1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-module state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenModule.h" 14 #include "CGBlocks.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCall.h" 18 #include "CGDebugInfo.h" 19 #include "CGObjCRuntime.h" 20 #include "CGOpenCLRuntime.h" 21 #include "CGOpenMPRuntime.h" 22 #include "CGOpenMPRuntimeNVPTX.h" 23 #include "CodeGenFunction.h" 24 #include "CodeGenPGO.h" 25 #include "ConstantEmitter.h" 26 #include "CoverageMappingGen.h" 27 #include "TargetInfo.h" 28 #include "clang/AST/ASTContext.h" 29 #include "clang/AST/CharUnits.h" 30 #include "clang/AST/DeclCXX.h" 31 #include "clang/AST/DeclObjC.h" 32 #include "clang/AST/DeclTemplate.h" 33 #include "clang/AST/Mangle.h" 34 #include "clang/AST/RecordLayout.h" 35 #include "clang/AST/RecursiveASTVisitor.h" 36 #include "clang/AST/StmtVisitor.h" 37 #include "clang/Basic/Builtins.h" 38 #include "clang/Basic/CharInfo.h" 39 #include "clang/Basic/CodeGenOptions.h" 40 #include "clang/Basic/Diagnostic.h" 41 #include "clang/Basic/Module.h" 42 #include "clang/Basic/SourceManager.h" 43 #include "clang/Basic/TargetInfo.h" 44 #include "clang/Basic/Version.h" 45 #include "clang/CodeGen/ConstantInitBuilder.h" 46 #include "clang/Frontend/FrontendDiagnostic.h" 47 #include "llvm/ADT/StringSwitch.h" 48 #include "llvm/ADT/Triple.h" 49 #include "llvm/Analysis/TargetLibraryInfo.h" 50 #include "llvm/IR/CallingConv.h" 51 #include "llvm/IR/DataLayout.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/Module.h" 55 #include "llvm/IR/ProfileSummary.h" 56 #include "llvm/ProfileData/InstrProfReader.h" 57 #include "llvm/Support/CodeGen.h" 58 #include "llvm/Support/ConvertUTF.h" 59 #include "llvm/Support/ErrorHandling.h" 60 #include "llvm/Support/MD5.h" 61 #include "llvm/Support/TimeProfiler.h" 62 63 using namespace clang; 64 using namespace CodeGen; 65 66 static llvm::cl::opt<bool> LimitedCoverage( 67 "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden, 68 llvm::cl::desc("Emit limited coverage mapping information (experimental)"), 69 llvm::cl::init(false)); 70 71 static const char AnnotationSection[] = "llvm.metadata"; 72 73 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 74 switch (CGM.getTarget().getCXXABI().getKind()) { 75 case TargetCXXABI::GenericAArch64: 76 case TargetCXXABI::GenericARM: 77 case TargetCXXABI::iOS: 78 case TargetCXXABI::iOS64: 79 case TargetCXXABI::WatchOS: 80 case TargetCXXABI::GenericMIPS: 81 case TargetCXXABI::GenericItanium: 82 case TargetCXXABI::WebAssembly: 83 return CreateItaniumCXXABI(CGM); 84 case TargetCXXABI::Microsoft: 85 return CreateMicrosoftCXXABI(CGM); 86 } 87 88 llvm_unreachable("invalid C++ ABI kind"); 89 } 90 91 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 92 const PreprocessorOptions &PPO, 93 const CodeGenOptions &CGO, llvm::Module &M, 94 DiagnosticsEngine &diags, 95 CoverageSourceInfo *CoverageInfo) 96 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 97 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 98 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 99 VMContext(M.getContext()), Types(*this), VTables(*this), 100 SanitizerMD(new SanitizerMetadata(*this)) { 101 102 // Initialize the type cache. 103 llvm::LLVMContext &LLVMContext = M.getContext(); 104 VoidTy = llvm::Type::getVoidTy(LLVMContext); 105 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 106 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 107 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 108 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 109 HalfTy = llvm::Type::getHalfTy(LLVMContext); 110 FloatTy = llvm::Type::getFloatTy(LLVMContext); 111 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 112 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 113 PointerAlignInBytes = 114 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 115 SizeSizeInBytes = 116 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 117 IntAlignInBytes = 118 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 119 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 120 IntPtrTy = llvm::IntegerType::get(LLVMContext, 121 C.getTargetInfo().getMaxPointerWidth()); 122 Int8PtrTy = Int8Ty->getPointerTo(0); 123 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 124 AllocaInt8PtrTy = Int8Ty->getPointerTo( 125 M.getDataLayout().getAllocaAddrSpace()); 126 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 127 128 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 129 130 if (LangOpts.ObjC) 131 createObjCRuntime(); 132 if (LangOpts.OpenCL) 133 createOpenCLRuntime(); 134 if (LangOpts.OpenMP) 135 createOpenMPRuntime(); 136 if (LangOpts.CUDA) 137 createCUDARuntime(); 138 139 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 140 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 141 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 142 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(), 143 getCXXABI().getMangleContext())); 144 145 // If debug info or coverage generation is enabled, create the CGDebugInfo 146 // object. 147 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 148 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 149 DebugInfo.reset(new CGDebugInfo(*this)); 150 151 Block.GlobalUniqueCount = 0; 152 153 if (C.getLangOpts().ObjC) 154 ObjCData.reset(new ObjCEntrypoints()); 155 156 if (CodeGenOpts.hasProfileClangUse()) { 157 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 158 CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile); 159 if (auto E = ReaderOrErr.takeError()) { 160 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 161 "Could not read profile %0: %1"); 162 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) { 163 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 164 << EI.message(); 165 }); 166 } else 167 PGOReader = std::move(ReaderOrErr.get()); 168 } 169 170 // If coverage mapping generation is enabled, create the 171 // CoverageMappingModuleGen object. 172 if (CodeGenOpts.CoverageMapping) 173 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 174 } 175 176 CodeGenModule::~CodeGenModule() {} 177 178 void CodeGenModule::createObjCRuntime() { 179 // This is just isGNUFamily(), but we want to force implementors of 180 // new ABIs to decide how best to do this. 181 switch (LangOpts.ObjCRuntime.getKind()) { 182 case ObjCRuntime::GNUstep: 183 case ObjCRuntime::GCC: 184 case ObjCRuntime::ObjFW: 185 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 186 return; 187 188 case ObjCRuntime::FragileMacOSX: 189 case ObjCRuntime::MacOSX: 190 case ObjCRuntime::iOS: 191 case ObjCRuntime::WatchOS: 192 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 193 return; 194 } 195 llvm_unreachable("bad runtime kind"); 196 } 197 198 void CodeGenModule::createOpenCLRuntime() { 199 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 200 } 201 202 void CodeGenModule::createOpenMPRuntime() { 203 // Select a specialized code generation class based on the target, if any. 204 // If it does not exist use the default implementation. 205 switch (getTriple().getArch()) { 206 case llvm::Triple::nvptx: 207 case llvm::Triple::nvptx64: 208 assert(getLangOpts().OpenMPIsDevice && 209 "OpenMP NVPTX is only prepared to deal with device code."); 210 OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this)); 211 break; 212 default: 213 if (LangOpts.OpenMPSimd) 214 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 215 else 216 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 217 break; 218 } 219 } 220 221 void CodeGenModule::createCUDARuntime() { 222 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 223 } 224 225 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 226 Replacements[Name] = C; 227 } 228 229 void CodeGenModule::applyReplacements() { 230 for (auto &I : Replacements) { 231 StringRef MangledName = I.first(); 232 llvm::Constant *Replacement = I.second; 233 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 234 if (!Entry) 235 continue; 236 auto *OldF = cast<llvm::Function>(Entry); 237 auto *NewF = dyn_cast<llvm::Function>(Replacement); 238 if (!NewF) { 239 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 240 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 241 } else { 242 auto *CE = cast<llvm::ConstantExpr>(Replacement); 243 assert(CE->getOpcode() == llvm::Instruction::BitCast || 244 CE->getOpcode() == llvm::Instruction::GetElementPtr); 245 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 246 } 247 } 248 249 // Replace old with new, but keep the old order. 250 OldF->replaceAllUsesWith(Replacement); 251 if (NewF) { 252 NewF->removeFromParent(); 253 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 254 NewF); 255 } 256 OldF->eraseFromParent(); 257 } 258 } 259 260 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 261 GlobalValReplacements.push_back(std::make_pair(GV, C)); 262 } 263 264 void CodeGenModule::applyGlobalValReplacements() { 265 for (auto &I : GlobalValReplacements) { 266 llvm::GlobalValue *GV = I.first; 267 llvm::Constant *C = I.second; 268 269 GV->replaceAllUsesWith(C); 270 GV->eraseFromParent(); 271 } 272 } 273 274 // This is only used in aliases that we created and we know they have a 275 // linear structure. 276 static const llvm::GlobalObject *getAliasedGlobal( 277 const llvm::GlobalIndirectSymbol &GIS) { 278 llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited; 279 const llvm::Constant *C = &GIS; 280 for (;;) { 281 C = C->stripPointerCasts(); 282 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 283 return GO; 284 // stripPointerCasts will not walk over weak aliases. 285 auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C); 286 if (!GIS2) 287 return nullptr; 288 if (!Visited.insert(GIS2).second) 289 return nullptr; 290 C = GIS2->getIndirectSymbol(); 291 } 292 } 293 294 void CodeGenModule::checkAliases() { 295 // Check if the constructed aliases are well formed. It is really unfortunate 296 // that we have to do this in CodeGen, but we only construct mangled names 297 // and aliases during codegen. 298 bool Error = false; 299 DiagnosticsEngine &Diags = getDiags(); 300 for (const GlobalDecl &GD : Aliases) { 301 const auto *D = cast<ValueDecl>(GD.getDecl()); 302 SourceLocation Location; 303 bool IsIFunc = D->hasAttr<IFuncAttr>(); 304 if (const Attr *A = D->getDefiningAttr()) 305 Location = A->getLocation(); 306 else 307 llvm_unreachable("Not an alias or ifunc?"); 308 StringRef MangledName = getMangledName(GD); 309 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 310 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry); 311 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 312 if (!GV) { 313 Error = true; 314 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 315 } else if (GV->isDeclaration()) { 316 Error = true; 317 Diags.Report(Location, diag::err_alias_to_undefined) 318 << IsIFunc << IsIFunc; 319 } else if (IsIFunc) { 320 // Check resolver function type. 321 llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>( 322 GV->getType()->getPointerElementType()); 323 assert(FTy); 324 if (!FTy->getReturnType()->isPointerTy()) 325 Diags.Report(Location, diag::err_ifunc_resolver_return); 326 } 327 328 llvm::Constant *Aliasee = Alias->getIndirectSymbol(); 329 llvm::GlobalValue *AliaseeGV; 330 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 331 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 332 else 333 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 334 335 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 336 StringRef AliasSection = SA->getName(); 337 if (AliasSection != AliaseeGV->getSection()) 338 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 339 << AliasSection << IsIFunc << IsIFunc; 340 } 341 342 // We have to handle alias to weak aliases in here. LLVM itself disallows 343 // this since the object semantics would not match the IL one. For 344 // compatibility with gcc we implement it by just pointing the alias 345 // to its aliasee's aliasee. We also warn, since the user is probably 346 // expecting the link to be weak. 347 if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) { 348 if (GA->isInterposable()) { 349 Diags.Report(Location, diag::warn_alias_to_weak_alias) 350 << GV->getName() << GA->getName() << IsIFunc; 351 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 352 GA->getIndirectSymbol(), Alias->getType()); 353 Alias->setIndirectSymbol(Aliasee); 354 } 355 } 356 } 357 if (!Error) 358 return; 359 360 for (const GlobalDecl &GD : Aliases) { 361 StringRef MangledName = getMangledName(GD); 362 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 363 auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry); 364 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 365 Alias->eraseFromParent(); 366 } 367 } 368 369 void CodeGenModule::clear() { 370 DeferredDeclsToEmit.clear(); 371 if (OpenMPRuntime) 372 OpenMPRuntime->clear(); 373 } 374 375 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 376 StringRef MainFile) { 377 if (!hasDiagnostics()) 378 return; 379 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 380 if (MainFile.empty()) 381 MainFile = "<stdin>"; 382 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 383 } else { 384 if (Mismatched > 0) 385 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 386 387 if (Missing > 0) 388 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 389 } 390 } 391 392 void CodeGenModule::Release() { 393 EmitDeferred(); 394 EmitVTablesOpportunistically(); 395 applyGlobalValReplacements(); 396 applyReplacements(); 397 checkAliases(); 398 emitMultiVersionFunctions(); 399 EmitCXXGlobalInitFunc(); 400 EmitCXXGlobalDtorFunc(); 401 registerGlobalDtorsWithAtExit(); 402 EmitCXXThreadLocalInitFunc(); 403 if (ObjCRuntime) 404 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 405 AddGlobalCtor(ObjCInitFunction); 406 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice && 407 CUDARuntime) { 408 if (llvm::Function *CudaCtorFunction = 409 CUDARuntime->makeModuleCtorFunction()) 410 AddGlobalCtor(CudaCtorFunction); 411 } 412 if (OpenMPRuntime) { 413 if (llvm::Function *OpenMPRegistrationFunction = 414 OpenMPRuntime->emitRegistrationFunction()) { 415 auto ComdatKey = OpenMPRegistrationFunction->hasComdat() ? 416 OpenMPRegistrationFunction : nullptr; 417 AddGlobalCtor(OpenMPRegistrationFunction, 0, ComdatKey); 418 } 419 OpenMPRuntime->clear(); 420 } 421 if (PGOReader) { 422 getModule().setProfileSummary( 423 PGOReader->getSummary(/* UseCS */ false).getMD(VMContext), 424 llvm::ProfileSummary::PSK_Instr); 425 if (PGOStats.hasDiagnostics()) 426 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 427 } 428 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 429 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 430 EmitGlobalAnnotations(); 431 EmitStaticExternCAliases(); 432 EmitDeferredUnusedCoverageMappings(); 433 if (CoverageMapping) 434 CoverageMapping->emit(); 435 if (CodeGenOpts.SanitizeCfiCrossDso) { 436 CodeGenFunction(*this).EmitCfiCheckFail(); 437 CodeGenFunction(*this).EmitCfiCheckStub(); 438 } 439 emitAtAvailableLinkGuard(); 440 emitLLVMUsed(); 441 if (SanStats) 442 SanStats->finish(); 443 444 if (CodeGenOpts.Autolink && 445 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 446 EmitModuleLinkOptions(); 447 } 448 449 // Record mregparm value now so it is visible through rest of codegen. 450 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 451 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 452 CodeGenOpts.NumRegisterParameters); 453 454 if (CodeGenOpts.DwarfVersion) { 455 // We actually want the latest version when there are conflicts. 456 // We can change from Warning to Latest if such mode is supported. 457 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 458 CodeGenOpts.DwarfVersion); 459 } 460 if (CodeGenOpts.EmitCodeView) { 461 // Indicate that we want CodeView in the metadata. 462 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 463 } 464 if (CodeGenOpts.CodeViewGHash) { 465 getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1); 466 } 467 if (CodeGenOpts.ControlFlowGuard) { 468 // We want function ID tables for Control Flow Guard. 469 getModule().addModuleFlag(llvm::Module::Warning, "cfguardtable", 1); 470 } 471 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 472 // We don't support LTO with 2 with different StrictVTablePointers 473 // FIXME: we could support it by stripping all the information introduced 474 // by StrictVTablePointers. 475 476 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 477 478 llvm::Metadata *Ops[2] = { 479 llvm::MDString::get(VMContext, "StrictVTablePointers"), 480 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 481 llvm::Type::getInt32Ty(VMContext), 1))}; 482 483 getModule().addModuleFlag(llvm::Module::Require, 484 "StrictVTablePointersRequirement", 485 llvm::MDNode::get(VMContext, Ops)); 486 } 487 if (DebugInfo) 488 // We support a single version in the linked module. The LLVM 489 // parser will drop debug info with a different version number 490 // (and warn about it, too). 491 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 492 llvm::DEBUG_METADATA_VERSION); 493 494 // We need to record the widths of enums and wchar_t, so that we can generate 495 // the correct build attributes in the ARM backend. wchar_size is also used by 496 // TargetLibraryInfo. 497 uint64_t WCharWidth = 498 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 499 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 500 501 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 502 if ( Arch == llvm::Triple::arm 503 || Arch == llvm::Triple::armeb 504 || Arch == llvm::Triple::thumb 505 || Arch == llvm::Triple::thumbeb) { 506 // The minimum width of an enum in bytes 507 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 508 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 509 } 510 511 if (CodeGenOpts.SanitizeCfiCrossDso) { 512 // Indicate that we want cross-DSO control flow integrity checks. 513 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 514 } 515 516 if (CodeGenOpts.CFProtectionReturn && 517 Target.checkCFProtectionReturnSupported(getDiags())) { 518 // Indicate that we want to instrument return control flow protection. 519 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return", 520 1); 521 } 522 523 if (CodeGenOpts.CFProtectionBranch && 524 Target.checkCFProtectionBranchSupported(getDiags())) { 525 // Indicate that we want to instrument branch control flow protection. 526 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch", 527 1); 528 } 529 530 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 531 // Indicate whether __nvvm_reflect should be configured to flush denormal 532 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 533 // property.) 534 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 535 CodeGenOpts.FlushDenorm ? 1 : 0); 536 } 537 538 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 539 if (LangOpts.OpenCL) { 540 EmitOpenCLMetadata(); 541 // Emit SPIR version. 542 if (getTriple().getArch() == llvm::Triple::spir || 543 getTriple().getArch() == llvm::Triple::spir64) { 544 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 545 // opencl.spir.version named metadata. 546 llvm::Metadata *SPIRVerElts[] = { 547 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 548 Int32Ty, LangOpts.OpenCLVersion / 100)), 549 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 550 Int32Ty, (LangOpts.OpenCLVersion / 100 > 1) ? 0 : 2))}; 551 llvm::NamedMDNode *SPIRVerMD = 552 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 553 llvm::LLVMContext &Ctx = TheModule.getContext(); 554 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 555 } 556 } 557 558 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 559 assert(PLevel < 3 && "Invalid PIC Level"); 560 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 561 if (Context.getLangOpts().PIE) 562 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 563 } 564 565 if (getCodeGenOpts().CodeModel.size() > 0) { 566 unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel) 567 .Case("tiny", llvm::CodeModel::Tiny) 568 .Case("small", llvm::CodeModel::Small) 569 .Case("kernel", llvm::CodeModel::Kernel) 570 .Case("medium", llvm::CodeModel::Medium) 571 .Case("large", llvm::CodeModel::Large) 572 .Default(~0u); 573 if (CM != ~0u) { 574 llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM); 575 getModule().setCodeModel(codeModel); 576 } 577 } 578 579 if (CodeGenOpts.NoPLT) 580 getModule().setRtLibUseGOT(); 581 582 SimplifyPersonality(); 583 584 if (getCodeGenOpts().EmitDeclMetadata) 585 EmitDeclMetadata(); 586 587 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 588 EmitCoverageFile(); 589 590 if (DebugInfo) 591 DebugInfo->finalize(); 592 593 if (getCodeGenOpts().EmitVersionIdentMetadata) 594 EmitVersionIdentMetadata(); 595 596 if (!getCodeGenOpts().RecordCommandLine.empty()) 597 EmitCommandLineMetadata(); 598 599 EmitTargetMetadata(); 600 } 601 602 void CodeGenModule::EmitOpenCLMetadata() { 603 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 604 // opencl.ocl.version named metadata node. 605 llvm::Metadata *OCLVerElts[] = { 606 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 607 Int32Ty, LangOpts.OpenCLVersion / 100)), 608 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 609 Int32Ty, (LangOpts.OpenCLVersion % 100) / 10))}; 610 llvm::NamedMDNode *OCLVerMD = 611 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 612 llvm::LLVMContext &Ctx = TheModule.getContext(); 613 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 614 } 615 616 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 617 // Make sure that this type is translated. 618 Types.UpdateCompletedType(TD); 619 } 620 621 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 622 // Make sure that this type is translated. 623 Types.RefreshTypeCacheForClass(RD); 624 } 625 626 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 627 if (!TBAA) 628 return nullptr; 629 return TBAA->getTypeInfo(QTy); 630 } 631 632 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 633 if (!TBAA) 634 return TBAAAccessInfo(); 635 return TBAA->getAccessInfo(AccessType); 636 } 637 638 TBAAAccessInfo 639 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 640 if (!TBAA) 641 return TBAAAccessInfo(); 642 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 643 } 644 645 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 646 if (!TBAA) 647 return nullptr; 648 return TBAA->getTBAAStructInfo(QTy); 649 } 650 651 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 652 if (!TBAA) 653 return nullptr; 654 return TBAA->getBaseTypeInfo(QTy); 655 } 656 657 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 658 if (!TBAA) 659 return nullptr; 660 return TBAA->getAccessTagInfo(Info); 661 } 662 663 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 664 TBAAAccessInfo TargetInfo) { 665 if (!TBAA) 666 return TBAAAccessInfo(); 667 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 668 } 669 670 TBAAAccessInfo 671 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 672 TBAAAccessInfo InfoB) { 673 if (!TBAA) 674 return TBAAAccessInfo(); 675 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 676 } 677 678 TBAAAccessInfo 679 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, 680 TBAAAccessInfo SrcInfo) { 681 if (!TBAA) 682 return TBAAAccessInfo(); 683 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); 684 } 685 686 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 687 TBAAAccessInfo TBAAInfo) { 688 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 689 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 690 } 691 692 void CodeGenModule::DecorateInstructionWithInvariantGroup( 693 llvm::Instruction *I, const CXXRecordDecl *RD) { 694 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 695 llvm::MDNode::get(getLLVMContext(), {})); 696 } 697 698 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 699 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 700 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 701 } 702 703 /// ErrorUnsupported - Print out an error that codegen doesn't support the 704 /// specified stmt yet. 705 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 706 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 707 "cannot compile this %0 yet"); 708 std::string Msg = Type; 709 getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID) 710 << Msg << S->getSourceRange(); 711 } 712 713 /// ErrorUnsupported - Print out an error that codegen doesn't support the 714 /// specified decl yet. 715 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 716 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 717 "cannot compile this %0 yet"); 718 std::string Msg = Type; 719 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 720 } 721 722 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 723 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 724 } 725 726 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 727 const NamedDecl *D) const { 728 if (GV->hasDLLImportStorageClass()) 729 return; 730 // Internal definitions always have default visibility. 731 if (GV->hasLocalLinkage()) { 732 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 733 return; 734 } 735 if (!D) 736 return; 737 // Set visibility for definitions, and for declarations if requested globally 738 // or set explicitly. 739 LinkageInfo LV = D->getLinkageAndVisibility(); 740 if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls || 741 !GV->isDeclarationForLinker()) 742 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 743 } 744 745 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, 746 llvm::GlobalValue *GV) { 747 if (GV->hasLocalLinkage()) 748 return true; 749 750 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()) 751 return true; 752 753 // DLLImport explicitly marks the GV as external. 754 if (GV->hasDLLImportStorageClass()) 755 return false; 756 757 const llvm::Triple &TT = CGM.getTriple(); 758 if (TT.isWindowsGNUEnvironment()) { 759 // In MinGW, variables without DLLImport can still be automatically 760 // imported from a DLL by the linker; don't mark variables that 761 // potentially could come from another DLL as DSO local. 762 if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) && 763 !GV->isThreadLocal()) 764 return false; 765 } 766 // Every other GV is local on COFF. 767 // Make an exception for windows OS in the triple: Some firmware builds use 768 // *-win32-macho triples. This (accidentally?) produced windows relocations 769 // without GOT tables in older clang versions; Keep this behaviour. 770 // FIXME: even thread local variables? 771 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) 772 return true; 773 774 // Only handle COFF and ELF for now. 775 if (!TT.isOSBinFormatELF()) 776 return false; 777 778 // If this is not an executable, don't assume anything is local. 779 const auto &CGOpts = CGM.getCodeGenOpts(); 780 llvm::Reloc::Model RM = CGOpts.RelocationModel; 781 const auto &LOpts = CGM.getLangOpts(); 782 if (RM != llvm::Reloc::Static && !LOpts.PIE) 783 return false; 784 785 // A definition cannot be preempted from an executable. 786 if (!GV->isDeclarationForLinker()) 787 return true; 788 789 // Most PIC code sequences that assume that a symbol is local cannot produce a 790 // 0 if it turns out the symbol is undefined. While this is ABI and relocation 791 // depended, it seems worth it to handle it here. 792 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) 793 return false; 794 795 // PPC has no copy relocations and cannot use a plt entry as a symbol address. 796 llvm::Triple::ArchType Arch = TT.getArch(); 797 if (Arch == llvm::Triple::ppc || Arch == llvm::Triple::ppc64 || 798 Arch == llvm::Triple::ppc64le) 799 return false; 800 801 // If we can use copy relocations we can assume it is local. 802 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV)) 803 if (!Var->isThreadLocal() && 804 (RM == llvm::Reloc::Static || CGOpts.PIECopyRelocations)) 805 return true; 806 807 // If we can use a plt entry as the symbol address we can assume it 808 // is local. 809 // FIXME: This should work for PIE, but the gold linker doesn't support it. 810 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) 811 return true; 812 813 // Otherwise don't assue it is local. 814 return false; 815 } 816 817 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { 818 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV)); 819 } 820 821 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 822 GlobalDecl GD) const { 823 const auto *D = dyn_cast<NamedDecl>(GD.getDecl()); 824 // C++ destructors have a few C++ ABI specific special cases. 825 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) { 826 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType()); 827 return; 828 } 829 setDLLImportDLLExport(GV, D); 830 } 831 832 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 833 const NamedDecl *D) const { 834 if (D && D->isExternallyVisible()) { 835 if (D->hasAttr<DLLImportAttr>()) 836 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 837 else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker()) 838 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 839 } 840 } 841 842 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 843 GlobalDecl GD) const { 844 setDLLImportDLLExport(GV, GD); 845 setGlobalVisibilityAndLocal(GV, dyn_cast<NamedDecl>(GD.getDecl())); 846 } 847 848 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 849 const NamedDecl *D) const { 850 setDLLImportDLLExport(GV, D); 851 setGlobalVisibilityAndLocal(GV, D); 852 } 853 854 void CodeGenModule::setGlobalVisibilityAndLocal(llvm::GlobalValue *GV, 855 const NamedDecl *D) const { 856 setGlobalVisibility(GV, D); 857 setDSOLocal(GV); 858 } 859 860 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 861 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 862 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 863 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 864 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 865 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 866 } 867 868 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 869 CodeGenOptions::TLSModel M) { 870 switch (M) { 871 case CodeGenOptions::GeneralDynamicTLSModel: 872 return llvm::GlobalVariable::GeneralDynamicTLSModel; 873 case CodeGenOptions::LocalDynamicTLSModel: 874 return llvm::GlobalVariable::LocalDynamicTLSModel; 875 case CodeGenOptions::InitialExecTLSModel: 876 return llvm::GlobalVariable::InitialExecTLSModel; 877 case CodeGenOptions::LocalExecTLSModel: 878 return llvm::GlobalVariable::LocalExecTLSModel; 879 } 880 llvm_unreachable("Invalid TLS model!"); 881 } 882 883 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 884 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 885 886 llvm::GlobalValue::ThreadLocalMode TLM; 887 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 888 889 // Override the TLS model if it is explicitly specified. 890 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 891 TLM = GetLLVMTLSModel(Attr->getModel()); 892 } 893 894 GV->setThreadLocalMode(TLM); 895 } 896 897 static std::string getCPUSpecificMangling(const CodeGenModule &CGM, 898 StringRef Name) { 899 const TargetInfo &Target = CGM.getTarget(); 900 return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str(); 901 } 902 903 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM, 904 const CPUSpecificAttr *Attr, 905 unsigned CPUIndex, 906 raw_ostream &Out) { 907 // cpu_specific gets the current name, dispatch gets the resolver if IFunc is 908 // supported. 909 if (Attr) 910 Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName()); 911 else if (CGM.getTarget().supportsIFunc()) 912 Out << ".resolver"; 913 } 914 915 static void AppendTargetMangling(const CodeGenModule &CGM, 916 const TargetAttr *Attr, raw_ostream &Out) { 917 if (Attr->isDefaultVersion()) 918 return; 919 920 Out << '.'; 921 const TargetInfo &Target = CGM.getTarget(); 922 TargetAttr::ParsedTargetAttr Info = 923 Attr->parse([&Target](StringRef LHS, StringRef RHS) { 924 // Multiversioning doesn't allow "no-${feature}", so we can 925 // only have "+" prefixes here. 926 assert(LHS.startswith("+") && RHS.startswith("+") && 927 "Features should always have a prefix."); 928 return Target.multiVersionSortPriority(LHS.substr(1)) > 929 Target.multiVersionSortPriority(RHS.substr(1)); 930 }); 931 932 bool IsFirst = true; 933 934 if (!Info.Architecture.empty()) { 935 IsFirst = false; 936 Out << "arch_" << Info.Architecture; 937 } 938 939 for (StringRef Feat : Info.Features) { 940 if (!IsFirst) 941 Out << '_'; 942 IsFirst = false; 943 Out << Feat.substr(1); 944 } 945 } 946 947 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD, 948 const NamedDecl *ND, 949 bool OmitMultiVersionMangling = false) { 950 SmallString<256> Buffer; 951 llvm::raw_svector_ostream Out(Buffer); 952 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 953 if (MC.shouldMangleDeclName(ND)) { 954 llvm::raw_svector_ostream Out(Buffer); 955 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) 956 MC.mangleCXXCtor(D, GD.getCtorType(), Out); 957 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) 958 MC.mangleCXXDtor(D, GD.getDtorType(), Out); 959 else 960 MC.mangleName(ND, Out); 961 } else { 962 IdentifierInfo *II = ND->getIdentifier(); 963 assert(II && "Attempt to mangle unnamed decl."); 964 const auto *FD = dyn_cast<FunctionDecl>(ND); 965 966 if (FD && 967 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 968 llvm::raw_svector_ostream Out(Buffer); 969 Out << "__regcall3__" << II->getName(); 970 } else { 971 Out << II->getName(); 972 } 973 } 974 975 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 976 if (FD->isMultiVersion() && !OmitMultiVersionMangling) { 977 switch (FD->getMultiVersionKind()) { 978 case MultiVersionKind::CPUDispatch: 979 case MultiVersionKind::CPUSpecific: 980 AppendCPUSpecificCPUDispatchMangling(CGM, 981 FD->getAttr<CPUSpecificAttr>(), 982 GD.getMultiVersionIndex(), Out); 983 break; 984 case MultiVersionKind::Target: 985 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out); 986 break; 987 case MultiVersionKind::None: 988 llvm_unreachable("None multiversion type isn't valid here"); 989 } 990 } 991 992 return Out.str(); 993 } 994 995 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 996 const FunctionDecl *FD) { 997 if (!FD->isMultiVersion()) 998 return; 999 1000 // Get the name of what this would be without the 'target' attribute. This 1001 // allows us to lookup the version that was emitted when this wasn't a 1002 // multiversion function. 1003 std::string NonTargetName = 1004 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 1005 GlobalDecl OtherGD; 1006 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 1007 assert(OtherGD.getCanonicalDecl() 1008 .getDecl() 1009 ->getAsFunction() 1010 ->isMultiVersion() && 1011 "Other GD should now be a multiversioned function"); 1012 // OtherFD is the version of this function that was mangled BEFORE 1013 // becoming a MultiVersion function. It potentially needs to be updated. 1014 const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl() 1015 .getDecl() 1016 ->getAsFunction() 1017 ->getMostRecentDecl(); 1018 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 1019 // This is so that if the initial version was already the 'default' 1020 // version, we don't try to update it. 1021 if (OtherName != NonTargetName) { 1022 // Remove instead of erase, since others may have stored the StringRef 1023 // to this. 1024 const auto ExistingRecord = Manglings.find(NonTargetName); 1025 if (ExistingRecord != std::end(Manglings)) 1026 Manglings.remove(&(*ExistingRecord)); 1027 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 1028 MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first(); 1029 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 1030 Entry->setName(OtherName); 1031 } 1032 } 1033 } 1034 1035 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 1036 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 1037 1038 // Some ABIs don't have constructor variants. Make sure that base and 1039 // complete constructors get mangled the same. 1040 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 1041 if (!getTarget().getCXXABI().hasConstructorVariants()) { 1042 CXXCtorType OrigCtorType = GD.getCtorType(); 1043 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 1044 if (OrigCtorType == Ctor_Base) 1045 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 1046 } 1047 } 1048 1049 auto FoundName = MangledDeclNames.find(CanonicalGD); 1050 if (FoundName != MangledDeclNames.end()) 1051 return FoundName->second; 1052 1053 // Keep the first result in the case of a mangling collision. 1054 const auto *ND = cast<NamedDecl>(GD.getDecl()); 1055 std::string MangledName = getMangledNameImpl(*this, GD, ND); 1056 1057 // Postfix kernel stub names with .stub to differentiate them from kernel 1058 // names in device binaries. This is to facilitate the debugger to find 1059 // the correct symbols for kernels in the device binary. 1060 if (auto *FD = dyn_cast<FunctionDecl>(GD.getDecl())) 1061 if (getLangOpts().HIP && !getLangOpts().CUDAIsDevice && 1062 FD->hasAttr<CUDAGlobalAttr>()) 1063 MangledName = MangledName + ".stub"; 1064 1065 auto Result = Manglings.insert(std::make_pair(MangledName, GD)); 1066 return MangledDeclNames[CanonicalGD] = Result.first->first(); 1067 } 1068 1069 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 1070 const BlockDecl *BD) { 1071 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 1072 const Decl *D = GD.getDecl(); 1073 1074 SmallString<256> Buffer; 1075 llvm::raw_svector_ostream Out(Buffer); 1076 if (!D) 1077 MangleCtx.mangleGlobalBlock(BD, 1078 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 1079 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 1080 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 1081 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 1082 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 1083 else 1084 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 1085 1086 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 1087 return Result.first->first(); 1088 } 1089 1090 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 1091 return getModule().getNamedValue(Name); 1092 } 1093 1094 /// AddGlobalCtor - Add a function to the list that will be called before 1095 /// main() runs. 1096 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 1097 llvm::Constant *AssociatedData) { 1098 // FIXME: Type coercion of void()* types. 1099 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 1100 } 1101 1102 /// AddGlobalDtor - Add a function to the list that will be called 1103 /// when the module is unloaded. 1104 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 1105 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit) { 1106 DtorsUsingAtExit[Priority].push_back(Dtor); 1107 return; 1108 } 1109 1110 // FIXME: Type coercion of void()* types. 1111 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 1112 } 1113 1114 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 1115 if (Fns.empty()) return; 1116 1117 // Ctor function type is void()*. 1118 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 1119 llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy, 1120 TheModule.getDataLayout().getProgramAddressSpace()); 1121 1122 // Get the type of a ctor entry, { i32, void ()*, i8* }. 1123 llvm::StructType *CtorStructTy = llvm::StructType::get( 1124 Int32Ty, CtorPFTy, VoidPtrTy); 1125 1126 // Construct the constructor and destructor arrays. 1127 ConstantInitBuilder builder(*this); 1128 auto ctors = builder.beginArray(CtorStructTy); 1129 for (const auto &I : Fns) { 1130 auto ctor = ctors.beginStruct(CtorStructTy); 1131 ctor.addInt(Int32Ty, I.Priority); 1132 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 1133 if (I.AssociatedData) 1134 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 1135 else 1136 ctor.addNullPointer(VoidPtrTy); 1137 ctor.finishAndAddTo(ctors); 1138 } 1139 1140 auto list = 1141 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 1142 /*constant*/ false, 1143 llvm::GlobalValue::AppendingLinkage); 1144 1145 // The LTO linker doesn't seem to like it when we set an alignment 1146 // on appending variables. Take it off as a workaround. 1147 list->setAlignment(0); 1148 1149 Fns.clear(); 1150 } 1151 1152 llvm::GlobalValue::LinkageTypes 1153 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 1154 const auto *D = cast<FunctionDecl>(GD.getDecl()); 1155 1156 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 1157 1158 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D)) 1159 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType()); 1160 1161 if (isa<CXXConstructorDecl>(D) && 1162 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 1163 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 1164 // Our approach to inheriting constructors is fundamentally different from 1165 // that used by the MS ABI, so keep our inheriting constructor thunks 1166 // internal rather than trying to pick an unambiguous mangling for them. 1167 return llvm::GlobalValue::InternalLinkage; 1168 } 1169 1170 return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false); 1171 } 1172 1173 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 1174 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 1175 if (!MDS) return nullptr; 1176 1177 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 1178 } 1179 1180 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD, 1181 const CGFunctionInfo &Info, 1182 llvm::Function *F) { 1183 unsigned CallingConv; 1184 llvm::AttributeList PAL; 1185 ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, false); 1186 F->setAttributes(PAL); 1187 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 1188 } 1189 1190 /// Determines whether the language options require us to model 1191 /// unwind exceptions. We treat -fexceptions as mandating this 1192 /// except under the fragile ObjC ABI with only ObjC exceptions 1193 /// enabled. This means, for example, that C with -fexceptions 1194 /// enables this. 1195 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 1196 // If exceptions are completely disabled, obviously this is false. 1197 if (!LangOpts.Exceptions) return false; 1198 1199 // If C++ exceptions are enabled, this is true. 1200 if (LangOpts.CXXExceptions) return true; 1201 1202 // If ObjC exceptions are enabled, this depends on the ABI. 1203 if (LangOpts.ObjCExceptions) { 1204 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 1205 } 1206 1207 return true; 1208 } 1209 1210 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM, 1211 const CXXMethodDecl *MD) { 1212 // Check that the type metadata can ever actually be used by a call. 1213 if (!CGM.getCodeGenOpts().LTOUnit || 1214 !CGM.HasHiddenLTOVisibility(MD->getParent())) 1215 return false; 1216 1217 // Only functions whose address can be taken with a member function pointer 1218 // need this sort of type metadata. 1219 return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) && 1220 !isa<CXXDestructorDecl>(MD); 1221 } 1222 1223 std::vector<const CXXRecordDecl *> 1224 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) { 1225 llvm::SetVector<const CXXRecordDecl *> MostBases; 1226 1227 std::function<void (const CXXRecordDecl *)> CollectMostBases; 1228 CollectMostBases = [&](const CXXRecordDecl *RD) { 1229 if (RD->getNumBases() == 0) 1230 MostBases.insert(RD); 1231 for (const CXXBaseSpecifier &B : RD->bases()) 1232 CollectMostBases(B.getType()->getAsCXXRecordDecl()); 1233 }; 1234 CollectMostBases(RD); 1235 return MostBases.takeVector(); 1236 } 1237 1238 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 1239 llvm::Function *F) { 1240 llvm::AttrBuilder B; 1241 1242 if (CodeGenOpts.UnwindTables) 1243 B.addAttribute(llvm::Attribute::UWTable); 1244 1245 if (!hasUnwindExceptions(LangOpts)) 1246 B.addAttribute(llvm::Attribute::NoUnwind); 1247 1248 if (!D || !D->hasAttr<NoStackProtectorAttr>()) { 1249 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 1250 B.addAttribute(llvm::Attribute::StackProtect); 1251 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 1252 B.addAttribute(llvm::Attribute::StackProtectStrong); 1253 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 1254 B.addAttribute(llvm::Attribute::StackProtectReq); 1255 } 1256 1257 if (!D) { 1258 // If we don't have a declaration to control inlining, the function isn't 1259 // explicitly marked as alwaysinline for semantic reasons, and inlining is 1260 // disabled, mark the function as noinline. 1261 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1262 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 1263 B.addAttribute(llvm::Attribute::NoInline); 1264 1265 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1266 return; 1267 } 1268 1269 // Track whether we need to add the optnone LLVM attribute, 1270 // starting with the default for this optimization level. 1271 bool ShouldAddOptNone = 1272 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 1273 // We can't add optnone in the following cases, it won't pass the verifier. 1274 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 1275 ShouldAddOptNone &= !F->hasFnAttribute(llvm::Attribute::AlwaysInline); 1276 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 1277 1278 if (ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) { 1279 B.addAttribute(llvm::Attribute::OptimizeNone); 1280 1281 // OptimizeNone implies noinline; we should not be inlining such functions. 1282 B.addAttribute(llvm::Attribute::NoInline); 1283 assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1284 "OptimizeNone and AlwaysInline on same function!"); 1285 1286 // We still need to handle naked functions even though optnone subsumes 1287 // much of their semantics. 1288 if (D->hasAttr<NakedAttr>()) 1289 B.addAttribute(llvm::Attribute::Naked); 1290 1291 // OptimizeNone wins over OptimizeForSize and MinSize. 1292 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 1293 F->removeFnAttr(llvm::Attribute::MinSize); 1294 } else if (D->hasAttr<NakedAttr>()) { 1295 // Naked implies noinline: we should not be inlining such functions. 1296 B.addAttribute(llvm::Attribute::Naked); 1297 B.addAttribute(llvm::Attribute::NoInline); 1298 } else if (D->hasAttr<NoDuplicateAttr>()) { 1299 B.addAttribute(llvm::Attribute::NoDuplicate); 1300 } else if (D->hasAttr<NoInlineAttr>()) { 1301 B.addAttribute(llvm::Attribute::NoInline); 1302 } else if (D->hasAttr<AlwaysInlineAttr>() && 1303 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 1304 // (noinline wins over always_inline, and we can't specify both in IR) 1305 B.addAttribute(llvm::Attribute::AlwaysInline); 1306 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 1307 // If we're not inlining, then force everything that isn't always_inline to 1308 // carry an explicit noinline attribute. 1309 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 1310 B.addAttribute(llvm::Attribute::NoInline); 1311 } else { 1312 // Otherwise, propagate the inline hint attribute and potentially use its 1313 // absence to mark things as noinline. 1314 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1315 // Search function and template pattern redeclarations for inline. 1316 auto CheckForInline = [](const FunctionDecl *FD) { 1317 auto CheckRedeclForInline = [](const FunctionDecl *Redecl) { 1318 return Redecl->isInlineSpecified(); 1319 }; 1320 if (any_of(FD->redecls(), CheckRedeclForInline)) 1321 return true; 1322 const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern(); 1323 if (!Pattern) 1324 return false; 1325 return any_of(Pattern->redecls(), CheckRedeclForInline); 1326 }; 1327 if (CheckForInline(FD)) { 1328 B.addAttribute(llvm::Attribute::InlineHint); 1329 } else if (CodeGenOpts.getInlining() == 1330 CodeGenOptions::OnlyHintInlining && 1331 !FD->isInlined() && 1332 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1333 B.addAttribute(llvm::Attribute::NoInline); 1334 } 1335 } 1336 } 1337 1338 // Add other optimization related attributes if we are optimizing this 1339 // function. 1340 if (!D->hasAttr<OptimizeNoneAttr>()) { 1341 if (D->hasAttr<ColdAttr>()) { 1342 if (!ShouldAddOptNone) 1343 B.addAttribute(llvm::Attribute::OptimizeForSize); 1344 B.addAttribute(llvm::Attribute::Cold); 1345 } 1346 1347 if (D->hasAttr<MinSizeAttr>()) 1348 B.addAttribute(llvm::Attribute::MinSize); 1349 } 1350 1351 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1352 1353 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 1354 if (alignment) 1355 F->setAlignment(alignment); 1356 1357 if (!D->hasAttr<AlignedAttr>()) 1358 if (LangOpts.FunctionAlignment) 1359 F->setAlignment(1 << LangOpts.FunctionAlignment); 1360 1361 // Some C++ ABIs require 2-byte alignment for member functions, in order to 1362 // reserve a bit for differentiating between virtual and non-virtual member 1363 // functions. If the current target's C++ ABI requires this and this is a 1364 // member function, set its alignment accordingly. 1365 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 1366 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 1367 F->setAlignment(2); 1368 } 1369 1370 // In the cross-dso CFI mode, we want !type attributes on definitions only. 1371 if (CodeGenOpts.SanitizeCfiCrossDso) 1372 if (auto *FD = dyn_cast<FunctionDecl>(D)) 1373 CreateFunctionTypeMetadataForIcall(FD, F); 1374 1375 // Emit type metadata on member functions for member function pointer checks. 1376 // These are only ever necessary on definitions; we're guaranteed that the 1377 // definition will be present in the LTO unit as a result of LTO visibility. 1378 auto *MD = dyn_cast<CXXMethodDecl>(D); 1379 if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) { 1380 for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) { 1381 llvm::Metadata *Id = 1382 CreateMetadataIdentifierForType(Context.getMemberPointerType( 1383 MD->getType(), Context.getRecordType(Base).getTypePtr())); 1384 F->addTypeMetadata(0, Id); 1385 } 1386 } 1387 } 1388 1389 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { 1390 const Decl *D = GD.getDecl(); 1391 if (dyn_cast_or_null<NamedDecl>(D)) 1392 setGVProperties(GV, GD); 1393 else 1394 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1395 1396 if (D && D->hasAttr<UsedAttr>()) 1397 addUsedGlobal(GV); 1398 1399 if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) { 1400 const auto *VD = cast<VarDecl>(D); 1401 if (VD->getType().isConstQualified() && 1402 VD->getStorageDuration() == SD_Static) 1403 addUsedGlobal(GV); 1404 } 1405 } 1406 1407 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD, 1408 llvm::AttrBuilder &Attrs) { 1409 // Add target-cpu and target-features attributes to functions. If 1410 // we have a decl for the function and it has a target attribute then 1411 // parse that and add it to the feature set. 1412 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 1413 std::vector<std::string> Features; 1414 const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl()); 1415 FD = FD ? FD->getMostRecentDecl() : FD; 1416 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; 1417 const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr; 1418 bool AddedAttr = false; 1419 if (TD || SD) { 1420 llvm::StringMap<bool> FeatureMap; 1421 getFunctionFeatureMap(FeatureMap, GD); 1422 1423 // Produce the canonical string for this set of features. 1424 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) 1425 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); 1426 1427 // Now add the target-cpu and target-features to the function. 1428 // While we populated the feature map above, we still need to 1429 // get and parse the target attribute so we can get the cpu for 1430 // the function. 1431 if (TD) { 1432 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 1433 if (ParsedAttr.Architecture != "" && 1434 getTarget().isValidCPUName(ParsedAttr.Architecture)) 1435 TargetCPU = ParsedAttr.Architecture; 1436 } 1437 } else { 1438 // Otherwise just add the existing target cpu and target features to the 1439 // function. 1440 Features = getTarget().getTargetOpts().Features; 1441 } 1442 1443 if (TargetCPU != "") { 1444 Attrs.addAttribute("target-cpu", TargetCPU); 1445 AddedAttr = true; 1446 } 1447 if (!Features.empty()) { 1448 llvm::sort(Features); 1449 Attrs.addAttribute("target-features", llvm::join(Features, ",")); 1450 AddedAttr = true; 1451 } 1452 1453 return AddedAttr; 1454 } 1455 1456 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD, 1457 llvm::GlobalObject *GO) { 1458 const Decl *D = GD.getDecl(); 1459 SetCommonAttributes(GD, GO); 1460 1461 if (D) { 1462 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 1463 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 1464 GV->addAttribute("bss-section", SA->getName()); 1465 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 1466 GV->addAttribute("data-section", SA->getName()); 1467 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 1468 GV->addAttribute("rodata-section", SA->getName()); 1469 } 1470 1471 if (auto *F = dyn_cast<llvm::Function>(GO)) { 1472 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 1473 if (!D->getAttr<SectionAttr>()) 1474 F->addFnAttr("implicit-section-name", SA->getName()); 1475 1476 llvm::AttrBuilder Attrs; 1477 if (GetCPUAndFeaturesAttributes(GD, Attrs)) { 1478 // We know that GetCPUAndFeaturesAttributes will always have the 1479 // newest set, since it has the newest possible FunctionDecl, so the 1480 // new ones should replace the old. 1481 F->removeFnAttr("target-cpu"); 1482 F->removeFnAttr("target-features"); 1483 F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs); 1484 } 1485 } 1486 1487 if (const auto *CSA = D->getAttr<CodeSegAttr>()) 1488 GO->setSection(CSA->getName()); 1489 else if (const auto *SA = D->getAttr<SectionAttr>()) 1490 GO->setSection(SA->getName()); 1491 } 1492 1493 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 1494 } 1495 1496 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD, 1497 llvm::Function *F, 1498 const CGFunctionInfo &FI) { 1499 const Decl *D = GD.getDecl(); 1500 SetLLVMFunctionAttributes(GD, FI, F); 1501 SetLLVMFunctionAttributesForDefinition(D, F); 1502 1503 F->setLinkage(llvm::Function::InternalLinkage); 1504 1505 setNonAliasAttributes(GD, F); 1506 } 1507 1508 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) { 1509 // Set linkage and visibility in case we never see a definition. 1510 LinkageInfo LV = ND->getLinkageAndVisibility(); 1511 // Don't set internal linkage on declarations. 1512 // "extern_weak" is overloaded in LLVM; we probably should have 1513 // separate linkage types for this. 1514 if (isExternallyVisible(LV.getLinkage()) && 1515 (ND->hasAttr<WeakAttr>() || ND->isWeakImported())) 1516 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1517 } 1518 1519 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD, 1520 llvm::Function *F) { 1521 // Only if we are checking indirect calls. 1522 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 1523 return; 1524 1525 // Non-static class methods are handled via vtable or member function pointer 1526 // checks elsewhere. 1527 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 1528 return; 1529 1530 // Additionally, if building with cross-DSO support... 1531 if (CodeGenOpts.SanitizeCfiCrossDso) { 1532 // Skip available_externally functions. They won't be codegen'ed in the 1533 // current module anyway. 1534 if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally) 1535 return; 1536 } 1537 1538 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 1539 F->addTypeMetadata(0, MD); 1540 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 1541 1542 // Emit a hash-based bit set entry for cross-DSO calls. 1543 if (CodeGenOpts.SanitizeCfiCrossDso) 1544 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 1545 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 1546 } 1547 1548 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 1549 bool IsIncompleteFunction, 1550 bool IsThunk) { 1551 1552 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 1553 // If this is an intrinsic function, set the function's attributes 1554 // to the intrinsic's attributes. 1555 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 1556 return; 1557 } 1558 1559 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 1560 1561 if (!IsIncompleteFunction) 1562 SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F); 1563 1564 // Add the Returned attribute for "this", except for iOS 5 and earlier 1565 // where substantial code, including the libstdc++ dylib, was compiled with 1566 // GCC and does not actually return "this". 1567 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 1568 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 1569 assert(!F->arg_empty() && 1570 F->arg_begin()->getType() 1571 ->canLosslesslyBitCastTo(F->getReturnType()) && 1572 "unexpected this return"); 1573 F->addAttribute(1, llvm::Attribute::Returned); 1574 } 1575 1576 // Only a few attributes are set on declarations; these may later be 1577 // overridden by a definition. 1578 1579 setLinkageForGV(F, FD); 1580 setGVProperties(F, FD); 1581 1582 // Setup target-specific attributes. 1583 if (!IsIncompleteFunction && F->isDeclaration()) 1584 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); 1585 1586 if (const auto *CSA = FD->getAttr<CodeSegAttr>()) 1587 F->setSection(CSA->getName()); 1588 else if (const auto *SA = FD->getAttr<SectionAttr>()) 1589 F->setSection(SA->getName()); 1590 1591 if (FD->isReplaceableGlobalAllocationFunction()) { 1592 // A replaceable global allocation function does not act like a builtin by 1593 // default, only if it is invoked by a new-expression or delete-expression. 1594 F->addAttribute(llvm::AttributeList::FunctionIndex, 1595 llvm::Attribute::NoBuiltin); 1596 1597 // A sane operator new returns a non-aliasing pointer. 1598 // FIXME: Also add NonNull attribute to the return value 1599 // for the non-nothrow forms? 1600 auto Kind = FD->getDeclName().getCXXOverloadedOperator(); 1601 if (getCodeGenOpts().AssumeSaneOperatorNew && 1602 (Kind == OO_New || Kind == OO_Array_New)) 1603 F->addAttribute(llvm::AttributeList::ReturnIndex, 1604 llvm::Attribute::NoAlias); 1605 } 1606 1607 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 1608 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1609 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 1610 if (MD->isVirtual()) 1611 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1612 1613 // Don't emit entries for function declarations in the cross-DSO mode. This 1614 // is handled with better precision by the receiving DSO. 1615 if (!CodeGenOpts.SanitizeCfiCrossDso) 1616 CreateFunctionTypeMetadataForIcall(FD, F); 1617 1618 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 1619 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 1620 1621 if (const auto *CB = FD->getAttr<CallbackAttr>()) { 1622 // Annotate the callback behavior as metadata: 1623 // - The callback callee (as argument number). 1624 // - The callback payloads (as argument numbers). 1625 llvm::LLVMContext &Ctx = F->getContext(); 1626 llvm::MDBuilder MDB(Ctx); 1627 1628 // The payload indices are all but the first one in the encoding. The first 1629 // identifies the callback callee. 1630 int CalleeIdx = *CB->encoding_begin(); 1631 ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end()); 1632 F->addMetadata(llvm::LLVMContext::MD_callback, 1633 *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding( 1634 CalleeIdx, PayloadIndices, 1635 /* VarArgsArePassed */ false)})); 1636 } 1637 } 1638 1639 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 1640 assert(!GV->isDeclaration() && 1641 "Only globals with definition can force usage."); 1642 LLVMUsed.emplace_back(GV); 1643 } 1644 1645 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 1646 assert(!GV->isDeclaration() && 1647 "Only globals with definition can force usage."); 1648 LLVMCompilerUsed.emplace_back(GV); 1649 } 1650 1651 static void emitUsed(CodeGenModule &CGM, StringRef Name, 1652 std::vector<llvm::WeakTrackingVH> &List) { 1653 // Don't create llvm.used if there is no need. 1654 if (List.empty()) 1655 return; 1656 1657 // Convert List to what ConstantArray needs. 1658 SmallVector<llvm::Constant*, 8> UsedArray; 1659 UsedArray.resize(List.size()); 1660 for (unsigned i = 0, e = List.size(); i != e; ++i) { 1661 UsedArray[i] = 1662 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 1663 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 1664 } 1665 1666 if (UsedArray.empty()) 1667 return; 1668 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 1669 1670 auto *GV = new llvm::GlobalVariable( 1671 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 1672 llvm::ConstantArray::get(ATy, UsedArray), Name); 1673 1674 GV->setSection("llvm.metadata"); 1675 } 1676 1677 void CodeGenModule::emitLLVMUsed() { 1678 emitUsed(*this, "llvm.used", LLVMUsed); 1679 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 1680 } 1681 1682 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 1683 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 1684 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1685 } 1686 1687 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 1688 llvm::SmallString<32> Opt; 1689 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 1690 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1691 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1692 } 1693 1694 void CodeGenModule::AddELFLibDirective(StringRef Lib) { 1695 auto &C = getLLVMContext(); 1696 LinkerOptionsMetadata.push_back(llvm::MDNode::get( 1697 C, {llvm::MDString::get(C, "lib"), llvm::MDString::get(C, Lib)})); 1698 } 1699 1700 void CodeGenModule::AddDependentLib(StringRef Lib) { 1701 llvm::SmallString<24> Opt; 1702 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 1703 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1704 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1705 } 1706 1707 /// Add link options implied by the given module, including modules 1708 /// it depends on, using a postorder walk. 1709 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 1710 SmallVectorImpl<llvm::MDNode *> &Metadata, 1711 llvm::SmallPtrSet<Module *, 16> &Visited) { 1712 // Import this module's parent. 1713 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 1714 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 1715 } 1716 1717 // Import this module's dependencies. 1718 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 1719 if (Visited.insert(Mod->Imports[I - 1]).second) 1720 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 1721 } 1722 1723 // Add linker options to link against the libraries/frameworks 1724 // described by this module. 1725 llvm::LLVMContext &Context = CGM.getLLVMContext(); 1726 bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF(); 1727 bool IsPS4 = CGM.getTarget().getTriple().isPS4(); 1728 1729 // For modules that use export_as for linking, use that module 1730 // name instead. 1731 if (Mod->UseExportAsModuleLinkName) 1732 return; 1733 1734 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 1735 // Link against a framework. Frameworks are currently Darwin only, so we 1736 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 1737 if (Mod->LinkLibraries[I-1].IsFramework) { 1738 llvm::Metadata *Args[2] = { 1739 llvm::MDString::get(Context, "-framework"), 1740 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 1741 1742 Metadata.push_back(llvm::MDNode::get(Context, Args)); 1743 continue; 1744 } 1745 1746 // Link against a library. 1747 if (IsELF && !IsPS4) { 1748 llvm::Metadata *Args[2] = { 1749 llvm::MDString::get(Context, "lib"), 1750 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library), 1751 }; 1752 Metadata.push_back(llvm::MDNode::get(Context, Args)); 1753 } else { 1754 llvm::SmallString<24> Opt; 1755 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 1756 Mod->LinkLibraries[I - 1].Library, Opt); 1757 auto *OptString = llvm::MDString::get(Context, Opt); 1758 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 1759 } 1760 } 1761 } 1762 1763 void CodeGenModule::EmitModuleLinkOptions() { 1764 // Collect the set of all of the modules we want to visit to emit link 1765 // options, which is essentially the imported modules and all of their 1766 // non-explicit child modules. 1767 llvm::SetVector<clang::Module *> LinkModules; 1768 llvm::SmallPtrSet<clang::Module *, 16> Visited; 1769 SmallVector<clang::Module *, 16> Stack; 1770 1771 // Seed the stack with imported modules. 1772 for (Module *M : ImportedModules) { 1773 // Do not add any link flags when an implementation TU of a module imports 1774 // a header of that same module. 1775 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 1776 !getLangOpts().isCompilingModule()) 1777 continue; 1778 if (Visited.insert(M).second) 1779 Stack.push_back(M); 1780 } 1781 1782 // Find all of the modules to import, making a little effort to prune 1783 // non-leaf modules. 1784 while (!Stack.empty()) { 1785 clang::Module *Mod = Stack.pop_back_val(); 1786 1787 bool AnyChildren = false; 1788 1789 // Visit the submodules of this module. 1790 for (const auto &SM : Mod->submodules()) { 1791 // Skip explicit children; they need to be explicitly imported to be 1792 // linked against. 1793 if (SM->IsExplicit) 1794 continue; 1795 1796 if (Visited.insert(SM).second) { 1797 Stack.push_back(SM); 1798 AnyChildren = true; 1799 } 1800 } 1801 1802 // We didn't find any children, so add this module to the list of 1803 // modules to link against. 1804 if (!AnyChildren) { 1805 LinkModules.insert(Mod); 1806 } 1807 } 1808 1809 // Add link options for all of the imported modules in reverse topological 1810 // order. We don't do anything to try to order import link flags with respect 1811 // to linker options inserted by things like #pragma comment(). 1812 SmallVector<llvm::MDNode *, 16> MetadataArgs; 1813 Visited.clear(); 1814 for (Module *M : LinkModules) 1815 if (Visited.insert(M).second) 1816 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 1817 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 1818 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 1819 1820 // Add the linker options metadata flag. 1821 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 1822 for (auto *MD : LinkerOptionsMetadata) 1823 NMD->addOperand(MD); 1824 } 1825 1826 void CodeGenModule::EmitDeferred() { 1827 // Emit deferred declare target declarations. 1828 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 1829 getOpenMPRuntime().emitDeferredTargetDecls(); 1830 1831 // Emit code for any potentially referenced deferred decls. Since a 1832 // previously unused static decl may become used during the generation of code 1833 // for a static function, iterate until no changes are made. 1834 1835 if (!DeferredVTables.empty()) { 1836 EmitDeferredVTables(); 1837 1838 // Emitting a vtable doesn't directly cause more vtables to 1839 // become deferred, although it can cause functions to be 1840 // emitted that then need those vtables. 1841 assert(DeferredVTables.empty()); 1842 } 1843 1844 // Stop if we're out of both deferred vtables and deferred declarations. 1845 if (DeferredDeclsToEmit.empty()) 1846 return; 1847 1848 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 1849 // work, it will not interfere with this. 1850 std::vector<GlobalDecl> CurDeclsToEmit; 1851 CurDeclsToEmit.swap(DeferredDeclsToEmit); 1852 1853 for (GlobalDecl &D : CurDeclsToEmit) { 1854 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 1855 // to get GlobalValue with exactly the type we need, not something that 1856 // might had been created for another decl with the same mangled name but 1857 // different type. 1858 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 1859 GetAddrOfGlobal(D, ForDefinition)); 1860 1861 // In case of different address spaces, we may still get a cast, even with 1862 // IsForDefinition equal to true. Query mangled names table to get 1863 // GlobalValue. 1864 if (!GV) 1865 GV = GetGlobalValue(getMangledName(D)); 1866 1867 // Make sure GetGlobalValue returned non-null. 1868 assert(GV); 1869 1870 // Check to see if we've already emitted this. This is necessary 1871 // for a couple of reasons: first, decls can end up in the 1872 // deferred-decls queue multiple times, and second, decls can end 1873 // up with definitions in unusual ways (e.g. by an extern inline 1874 // function acquiring a strong function redefinition). Just 1875 // ignore these cases. 1876 if (!GV->isDeclaration()) 1877 continue; 1878 1879 // Otherwise, emit the definition and move on to the next one. 1880 EmitGlobalDefinition(D, GV); 1881 1882 // If we found out that we need to emit more decls, do that recursively. 1883 // This has the advantage that the decls are emitted in a DFS and related 1884 // ones are close together, which is convenient for testing. 1885 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 1886 EmitDeferred(); 1887 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 1888 } 1889 } 1890 } 1891 1892 void CodeGenModule::EmitVTablesOpportunistically() { 1893 // Try to emit external vtables as available_externally if they have emitted 1894 // all inlined virtual functions. It runs after EmitDeferred() and therefore 1895 // is not allowed to create new references to things that need to be emitted 1896 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 1897 1898 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 1899 && "Only emit opportunistic vtables with optimizations"); 1900 1901 for (const CXXRecordDecl *RD : OpportunisticVTables) { 1902 assert(getVTables().isVTableExternal(RD) && 1903 "This queue should only contain external vtables"); 1904 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 1905 VTables.GenerateClassData(RD); 1906 } 1907 OpportunisticVTables.clear(); 1908 } 1909 1910 void CodeGenModule::EmitGlobalAnnotations() { 1911 if (Annotations.empty()) 1912 return; 1913 1914 // Create a new global variable for the ConstantStruct in the Module. 1915 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 1916 Annotations[0]->getType(), Annotations.size()), Annotations); 1917 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 1918 llvm::GlobalValue::AppendingLinkage, 1919 Array, "llvm.global.annotations"); 1920 gv->setSection(AnnotationSection); 1921 } 1922 1923 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 1924 llvm::Constant *&AStr = AnnotationStrings[Str]; 1925 if (AStr) 1926 return AStr; 1927 1928 // Not found yet, create a new global. 1929 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 1930 auto *gv = 1931 new llvm::GlobalVariable(getModule(), s->getType(), true, 1932 llvm::GlobalValue::PrivateLinkage, s, ".str"); 1933 gv->setSection(AnnotationSection); 1934 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1935 AStr = gv; 1936 return gv; 1937 } 1938 1939 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1940 SourceManager &SM = getContext().getSourceManager(); 1941 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1942 if (PLoc.isValid()) 1943 return EmitAnnotationString(PLoc.getFilename()); 1944 return EmitAnnotationString(SM.getBufferName(Loc)); 1945 } 1946 1947 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1948 SourceManager &SM = getContext().getSourceManager(); 1949 PresumedLoc PLoc = SM.getPresumedLoc(L); 1950 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1951 SM.getExpansionLineNumber(L); 1952 return llvm::ConstantInt::get(Int32Ty, LineNo); 1953 } 1954 1955 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1956 const AnnotateAttr *AA, 1957 SourceLocation L) { 1958 // Get the globals for file name, annotation, and the line number. 1959 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1960 *UnitGV = EmitAnnotationUnit(L), 1961 *LineNoCst = EmitAnnotationLineNo(L); 1962 1963 // Create the ConstantStruct for the global annotation. 1964 llvm::Constant *Fields[4] = { 1965 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1966 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1967 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1968 LineNoCst 1969 }; 1970 return llvm::ConstantStruct::getAnon(Fields); 1971 } 1972 1973 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1974 llvm::GlobalValue *GV) { 1975 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1976 // Get the struct elements for these annotations. 1977 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1978 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 1979 } 1980 1981 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind, 1982 llvm::Function *Fn, 1983 SourceLocation Loc) const { 1984 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1985 // Blacklist by function name. 1986 if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName())) 1987 return true; 1988 // Blacklist by location. 1989 if (Loc.isValid()) 1990 return SanitizerBL.isBlacklistedLocation(Kind, Loc); 1991 // If location is unknown, this may be a compiler-generated function. Assume 1992 // it's located in the main file. 1993 auto &SM = Context.getSourceManager(); 1994 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 1995 return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName()); 1996 } 1997 return false; 1998 } 1999 2000 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 2001 SourceLocation Loc, QualType Ty, 2002 StringRef Category) const { 2003 // For now globals can be blacklisted only in ASan and KASan. 2004 const SanitizerMask EnabledAsanMask = LangOpts.Sanitize.Mask & 2005 (SanitizerKind::Address | SanitizerKind::KernelAddress | 2006 SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress); 2007 if (!EnabledAsanMask) 2008 return false; 2009 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 2010 if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category)) 2011 return true; 2012 if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category)) 2013 return true; 2014 // Check global type. 2015 if (!Ty.isNull()) { 2016 // Drill down the array types: if global variable of a fixed type is 2017 // blacklisted, we also don't instrument arrays of them. 2018 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 2019 Ty = AT->getElementType(); 2020 Ty = Ty.getCanonicalType().getUnqualifiedType(); 2021 // We allow to blacklist only record types (classes, structs etc.) 2022 if (Ty->isRecordType()) { 2023 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 2024 if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category)) 2025 return true; 2026 } 2027 } 2028 return false; 2029 } 2030 2031 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 2032 StringRef Category) const { 2033 const auto &XRayFilter = getContext().getXRayFilter(); 2034 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 2035 auto Attr = ImbueAttr::NONE; 2036 if (Loc.isValid()) 2037 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 2038 if (Attr == ImbueAttr::NONE) 2039 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 2040 switch (Attr) { 2041 case ImbueAttr::NONE: 2042 return false; 2043 case ImbueAttr::ALWAYS: 2044 Fn->addFnAttr("function-instrument", "xray-always"); 2045 break; 2046 case ImbueAttr::ALWAYS_ARG1: 2047 Fn->addFnAttr("function-instrument", "xray-always"); 2048 Fn->addFnAttr("xray-log-args", "1"); 2049 break; 2050 case ImbueAttr::NEVER: 2051 Fn->addFnAttr("function-instrument", "xray-never"); 2052 break; 2053 } 2054 return true; 2055 } 2056 2057 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 2058 // Never defer when EmitAllDecls is specified. 2059 if (LangOpts.EmitAllDecls) 2060 return true; 2061 2062 if (CodeGenOpts.KeepStaticConsts) { 2063 const auto *VD = dyn_cast<VarDecl>(Global); 2064 if (VD && VD->getType().isConstQualified() && 2065 VD->getStorageDuration() == SD_Static) 2066 return true; 2067 } 2068 2069 return getContext().DeclMustBeEmitted(Global); 2070 } 2071 2072 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 2073 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) 2074 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 2075 // Implicit template instantiations may change linkage if they are later 2076 // explicitly instantiated, so they should not be emitted eagerly. 2077 return false; 2078 if (const auto *VD = dyn_cast<VarDecl>(Global)) 2079 if (Context.getInlineVariableDefinitionKind(VD) == 2080 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 2081 // A definition of an inline constexpr static data member may change 2082 // linkage later if it's redeclared outside the class. 2083 return false; 2084 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 2085 // codegen for global variables, because they may be marked as threadprivate. 2086 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 2087 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) && 2088 !isTypeConstant(Global->getType(), false) && 2089 !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global)) 2090 return false; 2091 2092 return true; 2093 } 2094 2095 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor( 2096 const CXXUuidofExpr* E) { 2097 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 2098 // well-formed. 2099 StringRef Uuid = E->getUuidStr(); 2100 std::string Name = "_GUID_" + Uuid.lower(); 2101 std::replace(Name.begin(), Name.end(), '-', '_'); 2102 2103 // The UUID descriptor should be pointer aligned. 2104 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 2105 2106 // Look for an existing global. 2107 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 2108 return ConstantAddress(GV, Alignment); 2109 2110 llvm::Constant *Init = EmitUuidofInitializer(Uuid); 2111 assert(Init && "failed to initialize as constant"); 2112 2113 auto *GV = new llvm::GlobalVariable( 2114 getModule(), Init->getType(), 2115 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 2116 if (supportsCOMDAT()) 2117 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2118 setDSOLocal(GV); 2119 return ConstantAddress(GV, Alignment); 2120 } 2121 2122 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 2123 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 2124 assert(AA && "No alias?"); 2125 2126 CharUnits Alignment = getContext().getDeclAlign(VD); 2127 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 2128 2129 // See if there is already something with the target's name in the module. 2130 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 2131 if (Entry) { 2132 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 2133 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 2134 return ConstantAddress(Ptr, Alignment); 2135 } 2136 2137 llvm::Constant *Aliasee; 2138 if (isa<llvm::FunctionType>(DeclTy)) 2139 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 2140 GlobalDecl(cast<FunctionDecl>(VD)), 2141 /*ForVTable=*/false); 2142 else 2143 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2144 llvm::PointerType::getUnqual(DeclTy), 2145 nullptr); 2146 2147 auto *F = cast<llvm::GlobalValue>(Aliasee); 2148 F->setLinkage(llvm::Function::ExternalWeakLinkage); 2149 WeakRefReferences.insert(F); 2150 2151 return ConstantAddress(Aliasee, Alignment); 2152 } 2153 2154 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 2155 const auto *Global = cast<ValueDecl>(GD.getDecl()); 2156 2157 // Weak references don't produce any output by themselves. 2158 if (Global->hasAttr<WeakRefAttr>()) 2159 return; 2160 2161 // If this is an alias definition (which otherwise looks like a declaration) 2162 // emit it now. 2163 if (Global->hasAttr<AliasAttr>()) 2164 return EmitAliasDefinition(GD); 2165 2166 // IFunc like an alias whose value is resolved at runtime by calling resolver. 2167 if (Global->hasAttr<IFuncAttr>()) 2168 return emitIFuncDefinition(GD); 2169 2170 // If this is a cpu_dispatch multiversion function, emit the resolver. 2171 if (Global->hasAttr<CPUDispatchAttr>()) 2172 return emitCPUDispatchDefinition(GD); 2173 2174 // If this is CUDA, be selective about which declarations we emit. 2175 if (LangOpts.CUDA) { 2176 if (LangOpts.CUDAIsDevice) { 2177 if (!Global->hasAttr<CUDADeviceAttr>() && 2178 !Global->hasAttr<CUDAGlobalAttr>() && 2179 !Global->hasAttr<CUDAConstantAttr>() && 2180 !Global->hasAttr<CUDASharedAttr>()) 2181 return; 2182 } else { 2183 // We need to emit host-side 'shadows' for all global 2184 // device-side variables because the CUDA runtime needs their 2185 // size and host-side address in order to provide access to 2186 // their device-side incarnations. 2187 2188 // So device-only functions are the only things we skip. 2189 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 2190 Global->hasAttr<CUDADeviceAttr>()) 2191 return; 2192 2193 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 2194 "Expected Variable or Function"); 2195 } 2196 } 2197 2198 if (LangOpts.OpenMP) { 2199 // If this is OpenMP device, check if it is legal to emit this global 2200 // normally. 2201 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 2202 return; 2203 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 2204 if (MustBeEmitted(Global)) 2205 EmitOMPDeclareReduction(DRD); 2206 return; 2207 } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) { 2208 if (MustBeEmitted(Global)) 2209 EmitOMPDeclareMapper(DMD); 2210 return; 2211 } 2212 } 2213 2214 // Ignore declarations, they will be emitted on their first use. 2215 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 2216 // Forward declarations are emitted lazily on first use. 2217 if (!FD->doesThisDeclarationHaveABody()) { 2218 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 2219 return; 2220 2221 StringRef MangledName = getMangledName(GD); 2222 2223 // Compute the function info and LLVM type. 2224 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2225 llvm::Type *Ty = getTypes().GetFunctionType(FI); 2226 2227 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 2228 /*DontDefer=*/false); 2229 return; 2230 } 2231 } else { 2232 const auto *VD = cast<VarDecl>(Global); 2233 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 2234 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 2235 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 2236 if (LangOpts.OpenMP) { 2237 // Emit declaration of the must-be-emitted declare target variable. 2238 if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 2239 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) { 2240 if (*Res == OMPDeclareTargetDeclAttr::MT_To) { 2241 (void)GetAddrOfGlobalVar(VD); 2242 } else { 2243 assert(*Res == OMPDeclareTargetDeclAttr::MT_Link && 2244 "link claue expected."); 2245 (void)getOpenMPRuntime().getAddrOfDeclareTargetLink(VD); 2246 } 2247 return; 2248 } 2249 } 2250 // If this declaration may have caused an inline variable definition to 2251 // change linkage, make sure that it's emitted. 2252 if (Context.getInlineVariableDefinitionKind(VD) == 2253 ASTContext::InlineVariableDefinitionKind::Strong) 2254 GetAddrOfGlobalVar(VD); 2255 return; 2256 } 2257 } 2258 2259 // Defer code generation to first use when possible, e.g. if this is an inline 2260 // function. If the global must always be emitted, do it eagerly if possible 2261 // to benefit from cache locality. 2262 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 2263 // Emit the definition if it can't be deferred. 2264 EmitGlobalDefinition(GD); 2265 return; 2266 } 2267 2268 // If we're deferring emission of a C++ variable with an 2269 // initializer, remember the order in which it appeared in the file. 2270 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 2271 cast<VarDecl>(Global)->hasInit()) { 2272 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 2273 CXXGlobalInits.push_back(nullptr); 2274 } 2275 2276 StringRef MangledName = getMangledName(GD); 2277 if (GetGlobalValue(MangledName) != nullptr) { 2278 // The value has already been used and should therefore be emitted. 2279 addDeferredDeclToEmit(GD); 2280 } else if (MustBeEmitted(Global)) { 2281 // The value must be emitted, but cannot be emitted eagerly. 2282 assert(!MayBeEmittedEagerly(Global)); 2283 addDeferredDeclToEmit(GD); 2284 } else { 2285 // Otherwise, remember that we saw a deferred decl with this name. The 2286 // first use of the mangled name will cause it to move into 2287 // DeferredDeclsToEmit. 2288 DeferredDecls[MangledName] = GD; 2289 } 2290 } 2291 2292 // Check if T is a class type with a destructor that's not dllimport. 2293 static bool HasNonDllImportDtor(QualType T) { 2294 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 2295 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 2296 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 2297 return true; 2298 2299 return false; 2300 } 2301 2302 namespace { 2303 struct FunctionIsDirectlyRecursive 2304 : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> { 2305 const StringRef Name; 2306 const Builtin::Context &BI; 2307 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) 2308 : Name(N), BI(C) {} 2309 2310 bool VisitCallExpr(const CallExpr *E) { 2311 const FunctionDecl *FD = E->getDirectCallee(); 2312 if (!FD) 2313 return false; 2314 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2315 if (Attr && Name == Attr->getLabel()) 2316 return true; 2317 unsigned BuiltinID = FD->getBuiltinID(); 2318 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 2319 return false; 2320 StringRef BuiltinName = BI.getName(BuiltinID); 2321 if (BuiltinName.startswith("__builtin_") && 2322 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 2323 return true; 2324 } 2325 return false; 2326 } 2327 2328 bool VisitStmt(const Stmt *S) { 2329 for (const Stmt *Child : S->children()) 2330 if (Child && this->Visit(Child)) 2331 return true; 2332 return false; 2333 } 2334 }; 2335 2336 // Make sure we're not referencing non-imported vars or functions. 2337 struct DLLImportFunctionVisitor 2338 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 2339 bool SafeToInline = true; 2340 2341 bool shouldVisitImplicitCode() const { return true; } 2342 2343 bool VisitVarDecl(VarDecl *VD) { 2344 if (VD->getTLSKind()) { 2345 // A thread-local variable cannot be imported. 2346 SafeToInline = false; 2347 return SafeToInline; 2348 } 2349 2350 // A variable definition might imply a destructor call. 2351 if (VD->isThisDeclarationADefinition()) 2352 SafeToInline = !HasNonDllImportDtor(VD->getType()); 2353 2354 return SafeToInline; 2355 } 2356 2357 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 2358 if (const auto *D = E->getTemporary()->getDestructor()) 2359 SafeToInline = D->hasAttr<DLLImportAttr>(); 2360 return SafeToInline; 2361 } 2362 2363 bool VisitDeclRefExpr(DeclRefExpr *E) { 2364 ValueDecl *VD = E->getDecl(); 2365 if (isa<FunctionDecl>(VD)) 2366 SafeToInline = VD->hasAttr<DLLImportAttr>(); 2367 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 2368 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 2369 return SafeToInline; 2370 } 2371 2372 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 2373 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 2374 return SafeToInline; 2375 } 2376 2377 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 2378 CXXMethodDecl *M = E->getMethodDecl(); 2379 if (!M) { 2380 // Call through a pointer to member function. This is safe to inline. 2381 SafeToInline = true; 2382 } else { 2383 SafeToInline = M->hasAttr<DLLImportAttr>(); 2384 } 2385 return SafeToInline; 2386 } 2387 2388 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 2389 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 2390 return SafeToInline; 2391 } 2392 2393 bool VisitCXXNewExpr(CXXNewExpr *E) { 2394 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 2395 return SafeToInline; 2396 } 2397 }; 2398 } 2399 2400 // isTriviallyRecursive - Check if this function calls another 2401 // decl that, because of the asm attribute or the other decl being a builtin, 2402 // ends up pointing to itself. 2403 bool 2404 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 2405 StringRef Name; 2406 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 2407 // asm labels are a special kind of mangling we have to support. 2408 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2409 if (!Attr) 2410 return false; 2411 Name = Attr->getLabel(); 2412 } else { 2413 Name = FD->getName(); 2414 } 2415 2416 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 2417 const Stmt *Body = FD->getBody(); 2418 return Body ? Walker.Visit(Body) : false; 2419 } 2420 2421 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 2422 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 2423 return true; 2424 const auto *F = cast<FunctionDecl>(GD.getDecl()); 2425 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 2426 return false; 2427 2428 if (F->hasAttr<DLLImportAttr>()) { 2429 // Check whether it would be safe to inline this dllimport function. 2430 DLLImportFunctionVisitor Visitor; 2431 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 2432 if (!Visitor.SafeToInline) 2433 return false; 2434 2435 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 2436 // Implicit destructor invocations aren't captured in the AST, so the 2437 // check above can't see them. Check for them manually here. 2438 for (const Decl *Member : Dtor->getParent()->decls()) 2439 if (isa<FieldDecl>(Member)) 2440 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 2441 return false; 2442 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 2443 if (HasNonDllImportDtor(B.getType())) 2444 return false; 2445 } 2446 } 2447 2448 // PR9614. Avoid cases where the source code is lying to us. An available 2449 // externally function should have an equivalent function somewhere else, 2450 // but a function that calls itself is clearly not equivalent to the real 2451 // implementation. 2452 // This happens in glibc's btowc and in some configure checks. 2453 return !isTriviallyRecursive(F); 2454 } 2455 2456 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 2457 return CodeGenOpts.OptimizationLevel > 0; 2458 } 2459 2460 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD, 2461 llvm::GlobalValue *GV) { 2462 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2463 2464 if (FD->isCPUSpecificMultiVersion()) { 2465 auto *Spec = FD->getAttr<CPUSpecificAttr>(); 2466 for (unsigned I = 0; I < Spec->cpus_size(); ++I) 2467 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 2468 // Requires multiple emits. 2469 } else 2470 EmitGlobalFunctionDefinition(GD, GV); 2471 } 2472 2473 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 2474 const auto *D = cast<ValueDecl>(GD.getDecl()); 2475 2476 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 2477 Context.getSourceManager(), 2478 "Generating code for declaration"); 2479 2480 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 2481 // At -O0, don't generate IR for functions with available_externally 2482 // linkage. 2483 if (!shouldEmitFunction(GD)) 2484 return; 2485 2486 llvm::TimeTraceScope TimeScope( 2487 "CodeGen Function", [&]() { return FD->getQualifiedNameAsString(); }); 2488 2489 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 2490 // Make sure to emit the definition(s) before we emit the thunks. 2491 // This is necessary for the generation of certain thunks. 2492 if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method)) 2493 ABI->emitCXXStructor(GD); 2494 else if (FD->isMultiVersion()) 2495 EmitMultiVersionFunctionDefinition(GD, GV); 2496 else 2497 EmitGlobalFunctionDefinition(GD, GV); 2498 2499 if (Method->isVirtual()) 2500 getVTables().EmitThunks(GD); 2501 2502 return; 2503 } 2504 2505 if (FD->isMultiVersion()) 2506 return EmitMultiVersionFunctionDefinition(GD, GV); 2507 return EmitGlobalFunctionDefinition(GD, GV); 2508 } 2509 2510 if (const auto *VD = dyn_cast<VarDecl>(D)) 2511 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 2512 2513 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 2514 } 2515 2516 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2517 llvm::Function *NewFn); 2518 2519 static unsigned 2520 TargetMVPriority(const TargetInfo &TI, 2521 const CodeGenFunction::MultiVersionResolverOption &RO) { 2522 unsigned Priority = 0; 2523 for (StringRef Feat : RO.Conditions.Features) 2524 Priority = std::max(Priority, TI.multiVersionSortPriority(Feat)); 2525 2526 if (!RO.Conditions.Architecture.empty()) 2527 Priority = std::max( 2528 Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture)); 2529 return Priority; 2530 } 2531 2532 void CodeGenModule::emitMultiVersionFunctions() { 2533 for (GlobalDecl GD : MultiVersionFuncs) { 2534 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 2535 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 2536 getContext().forEachMultiversionedFunctionVersion( 2537 FD, [this, &GD, &Options](const FunctionDecl *CurFD) { 2538 GlobalDecl CurGD{ 2539 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)}; 2540 StringRef MangledName = getMangledName(CurGD); 2541 llvm::Constant *Func = GetGlobalValue(MangledName); 2542 if (!Func) { 2543 if (CurFD->isDefined()) { 2544 EmitGlobalFunctionDefinition(CurGD, nullptr); 2545 Func = GetGlobalValue(MangledName); 2546 } else { 2547 const CGFunctionInfo &FI = 2548 getTypes().arrangeGlobalDeclaration(GD); 2549 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2550 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 2551 /*DontDefer=*/false, ForDefinition); 2552 } 2553 assert(Func && "This should have just been created"); 2554 } 2555 2556 const auto *TA = CurFD->getAttr<TargetAttr>(); 2557 llvm::SmallVector<StringRef, 8> Feats; 2558 TA->getAddedFeatures(Feats); 2559 2560 Options.emplace_back(cast<llvm::Function>(Func), 2561 TA->getArchitecture(), Feats); 2562 }); 2563 2564 llvm::Function *ResolverFunc; 2565 const TargetInfo &TI = getTarget(); 2566 2567 if (TI.supportsIFunc() || FD->isTargetMultiVersion()) 2568 ResolverFunc = cast<llvm::Function>( 2569 GetGlobalValue((getMangledName(GD) + ".resolver").str())); 2570 else 2571 ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD))); 2572 2573 if (supportsCOMDAT()) 2574 ResolverFunc->setComdat( 2575 getModule().getOrInsertComdat(ResolverFunc->getName())); 2576 2577 llvm::stable_sort( 2578 Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS, 2579 const CodeGenFunction::MultiVersionResolverOption &RHS) { 2580 return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS); 2581 }); 2582 CodeGenFunction CGF(*this); 2583 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 2584 } 2585 } 2586 2587 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) { 2588 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2589 assert(FD && "Not a FunctionDecl?"); 2590 const auto *DD = FD->getAttr<CPUDispatchAttr>(); 2591 assert(DD && "Not a cpu_dispatch Function?"); 2592 llvm::Type *DeclTy = getTypes().ConvertType(FD->getType()); 2593 2594 if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) { 2595 const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD); 2596 DeclTy = getTypes().GetFunctionType(FInfo); 2597 } 2598 2599 StringRef ResolverName = getMangledName(GD); 2600 2601 llvm::Type *ResolverType; 2602 GlobalDecl ResolverGD; 2603 if (getTarget().supportsIFunc()) 2604 ResolverType = llvm::FunctionType::get( 2605 llvm::PointerType::get(DeclTy, 2606 Context.getTargetAddressSpace(FD->getType())), 2607 false); 2608 else { 2609 ResolverType = DeclTy; 2610 ResolverGD = GD; 2611 } 2612 2613 auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction( 2614 ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false)); 2615 2616 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 2617 const TargetInfo &Target = getTarget(); 2618 unsigned Index = 0; 2619 for (const IdentifierInfo *II : DD->cpus()) { 2620 // Get the name of the target function so we can look it up/create it. 2621 std::string MangledName = getMangledNameImpl(*this, GD, FD, true) + 2622 getCPUSpecificMangling(*this, II->getName()); 2623 2624 llvm::Constant *Func = GetGlobalValue(MangledName); 2625 2626 if (!Func) { 2627 GlobalDecl ExistingDecl = Manglings.lookup(MangledName); 2628 if (ExistingDecl.getDecl() && 2629 ExistingDecl.getDecl()->getAsFunction()->isDefined()) { 2630 EmitGlobalFunctionDefinition(ExistingDecl, nullptr); 2631 Func = GetGlobalValue(MangledName); 2632 } else { 2633 if (!ExistingDecl.getDecl()) 2634 ExistingDecl = GD.getWithMultiVersionIndex(Index); 2635 2636 Func = GetOrCreateLLVMFunction( 2637 MangledName, DeclTy, ExistingDecl, 2638 /*ForVTable=*/false, /*DontDefer=*/true, 2639 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition); 2640 } 2641 } 2642 2643 llvm::SmallVector<StringRef, 32> Features; 2644 Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features); 2645 llvm::transform(Features, Features.begin(), 2646 [](StringRef Str) { return Str.substr(1); }); 2647 Features.erase(std::remove_if( 2648 Features.begin(), Features.end(), [&Target](StringRef Feat) { 2649 return !Target.validateCpuSupports(Feat); 2650 }), Features.end()); 2651 Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features); 2652 ++Index; 2653 } 2654 2655 llvm::sort( 2656 Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS, 2657 const CodeGenFunction::MultiVersionResolverOption &RHS) { 2658 return CodeGenFunction::GetX86CpuSupportsMask(LHS.Conditions.Features) > 2659 CodeGenFunction::GetX86CpuSupportsMask(RHS.Conditions.Features); 2660 }); 2661 2662 // If the list contains multiple 'default' versions, such as when it contains 2663 // 'pentium' and 'generic', don't emit the call to the generic one (since we 2664 // always run on at least a 'pentium'). We do this by deleting the 'least 2665 // advanced' (read, lowest mangling letter). 2666 while (Options.size() > 1 && 2667 CodeGenFunction::GetX86CpuSupportsMask( 2668 (Options.end() - 2)->Conditions.Features) == 0) { 2669 StringRef LHSName = (Options.end() - 2)->Function->getName(); 2670 StringRef RHSName = (Options.end() - 1)->Function->getName(); 2671 if (LHSName.compare(RHSName) < 0) 2672 Options.erase(Options.end() - 2); 2673 else 2674 Options.erase(Options.end() - 1); 2675 } 2676 2677 CodeGenFunction CGF(*this); 2678 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 2679 } 2680 2681 /// If a dispatcher for the specified mangled name is not in the module, create 2682 /// and return an llvm Function with the specified type. 2683 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver( 2684 GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) { 2685 std::string MangledName = 2686 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 2687 2688 // Holds the name of the resolver, in ifunc mode this is the ifunc (which has 2689 // a separate resolver). 2690 std::string ResolverName = MangledName; 2691 if (getTarget().supportsIFunc()) 2692 ResolverName += ".ifunc"; 2693 else if (FD->isTargetMultiVersion()) 2694 ResolverName += ".resolver"; 2695 2696 // If this already exists, just return that one. 2697 if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName)) 2698 return ResolverGV; 2699 2700 // Since this is the first time we've created this IFunc, make sure 2701 // that we put this multiversioned function into the list to be 2702 // replaced later if necessary (target multiversioning only). 2703 if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion()) 2704 MultiVersionFuncs.push_back(GD); 2705 2706 if (getTarget().supportsIFunc()) { 2707 llvm::Type *ResolverType = llvm::FunctionType::get( 2708 llvm::PointerType::get( 2709 DeclTy, getContext().getTargetAddressSpace(FD->getType())), 2710 false); 2711 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 2712 MangledName + ".resolver", ResolverType, GlobalDecl{}, 2713 /*ForVTable=*/false); 2714 llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create( 2715 DeclTy, 0, llvm::Function::ExternalLinkage, "", Resolver, &getModule()); 2716 GIF->setName(ResolverName); 2717 SetCommonAttributes(FD, GIF); 2718 2719 return GIF; 2720 } 2721 2722 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 2723 ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false); 2724 assert(isa<llvm::GlobalValue>(Resolver) && 2725 "Resolver should be created for the first time"); 2726 SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver)); 2727 return Resolver; 2728 } 2729 2730 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 2731 /// module, create and return an llvm Function with the specified type. If there 2732 /// is something in the module with the specified name, return it potentially 2733 /// bitcasted to the right type. 2734 /// 2735 /// If D is non-null, it specifies a decl that correspond to this. This is used 2736 /// to set the attributes on the function when it is first created. 2737 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 2738 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 2739 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 2740 ForDefinition_t IsForDefinition) { 2741 const Decl *D = GD.getDecl(); 2742 2743 // Any attempts to use a MultiVersion function should result in retrieving 2744 // the iFunc instead. Name Mangling will handle the rest of the changes. 2745 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 2746 // For the device mark the function as one that should be emitted. 2747 if (getLangOpts().OpenMPIsDevice && OpenMPRuntime && 2748 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() && 2749 !DontDefer && !IsForDefinition) { 2750 if (const FunctionDecl *FDDef = FD->getDefinition()) { 2751 GlobalDecl GDDef; 2752 if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef)) 2753 GDDef = GlobalDecl(CD, GD.getCtorType()); 2754 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef)) 2755 GDDef = GlobalDecl(DD, GD.getDtorType()); 2756 else 2757 GDDef = GlobalDecl(FDDef); 2758 EmitGlobal(GDDef); 2759 } 2760 } 2761 2762 if (FD->isMultiVersion()) { 2763 const auto *TA = FD->getAttr<TargetAttr>(); 2764 if (TA && TA->isDefaultVersion()) 2765 UpdateMultiVersionNames(GD, FD); 2766 if (!IsForDefinition) 2767 return GetOrCreateMultiVersionResolver(GD, Ty, FD); 2768 } 2769 } 2770 2771 // Lookup the entry, lazily creating it if necessary. 2772 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2773 if (Entry) { 2774 if (WeakRefReferences.erase(Entry)) { 2775 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 2776 if (FD && !FD->hasAttr<WeakAttr>()) 2777 Entry->setLinkage(llvm::Function::ExternalLinkage); 2778 } 2779 2780 // Handle dropped DLL attributes. 2781 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) { 2782 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 2783 setDSOLocal(Entry); 2784 } 2785 2786 // If there are two attempts to define the same mangled name, issue an 2787 // error. 2788 if (IsForDefinition && !Entry->isDeclaration()) { 2789 GlobalDecl OtherGD; 2790 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 2791 // to make sure that we issue an error only once. 2792 if (lookupRepresentativeDecl(MangledName, OtherGD) && 2793 (GD.getCanonicalDecl().getDecl() != 2794 OtherGD.getCanonicalDecl().getDecl()) && 2795 DiagnosedConflictingDefinitions.insert(GD).second) { 2796 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 2797 << MangledName; 2798 getDiags().Report(OtherGD.getDecl()->getLocation(), 2799 diag::note_previous_definition); 2800 } 2801 } 2802 2803 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 2804 (Entry->getType()->getElementType() == Ty)) { 2805 return Entry; 2806 } 2807 2808 // Make sure the result is of the correct type. 2809 // (If function is requested for a definition, we always need to create a new 2810 // function, not just return a bitcast.) 2811 if (!IsForDefinition) 2812 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 2813 } 2814 2815 // This function doesn't have a complete type (for example, the return 2816 // type is an incomplete struct). Use a fake type instead, and make 2817 // sure not to try to set attributes. 2818 bool IsIncompleteFunction = false; 2819 2820 llvm::FunctionType *FTy; 2821 if (isa<llvm::FunctionType>(Ty)) { 2822 FTy = cast<llvm::FunctionType>(Ty); 2823 } else { 2824 FTy = llvm::FunctionType::get(VoidTy, false); 2825 IsIncompleteFunction = true; 2826 } 2827 2828 llvm::Function *F = 2829 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 2830 Entry ? StringRef() : MangledName, &getModule()); 2831 2832 // If we already created a function with the same mangled name (but different 2833 // type) before, take its name and add it to the list of functions to be 2834 // replaced with F at the end of CodeGen. 2835 // 2836 // This happens if there is a prototype for a function (e.g. "int f()") and 2837 // then a definition of a different type (e.g. "int f(int x)"). 2838 if (Entry) { 2839 F->takeName(Entry); 2840 2841 // This might be an implementation of a function without a prototype, in 2842 // which case, try to do special replacement of calls which match the new 2843 // prototype. The really key thing here is that we also potentially drop 2844 // arguments from the call site so as to make a direct call, which makes the 2845 // inliner happier and suppresses a number of optimizer warnings (!) about 2846 // dropping arguments. 2847 if (!Entry->use_empty()) { 2848 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 2849 Entry->removeDeadConstantUsers(); 2850 } 2851 2852 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 2853 F, Entry->getType()->getElementType()->getPointerTo()); 2854 addGlobalValReplacement(Entry, BC); 2855 } 2856 2857 assert(F->getName() == MangledName && "name was uniqued!"); 2858 if (D) 2859 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 2860 if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) { 2861 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex); 2862 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 2863 } 2864 2865 if (!DontDefer) { 2866 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 2867 // each other bottoming out with the base dtor. Therefore we emit non-base 2868 // dtors on usage, even if there is no dtor definition in the TU. 2869 if (D && isa<CXXDestructorDecl>(D) && 2870 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 2871 GD.getDtorType())) 2872 addDeferredDeclToEmit(GD); 2873 2874 // This is the first use or definition of a mangled name. If there is a 2875 // deferred decl with this name, remember that we need to emit it at the end 2876 // of the file. 2877 auto DDI = DeferredDecls.find(MangledName); 2878 if (DDI != DeferredDecls.end()) { 2879 // Move the potentially referenced deferred decl to the 2880 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 2881 // don't need it anymore). 2882 addDeferredDeclToEmit(DDI->second); 2883 DeferredDecls.erase(DDI); 2884 2885 // Otherwise, there are cases we have to worry about where we're 2886 // using a declaration for which we must emit a definition but where 2887 // we might not find a top-level definition: 2888 // - member functions defined inline in their classes 2889 // - friend functions defined inline in some class 2890 // - special member functions with implicit definitions 2891 // If we ever change our AST traversal to walk into class methods, 2892 // this will be unnecessary. 2893 // 2894 // We also don't emit a definition for a function if it's going to be an 2895 // entry in a vtable, unless it's already marked as used. 2896 } else if (getLangOpts().CPlusPlus && D) { 2897 // Look for a declaration that's lexically in a record. 2898 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 2899 FD = FD->getPreviousDecl()) { 2900 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 2901 if (FD->doesThisDeclarationHaveABody()) { 2902 addDeferredDeclToEmit(GD.getWithDecl(FD)); 2903 break; 2904 } 2905 } 2906 } 2907 } 2908 } 2909 2910 // Make sure the result is of the requested type. 2911 if (!IsIncompleteFunction) { 2912 assert(F->getType()->getElementType() == Ty); 2913 return F; 2914 } 2915 2916 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2917 return llvm::ConstantExpr::getBitCast(F, PTy); 2918 } 2919 2920 /// GetAddrOfFunction - Return the address of the given function. If Ty is 2921 /// non-null, then this function will use the specified type if it has to 2922 /// create it (this occurs when we see a definition of the function). 2923 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 2924 llvm::Type *Ty, 2925 bool ForVTable, 2926 bool DontDefer, 2927 ForDefinition_t IsForDefinition) { 2928 // If there was no specific requested type, just convert it now. 2929 if (!Ty) { 2930 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2931 Ty = getTypes().ConvertType(FD->getType()); 2932 } 2933 2934 // Devirtualized destructor calls may come through here instead of via 2935 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead 2936 // of the complete destructor when necessary. 2937 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) { 2938 if (getTarget().getCXXABI().isMicrosoft() && 2939 GD.getDtorType() == Dtor_Complete && 2940 DD->getParent()->getNumVBases() == 0) 2941 GD = GlobalDecl(DD, Dtor_Base); 2942 } 2943 2944 StringRef MangledName = getMangledName(GD); 2945 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 2946 /*IsThunk=*/false, llvm::AttributeList(), 2947 IsForDefinition); 2948 } 2949 2950 static const FunctionDecl * 2951 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 2952 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 2953 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 2954 2955 IdentifierInfo &CII = C.Idents.get(Name); 2956 for (const auto &Result : DC->lookup(&CII)) 2957 if (const auto FD = dyn_cast<FunctionDecl>(Result)) 2958 return FD; 2959 2960 if (!C.getLangOpts().CPlusPlus) 2961 return nullptr; 2962 2963 // Demangle the premangled name from getTerminateFn() 2964 IdentifierInfo &CXXII = 2965 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ") 2966 ? C.Idents.get("terminate") 2967 : C.Idents.get(Name); 2968 2969 for (const auto &N : {"__cxxabiv1", "std"}) { 2970 IdentifierInfo &NS = C.Idents.get(N); 2971 for (const auto &Result : DC->lookup(&NS)) { 2972 NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 2973 if (auto LSD = dyn_cast<LinkageSpecDecl>(Result)) 2974 for (const auto &Result : LSD->lookup(&NS)) 2975 if ((ND = dyn_cast<NamespaceDecl>(Result))) 2976 break; 2977 2978 if (ND) 2979 for (const auto &Result : ND->lookup(&CXXII)) 2980 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 2981 return FD; 2982 } 2983 } 2984 2985 return nullptr; 2986 } 2987 2988 /// CreateRuntimeFunction - Create a new runtime function with the specified 2989 /// type and name. 2990 llvm::FunctionCallee 2991 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 2992 llvm::AttributeList ExtraAttrs, 2993 bool Local) { 2994 llvm::Constant *C = 2995 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 2996 /*DontDefer=*/false, /*IsThunk=*/false, 2997 ExtraAttrs); 2998 2999 if (auto *F = dyn_cast<llvm::Function>(C)) { 3000 if (F->empty()) { 3001 F->setCallingConv(getRuntimeCC()); 3002 3003 if (!Local && getTriple().isOSBinFormatCOFF() && 3004 !getCodeGenOpts().LTOVisibilityPublicStd && 3005 !getTriple().isWindowsGNUEnvironment()) { 3006 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 3007 if (!FD || FD->hasAttr<DLLImportAttr>()) { 3008 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 3009 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 3010 } 3011 } 3012 setDSOLocal(F); 3013 } 3014 } 3015 3016 return {FTy, C}; 3017 } 3018 3019 /// isTypeConstant - Determine whether an object of this type can be emitted 3020 /// as a constant. 3021 /// 3022 /// If ExcludeCtor is true, the duration when the object's constructor runs 3023 /// will not be considered. The caller will need to verify that the object is 3024 /// not written to during its construction. 3025 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 3026 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 3027 return false; 3028 3029 if (Context.getLangOpts().CPlusPlus) { 3030 if (const CXXRecordDecl *Record 3031 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 3032 return ExcludeCtor && !Record->hasMutableFields() && 3033 Record->hasTrivialDestructor(); 3034 } 3035 3036 return true; 3037 } 3038 3039 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 3040 /// create and return an llvm GlobalVariable with the specified type. If there 3041 /// is something in the module with the specified name, return it potentially 3042 /// bitcasted to the right type. 3043 /// 3044 /// If D is non-null, it specifies a decl that correspond to this. This is used 3045 /// to set the attributes on the global when it is first created. 3046 /// 3047 /// If IsForDefinition is true, it is guaranteed that an actual global with 3048 /// type Ty will be returned, not conversion of a variable with the same 3049 /// mangled name but some other type. 3050 llvm::Constant * 3051 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 3052 llvm::PointerType *Ty, 3053 const VarDecl *D, 3054 ForDefinition_t IsForDefinition) { 3055 // Lookup the entry, lazily creating it if necessary. 3056 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3057 if (Entry) { 3058 if (WeakRefReferences.erase(Entry)) { 3059 if (D && !D->hasAttr<WeakAttr>()) 3060 Entry->setLinkage(llvm::Function::ExternalLinkage); 3061 } 3062 3063 // Handle dropped DLL attributes. 3064 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 3065 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 3066 3067 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D) 3068 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry); 3069 3070 if (Entry->getType() == Ty) 3071 return Entry; 3072 3073 // If there are two attempts to define the same mangled name, issue an 3074 // error. 3075 if (IsForDefinition && !Entry->isDeclaration()) { 3076 GlobalDecl OtherGD; 3077 const VarDecl *OtherD; 3078 3079 // Check that D is not yet in DiagnosedConflictingDefinitions is required 3080 // to make sure that we issue an error only once. 3081 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 3082 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 3083 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 3084 OtherD->hasInit() && 3085 DiagnosedConflictingDefinitions.insert(D).second) { 3086 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 3087 << MangledName; 3088 getDiags().Report(OtherGD.getDecl()->getLocation(), 3089 diag::note_previous_definition); 3090 } 3091 } 3092 3093 // Make sure the result is of the correct type. 3094 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 3095 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 3096 3097 // (If global is requested for a definition, we always need to create a new 3098 // global, not just return a bitcast.) 3099 if (!IsForDefinition) 3100 return llvm::ConstantExpr::getBitCast(Entry, Ty); 3101 } 3102 3103 auto AddrSpace = GetGlobalVarAddressSpace(D); 3104 auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace); 3105 3106 auto *GV = new llvm::GlobalVariable( 3107 getModule(), Ty->getElementType(), false, 3108 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 3109 llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace); 3110 3111 // If we already created a global with the same mangled name (but different 3112 // type) before, take its name and remove it from its parent. 3113 if (Entry) { 3114 GV->takeName(Entry); 3115 3116 if (!Entry->use_empty()) { 3117 llvm::Constant *NewPtrForOldDecl = 3118 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 3119 Entry->replaceAllUsesWith(NewPtrForOldDecl); 3120 } 3121 3122 Entry->eraseFromParent(); 3123 } 3124 3125 // This is the first use or definition of a mangled name. If there is a 3126 // deferred decl with this name, remember that we need to emit it at the end 3127 // of the file. 3128 auto DDI = DeferredDecls.find(MangledName); 3129 if (DDI != DeferredDecls.end()) { 3130 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 3131 // list, and remove it from DeferredDecls (since we don't need it anymore). 3132 addDeferredDeclToEmit(DDI->second); 3133 DeferredDecls.erase(DDI); 3134 } 3135 3136 // Handle things which are present even on external declarations. 3137 if (D) { 3138 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd) 3139 getOpenMPRuntime().registerTargetGlobalVariable(D, GV); 3140 3141 // FIXME: This code is overly simple and should be merged with other global 3142 // handling. 3143 GV->setConstant(isTypeConstant(D->getType(), false)); 3144 3145 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 3146 3147 setLinkageForGV(GV, D); 3148 3149 if (D->getTLSKind()) { 3150 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 3151 CXXThreadLocals.push_back(D); 3152 setTLSMode(GV, *D); 3153 } 3154 3155 setGVProperties(GV, D); 3156 3157 // If required by the ABI, treat declarations of static data members with 3158 // inline initializers as definitions. 3159 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 3160 EmitGlobalVarDefinition(D); 3161 } 3162 3163 // Emit section information for extern variables. 3164 if (D->hasExternalStorage()) { 3165 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 3166 GV->setSection(SA->getName()); 3167 } 3168 3169 // Handle XCore specific ABI requirements. 3170 if (getTriple().getArch() == llvm::Triple::xcore && 3171 D->getLanguageLinkage() == CLanguageLinkage && 3172 D->getType().isConstant(Context) && 3173 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 3174 GV->setSection(".cp.rodata"); 3175 3176 // Check if we a have a const declaration with an initializer, we may be 3177 // able to emit it as available_externally to expose it's value to the 3178 // optimizer. 3179 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 3180 D->getType().isConstQualified() && !GV->hasInitializer() && 3181 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 3182 const auto *Record = 3183 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 3184 bool HasMutableFields = Record && Record->hasMutableFields(); 3185 if (!HasMutableFields) { 3186 const VarDecl *InitDecl; 3187 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 3188 if (InitExpr) { 3189 ConstantEmitter emitter(*this); 3190 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 3191 if (Init) { 3192 auto *InitType = Init->getType(); 3193 if (GV->getType()->getElementType() != InitType) { 3194 // The type of the initializer does not match the definition. 3195 // This happens when an initializer has a different type from 3196 // the type of the global (because of padding at the end of a 3197 // structure for instance). 3198 GV->setName(StringRef()); 3199 // Make a new global with the correct type, this is now guaranteed 3200 // to work. 3201 auto *NewGV = cast<llvm::GlobalVariable>( 3202 GetAddrOfGlobalVar(D, InitType, IsForDefinition)); 3203 3204 // Erase the old global, since it is no longer used. 3205 GV->eraseFromParent(); 3206 GV = NewGV; 3207 } else { 3208 GV->setInitializer(Init); 3209 GV->setConstant(true); 3210 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 3211 } 3212 emitter.finalize(GV); 3213 } 3214 } 3215 } 3216 } 3217 } 3218 3219 LangAS ExpectedAS = 3220 D ? D->getType().getAddressSpace() 3221 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 3222 assert(getContext().getTargetAddressSpace(ExpectedAS) == 3223 Ty->getPointerAddressSpace()); 3224 if (AddrSpace != ExpectedAS) 3225 return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace, 3226 ExpectedAS, Ty); 3227 3228 if (GV->isDeclaration()) 3229 getTargetCodeGenInfo().setTargetAttributes(D, GV, *this); 3230 3231 return GV; 3232 } 3233 3234 llvm::Constant * 3235 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, 3236 ForDefinition_t IsForDefinition) { 3237 const Decl *D = GD.getDecl(); 3238 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 3239 return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr, 3240 /*DontDefer=*/false, IsForDefinition); 3241 else if (isa<CXXMethodDecl>(D)) { 3242 auto FInfo = &getTypes().arrangeCXXMethodDeclaration( 3243 cast<CXXMethodDecl>(D)); 3244 auto Ty = getTypes().GetFunctionType(*FInfo); 3245 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 3246 IsForDefinition); 3247 } else if (isa<FunctionDecl>(D)) { 3248 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3249 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3250 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 3251 IsForDefinition); 3252 } else 3253 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, 3254 IsForDefinition); 3255 } 3256 3257 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable( 3258 StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage, 3259 unsigned Alignment) { 3260 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 3261 llvm::GlobalVariable *OldGV = nullptr; 3262 3263 if (GV) { 3264 // Check if the variable has the right type. 3265 if (GV->getType()->getElementType() == Ty) 3266 return GV; 3267 3268 // Because C++ name mangling, the only way we can end up with an already 3269 // existing global with the same name is if it has been declared extern "C". 3270 assert(GV->isDeclaration() && "Declaration has wrong type!"); 3271 OldGV = GV; 3272 } 3273 3274 // Create a new variable. 3275 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 3276 Linkage, nullptr, Name); 3277 3278 if (OldGV) { 3279 // Replace occurrences of the old variable if needed. 3280 GV->takeName(OldGV); 3281 3282 if (!OldGV->use_empty()) { 3283 llvm::Constant *NewPtrForOldDecl = 3284 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 3285 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 3286 } 3287 3288 OldGV->eraseFromParent(); 3289 } 3290 3291 if (supportsCOMDAT() && GV->isWeakForLinker() && 3292 !GV->hasAvailableExternallyLinkage()) 3293 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3294 3295 GV->setAlignment(Alignment); 3296 3297 return GV; 3298 } 3299 3300 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 3301 /// given global variable. If Ty is non-null and if the global doesn't exist, 3302 /// then it will be created with the specified type instead of whatever the 3303 /// normal requested type would be. If IsForDefinition is true, it is guaranteed 3304 /// that an actual global with type Ty will be returned, not conversion of a 3305 /// variable with the same mangled name but some other type. 3306 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 3307 llvm::Type *Ty, 3308 ForDefinition_t IsForDefinition) { 3309 assert(D->hasGlobalStorage() && "Not a global variable"); 3310 QualType ASTTy = D->getType(); 3311 if (!Ty) 3312 Ty = getTypes().ConvertTypeForMem(ASTTy); 3313 3314 llvm::PointerType *PTy = 3315 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 3316 3317 StringRef MangledName = getMangledName(D); 3318 return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition); 3319 } 3320 3321 /// CreateRuntimeVariable - Create a new runtime global variable with the 3322 /// specified type and name. 3323 llvm::Constant * 3324 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 3325 StringRef Name) { 3326 auto *Ret = 3327 GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr); 3328 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts())); 3329 return Ret; 3330 } 3331 3332 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 3333 assert(!D->getInit() && "Cannot emit definite definitions here!"); 3334 3335 StringRef MangledName = getMangledName(D); 3336 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 3337 3338 // We already have a definition, not declaration, with the same mangled name. 3339 // Emitting of declaration is not required (and actually overwrites emitted 3340 // definition). 3341 if (GV && !GV->isDeclaration()) 3342 return; 3343 3344 // If we have not seen a reference to this variable yet, place it into the 3345 // deferred declarations table to be emitted if needed later. 3346 if (!MustBeEmitted(D) && !GV) { 3347 DeferredDecls[MangledName] = D; 3348 return; 3349 } 3350 3351 // The tentative definition is the only definition. 3352 EmitGlobalVarDefinition(D); 3353 } 3354 3355 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 3356 return Context.toCharUnitsFromBits( 3357 getDataLayout().getTypeStoreSizeInBits(Ty)); 3358 } 3359 3360 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 3361 LangAS AddrSpace = LangAS::Default; 3362 if (LangOpts.OpenCL) { 3363 AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 3364 assert(AddrSpace == LangAS::opencl_global || 3365 AddrSpace == LangAS::opencl_constant || 3366 AddrSpace == LangAS::opencl_local || 3367 AddrSpace >= LangAS::FirstTargetAddressSpace); 3368 return AddrSpace; 3369 } 3370 3371 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 3372 if (D && D->hasAttr<CUDAConstantAttr>()) 3373 return LangAS::cuda_constant; 3374 else if (D && D->hasAttr<CUDASharedAttr>()) 3375 return LangAS::cuda_shared; 3376 else if (D && D->hasAttr<CUDADeviceAttr>()) 3377 return LangAS::cuda_device; 3378 else if (D && D->getType().isConstQualified()) 3379 return LangAS::cuda_constant; 3380 else 3381 return LangAS::cuda_device; 3382 } 3383 3384 if (LangOpts.OpenMP) { 3385 LangAS AS; 3386 if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS)) 3387 return AS; 3388 } 3389 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 3390 } 3391 3392 LangAS CodeGenModule::getStringLiteralAddressSpace() const { 3393 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 3394 if (LangOpts.OpenCL) 3395 return LangAS::opencl_constant; 3396 if (auto AS = getTarget().getConstantAddressSpace()) 3397 return AS.getValue(); 3398 return LangAS::Default; 3399 } 3400 3401 // In address space agnostic languages, string literals are in default address 3402 // space in AST. However, certain targets (e.g. amdgcn) request them to be 3403 // emitted in constant address space in LLVM IR. To be consistent with other 3404 // parts of AST, string literal global variables in constant address space 3405 // need to be casted to default address space before being put into address 3406 // map and referenced by other part of CodeGen. 3407 // In OpenCL, string literals are in constant address space in AST, therefore 3408 // they should not be casted to default address space. 3409 static llvm::Constant * 3410 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM, 3411 llvm::GlobalVariable *GV) { 3412 llvm::Constant *Cast = GV; 3413 if (!CGM.getLangOpts().OpenCL) { 3414 if (auto AS = CGM.getTarget().getConstantAddressSpace()) { 3415 if (AS != LangAS::Default) 3416 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast( 3417 CGM, GV, AS.getValue(), LangAS::Default, 3418 GV->getValueType()->getPointerTo( 3419 CGM.getContext().getTargetAddressSpace(LangAS::Default))); 3420 } 3421 } 3422 return Cast; 3423 } 3424 3425 template<typename SomeDecl> 3426 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 3427 llvm::GlobalValue *GV) { 3428 if (!getLangOpts().CPlusPlus) 3429 return; 3430 3431 // Must have 'used' attribute, or else inline assembly can't rely on 3432 // the name existing. 3433 if (!D->template hasAttr<UsedAttr>()) 3434 return; 3435 3436 // Must have internal linkage and an ordinary name. 3437 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 3438 return; 3439 3440 // Must be in an extern "C" context. Entities declared directly within 3441 // a record are not extern "C" even if the record is in such a context. 3442 const SomeDecl *First = D->getFirstDecl(); 3443 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 3444 return; 3445 3446 // OK, this is an internal linkage entity inside an extern "C" linkage 3447 // specification. Make a note of that so we can give it the "expected" 3448 // mangled name if nothing else is using that name. 3449 std::pair<StaticExternCMap::iterator, bool> R = 3450 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 3451 3452 // If we have multiple internal linkage entities with the same name 3453 // in extern "C" regions, none of them gets that name. 3454 if (!R.second) 3455 R.first->second = nullptr; 3456 } 3457 3458 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 3459 if (!CGM.supportsCOMDAT()) 3460 return false; 3461 3462 if (D.hasAttr<SelectAnyAttr>()) 3463 return true; 3464 3465 GVALinkage Linkage; 3466 if (auto *VD = dyn_cast<VarDecl>(&D)) 3467 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 3468 else 3469 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 3470 3471 switch (Linkage) { 3472 case GVA_Internal: 3473 case GVA_AvailableExternally: 3474 case GVA_StrongExternal: 3475 return false; 3476 case GVA_DiscardableODR: 3477 case GVA_StrongODR: 3478 return true; 3479 } 3480 llvm_unreachable("No such linkage"); 3481 } 3482 3483 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 3484 llvm::GlobalObject &GO) { 3485 if (!shouldBeInCOMDAT(*this, D)) 3486 return; 3487 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 3488 } 3489 3490 /// Pass IsTentative as true if you want to create a tentative definition. 3491 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 3492 bool IsTentative) { 3493 // OpenCL global variables of sampler type are translated to function calls, 3494 // therefore no need to be translated. 3495 QualType ASTTy = D->getType(); 3496 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 3497 return; 3498 3499 // If this is OpenMP device, check if it is legal to emit this global 3500 // normally. 3501 if (LangOpts.OpenMPIsDevice && OpenMPRuntime && 3502 OpenMPRuntime->emitTargetGlobalVariable(D)) 3503 return; 3504 3505 llvm::Constant *Init = nullptr; 3506 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 3507 bool NeedsGlobalCtor = false; 3508 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 3509 3510 const VarDecl *InitDecl; 3511 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 3512 3513 Optional<ConstantEmitter> emitter; 3514 3515 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 3516 // as part of their declaration." Sema has already checked for 3517 // error cases, so we just need to set Init to UndefValue. 3518 bool IsCUDASharedVar = 3519 getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>(); 3520 // Shadows of initialized device-side global variables are also left 3521 // undefined. 3522 bool IsCUDAShadowVar = 3523 !getLangOpts().CUDAIsDevice && 3524 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() || 3525 D->hasAttr<CUDASharedAttr>()); 3526 if (getLangOpts().CUDA && (IsCUDASharedVar || IsCUDAShadowVar)) 3527 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 3528 else if (!InitExpr) { 3529 // This is a tentative definition; tentative definitions are 3530 // implicitly initialized with { 0 }. 3531 // 3532 // Note that tentative definitions are only emitted at the end of 3533 // a translation unit, so they should never have incomplete 3534 // type. In addition, EmitTentativeDefinition makes sure that we 3535 // never attempt to emit a tentative definition if a real one 3536 // exists. A use may still exists, however, so we still may need 3537 // to do a RAUW. 3538 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 3539 Init = EmitNullConstant(D->getType()); 3540 } else { 3541 initializedGlobalDecl = GlobalDecl(D); 3542 emitter.emplace(*this); 3543 Init = emitter->tryEmitForInitializer(*InitDecl); 3544 3545 if (!Init) { 3546 QualType T = InitExpr->getType(); 3547 if (D->getType()->isReferenceType()) 3548 T = D->getType(); 3549 3550 if (getLangOpts().CPlusPlus) { 3551 Init = EmitNullConstant(T); 3552 NeedsGlobalCtor = true; 3553 } else { 3554 ErrorUnsupported(D, "static initializer"); 3555 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 3556 } 3557 } else { 3558 // We don't need an initializer, so remove the entry for the delayed 3559 // initializer position (just in case this entry was delayed) if we 3560 // also don't need to register a destructor. 3561 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 3562 DelayedCXXInitPosition.erase(D); 3563 } 3564 } 3565 3566 llvm::Type* InitType = Init->getType(); 3567 llvm::Constant *Entry = 3568 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 3569 3570 // Strip off a bitcast if we got one back. 3571 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 3572 assert(CE->getOpcode() == llvm::Instruction::BitCast || 3573 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 3574 // All zero index gep. 3575 CE->getOpcode() == llvm::Instruction::GetElementPtr); 3576 Entry = CE->getOperand(0); 3577 } 3578 3579 // Entry is now either a Function or GlobalVariable. 3580 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 3581 3582 // We have a definition after a declaration with the wrong type. 3583 // We must make a new GlobalVariable* and update everything that used OldGV 3584 // (a declaration or tentative definition) with the new GlobalVariable* 3585 // (which will be a definition). 3586 // 3587 // This happens if there is a prototype for a global (e.g. 3588 // "extern int x[];") and then a definition of a different type (e.g. 3589 // "int x[10];"). This also happens when an initializer has a different type 3590 // from the type of the global (this happens with unions). 3591 if (!GV || GV->getType()->getElementType() != InitType || 3592 GV->getType()->getAddressSpace() != 3593 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 3594 3595 // Move the old entry aside so that we'll create a new one. 3596 Entry->setName(StringRef()); 3597 3598 // Make a new global with the correct type, this is now guaranteed to work. 3599 GV = cast<llvm::GlobalVariable>( 3600 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))); 3601 3602 // Replace all uses of the old global with the new global 3603 llvm::Constant *NewPtrForOldDecl = 3604 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 3605 Entry->replaceAllUsesWith(NewPtrForOldDecl); 3606 3607 // Erase the old global, since it is no longer used. 3608 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 3609 } 3610 3611 MaybeHandleStaticInExternC(D, GV); 3612 3613 if (D->hasAttr<AnnotateAttr>()) 3614 AddGlobalAnnotations(D, GV); 3615 3616 // Set the llvm linkage type as appropriate. 3617 llvm::GlobalValue::LinkageTypes Linkage = 3618 getLLVMLinkageVarDefinition(D, GV->isConstant()); 3619 3620 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 3621 // the device. [...]" 3622 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 3623 // __device__, declares a variable that: [...] 3624 // Is accessible from all the threads within the grid and from the host 3625 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 3626 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 3627 if (GV && LangOpts.CUDA) { 3628 if (LangOpts.CUDAIsDevice) { 3629 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) 3630 GV->setExternallyInitialized(true); 3631 } else { 3632 // Host-side shadows of external declarations of device-side 3633 // global variables become internal definitions. These have to 3634 // be internal in order to prevent name conflicts with global 3635 // host variables with the same name in a different TUs. 3636 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) { 3637 Linkage = llvm::GlobalValue::InternalLinkage; 3638 3639 // Shadow variables and their properties must be registered 3640 // with CUDA runtime. 3641 unsigned Flags = 0; 3642 if (!D->hasDefinition()) 3643 Flags |= CGCUDARuntime::ExternDeviceVar; 3644 if (D->hasAttr<CUDAConstantAttr>()) 3645 Flags |= CGCUDARuntime::ConstantDeviceVar; 3646 // Extern global variables will be registered in the TU where they are 3647 // defined. 3648 if (!D->hasExternalStorage()) 3649 getCUDARuntime().registerDeviceVar(D, *GV, Flags); 3650 } else if (D->hasAttr<CUDASharedAttr>()) 3651 // __shared__ variables are odd. Shadows do get created, but 3652 // they are not registered with the CUDA runtime, so they 3653 // can't really be used to access their device-side 3654 // counterparts. It's not clear yet whether it's nvcc's bug or 3655 // a feature, but we've got to do the same for compatibility. 3656 Linkage = llvm::GlobalValue::InternalLinkage; 3657 } 3658 } 3659 3660 GV->setInitializer(Init); 3661 if (emitter) emitter->finalize(GV); 3662 3663 // If it is safe to mark the global 'constant', do so now. 3664 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 3665 isTypeConstant(D->getType(), true)); 3666 3667 // If it is in a read-only section, mark it 'constant'. 3668 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 3669 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 3670 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 3671 GV->setConstant(true); 3672 } 3673 3674 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 3675 3676 3677 // On Darwin, if the normal linkage of a C++ thread_local variable is 3678 // LinkOnce or Weak, we keep the normal linkage to prevent multiple 3679 // copies within a linkage unit; otherwise, the backing variable has 3680 // internal linkage and all accesses should just be calls to the 3681 // Itanium-specified entry point, which has the normal linkage of the 3682 // variable. This is to preserve the ability to change the implementation 3683 // behind the scenes. 3684 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic && 3685 Context.getTargetInfo().getTriple().isOSDarwin() && 3686 !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) && 3687 !llvm::GlobalVariable::isWeakLinkage(Linkage)) 3688 Linkage = llvm::GlobalValue::InternalLinkage; 3689 3690 GV->setLinkage(Linkage); 3691 if (D->hasAttr<DLLImportAttr>()) 3692 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 3693 else if (D->hasAttr<DLLExportAttr>()) 3694 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 3695 else 3696 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 3697 3698 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 3699 // common vars aren't constant even if declared const. 3700 GV->setConstant(false); 3701 // Tentative definition of global variables may be initialized with 3702 // non-zero null pointers. In this case they should have weak linkage 3703 // since common linkage must have zero initializer and must not have 3704 // explicit section therefore cannot have non-zero initial value. 3705 if (!GV->getInitializer()->isNullValue()) 3706 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 3707 } 3708 3709 setNonAliasAttributes(D, GV); 3710 3711 if (D->getTLSKind() && !GV->isThreadLocal()) { 3712 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 3713 CXXThreadLocals.push_back(D); 3714 setTLSMode(GV, *D); 3715 } 3716 3717 maybeSetTrivialComdat(*D, *GV); 3718 3719 // Emit the initializer function if necessary. 3720 if (NeedsGlobalCtor || NeedsGlobalDtor) 3721 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 3722 3723 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 3724 3725 // Emit global variable debug information. 3726 if (CGDebugInfo *DI = getModuleDebugInfo()) 3727 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 3728 DI->EmitGlobalVariable(GV, D); 3729 } 3730 3731 static bool isVarDeclStrongDefinition(const ASTContext &Context, 3732 CodeGenModule &CGM, const VarDecl *D, 3733 bool NoCommon) { 3734 // Don't give variables common linkage if -fno-common was specified unless it 3735 // was overridden by a NoCommon attribute. 3736 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 3737 return true; 3738 3739 // C11 6.9.2/2: 3740 // A declaration of an identifier for an object that has file scope without 3741 // an initializer, and without a storage-class specifier or with the 3742 // storage-class specifier static, constitutes a tentative definition. 3743 if (D->getInit() || D->hasExternalStorage()) 3744 return true; 3745 3746 // A variable cannot be both common and exist in a section. 3747 if (D->hasAttr<SectionAttr>()) 3748 return true; 3749 3750 // A variable cannot be both common and exist in a section. 3751 // We don't try to determine which is the right section in the front-end. 3752 // If no specialized section name is applicable, it will resort to default. 3753 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 3754 D->hasAttr<PragmaClangDataSectionAttr>() || 3755 D->hasAttr<PragmaClangRodataSectionAttr>()) 3756 return true; 3757 3758 // Thread local vars aren't considered common linkage. 3759 if (D->getTLSKind()) 3760 return true; 3761 3762 // Tentative definitions marked with WeakImportAttr are true definitions. 3763 if (D->hasAttr<WeakImportAttr>()) 3764 return true; 3765 3766 // A variable cannot be both common and exist in a comdat. 3767 if (shouldBeInCOMDAT(CGM, *D)) 3768 return true; 3769 3770 // Declarations with a required alignment do not have common linkage in MSVC 3771 // mode. 3772 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 3773 if (D->hasAttr<AlignedAttr>()) 3774 return true; 3775 QualType VarType = D->getType(); 3776 if (Context.isAlignmentRequired(VarType)) 3777 return true; 3778 3779 if (const auto *RT = VarType->getAs<RecordType>()) { 3780 const RecordDecl *RD = RT->getDecl(); 3781 for (const FieldDecl *FD : RD->fields()) { 3782 if (FD->isBitField()) 3783 continue; 3784 if (FD->hasAttr<AlignedAttr>()) 3785 return true; 3786 if (Context.isAlignmentRequired(FD->getType())) 3787 return true; 3788 } 3789 } 3790 } 3791 3792 // Microsoft's link.exe doesn't support alignments greater than 32 bytes for 3793 // common symbols, so symbols with greater alignment requirements cannot be 3794 // common. 3795 // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two 3796 // alignments for common symbols via the aligncomm directive, so this 3797 // restriction only applies to MSVC environments. 3798 if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() && 3799 Context.getTypeAlignIfKnown(D->getType()) > 3800 Context.toBits(CharUnits::fromQuantity(32))) 3801 return true; 3802 3803 return false; 3804 } 3805 3806 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 3807 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 3808 if (Linkage == GVA_Internal) 3809 return llvm::Function::InternalLinkage; 3810 3811 if (D->hasAttr<WeakAttr>()) { 3812 if (IsConstantVariable) 3813 return llvm::GlobalVariable::WeakODRLinkage; 3814 else 3815 return llvm::GlobalVariable::WeakAnyLinkage; 3816 } 3817 3818 if (const auto *FD = D->getAsFunction()) 3819 if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally) 3820 return llvm::GlobalVariable::LinkOnceAnyLinkage; 3821 3822 // We are guaranteed to have a strong definition somewhere else, 3823 // so we can use available_externally linkage. 3824 if (Linkage == GVA_AvailableExternally) 3825 return llvm::GlobalValue::AvailableExternallyLinkage; 3826 3827 // Note that Apple's kernel linker doesn't support symbol 3828 // coalescing, so we need to avoid linkonce and weak linkages there. 3829 // Normally, this means we just map to internal, but for explicit 3830 // instantiations we'll map to external. 3831 3832 // In C++, the compiler has to emit a definition in every translation unit 3833 // that references the function. We should use linkonce_odr because 3834 // a) if all references in this translation unit are optimized away, we 3835 // don't need to codegen it. b) if the function persists, it needs to be 3836 // merged with other definitions. c) C++ has the ODR, so we know the 3837 // definition is dependable. 3838 if (Linkage == GVA_DiscardableODR) 3839 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 3840 : llvm::Function::InternalLinkage; 3841 3842 // An explicit instantiation of a template has weak linkage, since 3843 // explicit instantiations can occur in multiple translation units 3844 // and must all be equivalent. However, we are not allowed to 3845 // throw away these explicit instantiations. 3846 // 3847 // We don't currently support CUDA device code spread out across multiple TUs, 3848 // so say that CUDA templates are either external (for kernels) or internal. 3849 // This lets llvm perform aggressive inter-procedural optimizations. 3850 if (Linkage == GVA_StrongODR) { 3851 if (Context.getLangOpts().AppleKext) 3852 return llvm::Function::ExternalLinkage; 3853 if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice) 3854 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 3855 : llvm::Function::InternalLinkage; 3856 return llvm::Function::WeakODRLinkage; 3857 } 3858 3859 // C++ doesn't have tentative definitions and thus cannot have common 3860 // linkage. 3861 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 3862 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 3863 CodeGenOpts.NoCommon)) 3864 return llvm::GlobalVariable::CommonLinkage; 3865 3866 // selectany symbols are externally visible, so use weak instead of 3867 // linkonce. MSVC optimizes away references to const selectany globals, so 3868 // all definitions should be the same and ODR linkage should be used. 3869 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 3870 if (D->hasAttr<SelectAnyAttr>()) 3871 return llvm::GlobalVariable::WeakODRLinkage; 3872 3873 // Otherwise, we have strong external linkage. 3874 assert(Linkage == GVA_StrongExternal); 3875 return llvm::GlobalVariable::ExternalLinkage; 3876 } 3877 3878 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 3879 const VarDecl *VD, bool IsConstant) { 3880 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 3881 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 3882 } 3883 3884 /// Replace the uses of a function that was declared with a non-proto type. 3885 /// We want to silently drop extra arguments from call sites 3886 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 3887 llvm::Function *newFn) { 3888 // Fast path. 3889 if (old->use_empty()) return; 3890 3891 llvm::Type *newRetTy = newFn->getReturnType(); 3892 SmallVector<llvm::Value*, 4> newArgs; 3893 SmallVector<llvm::OperandBundleDef, 1> newBundles; 3894 3895 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 3896 ui != ue; ) { 3897 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 3898 llvm::User *user = use->getUser(); 3899 3900 // Recognize and replace uses of bitcasts. Most calls to 3901 // unprototyped functions will use bitcasts. 3902 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 3903 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 3904 replaceUsesOfNonProtoConstant(bitcast, newFn); 3905 continue; 3906 } 3907 3908 // Recognize calls to the function. 3909 llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user); 3910 if (!callSite) continue; 3911 if (!callSite->isCallee(&*use)) 3912 continue; 3913 3914 // If the return types don't match exactly, then we can't 3915 // transform this call unless it's dead. 3916 if (callSite->getType() != newRetTy && !callSite->use_empty()) 3917 continue; 3918 3919 // Get the call site's attribute list. 3920 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 3921 llvm::AttributeList oldAttrs = callSite->getAttributes(); 3922 3923 // If the function was passed too few arguments, don't transform. 3924 unsigned newNumArgs = newFn->arg_size(); 3925 if (callSite->arg_size() < newNumArgs) 3926 continue; 3927 3928 // If extra arguments were passed, we silently drop them. 3929 // If any of the types mismatch, we don't transform. 3930 unsigned argNo = 0; 3931 bool dontTransform = false; 3932 for (llvm::Argument &A : newFn->args()) { 3933 if (callSite->getArgOperand(argNo)->getType() != A.getType()) { 3934 dontTransform = true; 3935 break; 3936 } 3937 3938 // Add any parameter attributes. 3939 newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo)); 3940 argNo++; 3941 } 3942 if (dontTransform) 3943 continue; 3944 3945 // Okay, we can transform this. Create the new call instruction and copy 3946 // over the required information. 3947 newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo); 3948 3949 // Copy over any operand bundles. 3950 callSite->getOperandBundlesAsDefs(newBundles); 3951 3952 llvm::CallBase *newCall; 3953 if (dyn_cast<llvm::CallInst>(callSite)) { 3954 newCall = 3955 llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite); 3956 } else { 3957 auto *oldInvoke = cast<llvm::InvokeInst>(callSite); 3958 newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(), 3959 oldInvoke->getUnwindDest(), newArgs, 3960 newBundles, "", callSite); 3961 } 3962 newArgs.clear(); // for the next iteration 3963 3964 if (!newCall->getType()->isVoidTy()) 3965 newCall->takeName(callSite); 3966 newCall->setAttributes(llvm::AttributeList::get( 3967 newFn->getContext(), oldAttrs.getFnAttributes(), 3968 oldAttrs.getRetAttributes(), newArgAttrs)); 3969 newCall->setCallingConv(callSite->getCallingConv()); 3970 3971 // Finally, remove the old call, replacing any uses with the new one. 3972 if (!callSite->use_empty()) 3973 callSite->replaceAllUsesWith(newCall); 3974 3975 // Copy debug location attached to CI. 3976 if (callSite->getDebugLoc()) 3977 newCall->setDebugLoc(callSite->getDebugLoc()); 3978 3979 callSite->eraseFromParent(); 3980 } 3981 } 3982 3983 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 3984 /// implement a function with no prototype, e.g. "int foo() {}". If there are 3985 /// existing call uses of the old function in the module, this adjusts them to 3986 /// call the new function directly. 3987 /// 3988 /// This is not just a cleanup: the always_inline pass requires direct calls to 3989 /// functions to be able to inline them. If there is a bitcast in the way, it 3990 /// won't inline them. Instcombine normally deletes these calls, but it isn't 3991 /// run at -O0. 3992 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 3993 llvm::Function *NewFn) { 3994 // If we're redefining a global as a function, don't transform it. 3995 if (!isa<llvm::Function>(Old)) return; 3996 3997 replaceUsesOfNonProtoConstant(Old, NewFn); 3998 } 3999 4000 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 4001 auto DK = VD->isThisDeclarationADefinition(); 4002 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 4003 return; 4004 4005 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 4006 // If we have a definition, this might be a deferred decl. If the 4007 // instantiation is explicit, make sure we emit it at the end. 4008 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 4009 GetAddrOfGlobalVar(VD); 4010 4011 EmitTopLevelDecl(VD); 4012 } 4013 4014 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 4015 llvm::GlobalValue *GV) { 4016 const auto *D = cast<FunctionDecl>(GD.getDecl()); 4017 4018 // Compute the function info and LLVM type. 4019 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4020 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4021 4022 // Get or create the prototype for the function. 4023 if (!GV || (GV->getType()->getElementType() != Ty)) 4024 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 4025 /*DontDefer=*/true, 4026 ForDefinition)); 4027 4028 // Already emitted. 4029 if (!GV->isDeclaration()) 4030 return; 4031 4032 // We need to set linkage and visibility on the function before 4033 // generating code for it because various parts of IR generation 4034 // want to propagate this information down (e.g. to local static 4035 // declarations). 4036 auto *Fn = cast<llvm::Function>(GV); 4037 setFunctionLinkage(GD, Fn); 4038 4039 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 4040 setGVProperties(Fn, GD); 4041 4042 MaybeHandleStaticInExternC(D, Fn); 4043 4044 4045 maybeSetTrivialComdat(*D, *Fn); 4046 4047 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 4048 4049 setNonAliasAttributes(GD, Fn); 4050 SetLLVMFunctionAttributesForDefinition(D, Fn); 4051 4052 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 4053 AddGlobalCtor(Fn, CA->getPriority()); 4054 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 4055 AddGlobalDtor(Fn, DA->getPriority()); 4056 if (D->hasAttr<AnnotateAttr>()) 4057 AddGlobalAnnotations(D, Fn); 4058 } 4059 4060 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 4061 const auto *D = cast<ValueDecl>(GD.getDecl()); 4062 const AliasAttr *AA = D->getAttr<AliasAttr>(); 4063 assert(AA && "Not an alias?"); 4064 4065 StringRef MangledName = getMangledName(GD); 4066 4067 if (AA->getAliasee() == MangledName) { 4068 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 4069 return; 4070 } 4071 4072 // If there is a definition in the module, then it wins over the alias. 4073 // This is dubious, but allow it to be safe. Just ignore the alias. 4074 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4075 if (Entry && !Entry->isDeclaration()) 4076 return; 4077 4078 Aliases.push_back(GD); 4079 4080 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 4081 4082 // Create a reference to the named value. This ensures that it is emitted 4083 // if a deferred decl. 4084 llvm::Constant *Aliasee; 4085 if (isa<llvm::FunctionType>(DeclTy)) 4086 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 4087 /*ForVTable=*/false); 4088 else 4089 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 4090 llvm::PointerType::getUnqual(DeclTy), 4091 /*D=*/nullptr); 4092 4093 // Create the new alias itself, but don't set a name yet. 4094 auto *GA = llvm::GlobalAlias::create( 4095 DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule()); 4096 4097 if (Entry) { 4098 if (GA->getAliasee() == Entry) { 4099 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 4100 return; 4101 } 4102 4103 assert(Entry->isDeclaration()); 4104 4105 // If there is a declaration in the module, then we had an extern followed 4106 // by the alias, as in: 4107 // extern int test6(); 4108 // ... 4109 // int test6() __attribute__((alias("test7"))); 4110 // 4111 // Remove it and replace uses of it with the alias. 4112 GA->takeName(Entry); 4113 4114 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 4115 Entry->getType())); 4116 Entry->eraseFromParent(); 4117 } else { 4118 GA->setName(MangledName); 4119 } 4120 4121 // Set attributes which are particular to an alias; this is a 4122 // specialization of the attributes which may be set on a global 4123 // variable/function. 4124 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 4125 D->isWeakImported()) { 4126 GA->setLinkage(llvm::Function::WeakAnyLinkage); 4127 } 4128 4129 if (const auto *VD = dyn_cast<VarDecl>(D)) 4130 if (VD->getTLSKind()) 4131 setTLSMode(GA, *VD); 4132 4133 SetCommonAttributes(GD, GA); 4134 } 4135 4136 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 4137 const auto *D = cast<ValueDecl>(GD.getDecl()); 4138 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 4139 assert(IFA && "Not an ifunc?"); 4140 4141 StringRef MangledName = getMangledName(GD); 4142 4143 if (IFA->getResolver() == MangledName) { 4144 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 4145 return; 4146 } 4147 4148 // Report an error if some definition overrides ifunc. 4149 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4150 if (Entry && !Entry->isDeclaration()) { 4151 GlobalDecl OtherGD; 4152 if (lookupRepresentativeDecl(MangledName, OtherGD) && 4153 DiagnosedConflictingDefinitions.insert(GD).second) { 4154 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name) 4155 << MangledName; 4156 Diags.Report(OtherGD.getDecl()->getLocation(), 4157 diag::note_previous_definition); 4158 } 4159 return; 4160 } 4161 4162 Aliases.push_back(GD); 4163 4164 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 4165 llvm::Constant *Resolver = 4166 GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD, 4167 /*ForVTable=*/false); 4168 llvm::GlobalIFunc *GIF = 4169 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 4170 "", Resolver, &getModule()); 4171 if (Entry) { 4172 if (GIF->getResolver() == Entry) { 4173 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 4174 return; 4175 } 4176 assert(Entry->isDeclaration()); 4177 4178 // If there is a declaration in the module, then we had an extern followed 4179 // by the ifunc, as in: 4180 // extern int test(); 4181 // ... 4182 // int test() __attribute__((ifunc("resolver"))); 4183 // 4184 // Remove it and replace uses of it with the ifunc. 4185 GIF->takeName(Entry); 4186 4187 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 4188 Entry->getType())); 4189 Entry->eraseFromParent(); 4190 } else 4191 GIF->setName(MangledName); 4192 4193 SetCommonAttributes(GD, GIF); 4194 } 4195 4196 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 4197 ArrayRef<llvm::Type*> Tys) { 4198 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 4199 Tys); 4200 } 4201 4202 static llvm::StringMapEntry<llvm::GlobalVariable *> & 4203 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 4204 const StringLiteral *Literal, bool TargetIsLSB, 4205 bool &IsUTF16, unsigned &StringLength) { 4206 StringRef String = Literal->getString(); 4207 unsigned NumBytes = String.size(); 4208 4209 // Check for simple case. 4210 if (!Literal->containsNonAsciiOrNull()) { 4211 StringLength = NumBytes; 4212 return *Map.insert(std::make_pair(String, nullptr)).first; 4213 } 4214 4215 // Otherwise, convert the UTF8 literals into a string of shorts. 4216 IsUTF16 = true; 4217 4218 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 4219 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 4220 llvm::UTF16 *ToPtr = &ToBuf[0]; 4221 4222 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 4223 ToPtr + NumBytes, llvm::strictConversion); 4224 4225 // ConvertUTF8toUTF16 returns the length in ToPtr. 4226 StringLength = ToPtr - &ToBuf[0]; 4227 4228 // Add an explicit null. 4229 *ToPtr = 0; 4230 return *Map.insert(std::make_pair( 4231 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 4232 (StringLength + 1) * 2), 4233 nullptr)).first; 4234 } 4235 4236 ConstantAddress 4237 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 4238 unsigned StringLength = 0; 4239 bool isUTF16 = false; 4240 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 4241 GetConstantCFStringEntry(CFConstantStringMap, Literal, 4242 getDataLayout().isLittleEndian(), isUTF16, 4243 StringLength); 4244 4245 if (auto *C = Entry.second) 4246 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 4247 4248 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 4249 llvm::Constant *Zeros[] = { Zero, Zero }; 4250 4251 const ASTContext &Context = getContext(); 4252 const llvm::Triple &Triple = getTriple(); 4253 4254 const auto CFRuntime = getLangOpts().CFRuntime; 4255 const bool IsSwiftABI = 4256 static_cast<unsigned>(CFRuntime) >= 4257 static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift); 4258 const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1; 4259 4260 // If we don't already have it, get __CFConstantStringClassReference. 4261 if (!CFConstantStringClassRef) { 4262 const char *CFConstantStringClassName = "__CFConstantStringClassReference"; 4263 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 4264 Ty = llvm::ArrayType::get(Ty, 0); 4265 4266 switch (CFRuntime) { 4267 default: break; 4268 case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH; 4269 case LangOptions::CoreFoundationABI::Swift5_0: 4270 CFConstantStringClassName = 4271 Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN" 4272 : "$s10Foundation19_NSCFConstantStringCN"; 4273 Ty = IntPtrTy; 4274 break; 4275 case LangOptions::CoreFoundationABI::Swift4_2: 4276 CFConstantStringClassName = 4277 Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN" 4278 : "$S10Foundation19_NSCFConstantStringCN"; 4279 Ty = IntPtrTy; 4280 break; 4281 case LangOptions::CoreFoundationABI::Swift4_1: 4282 CFConstantStringClassName = 4283 Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN" 4284 : "__T010Foundation19_NSCFConstantStringCN"; 4285 Ty = IntPtrTy; 4286 break; 4287 } 4288 4289 llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName); 4290 4291 if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) { 4292 llvm::GlobalValue *GV = nullptr; 4293 4294 if ((GV = dyn_cast<llvm::GlobalValue>(C))) { 4295 IdentifierInfo &II = Context.Idents.get(GV->getName()); 4296 TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl(); 4297 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 4298 4299 const VarDecl *VD = nullptr; 4300 for (const auto &Result : DC->lookup(&II)) 4301 if ((VD = dyn_cast<VarDecl>(Result))) 4302 break; 4303 4304 if (Triple.isOSBinFormatELF()) { 4305 if (!VD) 4306 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 4307 } else { 4308 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 4309 if (!VD || !VD->hasAttr<DLLExportAttr>()) 4310 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 4311 else 4312 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 4313 } 4314 4315 setDSOLocal(GV); 4316 } 4317 } 4318 4319 // Decay array -> ptr 4320 CFConstantStringClassRef = 4321 IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) 4322 : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros); 4323 } 4324 4325 QualType CFTy = Context.getCFConstantStringType(); 4326 4327 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 4328 4329 ConstantInitBuilder Builder(*this); 4330 auto Fields = Builder.beginStruct(STy); 4331 4332 // Class pointer. 4333 Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef)); 4334 4335 // Flags. 4336 if (IsSwiftABI) { 4337 Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01); 4338 Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8); 4339 } else { 4340 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 4341 } 4342 4343 // String pointer. 4344 llvm::Constant *C = nullptr; 4345 if (isUTF16) { 4346 auto Arr = llvm::makeArrayRef( 4347 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 4348 Entry.first().size() / 2); 4349 C = llvm::ConstantDataArray::get(VMContext, Arr); 4350 } else { 4351 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 4352 } 4353 4354 // Note: -fwritable-strings doesn't make the backing store strings of 4355 // CFStrings writable. (See <rdar://problem/10657500>) 4356 auto *GV = 4357 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 4358 llvm::GlobalValue::PrivateLinkage, C, ".str"); 4359 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 4360 // Don't enforce the target's minimum global alignment, since the only use 4361 // of the string is via this class initializer. 4362 CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy) 4363 : Context.getTypeAlignInChars(Context.CharTy); 4364 GV->setAlignment(Align.getQuantity()); 4365 4366 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 4367 // Without it LLVM can merge the string with a non unnamed_addr one during 4368 // LTO. Doing that changes the section it ends in, which surprises ld64. 4369 if (Triple.isOSBinFormatMachO()) 4370 GV->setSection(isUTF16 ? "__TEXT,__ustring" 4371 : "__TEXT,__cstring,cstring_literals"); 4372 // Make sure the literal ends up in .rodata to allow for safe ICF and for 4373 // the static linker to adjust permissions to read-only later on. 4374 else if (Triple.isOSBinFormatELF()) 4375 GV->setSection(".rodata"); 4376 4377 // String. 4378 llvm::Constant *Str = 4379 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 4380 4381 if (isUTF16) 4382 // Cast the UTF16 string to the correct type. 4383 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 4384 Fields.add(Str); 4385 4386 // String length. 4387 llvm::IntegerType *LengthTy = 4388 llvm::IntegerType::get(getModule().getContext(), 4389 Context.getTargetInfo().getLongWidth()); 4390 if (IsSwiftABI) { 4391 if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 || 4392 CFRuntime == LangOptions::CoreFoundationABI::Swift4_2) 4393 LengthTy = Int32Ty; 4394 else 4395 LengthTy = IntPtrTy; 4396 } 4397 Fields.addInt(LengthTy, StringLength); 4398 4399 CharUnits Alignment = getPointerAlign(); 4400 4401 // The struct. 4402 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 4403 /*isConstant=*/false, 4404 llvm::GlobalVariable::PrivateLinkage); 4405 switch (Triple.getObjectFormat()) { 4406 case llvm::Triple::UnknownObjectFormat: 4407 llvm_unreachable("unknown file format"); 4408 case llvm::Triple::XCOFF: 4409 llvm_unreachable("XCOFF is not yet implemented"); 4410 case llvm::Triple::COFF: 4411 case llvm::Triple::ELF: 4412 case llvm::Triple::Wasm: 4413 GV->setSection("cfstring"); 4414 break; 4415 case llvm::Triple::MachO: 4416 GV->setSection("__DATA,__cfstring"); 4417 break; 4418 } 4419 Entry.second = GV; 4420 4421 return ConstantAddress(GV, Alignment); 4422 } 4423 4424 bool CodeGenModule::getExpressionLocationsEnabled() const { 4425 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 4426 } 4427 4428 QualType CodeGenModule::getObjCFastEnumerationStateType() { 4429 if (ObjCFastEnumerationStateType.isNull()) { 4430 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 4431 D->startDefinition(); 4432 4433 QualType FieldTypes[] = { 4434 Context.UnsignedLongTy, 4435 Context.getPointerType(Context.getObjCIdType()), 4436 Context.getPointerType(Context.UnsignedLongTy), 4437 Context.getConstantArrayType(Context.UnsignedLongTy, 4438 llvm::APInt(32, 5), ArrayType::Normal, 0) 4439 }; 4440 4441 for (size_t i = 0; i < 4; ++i) { 4442 FieldDecl *Field = FieldDecl::Create(Context, 4443 D, 4444 SourceLocation(), 4445 SourceLocation(), nullptr, 4446 FieldTypes[i], /*TInfo=*/nullptr, 4447 /*BitWidth=*/nullptr, 4448 /*Mutable=*/false, 4449 ICIS_NoInit); 4450 Field->setAccess(AS_public); 4451 D->addDecl(Field); 4452 } 4453 4454 D->completeDefinition(); 4455 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 4456 } 4457 4458 return ObjCFastEnumerationStateType; 4459 } 4460 4461 llvm::Constant * 4462 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 4463 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 4464 4465 // Don't emit it as the address of the string, emit the string data itself 4466 // as an inline array. 4467 if (E->getCharByteWidth() == 1) { 4468 SmallString<64> Str(E->getString()); 4469 4470 // Resize the string to the right size, which is indicated by its type. 4471 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 4472 Str.resize(CAT->getSize().getZExtValue()); 4473 return llvm::ConstantDataArray::getString(VMContext, Str, false); 4474 } 4475 4476 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 4477 llvm::Type *ElemTy = AType->getElementType(); 4478 unsigned NumElements = AType->getNumElements(); 4479 4480 // Wide strings have either 2-byte or 4-byte elements. 4481 if (ElemTy->getPrimitiveSizeInBits() == 16) { 4482 SmallVector<uint16_t, 32> Elements; 4483 Elements.reserve(NumElements); 4484 4485 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 4486 Elements.push_back(E->getCodeUnit(i)); 4487 Elements.resize(NumElements); 4488 return llvm::ConstantDataArray::get(VMContext, Elements); 4489 } 4490 4491 assert(ElemTy->getPrimitiveSizeInBits() == 32); 4492 SmallVector<uint32_t, 32> Elements; 4493 Elements.reserve(NumElements); 4494 4495 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 4496 Elements.push_back(E->getCodeUnit(i)); 4497 Elements.resize(NumElements); 4498 return llvm::ConstantDataArray::get(VMContext, Elements); 4499 } 4500 4501 static llvm::GlobalVariable * 4502 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 4503 CodeGenModule &CGM, StringRef GlobalName, 4504 CharUnits Alignment) { 4505 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace( 4506 CGM.getStringLiteralAddressSpace()); 4507 4508 llvm::Module &M = CGM.getModule(); 4509 // Create a global variable for this string 4510 auto *GV = new llvm::GlobalVariable( 4511 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 4512 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 4513 GV->setAlignment(Alignment.getQuantity()); 4514 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 4515 if (GV->isWeakForLinker()) { 4516 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 4517 GV->setComdat(M.getOrInsertComdat(GV->getName())); 4518 } 4519 CGM.setDSOLocal(GV); 4520 4521 return GV; 4522 } 4523 4524 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 4525 /// constant array for the given string literal. 4526 ConstantAddress 4527 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 4528 StringRef Name) { 4529 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 4530 4531 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 4532 llvm::GlobalVariable **Entry = nullptr; 4533 if (!LangOpts.WritableStrings) { 4534 Entry = &ConstantStringMap[C]; 4535 if (auto GV = *Entry) { 4536 if (Alignment.getQuantity() > GV->getAlignment()) 4537 GV->setAlignment(Alignment.getQuantity()); 4538 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 4539 Alignment); 4540 } 4541 } 4542 4543 SmallString<256> MangledNameBuffer; 4544 StringRef GlobalVariableName; 4545 llvm::GlobalValue::LinkageTypes LT; 4546 4547 // Mangle the string literal if that's how the ABI merges duplicate strings. 4548 // Don't do it if they are writable, since we don't want writes in one TU to 4549 // affect strings in another. 4550 if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) && 4551 !LangOpts.WritableStrings) { 4552 llvm::raw_svector_ostream Out(MangledNameBuffer); 4553 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 4554 LT = llvm::GlobalValue::LinkOnceODRLinkage; 4555 GlobalVariableName = MangledNameBuffer; 4556 } else { 4557 LT = llvm::GlobalValue::PrivateLinkage; 4558 GlobalVariableName = Name; 4559 } 4560 4561 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 4562 if (Entry) 4563 *Entry = GV; 4564 4565 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 4566 QualType()); 4567 4568 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 4569 Alignment); 4570 } 4571 4572 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 4573 /// array for the given ObjCEncodeExpr node. 4574 ConstantAddress 4575 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 4576 std::string Str; 4577 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 4578 4579 return GetAddrOfConstantCString(Str); 4580 } 4581 4582 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 4583 /// the literal and a terminating '\0' character. 4584 /// The result has pointer to array type. 4585 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 4586 const std::string &Str, const char *GlobalName) { 4587 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 4588 CharUnits Alignment = 4589 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 4590 4591 llvm::Constant *C = 4592 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 4593 4594 // Don't share any string literals if strings aren't constant. 4595 llvm::GlobalVariable **Entry = nullptr; 4596 if (!LangOpts.WritableStrings) { 4597 Entry = &ConstantStringMap[C]; 4598 if (auto GV = *Entry) { 4599 if (Alignment.getQuantity() > GV->getAlignment()) 4600 GV->setAlignment(Alignment.getQuantity()); 4601 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 4602 Alignment); 4603 } 4604 } 4605 4606 // Get the default prefix if a name wasn't specified. 4607 if (!GlobalName) 4608 GlobalName = ".str"; 4609 // Create a global variable for this. 4610 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 4611 GlobalName, Alignment); 4612 if (Entry) 4613 *Entry = GV; 4614 4615 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 4616 Alignment); 4617 } 4618 4619 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 4620 const MaterializeTemporaryExpr *E, const Expr *Init) { 4621 assert((E->getStorageDuration() == SD_Static || 4622 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 4623 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 4624 4625 // If we're not materializing a subobject of the temporary, keep the 4626 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 4627 QualType MaterializedType = Init->getType(); 4628 if (Init == E->GetTemporaryExpr()) 4629 MaterializedType = E->getType(); 4630 4631 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 4632 4633 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E]) 4634 return ConstantAddress(Slot, Align); 4635 4636 // FIXME: If an externally-visible declaration extends multiple temporaries, 4637 // we need to give each temporary the same name in every translation unit (and 4638 // we also need to make the temporaries externally-visible). 4639 SmallString<256> Name; 4640 llvm::raw_svector_ostream Out(Name); 4641 getCXXABI().getMangleContext().mangleReferenceTemporary( 4642 VD, E->getManglingNumber(), Out); 4643 4644 APValue *Value = nullptr; 4645 if (E->getStorageDuration() == SD_Static) { 4646 // We might have a cached constant initializer for this temporary. Note 4647 // that this might have a different value from the value computed by 4648 // evaluating the initializer if the surrounding constant expression 4649 // modifies the temporary. 4650 Value = getContext().getMaterializedTemporaryValue(E, false); 4651 if (Value && Value->isUninit()) 4652 Value = nullptr; 4653 } 4654 4655 // Try evaluating it now, it might have a constant initializer. 4656 Expr::EvalResult EvalResult; 4657 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 4658 !EvalResult.hasSideEffects()) 4659 Value = &EvalResult.Val; 4660 4661 LangAS AddrSpace = 4662 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace(); 4663 4664 Optional<ConstantEmitter> emitter; 4665 llvm::Constant *InitialValue = nullptr; 4666 bool Constant = false; 4667 llvm::Type *Type; 4668 if (Value) { 4669 // The temporary has a constant initializer, use it. 4670 emitter.emplace(*this); 4671 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 4672 MaterializedType); 4673 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 4674 Type = InitialValue->getType(); 4675 } else { 4676 // No initializer, the initialization will be provided when we 4677 // initialize the declaration which performed lifetime extension. 4678 Type = getTypes().ConvertTypeForMem(MaterializedType); 4679 } 4680 4681 // Create a global variable for this lifetime-extended temporary. 4682 llvm::GlobalValue::LinkageTypes Linkage = 4683 getLLVMLinkageVarDefinition(VD, Constant); 4684 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 4685 const VarDecl *InitVD; 4686 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 4687 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 4688 // Temporaries defined inside a class get linkonce_odr linkage because the 4689 // class can be defined in multiple translation units. 4690 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 4691 } else { 4692 // There is no need for this temporary to have external linkage if the 4693 // VarDecl has external linkage. 4694 Linkage = llvm::GlobalVariable::InternalLinkage; 4695 } 4696 } 4697 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 4698 auto *GV = new llvm::GlobalVariable( 4699 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 4700 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 4701 if (emitter) emitter->finalize(GV); 4702 setGVProperties(GV, VD); 4703 GV->setAlignment(Align.getQuantity()); 4704 if (supportsCOMDAT() && GV->isWeakForLinker()) 4705 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 4706 if (VD->getTLSKind()) 4707 setTLSMode(GV, *VD); 4708 llvm::Constant *CV = GV; 4709 if (AddrSpace != LangAS::Default) 4710 CV = getTargetCodeGenInfo().performAddrSpaceCast( 4711 *this, GV, AddrSpace, LangAS::Default, 4712 Type->getPointerTo( 4713 getContext().getTargetAddressSpace(LangAS::Default))); 4714 MaterializedGlobalTemporaryMap[E] = CV; 4715 return ConstantAddress(CV, Align); 4716 } 4717 4718 /// EmitObjCPropertyImplementations - Emit information for synthesized 4719 /// properties for an implementation. 4720 void CodeGenModule::EmitObjCPropertyImplementations(const 4721 ObjCImplementationDecl *D) { 4722 for (const auto *PID : D->property_impls()) { 4723 // Dynamic is just for type-checking. 4724 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 4725 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 4726 4727 // Determine which methods need to be implemented, some may have 4728 // been overridden. Note that ::isPropertyAccessor is not the method 4729 // we want, that just indicates if the decl came from a 4730 // property. What we want to know is if the method is defined in 4731 // this implementation. 4732 if (!D->getInstanceMethod(PD->getGetterName())) 4733 CodeGenFunction(*this).GenerateObjCGetter( 4734 const_cast<ObjCImplementationDecl *>(D), PID); 4735 if (!PD->isReadOnly() && 4736 !D->getInstanceMethod(PD->getSetterName())) 4737 CodeGenFunction(*this).GenerateObjCSetter( 4738 const_cast<ObjCImplementationDecl *>(D), PID); 4739 } 4740 } 4741 } 4742 4743 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 4744 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 4745 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 4746 ivar; ivar = ivar->getNextIvar()) 4747 if (ivar->getType().isDestructedType()) 4748 return true; 4749 4750 return false; 4751 } 4752 4753 static bool AllTrivialInitializers(CodeGenModule &CGM, 4754 ObjCImplementationDecl *D) { 4755 CodeGenFunction CGF(CGM); 4756 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 4757 E = D->init_end(); B != E; ++B) { 4758 CXXCtorInitializer *CtorInitExp = *B; 4759 Expr *Init = CtorInitExp->getInit(); 4760 if (!CGF.isTrivialInitializer(Init)) 4761 return false; 4762 } 4763 return true; 4764 } 4765 4766 /// EmitObjCIvarInitializations - Emit information for ivar initialization 4767 /// for an implementation. 4768 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 4769 // We might need a .cxx_destruct even if we don't have any ivar initializers. 4770 if (needsDestructMethod(D)) { 4771 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 4772 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 4773 ObjCMethodDecl *DTORMethod = 4774 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 4775 cxxSelector, getContext().VoidTy, nullptr, D, 4776 /*isInstance=*/true, /*isVariadic=*/false, 4777 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 4778 /*isDefined=*/false, ObjCMethodDecl::Required); 4779 D->addInstanceMethod(DTORMethod); 4780 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 4781 D->setHasDestructors(true); 4782 } 4783 4784 // If the implementation doesn't have any ivar initializers, we don't need 4785 // a .cxx_construct. 4786 if (D->getNumIvarInitializers() == 0 || 4787 AllTrivialInitializers(*this, D)) 4788 return; 4789 4790 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 4791 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 4792 // The constructor returns 'self'. 4793 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 4794 D->getLocation(), 4795 D->getLocation(), 4796 cxxSelector, 4797 getContext().getObjCIdType(), 4798 nullptr, D, /*isInstance=*/true, 4799 /*isVariadic=*/false, 4800 /*isPropertyAccessor=*/true, 4801 /*isImplicitlyDeclared=*/true, 4802 /*isDefined=*/false, 4803 ObjCMethodDecl::Required); 4804 D->addInstanceMethod(CTORMethod); 4805 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 4806 D->setHasNonZeroConstructors(true); 4807 } 4808 4809 // EmitLinkageSpec - Emit all declarations in a linkage spec. 4810 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 4811 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 4812 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 4813 ErrorUnsupported(LSD, "linkage spec"); 4814 return; 4815 } 4816 4817 EmitDeclContext(LSD); 4818 } 4819 4820 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 4821 for (auto *I : DC->decls()) { 4822 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 4823 // are themselves considered "top-level", so EmitTopLevelDecl on an 4824 // ObjCImplDecl does not recursively visit them. We need to do that in 4825 // case they're nested inside another construct (LinkageSpecDecl / 4826 // ExportDecl) that does stop them from being considered "top-level". 4827 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 4828 for (auto *M : OID->methods()) 4829 EmitTopLevelDecl(M); 4830 } 4831 4832 EmitTopLevelDecl(I); 4833 } 4834 } 4835 4836 /// EmitTopLevelDecl - Emit code for a single top level declaration. 4837 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 4838 // Ignore dependent declarations. 4839 if (D->isTemplated()) 4840 return; 4841 4842 switch (D->getKind()) { 4843 case Decl::CXXConversion: 4844 case Decl::CXXMethod: 4845 case Decl::Function: 4846 EmitGlobal(cast<FunctionDecl>(D)); 4847 // Always provide some coverage mapping 4848 // even for the functions that aren't emitted. 4849 AddDeferredUnusedCoverageMapping(D); 4850 break; 4851 4852 case Decl::CXXDeductionGuide: 4853 // Function-like, but does not result in code emission. 4854 break; 4855 4856 case Decl::Var: 4857 case Decl::Decomposition: 4858 case Decl::VarTemplateSpecialization: 4859 EmitGlobal(cast<VarDecl>(D)); 4860 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 4861 for (auto *B : DD->bindings()) 4862 if (auto *HD = B->getHoldingVar()) 4863 EmitGlobal(HD); 4864 break; 4865 4866 // Indirect fields from global anonymous structs and unions can be 4867 // ignored; only the actual variable requires IR gen support. 4868 case Decl::IndirectField: 4869 break; 4870 4871 // C++ Decls 4872 case Decl::Namespace: 4873 EmitDeclContext(cast<NamespaceDecl>(D)); 4874 break; 4875 case Decl::ClassTemplateSpecialization: { 4876 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 4877 if (DebugInfo && 4878 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition && 4879 Spec->hasDefinition()) 4880 DebugInfo->completeTemplateDefinition(*Spec); 4881 } LLVM_FALLTHROUGH; 4882 case Decl::CXXRecord: 4883 if (DebugInfo) { 4884 if (auto *ES = D->getASTContext().getExternalSource()) 4885 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 4886 DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D)); 4887 } 4888 // Emit any static data members, they may be definitions. 4889 for (auto *I : cast<CXXRecordDecl>(D)->decls()) 4890 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 4891 EmitTopLevelDecl(I); 4892 break; 4893 // No code generation needed. 4894 case Decl::UsingShadow: 4895 case Decl::ClassTemplate: 4896 case Decl::VarTemplate: 4897 case Decl::VarTemplatePartialSpecialization: 4898 case Decl::FunctionTemplate: 4899 case Decl::TypeAliasTemplate: 4900 case Decl::Block: 4901 case Decl::Empty: 4902 case Decl::Binding: 4903 break; 4904 case Decl::Using: // using X; [C++] 4905 if (CGDebugInfo *DI = getModuleDebugInfo()) 4906 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 4907 return; 4908 case Decl::NamespaceAlias: 4909 if (CGDebugInfo *DI = getModuleDebugInfo()) 4910 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 4911 return; 4912 case Decl::UsingDirective: // using namespace X; [C++] 4913 if (CGDebugInfo *DI = getModuleDebugInfo()) 4914 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 4915 return; 4916 case Decl::CXXConstructor: 4917 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 4918 break; 4919 case Decl::CXXDestructor: 4920 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 4921 break; 4922 4923 case Decl::StaticAssert: 4924 // Nothing to do. 4925 break; 4926 4927 // Objective-C Decls 4928 4929 // Forward declarations, no (immediate) code generation. 4930 case Decl::ObjCInterface: 4931 case Decl::ObjCCategory: 4932 break; 4933 4934 case Decl::ObjCProtocol: { 4935 auto *Proto = cast<ObjCProtocolDecl>(D); 4936 if (Proto->isThisDeclarationADefinition()) 4937 ObjCRuntime->GenerateProtocol(Proto); 4938 break; 4939 } 4940 4941 case Decl::ObjCCategoryImpl: 4942 // Categories have properties but don't support synthesize so we 4943 // can ignore them here. 4944 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 4945 break; 4946 4947 case Decl::ObjCImplementation: { 4948 auto *OMD = cast<ObjCImplementationDecl>(D); 4949 EmitObjCPropertyImplementations(OMD); 4950 EmitObjCIvarInitializations(OMD); 4951 ObjCRuntime->GenerateClass(OMD); 4952 // Emit global variable debug information. 4953 if (CGDebugInfo *DI = getModuleDebugInfo()) 4954 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 4955 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 4956 OMD->getClassInterface()), OMD->getLocation()); 4957 break; 4958 } 4959 case Decl::ObjCMethod: { 4960 auto *OMD = cast<ObjCMethodDecl>(D); 4961 // If this is not a prototype, emit the body. 4962 if (OMD->getBody()) 4963 CodeGenFunction(*this).GenerateObjCMethod(OMD); 4964 break; 4965 } 4966 case Decl::ObjCCompatibleAlias: 4967 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 4968 break; 4969 4970 case Decl::PragmaComment: { 4971 const auto *PCD = cast<PragmaCommentDecl>(D); 4972 switch (PCD->getCommentKind()) { 4973 case PCK_Unknown: 4974 llvm_unreachable("unexpected pragma comment kind"); 4975 case PCK_Linker: 4976 AppendLinkerOptions(PCD->getArg()); 4977 break; 4978 case PCK_Lib: 4979 if (getTarget().getTriple().isOSBinFormatELF() && 4980 !getTarget().getTriple().isPS4()) 4981 AddELFLibDirective(PCD->getArg()); 4982 else 4983 AddDependentLib(PCD->getArg()); 4984 break; 4985 case PCK_Compiler: 4986 case PCK_ExeStr: 4987 case PCK_User: 4988 break; // We ignore all of these. 4989 } 4990 break; 4991 } 4992 4993 case Decl::PragmaDetectMismatch: { 4994 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 4995 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 4996 break; 4997 } 4998 4999 case Decl::LinkageSpec: 5000 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 5001 break; 5002 5003 case Decl::FileScopeAsm: { 5004 // File-scope asm is ignored during device-side CUDA compilation. 5005 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 5006 break; 5007 // File-scope asm is ignored during device-side OpenMP compilation. 5008 if (LangOpts.OpenMPIsDevice) 5009 break; 5010 auto *AD = cast<FileScopeAsmDecl>(D); 5011 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 5012 break; 5013 } 5014 5015 case Decl::Import: { 5016 auto *Import = cast<ImportDecl>(D); 5017 5018 // If we've already imported this module, we're done. 5019 if (!ImportedModules.insert(Import->getImportedModule())) 5020 break; 5021 5022 // Emit debug information for direct imports. 5023 if (!Import->getImportedOwningModule()) { 5024 if (CGDebugInfo *DI = getModuleDebugInfo()) 5025 DI->EmitImportDecl(*Import); 5026 } 5027 5028 // Find all of the submodules and emit the module initializers. 5029 llvm::SmallPtrSet<clang::Module *, 16> Visited; 5030 SmallVector<clang::Module *, 16> Stack; 5031 Visited.insert(Import->getImportedModule()); 5032 Stack.push_back(Import->getImportedModule()); 5033 5034 while (!Stack.empty()) { 5035 clang::Module *Mod = Stack.pop_back_val(); 5036 if (!EmittedModuleInitializers.insert(Mod).second) 5037 continue; 5038 5039 for (auto *D : Context.getModuleInitializers(Mod)) 5040 EmitTopLevelDecl(D); 5041 5042 // Visit the submodules of this module. 5043 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 5044 SubEnd = Mod->submodule_end(); 5045 Sub != SubEnd; ++Sub) { 5046 // Skip explicit children; they need to be explicitly imported to emit 5047 // the initializers. 5048 if ((*Sub)->IsExplicit) 5049 continue; 5050 5051 if (Visited.insert(*Sub).second) 5052 Stack.push_back(*Sub); 5053 } 5054 } 5055 break; 5056 } 5057 5058 case Decl::Export: 5059 EmitDeclContext(cast<ExportDecl>(D)); 5060 break; 5061 5062 case Decl::OMPThreadPrivate: 5063 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 5064 break; 5065 5066 case Decl::OMPAllocate: 5067 break; 5068 5069 case Decl::OMPDeclareReduction: 5070 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 5071 break; 5072 5073 case Decl::OMPDeclareMapper: 5074 EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D)); 5075 break; 5076 5077 case Decl::OMPRequires: 5078 EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D)); 5079 break; 5080 5081 default: 5082 // Make sure we handled everything we should, every other kind is a 5083 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 5084 // function. Need to recode Decl::Kind to do that easily. 5085 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 5086 break; 5087 } 5088 } 5089 5090 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 5091 // Do we need to generate coverage mapping? 5092 if (!CodeGenOpts.CoverageMapping) 5093 return; 5094 switch (D->getKind()) { 5095 case Decl::CXXConversion: 5096 case Decl::CXXMethod: 5097 case Decl::Function: 5098 case Decl::ObjCMethod: 5099 case Decl::CXXConstructor: 5100 case Decl::CXXDestructor: { 5101 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 5102 return; 5103 SourceManager &SM = getContext().getSourceManager(); 5104 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc())) 5105 return; 5106 auto I = DeferredEmptyCoverageMappingDecls.find(D); 5107 if (I == DeferredEmptyCoverageMappingDecls.end()) 5108 DeferredEmptyCoverageMappingDecls[D] = true; 5109 break; 5110 } 5111 default: 5112 break; 5113 }; 5114 } 5115 5116 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 5117 // Do we need to generate coverage mapping? 5118 if (!CodeGenOpts.CoverageMapping) 5119 return; 5120 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 5121 if (Fn->isTemplateInstantiation()) 5122 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 5123 } 5124 auto I = DeferredEmptyCoverageMappingDecls.find(D); 5125 if (I == DeferredEmptyCoverageMappingDecls.end()) 5126 DeferredEmptyCoverageMappingDecls[D] = false; 5127 else 5128 I->second = false; 5129 } 5130 5131 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 5132 // We call takeVector() here to avoid use-after-free. 5133 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 5134 // we deserialize function bodies to emit coverage info for them, and that 5135 // deserializes more declarations. How should we handle that case? 5136 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 5137 if (!Entry.second) 5138 continue; 5139 const Decl *D = Entry.first; 5140 switch (D->getKind()) { 5141 case Decl::CXXConversion: 5142 case Decl::CXXMethod: 5143 case Decl::Function: 5144 case Decl::ObjCMethod: { 5145 CodeGenPGO PGO(*this); 5146 GlobalDecl GD(cast<FunctionDecl>(D)); 5147 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5148 getFunctionLinkage(GD)); 5149 break; 5150 } 5151 case Decl::CXXConstructor: { 5152 CodeGenPGO PGO(*this); 5153 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 5154 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5155 getFunctionLinkage(GD)); 5156 break; 5157 } 5158 case Decl::CXXDestructor: { 5159 CodeGenPGO PGO(*this); 5160 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 5161 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5162 getFunctionLinkage(GD)); 5163 break; 5164 } 5165 default: 5166 break; 5167 }; 5168 } 5169 } 5170 5171 /// Turns the given pointer into a constant. 5172 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 5173 const void *Ptr) { 5174 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 5175 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 5176 return llvm::ConstantInt::get(i64, PtrInt); 5177 } 5178 5179 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 5180 llvm::NamedMDNode *&GlobalMetadata, 5181 GlobalDecl D, 5182 llvm::GlobalValue *Addr) { 5183 if (!GlobalMetadata) 5184 GlobalMetadata = 5185 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 5186 5187 // TODO: should we report variant information for ctors/dtors? 5188 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 5189 llvm::ConstantAsMetadata::get(GetPointerConstant( 5190 CGM.getLLVMContext(), D.getDecl()))}; 5191 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 5192 } 5193 5194 /// For each function which is declared within an extern "C" region and marked 5195 /// as 'used', but has internal linkage, create an alias from the unmangled 5196 /// name to the mangled name if possible. People expect to be able to refer 5197 /// to such functions with an unmangled name from inline assembly within the 5198 /// same translation unit. 5199 void CodeGenModule::EmitStaticExternCAliases() { 5200 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases()) 5201 return; 5202 for (auto &I : StaticExternCValues) { 5203 IdentifierInfo *Name = I.first; 5204 llvm::GlobalValue *Val = I.second; 5205 if (Val && !getModule().getNamedValue(Name->getName())) 5206 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 5207 } 5208 } 5209 5210 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 5211 GlobalDecl &Result) const { 5212 auto Res = Manglings.find(MangledName); 5213 if (Res == Manglings.end()) 5214 return false; 5215 Result = Res->getValue(); 5216 return true; 5217 } 5218 5219 /// Emits metadata nodes associating all the global values in the 5220 /// current module with the Decls they came from. This is useful for 5221 /// projects using IR gen as a subroutine. 5222 /// 5223 /// Since there's currently no way to associate an MDNode directly 5224 /// with an llvm::GlobalValue, we create a global named metadata 5225 /// with the name 'clang.global.decl.ptrs'. 5226 void CodeGenModule::EmitDeclMetadata() { 5227 llvm::NamedMDNode *GlobalMetadata = nullptr; 5228 5229 for (auto &I : MangledDeclNames) { 5230 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 5231 // Some mangled names don't necessarily have an associated GlobalValue 5232 // in this module, e.g. if we mangled it for DebugInfo. 5233 if (Addr) 5234 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 5235 } 5236 } 5237 5238 /// Emits metadata nodes for all the local variables in the current 5239 /// function. 5240 void CodeGenFunction::EmitDeclMetadata() { 5241 if (LocalDeclMap.empty()) return; 5242 5243 llvm::LLVMContext &Context = getLLVMContext(); 5244 5245 // Find the unique metadata ID for this name. 5246 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 5247 5248 llvm::NamedMDNode *GlobalMetadata = nullptr; 5249 5250 for (auto &I : LocalDeclMap) { 5251 const Decl *D = I.first; 5252 llvm::Value *Addr = I.second.getPointer(); 5253 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 5254 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 5255 Alloca->setMetadata( 5256 DeclPtrKind, llvm::MDNode::get( 5257 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 5258 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 5259 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 5260 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 5261 } 5262 } 5263 } 5264 5265 void CodeGenModule::EmitVersionIdentMetadata() { 5266 llvm::NamedMDNode *IdentMetadata = 5267 TheModule.getOrInsertNamedMetadata("llvm.ident"); 5268 std::string Version = getClangFullVersion(); 5269 llvm::LLVMContext &Ctx = TheModule.getContext(); 5270 5271 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 5272 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 5273 } 5274 5275 void CodeGenModule::EmitCommandLineMetadata() { 5276 llvm::NamedMDNode *CommandLineMetadata = 5277 TheModule.getOrInsertNamedMetadata("llvm.commandline"); 5278 std::string CommandLine = getCodeGenOpts().RecordCommandLine; 5279 llvm::LLVMContext &Ctx = TheModule.getContext(); 5280 5281 llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)}; 5282 CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode)); 5283 } 5284 5285 void CodeGenModule::EmitTargetMetadata() { 5286 // Warning, new MangledDeclNames may be appended within this loop. 5287 // We rely on MapVector insertions adding new elements to the end 5288 // of the container. 5289 // FIXME: Move this loop into the one target that needs it, and only 5290 // loop over those declarations for which we couldn't emit the target 5291 // metadata when we emitted the declaration. 5292 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 5293 auto Val = *(MangledDeclNames.begin() + I); 5294 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 5295 llvm::GlobalValue *GV = GetGlobalValue(Val.second); 5296 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 5297 } 5298 } 5299 5300 void CodeGenModule::EmitCoverageFile() { 5301 if (getCodeGenOpts().CoverageDataFile.empty() && 5302 getCodeGenOpts().CoverageNotesFile.empty()) 5303 return; 5304 5305 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 5306 if (!CUNode) 5307 return; 5308 5309 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 5310 llvm::LLVMContext &Ctx = TheModule.getContext(); 5311 auto *CoverageDataFile = 5312 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 5313 auto *CoverageNotesFile = 5314 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 5315 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 5316 llvm::MDNode *CU = CUNode->getOperand(i); 5317 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 5318 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 5319 } 5320 } 5321 5322 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) { 5323 // Sema has checked that all uuid strings are of the form 5324 // "12345678-1234-1234-1234-1234567890ab". 5325 assert(Uuid.size() == 36); 5326 for (unsigned i = 0; i < 36; ++i) { 5327 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 5328 else assert(isHexDigit(Uuid[i])); 5329 } 5330 5331 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab". 5332 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 5333 5334 llvm::Constant *Field3[8]; 5335 for (unsigned Idx = 0; Idx < 8; ++Idx) 5336 Field3[Idx] = llvm::ConstantInt::get( 5337 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 5338 5339 llvm::Constant *Fields[4] = { 5340 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 5341 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 5342 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 5343 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 5344 }; 5345 5346 return llvm::ConstantStruct::getAnon(Fields); 5347 } 5348 5349 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 5350 bool ForEH) { 5351 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 5352 // FIXME: should we even be calling this method if RTTI is disabled 5353 // and it's not for EH? 5354 if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice) 5355 return llvm::Constant::getNullValue(Int8PtrTy); 5356 5357 if (ForEH && Ty->isObjCObjectPointerType() && 5358 LangOpts.ObjCRuntime.isGNUFamily()) 5359 return ObjCRuntime->GetEHType(Ty); 5360 5361 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 5362 } 5363 5364 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 5365 // Do not emit threadprivates in simd-only mode. 5366 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 5367 return; 5368 for (auto RefExpr : D->varlists()) { 5369 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 5370 bool PerformInit = 5371 VD->getAnyInitializer() && 5372 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 5373 /*ForRef=*/false); 5374 5375 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 5376 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 5377 VD, Addr, RefExpr->getBeginLoc(), PerformInit)) 5378 CXXGlobalInits.push_back(InitFunction); 5379 } 5380 } 5381 5382 llvm::Metadata * 5383 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map, 5384 StringRef Suffix) { 5385 llvm::Metadata *&InternalId = Map[T.getCanonicalType()]; 5386 if (InternalId) 5387 return InternalId; 5388 5389 if (isExternallyVisible(T->getLinkage())) { 5390 std::string OutName; 5391 llvm::raw_string_ostream Out(OutName); 5392 getCXXABI().getMangleContext().mangleTypeName(T, Out); 5393 Out << Suffix; 5394 5395 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 5396 } else { 5397 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 5398 llvm::ArrayRef<llvm::Metadata *>()); 5399 } 5400 5401 return InternalId; 5402 } 5403 5404 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 5405 return CreateMetadataIdentifierImpl(T, MetadataIdMap, ""); 5406 } 5407 5408 llvm::Metadata * 5409 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) { 5410 return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual"); 5411 } 5412 5413 // Generalize pointer types to a void pointer with the qualifiers of the 5414 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 5415 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 5416 // 'void *'. 5417 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 5418 if (!Ty->isPointerType()) 5419 return Ty; 5420 5421 return Ctx.getPointerType( 5422 QualType(Ctx.VoidTy).withCVRQualifiers( 5423 Ty->getPointeeType().getCVRQualifiers())); 5424 } 5425 5426 // Apply type generalization to a FunctionType's return and argument types 5427 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 5428 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 5429 SmallVector<QualType, 8> GeneralizedParams; 5430 for (auto &Param : FnType->param_types()) 5431 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 5432 5433 return Ctx.getFunctionType( 5434 GeneralizeType(Ctx, FnType->getReturnType()), 5435 GeneralizedParams, FnType->getExtProtoInfo()); 5436 } 5437 5438 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 5439 return Ctx.getFunctionNoProtoType( 5440 GeneralizeType(Ctx, FnType->getReturnType())); 5441 5442 llvm_unreachable("Encountered unknown FunctionType"); 5443 } 5444 5445 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 5446 return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T), 5447 GeneralizedMetadataIdMap, ".generalized"); 5448 } 5449 5450 /// Returns whether this module needs the "all-vtables" type identifier. 5451 bool CodeGenModule::NeedAllVtablesTypeId() const { 5452 // Returns true if at least one of vtable-based CFI checkers is enabled and 5453 // is not in the trapping mode. 5454 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 5455 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 5456 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 5457 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 5458 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 5459 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 5460 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 5461 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 5462 } 5463 5464 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 5465 CharUnits Offset, 5466 const CXXRecordDecl *RD) { 5467 llvm::Metadata *MD = 5468 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 5469 VTable->addTypeMetadata(Offset.getQuantity(), MD); 5470 5471 if (CodeGenOpts.SanitizeCfiCrossDso) 5472 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 5473 VTable->addTypeMetadata(Offset.getQuantity(), 5474 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 5475 5476 if (NeedAllVtablesTypeId()) { 5477 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 5478 VTable->addTypeMetadata(Offset.getQuantity(), MD); 5479 } 5480 } 5481 5482 TargetAttr::ParsedTargetAttr CodeGenModule::filterFunctionTargetAttrs(const TargetAttr *TD) { 5483 assert(TD != nullptr); 5484 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 5485 5486 ParsedAttr.Features.erase( 5487 llvm::remove_if(ParsedAttr.Features, 5488 [&](const std::string &Feat) { 5489 return !Target.isValidFeatureName( 5490 StringRef{Feat}.substr(1)); 5491 }), 5492 ParsedAttr.Features.end()); 5493 return ParsedAttr; 5494 } 5495 5496 5497 // Fills in the supplied string map with the set of target features for the 5498 // passed in function. 5499 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap, 5500 GlobalDecl GD) { 5501 StringRef TargetCPU = Target.getTargetOpts().CPU; 5502 const FunctionDecl *FD = GD.getDecl()->getAsFunction(); 5503 if (const auto *TD = FD->getAttr<TargetAttr>()) { 5504 TargetAttr::ParsedTargetAttr ParsedAttr = filterFunctionTargetAttrs(TD); 5505 5506 // Make a copy of the features as passed on the command line into the 5507 // beginning of the additional features from the function to override. 5508 ParsedAttr.Features.insert(ParsedAttr.Features.begin(), 5509 Target.getTargetOpts().FeaturesAsWritten.begin(), 5510 Target.getTargetOpts().FeaturesAsWritten.end()); 5511 5512 if (ParsedAttr.Architecture != "" && 5513 Target.isValidCPUName(ParsedAttr.Architecture)) 5514 TargetCPU = ParsedAttr.Architecture; 5515 5516 // Now populate the feature map, first with the TargetCPU which is either 5517 // the default or a new one from the target attribute string. Then we'll use 5518 // the passed in features (FeaturesAsWritten) along with the new ones from 5519 // the attribute. 5520 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 5521 ParsedAttr.Features); 5522 } else if (const auto *SD = FD->getAttr<CPUSpecificAttr>()) { 5523 llvm::SmallVector<StringRef, 32> FeaturesTmp; 5524 Target.getCPUSpecificCPUDispatchFeatures( 5525 SD->getCPUName(GD.getMultiVersionIndex())->getName(), FeaturesTmp); 5526 std::vector<std::string> Features(FeaturesTmp.begin(), FeaturesTmp.end()); 5527 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, Features); 5528 } else { 5529 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 5530 Target.getTargetOpts().Features); 5531 } 5532 } 5533 5534 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 5535 if (!SanStats) 5536 SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule()); 5537 5538 return *SanStats; 5539 } 5540 llvm::Value * 5541 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 5542 CodeGenFunction &CGF) { 5543 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 5544 auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 5545 auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 5546 return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy, 5547 "__translate_sampler_initializer"), 5548 {C}); 5549 } 5550