xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 1ac9c98e6c40d9a1e6cb904b414161388af4a89c)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGBlocks.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGCall.h"
19 #include "CGDebugInfo.h"
20 #include "CGObjCRuntime.h"
21 #include "CGOpenCLRuntime.h"
22 #include "CGOpenMPRuntime.h"
23 #include "CGOpenMPRuntimeNVPTX.h"
24 #include "CodeGenFunction.h"
25 #include "CodeGenPGO.h"
26 #include "CodeGenTBAA.h"
27 #include "CoverageMappingGen.h"
28 #include "TargetInfo.h"
29 #include "clang/AST/ASTContext.h"
30 #include "clang/AST/CharUnits.h"
31 #include "clang/AST/DeclCXX.h"
32 #include "clang/AST/DeclObjC.h"
33 #include "clang/AST/DeclTemplate.h"
34 #include "clang/AST/Mangle.h"
35 #include "clang/AST/RecordLayout.h"
36 #include "clang/AST/RecursiveASTVisitor.h"
37 #include "clang/Basic/Builtins.h"
38 #include "clang/Basic/CharInfo.h"
39 #include "clang/Basic/Diagnostic.h"
40 #include "clang/Basic/Module.h"
41 #include "clang/Basic/SourceManager.h"
42 #include "clang/Basic/TargetInfo.h"
43 #include "clang/Basic/Version.h"
44 #include "clang/CodeGen/ConstantInitBuilder.h"
45 #include "clang/Frontend/CodeGenOptions.h"
46 #include "clang/Sema/SemaDiagnostic.h"
47 #include "llvm/ADT/Triple.h"
48 #include "llvm/IR/CallSite.h"
49 #include "llvm/IR/CallingConv.h"
50 #include "llvm/IR/DataLayout.h"
51 #include "llvm/IR/Intrinsics.h"
52 #include "llvm/IR/LLVMContext.h"
53 #include "llvm/IR/Module.h"
54 #include "llvm/ProfileData/InstrProfReader.h"
55 #include "llvm/Support/ConvertUTF.h"
56 #include "llvm/Support/ErrorHandling.h"
57 #include "llvm/Support/MD5.h"
58 
59 using namespace clang;
60 using namespace CodeGen;
61 
62 static const char AnnotationSection[] = "llvm.metadata";
63 
64 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
65   switch (CGM.getTarget().getCXXABI().getKind()) {
66   case TargetCXXABI::GenericAArch64:
67   case TargetCXXABI::GenericARM:
68   case TargetCXXABI::iOS:
69   case TargetCXXABI::iOS64:
70   case TargetCXXABI::WatchOS:
71   case TargetCXXABI::GenericMIPS:
72   case TargetCXXABI::GenericItanium:
73   case TargetCXXABI::WebAssembly:
74     return CreateItaniumCXXABI(CGM);
75   case TargetCXXABI::Microsoft:
76     return CreateMicrosoftCXXABI(CGM);
77   }
78 
79   llvm_unreachable("invalid C++ ABI kind");
80 }
81 
82 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
83                              const PreprocessorOptions &PPO,
84                              const CodeGenOptions &CGO, llvm::Module &M,
85                              DiagnosticsEngine &diags,
86                              CoverageSourceInfo *CoverageInfo)
87     : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
88       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
89       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
90       VMContext(M.getContext()), Types(*this), VTables(*this),
91       SanitizerMD(new SanitizerMetadata(*this)) {
92 
93   // Initialize the type cache.
94   llvm::LLVMContext &LLVMContext = M.getContext();
95   VoidTy = llvm::Type::getVoidTy(LLVMContext);
96   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
97   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
98   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
99   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
100   FloatTy = llvm::Type::getFloatTy(LLVMContext);
101   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
102   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
103   PointerAlignInBytes =
104     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
105   SizeSizeInBytes =
106     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
107   IntAlignInBytes =
108     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
109   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
110   IntPtrTy = llvm::IntegerType::get(LLVMContext,
111     C.getTargetInfo().getMaxPointerWidth());
112   Int8PtrTy = Int8Ty->getPointerTo(0);
113   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
114 
115   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
116   BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC();
117 
118   if (LangOpts.ObjC1)
119     createObjCRuntime();
120   if (LangOpts.OpenCL)
121     createOpenCLRuntime();
122   if (LangOpts.OpenMP)
123     createOpenMPRuntime();
124   if (LangOpts.CUDA)
125     createCUDARuntime();
126 
127   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
128   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
129       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
130     TBAA.reset(new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(),
131                                getCXXABI().getMangleContext()));
132 
133   // If debug info or coverage generation is enabled, create the CGDebugInfo
134   // object.
135   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
136       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
137     DebugInfo.reset(new CGDebugInfo(*this));
138 
139   Block.GlobalUniqueCount = 0;
140 
141   if (C.getLangOpts().ObjC1)
142     ObjCData.reset(new ObjCEntrypoints());
143 
144   if (CodeGenOpts.hasProfileClangUse()) {
145     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
146         CodeGenOpts.ProfileInstrumentUsePath);
147     if (auto E = ReaderOrErr.takeError()) {
148       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
149                                               "Could not read profile %0: %1");
150       llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
151         getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
152                                   << EI.message();
153       });
154     } else
155       PGOReader = std::move(ReaderOrErr.get());
156   }
157 
158   // If coverage mapping generation is enabled, create the
159   // CoverageMappingModuleGen object.
160   if (CodeGenOpts.CoverageMapping)
161     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
162 }
163 
164 CodeGenModule::~CodeGenModule() {}
165 
166 void CodeGenModule::createObjCRuntime() {
167   // This is just isGNUFamily(), but we want to force implementors of
168   // new ABIs to decide how best to do this.
169   switch (LangOpts.ObjCRuntime.getKind()) {
170   case ObjCRuntime::GNUstep:
171   case ObjCRuntime::GCC:
172   case ObjCRuntime::ObjFW:
173     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
174     return;
175 
176   case ObjCRuntime::FragileMacOSX:
177   case ObjCRuntime::MacOSX:
178   case ObjCRuntime::iOS:
179   case ObjCRuntime::WatchOS:
180     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
181     return;
182   }
183   llvm_unreachable("bad runtime kind");
184 }
185 
186 void CodeGenModule::createOpenCLRuntime() {
187   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
188 }
189 
190 void CodeGenModule::createOpenMPRuntime() {
191   // Select a specialized code generation class based on the target, if any.
192   // If it does not exist use the default implementation.
193   switch (getTriple().getArch()) {
194   case llvm::Triple::nvptx:
195   case llvm::Triple::nvptx64:
196     assert(getLangOpts().OpenMPIsDevice &&
197            "OpenMP NVPTX is only prepared to deal with device code.");
198     OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this));
199     break;
200   default:
201     OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
202     break;
203   }
204 }
205 
206 void CodeGenModule::createCUDARuntime() {
207   CUDARuntime.reset(CreateNVCUDARuntime(*this));
208 }
209 
210 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
211   Replacements[Name] = C;
212 }
213 
214 void CodeGenModule::applyReplacements() {
215   for (auto &I : Replacements) {
216     StringRef MangledName = I.first();
217     llvm::Constant *Replacement = I.second;
218     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
219     if (!Entry)
220       continue;
221     auto *OldF = cast<llvm::Function>(Entry);
222     auto *NewF = dyn_cast<llvm::Function>(Replacement);
223     if (!NewF) {
224       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
225         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
226       } else {
227         auto *CE = cast<llvm::ConstantExpr>(Replacement);
228         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
229                CE->getOpcode() == llvm::Instruction::GetElementPtr);
230         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
231       }
232     }
233 
234     // Replace old with new, but keep the old order.
235     OldF->replaceAllUsesWith(Replacement);
236     if (NewF) {
237       NewF->removeFromParent();
238       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
239                                                        NewF);
240     }
241     OldF->eraseFromParent();
242   }
243 }
244 
245 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
246   GlobalValReplacements.push_back(std::make_pair(GV, C));
247 }
248 
249 void CodeGenModule::applyGlobalValReplacements() {
250   for (auto &I : GlobalValReplacements) {
251     llvm::GlobalValue *GV = I.first;
252     llvm::Constant *C = I.second;
253 
254     GV->replaceAllUsesWith(C);
255     GV->eraseFromParent();
256   }
257 }
258 
259 // This is only used in aliases that we created and we know they have a
260 // linear structure.
261 static const llvm::GlobalObject *getAliasedGlobal(
262     const llvm::GlobalIndirectSymbol &GIS) {
263   llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited;
264   const llvm::Constant *C = &GIS;
265   for (;;) {
266     C = C->stripPointerCasts();
267     if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
268       return GO;
269     // stripPointerCasts will not walk over weak aliases.
270     auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C);
271     if (!GIS2)
272       return nullptr;
273     if (!Visited.insert(GIS2).second)
274       return nullptr;
275     C = GIS2->getIndirectSymbol();
276   }
277 }
278 
279 void CodeGenModule::checkAliases() {
280   // Check if the constructed aliases are well formed. It is really unfortunate
281   // that we have to do this in CodeGen, but we only construct mangled names
282   // and aliases during codegen.
283   bool Error = false;
284   DiagnosticsEngine &Diags = getDiags();
285   for (const GlobalDecl &GD : Aliases) {
286     const auto *D = cast<ValueDecl>(GD.getDecl());
287     SourceLocation Location;
288     bool IsIFunc = D->hasAttr<IFuncAttr>();
289     if (const Attr *A = D->getDefiningAttr())
290       Location = A->getLocation();
291     else
292       llvm_unreachable("Not an alias or ifunc?");
293     StringRef MangledName = getMangledName(GD);
294     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
295     auto *Alias  = cast<llvm::GlobalIndirectSymbol>(Entry);
296     const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
297     if (!GV) {
298       Error = true;
299       Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
300     } else if (GV->isDeclaration()) {
301       Error = true;
302       Diags.Report(Location, diag::err_alias_to_undefined)
303           << IsIFunc << IsIFunc;
304     } else if (IsIFunc) {
305       // Check resolver function type.
306       llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(
307           GV->getType()->getPointerElementType());
308       assert(FTy);
309       if (!FTy->getReturnType()->isPointerTy())
310         Diags.Report(Location, diag::err_ifunc_resolver_return);
311       if (FTy->getNumParams())
312         Diags.Report(Location, diag::err_ifunc_resolver_params);
313     }
314 
315     llvm::Constant *Aliasee = Alias->getIndirectSymbol();
316     llvm::GlobalValue *AliaseeGV;
317     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
318       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
319     else
320       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
321 
322     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
323       StringRef AliasSection = SA->getName();
324       if (AliasSection != AliaseeGV->getSection())
325         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
326             << AliasSection << IsIFunc << IsIFunc;
327     }
328 
329     // We have to handle alias to weak aliases in here. LLVM itself disallows
330     // this since the object semantics would not match the IL one. For
331     // compatibility with gcc we implement it by just pointing the alias
332     // to its aliasee's aliasee. We also warn, since the user is probably
333     // expecting the link to be weak.
334     if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) {
335       if (GA->isInterposable()) {
336         Diags.Report(Location, diag::warn_alias_to_weak_alias)
337             << GV->getName() << GA->getName() << IsIFunc;
338         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
339             GA->getIndirectSymbol(), Alias->getType());
340         Alias->setIndirectSymbol(Aliasee);
341       }
342     }
343   }
344   if (!Error)
345     return;
346 
347   for (const GlobalDecl &GD : Aliases) {
348     StringRef MangledName = getMangledName(GD);
349     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
350     auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry);
351     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
352     Alias->eraseFromParent();
353   }
354 }
355 
356 void CodeGenModule::clear() {
357   DeferredDeclsToEmit.clear();
358   if (OpenMPRuntime)
359     OpenMPRuntime->clear();
360 }
361 
362 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
363                                        StringRef MainFile) {
364   if (!hasDiagnostics())
365     return;
366   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
367     if (MainFile.empty())
368       MainFile = "<stdin>";
369     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
370   } else
371     Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Missing
372                                                       << Mismatched;
373 }
374 
375 void CodeGenModule::Release() {
376   EmitDeferred();
377   applyGlobalValReplacements();
378   applyReplacements();
379   checkAliases();
380   EmitCXXGlobalInitFunc();
381   EmitCXXGlobalDtorFunc();
382   EmitCXXThreadLocalInitFunc();
383   if (ObjCRuntime)
384     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
385       AddGlobalCtor(ObjCInitFunction);
386   if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice &&
387       CUDARuntime) {
388     if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction())
389       AddGlobalCtor(CudaCtorFunction);
390     if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction())
391       AddGlobalDtor(CudaDtorFunction);
392   }
393   if (OpenMPRuntime)
394     if (llvm::Function *OpenMPRegistrationFunction =
395             OpenMPRuntime->emitRegistrationFunction())
396       AddGlobalCtor(OpenMPRegistrationFunction, 0);
397   if (PGOReader) {
398     getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext));
399     if (PGOStats.hasDiagnostics())
400       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
401   }
402   EmitCtorList(GlobalCtors, "llvm.global_ctors");
403   EmitCtorList(GlobalDtors, "llvm.global_dtors");
404   EmitGlobalAnnotations();
405   EmitStaticExternCAliases();
406   EmitDeferredUnusedCoverageMappings();
407   if (CoverageMapping)
408     CoverageMapping->emit();
409   if (CodeGenOpts.SanitizeCfiCrossDso) {
410     CodeGenFunction(*this).EmitCfiCheckFail();
411     CodeGenFunction(*this).EmitCfiCheckStub();
412   }
413   emitAtAvailableLinkGuard();
414   emitLLVMUsed();
415   if (SanStats)
416     SanStats->finish();
417 
418   if (CodeGenOpts.Autolink &&
419       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
420     EmitModuleLinkOptions();
421   }
422 
423   // Record mregparm value now so it is visible through rest of codegen.
424   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
425     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
426                               CodeGenOpts.NumRegisterParameters);
427 
428   if (CodeGenOpts.DwarfVersion) {
429     // We actually want the latest version when there are conflicts.
430     // We can change from Warning to Latest if such mode is supported.
431     getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
432                               CodeGenOpts.DwarfVersion);
433   }
434   if (CodeGenOpts.EmitCodeView) {
435     // Indicate that we want CodeView in the metadata.
436     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
437   }
438   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
439     // We don't support LTO with 2 with different StrictVTablePointers
440     // FIXME: we could support it by stripping all the information introduced
441     // by StrictVTablePointers.
442 
443     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
444 
445     llvm::Metadata *Ops[2] = {
446               llvm::MDString::get(VMContext, "StrictVTablePointers"),
447               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
448                   llvm::Type::getInt32Ty(VMContext), 1))};
449 
450     getModule().addModuleFlag(llvm::Module::Require,
451                               "StrictVTablePointersRequirement",
452                               llvm::MDNode::get(VMContext, Ops));
453   }
454   if (DebugInfo)
455     // We support a single version in the linked module. The LLVM
456     // parser will drop debug info with a different version number
457     // (and warn about it, too).
458     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
459                               llvm::DEBUG_METADATA_VERSION);
460 
461   // We need to record the widths of enums and wchar_t, so that we can generate
462   // the correct build attributes in the ARM backend.
463   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
464   if (   Arch == llvm::Triple::arm
465       || Arch == llvm::Triple::armeb
466       || Arch == llvm::Triple::thumb
467       || Arch == llvm::Triple::thumbeb) {
468     // Width of wchar_t in bytes
469     uint64_t WCharWidth =
470         Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
471     getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
472 
473     // The minimum width of an enum in bytes
474     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
475     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
476   }
477 
478   if (CodeGenOpts.SanitizeCfiCrossDso) {
479     // Indicate that we want cross-DSO control flow integrity checks.
480     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
481   }
482 
483   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
484     // Indicate whether __nvvm_reflect should be configured to flush denormal
485     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
486     // property.)
487     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
488                               LangOpts.CUDADeviceFlushDenormalsToZero ? 1 : 0);
489   }
490 
491   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
492     assert(PLevel < 3 && "Invalid PIC Level");
493     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
494     if (Context.getLangOpts().PIE)
495       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
496   }
497 
498   SimplifyPersonality();
499 
500   if (getCodeGenOpts().EmitDeclMetadata)
501     EmitDeclMetadata();
502 
503   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
504     EmitCoverageFile();
505 
506   if (DebugInfo)
507     DebugInfo->finalize();
508 
509   EmitVersionIdentMetadata();
510 
511   EmitTargetMetadata();
512 }
513 
514 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
515   // Make sure that this type is translated.
516   Types.UpdateCompletedType(TD);
517 }
518 
519 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
520   // Make sure that this type is translated.
521   Types.RefreshTypeCacheForClass(RD);
522 }
523 
524 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
525   if (!TBAA)
526     return nullptr;
527   return TBAA->getTBAAInfo(QTy);
528 }
529 
530 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() {
531   if (!TBAA)
532     return nullptr;
533   return TBAA->getTBAAInfoForVTablePtr();
534 }
535 
536 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
537   if (!TBAA)
538     return nullptr;
539   return TBAA->getTBAAStructInfo(QTy);
540 }
541 
542 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy,
543                                                   llvm::MDNode *AccessN,
544                                                   uint64_t O) {
545   if (!TBAA)
546     return nullptr;
547   return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O);
548 }
549 
550 /// Decorate the instruction with a TBAA tag. For both scalar TBAA
551 /// and struct-path aware TBAA, the tag has the same format:
552 /// base type, access type and offset.
553 /// When ConvertTypeToTag is true, we create a tag based on the scalar type.
554 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
555                                                 llvm::MDNode *TBAAInfo,
556                                                 bool ConvertTypeToTag) {
557   if (ConvertTypeToTag && TBAA)
558     Inst->setMetadata(llvm::LLVMContext::MD_tbaa,
559                       TBAA->getTBAAScalarTagInfo(TBAAInfo));
560   else
561     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
562 }
563 
564 void CodeGenModule::DecorateInstructionWithInvariantGroup(
565     llvm::Instruction *I, const CXXRecordDecl *RD) {
566   llvm::Metadata *MD = CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
567   auto *MetaDataNode = dyn_cast<llvm::MDNode>(MD);
568   // Check if we have to wrap MDString in MDNode.
569   if (!MetaDataNode)
570     MetaDataNode = llvm::MDNode::get(getLLVMContext(), MD);
571   I->setMetadata(llvm::LLVMContext::MD_invariant_group, MetaDataNode);
572 }
573 
574 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
575   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
576   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
577 }
578 
579 /// ErrorUnsupported - Print out an error that codegen doesn't support the
580 /// specified stmt yet.
581 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
582   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
583                                                "cannot compile this %0 yet");
584   std::string Msg = Type;
585   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
586     << Msg << S->getSourceRange();
587 }
588 
589 /// ErrorUnsupported - Print out an error that codegen doesn't support the
590 /// specified decl yet.
591 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
592   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
593                                                "cannot compile this %0 yet");
594   std::string Msg = Type;
595   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
596 }
597 
598 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
599   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
600 }
601 
602 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
603                                         const NamedDecl *D) const {
604   // Internal definitions always have default visibility.
605   if (GV->hasLocalLinkage()) {
606     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
607     return;
608   }
609 
610   // Set visibility for definitions.
611   LinkageInfo LV = D->getLinkageAndVisibility();
612   if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage())
613     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
614 }
615 
616 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
617   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
618       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
619       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
620       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
621       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
622 }
623 
624 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
625     CodeGenOptions::TLSModel M) {
626   switch (M) {
627   case CodeGenOptions::GeneralDynamicTLSModel:
628     return llvm::GlobalVariable::GeneralDynamicTLSModel;
629   case CodeGenOptions::LocalDynamicTLSModel:
630     return llvm::GlobalVariable::LocalDynamicTLSModel;
631   case CodeGenOptions::InitialExecTLSModel:
632     return llvm::GlobalVariable::InitialExecTLSModel;
633   case CodeGenOptions::LocalExecTLSModel:
634     return llvm::GlobalVariable::LocalExecTLSModel;
635   }
636   llvm_unreachable("Invalid TLS model!");
637 }
638 
639 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
640   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
641 
642   llvm::GlobalValue::ThreadLocalMode TLM;
643   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
644 
645   // Override the TLS model if it is explicitly specified.
646   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
647     TLM = GetLLVMTLSModel(Attr->getModel());
648   }
649 
650   GV->setThreadLocalMode(TLM);
651 }
652 
653 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
654   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
655 
656   // Some ABIs don't have constructor variants.  Make sure that base and
657   // complete constructors get mangled the same.
658   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
659     if (!getTarget().getCXXABI().hasConstructorVariants()) {
660       CXXCtorType OrigCtorType = GD.getCtorType();
661       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
662       if (OrigCtorType == Ctor_Base)
663         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
664     }
665   }
666 
667   StringRef &FoundStr = MangledDeclNames[CanonicalGD];
668   if (!FoundStr.empty())
669     return FoundStr;
670 
671   const auto *ND = cast<NamedDecl>(GD.getDecl());
672   SmallString<256> Buffer;
673   StringRef Str;
674   if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
675     llvm::raw_svector_ostream Out(Buffer);
676     if (const auto *D = dyn_cast<CXXConstructorDecl>(ND))
677       getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
678     else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND))
679       getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
680     else
681       getCXXABI().getMangleContext().mangleName(ND, Out);
682     Str = Out.str();
683   } else {
684     IdentifierInfo *II = ND->getIdentifier();
685     assert(II && "Attempt to mangle unnamed decl.");
686     const auto *FD = dyn_cast<FunctionDecl>(ND);
687 
688     if (FD &&
689         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
690       llvm::raw_svector_ostream Out(Buffer);
691       Out << "__regcall3__" << II->getName();
692       Str = Out.str();
693     } else {
694       Str = II->getName();
695     }
696   }
697 
698   // Keep the first result in the case of a mangling collision.
699   auto Result = Manglings.insert(std::make_pair(Str, GD));
700   return FoundStr = Result.first->first();
701 }
702 
703 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
704                                              const BlockDecl *BD) {
705   MangleContext &MangleCtx = getCXXABI().getMangleContext();
706   const Decl *D = GD.getDecl();
707 
708   SmallString<256> Buffer;
709   llvm::raw_svector_ostream Out(Buffer);
710   if (!D)
711     MangleCtx.mangleGlobalBlock(BD,
712       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
713   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
714     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
715   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
716     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
717   else
718     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
719 
720   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
721   return Result.first->first();
722 }
723 
724 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
725   return getModule().getNamedValue(Name);
726 }
727 
728 /// AddGlobalCtor - Add a function to the list that will be called before
729 /// main() runs.
730 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
731                                   llvm::Constant *AssociatedData) {
732   // FIXME: Type coercion of void()* types.
733   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
734 }
735 
736 /// AddGlobalDtor - Add a function to the list that will be called
737 /// when the module is unloaded.
738 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) {
739   // FIXME: Type coercion of void()* types.
740   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
741 }
742 
743 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
744   if (Fns.empty()) return;
745 
746   // Ctor function type is void()*.
747   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
748   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
749 
750   // Get the type of a ctor entry, { i32, void ()*, i8* }.
751   llvm::StructType *CtorStructTy = llvm::StructType::get(
752       Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy, nullptr);
753 
754   // Construct the constructor and destructor arrays.
755   ConstantInitBuilder builder(*this);
756   auto ctors = builder.beginArray(CtorStructTy);
757   for (const auto &I : Fns) {
758     auto ctor = ctors.beginStruct(CtorStructTy);
759     ctor.addInt(Int32Ty, I.Priority);
760     ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
761     if (I.AssociatedData)
762       ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
763     else
764       ctor.addNullPointer(VoidPtrTy);
765     ctor.finishAndAddTo(ctors);
766   }
767 
768   auto list =
769     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
770                                 /*constant*/ false,
771                                 llvm::GlobalValue::AppendingLinkage);
772 
773   // The LTO linker doesn't seem to like it when we set an alignment
774   // on appending variables.  Take it off as a workaround.
775   list->setAlignment(0);
776 
777   Fns.clear();
778 }
779 
780 llvm::GlobalValue::LinkageTypes
781 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
782   const auto *D = cast<FunctionDecl>(GD.getDecl());
783 
784   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
785 
786   if (isa<CXXDestructorDecl>(D) &&
787       getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
788                                          GD.getDtorType())) {
789     // Destructor variants in the Microsoft C++ ABI are always internal or
790     // linkonce_odr thunks emitted on an as-needed basis.
791     return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage
792                                    : llvm::GlobalValue::LinkOnceODRLinkage;
793   }
794 
795   if (isa<CXXConstructorDecl>(D) &&
796       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
797       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
798     // Our approach to inheriting constructors is fundamentally different from
799     // that used by the MS ABI, so keep our inheriting constructor thunks
800     // internal rather than trying to pick an unambiguous mangling for them.
801     return llvm::GlobalValue::InternalLinkage;
802   }
803 
804   return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false);
805 }
806 
807 void CodeGenModule::setFunctionDLLStorageClass(GlobalDecl GD, llvm::Function *F) {
808   const auto *FD = cast<FunctionDecl>(GD.getDecl());
809 
810   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) {
811     if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) {
812       // Don't dllexport/import destructor thunks.
813       F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
814       return;
815     }
816   }
817 
818   if (FD->hasAttr<DLLImportAttr>())
819     F->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
820   else if (FD->hasAttr<DLLExportAttr>())
821     F->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
822   else
823     F->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
824 }
825 
826 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
827   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
828   if (!MDS) return nullptr;
829 
830   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
831 }
832 
833 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D,
834                                                     llvm::Function *F) {
835   setNonAliasAttributes(D, F);
836 }
837 
838 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
839                                               const CGFunctionInfo &Info,
840                                               llvm::Function *F) {
841   unsigned CallingConv;
842   AttributeListType AttributeList;
843   ConstructAttributeList(F->getName(), Info, D, AttributeList, CallingConv,
844                          false);
845   F->setAttributes(llvm::AttributeList::get(getLLVMContext(), AttributeList));
846   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
847 }
848 
849 /// Determines whether the language options require us to model
850 /// unwind exceptions.  We treat -fexceptions as mandating this
851 /// except under the fragile ObjC ABI with only ObjC exceptions
852 /// enabled.  This means, for example, that C with -fexceptions
853 /// enables this.
854 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
855   // If exceptions are completely disabled, obviously this is false.
856   if (!LangOpts.Exceptions) return false;
857 
858   // If C++ exceptions are enabled, this is true.
859   if (LangOpts.CXXExceptions) return true;
860 
861   // If ObjC exceptions are enabled, this depends on the ABI.
862   if (LangOpts.ObjCExceptions) {
863     return LangOpts.ObjCRuntime.hasUnwindExceptions();
864   }
865 
866   return true;
867 }
868 
869 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
870                                                            llvm::Function *F) {
871   llvm::AttrBuilder B;
872 
873   if (CodeGenOpts.UnwindTables)
874     B.addAttribute(llvm::Attribute::UWTable);
875 
876   if (!hasUnwindExceptions(LangOpts))
877     B.addAttribute(llvm::Attribute::NoUnwind);
878 
879   if (LangOpts.getStackProtector() == LangOptions::SSPOn)
880     B.addAttribute(llvm::Attribute::StackProtect);
881   else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
882     B.addAttribute(llvm::Attribute::StackProtectStrong);
883   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
884     B.addAttribute(llvm::Attribute::StackProtectReq);
885 
886   if (!D) {
887     // If we don't have a declaration to control inlining, the function isn't
888     // explicitly marked as alwaysinline for semantic reasons, and inlining is
889     // disabled, mark the function as noinline.
890     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
891         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
892       B.addAttribute(llvm::Attribute::NoInline);
893 
894     F->addAttributes(
895         llvm::AttributeList::FunctionIndex,
896         llvm::AttributeList::get(F->getContext(),
897                                  llvm::AttributeList::FunctionIndex, B));
898     return;
899   }
900 
901   if (D->hasAttr<OptimizeNoneAttr>()) {
902     B.addAttribute(llvm::Attribute::OptimizeNone);
903 
904     // OptimizeNone implies noinline; we should not be inlining such functions.
905     B.addAttribute(llvm::Attribute::NoInline);
906     assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
907            "OptimizeNone and AlwaysInline on same function!");
908 
909     // We still need to handle naked functions even though optnone subsumes
910     // much of their semantics.
911     if (D->hasAttr<NakedAttr>())
912       B.addAttribute(llvm::Attribute::Naked);
913 
914     // OptimizeNone wins over OptimizeForSize and MinSize.
915     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
916     F->removeFnAttr(llvm::Attribute::MinSize);
917   } else if (D->hasAttr<NakedAttr>()) {
918     // Naked implies noinline: we should not be inlining such functions.
919     B.addAttribute(llvm::Attribute::Naked);
920     B.addAttribute(llvm::Attribute::NoInline);
921   } else if (D->hasAttr<NoDuplicateAttr>()) {
922     B.addAttribute(llvm::Attribute::NoDuplicate);
923   } else if (D->hasAttr<NoInlineAttr>()) {
924     B.addAttribute(llvm::Attribute::NoInline);
925   } else if (D->hasAttr<AlwaysInlineAttr>() &&
926              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
927     // (noinline wins over always_inline, and we can't specify both in IR)
928     B.addAttribute(llvm::Attribute::AlwaysInline);
929   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
930     // If we're not inlining, then force everything that isn't always_inline to
931     // carry an explicit noinline attribute.
932     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
933       B.addAttribute(llvm::Attribute::NoInline);
934   } else {
935     // Otherwise, propagate the inline hint attribute and potentially use its
936     // absence to mark things as noinline.
937     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
938       if (any_of(FD->redecls(), [&](const FunctionDecl *Redecl) {
939             return Redecl->isInlineSpecified();
940           })) {
941         B.addAttribute(llvm::Attribute::InlineHint);
942       } else if (CodeGenOpts.getInlining() ==
943                      CodeGenOptions::OnlyHintInlining &&
944                  !FD->isInlined() &&
945                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
946         B.addAttribute(llvm::Attribute::NoInline);
947       }
948     }
949   }
950 
951   // Add other optimization related attributes if we are optimizing this
952   // function.
953   if (!D->hasAttr<OptimizeNoneAttr>()) {
954     if (D->hasAttr<ColdAttr>()) {
955       B.addAttribute(llvm::Attribute::OptimizeForSize);
956       B.addAttribute(llvm::Attribute::Cold);
957     }
958 
959     if (D->hasAttr<MinSizeAttr>())
960       B.addAttribute(llvm::Attribute::MinSize);
961   }
962 
963   F->addAttributes(llvm::AttributeList::FunctionIndex,
964                    llvm::AttributeList::get(
965                        F->getContext(), llvm::AttributeList::FunctionIndex, B));
966 
967   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
968   if (alignment)
969     F->setAlignment(alignment);
970 
971   // Some C++ ABIs require 2-byte alignment for member functions, in order to
972   // reserve a bit for differentiating between virtual and non-virtual member
973   // functions. If the current target's C++ ABI requires this and this is a
974   // member function, set its alignment accordingly.
975   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
976     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
977       F->setAlignment(2);
978   }
979 
980   // In the cross-dso CFI mode, we want !type attributes on definitions only.
981   if (CodeGenOpts.SanitizeCfiCrossDso)
982     if (auto *FD = dyn_cast<FunctionDecl>(D))
983       CreateFunctionTypeMetadata(FD, F);
984 }
985 
986 void CodeGenModule::SetCommonAttributes(const Decl *D,
987                                         llvm::GlobalValue *GV) {
988   if (const auto *ND = dyn_cast_or_null<NamedDecl>(D))
989     setGlobalVisibility(GV, ND);
990   else
991     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
992 
993   if (D && D->hasAttr<UsedAttr>())
994     addUsedGlobal(GV);
995 }
996 
997 void CodeGenModule::setAliasAttributes(const Decl *D,
998                                        llvm::GlobalValue *GV) {
999   SetCommonAttributes(D, GV);
1000 
1001   // Process the dllexport attribute based on whether the original definition
1002   // (not necessarily the aliasee) was exported.
1003   if (D->hasAttr<DLLExportAttr>())
1004     GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
1005 }
1006 
1007 void CodeGenModule::setNonAliasAttributes(const Decl *D,
1008                                           llvm::GlobalObject *GO) {
1009   SetCommonAttributes(D, GO);
1010 
1011   if (D)
1012     if (const SectionAttr *SA = D->getAttr<SectionAttr>())
1013       GO->setSection(SA->getName());
1014 
1015   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
1016 }
1017 
1018 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
1019                                                   llvm::Function *F,
1020                                                   const CGFunctionInfo &FI) {
1021   SetLLVMFunctionAttributes(D, FI, F);
1022   SetLLVMFunctionAttributesForDefinition(D, F);
1023 
1024   F->setLinkage(llvm::Function::InternalLinkage);
1025 
1026   setNonAliasAttributes(D, F);
1027 }
1028 
1029 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV,
1030                                          const NamedDecl *ND) {
1031   // Set linkage and visibility in case we never see a definition.
1032   LinkageInfo LV = ND->getLinkageAndVisibility();
1033   if (LV.getLinkage() != ExternalLinkage) {
1034     // Don't set internal linkage on declarations.
1035   } else {
1036     if (ND->hasAttr<DLLImportAttr>()) {
1037       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
1038       GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
1039     } else if (ND->hasAttr<DLLExportAttr>()) {
1040       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
1041     } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) {
1042       // "extern_weak" is overloaded in LLVM; we probably should have
1043       // separate linkage types for this.
1044       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1045     }
1046 
1047     // Set visibility on a declaration only if it's explicit.
1048     if (LV.isVisibilityExplicit())
1049       GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility()));
1050   }
1051 }
1052 
1053 void CodeGenModule::CreateFunctionTypeMetadata(const FunctionDecl *FD,
1054                                                llvm::Function *F) {
1055   // Only if we are checking indirect calls.
1056   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
1057     return;
1058 
1059   // Non-static class methods are handled via vtable pointer checks elsewhere.
1060   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
1061     return;
1062 
1063   // Additionally, if building with cross-DSO support...
1064   if (CodeGenOpts.SanitizeCfiCrossDso) {
1065     // Skip available_externally functions. They won't be codegen'ed in the
1066     // current module anyway.
1067     if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally)
1068       return;
1069   }
1070 
1071   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
1072   F->addTypeMetadata(0, MD);
1073 
1074   // Emit a hash-based bit set entry for cross-DSO calls.
1075   if (CodeGenOpts.SanitizeCfiCrossDso)
1076     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
1077       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
1078 }
1079 
1080 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
1081                                           bool IsIncompleteFunction,
1082                                           bool IsThunk) {
1083   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
1084     // If this is an intrinsic function, set the function's attributes
1085     // to the intrinsic's attributes.
1086     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
1087     return;
1088   }
1089 
1090   const auto *FD = cast<FunctionDecl>(GD.getDecl());
1091 
1092   if (!IsIncompleteFunction)
1093     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
1094 
1095   // Add the Returned attribute for "this", except for iOS 5 and earlier
1096   // where substantial code, including the libstdc++ dylib, was compiled with
1097   // GCC and does not actually return "this".
1098   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
1099       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
1100     assert(!F->arg_empty() &&
1101            F->arg_begin()->getType()
1102              ->canLosslesslyBitCastTo(F->getReturnType()) &&
1103            "unexpected this return");
1104     F->addAttribute(1, llvm::Attribute::Returned);
1105   }
1106 
1107   // Only a few attributes are set on declarations; these may later be
1108   // overridden by a definition.
1109 
1110   setLinkageAndVisibilityForGV(F, FD);
1111 
1112   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
1113     F->setSection(SA->getName());
1114 
1115   if (FD->isReplaceableGlobalAllocationFunction()) {
1116     // A replaceable global allocation function does not act like a builtin by
1117     // default, only if it is invoked by a new-expression or delete-expression.
1118     F->addAttribute(llvm::AttributeList::FunctionIndex,
1119                     llvm::Attribute::NoBuiltin);
1120 
1121     // A sane operator new returns a non-aliasing pointer.
1122     // FIXME: Also add NonNull attribute to the return value
1123     // for the non-nothrow forms?
1124     auto Kind = FD->getDeclName().getCXXOverloadedOperator();
1125     if (getCodeGenOpts().AssumeSaneOperatorNew &&
1126         (Kind == OO_New || Kind == OO_Array_New))
1127       F->addAttribute(llvm::AttributeList::ReturnIndex,
1128                       llvm::Attribute::NoAlias);
1129   }
1130 
1131   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
1132     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1133   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1134     if (MD->isVirtual())
1135       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1136 
1137   // Don't emit entries for function declarations in the cross-DSO mode. This
1138   // is handled with better precision by the receiving DSO.
1139   if (!CodeGenOpts.SanitizeCfiCrossDso)
1140     CreateFunctionTypeMetadata(FD, F);
1141 }
1142 
1143 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
1144   assert(!GV->isDeclaration() &&
1145          "Only globals with definition can force usage.");
1146   LLVMUsed.emplace_back(GV);
1147 }
1148 
1149 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
1150   assert(!GV->isDeclaration() &&
1151          "Only globals with definition can force usage.");
1152   LLVMCompilerUsed.emplace_back(GV);
1153 }
1154 
1155 static void emitUsed(CodeGenModule &CGM, StringRef Name,
1156                      std::vector<llvm::WeakVH> &List) {
1157   // Don't create llvm.used if there is no need.
1158   if (List.empty())
1159     return;
1160 
1161   // Convert List to what ConstantArray needs.
1162   SmallVector<llvm::Constant*, 8> UsedArray;
1163   UsedArray.resize(List.size());
1164   for (unsigned i = 0, e = List.size(); i != e; ++i) {
1165     UsedArray[i] =
1166         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
1167             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
1168   }
1169 
1170   if (UsedArray.empty())
1171     return;
1172   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
1173 
1174   auto *GV = new llvm::GlobalVariable(
1175       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
1176       llvm::ConstantArray::get(ATy, UsedArray), Name);
1177 
1178   GV->setSection("llvm.metadata");
1179 }
1180 
1181 void CodeGenModule::emitLLVMUsed() {
1182   emitUsed(*this, "llvm.used", LLVMUsed);
1183   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
1184 }
1185 
1186 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
1187   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
1188   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1189 }
1190 
1191 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
1192   llvm::SmallString<32> Opt;
1193   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
1194   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1195   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1196 }
1197 
1198 void CodeGenModule::AddDependentLib(StringRef Lib) {
1199   llvm::SmallString<24> Opt;
1200   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
1201   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1202   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1203 }
1204 
1205 /// \brief Add link options implied by the given module, including modules
1206 /// it depends on, using a postorder walk.
1207 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
1208                                     SmallVectorImpl<llvm::Metadata *> &Metadata,
1209                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
1210   // Import this module's parent.
1211   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
1212     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
1213   }
1214 
1215   // Import this module's dependencies.
1216   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
1217     if (Visited.insert(Mod->Imports[I - 1]).second)
1218       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
1219   }
1220 
1221   // Add linker options to link against the libraries/frameworks
1222   // described by this module.
1223   llvm::LLVMContext &Context = CGM.getLLVMContext();
1224   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
1225     // Link against a framework.  Frameworks are currently Darwin only, so we
1226     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
1227     if (Mod->LinkLibraries[I-1].IsFramework) {
1228       llvm::Metadata *Args[2] = {
1229           llvm::MDString::get(Context, "-framework"),
1230           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
1231 
1232       Metadata.push_back(llvm::MDNode::get(Context, Args));
1233       continue;
1234     }
1235 
1236     // Link against a library.
1237     llvm::SmallString<24> Opt;
1238     CGM.getTargetCodeGenInfo().getDependentLibraryOption(
1239       Mod->LinkLibraries[I-1].Library, Opt);
1240     auto *OptString = llvm::MDString::get(Context, Opt);
1241     Metadata.push_back(llvm::MDNode::get(Context, OptString));
1242   }
1243 }
1244 
1245 void CodeGenModule::EmitModuleLinkOptions() {
1246   // Collect the set of all of the modules we want to visit to emit link
1247   // options, which is essentially the imported modules and all of their
1248   // non-explicit child modules.
1249   llvm::SetVector<clang::Module *> LinkModules;
1250   llvm::SmallPtrSet<clang::Module *, 16> Visited;
1251   SmallVector<clang::Module *, 16> Stack;
1252 
1253   // Seed the stack with imported modules.
1254   for (Module *M : ImportedModules) {
1255     // Do not add any link flags when an implementation TU of a module imports
1256     // a header of that same module.
1257     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
1258         !getLangOpts().isCompilingModule())
1259       continue;
1260     if (Visited.insert(M).second)
1261       Stack.push_back(M);
1262   }
1263 
1264   // Find all of the modules to import, making a little effort to prune
1265   // non-leaf modules.
1266   while (!Stack.empty()) {
1267     clang::Module *Mod = Stack.pop_back_val();
1268 
1269     bool AnyChildren = false;
1270 
1271     // Visit the submodules of this module.
1272     for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
1273                                         SubEnd = Mod->submodule_end();
1274          Sub != SubEnd; ++Sub) {
1275       // Skip explicit children; they need to be explicitly imported to be
1276       // linked against.
1277       if ((*Sub)->IsExplicit)
1278         continue;
1279 
1280       if (Visited.insert(*Sub).second) {
1281         Stack.push_back(*Sub);
1282         AnyChildren = true;
1283       }
1284     }
1285 
1286     // We didn't find any children, so add this module to the list of
1287     // modules to link against.
1288     if (!AnyChildren) {
1289       LinkModules.insert(Mod);
1290     }
1291   }
1292 
1293   // Add link options for all of the imported modules in reverse topological
1294   // order.  We don't do anything to try to order import link flags with respect
1295   // to linker options inserted by things like #pragma comment().
1296   SmallVector<llvm::Metadata *, 16> MetadataArgs;
1297   Visited.clear();
1298   for (Module *M : LinkModules)
1299     if (Visited.insert(M).second)
1300       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
1301   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
1302   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
1303 
1304   // Add the linker options metadata flag.
1305   getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options",
1306                             llvm::MDNode::get(getLLVMContext(),
1307                                               LinkerOptionsMetadata));
1308 }
1309 
1310 void CodeGenModule::EmitDeferred() {
1311   // Emit code for any potentially referenced deferred decls.  Since a
1312   // previously unused static decl may become used during the generation of code
1313   // for a static function, iterate until no changes are made.
1314 
1315   if (!DeferredVTables.empty()) {
1316     EmitDeferredVTables();
1317 
1318     // Emitting a vtable doesn't directly cause more vtables to
1319     // become deferred, although it can cause functions to be
1320     // emitted that then need those vtables.
1321     assert(DeferredVTables.empty());
1322   }
1323 
1324   // Stop if we're out of both deferred vtables and deferred declarations.
1325   if (DeferredDeclsToEmit.empty())
1326     return;
1327 
1328   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
1329   // work, it will not interfere with this.
1330   std::vector<DeferredGlobal> CurDeclsToEmit;
1331   CurDeclsToEmit.swap(DeferredDeclsToEmit);
1332 
1333   for (DeferredGlobal &G : CurDeclsToEmit) {
1334     GlobalDecl D = G.GD;
1335     G.GV = nullptr;
1336 
1337     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
1338     // to get GlobalValue with exactly the type we need, not something that
1339     // might had been created for another decl with the same mangled name but
1340     // different type.
1341     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
1342         GetAddrOfGlobal(D, ForDefinition));
1343 
1344     // In case of different address spaces, we may still get a cast, even with
1345     // IsForDefinition equal to true. Query mangled names table to get
1346     // GlobalValue.
1347     if (!GV)
1348       GV = GetGlobalValue(getMangledName(D));
1349 
1350     // Make sure GetGlobalValue returned non-null.
1351     assert(GV);
1352 
1353     // Check to see if we've already emitted this.  This is necessary
1354     // for a couple of reasons: first, decls can end up in the
1355     // deferred-decls queue multiple times, and second, decls can end
1356     // up with definitions in unusual ways (e.g. by an extern inline
1357     // function acquiring a strong function redefinition).  Just
1358     // ignore these cases.
1359     if (!GV->isDeclaration())
1360       continue;
1361 
1362     // Otherwise, emit the definition and move on to the next one.
1363     EmitGlobalDefinition(D, GV);
1364 
1365     // If we found out that we need to emit more decls, do that recursively.
1366     // This has the advantage that the decls are emitted in a DFS and related
1367     // ones are close together, which is convenient for testing.
1368     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
1369       EmitDeferred();
1370       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
1371     }
1372   }
1373 }
1374 
1375 void CodeGenModule::EmitGlobalAnnotations() {
1376   if (Annotations.empty())
1377     return;
1378 
1379   // Create a new global variable for the ConstantStruct in the Module.
1380   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
1381     Annotations[0]->getType(), Annotations.size()), Annotations);
1382   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
1383                                       llvm::GlobalValue::AppendingLinkage,
1384                                       Array, "llvm.global.annotations");
1385   gv->setSection(AnnotationSection);
1386 }
1387 
1388 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
1389   llvm::Constant *&AStr = AnnotationStrings[Str];
1390   if (AStr)
1391     return AStr;
1392 
1393   // Not found yet, create a new global.
1394   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
1395   auto *gv =
1396       new llvm::GlobalVariable(getModule(), s->getType(), true,
1397                                llvm::GlobalValue::PrivateLinkage, s, ".str");
1398   gv->setSection(AnnotationSection);
1399   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1400   AStr = gv;
1401   return gv;
1402 }
1403 
1404 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
1405   SourceManager &SM = getContext().getSourceManager();
1406   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
1407   if (PLoc.isValid())
1408     return EmitAnnotationString(PLoc.getFilename());
1409   return EmitAnnotationString(SM.getBufferName(Loc));
1410 }
1411 
1412 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
1413   SourceManager &SM = getContext().getSourceManager();
1414   PresumedLoc PLoc = SM.getPresumedLoc(L);
1415   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
1416     SM.getExpansionLineNumber(L);
1417   return llvm::ConstantInt::get(Int32Ty, LineNo);
1418 }
1419 
1420 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
1421                                                 const AnnotateAttr *AA,
1422                                                 SourceLocation L) {
1423   // Get the globals for file name, annotation, and the line number.
1424   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
1425                  *UnitGV = EmitAnnotationUnit(L),
1426                  *LineNoCst = EmitAnnotationLineNo(L);
1427 
1428   // Create the ConstantStruct for the global annotation.
1429   llvm::Constant *Fields[4] = {
1430     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
1431     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
1432     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
1433     LineNoCst
1434   };
1435   return llvm::ConstantStruct::getAnon(Fields);
1436 }
1437 
1438 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
1439                                          llvm::GlobalValue *GV) {
1440   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1441   // Get the struct elements for these annotations.
1442   for (const auto *I : D->specific_attrs<AnnotateAttr>())
1443     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
1444 }
1445 
1446 bool CodeGenModule::isInSanitizerBlacklist(llvm::Function *Fn,
1447                                            SourceLocation Loc) const {
1448   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1449   // Blacklist by function name.
1450   if (SanitizerBL.isBlacklistedFunction(Fn->getName()))
1451     return true;
1452   // Blacklist by location.
1453   if (Loc.isValid())
1454     return SanitizerBL.isBlacklistedLocation(Loc);
1455   // If location is unknown, this may be a compiler-generated function. Assume
1456   // it's located in the main file.
1457   auto &SM = Context.getSourceManager();
1458   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
1459     return SanitizerBL.isBlacklistedFile(MainFile->getName());
1460   }
1461   return false;
1462 }
1463 
1464 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV,
1465                                            SourceLocation Loc, QualType Ty,
1466                                            StringRef Category) const {
1467   // For now globals can be blacklisted only in ASan and KASan.
1468   if (!LangOpts.Sanitize.hasOneOf(
1469           SanitizerKind::Address | SanitizerKind::KernelAddress))
1470     return false;
1471   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1472   if (SanitizerBL.isBlacklistedGlobal(GV->getName(), Category))
1473     return true;
1474   if (SanitizerBL.isBlacklistedLocation(Loc, Category))
1475     return true;
1476   // Check global type.
1477   if (!Ty.isNull()) {
1478     // Drill down the array types: if global variable of a fixed type is
1479     // blacklisted, we also don't instrument arrays of them.
1480     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
1481       Ty = AT->getElementType();
1482     Ty = Ty.getCanonicalType().getUnqualifiedType();
1483     // We allow to blacklist only record types (classes, structs etc.)
1484     if (Ty->isRecordType()) {
1485       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
1486       if (SanitizerBL.isBlacklistedType(TypeStr, Category))
1487         return true;
1488     }
1489   }
1490   return false;
1491 }
1492 
1493 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
1494                                    StringRef Category) const {
1495   if (!LangOpts.XRayInstrument)
1496     return false;
1497   const auto &XRayFilter = getContext().getXRayFilter();
1498   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
1499   auto Attr = XRayFunctionFilter::ImbueAttribute::NONE;
1500   if (Loc.isValid())
1501     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
1502   if (Attr == ImbueAttr::NONE)
1503     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
1504   switch (Attr) {
1505   case ImbueAttr::NONE:
1506     return false;
1507   case ImbueAttr::ALWAYS:
1508     Fn->addFnAttr("function-instrument", "xray-always");
1509     break;
1510   case ImbueAttr::NEVER:
1511     Fn->addFnAttr("function-instrument", "xray-never");
1512     break;
1513   }
1514   return true;
1515 }
1516 
1517 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
1518   // Never defer when EmitAllDecls is specified.
1519   if (LangOpts.EmitAllDecls)
1520     return true;
1521 
1522   return getContext().DeclMustBeEmitted(Global);
1523 }
1524 
1525 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
1526   if (const auto *FD = dyn_cast<FunctionDecl>(Global))
1527     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1528       // Implicit template instantiations may change linkage if they are later
1529       // explicitly instantiated, so they should not be emitted eagerly.
1530       return false;
1531   if (const auto *VD = dyn_cast<VarDecl>(Global))
1532     if (Context.getInlineVariableDefinitionKind(VD) ==
1533         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
1534       // A definition of an inline constexpr static data member may change
1535       // linkage later if it's redeclared outside the class.
1536       return false;
1537   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
1538   // codegen for global variables, because they may be marked as threadprivate.
1539   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
1540       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global))
1541     return false;
1542 
1543   return true;
1544 }
1545 
1546 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor(
1547     const CXXUuidofExpr* E) {
1548   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
1549   // well-formed.
1550   StringRef Uuid = E->getUuidStr();
1551   std::string Name = "_GUID_" + Uuid.lower();
1552   std::replace(Name.begin(), Name.end(), '-', '_');
1553 
1554   // The UUID descriptor should be pointer aligned.
1555   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
1556 
1557   // Look for an existing global.
1558   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
1559     return ConstantAddress(GV, Alignment);
1560 
1561   llvm::Constant *Init = EmitUuidofInitializer(Uuid);
1562   assert(Init && "failed to initialize as constant");
1563 
1564   auto *GV = new llvm::GlobalVariable(
1565       getModule(), Init->getType(),
1566       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
1567   if (supportsCOMDAT())
1568     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
1569   return ConstantAddress(GV, Alignment);
1570 }
1571 
1572 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
1573   const AliasAttr *AA = VD->getAttr<AliasAttr>();
1574   assert(AA && "No alias?");
1575 
1576   CharUnits Alignment = getContext().getDeclAlign(VD);
1577   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
1578 
1579   // See if there is already something with the target's name in the module.
1580   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1581   if (Entry) {
1582     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1583     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
1584     return ConstantAddress(Ptr, Alignment);
1585   }
1586 
1587   llvm::Constant *Aliasee;
1588   if (isa<llvm::FunctionType>(DeclTy))
1589     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
1590                                       GlobalDecl(cast<FunctionDecl>(VD)),
1591                                       /*ForVTable=*/false);
1592   else
1593     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1594                                     llvm::PointerType::getUnqual(DeclTy),
1595                                     nullptr);
1596 
1597   auto *F = cast<llvm::GlobalValue>(Aliasee);
1598   F->setLinkage(llvm::Function::ExternalWeakLinkage);
1599   WeakRefReferences.insert(F);
1600 
1601   return ConstantAddress(Aliasee, Alignment);
1602 }
1603 
1604 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
1605   const auto *Global = cast<ValueDecl>(GD.getDecl());
1606 
1607   // Weak references don't produce any output by themselves.
1608   if (Global->hasAttr<WeakRefAttr>())
1609     return;
1610 
1611   // If this is an alias definition (which otherwise looks like a declaration)
1612   // emit it now.
1613   if (Global->hasAttr<AliasAttr>())
1614     return EmitAliasDefinition(GD);
1615 
1616   // IFunc like an alias whose value is resolved at runtime by calling resolver.
1617   if (Global->hasAttr<IFuncAttr>())
1618     return emitIFuncDefinition(GD);
1619 
1620   // If this is CUDA, be selective about which declarations we emit.
1621   if (LangOpts.CUDA) {
1622     if (LangOpts.CUDAIsDevice) {
1623       if (!Global->hasAttr<CUDADeviceAttr>() &&
1624           !Global->hasAttr<CUDAGlobalAttr>() &&
1625           !Global->hasAttr<CUDAConstantAttr>() &&
1626           !Global->hasAttr<CUDASharedAttr>())
1627         return;
1628     } else {
1629       // We need to emit host-side 'shadows' for all global
1630       // device-side variables because the CUDA runtime needs their
1631       // size and host-side address in order to provide access to
1632       // their device-side incarnations.
1633 
1634       // So device-only functions are the only things we skip.
1635       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
1636           Global->hasAttr<CUDADeviceAttr>())
1637         return;
1638 
1639       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
1640              "Expected Variable or Function");
1641     }
1642   }
1643 
1644   if (LangOpts.OpenMP) {
1645     // If this is OpenMP device, check if it is legal to emit this global
1646     // normally.
1647     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
1648       return;
1649     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
1650       if (MustBeEmitted(Global))
1651         EmitOMPDeclareReduction(DRD);
1652       return;
1653     }
1654   }
1655 
1656   // Ignore declarations, they will be emitted on their first use.
1657   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
1658     // Forward declarations are emitted lazily on first use.
1659     if (!FD->doesThisDeclarationHaveABody()) {
1660       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
1661         return;
1662 
1663       StringRef MangledName = getMangledName(GD);
1664 
1665       // Compute the function info and LLVM type.
1666       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
1667       llvm::Type *Ty = getTypes().GetFunctionType(FI);
1668 
1669       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
1670                               /*DontDefer=*/false);
1671       return;
1672     }
1673   } else {
1674     const auto *VD = cast<VarDecl>(Global);
1675     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
1676     // We need to emit device-side global CUDA variables even if a
1677     // variable does not have a definition -- we still need to define
1678     // host-side shadow for it.
1679     bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
1680                            !VD->hasDefinition() &&
1681                            (VD->hasAttr<CUDAConstantAttr>() ||
1682                             VD->hasAttr<CUDADeviceAttr>());
1683     if (!MustEmitForCuda &&
1684         VD->isThisDeclarationADefinition() != VarDecl::Definition &&
1685         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
1686       // If this declaration may have caused an inline variable definition to
1687       // change linkage, make sure that it's emitted.
1688       if (Context.getInlineVariableDefinitionKind(VD) ==
1689           ASTContext::InlineVariableDefinitionKind::Strong)
1690         GetAddrOfGlobalVar(VD);
1691       return;
1692     }
1693   }
1694 
1695   // Defer code generation to first use when possible, e.g. if this is an inline
1696   // function. If the global must always be emitted, do it eagerly if possible
1697   // to benefit from cache locality.
1698   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
1699     // Emit the definition if it can't be deferred.
1700     EmitGlobalDefinition(GD);
1701     return;
1702   }
1703 
1704   // If we're deferring emission of a C++ variable with an
1705   // initializer, remember the order in which it appeared in the file.
1706   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
1707       cast<VarDecl>(Global)->hasInit()) {
1708     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
1709     CXXGlobalInits.push_back(nullptr);
1710   }
1711 
1712   StringRef MangledName = getMangledName(GD);
1713   if (llvm::GlobalValue *GV = GetGlobalValue(MangledName)) {
1714     // The value has already been used and should therefore be emitted.
1715     addDeferredDeclToEmit(GV, GD);
1716   } else if (MustBeEmitted(Global)) {
1717     // The value must be emitted, but cannot be emitted eagerly.
1718     assert(!MayBeEmittedEagerly(Global));
1719     addDeferredDeclToEmit(/*GV=*/nullptr, GD);
1720   } else {
1721     // Otherwise, remember that we saw a deferred decl with this name.  The
1722     // first use of the mangled name will cause it to move into
1723     // DeferredDeclsToEmit.
1724     DeferredDecls[MangledName] = GD;
1725   }
1726 }
1727 
1728 // Check if T is a class type with a destructor that's not dllimport.
1729 static bool HasNonDllImportDtor(QualType T) {
1730   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
1731     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1732       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
1733         return true;
1734 
1735   return false;
1736 }
1737 
1738 namespace {
1739   struct FunctionIsDirectlyRecursive :
1740     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
1741     const StringRef Name;
1742     const Builtin::Context &BI;
1743     bool Result;
1744     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
1745       Name(N), BI(C), Result(false) {
1746     }
1747     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
1748 
1749     bool TraverseCallExpr(CallExpr *E) {
1750       const FunctionDecl *FD = E->getDirectCallee();
1751       if (!FD)
1752         return true;
1753       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1754       if (Attr && Name == Attr->getLabel()) {
1755         Result = true;
1756         return false;
1757       }
1758       unsigned BuiltinID = FD->getBuiltinID();
1759       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
1760         return true;
1761       StringRef BuiltinName = BI.getName(BuiltinID);
1762       if (BuiltinName.startswith("__builtin_") &&
1763           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
1764         Result = true;
1765         return false;
1766       }
1767       return true;
1768     }
1769   };
1770 
1771   // Make sure we're not referencing non-imported vars or functions.
1772   struct DLLImportFunctionVisitor
1773       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
1774     bool SafeToInline = true;
1775 
1776     bool shouldVisitImplicitCode() const { return true; }
1777 
1778     bool VisitVarDecl(VarDecl *VD) {
1779       if (VD->getTLSKind()) {
1780         // A thread-local variable cannot be imported.
1781         SafeToInline = false;
1782         return SafeToInline;
1783       }
1784 
1785       // A variable definition might imply a destructor call.
1786       if (VD->isThisDeclarationADefinition())
1787         SafeToInline = !HasNonDllImportDtor(VD->getType());
1788 
1789       return SafeToInline;
1790     }
1791 
1792     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
1793       if (const auto *D = E->getTemporary()->getDestructor())
1794         SafeToInline = D->hasAttr<DLLImportAttr>();
1795       return SafeToInline;
1796     }
1797 
1798     bool VisitDeclRefExpr(DeclRefExpr *E) {
1799       ValueDecl *VD = E->getDecl();
1800       if (isa<FunctionDecl>(VD))
1801         SafeToInline = VD->hasAttr<DLLImportAttr>();
1802       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
1803         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
1804       return SafeToInline;
1805     }
1806 
1807     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
1808       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
1809       return SafeToInline;
1810     }
1811 
1812     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
1813       CXXMethodDecl *M = E->getMethodDecl();
1814       if (!M) {
1815         // Call through a pointer to member function. This is safe to inline.
1816         SafeToInline = true;
1817       } else {
1818         SafeToInline = M->hasAttr<DLLImportAttr>();
1819       }
1820       return SafeToInline;
1821     }
1822 
1823     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
1824       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
1825       return SafeToInline;
1826     }
1827 
1828     bool VisitCXXNewExpr(CXXNewExpr *E) {
1829       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
1830       return SafeToInline;
1831     }
1832   };
1833 }
1834 
1835 // isTriviallyRecursive - Check if this function calls another
1836 // decl that, because of the asm attribute or the other decl being a builtin,
1837 // ends up pointing to itself.
1838 bool
1839 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
1840   StringRef Name;
1841   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
1842     // asm labels are a special kind of mangling we have to support.
1843     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1844     if (!Attr)
1845       return false;
1846     Name = Attr->getLabel();
1847   } else {
1848     Name = FD->getName();
1849   }
1850 
1851   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
1852   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
1853   return Walker.Result;
1854 }
1855 
1856 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
1857   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
1858     return true;
1859   const auto *F = cast<FunctionDecl>(GD.getDecl());
1860   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
1861     return false;
1862 
1863   if (F->hasAttr<DLLImportAttr>()) {
1864     // Check whether it would be safe to inline this dllimport function.
1865     DLLImportFunctionVisitor Visitor;
1866     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
1867     if (!Visitor.SafeToInline)
1868       return false;
1869 
1870     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
1871       // Implicit destructor invocations aren't captured in the AST, so the
1872       // check above can't see them. Check for them manually here.
1873       for (const Decl *Member : Dtor->getParent()->decls())
1874         if (isa<FieldDecl>(Member))
1875           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
1876             return false;
1877       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
1878         if (HasNonDllImportDtor(B.getType()))
1879           return false;
1880     }
1881   }
1882 
1883   // PR9614. Avoid cases where the source code is lying to us. An available
1884   // externally function should have an equivalent function somewhere else,
1885   // but a function that calls itself is clearly not equivalent to the real
1886   // implementation.
1887   // This happens in glibc's btowc and in some configure checks.
1888   return !isTriviallyRecursive(F);
1889 }
1890 
1891 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
1892   const auto *D = cast<ValueDecl>(GD.getDecl());
1893 
1894   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
1895                                  Context.getSourceManager(),
1896                                  "Generating code for declaration");
1897 
1898   if (isa<FunctionDecl>(D)) {
1899     // At -O0, don't generate IR for functions with available_externally
1900     // linkage.
1901     if (!shouldEmitFunction(GD))
1902       return;
1903 
1904     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
1905       // Make sure to emit the definition(s) before we emit the thunks.
1906       // This is necessary for the generation of certain thunks.
1907       if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method))
1908         ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType()));
1909       else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method))
1910         ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType()));
1911       else
1912         EmitGlobalFunctionDefinition(GD, GV);
1913 
1914       if (Method->isVirtual())
1915         getVTables().EmitThunks(GD);
1916 
1917       return;
1918     }
1919 
1920     return EmitGlobalFunctionDefinition(GD, GV);
1921   }
1922 
1923   if (const auto *VD = dyn_cast<VarDecl>(D))
1924     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
1925 
1926   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
1927 }
1928 
1929 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1930                                                       llvm::Function *NewFn);
1931 
1932 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
1933 /// module, create and return an llvm Function with the specified type. If there
1934 /// is something in the module with the specified name, return it potentially
1935 /// bitcasted to the right type.
1936 ///
1937 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1938 /// to set the attributes on the function when it is first created.
1939 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
1940     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
1941     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
1942     ForDefinition_t IsForDefinition) {
1943   const Decl *D = GD.getDecl();
1944 
1945   // Lookup the entry, lazily creating it if necessary.
1946   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1947   if (Entry) {
1948     if (WeakRefReferences.erase(Entry)) {
1949       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
1950       if (FD && !FD->hasAttr<WeakAttr>())
1951         Entry->setLinkage(llvm::Function::ExternalLinkage);
1952     }
1953 
1954     // Handle dropped DLL attributes.
1955     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
1956       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
1957 
1958     // If there are two attempts to define the same mangled name, issue an
1959     // error.
1960     if (IsForDefinition && !Entry->isDeclaration()) {
1961       GlobalDecl OtherGD;
1962       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
1963       // to make sure that we issue an error only once.
1964       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
1965           (GD.getCanonicalDecl().getDecl() !=
1966            OtherGD.getCanonicalDecl().getDecl()) &&
1967           DiagnosedConflictingDefinitions.insert(GD).second) {
1968         getDiags().Report(D->getLocation(),
1969                           diag::err_duplicate_mangled_name);
1970         getDiags().Report(OtherGD.getDecl()->getLocation(),
1971                           diag::note_previous_definition);
1972       }
1973     }
1974 
1975     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
1976         (Entry->getType()->getElementType() == Ty)) {
1977       return Entry;
1978     }
1979 
1980     // Make sure the result is of the correct type.
1981     // (If function is requested for a definition, we always need to create a new
1982     // function, not just return a bitcast.)
1983     if (!IsForDefinition)
1984       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
1985   }
1986 
1987   // This function doesn't have a complete type (for example, the return
1988   // type is an incomplete struct). Use a fake type instead, and make
1989   // sure not to try to set attributes.
1990   bool IsIncompleteFunction = false;
1991 
1992   llvm::FunctionType *FTy;
1993   if (isa<llvm::FunctionType>(Ty)) {
1994     FTy = cast<llvm::FunctionType>(Ty);
1995   } else {
1996     FTy = llvm::FunctionType::get(VoidTy, false);
1997     IsIncompleteFunction = true;
1998   }
1999 
2000   llvm::Function *F =
2001       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
2002                              Entry ? StringRef() : MangledName, &getModule());
2003 
2004   // If we already created a function with the same mangled name (but different
2005   // type) before, take its name and add it to the list of functions to be
2006   // replaced with F at the end of CodeGen.
2007   //
2008   // This happens if there is a prototype for a function (e.g. "int f()") and
2009   // then a definition of a different type (e.g. "int f(int x)").
2010   if (Entry) {
2011     F->takeName(Entry);
2012 
2013     // This might be an implementation of a function without a prototype, in
2014     // which case, try to do special replacement of calls which match the new
2015     // prototype.  The really key thing here is that we also potentially drop
2016     // arguments from the call site so as to make a direct call, which makes the
2017     // inliner happier and suppresses a number of optimizer warnings (!) about
2018     // dropping arguments.
2019     if (!Entry->use_empty()) {
2020       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
2021       Entry->removeDeadConstantUsers();
2022     }
2023 
2024     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
2025         F, Entry->getType()->getElementType()->getPointerTo());
2026     addGlobalValReplacement(Entry, BC);
2027   }
2028 
2029   assert(F->getName() == MangledName && "name was uniqued!");
2030   if (D)
2031     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
2032   if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) {
2033     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex);
2034     F->addAttributes(llvm::AttributeList::FunctionIndex,
2035                      llvm::AttributeList::get(
2036                          VMContext, llvm::AttributeList::FunctionIndex, B));
2037   }
2038 
2039   if (!DontDefer) {
2040     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
2041     // each other bottoming out with the base dtor.  Therefore we emit non-base
2042     // dtors on usage, even if there is no dtor definition in the TU.
2043     if (D && isa<CXXDestructorDecl>(D) &&
2044         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
2045                                            GD.getDtorType()))
2046       addDeferredDeclToEmit(F, GD);
2047 
2048     // This is the first use or definition of a mangled name.  If there is a
2049     // deferred decl with this name, remember that we need to emit it at the end
2050     // of the file.
2051     auto DDI = DeferredDecls.find(MangledName);
2052     if (DDI != DeferredDecls.end()) {
2053       // Move the potentially referenced deferred decl to the
2054       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
2055       // don't need it anymore).
2056       addDeferredDeclToEmit(F, DDI->second);
2057       DeferredDecls.erase(DDI);
2058 
2059       // Otherwise, there are cases we have to worry about where we're
2060       // using a declaration for which we must emit a definition but where
2061       // we might not find a top-level definition:
2062       //   - member functions defined inline in their classes
2063       //   - friend functions defined inline in some class
2064       //   - special member functions with implicit definitions
2065       // If we ever change our AST traversal to walk into class methods,
2066       // this will be unnecessary.
2067       //
2068       // We also don't emit a definition for a function if it's going to be an
2069       // entry in a vtable, unless it's already marked as used.
2070     } else if (getLangOpts().CPlusPlus && D) {
2071       // Look for a declaration that's lexically in a record.
2072       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
2073            FD = FD->getPreviousDecl()) {
2074         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
2075           if (FD->doesThisDeclarationHaveABody()) {
2076             addDeferredDeclToEmit(F, GD.getWithDecl(FD));
2077             break;
2078           }
2079         }
2080       }
2081     }
2082   }
2083 
2084   // Make sure the result is of the requested type.
2085   if (!IsIncompleteFunction) {
2086     assert(F->getType()->getElementType() == Ty);
2087     return F;
2088   }
2089 
2090   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2091   return llvm::ConstantExpr::getBitCast(F, PTy);
2092 }
2093 
2094 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
2095 /// non-null, then this function will use the specified type if it has to
2096 /// create it (this occurs when we see a definition of the function).
2097 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
2098                                                  llvm::Type *Ty,
2099                                                  bool ForVTable,
2100                                                  bool DontDefer,
2101                                               ForDefinition_t IsForDefinition) {
2102   // If there was no specific requested type, just convert it now.
2103   if (!Ty) {
2104     const auto *FD = cast<FunctionDecl>(GD.getDecl());
2105     auto CanonTy = Context.getCanonicalType(FD->getType());
2106     Ty = getTypes().ConvertFunctionType(CanonTy, FD);
2107   }
2108 
2109   StringRef MangledName = getMangledName(GD);
2110   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
2111                                  /*IsThunk=*/false, llvm::AttributeList(),
2112                                  IsForDefinition);
2113 }
2114 
2115 static const FunctionDecl *
2116 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
2117   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
2118   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
2119 
2120   IdentifierInfo &CII = C.Idents.get(Name);
2121   for (const auto &Result : DC->lookup(&CII))
2122     if (const auto FD = dyn_cast<FunctionDecl>(Result))
2123       return FD;
2124 
2125   if (!C.getLangOpts().CPlusPlus)
2126     return nullptr;
2127 
2128   // Demangle the premangled name from getTerminateFn()
2129   IdentifierInfo &CXXII =
2130       (Name == "_ZSt9terminatev" || Name == "\01?terminate@@YAXXZ")
2131           ? C.Idents.get("terminate")
2132           : C.Idents.get(Name);
2133 
2134   for (const auto &N : {"__cxxabiv1", "std"}) {
2135     IdentifierInfo &NS = C.Idents.get(N);
2136     for (const auto &Result : DC->lookup(&NS)) {
2137       NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
2138       if (auto LSD = dyn_cast<LinkageSpecDecl>(Result))
2139         for (const auto &Result : LSD->lookup(&NS))
2140           if ((ND = dyn_cast<NamespaceDecl>(Result)))
2141             break;
2142 
2143       if (ND)
2144         for (const auto &Result : ND->lookup(&CXXII))
2145           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
2146             return FD;
2147     }
2148   }
2149 
2150   return nullptr;
2151 }
2152 
2153 /// CreateRuntimeFunction - Create a new runtime function with the specified
2154 /// type and name.
2155 llvm::Constant *
2156 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
2157                                      llvm::AttributeList ExtraAttrs,
2158                                      bool Local) {
2159   llvm::Constant *C =
2160       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
2161                               /*DontDefer=*/false, /*IsThunk=*/false,
2162                               ExtraAttrs);
2163 
2164   if (auto *F = dyn_cast<llvm::Function>(C)) {
2165     if (F->empty()) {
2166       F->setCallingConv(getRuntimeCC());
2167 
2168       if (!Local && getTriple().isOSBinFormatCOFF() &&
2169           !getCodeGenOpts().LTOVisibilityPublicStd) {
2170         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
2171         if (!FD || FD->hasAttr<DLLImportAttr>()) {
2172           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
2173           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
2174         }
2175       }
2176     }
2177   }
2178 
2179   return C;
2180 }
2181 
2182 /// CreateBuiltinFunction - Create a new builtin function with the specified
2183 /// type and name.
2184 llvm::Constant *
2185 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, StringRef Name,
2186                                      llvm::AttributeList ExtraAttrs) {
2187   llvm::Constant *C =
2188       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
2189                               /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs);
2190   if (auto *F = dyn_cast<llvm::Function>(C))
2191     if (F->empty())
2192       F->setCallingConv(getBuiltinCC());
2193   return C;
2194 }
2195 
2196 /// isTypeConstant - Determine whether an object of this type can be emitted
2197 /// as a constant.
2198 ///
2199 /// If ExcludeCtor is true, the duration when the object's constructor runs
2200 /// will not be considered. The caller will need to verify that the object is
2201 /// not written to during its construction.
2202 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
2203   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
2204     return false;
2205 
2206   if (Context.getLangOpts().CPlusPlus) {
2207     if (const CXXRecordDecl *Record
2208           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
2209       return ExcludeCtor && !Record->hasMutableFields() &&
2210              Record->hasTrivialDestructor();
2211   }
2212 
2213   return true;
2214 }
2215 
2216 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
2217 /// create and return an llvm GlobalVariable with the specified type.  If there
2218 /// is something in the module with the specified name, return it potentially
2219 /// bitcasted to the right type.
2220 ///
2221 /// If D is non-null, it specifies a decl that correspond to this.  This is used
2222 /// to set the attributes on the global when it is first created.
2223 ///
2224 /// If IsForDefinition is true, it is guranteed that an actual global with
2225 /// type Ty will be returned, not conversion of a variable with the same
2226 /// mangled name but some other type.
2227 llvm::Constant *
2228 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
2229                                      llvm::PointerType *Ty,
2230                                      const VarDecl *D,
2231                                      ForDefinition_t IsForDefinition) {
2232   // Lookup the entry, lazily creating it if necessary.
2233   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2234   if (Entry) {
2235     if (WeakRefReferences.erase(Entry)) {
2236       if (D && !D->hasAttr<WeakAttr>())
2237         Entry->setLinkage(llvm::Function::ExternalLinkage);
2238     }
2239 
2240     // Handle dropped DLL attributes.
2241     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
2242       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
2243 
2244     if (Entry->getType() == Ty)
2245       return Entry;
2246 
2247     // If there are two attempts to define the same mangled name, issue an
2248     // error.
2249     if (IsForDefinition && !Entry->isDeclaration()) {
2250       GlobalDecl OtherGD;
2251       const VarDecl *OtherD;
2252 
2253       // Check that D is not yet in DiagnosedConflictingDefinitions is required
2254       // to make sure that we issue an error only once.
2255       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
2256           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
2257           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
2258           OtherD->hasInit() &&
2259           DiagnosedConflictingDefinitions.insert(D).second) {
2260         getDiags().Report(D->getLocation(),
2261                           diag::err_duplicate_mangled_name);
2262         getDiags().Report(OtherGD.getDecl()->getLocation(),
2263                           diag::note_previous_definition);
2264       }
2265     }
2266 
2267     // Make sure the result is of the correct type.
2268     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
2269       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
2270 
2271     // (If global is requested for a definition, we always need to create a new
2272     // global, not just return a bitcast.)
2273     if (!IsForDefinition)
2274       return llvm::ConstantExpr::getBitCast(Entry, Ty);
2275   }
2276 
2277   unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace());
2278   auto *GV = new llvm::GlobalVariable(
2279       getModule(), Ty->getElementType(), false,
2280       llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
2281       llvm::GlobalVariable::NotThreadLocal, AddrSpace);
2282 
2283   // If we already created a global with the same mangled name (but different
2284   // type) before, take its name and remove it from its parent.
2285   if (Entry) {
2286     GV->takeName(Entry);
2287 
2288     if (!Entry->use_empty()) {
2289       llvm::Constant *NewPtrForOldDecl =
2290           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
2291       Entry->replaceAllUsesWith(NewPtrForOldDecl);
2292     }
2293 
2294     Entry->eraseFromParent();
2295   }
2296 
2297   // This is the first use or definition of a mangled name.  If there is a
2298   // deferred decl with this name, remember that we need to emit it at the end
2299   // of the file.
2300   auto DDI = DeferredDecls.find(MangledName);
2301   if (DDI != DeferredDecls.end()) {
2302     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
2303     // list, and remove it from DeferredDecls (since we don't need it anymore).
2304     addDeferredDeclToEmit(GV, DDI->second);
2305     DeferredDecls.erase(DDI);
2306   }
2307 
2308   // Handle things which are present even on external declarations.
2309   if (D) {
2310     // FIXME: This code is overly simple and should be merged with other global
2311     // handling.
2312     GV->setConstant(isTypeConstant(D->getType(), false));
2313 
2314     GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
2315 
2316     setLinkageAndVisibilityForGV(GV, D);
2317 
2318     if (D->getTLSKind()) {
2319       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
2320         CXXThreadLocals.push_back(D);
2321       setTLSMode(GV, *D);
2322     }
2323 
2324     // If required by the ABI, treat declarations of static data members with
2325     // inline initializers as definitions.
2326     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
2327       EmitGlobalVarDefinition(D);
2328     }
2329 
2330     // Handle XCore specific ABI requirements.
2331     if (getTriple().getArch() == llvm::Triple::xcore &&
2332         D->getLanguageLinkage() == CLanguageLinkage &&
2333         D->getType().isConstant(Context) &&
2334         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
2335       GV->setSection(".cp.rodata");
2336   }
2337 
2338   if (AddrSpace != Ty->getAddressSpace())
2339     return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty);
2340 
2341   return GV;
2342 }
2343 
2344 llvm::Constant *
2345 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD,
2346                                ForDefinition_t IsForDefinition) {
2347   const Decl *D = GD.getDecl();
2348   if (isa<CXXConstructorDecl>(D))
2349     return getAddrOfCXXStructor(cast<CXXConstructorDecl>(D),
2350                                 getFromCtorType(GD.getCtorType()),
2351                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
2352                                 /*DontDefer=*/false, IsForDefinition);
2353   else if (isa<CXXDestructorDecl>(D))
2354     return getAddrOfCXXStructor(cast<CXXDestructorDecl>(D),
2355                                 getFromDtorType(GD.getDtorType()),
2356                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
2357                                 /*DontDefer=*/false, IsForDefinition);
2358   else if (isa<CXXMethodDecl>(D)) {
2359     auto FInfo = &getTypes().arrangeCXXMethodDeclaration(
2360         cast<CXXMethodDecl>(D));
2361     auto Ty = getTypes().GetFunctionType(*FInfo);
2362     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
2363                              IsForDefinition);
2364   } else if (isa<FunctionDecl>(D)) {
2365     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2366     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2367     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
2368                              IsForDefinition);
2369   } else
2370     return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr,
2371                               IsForDefinition);
2372 }
2373 
2374 llvm::GlobalVariable *
2375 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
2376                                       llvm::Type *Ty,
2377                                       llvm::GlobalValue::LinkageTypes Linkage) {
2378   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
2379   llvm::GlobalVariable *OldGV = nullptr;
2380 
2381   if (GV) {
2382     // Check if the variable has the right type.
2383     if (GV->getType()->getElementType() == Ty)
2384       return GV;
2385 
2386     // Because C++ name mangling, the only way we can end up with an already
2387     // existing global with the same name is if it has been declared extern "C".
2388     assert(GV->isDeclaration() && "Declaration has wrong type!");
2389     OldGV = GV;
2390   }
2391 
2392   // Create a new variable.
2393   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
2394                                 Linkage, nullptr, Name);
2395 
2396   if (OldGV) {
2397     // Replace occurrences of the old variable if needed.
2398     GV->takeName(OldGV);
2399 
2400     if (!OldGV->use_empty()) {
2401       llvm::Constant *NewPtrForOldDecl =
2402       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
2403       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
2404     }
2405 
2406     OldGV->eraseFromParent();
2407   }
2408 
2409   if (supportsCOMDAT() && GV->isWeakForLinker() &&
2410       !GV->hasAvailableExternallyLinkage())
2411     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2412 
2413   return GV;
2414 }
2415 
2416 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
2417 /// given global variable.  If Ty is non-null and if the global doesn't exist,
2418 /// then it will be created with the specified type instead of whatever the
2419 /// normal requested type would be. If IsForDefinition is true, it is guranteed
2420 /// that an actual global with type Ty will be returned, not conversion of a
2421 /// variable with the same mangled name but some other type.
2422 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
2423                                                   llvm::Type *Ty,
2424                                            ForDefinition_t IsForDefinition) {
2425   assert(D->hasGlobalStorage() && "Not a global variable");
2426   QualType ASTTy = D->getType();
2427   if (!Ty)
2428     Ty = getTypes().ConvertTypeForMem(ASTTy);
2429 
2430   llvm::PointerType *PTy =
2431     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
2432 
2433   StringRef MangledName = getMangledName(D);
2434   return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition);
2435 }
2436 
2437 /// CreateRuntimeVariable - Create a new runtime global variable with the
2438 /// specified type and name.
2439 llvm::Constant *
2440 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
2441                                      StringRef Name) {
2442   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr);
2443 }
2444 
2445 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
2446   assert(!D->getInit() && "Cannot emit definite definitions here!");
2447 
2448   StringRef MangledName = getMangledName(D);
2449   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
2450 
2451   // We already have a definition, not declaration, with the same mangled name.
2452   // Emitting of declaration is not required (and actually overwrites emitted
2453   // definition).
2454   if (GV && !GV->isDeclaration())
2455     return;
2456 
2457   // If we have not seen a reference to this variable yet, place it into the
2458   // deferred declarations table to be emitted if needed later.
2459   if (!MustBeEmitted(D) && !GV) {
2460       DeferredDecls[MangledName] = D;
2461       return;
2462   }
2463 
2464   // The tentative definition is the only definition.
2465   EmitGlobalVarDefinition(D);
2466 }
2467 
2468 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
2469   return Context.toCharUnitsFromBits(
2470       getDataLayout().getTypeStoreSizeInBits(Ty));
2471 }
2472 
2473 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D,
2474                                                  unsigned AddrSpace) {
2475   if (D && LangOpts.CUDA && LangOpts.CUDAIsDevice) {
2476     if (D->hasAttr<CUDAConstantAttr>())
2477       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant);
2478     else if (D->hasAttr<CUDASharedAttr>())
2479       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared);
2480     else
2481       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device);
2482   }
2483 
2484   return AddrSpace;
2485 }
2486 
2487 template<typename SomeDecl>
2488 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
2489                                                llvm::GlobalValue *GV) {
2490   if (!getLangOpts().CPlusPlus)
2491     return;
2492 
2493   // Must have 'used' attribute, or else inline assembly can't rely on
2494   // the name existing.
2495   if (!D->template hasAttr<UsedAttr>())
2496     return;
2497 
2498   // Must have internal linkage and an ordinary name.
2499   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
2500     return;
2501 
2502   // Must be in an extern "C" context. Entities declared directly within
2503   // a record are not extern "C" even if the record is in such a context.
2504   const SomeDecl *First = D->getFirstDecl();
2505   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
2506     return;
2507 
2508   // OK, this is an internal linkage entity inside an extern "C" linkage
2509   // specification. Make a note of that so we can give it the "expected"
2510   // mangled name if nothing else is using that name.
2511   std::pair<StaticExternCMap::iterator, bool> R =
2512       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
2513 
2514   // If we have multiple internal linkage entities with the same name
2515   // in extern "C" regions, none of them gets that name.
2516   if (!R.second)
2517     R.first->second = nullptr;
2518 }
2519 
2520 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
2521   if (!CGM.supportsCOMDAT())
2522     return false;
2523 
2524   if (D.hasAttr<SelectAnyAttr>())
2525     return true;
2526 
2527   GVALinkage Linkage;
2528   if (auto *VD = dyn_cast<VarDecl>(&D))
2529     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
2530   else
2531     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
2532 
2533   switch (Linkage) {
2534   case GVA_Internal:
2535   case GVA_AvailableExternally:
2536   case GVA_StrongExternal:
2537     return false;
2538   case GVA_DiscardableODR:
2539   case GVA_StrongODR:
2540     return true;
2541   }
2542   llvm_unreachable("No such linkage");
2543 }
2544 
2545 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
2546                                           llvm::GlobalObject &GO) {
2547   if (!shouldBeInCOMDAT(*this, D))
2548     return;
2549   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
2550 }
2551 
2552 /// Pass IsTentative as true if you want to create a tentative definition.
2553 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
2554                                             bool IsTentative) {
2555   // OpenCL global variables of sampler type are translated to function calls,
2556   // therefore no need to be translated.
2557   QualType ASTTy = D->getType();
2558   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
2559     return;
2560 
2561   llvm::Constant *Init = nullptr;
2562   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
2563   bool NeedsGlobalCtor = false;
2564   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
2565 
2566   const VarDecl *InitDecl;
2567   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
2568 
2569   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
2570   // as part of their declaration."  Sema has already checked for
2571   // error cases, so we just need to set Init to UndefValue.
2572   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
2573       D->hasAttr<CUDASharedAttr>())
2574     Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
2575   else if (!InitExpr) {
2576     // This is a tentative definition; tentative definitions are
2577     // implicitly initialized with { 0 }.
2578     //
2579     // Note that tentative definitions are only emitted at the end of
2580     // a translation unit, so they should never have incomplete
2581     // type. In addition, EmitTentativeDefinition makes sure that we
2582     // never attempt to emit a tentative definition if a real one
2583     // exists. A use may still exists, however, so we still may need
2584     // to do a RAUW.
2585     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
2586     Init = EmitNullConstant(D->getType());
2587   } else {
2588     initializedGlobalDecl = GlobalDecl(D);
2589     Init = EmitConstantInit(*InitDecl);
2590 
2591     if (!Init) {
2592       QualType T = InitExpr->getType();
2593       if (D->getType()->isReferenceType())
2594         T = D->getType();
2595 
2596       if (getLangOpts().CPlusPlus) {
2597         Init = EmitNullConstant(T);
2598         NeedsGlobalCtor = true;
2599       } else {
2600         ErrorUnsupported(D, "static initializer");
2601         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
2602       }
2603     } else {
2604       // We don't need an initializer, so remove the entry for the delayed
2605       // initializer position (just in case this entry was delayed) if we
2606       // also don't need to register a destructor.
2607       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
2608         DelayedCXXInitPosition.erase(D);
2609     }
2610   }
2611 
2612   llvm::Type* InitType = Init->getType();
2613   llvm::Constant *Entry =
2614       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
2615 
2616   // Strip off a bitcast if we got one back.
2617   if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
2618     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
2619            CE->getOpcode() == llvm::Instruction::AddrSpaceCast ||
2620            // All zero index gep.
2621            CE->getOpcode() == llvm::Instruction::GetElementPtr);
2622     Entry = CE->getOperand(0);
2623   }
2624 
2625   // Entry is now either a Function or GlobalVariable.
2626   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
2627 
2628   // We have a definition after a declaration with the wrong type.
2629   // We must make a new GlobalVariable* and update everything that used OldGV
2630   // (a declaration or tentative definition) with the new GlobalVariable*
2631   // (which will be a definition).
2632   //
2633   // This happens if there is a prototype for a global (e.g.
2634   // "extern int x[];") and then a definition of a different type (e.g.
2635   // "int x[10];"). This also happens when an initializer has a different type
2636   // from the type of the global (this happens with unions).
2637   if (!GV ||
2638       GV->getType()->getElementType() != InitType ||
2639       GV->getType()->getAddressSpace() !=
2640        GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) {
2641 
2642     // Move the old entry aside so that we'll create a new one.
2643     Entry->setName(StringRef());
2644 
2645     // Make a new global with the correct type, this is now guaranteed to work.
2646     GV = cast<llvm::GlobalVariable>(
2647         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)));
2648 
2649     // Replace all uses of the old global with the new global
2650     llvm::Constant *NewPtrForOldDecl =
2651         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
2652     Entry->replaceAllUsesWith(NewPtrForOldDecl);
2653 
2654     // Erase the old global, since it is no longer used.
2655     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
2656   }
2657 
2658   MaybeHandleStaticInExternC(D, GV);
2659 
2660   if (D->hasAttr<AnnotateAttr>())
2661     AddGlobalAnnotations(D, GV);
2662 
2663   // Set the llvm linkage type as appropriate.
2664   llvm::GlobalValue::LinkageTypes Linkage =
2665       getLLVMLinkageVarDefinition(D, GV->isConstant());
2666 
2667   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
2668   // the device. [...]"
2669   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
2670   // __device__, declares a variable that: [...]
2671   // Is accessible from all the threads within the grid and from the host
2672   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
2673   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
2674   if (GV && LangOpts.CUDA) {
2675     if (LangOpts.CUDAIsDevice) {
2676       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>())
2677         GV->setExternallyInitialized(true);
2678     } else {
2679       // Host-side shadows of external declarations of device-side
2680       // global variables become internal definitions. These have to
2681       // be internal in order to prevent name conflicts with global
2682       // host variables with the same name in a different TUs.
2683       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) {
2684         Linkage = llvm::GlobalValue::InternalLinkage;
2685 
2686         // Shadow variables and their properties must be registered
2687         // with CUDA runtime.
2688         unsigned Flags = 0;
2689         if (!D->hasDefinition())
2690           Flags |= CGCUDARuntime::ExternDeviceVar;
2691         if (D->hasAttr<CUDAConstantAttr>())
2692           Flags |= CGCUDARuntime::ConstantDeviceVar;
2693         getCUDARuntime().registerDeviceVar(*GV, Flags);
2694       } else if (D->hasAttr<CUDASharedAttr>())
2695         // __shared__ variables are odd. Shadows do get created, but
2696         // they are not registered with the CUDA runtime, so they
2697         // can't really be used to access their device-side
2698         // counterparts. It's not clear yet whether it's nvcc's bug or
2699         // a feature, but we've got to do the same for compatibility.
2700         Linkage = llvm::GlobalValue::InternalLinkage;
2701     }
2702   }
2703   GV->setInitializer(Init);
2704 
2705   // If it is safe to mark the global 'constant', do so now.
2706   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
2707                   isTypeConstant(D->getType(), true));
2708 
2709   // If it is in a read-only section, mark it 'constant'.
2710   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
2711     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
2712     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
2713       GV->setConstant(true);
2714   }
2715 
2716   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
2717 
2718 
2719   // On Darwin, if the normal linkage of a C++ thread_local variable is
2720   // LinkOnce or Weak, we keep the normal linkage to prevent multiple
2721   // copies within a linkage unit; otherwise, the backing variable has
2722   // internal linkage and all accesses should just be calls to the
2723   // Itanium-specified entry point, which has the normal linkage of the
2724   // variable. This is to preserve the ability to change the implementation
2725   // behind the scenes.
2726   if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic &&
2727       Context.getTargetInfo().getTriple().isOSDarwin() &&
2728       !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) &&
2729       !llvm::GlobalVariable::isWeakLinkage(Linkage))
2730     Linkage = llvm::GlobalValue::InternalLinkage;
2731 
2732   GV->setLinkage(Linkage);
2733   if (D->hasAttr<DLLImportAttr>())
2734     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
2735   else if (D->hasAttr<DLLExportAttr>())
2736     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
2737   else
2738     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
2739 
2740   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
2741     // common vars aren't constant even if declared const.
2742     GV->setConstant(false);
2743     // Tentative definition of global variables may be initialized with
2744     // non-zero null pointers. In this case they should have weak linkage
2745     // since common linkage must have zero initializer and must not have
2746     // explicit section therefore cannot have non-zero initial value.
2747     if (!GV->getInitializer()->isNullValue())
2748       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
2749   }
2750 
2751   setNonAliasAttributes(D, GV);
2752 
2753   if (D->getTLSKind() && !GV->isThreadLocal()) {
2754     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
2755       CXXThreadLocals.push_back(D);
2756     setTLSMode(GV, *D);
2757   }
2758 
2759   maybeSetTrivialComdat(*D, *GV);
2760 
2761   // Emit the initializer function if necessary.
2762   if (NeedsGlobalCtor || NeedsGlobalDtor)
2763     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
2764 
2765   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
2766 
2767   // Emit global variable debug information.
2768   if (CGDebugInfo *DI = getModuleDebugInfo())
2769     if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
2770       DI->EmitGlobalVariable(GV, D);
2771 }
2772 
2773 static bool isVarDeclStrongDefinition(const ASTContext &Context,
2774                                       CodeGenModule &CGM, const VarDecl *D,
2775                                       bool NoCommon) {
2776   // Don't give variables common linkage if -fno-common was specified unless it
2777   // was overridden by a NoCommon attribute.
2778   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
2779     return true;
2780 
2781   // C11 6.9.2/2:
2782   //   A declaration of an identifier for an object that has file scope without
2783   //   an initializer, and without a storage-class specifier or with the
2784   //   storage-class specifier static, constitutes a tentative definition.
2785   if (D->getInit() || D->hasExternalStorage())
2786     return true;
2787 
2788   // A variable cannot be both common and exist in a section.
2789   if (D->hasAttr<SectionAttr>())
2790     return true;
2791 
2792   // Thread local vars aren't considered common linkage.
2793   if (D->getTLSKind())
2794     return true;
2795 
2796   // Tentative definitions marked with WeakImportAttr are true definitions.
2797   if (D->hasAttr<WeakImportAttr>())
2798     return true;
2799 
2800   // A variable cannot be both common and exist in a comdat.
2801   if (shouldBeInCOMDAT(CGM, *D))
2802     return true;
2803 
2804   // Declarations with a required alignment do not have common linkage in MSVC
2805   // mode.
2806   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
2807     if (D->hasAttr<AlignedAttr>())
2808       return true;
2809     QualType VarType = D->getType();
2810     if (Context.isAlignmentRequired(VarType))
2811       return true;
2812 
2813     if (const auto *RT = VarType->getAs<RecordType>()) {
2814       const RecordDecl *RD = RT->getDecl();
2815       for (const FieldDecl *FD : RD->fields()) {
2816         if (FD->isBitField())
2817           continue;
2818         if (FD->hasAttr<AlignedAttr>())
2819           return true;
2820         if (Context.isAlignmentRequired(FD->getType()))
2821           return true;
2822       }
2823     }
2824   }
2825 
2826   return false;
2827 }
2828 
2829 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
2830     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
2831   if (Linkage == GVA_Internal)
2832     return llvm::Function::InternalLinkage;
2833 
2834   if (D->hasAttr<WeakAttr>()) {
2835     if (IsConstantVariable)
2836       return llvm::GlobalVariable::WeakODRLinkage;
2837     else
2838       return llvm::GlobalVariable::WeakAnyLinkage;
2839   }
2840 
2841   // We are guaranteed to have a strong definition somewhere else,
2842   // so we can use available_externally linkage.
2843   if (Linkage == GVA_AvailableExternally)
2844     return llvm::GlobalValue::AvailableExternallyLinkage;
2845 
2846   // Note that Apple's kernel linker doesn't support symbol
2847   // coalescing, so we need to avoid linkonce and weak linkages there.
2848   // Normally, this means we just map to internal, but for explicit
2849   // instantiations we'll map to external.
2850 
2851   // In C++, the compiler has to emit a definition in every translation unit
2852   // that references the function.  We should use linkonce_odr because
2853   // a) if all references in this translation unit are optimized away, we
2854   // don't need to codegen it.  b) if the function persists, it needs to be
2855   // merged with other definitions. c) C++ has the ODR, so we know the
2856   // definition is dependable.
2857   if (Linkage == GVA_DiscardableODR)
2858     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
2859                                             : llvm::Function::InternalLinkage;
2860 
2861   // An explicit instantiation of a template has weak linkage, since
2862   // explicit instantiations can occur in multiple translation units
2863   // and must all be equivalent. However, we are not allowed to
2864   // throw away these explicit instantiations.
2865   //
2866   // We don't currently support CUDA device code spread out across multiple TUs,
2867   // so say that CUDA templates are either external (for kernels) or internal.
2868   // This lets llvm perform aggressive inter-procedural optimizations.
2869   if (Linkage == GVA_StrongODR) {
2870     if (Context.getLangOpts().AppleKext)
2871       return llvm::Function::ExternalLinkage;
2872     if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice)
2873       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
2874                                           : llvm::Function::InternalLinkage;
2875     return llvm::Function::WeakODRLinkage;
2876   }
2877 
2878   // C++ doesn't have tentative definitions and thus cannot have common
2879   // linkage.
2880   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
2881       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
2882                                  CodeGenOpts.NoCommon))
2883     return llvm::GlobalVariable::CommonLinkage;
2884 
2885   // selectany symbols are externally visible, so use weak instead of
2886   // linkonce.  MSVC optimizes away references to const selectany globals, so
2887   // all definitions should be the same and ODR linkage should be used.
2888   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
2889   if (D->hasAttr<SelectAnyAttr>())
2890     return llvm::GlobalVariable::WeakODRLinkage;
2891 
2892   // Otherwise, we have strong external linkage.
2893   assert(Linkage == GVA_StrongExternal);
2894   return llvm::GlobalVariable::ExternalLinkage;
2895 }
2896 
2897 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
2898     const VarDecl *VD, bool IsConstant) {
2899   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
2900   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
2901 }
2902 
2903 /// Replace the uses of a function that was declared with a non-proto type.
2904 /// We want to silently drop extra arguments from call sites
2905 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
2906                                           llvm::Function *newFn) {
2907   // Fast path.
2908   if (old->use_empty()) return;
2909 
2910   llvm::Type *newRetTy = newFn->getReturnType();
2911   SmallVector<llvm::Value*, 4> newArgs;
2912   SmallVector<llvm::OperandBundleDef, 1> newBundles;
2913 
2914   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
2915          ui != ue; ) {
2916     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
2917     llvm::User *user = use->getUser();
2918 
2919     // Recognize and replace uses of bitcasts.  Most calls to
2920     // unprototyped functions will use bitcasts.
2921     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
2922       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
2923         replaceUsesOfNonProtoConstant(bitcast, newFn);
2924       continue;
2925     }
2926 
2927     // Recognize calls to the function.
2928     llvm::CallSite callSite(user);
2929     if (!callSite) continue;
2930     if (!callSite.isCallee(&*use)) continue;
2931 
2932     // If the return types don't match exactly, then we can't
2933     // transform this call unless it's dead.
2934     if (callSite->getType() != newRetTy && !callSite->use_empty())
2935       continue;
2936 
2937     // Get the call site's attribute list.
2938     SmallVector<llvm::AttributeSetNode *, 8> newAttrs;
2939     llvm::AttributeList oldAttrs = callSite.getAttributes();
2940 
2941     // Collect any return attributes from the call.
2942     newAttrs.push_back(oldAttrs.getRetAttributes());
2943 
2944     // If the function was passed too few arguments, don't transform.
2945     unsigned newNumArgs = newFn->arg_size();
2946     if (callSite.arg_size() < newNumArgs) continue;
2947 
2948     // If extra arguments were passed, we silently drop them.
2949     // If any of the types mismatch, we don't transform.
2950     unsigned argNo = 0;
2951     bool dontTransform = false;
2952     for (llvm::Function::arg_iterator ai = newFn->arg_begin(),
2953            ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) {
2954       if (callSite.getArgument(argNo)->getType() != ai->getType()) {
2955         dontTransform = true;
2956         break;
2957       }
2958 
2959       // Add any parameter attributes.
2960       newAttrs.push_back(oldAttrs.getParamAttributes(argNo + 1));
2961     }
2962     if (dontTransform)
2963       continue;
2964 
2965     newAttrs.push_back(oldAttrs.getFnAttributes());
2966 
2967     // Okay, we can transform this.  Create the new call instruction and copy
2968     // over the required information.
2969     newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
2970 
2971     // Copy over any operand bundles.
2972     callSite.getOperandBundlesAsDefs(newBundles);
2973 
2974     llvm::CallSite newCall;
2975     if (callSite.isCall()) {
2976       newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "",
2977                                        callSite.getInstruction());
2978     } else {
2979       auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction());
2980       newCall = llvm::InvokeInst::Create(newFn,
2981                                          oldInvoke->getNormalDest(),
2982                                          oldInvoke->getUnwindDest(),
2983                                          newArgs, newBundles, "",
2984                                          callSite.getInstruction());
2985     }
2986     newArgs.clear(); // for the next iteration
2987 
2988     if (!newCall->getType()->isVoidTy())
2989       newCall->takeName(callSite.getInstruction());
2990     newCall.setAttributes(
2991         llvm::AttributeList::get(newFn->getContext(), newAttrs));
2992     newCall.setCallingConv(callSite.getCallingConv());
2993 
2994     // Finally, remove the old call, replacing any uses with the new one.
2995     if (!callSite->use_empty())
2996       callSite->replaceAllUsesWith(newCall.getInstruction());
2997 
2998     // Copy debug location attached to CI.
2999     if (callSite->getDebugLoc())
3000       newCall->setDebugLoc(callSite->getDebugLoc());
3001 
3002     callSite->eraseFromParent();
3003   }
3004 }
3005 
3006 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
3007 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
3008 /// existing call uses of the old function in the module, this adjusts them to
3009 /// call the new function directly.
3010 ///
3011 /// This is not just a cleanup: the always_inline pass requires direct calls to
3012 /// functions to be able to inline them.  If there is a bitcast in the way, it
3013 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
3014 /// run at -O0.
3015 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
3016                                                       llvm::Function *NewFn) {
3017   // If we're redefining a global as a function, don't transform it.
3018   if (!isa<llvm::Function>(Old)) return;
3019 
3020   replaceUsesOfNonProtoConstant(Old, NewFn);
3021 }
3022 
3023 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
3024   auto DK = VD->isThisDeclarationADefinition();
3025   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
3026     return;
3027 
3028   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
3029   // If we have a definition, this might be a deferred decl. If the
3030   // instantiation is explicit, make sure we emit it at the end.
3031   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
3032     GetAddrOfGlobalVar(VD);
3033 
3034   EmitTopLevelDecl(VD);
3035 }
3036 
3037 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
3038                                                  llvm::GlobalValue *GV) {
3039   const auto *D = cast<FunctionDecl>(GD.getDecl());
3040 
3041   // Compute the function info and LLVM type.
3042   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3043   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3044 
3045   // Get or create the prototype for the function.
3046   if (!GV || (GV->getType()->getElementType() != Ty))
3047     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
3048                                                    /*DontDefer=*/true,
3049                                                    ForDefinition));
3050 
3051   // Already emitted.
3052   if (!GV->isDeclaration())
3053     return;
3054 
3055   // We need to set linkage and visibility on the function before
3056   // generating code for it because various parts of IR generation
3057   // want to propagate this information down (e.g. to local static
3058   // declarations).
3059   auto *Fn = cast<llvm::Function>(GV);
3060   setFunctionLinkage(GD, Fn);
3061   setFunctionDLLStorageClass(GD, Fn);
3062 
3063   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
3064   setGlobalVisibility(Fn, D);
3065 
3066   MaybeHandleStaticInExternC(D, Fn);
3067 
3068   maybeSetTrivialComdat(*D, *Fn);
3069 
3070   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
3071 
3072   setFunctionDefinitionAttributes(D, Fn);
3073   SetLLVMFunctionAttributesForDefinition(D, Fn);
3074 
3075   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
3076     AddGlobalCtor(Fn, CA->getPriority());
3077   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
3078     AddGlobalDtor(Fn, DA->getPriority());
3079   if (D->hasAttr<AnnotateAttr>())
3080     AddGlobalAnnotations(D, Fn);
3081 }
3082 
3083 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
3084   const auto *D = cast<ValueDecl>(GD.getDecl());
3085   const AliasAttr *AA = D->getAttr<AliasAttr>();
3086   assert(AA && "Not an alias?");
3087 
3088   StringRef MangledName = getMangledName(GD);
3089 
3090   if (AA->getAliasee() == MangledName) {
3091     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
3092     return;
3093   }
3094 
3095   // If there is a definition in the module, then it wins over the alias.
3096   // This is dubious, but allow it to be safe.  Just ignore the alias.
3097   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3098   if (Entry && !Entry->isDeclaration())
3099     return;
3100 
3101   Aliases.push_back(GD);
3102 
3103   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
3104 
3105   // Create a reference to the named value.  This ensures that it is emitted
3106   // if a deferred decl.
3107   llvm::Constant *Aliasee;
3108   if (isa<llvm::FunctionType>(DeclTy))
3109     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
3110                                       /*ForVTable=*/false);
3111   else
3112     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
3113                                     llvm::PointerType::getUnqual(DeclTy),
3114                                     /*D=*/nullptr);
3115 
3116   // Create the new alias itself, but don't set a name yet.
3117   auto *GA = llvm::GlobalAlias::create(
3118       DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule());
3119 
3120   if (Entry) {
3121     if (GA->getAliasee() == Entry) {
3122       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
3123       return;
3124     }
3125 
3126     assert(Entry->isDeclaration());
3127 
3128     // If there is a declaration in the module, then we had an extern followed
3129     // by the alias, as in:
3130     //   extern int test6();
3131     //   ...
3132     //   int test6() __attribute__((alias("test7")));
3133     //
3134     // Remove it and replace uses of it with the alias.
3135     GA->takeName(Entry);
3136 
3137     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
3138                                                           Entry->getType()));
3139     Entry->eraseFromParent();
3140   } else {
3141     GA->setName(MangledName);
3142   }
3143 
3144   // Set attributes which are particular to an alias; this is a
3145   // specialization of the attributes which may be set on a global
3146   // variable/function.
3147   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
3148       D->isWeakImported()) {
3149     GA->setLinkage(llvm::Function::WeakAnyLinkage);
3150   }
3151 
3152   if (const auto *VD = dyn_cast<VarDecl>(D))
3153     if (VD->getTLSKind())
3154       setTLSMode(GA, *VD);
3155 
3156   setAliasAttributes(D, GA);
3157 }
3158 
3159 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
3160   const auto *D = cast<ValueDecl>(GD.getDecl());
3161   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
3162   assert(IFA && "Not an ifunc?");
3163 
3164   StringRef MangledName = getMangledName(GD);
3165 
3166   if (IFA->getResolver() == MangledName) {
3167     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
3168     return;
3169   }
3170 
3171   // Report an error if some definition overrides ifunc.
3172   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3173   if (Entry && !Entry->isDeclaration()) {
3174     GlobalDecl OtherGD;
3175     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3176         DiagnosedConflictingDefinitions.insert(GD).second) {
3177       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name);
3178       Diags.Report(OtherGD.getDecl()->getLocation(),
3179                    diag::note_previous_definition);
3180     }
3181     return;
3182   }
3183 
3184   Aliases.push_back(GD);
3185 
3186   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
3187   llvm::Constant *Resolver =
3188       GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD,
3189                               /*ForVTable=*/false);
3190   llvm::GlobalIFunc *GIF =
3191       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
3192                                 "", Resolver, &getModule());
3193   if (Entry) {
3194     if (GIF->getResolver() == Entry) {
3195       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
3196       return;
3197     }
3198     assert(Entry->isDeclaration());
3199 
3200     // If there is a declaration in the module, then we had an extern followed
3201     // by the ifunc, as in:
3202     //   extern int test();
3203     //   ...
3204     //   int test() __attribute__((ifunc("resolver")));
3205     //
3206     // Remove it and replace uses of it with the ifunc.
3207     GIF->takeName(Entry);
3208 
3209     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
3210                                                           Entry->getType()));
3211     Entry->eraseFromParent();
3212   } else
3213     GIF->setName(MangledName);
3214 
3215   SetCommonAttributes(D, GIF);
3216 }
3217 
3218 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
3219                                             ArrayRef<llvm::Type*> Tys) {
3220   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
3221                                          Tys);
3222 }
3223 
3224 static llvm::StringMapEntry<llvm::GlobalVariable *> &
3225 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
3226                          const StringLiteral *Literal, bool TargetIsLSB,
3227                          bool &IsUTF16, unsigned &StringLength) {
3228   StringRef String = Literal->getString();
3229   unsigned NumBytes = String.size();
3230 
3231   // Check for simple case.
3232   if (!Literal->containsNonAsciiOrNull()) {
3233     StringLength = NumBytes;
3234     return *Map.insert(std::make_pair(String, nullptr)).first;
3235   }
3236 
3237   // Otherwise, convert the UTF8 literals into a string of shorts.
3238   IsUTF16 = true;
3239 
3240   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
3241   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
3242   llvm::UTF16 *ToPtr = &ToBuf[0];
3243 
3244   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
3245                                  ToPtr + NumBytes, llvm::strictConversion);
3246 
3247   // ConvertUTF8toUTF16 returns the length in ToPtr.
3248   StringLength = ToPtr - &ToBuf[0];
3249 
3250   // Add an explicit null.
3251   *ToPtr = 0;
3252   return *Map.insert(std::make_pair(
3253                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
3254                                    (StringLength + 1) * 2),
3255                          nullptr)).first;
3256 }
3257 
3258 ConstantAddress
3259 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
3260   unsigned StringLength = 0;
3261   bool isUTF16 = false;
3262   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
3263       GetConstantCFStringEntry(CFConstantStringMap, Literal,
3264                                getDataLayout().isLittleEndian(), isUTF16,
3265                                StringLength);
3266 
3267   if (auto *C = Entry.second)
3268     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
3269 
3270   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
3271   llvm::Constant *Zeros[] = { Zero, Zero };
3272 
3273   // If we don't already have it, get __CFConstantStringClassReference.
3274   if (!CFConstantStringClassRef) {
3275     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
3276     Ty = llvm::ArrayType::get(Ty, 0);
3277     llvm::Constant *GV =
3278         CreateRuntimeVariable(Ty, "__CFConstantStringClassReference");
3279 
3280     if (getTriple().isOSBinFormatCOFF()) {
3281       IdentifierInfo &II = getContext().Idents.get(GV->getName());
3282       TranslationUnitDecl *TUDecl = getContext().getTranslationUnitDecl();
3283       DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
3284       llvm::GlobalValue *CGV = cast<llvm::GlobalValue>(GV);
3285 
3286       const VarDecl *VD = nullptr;
3287       for (const auto &Result : DC->lookup(&II))
3288         if ((VD = dyn_cast<VarDecl>(Result)))
3289           break;
3290 
3291       if (!VD || !VD->hasAttr<DLLExportAttr>()) {
3292         CGV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
3293         CGV->setLinkage(llvm::GlobalValue::ExternalLinkage);
3294       } else {
3295         CGV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
3296         CGV->setLinkage(llvm::GlobalValue::ExternalLinkage);
3297       }
3298     }
3299 
3300     // Decay array -> ptr
3301     CFConstantStringClassRef =
3302         llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros);
3303   }
3304 
3305   QualType CFTy = getContext().getCFConstantStringType();
3306 
3307   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
3308 
3309   ConstantInitBuilder Builder(*this);
3310   auto Fields = Builder.beginStruct(STy);
3311 
3312   // Class pointer.
3313   Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef));
3314 
3315   // Flags.
3316   Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
3317 
3318   // String pointer.
3319   llvm::Constant *C = nullptr;
3320   if (isUTF16) {
3321     auto Arr = llvm::makeArrayRef(
3322         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
3323         Entry.first().size() / 2);
3324     C = llvm::ConstantDataArray::get(VMContext, Arr);
3325   } else {
3326     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
3327   }
3328 
3329   // Note: -fwritable-strings doesn't make the backing store strings of
3330   // CFStrings writable. (See <rdar://problem/10657500>)
3331   auto *GV =
3332       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
3333                                llvm::GlobalValue::PrivateLinkage, C, ".str");
3334   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3335   // Don't enforce the target's minimum global alignment, since the only use
3336   // of the string is via this class initializer.
3337   CharUnits Align = isUTF16
3338                         ? getContext().getTypeAlignInChars(getContext().ShortTy)
3339                         : getContext().getTypeAlignInChars(getContext().CharTy);
3340   GV->setAlignment(Align.getQuantity());
3341 
3342   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
3343   // Without it LLVM can merge the string with a non unnamed_addr one during
3344   // LTO.  Doing that changes the section it ends in, which surprises ld64.
3345   if (getTriple().isOSBinFormatMachO())
3346     GV->setSection(isUTF16 ? "__TEXT,__ustring"
3347                            : "__TEXT,__cstring,cstring_literals");
3348 
3349   // String.
3350   llvm::Constant *Str =
3351       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
3352 
3353   if (isUTF16)
3354     // Cast the UTF16 string to the correct type.
3355     Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
3356   Fields.add(Str);
3357 
3358   // String length.
3359   auto Ty = getTypes().ConvertType(getContext().LongTy);
3360   Fields.addInt(cast<llvm::IntegerType>(Ty), StringLength);
3361 
3362   CharUnits Alignment = getPointerAlign();
3363 
3364   // The struct.
3365   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
3366                                     /*isConstant=*/false,
3367                                     llvm::GlobalVariable::PrivateLinkage);
3368   switch (getTriple().getObjectFormat()) {
3369   case llvm::Triple::UnknownObjectFormat:
3370     llvm_unreachable("unknown file format");
3371   case llvm::Triple::COFF:
3372   case llvm::Triple::ELF:
3373   case llvm::Triple::Wasm:
3374     GV->setSection("cfstring");
3375     break;
3376   case llvm::Triple::MachO:
3377     GV->setSection("__DATA,__cfstring");
3378     break;
3379   }
3380   Entry.second = GV;
3381 
3382   return ConstantAddress(GV, Alignment);
3383 }
3384 
3385 QualType CodeGenModule::getObjCFastEnumerationStateType() {
3386   if (ObjCFastEnumerationStateType.isNull()) {
3387     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
3388     D->startDefinition();
3389 
3390     QualType FieldTypes[] = {
3391       Context.UnsignedLongTy,
3392       Context.getPointerType(Context.getObjCIdType()),
3393       Context.getPointerType(Context.UnsignedLongTy),
3394       Context.getConstantArrayType(Context.UnsignedLongTy,
3395                            llvm::APInt(32, 5), ArrayType::Normal, 0)
3396     };
3397 
3398     for (size_t i = 0; i < 4; ++i) {
3399       FieldDecl *Field = FieldDecl::Create(Context,
3400                                            D,
3401                                            SourceLocation(),
3402                                            SourceLocation(), nullptr,
3403                                            FieldTypes[i], /*TInfo=*/nullptr,
3404                                            /*BitWidth=*/nullptr,
3405                                            /*Mutable=*/false,
3406                                            ICIS_NoInit);
3407       Field->setAccess(AS_public);
3408       D->addDecl(Field);
3409     }
3410 
3411     D->completeDefinition();
3412     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
3413   }
3414 
3415   return ObjCFastEnumerationStateType;
3416 }
3417 
3418 llvm::Constant *
3419 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
3420   assert(!E->getType()->isPointerType() && "Strings are always arrays");
3421 
3422   // Don't emit it as the address of the string, emit the string data itself
3423   // as an inline array.
3424   if (E->getCharByteWidth() == 1) {
3425     SmallString<64> Str(E->getString());
3426 
3427     // Resize the string to the right size, which is indicated by its type.
3428     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
3429     Str.resize(CAT->getSize().getZExtValue());
3430     return llvm::ConstantDataArray::getString(VMContext, Str, false);
3431   }
3432 
3433   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
3434   llvm::Type *ElemTy = AType->getElementType();
3435   unsigned NumElements = AType->getNumElements();
3436 
3437   // Wide strings have either 2-byte or 4-byte elements.
3438   if (ElemTy->getPrimitiveSizeInBits() == 16) {
3439     SmallVector<uint16_t, 32> Elements;
3440     Elements.reserve(NumElements);
3441 
3442     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
3443       Elements.push_back(E->getCodeUnit(i));
3444     Elements.resize(NumElements);
3445     return llvm::ConstantDataArray::get(VMContext, Elements);
3446   }
3447 
3448   assert(ElemTy->getPrimitiveSizeInBits() == 32);
3449   SmallVector<uint32_t, 32> Elements;
3450   Elements.reserve(NumElements);
3451 
3452   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
3453     Elements.push_back(E->getCodeUnit(i));
3454   Elements.resize(NumElements);
3455   return llvm::ConstantDataArray::get(VMContext, Elements);
3456 }
3457 
3458 static llvm::GlobalVariable *
3459 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
3460                       CodeGenModule &CGM, StringRef GlobalName,
3461                       CharUnits Alignment) {
3462   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
3463   unsigned AddrSpace = 0;
3464   if (CGM.getLangOpts().OpenCL)
3465     AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant);
3466 
3467   llvm::Module &M = CGM.getModule();
3468   // Create a global variable for this string
3469   auto *GV = new llvm::GlobalVariable(
3470       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
3471       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
3472   GV->setAlignment(Alignment.getQuantity());
3473   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3474   if (GV->isWeakForLinker()) {
3475     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
3476     GV->setComdat(M.getOrInsertComdat(GV->getName()));
3477   }
3478 
3479   return GV;
3480 }
3481 
3482 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
3483 /// constant array for the given string literal.
3484 ConstantAddress
3485 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
3486                                                   StringRef Name) {
3487   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
3488 
3489   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
3490   llvm::GlobalVariable **Entry = nullptr;
3491   if (!LangOpts.WritableStrings) {
3492     Entry = &ConstantStringMap[C];
3493     if (auto GV = *Entry) {
3494       if (Alignment.getQuantity() > GV->getAlignment())
3495         GV->setAlignment(Alignment.getQuantity());
3496       return ConstantAddress(GV, Alignment);
3497     }
3498   }
3499 
3500   SmallString<256> MangledNameBuffer;
3501   StringRef GlobalVariableName;
3502   llvm::GlobalValue::LinkageTypes LT;
3503 
3504   // Mangle the string literal if the ABI allows for it.  However, we cannot
3505   // do this if  we are compiling with ASan or -fwritable-strings because they
3506   // rely on strings having normal linkage.
3507   if (!LangOpts.WritableStrings &&
3508       !LangOpts.Sanitize.has(SanitizerKind::Address) &&
3509       getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) {
3510     llvm::raw_svector_ostream Out(MangledNameBuffer);
3511     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
3512 
3513     LT = llvm::GlobalValue::LinkOnceODRLinkage;
3514     GlobalVariableName = MangledNameBuffer;
3515   } else {
3516     LT = llvm::GlobalValue::PrivateLinkage;
3517     GlobalVariableName = Name;
3518   }
3519 
3520   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
3521   if (Entry)
3522     *Entry = GV;
3523 
3524   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
3525                                   QualType());
3526   return ConstantAddress(GV, Alignment);
3527 }
3528 
3529 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
3530 /// array for the given ObjCEncodeExpr node.
3531 ConstantAddress
3532 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
3533   std::string Str;
3534   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
3535 
3536   return GetAddrOfConstantCString(Str);
3537 }
3538 
3539 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
3540 /// the literal and a terminating '\0' character.
3541 /// The result has pointer to array type.
3542 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
3543     const std::string &Str, const char *GlobalName) {
3544   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
3545   CharUnits Alignment =
3546     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
3547 
3548   llvm::Constant *C =
3549       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
3550 
3551   // Don't share any string literals if strings aren't constant.
3552   llvm::GlobalVariable **Entry = nullptr;
3553   if (!LangOpts.WritableStrings) {
3554     Entry = &ConstantStringMap[C];
3555     if (auto GV = *Entry) {
3556       if (Alignment.getQuantity() > GV->getAlignment())
3557         GV->setAlignment(Alignment.getQuantity());
3558       return ConstantAddress(GV, Alignment);
3559     }
3560   }
3561 
3562   // Get the default prefix if a name wasn't specified.
3563   if (!GlobalName)
3564     GlobalName = ".str";
3565   // Create a global variable for this.
3566   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
3567                                   GlobalName, Alignment);
3568   if (Entry)
3569     *Entry = GV;
3570   return ConstantAddress(GV, Alignment);
3571 }
3572 
3573 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
3574     const MaterializeTemporaryExpr *E, const Expr *Init) {
3575   assert((E->getStorageDuration() == SD_Static ||
3576           E->getStorageDuration() == SD_Thread) && "not a global temporary");
3577   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
3578 
3579   // If we're not materializing a subobject of the temporary, keep the
3580   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
3581   QualType MaterializedType = Init->getType();
3582   if (Init == E->GetTemporaryExpr())
3583     MaterializedType = E->getType();
3584 
3585   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
3586 
3587   if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E])
3588     return ConstantAddress(Slot, Align);
3589 
3590   // FIXME: If an externally-visible declaration extends multiple temporaries,
3591   // we need to give each temporary the same name in every translation unit (and
3592   // we also need to make the temporaries externally-visible).
3593   SmallString<256> Name;
3594   llvm::raw_svector_ostream Out(Name);
3595   getCXXABI().getMangleContext().mangleReferenceTemporary(
3596       VD, E->getManglingNumber(), Out);
3597 
3598   APValue *Value = nullptr;
3599   if (E->getStorageDuration() == SD_Static) {
3600     // We might have a cached constant initializer for this temporary. Note
3601     // that this might have a different value from the value computed by
3602     // evaluating the initializer if the surrounding constant expression
3603     // modifies the temporary.
3604     Value = getContext().getMaterializedTemporaryValue(E, false);
3605     if (Value && Value->isUninit())
3606       Value = nullptr;
3607   }
3608 
3609   // Try evaluating it now, it might have a constant initializer.
3610   Expr::EvalResult EvalResult;
3611   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
3612       !EvalResult.hasSideEffects())
3613     Value = &EvalResult.Val;
3614 
3615   llvm::Constant *InitialValue = nullptr;
3616   bool Constant = false;
3617   llvm::Type *Type;
3618   if (Value) {
3619     // The temporary has a constant initializer, use it.
3620     InitialValue = EmitConstantValue(*Value, MaterializedType, nullptr);
3621     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
3622     Type = InitialValue->getType();
3623   } else {
3624     // No initializer, the initialization will be provided when we
3625     // initialize the declaration which performed lifetime extension.
3626     Type = getTypes().ConvertTypeForMem(MaterializedType);
3627   }
3628 
3629   // Create a global variable for this lifetime-extended temporary.
3630   llvm::GlobalValue::LinkageTypes Linkage =
3631       getLLVMLinkageVarDefinition(VD, Constant);
3632   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
3633     const VarDecl *InitVD;
3634     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
3635         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
3636       // Temporaries defined inside a class get linkonce_odr linkage because the
3637       // class can be defined in multipe translation units.
3638       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
3639     } else {
3640       // There is no need for this temporary to have external linkage if the
3641       // VarDecl has external linkage.
3642       Linkage = llvm::GlobalVariable::InternalLinkage;
3643     }
3644   }
3645   unsigned AddrSpace = GetGlobalVarAddressSpace(
3646       VD, getContext().getTargetAddressSpace(MaterializedType));
3647   auto *GV = new llvm::GlobalVariable(
3648       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
3649       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal,
3650       AddrSpace);
3651   setGlobalVisibility(GV, VD);
3652   GV->setAlignment(Align.getQuantity());
3653   if (supportsCOMDAT() && GV->isWeakForLinker())
3654     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3655   if (VD->getTLSKind())
3656     setTLSMode(GV, *VD);
3657   MaterializedGlobalTemporaryMap[E] = GV;
3658   return ConstantAddress(GV, Align);
3659 }
3660 
3661 /// EmitObjCPropertyImplementations - Emit information for synthesized
3662 /// properties for an implementation.
3663 void CodeGenModule::EmitObjCPropertyImplementations(const
3664                                                     ObjCImplementationDecl *D) {
3665   for (const auto *PID : D->property_impls()) {
3666     // Dynamic is just for type-checking.
3667     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
3668       ObjCPropertyDecl *PD = PID->getPropertyDecl();
3669 
3670       // Determine which methods need to be implemented, some may have
3671       // been overridden. Note that ::isPropertyAccessor is not the method
3672       // we want, that just indicates if the decl came from a
3673       // property. What we want to know is if the method is defined in
3674       // this implementation.
3675       if (!D->getInstanceMethod(PD->getGetterName()))
3676         CodeGenFunction(*this).GenerateObjCGetter(
3677                                  const_cast<ObjCImplementationDecl *>(D), PID);
3678       if (!PD->isReadOnly() &&
3679           !D->getInstanceMethod(PD->getSetterName()))
3680         CodeGenFunction(*this).GenerateObjCSetter(
3681                                  const_cast<ObjCImplementationDecl *>(D), PID);
3682     }
3683   }
3684 }
3685 
3686 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
3687   const ObjCInterfaceDecl *iface = impl->getClassInterface();
3688   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
3689        ivar; ivar = ivar->getNextIvar())
3690     if (ivar->getType().isDestructedType())
3691       return true;
3692 
3693   return false;
3694 }
3695 
3696 static bool AllTrivialInitializers(CodeGenModule &CGM,
3697                                    ObjCImplementationDecl *D) {
3698   CodeGenFunction CGF(CGM);
3699   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
3700        E = D->init_end(); B != E; ++B) {
3701     CXXCtorInitializer *CtorInitExp = *B;
3702     Expr *Init = CtorInitExp->getInit();
3703     if (!CGF.isTrivialInitializer(Init))
3704       return false;
3705   }
3706   return true;
3707 }
3708 
3709 /// EmitObjCIvarInitializations - Emit information for ivar initialization
3710 /// for an implementation.
3711 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
3712   // We might need a .cxx_destruct even if we don't have any ivar initializers.
3713   if (needsDestructMethod(D)) {
3714     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
3715     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
3716     ObjCMethodDecl *DTORMethod =
3717       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
3718                              cxxSelector, getContext().VoidTy, nullptr, D,
3719                              /*isInstance=*/true, /*isVariadic=*/false,
3720                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
3721                              /*isDefined=*/false, ObjCMethodDecl::Required);
3722     D->addInstanceMethod(DTORMethod);
3723     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
3724     D->setHasDestructors(true);
3725   }
3726 
3727   // If the implementation doesn't have any ivar initializers, we don't need
3728   // a .cxx_construct.
3729   if (D->getNumIvarInitializers() == 0 ||
3730       AllTrivialInitializers(*this, D))
3731     return;
3732 
3733   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
3734   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
3735   // The constructor returns 'self'.
3736   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
3737                                                 D->getLocation(),
3738                                                 D->getLocation(),
3739                                                 cxxSelector,
3740                                                 getContext().getObjCIdType(),
3741                                                 nullptr, D, /*isInstance=*/true,
3742                                                 /*isVariadic=*/false,
3743                                                 /*isPropertyAccessor=*/true,
3744                                                 /*isImplicitlyDeclared=*/true,
3745                                                 /*isDefined=*/false,
3746                                                 ObjCMethodDecl::Required);
3747   D->addInstanceMethod(CTORMethod);
3748   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
3749   D->setHasNonZeroConstructors(true);
3750 }
3751 
3752 // EmitLinkageSpec - Emit all declarations in a linkage spec.
3753 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
3754   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
3755       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
3756     ErrorUnsupported(LSD, "linkage spec");
3757     return;
3758   }
3759 
3760   EmitDeclContext(LSD);
3761 }
3762 
3763 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
3764   for (auto *I : DC->decls()) {
3765     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
3766     // are themselves considered "top-level", so EmitTopLevelDecl on an
3767     // ObjCImplDecl does not recursively visit them. We need to do that in
3768     // case they're nested inside another construct (LinkageSpecDecl /
3769     // ExportDecl) that does stop them from being considered "top-level".
3770     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
3771       for (auto *M : OID->methods())
3772         EmitTopLevelDecl(M);
3773     }
3774 
3775     EmitTopLevelDecl(I);
3776   }
3777 }
3778 
3779 /// EmitTopLevelDecl - Emit code for a single top level declaration.
3780 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
3781   // Ignore dependent declarations.
3782   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
3783     return;
3784 
3785   switch (D->getKind()) {
3786   case Decl::CXXConversion:
3787   case Decl::CXXMethod:
3788   case Decl::Function:
3789     // Skip function templates
3790     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
3791         cast<FunctionDecl>(D)->isLateTemplateParsed())
3792       return;
3793 
3794     EmitGlobal(cast<FunctionDecl>(D));
3795     // Always provide some coverage mapping
3796     // even for the functions that aren't emitted.
3797     AddDeferredUnusedCoverageMapping(D);
3798     break;
3799 
3800   case Decl::Var:
3801   case Decl::Decomposition:
3802     // Skip variable templates
3803     if (cast<VarDecl>(D)->getDescribedVarTemplate())
3804       return;
3805   case Decl::VarTemplateSpecialization:
3806     EmitGlobal(cast<VarDecl>(D));
3807     if (auto *DD = dyn_cast<DecompositionDecl>(D))
3808       for (auto *B : DD->bindings())
3809         if (auto *HD = B->getHoldingVar())
3810           EmitGlobal(HD);
3811     break;
3812 
3813   // Indirect fields from global anonymous structs and unions can be
3814   // ignored; only the actual variable requires IR gen support.
3815   case Decl::IndirectField:
3816     break;
3817 
3818   // C++ Decls
3819   case Decl::Namespace:
3820     EmitDeclContext(cast<NamespaceDecl>(D));
3821     break;
3822   case Decl::CXXRecord:
3823     if (DebugInfo) {
3824       if (auto *ES = D->getASTContext().getExternalSource())
3825         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
3826           DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D));
3827     }
3828     // Emit any static data members, they may be definitions.
3829     for (auto *I : cast<CXXRecordDecl>(D)->decls())
3830       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
3831         EmitTopLevelDecl(I);
3832     break;
3833     // No code generation needed.
3834   case Decl::UsingShadow:
3835   case Decl::ClassTemplate:
3836   case Decl::VarTemplate:
3837   case Decl::VarTemplatePartialSpecialization:
3838   case Decl::FunctionTemplate:
3839   case Decl::TypeAliasTemplate:
3840   case Decl::Block:
3841   case Decl::Empty:
3842     break;
3843   case Decl::Using:          // using X; [C++]
3844     if (CGDebugInfo *DI = getModuleDebugInfo())
3845         DI->EmitUsingDecl(cast<UsingDecl>(*D));
3846     return;
3847   case Decl::NamespaceAlias:
3848     if (CGDebugInfo *DI = getModuleDebugInfo())
3849         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
3850     return;
3851   case Decl::UsingDirective: // using namespace X; [C++]
3852     if (CGDebugInfo *DI = getModuleDebugInfo())
3853       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
3854     return;
3855   case Decl::CXXConstructor:
3856     // Skip function templates
3857     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
3858         cast<FunctionDecl>(D)->isLateTemplateParsed())
3859       return;
3860 
3861     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
3862     break;
3863   case Decl::CXXDestructor:
3864     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
3865       return;
3866     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
3867     break;
3868 
3869   case Decl::StaticAssert:
3870     // Nothing to do.
3871     break;
3872 
3873   // Objective-C Decls
3874 
3875   // Forward declarations, no (immediate) code generation.
3876   case Decl::ObjCInterface:
3877   case Decl::ObjCCategory:
3878     break;
3879 
3880   case Decl::ObjCProtocol: {
3881     auto *Proto = cast<ObjCProtocolDecl>(D);
3882     if (Proto->isThisDeclarationADefinition())
3883       ObjCRuntime->GenerateProtocol(Proto);
3884     break;
3885   }
3886 
3887   case Decl::ObjCCategoryImpl:
3888     // Categories have properties but don't support synthesize so we
3889     // can ignore them here.
3890     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
3891     break;
3892 
3893   case Decl::ObjCImplementation: {
3894     auto *OMD = cast<ObjCImplementationDecl>(D);
3895     EmitObjCPropertyImplementations(OMD);
3896     EmitObjCIvarInitializations(OMD);
3897     ObjCRuntime->GenerateClass(OMD);
3898     // Emit global variable debug information.
3899     if (CGDebugInfo *DI = getModuleDebugInfo())
3900       if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
3901         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
3902             OMD->getClassInterface()), OMD->getLocation());
3903     break;
3904   }
3905   case Decl::ObjCMethod: {
3906     auto *OMD = cast<ObjCMethodDecl>(D);
3907     // If this is not a prototype, emit the body.
3908     if (OMD->getBody())
3909       CodeGenFunction(*this).GenerateObjCMethod(OMD);
3910     break;
3911   }
3912   case Decl::ObjCCompatibleAlias:
3913     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
3914     break;
3915 
3916   case Decl::PragmaComment: {
3917     const auto *PCD = cast<PragmaCommentDecl>(D);
3918     switch (PCD->getCommentKind()) {
3919     case PCK_Unknown:
3920       llvm_unreachable("unexpected pragma comment kind");
3921     case PCK_Linker:
3922       AppendLinkerOptions(PCD->getArg());
3923       break;
3924     case PCK_Lib:
3925       AddDependentLib(PCD->getArg());
3926       break;
3927     case PCK_Compiler:
3928     case PCK_ExeStr:
3929     case PCK_User:
3930       break; // We ignore all of these.
3931     }
3932     break;
3933   }
3934 
3935   case Decl::PragmaDetectMismatch: {
3936     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
3937     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
3938     break;
3939   }
3940 
3941   case Decl::LinkageSpec:
3942     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
3943     break;
3944 
3945   case Decl::FileScopeAsm: {
3946     // File-scope asm is ignored during device-side CUDA compilation.
3947     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
3948       break;
3949     // File-scope asm is ignored during device-side OpenMP compilation.
3950     if (LangOpts.OpenMPIsDevice)
3951       break;
3952     auto *AD = cast<FileScopeAsmDecl>(D);
3953     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
3954     break;
3955   }
3956 
3957   case Decl::Import: {
3958     auto *Import = cast<ImportDecl>(D);
3959 
3960     // If we've already imported this module, we're done.
3961     if (!ImportedModules.insert(Import->getImportedModule()))
3962       break;
3963 
3964     // Emit debug information for direct imports.
3965     if (!Import->getImportedOwningModule()) {
3966       if (CGDebugInfo *DI = getModuleDebugInfo())
3967         DI->EmitImportDecl(*Import);
3968     }
3969 
3970     // Find all of the submodules and emit the module initializers.
3971     llvm::SmallPtrSet<clang::Module *, 16> Visited;
3972     SmallVector<clang::Module *, 16> Stack;
3973     Visited.insert(Import->getImportedModule());
3974     Stack.push_back(Import->getImportedModule());
3975 
3976     while (!Stack.empty()) {
3977       clang::Module *Mod = Stack.pop_back_val();
3978       if (!EmittedModuleInitializers.insert(Mod).second)
3979         continue;
3980 
3981       for (auto *D : Context.getModuleInitializers(Mod))
3982         EmitTopLevelDecl(D);
3983 
3984       // Visit the submodules of this module.
3985       for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
3986                                              SubEnd = Mod->submodule_end();
3987            Sub != SubEnd; ++Sub) {
3988         // Skip explicit children; they need to be explicitly imported to emit
3989         // the initializers.
3990         if ((*Sub)->IsExplicit)
3991           continue;
3992 
3993         if (Visited.insert(*Sub).second)
3994           Stack.push_back(*Sub);
3995       }
3996     }
3997     break;
3998   }
3999 
4000   case Decl::Export:
4001     EmitDeclContext(cast<ExportDecl>(D));
4002     break;
4003 
4004   case Decl::OMPThreadPrivate:
4005     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
4006     break;
4007 
4008   case Decl::ClassTemplateSpecialization: {
4009     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
4010     if (DebugInfo &&
4011         Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition &&
4012         Spec->hasDefinition())
4013       DebugInfo->completeTemplateDefinition(*Spec);
4014     break;
4015   }
4016 
4017   case Decl::OMPDeclareReduction:
4018     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
4019     break;
4020 
4021   default:
4022     // Make sure we handled everything we should, every other kind is a
4023     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
4024     // function. Need to recode Decl::Kind to do that easily.
4025     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
4026     break;
4027   }
4028 }
4029 
4030 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
4031   // Do we need to generate coverage mapping?
4032   if (!CodeGenOpts.CoverageMapping)
4033     return;
4034   switch (D->getKind()) {
4035   case Decl::CXXConversion:
4036   case Decl::CXXMethod:
4037   case Decl::Function:
4038   case Decl::ObjCMethod:
4039   case Decl::CXXConstructor:
4040   case Decl::CXXDestructor: {
4041     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
4042       return;
4043     auto I = DeferredEmptyCoverageMappingDecls.find(D);
4044     if (I == DeferredEmptyCoverageMappingDecls.end())
4045       DeferredEmptyCoverageMappingDecls[D] = true;
4046     break;
4047   }
4048   default:
4049     break;
4050   };
4051 }
4052 
4053 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
4054   // Do we need to generate coverage mapping?
4055   if (!CodeGenOpts.CoverageMapping)
4056     return;
4057   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
4058     if (Fn->isTemplateInstantiation())
4059       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
4060   }
4061   auto I = DeferredEmptyCoverageMappingDecls.find(D);
4062   if (I == DeferredEmptyCoverageMappingDecls.end())
4063     DeferredEmptyCoverageMappingDecls[D] = false;
4064   else
4065     I->second = false;
4066 }
4067 
4068 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
4069   std::vector<const Decl *> DeferredDecls;
4070   for (const auto &I : DeferredEmptyCoverageMappingDecls) {
4071     if (!I.second)
4072       continue;
4073     DeferredDecls.push_back(I.first);
4074   }
4075   // Sort the declarations by their location to make sure that the tests get a
4076   // predictable order for the coverage mapping for the unused declarations.
4077   if (CodeGenOpts.DumpCoverageMapping)
4078     std::sort(DeferredDecls.begin(), DeferredDecls.end(),
4079               [] (const Decl *LHS, const Decl *RHS) {
4080       return LHS->getLocStart() < RHS->getLocStart();
4081     });
4082   for (const auto *D : DeferredDecls) {
4083     switch (D->getKind()) {
4084     case Decl::CXXConversion:
4085     case Decl::CXXMethod:
4086     case Decl::Function:
4087     case Decl::ObjCMethod: {
4088       CodeGenPGO PGO(*this);
4089       GlobalDecl GD(cast<FunctionDecl>(D));
4090       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4091                                   getFunctionLinkage(GD));
4092       break;
4093     }
4094     case Decl::CXXConstructor: {
4095       CodeGenPGO PGO(*this);
4096       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
4097       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4098                                   getFunctionLinkage(GD));
4099       break;
4100     }
4101     case Decl::CXXDestructor: {
4102       CodeGenPGO PGO(*this);
4103       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
4104       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4105                                   getFunctionLinkage(GD));
4106       break;
4107     }
4108     default:
4109       break;
4110     };
4111   }
4112 }
4113 
4114 /// Turns the given pointer into a constant.
4115 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
4116                                           const void *Ptr) {
4117   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
4118   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
4119   return llvm::ConstantInt::get(i64, PtrInt);
4120 }
4121 
4122 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
4123                                    llvm::NamedMDNode *&GlobalMetadata,
4124                                    GlobalDecl D,
4125                                    llvm::GlobalValue *Addr) {
4126   if (!GlobalMetadata)
4127     GlobalMetadata =
4128       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
4129 
4130   // TODO: should we report variant information for ctors/dtors?
4131   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
4132                            llvm::ConstantAsMetadata::get(GetPointerConstant(
4133                                CGM.getLLVMContext(), D.getDecl()))};
4134   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
4135 }
4136 
4137 /// For each function which is declared within an extern "C" region and marked
4138 /// as 'used', but has internal linkage, create an alias from the unmangled
4139 /// name to the mangled name if possible. People expect to be able to refer
4140 /// to such functions with an unmangled name from inline assembly within the
4141 /// same translation unit.
4142 void CodeGenModule::EmitStaticExternCAliases() {
4143   // Don't do anything if we're generating CUDA device code -- the NVPTX
4144   // assembly target doesn't support aliases.
4145   if (Context.getTargetInfo().getTriple().isNVPTX())
4146     return;
4147   for (auto &I : StaticExternCValues) {
4148     IdentifierInfo *Name = I.first;
4149     llvm::GlobalValue *Val = I.second;
4150     if (Val && !getModule().getNamedValue(Name->getName()))
4151       addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
4152   }
4153 }
4154 
4155 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
4156                                              GlobalDecl &Result) const {
4157   auto Res = Manglings.find(MangledName);
4158   if (Res == Manglings.end())
4159     return false;
4160   Result = Res->getValue();
4161   return true;
4162 }
4163 
4164 /// Emits metadata nodes associating all the global values in the
4165 /// current module with the Decls they came from.  This is useful for
4166 /// projects using IR gen as a subroutine.
4167 ///
4168 /// Since there's currently no way to associate an MDNode directly
4169 /// with an llvm::GlobalValue, we create a global named metadata
4170 /// with the name 'clang.global.decl.ptrs'.
4171 void CodeGenModule::EmitDeclMetadata() {
4172   llvm::NamedMDNode *GlobalMetadata = nullptr;
4173 
4174   for (auto &I : MangledDeclNames) {
4175     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
4176     // Some mangled names don't necessarily have an associated GlobalValue
4177     // in this module, e.g. if we mangled it for DebugInfo.
4178     if (Addr)
4179       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
4180   }
4181 }
4182 
4183 /// Emits metadata nodes for all the local variables in the current
4184 /// function.
4185 void CodeGenFunction::EmitDeclMetadata() {
4186   if (LocalDeclMap.empty()) return;
4187 
4188   llvm::LLVMContext &Context = getLLVMContext();
4189 
4190   // Find the unique metadata ID for this name.
4191   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
4192 
4193   llvm::NamedMDNode *GlobalMetadata = nullptr;
4194 
4195   for (auto &I : LocalDeclMap) {
4196     const Decl *D = I.first;
4197     llvm::Value *Addr = I.second.getPointer();
4198     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
4199       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
4200       Alloca->setMetadata(
4201           DeclPtrKind, llvm::MDNode::get(
4202                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
4203     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
4204       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
4205       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
4206     }
4207   }
4208 }
4209 
4210 void CodeGenModule::EmitVersionIdentMetadata() {
4211   llvm::NamedMDNode *IdentMetadata =
4212     TheModule.getOrInsertNamedMetadata("llvm.ident");
4213   std::string Version = getClangFullVersion();
4214   llvm::LLVMContext &Ctx = TheModule.getContext();
4215 
4216   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
4217   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
4218 }
4219 
4220 void CodeGenModule::EmitTargetMetadata() {
4221   // Warning, new MangledDeclNames may be appended within this loop.
4222   // We rely on MapVector insertions adding new elements to the end
4223   // of the container.
4224   // FIXME: Move this loop into the one target that needs it, and only
4225   // loop over those declarations for which we couldn't emit the target
4226   // metadata when we emitted the declaration.
4227   for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
4228     auto Val = *(MangledDeclNames.begin() + I);
4229     const Decl *D = Val.first.getDecl()->getMostRecentDecl();
4230     llvm::GlobalValue *GV = GetGlobalValue(Val.second);
4231     getTargetCodeGenInfo().emitTargetMD(D, GV, *this);
4232   }
4233 }
4234 
4235 void CodeGenModule::EmitCoverageFile() {
4236   if (getCodeGenOpts().CoverageDataFile.empty() &&
4237       getCodeGenOpts().CoverageNotesFile.empty())
4238     return;
4239 
4240   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
4241   if (!CUNode)
4242     return;
4243 
4244   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
4245   llvm::LLVMContext &Ctx = TheModule.getContext();
4246   auto *CoverageDataFile =
4247       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
4248   auto *CoverageNotesFile =
4249       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
4250   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
4251     llvm::MDNode *CU = CUNode->getOperand(i);
4252     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
4253     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
4254   }
4255 }
4256 
4257 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) {
4258   // Sema has checked that all uuid strings are of the form
4259   // "12345678-1234-1234-1234-1234567890ab".
4260   assert(Uuid.size() == 36);
4261   for (unsigned i = 0; i < 36; ++i) {
4262     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-');
4263     else                                         assert(isHexDigit(Uuid[i]));
4264   }
4265 
4266   // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab".
4267   const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
4268 
4269   llvm::Constant *Field3[8];
4270   for (unsigned Idx = 0; Idx < 8; ++Idx)
4271     Field3[Idx] = llvm::ConstantInt::get(
4272         Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
4273 
4274   llvm::Constant *Fields[4] = {
4275     llvm::ConstantInt::get(Int32Ty, Uuid.substr(0,  8), 16),
4276     llvm::ConstantInt::get(Int16Ty, Uuid.substr(9,  4), 16),
4277     llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
4278     llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
4279   };
4280 
4281   return llvm::ConstantStruct::getAnon(Fields);
4282 }
4283 
4284 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
4285                                                        bool ForEH) {
4286   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
4287   // FIXME: should we even be calling this method if RTTI is disabled
4288   // and it's not for EH?
4289   if (!ForEH && !getLangOpts().RTTI)
4290     return llvm::Constant::getNullValue(Int8PtrTy);
4291 
4292   if (ForEH && Ty->isObjCObjectPointerType() &&
4293       LangOpts.ObjCRuntime.isGNUFamily())
4294     return ObjCRuntime->GetEHType(Ty);
4295 
4296   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
4297 }
4298 
4299 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
4300   for (auto RefExpr : D->varlists()) {
4301     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
4302     bool PerformInit =
4303         VD->getAnyInitializer() &&
4304         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
4305                                                         /*ForRef=*/false);
4306 
4307     Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
4308     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
4309             VD, Addr, RefExpr->getLocStart(), PerformInit))
4310       CXXGlobalInits.push_back(InitFunction);
4311   }
4312 }
4313 
4314 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
4315   llvm::Metadata *&InternalId = MetadataIdMap[T.getCanonicalType()];
4316   if (InternalId)
4317     return InternalId;
4318 
4319   if (isExternallyVisible(T->getLinkage())) {
4320     std::string OutName;
4321     llvm::raw_string_ostream Out(OutName);
4322     getCXXABI().getMangleContext().mangleTypeName(T, Out);
4323 
4324     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
4325   } else {
4326     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
4327                                            llvm::ArrayRef<llvm::Metadata *>());
4328   }
4329 
4330   return InternalId;
4331 }
4332 
4333 /// Returns whether this module needs the "all-vtables" type identifier.
4334 bool CodeGenModule::NeedAllVtablesTypeId() const {
4335   // Returns true if at least one of vtable-based CFI checkers is enabled and
4336   // is not in the trapping mode.
4337   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
4338            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
4339           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
4340            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
4341           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
4342            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
4343           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
4344            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
4345 }
4346 
4347 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
4348                                           CharUnits Offset,
4349                                           const CXXRecordDecl *RD) {
4350   llvm::Metadata *MD =
4351       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
4352   VTable->addTypeMetadata(Offset.getQuantity(), MD);
4353 
4354   if (CodeGenOpts.SanitizeCfiCrossDso)
4355     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
4356       VTable->addTypeMetadata(Offset.getQuantity(),
4357                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
4358 
4359   if (NeedAllVtablesTypeId()) {
4360     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
4361     VTable->addTypeMetadata(Offset.getQuantity(), MD);
4362   }
4363 }
4364 
4365 // Fills in the supplied string map with the set of target features for the
4366 // passed in function.
4367 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
4368                                           const FunctionDecl *FD) {
4369   StringRef TargetCPU = Target.getTargetOpts().CPU;
4370   if (const auto *TD = FD->getAttr<TargetAttr>()) {
4371     // If we have a TargetAttr build up the feature map based on that.
4372     TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
4373 
4374     // Make a copy of the features as passed on the command line into the
4375     // beginning of the additional features from the function to override.
4376     ParsedAttr.first.insert(ParsedAttr.first.begin(),
4377                             Target.getTargetOpts().FeaturesAsWritten.begin(),
4378                             Target.getTargetOpts().FeaturesAsWritten.end());
4379 
4380     if (ParsedAttr.second != "")
4381       TargetCPU = ParsedAttr.second;
4382 
4383     // Now populate the feature map, first with the TargetCPU which is either
4384     // the default or a new one from the target attribute string. Then we'll use
4385     // the passed in features (FeaturesAsWritten) along with the new ones from
4386     // the attribute.
4387     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, ParsedAttr.first);
4388   } else {
4389     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
4390                           Target.getTargetOpts().Features);
4391   }
4392 }
4393 
4394 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
4395   if (!SanStats)
4396     SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule());
4397 
4398   return *SanStats;
4399 }
4400 llvm::Value *
4401 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
4402                                                   CodeGenFunction &CGF) {
4403   llvm::Constant *C = EmitConstantExpr(E, E->getType(), &CGF);
4404   auto SamplerT = getOpenCLRuntime().getSamplerType();
4405   auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
4406   return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy,
4407                                 "__translate_sampler_initializer"),
4408                                 {C});
4409 }
4410