xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 15ba94987aa1620a75e6766f022228bd48cacfdf)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CGCall.h"
18 #include "CGObjCRuntime.h"
19 #include "Mangle.h"
20 #include "clang/Frontend/CompileOptions.h"
21 #include "clang/AST/ASTContext.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/DeclCXX.h"
24 #include "clang/Basic/Builtins.h"
25 #include "clang/Basic/Diagnostic.h"
26 #include "clang/Basic/SourceManager.h"
27 #include "clang/Basic/TargetInfo.h"
28 #include "clang/Basic/ConvertUTF.h"
29 #include "llvm/CallingConv.h"
30 #include "llvm/Module.h"
31 #include "llvm/Intrinsics.h"
32 #include "llvm/Target/TargetData.h"
33 using namespace clang;
34 using namespace CodeGen;
35 
36 
37 CodeGenModule::CodeGenModule(ASTContext &C, const CompileOptions &compileOpts,
38                              llvm::Module &M, const llvm::TargetData &TD,
39                              Diagnostic &diags)
40   : BlockModule(C, M, TD, Types, *this), Context(C),
41     Features(C.getLangOptions()), CompileOpts(compileOpts), TheModule(M),
42     TheTargetData(TD), Diags(diags), Types(C, M, TD), Runtime(0),
43     MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0) {
44 
45   if (!Features.ObjC1)
46     Runtime = 0;
47   else if (!Features.NeXTRuntime)
48     Runtime = CreateGNUObjCRuntime(*this);
49   else if (Features.ObjCNonFragileABI)
50     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
51   else
52     Runtime = CreateMacObjCRuntime(*this);
53 
54   // If debug info generation is enabled, create the CGDebugInfo object.
55   DebugInfo = CompileOpts.DebugInfo ? new CGDebugInfo(this) : 0;
56 }
57 
58 CodeGenModule::~CodeGenModule() {
59   delete Runtime;
60   delete DebugInfo;
61 }
62 
63 void CodeGenModule::Release() {
64   EmitDeferred();
65   if (Runtime)
66     if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
67       AddGlobalCtor(ObjCInitFunction);
68   EmitCtorList(GlobalCtors, "llvm.global_ctors");
69   EmitCtorList(GlobalDtors, "llvm.global_dtors");
70   EmitAnnotations();
71   EmitLLVMUsed();
72 }
73 
74 /// ErrorUnsupported - Print out an error that codegen doesn't support the
75 /// specified stmt yet.
76 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
77                                      bool OmitOnError) {
78   if (OmitOnError && getDiags().hasErrorOccurred())
79     return;
80   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
81                                                "cannot compile this %0 yet");
82   std::string Msg = Type;
83   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
84     << Msg << S->getSourceRange();
85 }
86 
87 /// ErrorUnsupported - Print out an error that codegen doesn't support the
88 /// specified decl yet.
89 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
90                                      bool OmitOnError) {
91   if (OmitOnError && getDiags().hasErrorOccurred())
92     return;
93   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
94                                                "cannot compile this %0 yet");
95   std::string Msg = Type;
96   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
97 }
98 
99 LangOptions::VisibilityMode
100 CodeGenModule::getDeclVisibilityMode(const Decl *D) const {
101   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
102     if (VD->getStorageClass() == VarDecl::PrivateExtern)
103       return LangOptions::Hidden;
104 
105   if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) {
106     switch (attr->getVisibility()) {
107     default: assert(0 && "Unknown visibility!");
108     case VisibilityAttr::DefaultVisibility:
109       return LangOptions::Default;
110     case VisibilityAttr::HiddenVisibility:
111       return LangOptions::Hidden;
112     case VisibilityAttr::ProtectedVisibility:
113       return LangOptions::Protected;
114     }
115   }
116 
117   return getLangOptions().getVisibilityMode();
118 }
119 
120 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
121                                         const Decl *D) const {
122   // Internal definitions always have default visibility.
123   if (GV->hasLocalLinkage()) {
124     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
125     return;
126   }
127 
128   switch (getDeclVisibilityMode(D)) {
129   default: assert(0 && "Unknown visibility!");
130   case LangOptions::Default:
131     return GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
132   case LangOptions::Hidden:
133     return GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
134   case LangOptions::Protected:
135     return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
136   }
137 }
138 
139 const char *CodeGenModule::getMangledName(const GlobalDecl &GD) {
140   const NamedDecl *ND = GD.getDecl();
141 
142   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
143     return getMangledCXXCtorName(D, GD.getCtorType());
144   if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
145     return getMangledCXXDtorName(D, GD.getDtorType());
146 
147   return getMangledName(ND);
148 }
149 
150 /// \brief Retrieves the mangled name for the given declaration.
151 ///
152 /// If the given declaration requires a mangled name, returns an
153 /// const char* containing the mangled name.  Otherwise, returns
154 /// the unmangled name.
155 ///
156 const char *CodeGenModule::getMangledName(const NamedDecl *ND) {
157   // In C, functions with no attributes never need to be mangled. Fastpath them.
158   if (!getLangOptions().CPlusPlus && !ND->hasAttrs()) {
159     assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
160     return ND->getNameAsCString();
161   }
162 
163   llvm::SmallString<256> Name;
164   llvm::raw_svector_ostream Out(Name);
165   if (!mangleName(ND, Context, Out)) {
166     assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
167     return ND->getNameAsCString();
168   }
169 
170   Name += '\0';
171   return UniqueMangledName(Name.begin(), Name.end());
172 }
173 
174 const char *CodeGenModule::UniqueMangledName(const char *NameStart,
175                                              const char *NameEnd) {
176   assert(*(NameEnd - 1) == '\0' && "Mangled name must be null terminated!");
177 
178   return MangledNames.GetOrCreateValue(NameStart, NameEnd).getKeyData();
179 }
180 
181 /// AddGlobalCtor - Add a function to the list that will be called before
182 /// main() runs.
183 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
184   // FIXME: Type coercion of void()* types.
185   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
186 }
187 
188 /// AddGlobalDtor - Add a function to the list that will be called
189 /// when the module is unloaded.
190 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
191   // FIXME: Type coercion of void()* types.
192   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
193 }
194 
195 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
196   // Ctor function type is void()*.
197   llvm::FunctionType* CtorFTy =
198     llvm::FunctionType::get(llvm::Type::VoidTy,
199                             std::vector<const llvm::Type*>(),
200                             false);
201   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
202 
203   // Get the type of a ctor entry, { i32, void ()* }.
204   llvm::StructType* CtorStructTy =
205     llvm::StructType::get(llvm::Type::Int32Ty,
206                           llvm::PointerType::getUnqual(CtorFTy), NULL);
207 
208   // Construct the constructor and destructor arrays.
209   std::vector<llvm::Constant*> Ctors;
210   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
211     std::vector<llvm::Constant*> S;
212     S.push_back(llvm::ConstantInt::get(llvm::Type::Int32Ty, I->second, false));
213     S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
214     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
215   }
216 
217   if (!Ctors.empty()) {
218     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
219     new llvm::GlobalVariable(AT, false,
220                              llvm::GlobalValue::AppendingLinkage,
221                              llvm::ConstantArray::get(AT, Ctors),
222                              GlobalName,
223                              &TheModule);
224   }
225 }
226 
227 void CodeGenModule::EmitAnnotations() {
228   if (Annotations.empty())
229     return;
230 
231   // Create a new global variable for the ConstantStruct in the Module.
232   llvm::Constant *Array =
233   llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
234                                                 Annotations.size()),
235                            Annotations);
236   llvm::GlobalValue *gv =
237   new llvm::GlobalVariable(Array->getType(), false,
238                            llvm::GlobalValue::AppendingLinkage, Array,
239                            "llvm.global.annotations", &TheModule);
240   gv->setSection("llvm.metadata");
241 }
242 
243 static CodeGenModule::GVALinkage
244 GetLinkageForFunction(const FunctionDecl *FD, const LangOptions &Features) {
245   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
246     // C++ member functions defined inside the class are always inline.
247     if (MD->isInline() || !MD->isOutOfLineDefinition())
248       return CodeGenModule::GVA_CXXInline;
249 
250     return CodeGenModule::GVA_StrongExternal;
251   }
252 
253   // "static" functions get internal linkage.
254   if (FD->getStorageClass() == FunctionDecl::Static)
255     return CodeGenModule::GVA_Internal;
256 
257   if (!FD->isInline())
258     return CodeGenModule::GVA_StrongExternal;
259 
260   // If the inline function explicitly has the GNU inline attribute on it, or if
261   // this is C89 mode, we use to GNU semantics.
262   if (!Features.C99 && !Features.CPlusPlus) {
263     // extern inline in GNU mode is like C99 inline.
264     if (FD->getStorageClass() == FunctionDecl::Extern)
265       return CodeGenModule::GVA_C99Inline;
266     // Normal inline is a strong symbol.
267     return CodeGenModule::GVA_StrongExternal;
268   } else if (FD->hasActiveGNUInlineAttribute()) {
269     // GCC in C99 mode seems to use a different decision-making
270     // process for extern inline, which factors in previous
271     // declarations.
272     if (FD->isExternGNUInline())
273       return CodeGenModule::GVA_C99Inline;
274     // Normal inline is a strong symbol.
275     return CodeGenModule::GVA_StrongExternal;
276   }
277 
278   // The definition of inline changes based on the language.  Note that we
279   // have already handled "static inline" above, with the GVA_Internal case.
280   if (Features.CPlusPlus)  // inline and extern inline.
281     return CodeGenModule::GVA_CXXInline;
282 
283   assert(Features.C99 && "Must be in C99 mode if not in C89 or C++ mode");
284   if (FD->isC99InlineDefinition())
285     return CodeGenModule::GVA_C99Inline;
286 
287   return CodeGenModule::GVA_StrongExternal;
288 }
289 
290 /// SetFunctionDefinitionAttributes - Set attributes for a global.
291 ///
292 /// FIXME: This is currently only done for aliases and functions, but not for
293 /// variables (these details are set in EmitGlobalVarDefinition for variables).
294 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
295                                                     llvm::GlobalValue *GV) {
296   GVALinkage Linkage = GetLinkageForFunction(D, Features);
297 
298   if (Linkage == GVA_Internal) {
299     GV->setLinkage(llvm::Function::InternalLinkage);
300   } else if (D->hasAttr<DLLExportAttr>()) {
301     GV->setLinkage(llvm::Function::DLLExportLinkage);
302   } else if (D->hasAttr<WeakAttr>()) {
303     GV->setLinkage(llvm::Function::WeakAnyLinkage);
304   } else if (Linkage == GVA_C99Inline) {
305     // In C99 mode, 'inline' functions are guaranteed to have a strong
306     // definition somewhere else, so we can use available_externally linkage.
307     GV->setLinkage(llvm::Function::AvailableExternallyLinkage);
308   } else if (Linkage == GVA_CXXInline) {
309     // In C++, the compiler has to emit a definition in every translation unit
310     // that references the function.  We should use linkonce_odr because
311     // a) if all references in this translation unit are optimized away, we
312     // don't need to codegen it.  b) if the function persists, it needs to be
313     // merged with other definitions. c) C++ has the ODR, so we know the
314     // definition is dependable.
315     GV->setLinkage(llvm::Function::LinkOnceODRLinkage);
316   } else {
317     assert(Linkage == GVA_StrongExternal);
318     // Otherwise, we have strong external linkage.
319     GV->setLinkage(llvm::Function::ExternalLinkage);
320   }
321 
322   SetCommonAttributes(D, GV);
323 }
324 
325 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
326                                               const CGFunctionInfo &Info,
327                                               llvm::Function *F) {
328   AttributeListType AttributeList;
329   ConstructAttributeList(Info, D, AttributeList);
330 
331   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
332                                         AttributeList.size()));
333 
334   // Set the appropriate calling convention for the Function.
335   if (D->hasAttr<FastCallAttr>())
336     F->setCallingConv(llvm::CallingConv::X86_FastCall);
337 
338   if (D->hasAttr<StdCallAttr>())
339     F->setCallingConv(llvm::CallingConv::X86_StdCall);
340 }
341 
342 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
343                                                            llvm::Function *F) {
344   if (!Features.Exceptions && !Features.ObjCNonFragileABI)
345     F->addFnAttr(llvm::Attribute::NoUnwind);
346 
347   if (D->hasAttr<AlwaysInlineAttr>())
348     F->addFnAttr(llvm::Attribute::AlwaysInline);
349 
350   if (D->hasAttr<NoinlineAttr>())
351     F->addFnAttr(llvm::Attribute::NoInline);
352 }
353 
354 void CodeGenModule::SetCommonAttributes(const Decl *D,
355                                         llvm::GlobalValue *GV) {
356   setGlobalVisibility(GV, D);
357 
358   if (D->hasAttr<UsedAttr>())
359     AddUsedGlobal(GV);
360 
361   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
362     GV->setSection(SA->getName());
363 }
364 
365 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
366                                                   llvm::Function *F,
367                                                   const CGFunctionInfo &FI) {
368   SetLLVMFunctionAttributes(D, FI, F);
369   SetLLVMFunctionAttributesForDefinition(D, F);
370 
371   F->setLinkage(llvm::Function::InternalLinkage);
372 
373   SetCommonAttributes(D, F);
374 }
375 
376 void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD,
377                                           llvm::Function *F,
378                                           bool IsIncompleteFunction) {
379   if (!IsIncompleteFunction)
380     SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F);
381 
382   // Only a few attributes are set on declarations; these may later be
383   // overridden by a definition.
384 
385   if (FD->hasAttr<DLLImportAttr>()) {
386     F->setLinkage(llvm::Function::DLLImportLinkage);
387   } else if (FD->hasAttr<WeakAttr>() || FD->hasAttr<WeakImportAttr>()) {
388     // "extern_weak" is overloaded in LLVM; we probably should have
389     // separate linkage types for this.
390     F->setLinkage(llvm::Function::ExternalWeakLinkage);
391   } else {
392     F->setLinkage(llvm::Function::ExternalLinkage);
393   }
394 
395   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
396     F->setSection(SA->getName());
397 }
398 
399 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
400   assert(!GV->isDeclaration() &&
401          "Only globals with definition can force usage.");
402   LLVMUsed.push_back(GV);
403 }
404 
405 void CodeGenModule::EmitLLVMUsed() {
406   // Don't create llvm.used if there is no need.
407   if (LLVMUsed.empty())
408     return;
409 
410   llvm::Type *i8PTy = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
411   llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, LLVMUsed.size());
412 
413   // Convert LLVMUsed to what ConstantArray needs.
414   std::vector<llvm::Constant*> UsedArray;
415   UsedArray.resize(LLVMUsed.size());
416   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
417     UsedArray[i] =
418      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), i8PTy);
419   }
420 
421   llvm::GlobalVariable *GV =
422     new llvm::GlobalVariable(ATy, false,
423                              llvm::GlobalValue::AppendingLinkage,
424                              llvm::ConstantArray::get(ATy, UsedArray),
425                              "llvm.used", &getModule());
426 
427   GV->setSection("llvm.metadata");
428 }
429 
430 void CodeGenModule::EmitDeferred() {
431   // Emit code for any potentially referenced deferred decls.  Since a
432   // previously unused static decl may become used during the generation of code
433   // for a static function, iterate until no  changes are made.
434   while (!DeferredDeclsToEmit.empty()) {
435     GlobalDecl D = DeferredDeclsToEmit.back();
436     DeferredDeclsToEmit.pop_back();
437 
438     // The mangled name for the decl must have been emitted in GlobalDeclMap.
439     // Look it up to see if it was defined with a stronger definition (e.g. an
440     // extern inline function with a strong function redefinition).  If so,
441     // just ignore the deferred decl.
442     llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)];
443     assert(CGRef && "Deferred decl wasn't referenced?");
444 
445     if (!CGRef->isDeclaration())
446       continue;
447 
448     // Otherwise, emit the definition and move on to the next one.
449     EmitGlobalDefinition(D);
450   }
451 }
452 
453 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
454 /// annotation information for a given GlobalValue.  The annotation struct is
455 /// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
456 /// GlobalValue being annotated.  The second field is the constant string
457 /// created from the AnnotateAttr's annotation.  The third field is a constant
458 /// string containing the name of the translation unit.  The fourth field is
459 /// the line number in the file of the annotated value declaration.
460 ///
461 /// FIXME: this does not unique the annotation string constants, as llvm-gcc
462 ///        appears to.
463 ///
464 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
465                                                 const AnnotateAttr *AA,
466                                                 unsigned LineNo) {
467   llvm::Module *M = &getModule();
468 
469   // get [N x i8] constants for the annotation string, and the filename string
470   // which are the 2nd and 3rd elements of the global annotation structure.
471   const llvm::Type *SBP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
472   llvm::Constant *anno = llvm::ConstantArray::get(AA->getAnnotation(), true);
473   llvm::Constant *unit = llvm::ConstantArray::get(M->getModuleIdentifier(),
474                                                   true);
475 
476   // Get the two global values corresponding to the ConstantArrays we just
477   // created to hold the bytes of the strings.
478   const char *StringPrefix = getContext().Target.getStringSymbolPrefix(true);
479   llvm::GlobalValue *annoGV =
480   new llvm::GlobalVariable(anno->getType(), false,
481                            llvm::GlobalValue::InternalLinkage, anno,
482                            GV->getName() + StringPrefix, M);
483   // translation unit name string, emitted into the llvm.metadata section.
484   llvm::GlobalValue *unitGV =
485   new llvm::GlobalVariable(unit->getType(), false,
486                            llvm::GlobalValue::InternalLinkage, unit,
487                            StringPrefix, M);
488 
489   // Create the ConstantStruct for the global annotation.
490   llvm::Constant *Fields[4] = {
491     llvm::ConstantExpr::getBitCast(GV, SBP),
492     llvm::ConstantExpr::getBitCast(annoGV, SBP),
493     llvm::ConstantExpr::getBitCast(unitGV, SBP),
494     llvm::ConstantInt::get(llvm::Type::Int32Ty, LineNo)
495   };
496   return llvm::ConstantStruct::get(Fields, 4, false);
497 }
498 
499 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
500   // Never defer when EmitAllDecls is specified or the decl has
501   // attribute used.
502   if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>())
503     return false;
504 
505   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
506     // Constructors and destructors should never be deferred.
507     if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
508       return false;
509 
510     GVALinkage Linkage = GetLinkageForFunction(FD, Features);
511 
512     // static, static inline, always_inline, and extern inline functions can
513     // always be deferred.  Normal inline functions can be deferred in C99/C++.
514     if (Linkage == GVA_Internal || Linkage == GVA_C99Inline ||
515         Linkage == GVA_CXXInline)
516       return true;
517     return false;
518   }
519 
520   const VarDecl *VD = cast<VarDecl>(Global);
521   assert(VD->isFileVarDecl() && "Invalid decl");
522 
523   return VD->getStorageClass() == VarDecl::Static;
524 }
525 
526 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
527   const ValueDecl *Global = GD.getDecl();
528 
529   // If this is an alias definition (which otherwise looks like a declaration)
530   // emit it now.
531   if (Global->hasAttr<AliasAttr>())
532     return EmitAliasDefinition(Global);
533 
534   // Ignore declarations, they will be emitted on their first use.
535   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
536     // Forward declarations are emitted lazily on first use.
537     if (!FD->isThisDeclarationADefinition())
538       return;
539   } else {
540     const VarDecl *VD = cast<VarDecl>(Global);
541     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
542 
543     // In C++, if this is marked "extern", defer code generation.
544     if (getLangOptions().CPlusPlus && !VD->getInit() &&
545         (VD->getStorageClass() == VarDecl::Extern ||
546          VD->isExternC(getContext())))
547       return;
548 
549     // In C, if this isn't a definition, defer code generation.
550     if (!getLangOptions().CPlusPlus && !VD->getInit())
551       return;
552   }
553 
554   // Defer code generation when possible if this is a static definition, inline
555   // function etc.  These we only want to emit if they are used.
556   if (MayDeferGeneration(Global)) {
557     // If the value has already been used, add it directly to the
558     // DeferredDeclsToEmit list.
559     const char *MangledName = getMangledName(GD);
560     if (GlobalDeclMap.count(MangledName))
561       DeferredDeclsToEmit.push_back(GD);
562     else {
563       // Otherwise, remember that we saw a deferred decl with this name.  The
564       // first use of the mangled name will cause it to move into
565       // DeferredDeclsToEmit.
566       DeferredDecls[MangledName] = GD;
567     }
568     return;
569   }
570 
571   // Otherwise emit the definition.
572   EmitGlobalDefinition(GD);
573 }
574 
575 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
576   const ValueDecl *D = GD.getDecl();
577 
578   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
579     EmitCXXConstructor(CD, GD.getCtorType());
580   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
581     EmitCXXDestructor(DD, GD.getDtorType());
582   else if (isa<FunctionDecl>(D))
583     EmitGlobalFunctionDefinition(GD);
584   else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
585     EmitGlobalVarDefinition(VD);
586   else {
587     assert(0 && "Invalid argument to EmitGlobalDefinition()");
588   }
589 }
590 
591 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
592 /// module, create and return an llvm Function with the specified type. If there
593 /// is something in the module with the specified name, return it potentially
594 /// bitcasted to the right type.
595 ///
596 /// If D is non-null, it specifies a decl that correspond to this.  This is used
597 /// to set the attributes on the function when it is first created.
598 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName,
599                                                        const llvm::Type *Ty,
600                                                        GlobalDecl D) {
601   // Lookup the entry, lazily creating it if necessary.
602   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
603   if (Entry) {
604     if (Entry->getType()->getElementType() == Ty)
605       return Entry;
606 
607     // Make sure the result is of the correct type.
608     const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
609     return llvm::ConstantExpr::getBitCast(Entry, PTy);
610   }
611 
612   // This is the first use or definition of a mangled name.  If there is a
613   // deferred decl with this name, remember that we need to emit it at the end
614   // of the file.
615   llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
616     DeferredDecls.find(MangledName);
617   if (DDI != DeferredDecls.end()) {
618     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
619     // list, and remove it from DeferredDecls (since we don't need it anymore).
620     DeferredDeclsToEmit.push_back(DDI->second);
621     DeferredDecls.erase(DDI);
622   } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) {
623     // If this the first reference to a C++ inline function in a class, queue up
624     // the deferred function body for emission.  These are not seen as
625     // top-level declarations.
626     if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD))
627       DeferredDeclsToEmit.push_back(D);
628   }
629 
630   // This function doesn't have a complete type (for example, the return
631   // type is an incomplete struct). Use a fake type instead, and make
632   // sure not to try to set attributes.
633   bool IsIncompleteFunction = false;
634   if (!isa<llvm::FunctionType>(Ty)) {
635     Ty = llvm::FunctionType::get(llvm::Type::VoidTy,
636                                  std::vector<const llvm::Type*>(), false);
637     IsIncompleteFunction = true;
638   }
639   llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty),
640                                              llvm::Function::ExternalLinkage,
641                                              "", &getModule());
642   F->setName(MangledName);
643   if (D.getDecl())
644     SetFunctionAttributes(cast<FunctionDecl>(D.getDecl()), F,
645                           IsIncompleteFunction);
646   Entry = F;
647   return F;
648 }
649 
650 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
651 /// non-null, then this function will use the specified type if it has to
652 /// create it (this occurs when we see a definition of the function).
653 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
654                                                  const llvm::Type *Ty) {
655   // If there was no specific requested type, just convert it now.
656   if (!Ty)
657     Ty = getTypes().ConvertType(GD.getDecl()->getType());
658   return GetOrCreateLLVMFunction(getMangledName(GD.getDecl()), Ty, GD);
659 }
660 
661 /// CreateRuntimeFunction - Create a new runtime function with the specified
662 /// type and name.
663 llvm::Constant *
664 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
665                                      const char *Name) {
666   // Convert Name to be a uniqued string from the IdentifierInfo table.
667   Name = getContext().Idents.get(Name).getName();
668   return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl());
669 }
670 
671 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
672 /// create and return an llvm GlobalVariable with the specified type.  If there
673 /// is something in the module with the specified name, return it potentially
674 /// bitcasted to the right type.
675 ///
676 /// If D is non-null, it specifies a decl that correspond to this.  This is used
677 /// to set the attributes on the global when it is first created.
678 llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName,
679                                                      const llvm::PointerType*Ty,
680                                                      const VarDecl *D) {
681   // Lookup the entry, lazily creating it if necessary.
682   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
683   if (Entry) {
684     if (Entry->getType() == Ty)
685       return Entry;
686 
687     // Make sure the result is of the correct type.
688     return llvm::ConstantExpr::getBitCast(Entry, Ty);
689   }
690 
691   // This is the first use or definition of a mangled name.  If there is a
692   // deferred decl with this name, remember that we need to emit it at the end
693   // of the file.
694   llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
695     DeferredDecls.find(MangledName);
696   if (DDI != DeferredDecls.end()) {
697     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
698     // list, and remove it from DeferredDecls (since we don't need it anymore).
699     DeferredDeclsToEmit.push_back(DDI->second);
700     DeferredDecls.erase(DDI);
701   }
702 
703   llvm::GlobalVariable *GV =
704     new llvm::GlobalVariable(Ty->getElementType(), false,
705                              llvm::GlobalValue::ExternalLinkage,
706                              0, "", &getModule(),
707                              false, Ty->getAddressSpace());
708   GV->setName(MangledName);
709 
710   // Handle things which are present even on external declarations.
711   if (D) {
712     // FIXME: This code is overly simple and should be merged with other global
713     // handling.
714     GV->setConstant(D->getType().isConstant(Context));
715 
716     // FIXME: Merge with other attribute handling code.
717     if (D->getStorageClass() == VarDecl::PrivateExtern)
718       GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
719 
720     if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>())
721       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
722 
723     GV->setThreadLocal(D->isThreadSpecified());
724   }
725 
726   return Entry = GV;
727 }
728 
729 
730 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
731 /// given global variable.  If Ty is non-null and if the global doesn't exist,
732 /// then it will be greated with the specified type instead of whatever the
733 /// normal requested type would be.
734 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
735                                                   const llvm::Type *Ty) {
736   assert(D->hasGlobalStorage() && "Not a global variable");
737   QualType ASTTy = D->getType();
738   if (Ty == 0)
739     Ty = getTypes().ConvertTypeForMem(ASTTy);
740 
741   const llvm::PointerType *PTy =
742     llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
743   return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D);
744 }
745 
746 /// CreateRuntimeVariable - Create a new runtime global variable with the
747 /// specified type and name.
748 llvm::Constant *
749 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
750                                      const char *Name) {
751   // Convert Name to be a uniqued string from the IdentifierInfo table.
752   Name = getContext().Idents.get(Name).getName();
753   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0);
754 }
755 
756 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
757   assert(!D->getInit() && "Cannot emit definite definitions here!");
758 
759   if (MayDeferGeneration(D)) {
760     // If we have not seen a reference to this variable yet, place it
761     // into the deferred declarations table to be emitted if needed
762     // later.
763     const char *MangledName = getMangledName(D);
764     if (GlobalDeclMap.count(MangledName) == 0) {
765       DeferredDecls[MangledName] = GlobalDecl(D);
766       return;
767     }
768   }
769 
770   // The tentative definition is the only definition.
771   EmitGlobalVarDefinition(D);
772 }
773 
774 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
775   llvm::Constant *Init = 0;
776   QualType ASTTy = D->getType();
777 
778   if (D->getInit() == 0) {
779     // This is a tentative definition; tentative definitions are
780     // implicitly initialized with { 0 }.
781     //
782     // Note that tentative definitions are only emitted at the end of
783     // a translation unit, so they should never have incomplete
784     // type. In addition, EmitTentativeDefinition makes sure that we
785     // never attempt to emit a tentative definition if a real one
786     // exists. A use may still exists, however, so we still may need
787     // to do a RAUW.
788     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
789     Init = llvm::Constant::getNullValue(getTypes().ConvertTypeForMem(ASTTy));
790   } else {
791     Init = EmitConstantExpr(D->getInit(), D->getType());
792     if (!Init) {
793       ErrorUnsupported(D, "static initializer");
794       QualType T = D->getInit()->getType();
795       Init = llvm::UndefValue::get(getTypes().ConvertType(T));
796     }
797   }
798 
799   const llvm::Type* InitType = Init->getType();
800   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
801 
802   // Strip off a bitcast if we got one back.
803   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
804     assert(CE->getOpcode() == llvm::Instruction::BitCast);
805     Entry = CE->getOperand(0);
806   }
807 
808   // Entry is now either a Function or GlobalVariable.
809   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
810 
811   // We have a definition after a declaration with the wrong type.
812   // We must make a new GlobalVariable* and update everything that used OldGV
813   // (a declaration or tentative definition) with the new GlobalVariable*
814   // (which will be a definition).
815   //
816   // This happens if there is a prototype for a global (e.g.
817   // "extern int x[];") and then a definition of a different type (e.g.
818   // "int x[10];"). This also happens when an initializer has a different type
819   // from the type of the global (this happens with unions).
820   if (GV == 0 ||
821       GV->getType()->getElementType() != InitType ||
822       GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) {
823 
824     // Remove the old entry from GlobalDeclMap so that we'll create a new one.
825     GlobalDeclMap.erase(getMangledName(D));
826 
827     // Make a new global with the correct type, this is now guaranteed to work.
828     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
829     GV->takeName(cast<llvm::GlobalValue>(Entry));
830 
831     // Replace all uses of the old global with the new global
832     llvm::Constant *NewPtrForOldDecl =
833         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
834     Entry->replaceAllUsesWith(NewPtrForOldDecl);
835 
836     // Erase the old global, since it is no longer used.
837     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
838   }
839 
840   if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
841     SourceManager &SM = Context.getSourceManager();
842     AddAnnotation(EmitAnnotateAttr(GV, AA,
843                               SM.getInstantiationLineNumber(D->getLocation())));
844   }
845 
846   GV->setInitializer(Init);
847   GV->setConstant(D->getType().isConstant(Context));
848   GV->setAlignment(getContext().getDeclAlignInBytes(D));
849 
850   // Set the llvm linkage type as appropriate.
851   if (D->getStorageClass() == VarDecl::Static)
852     GV->setLinkage(llvm::Function::InternalLinkage);
853   else if (D->hasAttr<DLLImportAttr>())
854     GV->setLinkage(llvm::Function::DLLImportLinkage);
855   else if (D->hasAttr<DLLExportAttr>())
856     GV->setLinkage(llvm::Function::DLLExportLinkage);
857   else if (D->hasAttr<WeakAttr>())
858     GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
859   else if (!CompileOpts.NoCommon &&
860            (!D->hasExternalStorage() && !D->getInit()))
861     GV->setLinkage(llvm::GlobalVariable::CommonLinkage);
862   else
863     GV->setLinkage(llvm::GlobalVariable::ExternalLinkage);
864 
865   SetCommonAttributes(D, GV);
866 
867   // Emit global variable debug information.
868   if (CGDebugInfo *DI = getDebugInfo()) {
869     DI->setLocation(D->getLocation());
870     DI->EmitGlobalVariable(GV, D);
871   }
872 }
873 
874 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
875 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
876 /// existing call uses of the old function in the module, this adjusts them to
877 /// call the new function directly.
878 ///
879 /// This is not just a cleanup: the always_inline pass requires direct calls to
880 /// functions to be able to inline them.  If there is a bitcast in the way, it
881 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
882 /// run at -O0.
883 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
884                                                       llvm::Function *NewFn) {
885   // If we're redefining a global as a function, don't transform it.
886   llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
887   if (OldFn == 0) return;
888 
889   const llvm::Type *NewRetTy = NewFn->getReturnType();
890   llvm::SmallVector<llvm::Value*, 4> ArgList;
891 
892   for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
893        UI != E; ) {
894     // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
895     unsigned OpNo = UI.getOperandNo();
896     llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*UI++);
897     if (!CI || OpNo != 0) continue;
898 
899     // If the return types don't match exactly, and if the call isn't dead, then
900     // we can't transform this call.
901     if (CI->getType() != NewRetTy && !CI->use_empty())
902       continue;
903 
904     // If the function was passed too few arguments, don't transform.  If extra
905     // arguments were passed, we silently drop them.  If any of the types
906     // mismatch, we don't transform.
907     unsigned ArgNo = 0;
908     bool DontTransform = false;
909     for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
910          E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
911       if (CI->getNumOperands()-1 == ArgNo ||
912           CI->getOperand(ArgNo+1)->getType() != AI->getType()) {
913         DontTransform = true;
914         break;
915       }
916     }
917     if (DontTransform)
918       continue;
919 
920     // Okay, we can transform this.  Create the new call instruction and copy
921     // over the required information.
922     ArgList.append(CI->op_begin()+1, CI->op_begin()+1+ArgNo);
923     llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
924                                                      ArgList.end(), "", CI);
925     ArgList.clear();
926     if (NewCall->getType() != llvm::Type::VoidTy)
927       NewCall->takeName(CI);
928     NewCall->setCallingConv(CI->getCallingConv());
929     NewCall->setAttributes(CI->getAttributes());
930 
931     // Finally, remove the old call, replacing any uses with the new one.
932     if (!CI->use_empty())
933       CI->replaceAllUsesWith(NewCall);
934     CI->eraseFromParent();
935   }
936 }
937 
938 
939 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
940   const llvm::FunctionType *Ty;
941   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
942 
943   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
944     bool isVariadic = D->getType()->getAsFunctionProtoType()->isVariadic();
945 
946     Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic);
947   } else {
948     Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType()));
949 
950     // As a special case, make sure that definitions of K&R function
951     // "type foo()" aren't declared as varargs (which forces the backend
952     // to do unnecessary work).
953     if (D->getType()->isFunctionNoProtoType()) {
954       assert(Ty->isVarArg() && "Didn't lower type as expected");
955       // Due to stret, the lowered function could have arguments.
956       // Just create the same type as was lowered by ConvertType
957       // but strip off the varargs bit.
958       std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end());
959       Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false);
960     }
961   }
962 
963   // Get or create the prototype for the function.
964   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
965 
966   // Strip off a bitcast if we got one back.
967   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
968     assert(CE->getOpcode() == llvm::Instruction::BitCast);
969     Entry = CE->getOperand(0);
970   }
971 
972 
973   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
974     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
975 
976     // If the types mismatch then we have to rewrite the definition.
977     assert(OldFn->isDeclaration() &&
978            "Shouldn't replace non-declaration");
979 
980     // F is the Function* for the one with the wrong type, we must make a new
981     // Function* and update everything that used F (a declaration) with the new
982     // Function* (which will be a definition).
983     //
984     // This happens if there is a prototype for a function
985     // (e.g. "int f()") and then a definition of a different type
986     // (e.g. "int f(int x)").  Start by making a new function of the
987     // correct type, RAUW, then steal the name.
988     GlobalDeclMap.erase(getMangledName(D));
989     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
990     NewFn->takeName(OldFn);
991 
992     // If this is an implementation of a function without a prototype, try to
993     // replace any existing uses of the function (which may be calls) with uses
994     // of the new function
995     if (D->getType()->isFunctionNoProtoType()) {
996       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
997       OldFn->removeDeadConstantUsers();
998     }
999 
1000     // Replace uses of F with the Function we will endow with a body.
1001     if (!Entry->use_empty()) {
1002       llvm::Constant *NewPtrForOldDecl =
1003         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1004       Entry->replaceAllUsesWith(NewPtrForOldDecl);
1005     }
1006 
1007     // Ok, delete the old function now, which is dead.
1008     OldFn->eraseFromParent();
1009 
1010     Entry = NewFn;
1011   }
1012 
1013   llvm::Function *Fn = cast<llvm::Function>(Entry);
1014 
1015   CodeGenFunction(*this).GenerateCode(D, Fn);
1016 
1017   SetFunctionDefinitionAttributes(D, Fn);
1018   SetLLVMFunctionAttributesForDefinition(D, Fn);
1019 
1020   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1021     AddGlobalCtor(Fn, CA->getPriority());
1022   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1023     AddGlobalDtor(Fn, DA->getPriority());
1024 }
1025 
1026 void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) {
1027   const AliasAttr *AA = D->getAttr<AliasAttr>();
1028   assert(AA && "Not an alias?");
1029 
1030   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1031 
1032   // Unique the name through the identifier table.
1033   const char *AliaseeName = AA->getAliasee().c_str();
1034   AliaseeName = getContext().Idents.get(AliaseeName).getName();
1035 
1036   // Create a reference to the named value.  This ensures that it is emitted
1037   // if a deferred decl.
1038   llvm::Constant *Aliasee;
1039   if (isa<llvm::FunctionType>(DeclTy))
1040     Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, GlobalDecl());
1041   else
1042     Aliasee = GetOrCreateLLVMGlobal(AliaseeName,
1043                                     llvm::PointerType::getUnqual(DeclTy), 0);
1044 
1045   // Create the new alias itself, but don't set a name yet.
1046   llvm::GlobalValue *GA =
1047     new llvm::GlobalAlias(Aliasee->getType(),
1048                           llvm::Function::ExternalLinkage,
1049                           "", Aliasee, &getModule());
1050 
1051   // See if there is already something with the alias' name in the module.
1052   const char *MangledName = getMangledName(D);
1053   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
1054 
1055   if (Entry && !Entry->isDeclaration()) {
1056     // If there is a definition in the module, then it wins over the alias.
1057     // This is dubious, but allow it to be safe.  Just ignore the alias.
1058     GA->eraseFromParent();
1059     return;
1060   }
1061 
1062   if (Entry) {
1063     // If there is a declaration in the module, then we had an extern followed
1064     // by the alias, as in:
1065     //   extern int test6();
1066     //   ...
1067     //   int test6() __attribute__((alias("test7")));
1068     //
1069     // Remove it and replace uses of it with the alias.
1070 
1071     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1072                                                           Entry->getType()));
1073     Entry->eraseFromParent();
1074   }
1075 
1076   // Now we know that there is no conflict, set the name.
1077   Entry = GA;
1078   GA->setName(MangledName);
1079 
1080   // Set attributes which are particular to an alias; this is a
1081   // specialization of the attributes which may be set on a global
1082   // variable/function.
1083   if (D->hasAttr<DLLExportAttr>()) {
1084     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1085       // The dllexport attribute is ignored for undefined symbols.
1086       if (FD->getBody(getContext()))
1087         GA->setLinkage(llvm::Function::DLLExportLinkage);
1088     } else {
1089       GA->setLinkage(llvm::Function::DLLExportLinkage);
1090     }
1091   } else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>()) {
1092     GA->setLinkage(llvm::Function::WeakAnyLinkage);
1093   }
1094 
1095   SetCommonAttributes(D, GA);
1096 }
1097 
1098 /// getBuiltinLibFunction - Given a builtin id for a function like
1099 /// "__builtin_fabsf", return a Function* for "fabsf".
1100 llvm::Value *CodeGenModule::getBuiltinLibFunction(unsigned BuiltinID) {
1101   assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
1102           Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
1103          "isn't a lib fn");
1104 
1105   // Get the name, skip over the __builtin_ prefix (if necessary).
1106   const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
1107   if (Context.BuiltinInfo.isLibFunction(BuiltinID))
1108     Name += 10;
1109 
1110   // Get the type for the builtin.
1111   ASTContext::GetBuiltinTypeError Error;
1112   QualType Type = Context.GetBuiltinType(BuiltinID, Error);
1113   assert(Error == ASTContext::GE_None && "Can't get builtin type");
1114 
1115   const llvm::FunctionType *Ty =
1116     cast<llvm::FunctionType>(getTypes().ConvertType(Type));
1117 
1118   // Unique the name through the identifier table.
1119   Name = getContext().Idents.get(Name).getName();
1120   // FIXME: param attributes for sext/zext etc.
1121   return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl());
1122 }
1123 
1124 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
1125                                             unsigned NumTys) {
1126   return llvm::Intrinsic::getDeclaration(&getModule(),
1127                                          (llvm::Intrinsic::ID)IID, Tys, NumTys);
1128 }
1129 
1130 llvm::Function *CodeGenModule::getMemCpyFn() {
1131   if (MemCpyFn) return MemCpyFn;
1132   const llvm::Type *IntPtr = TheTargetData.getIntPtrType();
1133   return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1);
1134 }
1135 
1136 llvm::Function *CodeGenModule::getMemMoveFn() {
1137   if (MemMoveFn) return MemMoveFn;
1138   const llvm::Type *IntPtr = TheTargetData.getIntPtrType();
1139   return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1);
1140 }
1141 
1142 llvm::Function *CodeGenModule::getMemSetFn() {
1143   if (MemSetFn) return MemSetFn;
1144   const llvm::Type *IntPtr = TheTargetData.getIntPtrType();
1145   return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1);
1146 }
1147 
1148 static void appendFieldAndPadding(CodeGenModule &CGM,
1149                                   std::vector<llvm::Constant*>& Fields,
1150                                   FieldDecl *FieldD, FieldDecl *NextFieldD,
1151                                   llvm::Constant* Field,
1152                                   RecordDecl* RD, const llvm::StructType *STy) {
1153   // Append the field.
1154   Fields.push_back(Field);
1155 
1156   int StructFieldNo = CGM.getTypes().getLLVMFieldNo(FieldD);
1157 
1158   int NextStructFieldNo;
1159   if (!NextFieldD) {
1160     NextStructFieldNo = STy->getNumElements();
1161   } else {
1162     NextStructFieldNo = CGM.getTypes().getLLVMFieldNo(NextFieldD);
1163   }
1164 
1165   // Append padding
1166   for (int i = StructFieldNo + 1; i < NextStructFieldNo; i++) {
1167     llvm::Constant *C =
1168       llvm::Constant::getNullValue(STy->getElementType(StructFieldNo + 1));
1169 
1170     Fields.push_back(C);
1171   }
1172 }
1173 
1174 llvm::Constant *CodeGenModule::
1175 GetAddrOfConstantCFString(const StringLiteral *Literal) {
1176   std::string str;
1177   unsigned StringLength = 0;
1178 
1179   bool isUTF16 = false;
1180   if (Literal->containsNonAsciiOrNull()) {
1181     // Convert from UTF-8 to UTF-16.
1182     llvm::SmallVector<UTF16, 128> ToBuf(Literal->getByteLength());
1183     const UTF8 *FromPtr = (UTF8 *)Literal->getStrData();
1184     UTF16 *ToPtr = &ToBuf[0];
1185 
1186     ConversionResult Result;
1187     Result = ConvertUTF8toUTF16(&FromPtr, FromPtr+Literal->getByteLength(),
1188                                 &ToPtr, ToPtr+Literal->getByteLength(),
1189                                 strictConversion);
1190     if (Result == conversionOK) {
1191       // FIXME: Storing UTF-16 in a C string is a hack to test Unicode strings
1192       // without doing more surgery to this routine. Since we aren't explicitly
1193       // checking for endianness here, it's also a bug (when generating code for
1194       // a target that doesn't match the host endianness). Modeling this as an
1195       // i16 array is likely the cleanest solution.
1196       StringLength = ToPtr-&ToBuf[0];
1197       str.assign((char *)&ToBuf[0], StringLength*2);// Twice as many UTF8 chars.
1198       isUTF16 = true;
1199     } else if (Result == sourceIllegal) {
1200       // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string.
1201       str.assign(Literal->getStrData(), Literal->getByteLength());
1202       StringLength = str.length();
1203     } else
1204       assert(Result == conversionOK && "UTF-8 to UTF-16 conversion failed");
1205 
1206   } else {
1207     str.assign(Literal->getStrData(), Literal->getByteLength());
1208     StringLength = str.length();
1209   }
1210   llvm::StringMapEntry<llvm::Constant *> &Entry =
1211     CFConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1212 
1213   if (llvm::Constant *C = Entry.getValue())
1214     return C;
1215 
1216   llvm::Constant *Zero = llvm::Constant::getNullValue(llvm::Type::Int32Ty);
1217   llvm::Constant *Zeros[] = { Zero, Zero };
1218 
1219   if (!CFConstantStringClassRef) {
1220     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1221     Ty = llvm::ArrayType::get(Ty, 0);
1222 
1223     // FIXME: This is fairly broken if __CFConstantStringClassReference is
1224     // already defined, in that it will get renamed and the user will most
1225     // likely see an opaque error message. This is a general issue with relying
1226     // on particular names.
1227     llvm::GlobalVariable *GV =
1228       new llvm::GlobalVariable(Ty, false,
1229                                llvm::GlobalVariable::ExternalLinkage, 0,
1230                                "__CFConstantStringClassReference",
1231                                &getModule());
1232 
1233     // Decay array -> ptr
1234     CFConstantStringClassRef =
1235       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1236   }
1237 
1238   QualType CFTy = getContext().getCFConstantStringType();
1239   RecordDecl *CFRD = CFTy->getAsRecordType()->getDecl();
1240 
1241   const llvm::StructType *STy =
1242     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1243 
1244   std::vector<llvm::Constant*> Fields;
1245   RecordDecl::field_iterator Field = CFRD->field_begin(getContext());
1246 
1247   // Class pointer.
1248   FieldDecl *CurField = *Field++;
1249   FieldDecl *NextField = *Field++;
1250   appendFieldAndPadding(*this, Fields, CurField, NextField,
1251                         CFConstantStringClassRef, CFRD, STy);
1252 
1253   // Flags.
1254   CurField = NextField;
1255   NextField = *Field++;
1256   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1257   appendFieldAndPadding(*this, Fields, CurField, NextField,
1258                         isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0)
1259                                 : llvm::ConstantInt::get(Ty, 0x07C8),
1260                         CFRD, STy);
1261 
1262   // String pointer.
1263   CurField = NextField;
1264   NextField = *Field++;
1265   llvm::Constant *C = llvm::ConstantArray::get(str);
1266 
1267   const char *Sect, *Prefix;
1268   bool isConstant;
1269   if (isUTF16) {
1270     Prefix = getContext().Target.getUnicodeStringSymbolPrefix();
1271     Sect = getContext().Target.getUnicodeStringSection();
1272     // FIXME: Why does GCC not set constant here?
1273     isConstant = false;
1274   } else {
1275     Prefix = getContext().Target.getStringSymbolPrefix(true);
1276     Sect = getContext().Target.getCFStringDataSection();
1277     // FIXME: -fwritable-strings should probably affect this, but we
1278     // are following gcc here.
1279     isConstant = true;
1280   }
1281   llvm::GlobalVariable *GV =
1282     new llvm::GlobalVariable(C->getType(), isConstant,
1283                              llvm::GlobalValue::InternalLinkage,
1284                              C, Prefix, &getModule());
1285   if (Sect)
1286     GV->setSection(Sect);
1287   if (isUTF16) {
1288     unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8;
1289     GV->setAlignment(Align);
1290   }
1291   appendFieldAndPadding(*this, Fields, CurField, NextField,
1292                         llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2),
1293                         CFRD, STy);
1294 
1295   // String length.
1296   CurField = NextField;
1297   NextField = 0;
1298   Ty = getTypes().ConvertType(getContext().LongTy);
1299   appendFieldAndPadding(*this, Fields, CurField, NextField,
1300                         llvm::ConstantInt::get(Ty, StringLength), CFRD, STy);
1301 
1302   // The struct.
1303   C = llvm::ConstantStruct::get(STy, Fields);
1304   GV = new llvm::GlobalVariable(C->getType(), true,
1305                                 llvm::GlobalVariable::InternalLinkage, C,
1306                                 getContext().Target.getCFStringSymbolPrefix(),
1307                                 &getModule());
1308   if (const char *Sect = getContext().Target.getCFStringSection())
1309     GV->setSection(Sect);
1310   Entry.setValue(GV);
1311 
1312   return GV;
1313 }
1314 
1315 /// GetStringForStringLiteral - Return the appropriate bytes for a
1316 /// string literal, properly padded to match the literal type.
1317 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1318   const char *StrData = E->getStrData();
1319   unsigned Len = E->getByteLength();
1320 
1321   const ConstantArrayType *CAT =
1322     getContext().getAsConstantArrayType(E->getType());
1323   assert(CAT && "String isn't pointer or array!");
1324 
1325   // Resize the string to the right size.
1326   std::string Str(StrData, StrData+Len);
1327   uint64_t RealLen = CAT->getSize().getZExtValue();
1328 
1329   if (E->isWide())
1330     RealLen *= getContext().Target.getWCharWidth()/8;
1331 
1332   Str.resize(RealLen, '\0');
1333 
1334   return Str;
1335 }
1336 
1337 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1338 /// constant array for the given string literal.
1339 llvm::Constant *
1340 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1341   // FIXME: This can be more efficient.
1342   return GetAddrOfConstantString(GetStringForStringLiteral(S));
1343 }
1344 
1345 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1346 /// array for the given ObjCEncodeExpr node.
1347 llvm::Constant *
1348 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1349   std::string Str;
1350   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1351 
1352   return GetAddrOfConstantCString(Str);
1353 }
1354 
1355 
1356 /// GenerateWritableString -- Creates storage for a string literal.
1357 static llvm::Constant *GenerateStringLiteral(const std::string &str,
1358                                              bool constant,
1359                                              CodeGenModule &CGM,
1360                                              const char *GlobalName) {
1361   // Create Constant for this string literal. Don't add a '\0'.
1362   llvm::Constant *C = llvm::ConstantArray::get(str, false);
1363 
1364   // Create a global variable for this string
1365   return new llvm::GlobalVariable(C->getType(), constant,
1366                                   llvm::GlobalValue::InternalLinkage,
1367                                   C, GlobalName, &CGM.getModule());
1368 }
1369 
1370 /// GetAddrOfConstantString - Returns a pointer to a character array
1371 /// containing the literal. This contents are exactly that of the
1372 /// given string, i.e. it will not be null terminated automatically;
1373 /// see GetAddrOfConstantCString. Note that whether the result is
1374 /// actually a pointer to an LLVM constant depends on
1375 /// Feature.WriteableStrings.
1376 ///
1377 /// The result has pointer to array type.
1378 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str,
1379                                                        const char *GlobalName) {
1380   bool IsConstant = !Features.WritableStrings;
1381 
1382   // Get the default prefix if a name wasn't specified.
1383   if (!GlobalName)
1384     GlobalName = getContext().Target.getStringSymbolPrefix(IsConstant);
1385 
1386   // Don't share any string literals if strings aren't constant.
1387   if (!IsConstant)
1388     return GenerateStringLiteral(str, false, *this, GlobalName);
1389 
1390   llvm::StringMapEntry<llvm::Constant *> &Entry =
1391   ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1392 
1393   if (Entry.getValue())
1394     return Entry.getValue();
1395 
1396   // Create a global variable for this.
1397   llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName);
1398   Entry.setValue(C);
1399   return C;
1400 }
1401 
1402 /// GetAddrOfConstantCString - Returns a pointer to a character
1403 /// array containing the literal and a terminating '\-'
1404 /// character. The result has pointer to array type.
1405 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str,
1406                                                         const char *GlobalName){
1407   return GetAddrOfConstantString(str + '\0', GlobalName);
1408 }
1409 
1410 /// EmitObjCPropertyImplementations - Emit information for synthesized
1411 /// properties for an implementation.
1412 void CodeGenModule::EmitObjCPropertyImplementations(const
1413                                                     ObjCImplementationDecl *D) {
1414   for (ObjCImplementationDecl::propimpl_iterator
1415          i = D->propimpl_begin(getContext()),
1416          e = D->propimpl_end(getContext()); i != e; ++i) {
1417     ObjCPropertyImplDecl *PID = *i;
1418 
1419     // Dynamic is just for type-checking.
1420     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1421       ObjCPropertyDecl *PD = PID->getPropertyDecl();
1422 
1423       // Determine which methods need to be implemented, some may have
1424       // been overridden. Note that ::isSynthesized is not the method
1425       // we want, that just indicates if the decl came from a
1426       // property. What we want to know is if the method is defined in
1427       // this implementation.
1428       if (!D->getInstanceMethod(getContext(), PD->getGetterName()))
1429         CodeGenFunction(*this).GenerateObjCGetter(
1430                                  const_cast<ObjCImplementationDecl *>(D), PID);
1431       if (!PD->isReadOnly() &&
1432           !D->getInstanceMethod(getContext(), PD->getSetterName()))
1433         CodeGenFunction(*this).GenerateObjCSetter(
1434                                  const_cast<ObjCImplementationDecl *>(D), PID);
1435     }
1436   }
1437 }
1438 
1439 /// EmitNamespace - Emit all declarations in a namespace.
1440 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
1441   for (RecordDecl::decl_iterator I = ND->decls_begin(getContext()),
1442          E = ND->decls_end(getContext());
1443        I != E; ++I)
1444     EmitTopLevelDecl(*I);
1445 }
1446 
1447 // EmitLinkageSpec - Emit all declarations in a linkage spec.
1448 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
1449   if (LSD->getLanguage() != LinkageSpecDecl::lang_c) {
1450     ErrorUnsupported(LSD, "linkage spec");
1451     return;
1452   }
1453 
1454   for (RecordDecl::decl_iterator I = LSD->decls_begin(getContext()),
1455          E = LSD->decls_end(getContext());
1456        I != E; ++I)
1457     EmitTopLevelDecl(*I);
1458 }
1459 
1460 /// EmitTopLevelDecl - Emit code for a single top level declaration.
1461 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
1462   // If an error has occurred, stop code generation, but continue
1463   // parsing and semantic analysis (to ensure all warnings and errors
1464   // are emitted).
1465   if (Diags.hasErrorOccurred())
1466     return;
1467 
1468   switch (D->getKind()) {
1469   case Decl::CXXMethod:
1470   case Decl::Function:
1471   case Decl::Var:
1472     EmitGlobal(GlobalDecl(cast<ValueDecl>(D)));
1473     break;
1474 
1475   // C++ Decls
1476   case Decl::Namespace:
1477     EmitNamespace(cast<NamespaceDecl>(D));
1478     break;
1479   case Decl::CXXConstructor:
1480     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
1481     break;
1482   case Decl::CXXDestructor:
1483     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
1484     break;
1485 
1486   case Decl::StaticAssert:
1487     // Nothing to do.
1488     break;
1489 
1490   // Objective-C Decls
1491 
1492   // Forward declarations, no (immediate) code generation.
1493   case Decl::ObjCClass:
1494   case Decl::ObjCForwardProtocol:
1495   case Decl::ObjCCategory:
1496   case Decl::ObjCInterface:
1497     break;
1498 
1499   case Decl::ObjCProtocol:
1500     Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
1501     break;
1502 
1503   case Decl::ObjCCategoryImpl:
1504     // Categories have properties but don't support synthesize so we
1505     // can ignore them here.
1506     Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
1507     break;
1508 
1509   case Decl::ObjCImplementation: {
1510     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
1511     EmitObjCPropertyImplementations(OMD);
1512     Runtime->GenerateClass(OMD);
1513     break;
1514   }
1515   case Decl::ObjCMethod: {
1516     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
1517     // If this is not a prototype, emit the body.
1518     if (OMD->getBody(getContext()))
1519       CodeGenFunction(*this).GenerateObjCMethod(OMD);
1520     break;
1521   }
1522   case Decl::ObjCCompatibleAlias:
1523     // compatibility-alias is a directive and has no code gen.
1524     break;
1525 
1526   case Decl::LinkageSpec:
1527     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
1528     break;
1529 
1530   case Decl::FileScopeAsm: {
1531     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
1532     std::string AsmString(AD->getAsmString()->getStrData(),
1533                           AD->getAsmString()->getByteLength());
1534 
1535     const std::string &S = getModule().getModuleInlineAsm();
1536     if (S.empty())
1537       getModule().setModuleInlineAsm(AsmString);
1538     else
1539       getModule().setModuleInlineAsm(S + '\n' + AsmString);
1540     break;
1541   }
1542 
1543   default:
1544     // Make sure we handled everything we should, every other kind is a
1545     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
1546     // function. Need to recode Decl::Kind to do that easily.
1547     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
1548   }
1549 }
1550