (GD.getCanonicalDecl().getDecl() != 3743 OtherGD.getCanonicalDecl().getDecl()) && 3744 DiagnosedConflictingDefinitions.insert(GD).second) { 3745 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 3746 << MangledName; 3747 getDiags().Report(OtherGD.getDecl()->getLocation(), 3748 diag::note_previous_definition); 3749 } 3750 } 3751 3752 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 3753 (Entry->getValueType() == Ty)) { 3754 return Entry; 3755 } 3756 3757 // Make sure the result is of the correct type. 3758 // (If function is requested for a definition, we always need to create a new 3759 // function, not just return a bitcast.) 3760 if (!IsForDefinition) 3761 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 3762 } 3763 3764 // This function doesn't have a complete type (for example, the return 3765 // type is an incomplete struct). Use a fake type instead, and make 3766 // sure not to try to set attributes. 3767 bool IsIncompleteFunction = false; 3768 3769 llvm::FunctionType *FTy; 3770 if (isa<llvm::FunctionType>(Ty)) { 3771 FTy = cast<llvm::FunctionType>(Ty); 3772 } else { 3773 FTy = llvm::FunctionType::get(VoidTy, false); 3774 IsIncompleteFunction = true; 3775 } 3776 3777 llvm::Function *F = 3778 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 3779 Entry ? StringRef() : MangledName, &getModule()); 3780 3781 // If we already created a function with the same mangled name (but different 3782 // type) before, take its name and add it to the list of functions to be 3783 // replaced with F at the end of CodeGen. 3784 // 3785 // This happens if there is a prototype for a function (e.g. "int f()") and 3786 // then a definition of a different type (e.g. "int f(int x)"). 3787 if (Entry) { 3788 F->takeName(Entry); 3789 3790 // This might be an implementation of a function without a prototype, in 3791 // which case, try to do special replacement of calls which match the new 3792 // prototype. The really key thing here is that we also potentially drop 3793 // arguments from the call site so as to make a direct call, which makes the 3794 // inliner happier and suppresses a number of optimizer warnings (!) about 3795 // dropping arguments. 3796 if (!Entry->use_empty()) { 3797 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 3798 Entry->removeDeadConstantUsers(); 3799 } 3800 3801 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 3802 F, Entry->getValueType()->getPointerTo()); 3803 addGlobalValReplacement(Entry, BC); 3804 } 3805 3806 assert(F->getName() == MangledName && "name was uniqued!"); 3807 if (D) 3808 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 3809 if (ExtraAttrs.hasFnAttrs()) { 3810 llvm::AttrBuilder B(F->getContext(), ExtraAttrs.getFnAttrs()); 3811 F->addFnAttrs(B); 3812 } 3813 3814 if (!DontDefer) { 3815 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 3816 // each other bottoming out with the base dtor. Therefore we emit non-base 3817 // dtors on usage, even if there is no dtor definition in the TU. 3818 if (D && isa<CXXDestructorDecl>(D) && 3819 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 3820 GD.getDtorType())) 3821 addDeferredDeclToEmit(GD); 3822 3823 // This is the first use or definition of a mangled name. If there is a 3824 // deferred decl with this name, remember that we need to emit it at the end 3825 // of the file. 3826 auto DDI = DeferredDecls.find(MangledName); 3827 if (DDI != DeferredDecls.end()) { 3828 // Move the potentially referenced deferred decl to the 3829 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 3830 // don't need it anymore). 3831 addDeferredDeclToEmit(DDI->second); 3832 DeferredDecls.erase(DDI); 3833 3834 // Otherwise, there are cases we have to worry about where we're 3835 // using a declaration for which we must emit a definition but where 3836 // we might not find a top-level definition: 3837 // - member functions defined inline in their classes 3838 // - friend functions defined inline in some class 3839 // - special member functions with implicit definitions 3840 // If we ever change our AST traversal to walk into class methods, 3841 // this will be unnecessary. 3842 // 3843 // We also don't emit a definition for a function if it's going to be an 3844 // entry in a vtable, unless it's already marked as used. 3845 } else if (getLangOpts().CPlusPlus && D) { 3846 // Look for a declaration that's lexically in a record. 3847 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 3848 FD = FD->getPreviousDecl()) { 3849 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 3850 if (FD->doesThisDeclarationHaveABody()) { 3851 addDeferredDeclToEmit(GD.getWithDecl(FD)); 3852 break; 3853 } 3854 } 3855 } 3856 } 3857 } 3858 3859 // Make sure the result is of the requested type. 3860 if (!IsIncompleteFunction) { 3861 assert(F->getFunctionType() == Ty); 3862 return F; 3863 } 3864 3865 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 3866 return llvm::ConstantExpr::getBitCast(F, PTy); 3867 } 3868 3869 /// GetAddrOfFunction - Return the address of the given function. If Ty is 3870 /// non-null, then this function will use the specified type if it has to 3871 /// create it (this occurs when we see a definition of the function). 3872 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 3873 llvm::Type *Ty, 3874 bool ForVTable, 3875 bool DontDefer, 3876 ForDefinition_t IsForDefinition) { 3877 assert(!cast<FunctionDecl>(GD.getDecl())->isConsteval() && 3878 "consteval function should never be emitted"); 3879 // If there was no specific requested type, just convert it now. 3880 if (!Ty) { 3881 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3882 Ty = getTypes().ConvertType(FD->getType()); 3883 } 3884 3885 // Devirtualized destructor calls may come through here instead of via 3886 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead 3887 // of the complete destructor when necessary. 3888 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) { 3889 if (getTarget().getCXXABI().isMicrosoft() && 3890 GD.getDtorType() == Dtor_Complete && 3891 DD->getParent()->getNumVBases() == 0) 3892 GD = GlobalDecl(DD, Dtor_Base); 3893 } 3894 3895 StringRef MangledName = getMangledName(GD); 3896 auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 3897 /*IsThunk=*/false, llvm::AttributeList(), 3898 IsForDefinition); 3899 // Returns kernel handle for HIP kernel stub function. 3900 if (LangOpts.CUDA && !LangOpts.CUDAIsDevice && 3901 cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) { 3902 auto *Handle = getCUDARuntime().getKernelHandle( 3903 cast<llvm::Function>(F->stripPointerCasts()), GD); 3904 if (IsForDefinition) 3905 return F; 3906 return llvm::ConstantExpr::getBitCast(Handle, Ty->getPointerTo()); 3907 } 3908 return F; 3909 } 3910 3911 llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) { 3912 llvm::GlobalValue *F = 3913 cast<llvm::GlobalValue>(GetAddrOfFunction(Decl)->stripPointerCasts()); 3914 3915 return llvm::ConstantExpr::getBitCast(llvm::NoCFIValue::get(F), 3916 llvm::Type::getInt8PtrTy(VMContext)); 3917 } 3918 3919 static const FunctionDecl * 3920 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 3921 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 3922 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 3923 3924 IdentifierInfo &CII = C.Idents.get(Name); 3925 for (const auto *Result : DC->lookup(&CII)) 3926 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 3927 return FD; 3928 3929 if (!C.getLangOpts().CPlusPlus) 3930 return nullptr; 3931 3932 // Demangle the premangled name from getTerminateFn() 3933 IdentifierInfo &CXXII = 3934 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ") 3935 ? C.Idents.get("terminate") 3936 : C.Idents.get(Name); 3937 3938 for (const auto &N : {"__cxxabiv1", "std"}) { 3939 IdentifierInfo &NS = C.Idents.get(N); 3940 for (const auto *Result : DC->lookup(&NS)) { 3941 const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 3942 if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result)) 3943 for (const auto *Result : LSD->lookup(&NS)) 3944 if ((ND = dyn_cast<NamespaceDecl>(Result))) 3945 break; 3946 3947 if (ND) 3948 for (const auto *Result : ND->lookup(&CXXII)) 3949 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 3950 return FD; 3951 } 3952 } 3953 3954 return nullptr; 3955 } 3956 3957 /// CreateRuntimeFunction - Create a new runtime function with the specified 3958 /// type and name. 3959 llvm::FunctionCallee 3960 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 3961 llvm::AttributeList ExtraAttrs, bool Local, 3962 bool AssumeConvergent) { 3963 if (AssumeConvergent) { 3964 ExtraAttrs = 3965 ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent); 3966 } 3967 3968 llvm::Constant *C = 3969 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 3970 /*DontDefer=*/false, /*IsThunk=*/false, 3971 ExtraAttrs); 3972 3973 if (auto *F = dyn_cast<llvm::Function>(C)) { 3974 if (F->empty()) { 3975 F->setCallingConv(getRuntimeCC()); 3976 3977 // In Windows Itanium environments, try to mark runtime functions 3978 // dllimport. For Mingw and MSVC, don't. We don't really know if the user 3979 // will link their standard library statically or dynamically. Marking 3980 // functions imported when they are not imported can cause linker errors 3981 // and warnings. 3982 if (!Local && getTriple().isWindowsItaniumEnvironment() && 3983 !getCodeGenOpts().LTOVisibilityPublicStd) { 3984 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 3985 if (!FD || FD->hasAttr<DLLImportAttr>()) { 3986 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 3987 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 3988 } 3989 } 3990 setDSOLocal(F); 3991 } 3992 } 3993 3994 return {FTy, C}; 3995 } 3996 3997 /// isTypeConstant - Determine whether an object of this type can be emitted 3998 /// as a constant. 3999 /// 4000 /// If ExcludeCtor is true, the duration when the object's constructor runs 4001 /// will not be considered. The caller will need to verify that the object is 4002 /// not written to during its construction. 4003 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 4004 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 4005 return false; 4006 4007 if (Context.getLangOpts().CPlusPlus) { 4008 if (const CXXRecordDecl *Record 4009 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 4010 return ExcludeCtor && !Record->hasMutableFields() && 4011 Record->hasTrivialDestructor(); 4012 } 4013 4014 return true; 4015 } 4016 4017 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 4018 /// create and return an llvm GlobalVariable with the specified type and address 4019 /// space. If there is something in the module with the specified name, return 4020 /// it potentially bitcasted to the right type. 4021 /// 4022 /// If D is non-null, it specifies a decl that correspond to this. This is used 4023 /// to set the attributes on the global when it is first created. 4024 /// 4025 /// If IsForDefinition is true, it is guaranteed that an actual global with 4026 /// type Ty will be returned, not conversion of a variable with the same 4027 /// mangled name but some other type. 4028 llvm::Constant * 4029 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty, 4030 LangAS AddrSpace, const VarDecl *D, 4031 ForDefinition_t IsForDefinition) { 4032 // Lookup the entry, lazily creating it if necessary. 4033 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4034 unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace); 4035 if (Entry) { 4036 if (WeakRefReferences.erase(Entry)) { 4037 if (D && !D->hasAttr<WeakAttr>()) 4038 Entry->setLinkage(llvm::Function::ExternalLinkage); 4039 } 4040 4041 // Handle dropped DLL attributes. 4042 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 4043 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 4044 4045 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D) 4046 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry); 4047 4048 if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS) 4049 return Entry; 4050 4051 // If there are two attempts to define the same mangled name, issue an 4052 // error. 4053 if (IsForDefinition && !Entry->isDeclaration()) { 4054 GlobalDecl OtherGD; 4055 const VarDecl *OtherD; 4056 4057 // Check that D is not yet in DiagnosedConflictingDefinitions is required 4058 // to make sure that we issue an error only once. 4059 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 4060 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 4061 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 4062 OtherD->hasInit() && 4063 DiagnosedConflictingDefinitions.insert(D).second) { 4064 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 4065 << MangledName; 4066 getDiags().Report(OtherGD.getDecl()->getLocation(), 4067 diag::note_previous_definition); 4068 } 4069 } 4070 4071 // Make sure the result is of the correct type. 4072 if (Entry->getType()->getAddressSpace() != TargetAS) { 4073 return llvm::ConstantExpr::getAddrSpaceCast(Entry, 4074 Ty->getPointerTo(TargetAS)); 4075 } 4076 4077 // (If global is requested for a definition, we always need to create a new 4078 // global, not just return a bitcast.) 4079 if (!IsForDefinition) 4080 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo(TargetAS)); 4081 } 4082 4083 auto DAddrSpace = GetGlobalVarAddressSpace(D); 4084 4085 auto *GV = new llvm::GlobalVariable( 4086 getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr, 4087 MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal, 4088 getContext().getTargetAddressSpace(DAddrSpace)); 4089 4090 // If we already created a global with the same mangled name (but different 4091 // type) before, take its name and remove it from its parent. 4092 if (Entry) { 4093 GV->takeName(Entry); 4094 4095 if (!Entry->use_empty()) { 4096 llvm::Constant *NewPtrForOldDecl = 4097 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 4098 Entry->replaceAllUsesWith(NewPtrForOldDecl); 4099 } 4100 4101 Entry->eraseFromParent(); 4102 } 4103 4104 // This is the first use or definition of a mangled name. If there is a 4105 // deferred decl with this name, remember that we need to emit it at the end 4106 // of the file. 4107 auto DDI = DeferredDecls.find(MangledName); 4108 if (DDI != DeferredDecls.end()) { 4109 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 4110 // list, and remove it from DeferredDecls (since we don't need it anymore). 4111 addDeferredDeclToEmit(DDI->second); 4112 DeferredDecls.erase(DDI); 4113 } 4114 4115 // Handle things which are present even on external declarations. 4116 if (D) { 4117 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd) 4118 getOpenMPRuntime().registerTargetGlobalVariable(D, GV); 4119 4120 // FIXME: This code is overly simple and should be merged with other global 4121 // handling. 4122 GV->setConstant(isTypeConstant(D->getType(), false)); 4123 4124 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 4125 4126 setLinkageForGV(GV, D); 4127 4128 if (D->getTLSKind()) { 4129 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 4130 CXXThreadLocals.push_back(D); 4131 setTLSMode(GV, *D); 4132 } 4133 4134 setGVProperties(GV, D); 4135 4136 // If required by the ABI, treat declarations of static data members with 4137 // inline initializers as definitions. 4138 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 4139 EmitGlobalVarDefinition(D); 4140 } 4141 4142 // Emit section information for extern variables. 4143 if (D->hasExternalStorage()) { 4144 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 4145 GV->setSection(SA->getName()); 4146 } 4147 4148 // Handle XCore specific ABI requirements. 4149 if (getTriple().getArch() == llvm::Triple::xcore && 4150 D->getLanguageLinkage() == CLanguageLinkage && 4151 D->getType().isConstant(Context) && 4152 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 4153 GV->setSection(".cp.rodata"); 4154 4155 // Check if we a have a const declaration with an initializer, we may be 4156 // able to emit it as available_externally to expose it's value to the 4157 // optimizer. 4158 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 4159 D->getType().isConstQualified() && !GV->hasInitializer() && 4160 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 4161 const auto *Record = 4162 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 4163 bool HasMutableFields = Record && Record->hasMutableFields(); 4164 if (!HasMutableFields) { 4165 const VarDecl *InitDecl; 4166 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 4167 if (InitExpr) { 4168 ConstantEmitter emitter(*this); 4169 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 4170 if (Init) { 4171 auto *InitType = Init->getType(); 4172 if (GV->getValueType() != InitType) { 4173 // The type of the initializer does not match the definition. 4174 // This happens when an initializer has a different type from 4175 // the type of the global (because of padding at the end of a 4176 // structure for instance). 4177 GV->setName(StringRef()); 4178 // Make a new global with the correct type, this is now guaranteed 4179 // to work. 4180 auto *NewGV = cast<llvm::GlobalVariable>( 4181 GetAddrOfGlobalVar(D, InitType, IsForDefinition) 4182 ->stripPointerCasts()); 4183 4184 // Erase the old global, since it is no longer used. 4185 GV->eraseFromParent(); 4186 GV = NewGV; 4187 } else { 4188 GV->setInitializer(Init); 4189 GV->setConstant(true); 4190 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 4191 } 4192 emitter.finalize(GV); 4193 } 4194 } 4195 } 4196 } 4197 } 4198 4199 if (GV->isDeclaration()) { 4200 getTargetCodeGenInfo().setTargetAttributes(D, GV, *this); 4201 // External HIP managed variables needed to be recorded for transformation 4202 // in both device and host compilations. 4203 if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() && 4204 D->hasExternalStorage()) 4205 getCUDARuntime().handleVarRegistration(D, *GV); 4206 } 4207 4208 LangAS ExpectedAS = 4209 D ? D->getType().getAddressSpace() 4210 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 4211 assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS); 4212 if (DAddrSpace != ExpectedAS) { 4213 return getTargetCodeGenInfo().performAddrSpaceCast( 4214 *this, GV, DAddrSpace, ExpectedAS, Ty->getPointerTo(TargetAS)); 4215 } 4216 4217 return GV; 4218 } 4219 4220 llvm::Constant * 4221 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) { 4222 const Decl *D = GD.getDecl(); 4223 4224 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 4225 return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr, 4226 /*DontDefer=*/false, IsForDefinition); 4227 4228 if (isa<CXXMethodDecl>(D)) { 4229 auto FInfo = 4230 &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D)); 4231 auto Ty = getTypes().GetFunctionType(*FInfo); 4232 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 4233 IsForDefinition); 4234 } 4235 4236 if (isa<FunctionDecl>(D)) { 4237 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4238 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4239 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 4240 IsForDefinition); 4241 } 4242 4243 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition); 4244 } 4245 4246 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable( 4247 StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage, 4248 unsigned Alignment) { 4249 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 4250 llvm::GlobalVariable *OldGV = nullptr; 4251 4252 if (GV) { 4253 // Check if the variable has the right type. 4254 if (GV->getValueType() == Ty) 4255 return GV; 4256 4257 // Because C++ name mangling, the only way we can end up with an already 4258 // existing global with the same name is if it has been declared extern "C". 4259 assert(GV->isDeclaration() && "Declaration has wrong type!"); 4260 OldGV = GV; 4261 } 4262 4263 // Create a new variable. 4264 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 4265 Linkage, nullptr, Name); 4266 4267 if (OldGV) { 4268 // Replace occurrences of the old variable if needed. 4269 GV->takeName(OldGV); 4270 4271 if (!OldGV->use_empty()) { 4272 llvm::Constant *NewPtrForOldDecl = 4273 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 4274 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 4275 } 4276 4277 OldGV->eraseFromParent(); 4278 } 4279 4280 if (supportsCOMDAT() && GV->isWeakForLinker() && 4281 !GV->hasAvailableExternallyLinkage()) 4282 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 4283 4284 GV->setAlignment(llvm::MaybeAlign(Alignment)); 4285 4286 return GV; 4287 } 4288 4289 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 4290 /// given global variable. If Ty is non-null and if the global doesn't exist, 4291 /// then it will be created with the specified type instead of whatever the 4292 /// normal requested type would be. If IsForDefinition is true, it is guaranteed 4293 /// that an actual global with type Ty will be returned, not conversion of a 4294 /// variable with the same mangled name but some other type. 4295 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 4296 llvm::Type *Ty, 4297 ForDefinition_t IsForDefinition) { 4298 assert(D->hasGlobalStorage() && "Not a global variable"); 4299 QualType ASTTy = D->getType(); 4300 if (!Ty) 4301 Ty = getTypes().ConvertTypeForMem(ASTTy); 4302 4303 StringRef MangledName = getMangledName(D); 4304 return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D, 4305 IsForDefinition); 4306 } 4307 4308 /// CreateRuntimeVariable - Create a new runtime global variable with the 4309 /// specified type and name. 4310 llvm::Constant * 4311 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 4312 StringRef Name) { 4313 LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global 4314 : LangAS::Default; 4315 auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr); 4316 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts())); 4317 return Ret; 4318 } 4319 4320 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 4321 assert(!D->getInit() && "Cannot emit definite definitions here!"); 4322 4323 StringRef MangledName = getMangledName(D); 4324 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 4325 4326 // We already have a definition, not declaration, with the same mangled name. 4327 // Emitting of declaration is not required (and actually overwrites emitted 4328 // definition). 4329 if (GV && !GV->isDeclaration()) 4330 return; 4331 4332 // If we have not seen a reference to this variable yet, place it into the 4333 // deferred declarations table to be emitted if needed later. 4334 if (!MustBeEmitted(D) && !GV) { 4335 DeferredDecls[MangledName] = D; 4336 return; 4337 } 4338 4339 // The tentative definition is the only definition. 4340 EmitGlobalVarDefinition(D); 4341 } 4342 4343 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) { 4344 EmitExternalVarDeclaration(D); 4345 } 4346 4347 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 4348 return Context.toCharUnitsFromBits( 4349 getDataLayout().getTypeStoreSizeInBits(Ty)); 4350 } 4351 4352 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 4353 if (LangOpts.OpenCL) { 4354 LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 4355 assert(AS == LangAS::opencl_global || 4356 AS == LangAS::opencl_global_device || 4357 AS == LangAS::opencl_global_host || 4358 AS == LangAS::opencl_constant || 4359 AS == LangAS::opencl_local || 4360 AS >= LangAS::FirstTargetAddressSpace); 4361 return AS; 4362 } 4363 4364 if (LangOpts.SYCLIsDevice && 4365 (!D || D->getType().getAddressSpace() == LangAS::Default)) 4366 return LangAS::sycl_global; 4367 4368 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 4369 if (D && D->hasAttr<CUDAConstantAttr>()) 4370 return LangAS::cuda_constant; 4371 else if (D && D->hasAttr<CUDASharedAttr>()) 4372 return LangAS::cuda_shared; 4373 else if (D && D->hasAttr<CUDADeviceAttr>()) 4374 return LangAS::cuda_device; 4375 else if (D && D->getType().isConstQualified()) 4376 return LangAS::cuda_constant; 4377 else 4378 return LangAS::cuda_device; 4379 } 4380 4381 if (LangOpts.OpenMP) { 4382 LangAS AS; 4383 if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS)) 4384 return AS; 4385 } 4386 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 4387 } 4388 4389 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const { 4390 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 4391 if (LangOpts.OpenCL) 4392 return LangAS::opencl_constant; 4393 if (LangOpts.SYCLIsDevice) 4394 return LangAS::sycl_global; 4395 if (LangOpts.HIP && LangOpts.CUDAIsDevice && getTriple().isSPIRV()) 4396 // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V) 4397 // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up 4398 // with OpVariable instructions with Generic storage class which is not 4399 // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V 4400 // UniformConstant storage class is not viable as pointers to it may not be 4401 // casted to Generic pointers which are used to model HIP's "flat" pointers. 4402 return LangAS::cuda_device; 4403 if (auto AS = getTarget().getConstantAddressSpace()) 4404 return AS.getValue(); 4405 return LangAS::Default; 4406 } 4407 4408 // In address space agnostic languages, string literals are in default address 4409 // space in AST. However, certain targets (e.g. amdgcn) request them to be 4410 // emitted in constant address space in LLVM IR. To be consistent with other 4411 // parts of AST, string literal global variables in constant address space 4412 // need to be casted to default address space before being put into address 4413 // map and referenced by other part of CodeGen. 4414 // In OpenCL, string literals are in constant address space in AST, therefore 4415 // they should not be casted to default address space. 4416 static llvm::Constant * 4417 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM, 4418 llvm::GlobalVariable *GV) { 4419 llvm::Constant *Cast = GV; 4420 if (!CGM.getLangOpts().OpenCL) { 4421 auto AS = CGM.GetGlobalConstantAddressSpace(); 4422 if (AS != LangAS::Default) 4423 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast( 4424 CGM, GV, AS, LangAS::Default, 4425 GV->getValueType()->getPointerTo( 4426 CGM.getContext().getTargetAddressSpace(LangAS::Default))); 4427 } 4428 return Cast; 4429 } 4430 4431 template<typename SomeDecl> 4432 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 4433 llvm::GlobalValue *GV) { 4434 if (!getLangOpts().CPlusPlus) 4435 return; 4436 4437 // Must have 'used' attribute, or else inline assembly can't rely on 4438 // the name existing. 4439 if (!D->template hasAttr<UsedAttr>()) 4440 return; 4441 4442 // Must have internal linkage and an ordinary name. 4443 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 4444 return; 4445 4446 // Must be in an extern "C" context. Entities declared directly within 4447 // a record are not extern "C" even if the record is in such a context. 4448 const SomeDecl *First = D->getFirstDecl(); 4449 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 4450 return; 4451 4452 // OK, this is an internal linkage entity inside an extern "C" linkage 4453 // specification. Make a note of that so we can give it the "expected" 4454 // mangled name if nothing else is using that name. 4455 std::pair<StaticExternCMap::iterator, bool> R = 4456 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 4457 4458 // If we have multiple internal linkage entities with the same name 4459 // in extern "C" regions, none of them gets that name. 4460 if (!R.second) 4461 R.first->second = nullptr; 4462 } 4463 4464 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 4465 if (!CGM.supportsCOMDAT()) 4466 return false; 4467 4468 if (D.hasAttr<SelectAnyAttr>()) 4469 return true; 4470 4471 GVALinkage Linkage; 4472 if (auto *VD = dyn_cast<VarDecl>(&D)) 4473 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 4474 else 4475 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 4476 4477 switch (Linkage) { 4478 case GVA_Internal: 4479 case GVA_AvailableExternally: 4480 case GVA_StrongExternal: 4481 return false; 4482 case GVA_DiscardableODR: 4483 case GVA_StrongODR: 4484 return true; 4485 } 4486 llvm_unreachable("No such linkage"); 4487 } 4488 4489 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 4490 llvm::GlobalObject &GO) { 4491 if (!shouldBeInCOMDAT(*this, D)) 4492 return; 4493 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 4494 } 4495 4496 /// Pass IsTentative as true if you want to create a tentative definition. 4497 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 4498 bool IsTentative) { 4499 // OpenCL global variables of sampler type are translated to function calls, 4500 // therefore no need to be translated. 4501 QualType ASTTy = D->getType(); 4502 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 4503 return; 4504 4505 // If this is OpenMP device, check if it is legal to emit this global 4506 // normally. 4507 if (LangOpts.OpenMPIsDevice && OpenMPRuntime && 4508 OpenMPRuntime->emitTargetGlobalVariable(D)) 4509 return; 4510 4511 llvm::TrackingVH<llvm::Constant> Init; 4512 bool NeedsGlobalCtor = false; 4513 bool NeedsGlobalDtor = 4514 D->needsDestruction(getContext()) == QualType::DK_cxx_destructor; 4515 4516 const VarDecl *InitDecl; 4517 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 4518 4519 Optional<ConstantEmitter> emitter; 4520 4521 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 4522 // as part of their declaration." Sema has already checked for 4523 // error cases, so we just need to set Init to UndefValue. 4524 bool IsCUDASharedVar = 4525 getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>(); 4526 // Shadows of initialized device-side global variables are also left 4527 // undefined. 4528 // Managed Variables should be initialized on both host side and device side. 4529 bool IsCUDAShadowVar = 4530 !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 4531 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() || 4532 D->hasAttr<CUDASharedAttr>()); 4533 bool IsCUDADeviceShadowVar = 4534 getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 4535 (D->getType()->isCUDADeviceBuiltinSurfaceType() || 4536 D->getType()->isCUDADeviceBuiltinTextureType()); 4537 if (getLangOpts().CUDA && 4538 (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar)) 4539 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy)); 4540 else if (D->hasAttr<LoaderUninitializedAttr>()) 4541 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy)); 4542 else if (!InitExpr) { 4543 // This is a tentative definition; tentative definitions are 4544 // implicitly initialized with { 0 }. 4545 // 4546 // Note that tentative definitions are only emitted at the end of 4547 // a translation unit, so they should never have incomplete 4548 // type. In addition, EmitTentativeDefinition makes sure that we 4549 // never attempt to emit a tentative definition if a real one 4550 // exists. A use may still exists, however, so we still may need 4551 // to do a RAUW. 4552 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 4553 Init = EmitNullConstant(D->getType()); 4554 } else { 4555 initializedGlobalDecl = GlobalDecl(D); 4556 emitter.emplace(*this); 4557 llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl); 4558 if (!Initializer) { 4559 QualType T = InitExpr->getType(); 4560 if (D->getType()->isReferenceType()) 4561 T = D->getType(); 4562 4563 if (getLangOpts().CPlusPlus) { 4564 Init = EmitNullConstant(T); 4565 NeedsGlobalCtor = true; 4566 } else { 4567 ErrorUnsupported(D, "static initializer"); 4568 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 4569 } 4570 } else { 4571 Init = Initializer; 4572 // We don't need an initializer, so remove the entry for the delayed 4573 // initializer position (just in case this entry was delayed) if we 4574 // also don't need to register a destructor. 4575 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 4576 DelayedCXXInitPosition.erase(D); 4577 } 4578 } 4579 4580 llvm::Type* InitType = Init->getType(); 4581 llvm::Constant *Entry = 4582 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 4583 4584 // Strip off pointer casts if we got them. 4585 Entry = Entry->stripPointerCasts(); 4586 4587 // Entry is now either a Function or GlobalVariable. 4588 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 4589 4590 // We have a definition after a declaration with the wrong type. 4591 // We must make a new GlobalVariable* and update everything that used OldGV 4592 // (a declaration or tentative definition) with the new GlobalVariable* 4593 // (which will be a definition). 4594 // 4595 // This happens if there is a prototype for a global (e.g. 4596 // "extern int x[];") and then a definition of a different type (e.g. 4597 // "int x[10];"). This also happens when an initializer has a different type 4598 // from the type of the global (this happens with unions). 4599 if (!GV || GV->getValueType() != InitType || 4600 GV->getType()->getAddressSpace() != 4601 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 4602 4603 // Move the old entry aside so that we'll create a new one. 4604 Entry->setName(StringRef()); 4605 4606 // Make a new global with the correct type, this is now guaranteed to work. 4607 GV = cast<llvm::GlobalVariable>( 4608 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)) 4609 ->stripPointerCasts()); 4610 4611 // Replace all uses of the old global with the new global 4612 llvm::Constant *NewPtrForOldDecl = 4613 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, 4614 Entry->getType()); 4615 Entry->replaceAllUsesWith(NewPtrForOldDecl); 4616 4617 // Erase the old global, since it is no longer used. 4618 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 4619 } 4620 4621 MaybeHandleStaticInExternC(D, GV); 4622 4623 if (D->hasAttr<AnnotateAttr>()) 4624 AddGlobalAnnotations(D, GV); 4625 4626 // Set the llvm linkage type as appropriate. 4627 llvm::GlobalValue::LinkageTypes Linkage = 4628 getLLVMLinkageVarDefinition(D, GV->isConstant()); 4629 4630 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 4631 // the device. [...]" 4632 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 4633 // __device__, declares a variable that: [...] 4634 // Is accessible from all the threads within the grid and from the host 4635 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 4636 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 4637 if (GV && LangOpts.CUDA) { 4638 if (LangOpts.CUDAIsDevice) { 4639 if (Linkage != llvm::GlobalValue::InternalLinkage && 4640 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() || 4641 D->getType()->isCUDADeviceBuiltinSurfaceType() || 4642 D->getType()->isCUDADeviceBuiltinTextureType())) 4643 GV->setExternallyInitialized(true); 4644 } else { 4645 getCUDARuntime().internalizeDeviceSideVar(D, Linkage); 4646 } 4647 getCUDARuntime().handleVarRegistration(D, *GV); 4648 } 4649 4650 GV->setInitializer(Init); 4651 if (emitter) 4652 emitter->finalize(GV); 4653 4654 // If it is safe to mark the global 'constant', do so now. 4655 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 4656 isTypeConstant(D->getType(), true)); 4657 4658 // If it is in a read-only section, mark it 'constant'. 4659 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 4660 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 4661 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 4662 GV->setConstant(true); 4663 } 4664 4665 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 4666 4667 // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper 4668 // function is only defined alongside the variable, not also alongside 4669 // callers. Normally, all accesses to a thread_local go through the 4670 // thread-wrapper in order to ensure initialization has occurred, underlying 4671 // variable will never be used other than the thread-wrapper, so it can be 4672 // converted to internal linkage. 4673 // 4674 // However, if the variable has the 'constinit' attribute, it _can_ be 4675 // referenced directly, without calling the thread-wrapper, so the linkage 4676 // must not be changed. 4677 // 4678 // Additionally, if the variable isn't plain external linkage, e.g. if it's 4679 // weak or linkonce, the de-duplication semantics are important to preserve, 4680 // so we don't change the linkage. 4681 if (D->getTLSKind() == VarDecl::TLS_Dynamic && 4682 Linkage == llvm::GlobalValue::ExternalLinkage && 4683 Context.getTargetInfo().getTriple().isOSDarwin() && 4684 !D->hasAttr<ConstInitAttr>()) 4685 Linkage = llvm::GlobalValue::InternalLinkage; 4686 4687 GV->setLinkage(Linkage); 4688 if (D->hasAttr<DLLImportAttr>()) 4689 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 4690 else if (D->hasAttr<DLLExportAttr>()) 4691 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 4692 else 4693 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 4694 4695 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 4696 // common vars aren't constant even if declared const. 4697 GV->setConstant(false); 4698 // Tentative definition of global variables may be initialized with 4699 // non-zero null pointers. In this case they should have weak linkage 4700 // since common linkage must have zero initializer and must not have 4701 // explicit section therefore cannot have non-zero initial value. 4702 if (!GV->getInitializer()->isNullValue()) 4703 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 4704 } 4705 4706 setNonAliasAttributes(D, GV); 4707 4708 if (D->getTLSKind() && !GV->isThreadLocal()) { 4709 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 4710 CXXThreadLocals.push_back(D); 4711 setTLSMode(GV, *D); 4712 } 4713 4714 maybeSetTrivialComdat(*D, *GV); 4715 4716 // Emit the initializer function if necessary. 4717 if (NeedsGlobalCtor || NeedsGlobalDtor) 4718 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 4719 4720 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 4721 4722 // Emit global variable debug information. 4723 if (CGDebugInfo *DI = getModuleDebugInfo()) 4724 if (getCodeGenOpts().hasReducedDebugInfo()) 4725 DI->EmitGlobalVariable(GV, D); 4726 } 4727 4728 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) { 4729 if (CGDebugInfo *DI = getModuleDebugInfo()) 4730 if (getCodeGenOpts().hasReducedDebugInfo()) { 4731 QualType ASTTy = D->getType(); 4732 llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType()); 4733 llvm::Constant *GV = 4734 GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D); 4735 DI->EmitExternalVariable( 4736 cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D); 4737 } 4738 } 4739 4740 static bool isVarDeclStrongDefinition(const ASTContext &Context, 4741 CodeGenModule &CGM, const VarDecl *D, 4742 bool NoCommon) { 4743 // Don't give variables common linkage if -fno-common was specified unless it 4744 // was overridden by a NoCommon attribute. 4745 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 4746 return true; 4747 4748 // C11 6.9.2/2: 4749 // A declaration of an identifier for an object that has file scope without 4750 // an initializer, and without a storage-class specifier or with the 4751 // storage-class specifier static, constitutes a tentative definition. 4752 if (D->getInit() || D->hasExternalStorage()) 4753 return true; 4754 4755 // A variable cannot be both common and exist in a section. 4756 if (D->hasAttr<SectionAttr>()) 4757 return true; 4758 4759 // A variable cannot be both common and exist in a section. 4760 // We don't try to determine which is the right section in the front-end. 4761 // If no specialized section name is applicable, it will resort to default. 4762 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 4763 D->hasAttr<PragmaClangDataSectionAttr>() || 4764 D->hasAttr<PragmaClangRelroSectionAttr>() || 4765 D->hasAttr<PragmaClangRodataSectionAttr>()) 4766 return true; 4767 4768 // Thread local vars aren't considered common linkage. 4769 if (D->getTLSKind()) 4770 return true; 4771 4772 // Tentative definitions marked with WeakImportAttr are true definitions. 4773 if (D->hasAttr<WeakImportAttr>()) 4774 return true; 4775 4776 // A variable cannot be both common and exist in a comdat. 4777 if (shouldBeInCOMDAT(CGM, *D)) 4778 return true; 4779 4780 // Declarations with a required alignment do not have common linkage in MSVC 4781 // mode. 4782 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 4783 if (D->hasAttr<AlignedAttr>()) 4784 return true; 4785 QualType VarType = D->getType(); 4786 if (Context.isAlignmentRequired(VarType)) 4787 return true; 4788 4789 if (const auto *RT = VarType->getAs<RecordType>()) { 4790 const RecordDecl *RD = RT->getDecl(); 4791 for (const FieldDecl *FD : RD->fields()) { 4792 if (FD->isBitField()) 4793 continue; 4794 if (FD->hasAttr<AlignedAttr>()) 4795 return true; 4796 if (Context.isAlignmentRequired(FD->getType())) 4797 return true; 4798 } 4799 } 4800 } 4801 4802 // Microsoft's link.exe doesn't support alignments greater than 32 bytes for 4803 // common symbols, so symbols with greater alignment requirements cannot be 4804 // common. 4805 // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two 4806 // alignments for common symbols via the aligncomm directive, so this 4807 // restriction only applies to MSVC environments. 4808 if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() && 4809 Context.getTypeAlignIfKnown(D->getType()) > 4810 Context.toBits(CharUnits::fromQuantity(32))) 4811 return true; 4812 4813 return false; 4814 } 4815 4816 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 4817 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 4818 if (Linkage == GVA_Internal) 4819 return llvm::Function::InternalLinkage; 4820 4821 if (D->hasAttr<WeakAttr>()) { 4822 if (IsConstantVariable) 4823 return llvm::GlobalVariable::WeakODRLinkage; 4824 else 4825 return llvm::GlobalVariable::WeakAnyLinkage; 4826 } 4827 4828 if (const auto *FD = D->getAsFunction()) 4829 if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally) 4830 return llvm::GlobalVariable::LinkOnceAnyLinkage; 4831 4832 // We are guaranteed to have a strong definition somewhere else, 4833 // so we can use available_externally linkage. 4834 if (Linkage == GVA_AvailableExternally) 4835 return llvm::GlobalValue::AvailableExternallyLinkage; 4836 4837 // Note that Apple's kernel linker doesn't support symbol 4838 // coalescing, so we need to avoid linkonce and weak linkages there. 4839 // Normally, this means we just map to internal, but for explicit 4840 // instantiations we'll map to external. 4841 4842 // In C++, the compiler has to emit a definition in every translation unit 4843 // that references the function. We should use linkonce_odr because 4844 // a) if all references in this translation unit are optimized away, we 4845 // don't need to codegen it. b) if the function persists, it needs to be 4846 // merged with other definitions. c) C++ has the ODR, so we know the 4847 // definition is dependable. 4848 if (Linkage == GVA_DiscardableODR) 4849 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 4850 : llvm::Function::InternalLinkage; 4851 4852 // An explicit instantiation of a template has weak linkage, since 4853 // explicit instantiations can occur in multiple translation units 4854 // and must all be equivalent. However, we are not allowed to 4855 // throw away these explicit instantiations. 4856 // 4857 // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU, 4858 // so say that CUDA templates are either external (for kernels) or internal. 4859 // This lets llvm perform aggressive inter-procedural optimizations. For 4860 // -fgpu-rdc case, device function calls across multiple TU's are allowed, 4861 // therefore we need to follow the normal linkage paradigm. 4862 if (Linkage == GVA_StrongODR) { 4863 if (getLangOpts().AppleKext) 4864 return llvm::Function::ExternalLinkage; 4865 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 4866 !getLangOpts().GPURelocatableDeviceCode) 4867 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 4868 : llvm::Function::InternalLinkage; 4869 return llvm::Function::WeakODRLinkage; 4870 } 4871 4872 // C++ doesn't have tentative definitions and thus cannot have common 4873 // linkage. 4874 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 4875 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 4876 CodeGenOpts.NoCommon)) 4877 return llvm::GlobalVariable::CommonLinkage; 4878 4879 // selectany symbols are externally visible, so use weak instead of 4880 // linkonce. MSVC optimizes away references to const selectany globals, so 4881 // all definitions should be the same and ODR linkage should be used. 4882 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 4883 if (D->hasAttr<SelectAnyAttr>()) 4884 return llvm::GlobalVariable::WeakODRLinkage; 4885 4886 // Otherwise, we have strong external linkage. 4887 assert(Linkage == GVA_StrongExternal); 4888 return llvm::GlobalVariable::ExternalLinkage; 4889 } 4890 4891 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 4892 const VarDecl *VD, bool IsConstant) { 4893 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 4894 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 4895 } 4896 4897 /// Replace the uses of a function that was declared with a non-proto type. 4898 /// We want to silently drop extra arguments from call sites 4899 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 4900 llvm::Function *newFn) { 4901 // Fast path. 4902 if (old->use_empty()) return; 4903 4904 llvm::Type *newRetTy = newFn->getReturnType(); 4905 SmallVector<llvm::Value*, 4> newArgs; 4906 4907 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 4908 ui != ue; ) { 4909 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 4910 llvm::User *user = use->getUser(); 4911 4912 // Recognize and replace uses of bitcasts. Most calls to 4913 // unprototyped functions will use bitcasts. 4914 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 4915 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 4916 replaceUsesOfNonProtoConstant(bitcast, newFn); 4917 continue; 4918 } 4919 4920 // Recognize calls to the function. 4921 llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user); 4922 if (!callSite) continue; 4923 if (!callSite->isCallee(&*use)) 4924 continue; 4925 4926 // If the return types don't match exactly, then we can't 4927 // transform this call unless it's dead. 4928 if (callSite->getType() != newRetTy && !callSite->use_empty()) 4929 continue; 4930 4931 // Get the call site's attribute list. 4932 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 4933 llvm::AttributeList oldAttrs = callSite->getAttributes(); 4934 4935 // If the function was passed too few arguments, don't transform. 4936 unsigned newNumArgs = newFn->arg_size(); 4937 if (callSite->arg_size() < newNumArgs) 4938 continue; 4939 4940 // If extra arguments were passed, we silently drop them. 4941 // If any of the types mismatch, we don't transform. 4942 unsigned argNo = 0; 4943 bool dontTransform = false; 4944 for (llvm::Argument &A : newFn->args()) { 4945 if (callSite->getArgOperand(argNo)->getType() != A.getType()) { 4946 dontTransform = true; 4947 break; 4948 } 4949 4950 // Add any parameter attributes. 4951 newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo)); 4952 argNo++; 4953 } 4954 if (dontTransform) 4955 continue; 4956 4957 // Okay, we can transform this. Create the new call instruction and copy 4958 // over the required information. 4959 newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo); 4960 4961 // Copy over any operand bundles. 4962 SmallVector<llvm::OperandBundleDef, 1> newBundles; 4963 callSite->getOperandBundlesAsDefs(newBundles); 4964 4965 llvm::CallBase *newCall; 4966 if (isa<llvm::CallInst>(callSite)) { 4967 newCall = 4968 llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite); 4969 } else { 4970 auto *oldInvoke = cast<llvm::InvokeInst>(callSite); 4971 newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(), 4972 oldInvoke->getUnwindDest(), newArgs, 4973 newBundles, "", callSite); 4974 } 4975 newArgs.clear(); // for the next iteration 4976 4977 if (!newCall->getType()->isVoidTy()) 4978 newCall->takeName(callSite); 4979 newCall->setAttributes( 4980 llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(), 4981 oldAttrs.getRetAttrs(), newArgAttrs)); 4982 newCall->setCallingConv(callSite->getCallingConv()); 4983 4984 // Finally, remove the old call, replacing any uses with the new one. 4985 if (!callSite->use_empty()) 4986 callSite->replaceAllUsesWith(newCall); 4987 4988 // Copy debug location attached to CI. 4989 if (callSite->getDebugLoc()) 4990 newCall->setDebugLoc(callSite->getDebugLoc()); 4991 4992 callSite->eraseFromParent(); 4993 } 4994 } 4995 4996 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 4997 /// implement a function with no prototype, e.g. "int foo() {}". If there are 4998 /// existing call uses of the old function in the module, this adjusts them to 4999 /// call the new function directly. 5000 /// 5001 /// This is not just a cleanup: the always_inline pass requires direct calls to 5002 /// functions to be able to inline them. If there is a bitcast in the way, it 5003 /// won't inline them. Instcombine normally deletes these calls, but it isn't 5004 /// run at -O0. 5005 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 5006 llvm::Function *NewFn) { 5007 // If we're redefining a global as a function, don't transform it. 5008 if (!isa<llvm::Function>(Old)) return; 5009 5010 replaceUsesOfNonProtoConstant(Old, NewFn); 5011 } 5012 5013 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 5014 auto DK = VD->isThisDeclarationADefinition(); 5015 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 5016 return; 5017 5018 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 5019 // If we have a definition, this might be a deferred decl. If the 5020 // instantiation is explicit, make sure we emit it at the end. 5021 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 5022 GetAddrOfGlobalVar(VD); 5023 5024 EmitTopLevelDecl(VD); 5025 } 5026 5027 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 5028 llvm::GlobalValue *GV) { 5029 const auto *D = cast<FunctionDecl>(GD.getDecl()); 5030 5031 // Compute the function info and LLVM type. 5032 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 5033 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 5034 5035 // Get or create the prototype for the function. 5036 if (!GV || (GV->getValueType() != Ty)) 5037 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 5038 /*DontDefer=*/true, 5039 ForDefinition)); 5040 5041 // Already emitted. 5042 if (!GV->isDeclaration()) 5043 return; 5044 5045 // We need to set linkage and visibility on the function before 5046 // generating code for it because various parts of IR generation 5047 // want to propagate this information down (e.g. to local static 5048 // declarations). 5049 auto *Fn = cast<llvm::Function>(GV); 5050 setFunctionLinkage(GD, Fn); 5051 5052 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 5053 setGVProperties(Fn, GD); 5054 5055 MaybeHandleStaticInExternC(D, Fn); 5056 5057 maybeSetTrivialComdat(*D, *Fn); 5058 5059 // Set CodeGen attributes that represent floating point environment. 5060 setLLVMFunctionFEnvAttributes(D, Fn); 5061 5062 CodeGenFunction(*this).GenerateCode(GD, Fn, FI); 5063 5064 setNonAliasAttributes(GD, Fn); 5065 SetLLVMFunctionAttributesForDefinition(D, Fn); 5066 5067 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 5068 AddGlobalCtor(Fn, CA->getPriority()); 5069 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 5070 AddGlobalDtor(Fn, DA->getPriority(), true); 5071 if (D->hasAttr<AnnotateAttr>()) 5072 AddGlobalAnnotations(D, Fn); 5073 } 5074 5075 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 5076 const auto *D = cast<ValueDecl>(GD.getDecl()); 5077 const AliasAttr *AA = D->getAttr<AliasAttr>(); 5078 assert(AA && "Not an alias?"); 5079 5080 StringRef MangledName = getMangledName(GD); 5081 5082 if (AA->getAliasee() == MangledName) { 5083 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 5084 return; 5085 } 5086 5087 // If there is a definition in the module, then it wins over the alias. 5088 // This is dubious, but allow it to be safe. Just ignore the alias. 5089 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 5090 if (Entry && !Entry->isDeclaration()) 5091 return; 5092 5093 Aliases.push_back(GD); 5094 5095 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 5096 5097 // Create a reference to the named value. This ensures that it is emitted 5098 // if a deferred decl. 5099 llvm::Constant *Aliasee; 5100 llvm::GlobalValue::LinkageTypes LT; 5101 if (isa<llvm::FunctionType>(DeclTy)) { 5102 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 5103 /*ForVTable=*/false); 5104 LT = getFunctionLinkage(GD); 5105 } else { 5106 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default, 5107 /*D=*/nullptr); 5108 if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl())) 5109 LT = getLLVMLinkageVarDefinition(VD, D->getType().isConstQualified()); 5110 else 5111 LT = getFunctionLinkage(GD); 5112 } 5113 5114 // Create the new alias itself, but don't set a name yet. 5115 unsigned AS = Aliasee->getType()->getPointerAddressSpace(); 5116 auto *GA = 5117 llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule()); 5118 5119 if (Entry) { 5120 if (GA->getAliasee() == Entry) { 5121 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 5122 return; 5123 } 5124 5125 assert(Entry->isDeclaration()); 5126 5127 // If there is a declaration in the module, then we had an extern followed 5128 // by the alias, as in: 5129 // extern int test6(); 5130 // ... 5131 // int test6() __attribute__((alias("test7"))); 5132 // 5133 // Remove it and replace uses of it with the alias. 5134 GA->takeName(Entry); 5135 5136 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 5137 Entry->getType())); 5138 Entry->eraseFromParent(); 5139 } else { 5140 GA->setName(MangledName); 5141 } 5142 5143 // Set attributes which are particular to an alias; this is a 5144 // specialization of the attributes which may be set on a global 5145 // variable/function. 5146 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 5147 D->isWeakImported()) { 5148 GA->setLinkage(llvm::Function::WeakAnyLinkage); 5149 } 5150 5151 if (const auto *VD = dyn_cast<VarDecl>(D)) 5152 if (VD->getTLSKind()) 5153 setTLSMode(GA, *VD); 5154 5155 SetCommonAttributes(GD, GA); 5156 } 5157 5158 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 5159 const auto *D = cast<ValueDecl>(GD.getDecl()); 5160 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 5161 assert(IFA && "Not an ifunc?"); 5162 5163 StringRef MangledName = getMangledName(GD); 5164 5165 if (IFA->getResolver() == MangledName) { 5166 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 5167 return; 5168 } 5169 5170 // Report an error if some definition overrides ifunc. 5171 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 5172 if (Entry && !Entry->isDeclaration()) { 5173 GlobalDecl OtherGD; 5174 if (lookupRepresentativeDecl(MangledName, OtherGD) && 5175 DiagnosedConflictingDefinitions.insert(GD).second) { 5176 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name) 5177 << MangledName; 5178 Diags.Report(OtherGD.getDecl()->getLocation(), 5179 diag::note_previous_definition); 5180 } 5181 return; 5182 } 5183 5184 Aliases.push_back(GD); 5185 5186 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 5187 llvm::Type *ResolverTy = llvm::GlobalIFunc::getResolverFunctionType(DeclTy); 5188 llvm::Constant *Resolver = 5189 GetOrCreateLLVMFunction(IFA->getResolver(), ResolverTy, {}, 5190 /*ForVTable=*/false); 5191 llvm::GlobalIFunc *GIF = 5192 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 5193 "", Resolver, &getModule()); 5194 if (Entry) { 5195 if (GIF->getResolver() == Entry) { 5196 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 5197 return; 5198 } 5199 assert(Entry->isDeclaration()); 5200 5201 // If there is a declaration in the module, then we had an extern followed 5202 // by the ifunc, as in: 5203 // extern int test(); 5204 // ... 5205 // int test() __attribute__((ifunc("resolver"))); 5206 // 5207 // Remove it and replace uses of it with the ifunc. 5208 GIF->takeName(Entry); 5209 5210 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 5211 Entry->getType())); 5212 Entry->eraseFromParent(); 5213 } else 5214 GIF->setName(MangledName); 5215 5216 SetCommonAttributes(GD, GIF); 5217 } 5218 5219 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 5220 ArrayRef<llvm::Type*> Tys) { 5221 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 5222 Tys); 5223 } 5224 5225 static llvm::StringMapEntry<llvm::GlobalVariable *> & 5226 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 5227 const StringLiteral *Literal, bool TargetIsLSB, 5228 bool &IsUTF16, unsigned &StringLength) { 5229 StringRef String = Literal->getString(); 5230 unsigned NumBytes = String.size(); 5231 5232 // Check for simple case. 5233 if (!Literal->containsNonAsciiOrNull()) { 5234 StringLength = NumBytes; 5235 return *Map.insert(std::make_pair(String, nullptr)).first; 5236 } 5237 5238 // Otherwise, convert the UTF8 literals into a string of shorts. 5239 IsUTF16 = true; 5240 5241 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 5242 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 5243 llvm::UTF16 *ToPtr = &ToBuf[0]; 5244 5245 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 5246 ToPtr + NumBytes, llvm::strictConversion); 5247 5248 // ConvertUTF8toUTF16 returns the length in ToPtr. 5249 StringLength = ToPtr - &ToBuf[0]; 5250 5251 // Add an explicit null. 5252 *ToPtr = 0; 5253 return *Map.insert(std::make_pair( 5254 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 5255 (StringLength + 1) * 2), 5256 nullptr)).first; 5257 } 5258 5259 ConstantAddress 5260 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 5261 unsigned StringLength = 0; 5262 bool isUTF16 = false; 5263 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 5264 GetConstantCFStringEntry(CFConstantStringMap, Literal, 5265 getDataLayout().isLittleEndian(), isUTF16, 5266 StringLength); 5267 5268 if (auto *C = Entry.second) 5269 return ConstantAddress( 5270 C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment())); 5271 5272 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 5273 llvm::Constant *Zeros[] = { Zero, Zero }; 5274 5275 const ASTContext &Context = getContext(); 5276 const llvm::Triple &Triple = getTriple(); 5277 5278 const auto CFRuntime = getLangOpts().CFRuntime; 5279 const bool IsSwiftABI = 5280 static_cast<unsigned>(CFRuntime) >= 5281 static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift); 5282 const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1; 5283 5284 // If we don't already have it, get __CFConstantStringClassReference. 5285 if (!CFConstantStringClassRef) { 5286 const char *CFConstantStringClassName = "__CFConstantStringClassReference"; 5287 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 5288 Ty = llvm::ArrayType::get(Ty, 0); 5289 5290 switch (CFRuntime) { 5291 default: break; 5292 case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH; 5293 case LangOptions::CoreFoundationABI::Swift5_0: 5294 CFConstantStringClassName = 5295 Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN" 5296 : "$s10Foundation19_NSCFConstantStringCN"; 5297 Ty = IntPtrTy; 5298 break; 5299 case LangOptions::CoreFoundationABI::Swift4_2: 5300 CFConstantStringClassName = 5301 Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN" 5302 : "$S10Foundation19_NSCFConstantStringCN"; 5303 Ty = IntPtrTy; 5304 break; 5305 case LangOptions::CoreFoundationABI::Swift4_1: 5306 CFConstantStringClassName = 5307 Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN" 5308 : "__T010Foundation19_NSCFConstantStringCN"; 5309 Ty = IntPtrTy; 5310 break; 5311 } 5312 5313 llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName); 5314 5315 if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) { 5316 llvm::GlobalValue *GV = nullptr; 5317 5318 if ((GV = dyn_cast<llvm::GlobalValue>(C))) { 5319 IdentifierInfo &II = Context.Idents.get(GV->getName()); 5320 TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl(); 5321 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 5322 5323 const VarDecl *VD = nullptr; 5324 for (const auto *Result : DC->lookup(&II)) 5325 if ((VD = dyn_cast<VarDecl>(Result))) 5326 break; 5327 5328 if (Triple.isOSBinFormatELF()) { 5329 if (!VD) 5330 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 5331 } else { 5332 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 5333 if (!VD || !VD->hasAttr<DLLExportAttr>()) 5334 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 5335 else 5336 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 5337 } 5338 5339 setDSOLocal(GV); 5340 } 5341 } 5342 5343 // Decay array -> ptr 5344 CFConstantStringClassRef = 5345 IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) 5346 : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros); 5347 } 5348 5349 QualType CFTy = Context.getCFConstantStringType(); 5350 5351 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 5352 5353 ConstantInitBuilder Builder(*this); 5354 auto Fields = Builder.beginStruct(STy); 5355 5356 // Class pointer. 5357 Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef)); 5358 5359 // Flags. 5360 if (IsSwiftABI) { 5361 Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01); 5362 Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8); 5363 } else { 5364 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 5365 } 5366 5367 // String pointer. 5368 llvm::Constant *C = nullptr; 5369 if (isUTF16) { 5370 auto Arr = llvm::makeArrayRef( 5371 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 5372 Entry.first().size() / 2); 5373 C = llvm::ConstantDataArray::get(VMContext, Arr); 5374 } else { 5375 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 5376 } 5377 5378 // Note: -fwritable-strings doesn't make the backing store strings of 5379 // CFStrings writable. (See <rdar://problem/10657500>) 5380 auto *GV = 5381 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 5382 llvm::GlobalValue::PrivateLinkage, C, ".str"); 5383 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 5384 // Don't enforce the target's minimum global alignment, since the only use 5385 // of the string is via this class initializer. 5386 CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy) 5387 : Context.getTypeAlignInChars(Context.CharTy); 5388 GV->setAlignment(Align.getAsAlign()); 5389 5390 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 5391 // Without it LLVM can merge the string with a non unnamed_addr one during 5392 // LTO. Doing that changes the section it ends in, which surprises ld64. 5393 if (Triple.isOSBinFormatMachO()) 5394 GV->setSection(isUTF16 ? "__TEXT,__ustring" 5395 : "__TEXT,__cstring,cstring_literals"); 5396 // Make sure the literal ends up in .rodata to allow for safe ICF and for 5397 // the static linker to adjust permissions to read-only later on. 5398 else if (Triple.isOSBinFormatELF()) 5399 GV->setSection(".rodata"); 5400 5401 // String. 5402 llvm::Constant *Str = 5403 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 5404 5405 if (isUTF16) 5406 // Cast the UTF16 string to the correct type. 5407 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 5408 Fields.add(Str); 5409 5410 // String length. 5411 llvm::IntegerType *LengthTy = 5412 llvm::IntegerType::get(getModule().getContext(), 5413 Context.getTargetInfo().getLongWidth()); 5414 if (IsSwiftABI) { 5415 if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 || 5416 CFRuntime == LangOptions::CoreFoundationABI::Swift4_2) 5417 LengthTy = Int32Ty; 5418 else 5419 LengthTy = IntPtrTy; 5420 } 5421 Fields.addInt(LengthTy, StringLength); 5422 5423 // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is 5424 // properly aligned on 32-bit platforms. 5425 CharUnits Alignment = 5426 IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign(); 5427 5428 // The struct. 5429 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 5430 /*isConstant=*/false, 5431 llvm::GlobalVariable::PrivateLinkage); 5432 GV->addAttribute("objc_arc_inert"); 5433 switch (Triple.getObjectFormat()) { 5434 case llvm::Triple::UnknownObjectFormat: 5435 llvm_unreachable("unknown file format"); 5436 case llvm::Triple::GOFF: 5437 llvm_unreachable("GOFF is not yet implemented"); 5438 case llvm::Triple::XCOFF: 5439 llvm_unreachable("XCOFF is not yet implemented"); 5440 case llvm::Triple::COFF: 5441 case llvm::Triple::ELF: 5442 case llvm::Triple::Wasm: 5443 GV->setSection("cfstring"); 5444 break; 5445 case llvm::Triple::MachO: 5446 GV->setSection("__DATA,__cfstring"); 5447 break; 5448 } 5449 Entry.second = GV; 5450 5451 return ConstantAddress(GV, GV->getValueType(), Alignment); 5452 } 5453 5454 bool CodeGenModule::getExpressionLocationsEnabled() const { 5455 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 5456 } 5457 5458 QualType CodeGenModule::getObjCFastEnumerationStateType() { 5459 if (ObjCFastEnumerationStateType.isNull()) { 5460 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 5461 D->startDefinition(); 5462 5463 QualType FieldTypes[] = { 5464 Context.UnsignedLongTy, 5465 Context.getPointerType(Context.getObjCIdType()), 5466 Context.getPointerType(Context.UnsignedLongTy), 5467 Context.getConstantArrayType(Context.UnsignedLongTy, 5468 llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0) 5469 }; 5470 5471 for (size_t i = 0; i < 4; ++i) { 5472 FieldDecl *Field = FieldDecl::Create(Context, 5473 D, 5474 SourceLocation(), 5475 SourceLocation(), nullptr, 5476 FieldTypes[i], /*TInfo=*/nullptr, 5477 /*BitWidth=*/nullptr, 5478 /*Mutable=*/false, 5479 ICIS_NoInit); 5480 Field->setAccess(AS_public); 5481 D->addDecl(Field); 5482 } 5483 5484 D->completeDefinition(); 5485 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 5486 } 5487 5488 return ObjCFastEnumerationStateType; 5489 } 5490 5491 llvm::Constant * 5492 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 5493 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 5494 5495 // Don't emit it as the address of the string, emit the string data itself 5496 // as an inline array. 5497 if (E->getCharByteWidth() == 1) { 5498 SmallString<64> Str(E->getString()); 5499 5500 // Resize the string to the right size, which is indicated by its type. 5501 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 5502 Str.resize(CAT->getSize().getZExtValue()); 5503 return llvm::ConstantDataArray::getString(VMContext, Str, false); 5504 } 5505 5506 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 5507 llvm::Type *ElemTy = AType->getElementType(); 5508 unsigned NumElements = AType->getNumElements(); 5509 5510 // Wide strings have either 2-byte or 4-byte elements. 5511 if (ElemTy->getPrimitiveSizeInBits() == 16) { 5512 SmallVector<uint16_t, 32> Elements; 5513 Elements.reserve(NumElements); 5514 5515 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 5516 Elements.push_back(E->getCodeUnit(i)); 5517 Elements.resize(NumElements); 5518 return llvm::ConstantDataArray::get(VMContext, Elements); 5519 } 5520 5521 assert(ElemTy->getPrimitiveSizeInBits() == 32); 5522 SmallVector<uint32_t, 32> Elements; 5523 Elements.reserve(NumElements); 5524 5525 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 5526 Elements.push_back(E->getCodeUnit(i)); 5527 Elements.resize(NumElements); 5528 return llvm::ConstantDataArray::get(VMContext, Elements); 5529 } 5530 5531 static llvm::GlobalVariable * 5532 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 5533 CodeGenModule &CGM, StringRef GlobalName, 5534 CharUnits Alignment) { 5535 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace( 5536 CGM.GetGlobalConstantAddressSpace()); 5537 5538 llvm::Module &M = CGM.getModule(); 5539 // Create a global variable for this string 5540 auto *GV = new llvm::GlobalVariable( 5541 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 5542 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 5543 GV->setAlignment(Alignment.getAsAlign()); 5544 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 5545 if (GV->isWeakForLinker()) { 5546 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 5547 GV->setComdat(M.getOrInsertComdat(GV->getName())); 5548 } 5549 CGM.setDSOLocal(GV); 5550 5551 return GV; 5552 } 5553 5554 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 5555 /// constant array for the given string literal. 5556 ConstantAddress 5557 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 5558 StringRef Name) { 5559 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 5560 5561 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 5562 llvm::GlobalVariable **Entry = nullptr; 5563 if (!LangOpts.WritableStrings) { 5564 Entry = &ConstantStringMap[C]; 5565 if (auto GV = *Entry) { 5566 if (uint64_t(Alignment.getQuantity()) > GV->getAlignment()) 5567 GV->setAlignment(Alignment.getAsAlign()); 5568 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5569 GV->getValueType(), Alignment); 5570 } 5571 } 5572 5573 SmallString<256> MangledNameBuffer; 5574 StringRef GlobalVariableName; 5575 llvm::GlobalValue::LinkageTypes LT; 5576 5577 // Mangle the string literal if that's how the ABI merges duplicate strings. 5578 // Don't do it if they are writable, since we don't want writes in one TU to 5579 // affect strings in another. 5580 if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) && 5581 !LangOpts.WritableStrings) { 5582 llvm::raw_svector_ostream Out(MangledNameBuffer); 5583 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 5584 LT = llvm::GlobalValue::LinkOnceODRLinkage; 5585 GlobalVariableName = MangledNameBuffer; 5586 } else { 5587 LT = llvm::GlobalValue::PrivateLinkage; 5588 GlobalVariableName = Name; 5589 } 5590 5591 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 5592 if (Entry) 5593 *Entry = GV; 5594 5595 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 5596 QualType()); 5597 5598 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5599 GV->getValueType(), Alignment); 5600 } 5601 5602 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 5603 /// array for the given ObjCEncodeExpr node. 5604 ConstantAddress 5605 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 5606 std::string Str; 5607 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 5608 5609 return GetAddrOfConstantCString(Str); 5610 } 5611 5612 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 5613 /// the literal and a terminating '\0' character. 5614 /// The result has pointer to array type. 5615 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 5616 const std::string &Str, const char *GlobalName) { 5617 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 5618 CharUnits Alignment = 5619 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 5620 5621 llvm::Constant *C = 5622 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 5623 5624 // Don't share any string literals if strings aren't constant. 5625 llvm::GlobalVariable **Entry = nullptr; 5626 if (!LangOpts.WritableStrings) { 5627 Entry = &ConstantStringMap[C]; 5628 if (auto GV = *Entry) { 5629 if (uint64_t(Alignment.getQuantity()) > GV->getAlignment()) 5630 GV->setAlignment(Alignment.getAsAlign()); 5631 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5632 GV->getValueType(), Alignment); 5633 } 5634 } 5635 5636 // Get the default prefix if a name wasn't specified. 5637 if (!GlobalName) 5638 GlobalName = ".str"; 5639 // Create a global variable for this. 5640 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 5641 GlobalName, Alignment); 5642 if (Entry) 5643 *Entry = GV; 5644 5645 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5646 GV->getValueType(), Alignment); 5647 } 5648 5649 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 5650 const MaterializeTemporaryExpr *E, const Expr *Init) { 5651 assert((E->getStorageDuration() == SD_Static || 5652 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 5653 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 5654 5655 // If we're not materializing a subobject of the temporary, keep the 5656 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 5657 QualType MaterializedType = Init->getType(); 5658 if (Init == E->getSubExpr()) 5659 MaterializedType = E->getType(); 5660 5661 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 5662 5663 auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr}); 5664 if (!InsertResult.second) { 5665 // We've seen this before: either we already created it or we're in the 5666 // process of doing so. 5667 if (!InsertResult.first->second) { 5668 // We recursively re-entered this function, probably during emission of 5669 // the initializer. Create a placeholder. We'll clean this up in the 5670 // outer call, at the end of this function. 5671 llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType); 5672 InsertResult.first->second = new llvm::GlobalVariable( 5673 getModule(), Type, false, llvm::GlobalVariable::InternalLinkage, 5674 nullptr); 5675 } 5676 return ConstantAddress( 5677 InsertResult.first->second, 5678 InsertResult.first->second->getType()->getPointerElementType(), Align); 5679 } 5680 5681 // FIXME: If an externally-visible declaration extends multiple temporaries, 5682 // we need to give each temporary the same name in every translation unit (and 5683 // we also need to make the temporaries externally-visible). 5684 SmallString<256> Name; 5685 llvm::raw_svector_ostream Out(Name); 5686 getCXXABI().getMangleContext().mangleReferenceTemporary( 5687 VD, E->getManglingNumber(), Out); 5688 5689 APValue *Value = nullptr; 5690 if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) { 5691 // If the initializer of the extending declaration is a constant 5692 // initializer, we should have a cached constant initializer for this 5693 // temporary. Note that this might have a different value from the value 5694 // computed by evaluating the initializer if the surrounding constant 5695 // expression modifies the temporary. 5696 Value = E->getOrCreateValue(false); 5697 } 5698 5699 // Try evaluating it now, it might have a constant initializer. 5700 Expr::EvalResult EvalResult; 5701 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 5702 !EvalResult.hasSideEffects()) 5703 Value = &EvalResult.Val; 5704 5705 LangAS AddrSpace = 5706 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace(); 5707 5708 Optional<ConstantEmitter> emitter; 5709 llvm::Constant *InitialValue = nullptr; 5710 bool Constant = false; 5711 llvm::Type *Type; 5712 if (Value) { 5713 // The temporary has a constant initializer, use it. 5714 emitter.emplace(*this); 5715 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 5716 MaterializedType); 5717 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 5718 Type = InitialValue->getType(); 5719 } else { 5720 // No initializer, the initialization will be provided when we 5721 // initialize the declaration which performed lifetime extension. 5722 Type = getTypes().ConvertTypeForMem(MaterializedType); 5723 } 5724 5725 // Create a global variable for this lifetime-extended temporary. 5726 llvm::GlobalValue::LinkageTypes Linkage = 5727 getLLVMLinkageVarDefinition(VD, Constant); 5728 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 5729 const VarDecl *InitVD; 5730 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 5731 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 5732 // Temporaries defined inside a class get linkonce_odr linkage because the 5733 // class can be defined in multiple translation units. 5734 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 5735 } else { 5736 // There is no need for this temporary to have external linkage if the 5737 // VarDecl has external linkage. 5738 Linkage = llvm::GlobalVariable::InternalLinkage; 5739 } 5740 } 5741 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 5742 auto *GV = new llvm::GlobalVariable( 5743 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 5744 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 5745 if (emitter) emitter->finalize(GV); 5746 setGVProperties(GV, VD); 5747 if (GV->getDLLStorageClass() == llvm::GlobalVariable::DLLExportStorageClass) 5748 // The reference temporary should never be dllexport. 5749 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 5750 GV->setAlignment(Align.getAsAlign()); 5751 if (supportsCOMDAT() && GV->isWeakForLinker()) 5752 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 5753 if (VD->getTLSKind()) 5754 setTLSMode(GV, *VD); 5755 llvm::Constant *CV = GV; 5756 if (AddrSpace != LangAS::Default) 5757 CV = getTargetCodeGenInfo().performAddrSpaceCast( 5758 *this, GV, AddrSpace, LangAS::Default, 5759 Type->getPointerTo( 5760 getContext().getTargetAddressSpace(LangAS::Default))); 5761 5762 // Update the map with the new temporary. If we created a placeholder above, 5763 // replace it with the new global now. 5764 llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E]; 5765 if (Entry) { 5766 Entry->replaceAllUsesWith( 5767 llvm::ConstantExpr::getBitCast(CV, Entry->getType())); 5768 llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent(); 5769 } 5770 Entry = CV; 5771 5772 return ConstantAddress(CV, Type, Align); 5773 } 5774 5775 /// EmitObjCPropertyImplementations - Emit information for synthesized 5776 /// properties for an implementation. 5777 void CodeGenModule::EmitObjCPropertyImplementations(const 5778 ObjCImplementationDecl *D) { 5779 for (const auto *PID : D->property_impls()) { 5780 // Dynamic is just for type-checking. 5781 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 5782 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 5783 5784 // Determine which methods need to be implemented, some may have 5785 // been overridden. Note that ::isPropertyAccessor is not the method 5786 // we want, that just indicates if the decl came from a 5787 // property. What we want to know is if the method is defined in 5788 // this implementation. 5789 auto *Getter = PID->getGetterMethodDecl(); 5790 if (!Getter || Getter->isSynthesizedAccessorStub()) 5791 CodeGenFunction(*this).GenerateObjCGetter( 5792 const_cast<ObjCImplementationDecl *>(D), PID); 5793 auto *Setter = PID->getSetterMethodDecl(); 5794 if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub())) 5795 CodeGenFunction(*this).GenerateObjCSetter( 5796 const_cast<ObjCImplementationDecl *>(D), PID); 5797 } 5798 } 5799 } 5800 5801 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 5802 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 5803 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 5804 ivar; ivar = ivar->getNextIvar()) 5805 if (ivar->getType().isDestructedType()) 5806 return true; 5807 5808 return false; 5809 } 5810 5811 static bool AllTrivialInitializers(CodeGenModule &CGM, 5812 ObjCImplementationDecl *D) { 5813 CodeGenFunction CGF(CGM); 5814 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 5815 E = D->init_end(); B != E; ++B) { 5816 CXXCtorInitializer *CtorInitExp = *B; 5817 Expr *Init = CtorInitExp->getInit(); 5818 if (!CGF.isTrivialInitializer(Init)) 5819 return false; 5820 } 5821 return true; 5822 } 5823 5824 /// EmitObjCIvarInitializations - Emit information for ivar initialization 5825 /// for an implementation. 5826 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 5827 // We might need a .cxx_destruct even if we don't have any ivar initializers. 5828 if (needsDestructMethod(D)) { 5829 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 5830 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 5831 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create( 5832 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 5833 getContext().VoidTy, nullptr, D, 5834 /*isInstance=*/true, /*isVariadic=*/false, 5835 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 5836 /*isImplicitlyDeclared=*/true, 5837 /*isDefined=*/false, ObjCMethodDecl::Required); 5838 D->addInstanceMethod(DTORMethod); 5839 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 5840 D->setHasDestructors(true); 5841 } 5842 5843 // If the implementation doesn't have any ivar initializers, we don't need 5844 // a .cxx_construct. 5845 if (D->getNumIvarInitializers() == 0 || 5846 AllTrivialInitializers(*this, D)) 5847 return; 5848 5849 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 5850 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 5851 // The constructor returns 'self'. 5852 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create( 5853 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 5854 getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true, 5855 /*isVariadic=*/false, 5856 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 5857 /*isImplicitlyDeclared=*/true, 5858 /*isDefined=*/false, ObjCMethodDecl::Required); 5859 D->addInstanceMethod(CTORMethod); 5860 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 5861 D->setHasNonZeroConstructors(true); 5862 } 5863 5864 // EmitLinkageSpec - Emit all declarations in a linkage spec. 5865 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 5866 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 5867 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 5868 ErrorUnsupported(LSD, "linkage spec"); 5869 return; 5870 } 5871 5872 EmitDeclContext(LSD); 5873 } 5874 5875 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 5876 for (auto *I : DC->decls()) { 5877 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 5878 // are themselves considered "top-level", so EmitTopLevelDecl on an 5879 // ObjCImplDecl does not recursively visit them. We need to do that in 5880 // case they're nested inside another construct (LinkageSpecDecl / 5881 // ExportDecl) that does stop them from being considered "top-level". 5882 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 5883 for (auto *M : OID->methods()) 5884 EmitTopLevelDecl(M); 5885 } 5886 5887 EmitTopLevelDecl(I); 5888 } 5889 } 5890 5891 /// EmitTopLevelDecl - Emit code for a single top level declaration. 5892 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 5893 // Ignore dependent declarations. 5894 if (D->isTemplated()) 5895 return; 5896 5897 // Consteval function shouldn't be emitted. 5898 if (auto *FD = dyn_cast<FunctionDecl>(D)) 5899 if (FD->isConsteval()) 5900 return; 5901 5902 switch (D->getKind()) { 5903 case Decl::CXXConversion: 5904 case Decl::CXXMethod: 5905 case Decl::Function: 5906 EmitGlobal(cast<FunctionDecl>(D)); 5907 // Always provide some coverage mapping 5908 // even for the functions that aren't emitted. 5909 AddDeferredUnusedCoverageMapping(D); 5910 break; 5911 5912 case Decl::CXXDeductionGuide: 5913 // Function-like, but does not result in code emission. 5914 break; 5915 5916 case Decl::Var: 5917 case Decl::Decomposition: 5918 case Decl::VarTemplateSpecialization: 5919 EmitGlobal(cast<VarDecl>(D)); 5920 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 5921 for (auto *B : DD->bindings()) 5922 if (auto *HD = B->getHoldingVar()) 5923 EmitGlobal(HD); 5924 break; 5925 5926 // Indirect fields from global anonymous structs and unions can be 5927 // ignored; only the actual variable requires IR gen support. 5928 case Decl::IndirectField: 5929 break; 5930 5931 // C++ Decls 5932 case Decl::Namespace: 5933 EmitDeclContext(cast<NamespaceDecl>(D)); 5934 break; 5935 case Decl::ClassTemplateSpecialization: { 5936 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 5937 if (CGDebugInfo *DI = getModuleDebugInfo()) 5938 if (Spec->getSpecializationKind() == 5939 TSK_ExplicitInstantiationDefinition && 5940 Spec->hasDefinition()) 5941 DI->completeTemplateDefinition(*Spec); 5942 } LLVM_FALLTHROUGH; 5943 case Decl::CXXRecord: { 5944 CXXRecordDecl *CRD = cast<CXXRecordDecl>(D); 5945 if (CGDebugInfo *DI = getModuleDebugInfo()) { 5946 if (CRD->hasDefinition()) 5947 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 5948 if (auto *ES = D->getASTContext().getExternalSource()) 5949 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 5950 DI->completeUnusedClass(*CRD); 5951 } 5952 // Emit any static data members, they may be definitions. 5953 for (auto *I : CRD->decls()) 5954 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 5955 EmitTopLevelDecl(I); 5956 break; 5957 } 5958 // No code generation needed. 5959 case Decl::UsingShadow: 5960 case Decl::ClassTemplate: 5961 case Decl::VarTemplate: 5962 case Decl::Concept: 5963 case Decl::VarTemplatePartialSpecialization: 5964 case Decl::FunctionTemplate: 5965 case Decl::TypeAliasTemplate: 5966 case Decl::Block: 5967 case Decl::Empty: 5968 case Decl::Binding: 5969 break; 5970 case Decl::Using: // using X; [C++] 5971 if (CGDebugInfo *DI = getModuleDebugInfo()) 5972 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 5973 break; 5974 case Decl::UsingEnum: // using enum X; [C++] 5975 if (CGDebugInfo *DI = getModuleDebugInfo()) 5976 DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D)); 5977 break; 5978 case Decl::NamespaceAlias: 5979 if (CGDebugInfo *DI = getModuleDebugInfo()) 5980 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 5981 break; 5982 case Decl::UsingDirective: // using namespace X; [C++] 5983 if (CGDebugInfo *DI = getModuleDebugInfo()) 5984 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 5985 break; 5986 case Decl::CXXConstructor: 5987 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 5988 break; 5989 case Decl::CXXDestructor: 5990 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 5991 break; 5992 5993 case Decl::StaticAssert: 5994 // Nothing to do. 5995 break; 5996 5997 // Objective-C Decls 5998 5999 // Forward declarations, no (immediate) code generation. 6000 case Decl::ObjCInterface: 6001 case Decl::ObjCCategory: 6002 break; 6003 6004 case Decl::ObjCProtocol: { 6005 auto *Proto = cast<ObjCProtocolDecl>(D); 6006 if (Proto->isThisDeclarationADefinition()) 6007 ObjCRuntime->GenerateProtocol(Proto); 6008 break; 6009 } 6010 6011 case Decl::ObjCCategoryImpl: 6012 // Categories have properties but don't support synthesize so we 6013 // can ignore them here. 6014 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 6015 break; 6016 6017 case Decl::ObjCImplementation: { 6018 auto *OMD = cast<ObjCImplementationDecl>(D); 6019 EmitObjCPropertyImplementations(OMD); 6020 EmitObjCIvarInitializations(OMD); 6021 ObjCRuntime->GenerateClass(OMD); 6022 // Emit global variable debug information. 6023 if (CGDebugInfo *DI = getModuleDebugInfo()) 6024 if (getCodeGenOpts().hasReducedDebugInfo()) 6025 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 6026 OMD->getClassInterface()), OMD->getLocation()); 6027 break; 6028 } 6029 case Decl::ObjCMethod: { 6030 auto *OMD = cast<ObjCMethodDecl>(D); 6031 // If this is not a prototype, emit the body. 6032 if (OMD->getBody()) 6033 CodeGenFunction(*this).GenerateObjCMethod(OMD); 6034 break; 6035 } 6036 case Decl::ObjCCompatibleAlias: 6037 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 6038 break; 6039 6040 case Decl::PragmaComment: { 6041 const auto *PCD = cast<PragmaCommentDecl>(D); 6042 switch (PCD->getCommentKind()) { 6043 case PCK_Unknown: 6044 llvm_unreachable("unexpected pragma comment kind"); 6045 case PCK_Linker: 6046 AppendLinkerOptions(PCD->getArg()); 6047 break; 6048 case PCK_Lib: 6049 AddDependentLib(PCD->getArg()); 6050 break; 6051 case PCK_Compiler: 6052 case PCK_ExeStr: 6053 case PCK_User: 6054 break; // We ignore all of these. 6055 } 6056 break; 6057 } 6058 6059 case Decl::PragmaDetectMismatch: { 6060 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 6061 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 6062 break; 6063 } 6064 6065 case Decl::LinkageSpec: 6066 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 6067 break; 6068 6069 case Decl::FileScopeAsm: { 6070 // File-scope asm is ignored during device-side CUDA compilation. 6071 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 6072 break; 6073 // File-scope asm is ignored during device-side OpenMP compilation. 6074 if (LangOpts.OpenMPIsDevice) 6075 break; 6076 // File-scope asm is ignored during device-side SYCL compilation. 6077 if (LangOpts.SYCLIsDevice) 6078 break; 6079 auto *AD = cast<FileScopeAsmDecl>(D); 6080 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 6081 break; 6082 } 6083 6084 case Decl::Import: { 6085 auto *Import = cast<ImportDecl>(D); 6086 6087 // If we've already imported this module, we're done. 6088 if (!ImportedModules.insert(Import->getImportedModule())) 6089 break; 6090 6091 // Emit debug information for direct imports. 6092 if (!Import->getImportedOwningModule()) { 6093 if (CGDebugInfo *DI = getModuleDebugInfo()) 6094 DI->EmitImportDecl(*Import); 6095 } 6096 6097 // Find all of the submodules and emit the module initializers. 6098 llvm::SmallPtrSet<clang::Module *, 16> Visited; 6099 SmallVector<clang::Module *, 16> Stack; 6100 Visited.insert(Import->getImportedModule()); 6101 Stack.push_back(Import->getImportedModule()); 6102 6103 while (!Stack.empty()) { 6104 clang::Module *Mod = Stack.pop_back_val(); 6105 if (!EmittedModuleInitializers.insert(Mod).second) 6106 continue; 6107 6108 for (auto *D : Context.getModuleInitializers(Mod)) 6109 EmitTopLevelDecl(D); 6110 6111 // Visit the submodules of this module. 6112 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 6113 SubEnd = Mod->submodule_end(); 6114 Sub != SubEnd; ++Sub) { 6115 // Skip explicit children; they need to be explicitly imported to emit 6116 // the initializers. 6117 if ((*Sub)->IsExplicit) 6118 continue; 6119 6120 if (Visited.insert(*Sub).second) 6121 Stack.push_back(*Sub); 6122 } 6123 } 6124 break; 6125 } 6126 6127 case Decl::Export: 6128 EmitDeclContext(cast<ExportDecl>(D)); 6129 break; 6130 6131 case Decl::OMPThreadPrivate: 6132 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 6133 break; 6134 6135 case Decl::OMPAllocate: 6136 EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D)); 6137 break; 6138 6139 case Decl::OMPDeclareReduction: 6140 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 6141 break; 6142 6143 case Decl::OMPDeclareMapper: 6144 EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D)); 6145 break; 6146 6147 case Decl::OMPRequires: 6148 EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D)); 6149 break; 6150 6151 case Decl::Typedef: 6152 case Decl::TypeAlias: // using foo = bar; [C++11] 6153 if (CGDebugInfo *DI = getModuleDebugInfo()) 6154 DI->EmitAndRetainType( 6155 getContext().getTypedefType(cast<TypedefNameDecl>(D))); 6156 break; 6157 6158 case Decl::Record: 6159 if (CGDebugInfo *DI = getModuleDebugInfo()) 6160 if (cast<RecordDecl>(D)->getDefinition()) 6161 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 6162 break; 6163 6164 case Decl::Enum: 6165 if (CGDebugInfo *DI = getModuleDebugInfo()) 6166 if (cast<EnumDecl>(D)->getDefinition()) 6167 DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D))); 6168 break; 6169 6170 default: 6171 // Make sure we handled everything we should, every other kind is a 6172 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 6173 // function. Need to recode Decl::Kind to do that easily. 6174 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 6175 break; 6176 } 6177 } 6178 6179 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 6180 // Do we need to generate coverage mapping? 6181 if (!CodeGenOpts.CoverageMapping) 6182 return; 6183 switch (D->getKind()) { 6184 case Decl::CXXConversion: 6185 case Decl::CXXMethod: 6186 case Decl::Function: 6187 case Decl::ObjCMethod: 6188 case Decl::CXXConstructor: 6189 case Decl::CXXDestructor: { 6190 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 6191 break; 6192 SourceManager &SM = getContext().getSourceManager(); 6193 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc())) 6194 break; 6195 auto I = DeferredEmptyCoverageMappingDecls.find(D); 6196 if (I == DeferredEmptyCoverageMappingDecls.end()) 6197 DeferredEmptyCoverageMappingDecls[D] = true; 6198 break; 6199 } 6200 default: 6201 break; 6202 }; 6203 } 6204 6205 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 6206 // Do we need to generate coverage mapping? 6207 if (!CodeGenOpts.CoverageMapping) 6208 return; 6209 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 6210 if (Fn->isTemplateInstantiation()) 6211 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 6212 } 6213 auto I = DeferredEmptyCoverageMappingDecls.find(D); 6214 if (I == DeferredEmptyCoverageMappingDecls.end()) 6215 DeferredEmptyCoverageMappingDecls[D] = false; 6216 else 6217 I->second = false; 6218 } 6219 6220 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 6221 // We call takeVector() here to avoid use-after-free. 6222 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 6223 // we deserialize function bodies to emit coverage info for them, and that 6224 // deserializes more declarations. How should we handle that case? 6225 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 6226 if (!Entry.second) 6227 continue; 6228 const Decl *D = Entry.first; 6229 switch (D->getKind()) { 6230 case Decl::CXXConversion: 6231 case Decl::CXXMethod: 6232 case Decl::Function: 6233 case Decl::ObjCMethod: { 6234 CodeGenPGO PGO(*this); 6235 GlobalDecl GD(cast<FunctionDecl>(D)); 6236 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 6237 getFunctionLinkage(GD)); 6238 break; 6239 } 6240 case Decl::CXXConstructor: { 6241 CodeGenPGO PGO(*this); 6242 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 6243 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 6244 getFunctionLinkage(GD)); 6245 break; 6246 } 6247 case Decl::CXXDestructor: { 6248 CodeGenPGO PGO(*this); 6249 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 6250 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 6251 getFunctionLinkage(GD)); 6252 break; 6253 } 6254 default: 6255 break; 6256 }; 6257 } 6258 } 6259 6260 void CodeGenModule::EmitMainVoidAlias() { 6261 // In order to transition away from "__original_main" gracefully, emit an 6262 // alias for "main" in the no-argument case so that libc can detect when 6263 // new-style no-argument main is in used. 6264 if (llvm::Function *F = getModule().getFunction("main")) { 6265 if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() && 6266 F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) 6267 addUsedGlobal(llvm::GlobalAlias::create("__main_void", F)); 6268 } 6269 } 6270 6271 /// Turns the given pointer into a constant. 6272 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 6273 const void *Ptr) { 6274 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 6275 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 6276 return llvm::ConstantInt::get(i64, PtrInt); 6277 } 6278 6279 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 6280 llvm::NamedMDNode *&GlobalMetadata, 6281 GlobalDecl D, 6282 llvm::GlobalValue *Addr) { 6283 if (!GlobalMetadata) 6284 GlobalMetadata = 6285 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 6286 6287 // TODO: should we report variant information for ctors/dtors? 6288 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 6289 llvm::ConstantAsMetadata::get(GetPointerConstant( 6290 CGM.getLLVMContext(), D.getDecl()))}; 6291 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 6292 } 6293 6294 /// For each function which is declared within an extern "C" region and marked 6295 /// as 'used', but has internal linkage, create an alias from the unmangled 6296 /// name to the mangled name if possible. People expect to be able to refer 6297 /// to such functions with an unmangled name from inline assembly within the 6298 /// same translation unit. 6299 void CodeGenModule::EmitStaticExternCAliases() { 6300 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases()) 6301 return; 6302 for (auto &I : StaticExternCValues) { 6303 IdentifierInfo *Name = I.first; 6304 llvm::GlobalValue *Val = I.second; 6305 if (Val && !getModule().getNamedValue(Name->getName())) 6306 addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 6307 } 6308 } 6309 6310 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 6311 GlobalDecl &Result) const { 6312 auto Res = Manglings.find(MangledName); 6313 if (Res == Manglings.end()) 6314 return false; 6315 Result = Res->getValue(); 6316 return true; 6317 } 6318 6319 /// Emits metadata nodes associating all the global values in the 6320 /// current module with the Decls they came from. This is useful for 6321 /// projects using IR gen as a subroutine. 6322 /// 6323 /// Since there's currently no way to associate an MDNode directly 6324 /// with an llvm::GlobalValue, we create a global named metadata 6325 /// with the name 'clang.global.decl.ptrs'. 6326 void CodeGenModule::EmitDeclMetadata() { 6327 llvm::NamedMDNode *GlobalMetadata = nullptr; 6328 6329 for (auto &I : MangledDeclNames) { 6330 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 6331 // Some mangled names don't necessarily have an associated GlobalValue 6332 // in this module, e.g. if we mangled it for DebugInfo. 6333 if (Addr) 6334 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 6335 } 6336 } 6337 6338 /// Emits metadata nodes for all the local variables in the current 6339 /// function. 6340 void CodeGenFunction::EmitDeclMetadata() { 6341 if (LocalDeclMap.empty()) return; 6342 6343 llvm::LLVMContext &Context = getLLVMContext(); 6344 6345 // Find the unique metadata ID for this name. 6346 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 6347 6348 llvm::NamedMDNode *GlobalMetadata = nullptr; 6349 6350 for (auto &I : LocalDeclMap) { 6351 const Decl *D = I.first; 6352 llvm::Value *Addr = I.second.getPointer(); 6353 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 6354 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 6355 Alloca->setMetadata( 6356 DeclPtrKind, llvm::MDNode::get( 6357 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 6358 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 6359 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 6360 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 6361 } 6362 } 6363 } 6364 6365 void CodeGenModule::EmitVersionIdentMetadata() { 6366 llvm::NamedMDNode *IdentMetadata = 6367 TheModule.getOrInsertNamedMetadata("llvm.ident"); 6368 std::string Version = getClangFullVersion(); 6369 llvm::LLVMContext &Ctx = TheModule.getContext(); 6370 6371 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 6372 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 6373 } 6374 6375 void CodeGenModule::EmitCommandLineMetadata() { 6376 llvm::NamedMDNode *CommandLineMetadata = 6377 TheModule.getOrInsertNamedMetadata("llvm.commandline"); 6378 std::string CommandLine = getCodeGenOpts().RecordCommandLine; 6379 llvm::LLVMContext &Ctx = TheModule.getContext(); 6380 6381 llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)}; 6382 CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode)); 6383 } 6384 6385 void CodeGenModule::EmitCoverageFile() { 6386 if (getCodeGenOpts().CoverageDataFile.empty() && 6387 getCodeGenOpts().CoverageNotesFile.empty()) 6388 return; 6389 6390 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 6391 if (!CUNode) 6392 return; 6393 6394 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 6395 llvm::LLVMContext &Ctx = TheModule.getContext(); 6396 auto *CoverageDataFile = 6397 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 6398 auto *CoverageNotesFile = 6399 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 6400 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 6401 llvm::MDNode *CU = CUNode->getOperand(i); 6402 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 6403 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 6404 } 6405 } 6406 6407 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 6408 bool ForEH) { 6409 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 6410 // FIXME: should we even be calling this method if RTTI is disabled 6411 // and it's not for EH? 6412 if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice || 6413 (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice && 6414 getTriple().isNVPTX())) 6415 return llvm::Constant::getNullValue(Int8PtrTy); 6416 6417 if (ForEH && Ty->isObjCObjectPointerType() && 6418 LangOpts.ObjCRuntime.isGNUFamily()) 6419 return ObjCRuntime->GetEHType(Ty); 6420 6421 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 6422 } 6423 6424 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 6425 // Do not emit threadprivates in simd-only mode. 6426 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 6427 return; 6428 for (auto RefExpr : D->varlists()) { 6429 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 6430 bool PerformInit = 6431 VD->getAnyInitializer() && 6432 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 6433 /*ForRef=*/false); 6434 6435 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 6436 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 6437 VD, Addr, RefExpr->getBeginLoc(), PerformInit)) 6438 CXXGlobalInits.push_back(InitFunction); 6439 } 6440 } 6441 6442 llvm::Metadata * 6443 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map, 6444 StringRef Suffix) { 6445 if (auto *FnType = T->getAs<FunctionProtoType>()) 6446 T = getContext().getFunctionType( 6447 FnType->getReturnType(), FnType->getParamTypes(), 6448 FnType->getExtProtoInfo().withExceptionSpec(EST_None)); 6449 6450 llvm::Metadata *&InternalId = Map[T.getCanonicalType()]; 6451 if (InternalId) 6452 return InternalId; 6453 6454 if (isExternallyVisible(T->getLinkage())) { 6455 std::string OutName; 6456 llvm::raw_string_ostream Out(OutName); 6457 getCXXABI().getMangleContext().mangleTypeName(T, Out); 6458 Out << Suffix; 6459 6460 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 6461 } else { 6462 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 6463 llvm::ArrayRef<llvm::Metadata *>()); 6464 } 6465 6466 return InternalId; 6467 } 6468 6469 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 6470 return CreateMetadataIdentifierImpl(T, MetadataIdMap, ""); 6471 } 6472 6473 llvm::Metadata * 6474 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) { 6475 return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual"); 6476 } 6477 6478 // Generalize pointer types to a void pointer with the qualifiers of the 6479 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 6480 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 6481 // 'void *'. 6482 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 6483 if (!Ty->isPointerType()) 6484 return Ty; 6485 6486 return Ctx.getPointerType( 6487 QualType(Ctx.VoidTy).withCVRQualifiers( 6488 Ty->getPointeeType().getCVRQualifiers())); 6489 } 6490 6491 // Apply type generalization to a FunctionType's return and argument types 6492 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 6493 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 6494 SmallVector<QualType, 8> GeneralizedParams; 6495 for (auto &Param : FnType->param_types()) 6496 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 6497 6498 return Ctx.getFunctionType( 6499 GeneralizeType(Ctx, FnType->getReturnType()), 6500 GeneralizedParams, FnType->getExtProtoInfo()); 6501 } 6502 6503 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 6504 return Ctx.getFunctionNoProtoType( 6505 GeneralizeType(Ctx, FnType->getReturnType())); 6506 6507 llvm_unreachable("Encountered unknown FunctionType"); 6508 } 6509 6510 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 6511 return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T), 6512 GeneralizedMetadataIdMap, ".generalized"); 6513 } 6514 6515 /// Returns whether this module needs the "all-vtables" type identifier. 6516 bool CodeGenModule::NeedAllVtablesTypeId() const { 6517 // Returns true if at least one of vtable-based CFI checkers is enabled and 6518 // is not in the trapping mode. 6519 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 6520 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 6521 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 6522 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 6523 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 6524 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 6525 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 6526 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 6527 } 6528 6529 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 6530 CharUnits Offset, 6531 const CXXRecordDecl *RD) { 6532 llvm::Metadata *MD = 6533 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 6534 VTable->addTypeMetadata(Offset.getQuantity(), MD); 6535 6536 if (CodeGenOpts.SanitizeCfiCrossDso) 6537 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 6538 VTable->addTypeMetadata(Offset.getQuantity(), 6539 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 6540 6541 if (NeedAllVtablesTypeId()) { 6542 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 6543 VTable->addTypeMetadata(Offset.getQuantity(), MD); 6544 } 6545 } 6546 6547 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 6548 if (!SanStats) 6549 SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule()); 6550 6551 return *SanStats; 6552 } 6553 6554 llvm::Value * 6555 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 6556 CodeGenFunction &CGF) { 6557 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 6558 auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 6559 auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 6560 auto *Call = CGF.EmitRuntimeCall( 6561 CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C}); 6562 return Call; 6563 } 6564 6565 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment( 6566 QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) { 6567 return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo, 6568 /* forPointeeType= */ true); 6569 } 6570 6571 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T, 6572 LValueBaseInfo *BaseInfo, 6573 TBAAAccessInfo *TBAAInfo, 6574 bool forPointeeType) { 6575 if (TBAAInfo) 6576 *TBAAInfo = getTBAAAccessInfo(T); 6577 6578 // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But 6579 // that doesn't return the information we need to compute BaseInfo. 6580 6581 // Honor alignment typedef attributes even on incomplete types. 6582 // We also honor them straight for C++ class types, even as pointees; 6583 // there's an expressivity gap here. 6584 if (auto TT = T->getAs<TypedefType>()) { 6585 if (auto Align = TT->getDecl()->getMaxAlignment()) { 6586 if (BaseInfo) 6587 *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType); 6588 return getContext().toCharUnitsFromBits(Align); 6589 } 6590 } 6591 6592 bool AlignForArray = T->isArrayType(); 6593 6594 // Analyze the base element type, so we don't get confused by incomplete 6595 // array types. 6596 T = getContext().getBaseElementType(T); 6597 6598 if (T->isIncompleteType()) { 6599 // We could try to replicate the logic from 6600 // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the 6601 // type is incomplete, so it's impossible to test. We could try to reuse 6602 // getTypeAlignIfKnown, but that doesn't return the information we need 6603 // to set BaseInfo. So just ignore the possibility that the alignment is 6604 // greater than one. 6605 if (BaseInfo) 6606 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 6607 return CharUnits::One(); 6608 } 6609 6610 if (BaseInfo) 6611 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 6612 6613 CharUnits Alignment; 6614 const CXXRecordDecl *RD; 6615 if (T.getQualifiers().hasUnaligned()) { 6616 Alignment = CharUnits::One(); 6617 } else if (forPointeeType && !AlignForArray && 6618 (RD = T->getAsCXXRecordDecl())) { 6619 // For C++ class pointees, we don't know whether we're pointing at a 6620 // base or a complete object, so we generally need to use the 6621 // non-virtual alignment. 6622 Alignment = getClassPointerAlignment(RD); 6623 } else { 6624 Alignment = getContext().getTypeAlignInChars(T); 6625 } 6626 6627 // Cap to the global maximum type alignment unless the alignment 6628 // was somehow explicit on the type. 6629 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 6630 if (Alignment.getQuantity() > MaxAlign && 6631 !getContext().isAlignmentRequired(T)) 6632 Alignment = CharUnits::fromQuantity(MaxAlign); 6633 } 6634 return Alignment; 6635 } 6636 6637 bool CodeGenModule::stopAutoInit() { 6638 unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter; 6639 if (StopAfter) { 6640 // This number is positive only when -ftrivial-auto-var-init-stop-after=* is 6641 // used 6642 if (NumAutoVarInit >= StopAfter) { 6643 return true; 6644 } 6645 if (!NumAutoVarInit) { 6646 unsigned DiagID = getDiags().getCustomDiagID( 6647 DiagnosticsEngine::Warning, 6648 "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the " 6649 "number of times ftrivial-auto-var-init=%1 gets applied."); 6650 getDiags().Report(DiagID) 6651 << StopAfter 6652 << (getContext().getLangOpts().getTrivialAutoVarInit() == 6653 LangOptions::TrivialAutoVarInitKind::Zero 6654 ? "zero" 6655 : "pattern"); 6656 } 6657 ++NumAutoVarInit; 6658 } 6659 return false; 6660 } 6661 6662 void CodeGenModule::printPostfixForExternalizedStaticVar( 6663 llvm::raw_ostream &OS) const { 6664 OS << "__static__" << getContext().getCUIDHash(); 6665 } 6666