1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CGCall.h" 18 #include "CGObjCRuntime.h" 19 #include "Mangle.h" 20 #include "clang/Frontend/CompileOptions.h" 21 #include "clang/AST/ASTContext.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/AST/DeclCXX.h" 24 #include "clang/Basic/Builtins.h" 25 #include "clang/Basic/Diagnostic.h" 26 #include "clang/Basic/SourceManager.h" 27 #include "clang/Basic/TargetInfo.h" 28 #include "clang/Basic/ConvertUTF.h" 29 #include "llvm/CallingConv.h" 30 #include "llvm/Module.h" 31 #include "llvm/Intrinsics.h" 32 #include "llvm/Target/TargetData.h" 33 using namespace clang; 34 using namespace CodeGen; 35 36 37 CodeGenModule::CodeGenModule(ASTContext &C, const CompileOptions &compileOpts, 38 llvm::Module &M, const llvm::TargetData &TD, 39 Diagnostic &diags) 40 : BlockModule(C, M, TD, Types, *this), Context(C), 41 Features(C.getLangOptions()), CompileOpts(compileOpts), TheModule(M), 42 TheTargetData(TD), Diags(diags), Types(C, M, TD), Runtime(0), 43 MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0) { 44 45 if (!Features.ObjC1) 46 Runtime = 0; 47 else if (!Features.NeXTRuntime) 48 Runtime = CreateGNUObjCRuntime(*this); 49 else if (Features.ObjCNonFragileABI) 50 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 51 else 52 Runtime = CreateMacObjCRuntime(*this); 53 54 // If debug info generation is enabled, create the CGDebugInfo object. 55 DebugInfo = CompileOpts.DebugInfo ? new CGDebugInfo(this) : 0; 56 } 57 58 CodeGenModule::~CodeGenModule() { 59 delete Runtime; 60 delete DebugInfo; 61 } 62 63 void CodeGenModule::Release() { 64 EmitDeferred(); 65 if (Runtime) 66 if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction()) 67 AddGlobalCtor(ObjCInitFunction); 68 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 69 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 70 EmitAnnotations(); 71 EmitLLVMUsed(); 72 } 73 74 /// ErrorUnsupported - Print out an error that codegen doesn't support the 75 /// specified stmt yet. 76 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 77 bool OmitOnError) { 78 if (OmitOnError && getDiags().hasErrorOccurred()) 79 return; 80 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 81 "cannot compile this %0 yet"); 82 std::string Msg = Type; 83 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 84 << Msg << S->getSourceRange(); 85 } 86 87 /// ErrorUnsupported - Print out an error that codegen doesn't support the 88 /// specified decl yet. 89 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 90 bool OmitOnError) { 91 if (OmitOnError && getDiags().hasErrorOccurred()) 92 return; 93 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 94 "cannot compile this %0 yet"); 95 std::string Msg = Type; 96 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 97 } 98 99 LangOptions::VisibilityMode 100 CodeGenModule::getDeclVisibilityMode(const Decl *D) const { 101 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 102 if (VD->getStorageClass() == VarDecl::PrivateExtern) 103 return LangOptions::Hidden; 104 105 if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) { 106 switch (attr->getVisibility()) { 107 default: assert(0 && "Unknown visibility!"); 108 case VisibilityAttr::DefaultVisibility: 109 return LangOptions::Default; 110 case VisibilityAttr::HiddenVisibility: 111 return LangOptions::Hidden; 112 case VisibilityAttr::ProtectedVisibility: 113 return LangOptions::Protected; 114 } 115 } 116 117 return getLangOptions().getVisibilityMode(); 118 } 119 120 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 121 const Decl *D) const { 122 // Internal definitions always have default visibility. 123 if (GV->hasLocalLinkage()) { 124 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 125 return; 126 } 127 128 switch (getDeclVisibilityMode(D)) { 129 default: assert(0 && "Unknown visibility!"); 130 case LangOptions::Default: 131 return GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 132 case LangOptions::Hidden: 133 return GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 134 case LangOptions::Protected: 135 return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 136 } 137 } 138 139 const char *CodeGenModule::getMangledName(const GlobalDecl &GD) { 140 const NamedDecl *ND = GD.getDecl(); 141 142 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 143 return getMangledCXXCtorName(D, GD.getCtorType()); 144 if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 145 return getMangledCXXDtorName(D, GD.getDtorType()); 146 147 return getMangledName(ND); 148 } 149 150 /// \brief Retrieves the mangled name for the given declaration. 151 /// 152 /// If the given declaration requires a mangled name, returns an 153 /// const char* containing the mangled name. Otherwise, returns 154 /// the unmangled name. 155 /// 156 const char *CodeGenModule::getMangledName(const NamedDecl *ND) { 157 // In C, functions with no attributes never need to be mangled. Fastpath them. 158 if (!getLangOptions().CPlusPlus && !ND->hasAttrs()) { 159 assert(ND->getIdentifier() && "Attempt to mangle unnamed decl."); 160 return ND->getNameAsCString(); 161 } 162 163 llvm::SmallString<256> Name; 164 llvm::raw_svector_ostream Out(Name); 165 if (!mangleName(ND, Context, Out)) { 166 assert(ND->getIdentifier() && "Attempt to mangle unnamed decl."); 167 return ND->getNameAsCString(); 168 } 169 170 Name += '\0'; 171 return UniqueMangledName(Name.begin(), Name.end()); 172 } 173 174 const char *CodeGenModule::UniqueMangledName(const char *NameStart, 175 const char *NameEnd) { 176 assert(*(NameEnd - 1) == '\0' && "Mangled name must be null terminated!"); 177 178 return MangledNames.GetOrCreateValue(NameStart, NameEnd).getKeyData(); 179 } 180 181 /// AddGlobalCtor - Add a function to the list that will be called before 182 /// main() runs. 183 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 184 // FIXME: Type coercion of void()* types. 185 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 186 } 187 188 /// AddGlobalDtor - Add a function to the list that will be called 189 /// when the module is unloaded. 190 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 191 // FIXME: Type coercion of void()* types. 192 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 193 } 194 195 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 196 // Ctor function type is void()*. 197 llvm::FunctionType* CtorFTy = 198 llvm::FunctionType::get(llvm::Type::VoidTy, 199 std::vector<const llvm::Type*>(), 200 false); 201 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 202 203 // Get the type of a ctor entry, { i32, void ()* }. 204 llvm::StructType* CtorStructTy = 205 llvm::StructType::get(llvm::Type::Int32Ty, 206 llvm::PointerType::getUnqual(CtorFTy), NULL); 207 208 // Construct the constructor and destructor arrays. 209 std::vector<llvm::Constant*> Ctors; 210 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 211 std::vector<llvm::Constant*> S; 212 S.push_back(llvm::ConstantInt::get(llvm::Type::Int32Ty, I->second, false)); 213 S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)); 214 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 215 } 216 217 if (!Ctors.empty()) { 218 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 219 new llvm::GlobalVariable(AT, false, 220 llvm::GlobalValue::AppendingLinkage, 221 llvm::ConstantArray::get(AT, Ctors), 222 GlobalName, 223 &TheModule); 224 } 225 } 226 227 void CodeGenModule::EmitAnnotations() { 228 if (Annotations.empty()) 229 return; 230 231 // Create a new global variable for the ConstantStruct in the Module. 232 llvm::Constant *Array = 233 llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(), 234 Annotations.size()), 235 Annotations); 236 llvm::GlobalValue *gv = 237 new llvm::GlobalVariable(Array->getType(), false, 238 llvm::GlobalValue::AppendingLinkage, Array, 239 "llvm.global.annotations", &TheModule); 240 gv->setSection("llvm.metadata"); 241 } 242 243 static CodeGenModule::GVALinkage 244 GetLinkageForFunction(const FunctionDecl *FD, const LangOptions &Features) { 245 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 246 // C++ member functions defined inside the class are always inline. 247 if (MD->isInline() || !MD->isOutOfLineDefinition()) 248 return CodeGenModule::GVA_CXXInline; 249 250 return CodeGenModule::GVA_StrongExternal; 251 } 252 253 // "static" functions get internal linkage. 254 if (FD->getStorageClass() == FunctionDecl::Static) 255 return CodeGenModule::GVA_Internal; 256 257 if (!FD->isInline()) 258 return CodeGenModule::GVA_StrongExternal; 259 260 // If the inline function explicitly has the GNU inline attribute on it, or if 261 // this is C89 mode, we use to GNU semantics. 262 if (!Features.C99 && !Features.CPlusPlus) { 263 // extern inline in GNU mode is like C99 inline. 264 if (FD->getStorageClass() == FunctionDecl::Extern) 265 return CodeGenModule::GVA_C99Inline; 266 // Normal inline is a strong symbol. 267 return CodeGenModule::GVA_StrongExternal; 268 } else if (FD->hasActiveGNUInlineAttribute()) { 269 // GCC in C99 mode seems to use a different decision-making 270 // process for extern inline, which factors in previous 271 // declarations. 272 if (FD->isExternGNUInline()) 273 return CodeGenModule::GVA_C99Inline; 274 // Normal inline is a strong symbol. 275 return CodeGenModule::GVA_StrongExternal; 276 } 277 278 // The definition of inline changes based on the language. Note that we 279 // have already handled "static inline" above, with the GVA_Internal case. 280 if (Features.CPlusPlus) // inline and extern inline. 281 return CodeGenModule::GVA_CXXInline; 282 283 assert(Features.C99 && "Must be in C99 mode if not in C89 or C++ mode"); 284 if (FD->isC99InlineDefinition()) 285 return CodeGenModule::GVA_C99Inline; 286 287 return CodeGenModule::GVA_StrongExternal; 288 } 289 290 /// SetFunctionDefinitionAttributes - Set attributes for a global. 291 /// 292 /// FIXME: This is currently only done for aliases and functions, but not for 293 /// variables (these details are set in EmitGlobalVarDefinition for variables). 294 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 295 llvm::GlobalValue *GV) { 296 GVALinkage Linkage = GetLinkageForFunction(D, Features); 297 298 if (Linkage == GVA_Internal) { 299 GV->setLinkage(llvm::Function::InternalLinkage); 300 } else if (D->hasAttr<DLLExportAttr>()) { 301 GV->setLinkage(llvm::Function::DLLExportLinkage); 302 } else if (D->hasAttr<WeakAttr>()) { 303 GV->setLinkage(llvm::Function::WeakAnyLinkage); 304 } else if (Linkage == GVA_C99Inline) { 305 // In C99 mode, 'inline' functions are guaranteed to have a strong 306 // definition somewhere else, so we can use available_externally linkage. 307 GV->setLinkage(llvm::Function::AvailableExternallyLinkage); 308 } else if (Linkage == GVA_CXXInline) { 309 // In C++, the compiler has to emit a definition in every translation unit 310 // that references the function. We should use linkonce_odr because 311 // a) if all references in this translation unit are optimized away, we 312 // don't need to codegen it. b) if the function persists, it needs to be 313 // merged with other definitions. c) C++ has the ODR, so we know the 314 // definition is dependable. 315 GV->setLinkage(llvm::Function::LinkOnceODRLinkage); 316 } else { 317 assert(Linkage == GVA_StrongExternal); 318 // Otherwise, we have strong external linkage. 319 GV->setLinkage(llvm::Function::ExternalLinkage); 320 } 321 322 SetCommonAttributes(D, GV); 323 } 324 325 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 326 const CGFunctionInfo &Info, 327 llvm::Function *F) { 328 AttributeListType AttributeList; 329 ConstructAttributeList(Info, D, AttributeList); 330 331 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), 332 AttributeList.size())); 333 334 // Set the appropriate calling convention for the Function. 335 if (D->hasAttr<FastCallAttr>()) 336 F->setCallingConv(llvm::CallingConv::X86_FastCall); 337 338 if (D->hasAttr<StdCallAttr>()) 339 F->setCallingConv(llvm::CallingConv::X86_StdCall); 340 } 341 342 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 343 llvm::Function *F) { 344 if (!Features.Exceptions && !Features.ObjCNonFragileABI) 345 F->addFnAttr(llvm::Attribute::NoUnwind); 346 347 if (D->hasAttr<AlwaysInlineAttr>()) 348 F->addFnAttr(llvm::Attribute::AlwaysInline); 349 350 if (D->hasAttr<NoinlineAttr>()) 351 F->addFnAttr(llvm::Attribute::NoInline); 352 } 353 354 void CodeGenModule::SetCommonAttributes(const Decl *D, 355 llvm::GlobalValue *GV) { 356 setGlobalVisibility(GV, D); 357 358 if (D->hasAttr<UsedAttr>()) 359 AddUsedGlobal(GV); 360 361 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 362 GV->setSection(SA->getName()); 363 } 364 365 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 366 llvm::Function *F, 367 const CGFunctionInfo &FI) { 368 SetLLVMFunctionAttributes(D, FI, F); 369 SetLLVMFunctionAttributesForDefinition(D, F); 370 371 F->setLinkage(llvm::Function::InternalLinkage); 372 373 SetCommonAttributes(D, F); 374 } 375 376 void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD, 377 llvm::Function *F, 378 bool IsIncompleteFunction) { 379 if (!IsIncompleteFunction) 380 SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F); 381 382 // Only a few attributes are set on declarations; these may later be 383 // overridden by a definition. 384 385 if (FD->hasAttr<DLLImportAttr>()) { 386 F->setLinkage(llvm::Function::DLLImportLinkage); 387 } else if (FD->hasAttr<WeakAttr>() || FD->hasAttr<WeakImportAttr>()) { 388 // "extern_weak" is overloaded in LLVM; we probably should have 389 // separate linkage types for this. 390 F->setLinkage(llvm::Function::ExternalWeakLinkage); 391 } else { 392 F->setLinkage(llvm::Function::ExternalLinkage); 393 } 394 395 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 396 F->setSection(SA->getName()); 397 } 398 399 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 400 assert(!GV->isDeclaration() && 401 "Only globals with definition can force usage."); 402 LLVMUsed.push_back(GV); 403 } 404 405 void CodeGenModule::EmitLLVMUsed() { 406 // Don't create llvm.used if there is no need. 407 if (LLVMUsed.empty()) 408 return; 409 410 llvm::Type *i8PTy = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); 411 llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, LLVMUsed.size()); 412 413 // Convert LLVMUsed to what ConstantArray needs. 414 std::vector<llvm::Constant*> UsedArray; 415 UsedArray.resize(LLVMUsed.size()); 416 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 417 UsedArray[i] = 418 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), i8PTy); 419 } 420 421 llvm::GlobalVariable *GV = 422 new llvm::GlobalVariable(ATy, false, 423 llvm::GlobalValue::AppendingLinkage, 424 llvm::ConstantArray::get(ATy, UsedArray), 425 "llvm.used", &getModule()); 426 427 GV->setSection("llvm.metadata"); 428 } 429 430 void CodeGenModule::EmitDeferred() { 431 // Emit code for any potentially referenced deferred decls. Since a 432 // previously unused static decl may become used during the generation of code 433 // for a static function, iterate until no changes are made. 434 while (!DeferredDeclsToEmit.empty()) { 435 GlobalDecl D = DeferredDeclsToEmit.back(); 436 DeferredDeclsToEmit.pop_back(); 437 438 // The mangled name for the decl must have been emitted in GlobalDeclMap. 439 // Look it up to see if it was defined with a stronger definition (e.g. an 440 // extern inline function with a strong function redefinition). If so, 441 // just ignore the deferred decl. 442 llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)]; 443 assert(CGRef && "Deferred decl wasn't referenced?"); 444 445 if (!CGRef->isDeclaration()) 446 continue; 447 448 // Otherwise, emit the definition and move on to the next one. 449 EmitGlobalDefinition(D); 450 } 451 } 452 453 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the 454 /// annotation information for a given GlobalValue. The annotation struct is 455 /// {i8 *, i8 *, i8 *, i32}. The first field is a constant expression, the 456 /// GlobalValue being annotated. The second field is the constant string 457 /// created from the AnnotateAttr's annotation. The third field is a constant 458 /// string containing the name of the translation unit. The fourth field is 459 /// the line number in the file of the annotated value declaration. 460 /// 461 /// FIXME: this does not unique the annotation string constants, as llvm-gcc 462 /// appears to. 463 /// 464 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 465 const AnnotateAttr *AA, 466 unsigned LineNo) { 467 llvm::Module *M = &getModule(); 468 469 // get [N x i8] constants for the annotation string, and the filename string 470 // which are the 2nd and 3rd elements of the global annotation structure. 471 const llvm::Type *SBP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); 472 llvm::Constant *anno = llvm::ConstantArray::get(AA->getAnnotation(), true); 473 llvm::Constant *unit = llvm::ConstantArray::get(M->getModuleIdentifier(), 474 true); 475 476 // Get the two global values corresponding to the ConstantArrays we just 477 // created to hold the bytes of the strings. 478 const char *StringPrefix = getContext().Target.getStringSymbolPrefix(true); 479 llvm::GlobalValue *annoGV = 480 new llvm::GlobalVariable(anno->getType(), false, 481 llvm::GlobalValue::InternalLinkage, anno, 482 GV->getName() + StringPrefix, M); 483 // translation unit name string, emitted into the llvm.metadata section. 484 llvm::GlobalValue *unitGV = 485 new llvm::GlobalVariable(unit->getType(), false, 486 llvm::GlobalValue::InternalLinkage, unit, 487 StringPrefix, M); 488 489 // Create the ConstantStruct for the global annotation. 490 llvm::Constant *Fields[4] = { 491 llvm::ConstantExpr::getBitCast(GV, SBP), 492 llvm::ConstantExpr::getBitCast(annoGV, SBP), 493 llvm::ConstantExpr::getBitCast(unitGV, SBP), 494 llvm::ConstantInt::get(llvm::Type::Int32Ty, LineNo) 495 }; 496 return llvm::ConstantStruct::get(Fields, 4, false); 497 } 498 499 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 500 // Never defer when EmitAllDecls is specified or the decl has 501 // attribute used. 502 if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>()) 503 return false; 504 505 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 506 // Constructors and destructors should never be deferred. 507 if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>()) 508 return false; 509 510 GVALinkage Linkage = GetLinkageForFunction(FD, Features); 511 512 // static, static inline, always_inline, and extern inline functions can 513 // always be deferred. Normal inline functions can be deferred in C99/C++. 514 if (Linkage == GVA_Internal || Linkage == GVA_C99Inline || 515 Linkage == GVA_CXXInline) 516 return true; 517 return false; 518 } 519 520 const VarDecl *VD = cast<VarDecl>(Global); 521 assert(VD->isFileVarDecl() && "Invalid decl"); 522 523 return VD->getStorageClass() == VarDecl::Static; 524 } 525 526 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 527 const ValueDecl *Global = GD.getDecl(); 528 529 // If this is an alias definition (which otherwise looks like a declaration) 530 // emit it now. 531 if (Global->hasAttr<AliasAttr>()) 532 return EmitAliasDefinition(Global); 533 534 // Ignore declarations, they will be emitted on their first use. 535 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 536 // Forward declarations are emitted lazily on first use. 537 if (!FD->isThisDeclarationADefinition()) 538 return; 539 } else { 540 const VarDecl *VD = cast<VarDecl>(Global); 541 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 542 543 // In C++, if this is marked "extern", defer code generation. 544 if (getLangOptions().CPlusPlus && !VD->getInit() && 545 (VD->getStorageClass() == VarDecl::Extern || 546 VD->isExternC(getContext()))) 547 return; 548 549 // In C, if this isn't a definition, defer code generation. 550 if (!getLangOptions().CPlusPlus && !VD->getInit()) 551 return; 552 } 553 554 // Defer code generation when possible if this is a static definition, inline 555 // function etc. These we only want to emit if they are used. 556 if (MayDeferGeneration(Global)) { 557 // If the value has already been used, add it directly to the 558 // DeferredDeclsToEmit list. 559 const char *MangledName = getMangledName(GD); 560 if (GlobalDeclMap.count(MangledName)) 561 DeferredDeclsToEmit.push_back(GD); 562 else { 563 // Otherwise, remember that we saw a deferred decl with this name. The 564 // first use of the mangled name will cause it to move into 565 // DeferredDeclsToEmit. 566 DeferredDecls[MangledName] = GD; 567 } 568 return; 569 } 570 571 // Otherwise emit the definition. 572 EmitGlobalDefinition(GD); 573 } 574 575 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { 576 const ValueDecl *D = GD.getDecl(); 577 578 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) 579 EmitCXXConstructor(CD, GD.getCtorType()); 580 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) 581 EmitCXXDestructor(DD, GD.getDtorType()); 582 else if (isa<FunctionDecl>(D)) 583 EmitGlobalFunctionDefinition(GD); 584 else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 585 EmitGlobalVarDefinition(VD); 586 else { 587 assert(0 && "Invalid argument to EmitGlobalDefinition()"); 588 } 589 } 590 591 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 592 /// module, create and return an llvm Function with the specified type. If there 593 /// is something in the module with the specified name, return it potentially 594 /// bitcasted to the right type. 595 /// 596 /// If D is non-null, it specifies a decl that correspond to this. This is used 597 /// to set the attributes on the function when it is first created. 598 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName, 599 const llvm::Type *Ty, 600 GlobalDecl D) { 601 // Lookup the entry, lazily creating it if necessary. 602 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 603 if (Entry) { 604 if (Entry->getType()->getElementType() == Ty) 605 return Entry; 606 607 // Make sure the result is of the correct type. 608 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 609 return llvm::ConstantExpr::getBitCast(Entry, PTy); 610 } 611 612 // This is the first use or definition of a mangled name. If there is a 613 // deferred decl with this name, remember that we need to emit it at the end 614 // of the file. 615 llvm::DenseMap<const char*, GlobalDecl>::iterator DDI = 616 DeferredDecls.find(MangledName); 617 if (DDI != DeferredDecls.end()) { 618 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 619 // list, and remove it from DeferredDecls (since we don't need it anymore). 620 DeferredDeclsToEmit.push_back(DDI->second); 621 DeferredDecls.erase(DDI); 622 } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) { 623 // If this the first reference to a C++ inline function in a class, queue up 624 // the deferred function body for emission. These are not seen as 625 // top-level declarations. 626 if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD)) 627 DeferredDeclsToEmit.push_back(D); 628 } 629 630 // This function doesn't have a complete type (for example, the return 631 // type is an incomplete struct). Use a fake type instead, and make 632 // sure not to try to set attributes. 633 bool IsIncompleteFunction = false; 634 if (!isa<llvm::FunctionType>(Ty)) { 635 Ty = llvm::FunctionType::get(llvm::Type::VoidTy, 636 std::vector<const llvm::Type*>(), false); 637 IsIncompleteFunction = true; 638 } 639 llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty), 640 llvm::Function::ExternalLinkage, 641 "", &getModule()); 642 F->setName(MangledName); 643 if (D.getDecl()) 644 SetFunctionAttributes(cast<FunctionDecl>(D.getDecl()), F, 645 IsIncompleteFunction); 646 Entry = F; 647 return F; 648 } 649 650 /// GetAddrOfFunction - Return the address of the given function. If Ty is 651 /// non-null, then this function will use the specified type if it has to 652 /// create it (this occurs when we see a definition of the function). 653 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 654 const llvm::Type *Ty) { 655 // If there was no specific requested type, just convert it now. 656 if (!Ty) 657 Ty = getTypes().ConvertType(GD.getDecl()->getType()); 658 return GetOrCreateLLVMFunction(getMangledName(GD.getDecl()), Ty, GD); 659 } 660 661 /// CreateRuntimeFunction - Create a new runtime function with the specified 662 /// type and name. 663 llvm::Constant * 664 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy, 665 const char *Name) { 666 // Convert Name to be a uniqued string from the IdentifierInfo table. 667 Name = getContext().Idents.get(Name).getName(); 668 return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl()); 669 } 670 671 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 672 /// create and return an llvm GlobalVariable with the specified type. If there 673 /// is something in the module with the specified name, return it potentially 674 /// bitcasted to the right type. 675 /// 676 /// If D is non-null, it specifies a decl that correspond to this. This is used 677 /// to set the attributes on the global when it is first created. 678 llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName, 679 const llvm::PointerType*Ty, 680 const VarDecl *D) { 681 // Lookup the entry, lazily creating it if necessary. 682 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 683 if (Entry) { 684 if (Entry->getType() == Ty) 685 return Entry; 686 687 // Make sure the result is of the correct type. 688 return llvm::ConstantExpr::getBitCast(Entry, Ty); 689 } 690 691 // This is the first use or definition of a mangled name. If there is a 692 // deferred decl with this name, remember that we need to emit it at the end 693 // of the file. 694 llvm::DenseMap<const char*, GlobalDecl>::iterator DDI = 695 DeferredDecls.find(MangledName); 696 if (DDI != DeferredDecls.end()) { 697 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 698 // list, and remove it from DeferredDecls (since we don't need it anymore). 699 DeferredDeclsToEmit.push_back(DDI->second); 700 DeferredDecls.erase(DDI); 701 } 702 703 llvm::GlobalVariable *GV = 704 new llvm::GlobalVariable(Ty->getElementType(), false, 705 llvm::GlobalValue::ExternalLinkage, 706 0, "", &getModule(), 707 false, Ty->getAddressSpace()); 708 GV->setName(MangledName); 709 710 // Handle things which are present even on external declarations. 711 if (D) { 712 // FIXME: This code is overly simple and should be merged with other global 713 // handling. 714 GV->setConstant(D->getType().isConstant(Context)); 715 716 // FIXME: Merge with other attribute handling code. 717 if (D->getStorageClass() == VarDecl::PrivateExtern) 718 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 719 720 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>()) 721 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 722 723 GV->setThreadLocal(D->isThreadSpecified()); 724 } 725 726 return Entry = GV; 727 } 728 729 730 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 731 /// given global variable. If Ty is non-null and if the global doesn't exist, 732 /// then it will be greated with the specified type instead of whatever the 733 /// normal requested type would be. 734 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 735 const llvm::Type *Ty) { 736 assert(D->hasGlobalStorage() && "Not a global variable"); 737 QualType ASTTy = D->getType(); 738 if (Ty == 0) 739 Ty = getTypes().ConvertTypeForMem(ASTTy); 740 741 const llvm::PointerType *PTy = 742 llvm::PointerType::get(Ty, ASTTy.getAddressSpace()); 743 return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D); 744 } 745 746 /// CreateRuntimeVariable - Create a new runtime global variable with the 747 /// specified type and name. 748 llvm::Constant * 749 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty, 750 const char *Name) { 751 // Convert Name to be a uniqued string from the IdentifierInfo table. 752 Name = getContext().Idents.get(Name).getName(); 753 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0); 754 } 755 756 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 757 assert(!D->getInit() && "Cannot emit definite definitions here!"); 758 759 if (MayDeferGeneration(D)) { 760 // If we have not seen a reference to this variable yet, place it 761 // into the deferred declarations table to be emitted if needed 762 // later. 763 const char *MangledName = getMangledName(D); 764 if (GlobalDeclMap.count(MangledName) == 0) { 765 DeferredDecls[MangledName] = GlobalDecl(D); 766 return; 767 } 768 } 769 770 // The tentative definition is the only definition. 771 EmitGlobalVarDefinition(D); 772 } 773 774 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 775 llvm::Constant *Init = 0; 776 QualType ASTTy = D->getType(); 777 778 if (D->getInit() == 0) { 779 // This is a tentative definition; tentative definitions are 780 // implicitly initialized with { 0 }. 781 // 782 // Note that tentative definitions are only emitted at the end of 783 // a translation unit, so they should never have incomplete 784 // type. In addition, EmitTentativeDefinition makes sure that we 785 // never attempt to emit a tentative definition if a real one 786 // exists. A use may still exists, however, so we still may need 787 // to do a RAUW. 788 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 789 Init = llvm::Constant::getNullValue(getTypes().ConvertTypeForMem(ASTTy)); 790 } else { 791 Init = EmitConstantExpr(D->getInit(), D->getType()); 792 if (!Init) { 793 ErrorUnsupported(D, "static initializer"); 794 QualType T = D->getInit()->getType(); 795 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 796 } 797 } 798 799 const llvm::Type* InitType = Init->getType(); 800 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 801 802 // Strip off a bitcast if we got one back. 803 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 804 assert(CE->getOpcode() == llvm::Instruction::BitCast); 805 Entry = CE->getOperand(0); 806 } 807 808 // Entry is now either a Function or GlobalVariable. 809 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 810 811 // We have a definition after a declaration with the wrong type. 812 // We must make a new GlobalVariable* and update everything that used OldGV 813 // (a declaration or tentative definition) with the new GlobalVariable* 814 // (which will be a definition). 815 // 816 // This happens if there is a prototype for a global (e.g. 817 // "extern int x[];") and then a definition of a different type (e.g. 818 // "int x[10];"). This also happens when an initializer has a different type 819 // from the type of the global (this happens with unions). 820 if (GV == 0 || 821 GV->getType()->getElementType() != InitType || 822 GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) { 823 824 // Remove the old entry from GlobalDeclMap so that we'll create a new one. 825 GlobalDeclMap.erase(getMangledName(D)); 826 827 // Make a new global with the correct type, this is now guaranteed to work. 828 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 829 GV->takeName(cast<llvm::GlobalValue>(Entry)); 830 831 // Replace all uses of the old global with the new global 832 llvm::Constant *NewPtrForOldDecl = 833 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 834 Entry->replaceAllUsesWith(NewPtrForOldDecl); 835 836 // Erase the old global, since it is no longer used. 837 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 838 } 839 840 if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) { 841 SourceManager &SM = Context.getSourceManager(); 842 AddAnnotation(EmitAnnotateAttr(GV, AA, 843 SM.getInstantiationLineNumber(D->getLocation()))); 844 } 845 846 GV->setInitializer(Init); 847 GV->setConstant(D->getType().isConstant(Context)); 848 GV->setAlignment(getContext().getDeclAlignInBytes(D)); 849 850 // Set the llvm linkage type as appropriate. 851 if (D->getStorageClass() == VarDecl::Static) 852 GV->setLinkage(llvm::Function::InternalLinkage); 853 else if (D->hasAttr<DLLImportAttr>()) 854 GV->setLinkage(llvm::Function::DLLImportLinkage); 855 else if (D->hasAttr<DLLExportAttr>()) 856 GV->setLinkage(llvm::Function::DLLExportLinkage); 857 else if (D->hasAttr<WeakAttr>()) 858 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 859 else if (!CompileOpts.NoCommon && 860 (!D->hasExternalStorage() && !D->getInit())) 861 GV->setLinkage(llvm::GlobalVariable::CommonLinkage); 862 else 863 GV->setLinkage(llvm::GlobalVariable::ExternalLinkage); 864 865 SetCommonAttributes(D, GV); 866 867 // Emit global variable debug information. 868 if (CGDebugInfo *DI = getDebugInfo()) { 869 DI->setLocation(D->getLocation()); 870 DI->EmitGlobalVariable(GV, D); 871 } 872 } 873 874 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 875 /// implement a function with no prototype, e.g. "int foo() {}". If there are 876 /// existing call uses of the old function in the module, this adjusts them to 877 /// call the new function directly. 878 /// 879 /// This is not just a cleanup: the always_inline pass requires direct calls to 880 /// functions to be able to inline them. If there is a bitcast in the way, it 881 /// won't inline them. Instcombine normally deletes these calls, but it isn't 882 /// run at -O0. 883 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 884 llvm::Function *NewFn) { 885 // If we're redefining a global as a function, don't transform it. 886 llvm::Function *OldFn = dyn_cast<llvm::Function>(Old); 887 if (OldFn == 0) return; 888 889 const llvm::Type *NewRetTy = NewFn->getReturnType(); 890 llvm::SmallVector<llvm::Value*, 4> ArgList; 891 892 for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end(); 893 UI != E; ) { 894 // TODO: Do invokes ever occur in C code? If so, we should handle them too. 895 unsigned OpNo = UI.getOperandNo(); 896 llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*UI++); 897 if (!CI || OpNo != 0) continue; 898 899 // If the return types don't match exactly, and if the call isn't dead, then 900 // we can't transform this call. 901 if (CI->getType() != NewRetTy && !CI->use_empty()) 902 continue; 903 904 // If the function was passed too few arguments, don't transform. If extra 905 // arguments were passed, we silently drop them. If any of the types 906 // mismatch, we don't transform. 907 unsigned ArgNo = 0; 908 bool DontTransform = false; 909 for (llvm::Function::arg_iterator AI = NewFn->arg_begin(), 910 E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) { 911 if (CI->getNumOperands()-1 == ArgNo || 912 CI->getOperand(ArgNo+1)->getType() != AI->getType()) { 913 DontTransform = true; 914 break; 915 } 916 } 917 if (DontTransform) 918 continue; 919 920 // Okay, we can transform this. Create the new call instruction and copy 921 // over the required information. 922 ArgList.append(CI->op_begin()+1, CI->op_begin()+1+ArgNo); 923 llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(), 924 ArgList.end(), "", CI); 925 ArgList.clear(); 926 if (NewCall->getType() != llvm::Type::VoidTy) 927 NewCall->takeName(CI); 928 NewCall->setCallingConv(CI->getCallingConv()); 929 NewCall->setAttributes(CI->getAttributes()); 930 931 // Finally, remove the old call, replacing any uses with the new one. 932 if (!CI->use_empty()) 933 CI->replaceAllUsesWith(NewCall); 934 CI->eraseFromParent(); 935 } 936 } 937 938 939 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { 940 const llvm::FunctionType *Ty; 941 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 942 943 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) { 944 bool isVariadic = D->getType()->getAsFunctionProtoType()->isVariadic(); 945 946 Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic); 947 } else { 948 Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType())); 949 950 // As a special case, make sure that definitions of K&R function 951 // "type foo()" aren't declared as varargs (which forces the backend 952 // to do unnecessary work). 953 if (D->getType()->isFunctionNoProtoType()) { 954 assert(Ty->isVarArg() && "Didn't lower type as expected"); 955 // Due to stret, the lowered function could have arguments. 956 // Just create the same type as was lowered by ConvertType 957 // but strip off the varargs bit. 958 std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end()); 959 Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false); 960 } 961 } 962 963 // Get or create the prototype for the function. 964 llvm::Constant *Entry = GetAddrOfFunction(GD, Ty); 965 966 // Strip off a bitcast if we got one back. 967 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 968 assert(CE->getOpcode() == llvm::Instruction::BitCast); 969 Entry = CE->getOperand(0); 970 } 971 972 973 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 974 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 975 976 // If the types mismatch then we have to rewrite the definition. 977 assert(OldFn->isDeclaration() && 978 "Shouldn't replace non-declaration"); 979 980 // F is the Function* for the one with the wrong type, we must make a new 981 // Function* and update everything that used F (a declaration) with the new 982 // Function* (which will be a definition). 983 // 984 // This happens if there is a prototype for a function 985 // (e.g. "int f()") and then a definition of a different type 986 // (e.g. "int f(int x)"). Start by making a new function of the 987 // correct type, RAUW, then steal the name. 988 GlobalDeclMap.erase(getMangledName(D)); 989 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 990 NewFn->takeName(OldFn); 991 992 // If this is an implementation of a function without a prototype, try to 993 // replace any existing uses of the function (which may be calls) with uses 994 // of the new function 995 if (D->getType()->isFunctionNoProtoType()) { 996 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 997 OldFn->removeDeadConstantUsers(); 998 } 999 1000 // Replace uses of F with the Function we will endow with a body. 1001 if (!Entry->use_empty()) { 1002 llvm::Constant *NewPtrForOldDecl = 1003 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 1004 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1005 } 1006 1007 // Ok, delete the old function now, which is dead. 1008 OldFn->eraseFromParent(); 1009 1010 Entry = NewFn; 1011 } 1012 1013 llvm::Function *Fn = cast<llvm::Function>(Entry); 1014 1015 CodeGenFunction(*this).GenerateCode(D, Fn); 1016 1017 SetFunctionDefinitionAttributes(D, Fn); 1018 SetLLVMFunctionAttributesForDefinition(D, Fn); 1019 1020 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 1021 AddGlobalCtor(Fn, CA->getPriority()); 1022 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 1023 AddGlobalDtor(Fn, DA->getPriority()); 1024 } 1025 1026 void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) { 1027 const AliasAttr *AA = D->getAttr<AliasAttr>(); 1028 assert(AA && "Not an alias?"); 1029 1030 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 1031 1032 // Unique the name through the identifier table. 1033 const char *AliaseeName = AA->getAliasee().c_str(); 1034 AliaseeName = getContext().Idents.get(AliaseeName).getName(); 1035 1036 // Create a reference to the named value. This ensures that it is emitted 1037 // if a deferred decl. 1038 llvm::Constant *Aliasee; 1039 if (isa<llvm::FunctionType>(DeclTy)) 1040 Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, GlobalDecl()); 1041 else 1042 Aliasee = GetOrCreateLLVMGlobal(AliaseeName, 1043 llvm::PointerType::getUnqual(DeclTy), 0); 1044 1045 // Create the new alias itself, but don't set a name yet. 1046 llvm::GlobalValue *GA = 1047 new llvm::GlobalAlias(Aliasee->getType(), 1048 llvm::Function::ExternalLinkage, 1049 "", Aliasee, &getModule()); 1050 1051 // See if there is already something with the alias' name in the module. 1052 const char *MangledName = getMangledName(D); 1053 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 1054 1055 if (Entry && !Entry->isDeclaration()) { 1056 // If there is a definition in the module, then it wins over the alias. 1057 // This is dubious, but allow it to be safe. Just ignore the alias. 1058 GA->eraseFromParent(); 1059 return; 1060 } 1061 1062 if (Entry) { 1063 // If there is a declaration in the module, then we had an extern followed 1064 // by the alias, as in: 1065 // extern int test6(); 1066 // ... 1067 // int test6() __attribute__((alias("test7"))); 1068 // 1069 // Remove it and replace uses of it with the alias. 1070 1071 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 1072 Entry->getType())); 1073 Entry->eraseFromParent(); 1074 } 1075 1076 // Now we know that there is no conflict, set the name. 1077 Entry = GA; 1078 GA->setName(MangledName); 1079 1080 // Set attributes which are particular to an alias; this is a 1081 // specialization of the attributes which may be set on a global 1082 // variable/function. 1083 if (D->hasAttr<DLLExportAttr>()) { 1084 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1085 // The dllexport attribute is ignored for undefined symbols. 1086 if (FD->getBody(getContext())) 1087 GA->setLinkage(llvm::Function::DLLExportLinkage); 1088 } else { 1089 GA->setLinkage(llvm::Function::DLLExportLinkage); 1090 } 1091 } else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>()) { 1092 GA->setLinkage(llvm::Function::WeakAnyLinkage); 1093 } 1094 1095 SetCommonAttributes(D, GA); 1096 } 1097 1098 /// getBuiltinLibFunction - Given a builtin id for a function like 1099 /// "__builtin_fabsf", return a Function* for "fabsf". 1100 llvm::Value *CodeGenModule::getBuiltinLibFunction(unsigned BuiltinID) { 1101 assert((Context.BuiltinInfo.isLibFunction(BuiltinID) || 1102 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) && 1103 "isn't a lib fn"); 1104 1105 // Get the name, skip over the __builtin_ prefix (if necessary). 1106 const char *Name = Context.BuiltinInfo.GetName(BuiltinID); 1107 if (Context.BuiltinInfo.isLibFunction(BuiltinID)) 1108 Name += 10; 1109 1110 // Get the type for the builtin. 1111 ASTContext::GetBuiltinTypeError Error; 1112 QualType Type = Context.GetBuiltinType(BuiltinID, Error); 1113 assert(Error == ASTContext::GE_None && "Can't get builtin type"); 1114 1115 const llvm::FunctionType *Ty = 1116 cast<llvm::FunctionType>(getTypes().ConvertType(Type)); 1117 1118 // Unique the name through the identifier table. 1119 Name = getContext().Idents.get(Name).getName(); 1120 // FIXME: param attributes for sext/zext etc. 1121 return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl()); 1122 } 1123 1124 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys, 1125 unsigned NumTys) { 1126 return llvm::Intrinsic::getDeclaration(&getModule(), 1127 (llvm::Intrinsic::ID)IID, Tys, NumTys); 1128 } 1129 1130 llvm::Function *CodeGenModule::getMemCpyFn() { 1131 if (MemCpyFn) return MemCpyFn; 1132 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(); 1133 return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1); 1134 } 1135 1136 llvm::Function *CodeGenModule::getMemMoveFn() { 1137 if (MemMoveFn) return MemMoveFn; 1138 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(); 1139 return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1); 1140 } 1141 1142 llvm::Function *CodeGenModule::getMemSetFn() { 1143 if (MemSetFn) return MemSetFn; 1144 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(); 1145 return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1); 1146 } 1147 1148 static void appendFieldAndPadding(CodeGenModule &CGM, 1149 std::vector<llvm::Constant*>& Fields, 1150 FieldDecl *FieldD, FieldDecl *NextFieldD, 1151 llvm::Constant* Field, 1152 RecordDecl* RD, const llvm::StructType *STy) { 1153 // Append the field. 1154 Fields.push_back(Field); 1155 1156 int StructFieldNo = CGM.getTypes().getLLVMFieldNo(FieldD); 1157 1158 int NextStructFieldNo; 1159 if (!NextFieldD) { 1160 NextStructFieldNo = STy->getNumElements(); 1161 } else { 1162 NextStructFieldNo = CGM.getTypes().getLLVMFieldNo(NextFieldD); 1163 } 1164 1165 // Append padding 1166 for (int i = StructFieldNo + 1; i < NextStructFieldNo; i++) { 1167 llvm::Constant *C = 1168 llvm::Constant::getNullValue(STy->getElementType(StructFieldNo + 1)); 1169 1170 Fields.push_back(C); 1171 } 1172 } 1173 1174 llvm::Constant *CodeGenModule:: 1175 GetAddrOfConstantCFString(const StringLiteral *Literal) { 1176 std::string str; 1177 unsigned StringLength = 0; 1178 1179 bool isUTF16 = false; 1180 if (Literal->containsNonAsciiOrNull()) { 1181 // Convert from UTF-8 to UTF-16. 1182 llvm::SmallVector<UTF16, 128> ToBuf(Literal->getByteLength()); 1183 const UTF8 *FromPtr = (UTF8 *)Literal->getStrData(); 1184 UTF16 *ToPtr = &ToBuf[0]; 1185 1186 ConversionResult Result; 1187 Result = ConvertUTF8toUTF16(&FromPtr, FromPtr+Literal->getByteLength(), 1188 &ToPtr, ToPtr+Literal->getByteLength(), 1189 strictConversion); 1190 if (Result == conversionOK) { 1191 // FIXME: Storing UTF-16 in a C string is a hack to test Unicode strings 1192 // without doing more surgery to this routine. Since we aren't explicitly 1193 // checking for endianness here, it's also a bug (when generating code for 1194 // a target that doesn't match the host endianness). Modeling this as an 1195 // i16 array is likely the cleanest solution. 1196 StringLength = ToPtr-&ToBuf[0]; 1197 str.assign((char *)&ToBuf[0], StringLength*2);// Twice as many UTF8 chars. 1198 isUTF16 = true; 1199 } else if (Result == sourceIllegal) { 1200 // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string. 1201 str.assign(Literal->getStrData(), Literal->getByteLength()); 1202 StringLength = str.length(); 1203 } else 1204 assert(Result == conversionOK && "UTF-8 to UTF-16 conversion failed"); 1205 1206 } else { 1207 str.assign(Literal->getStrData(), Literal->getByteLength()); 1208 StringLength = str.length(); 1209 } 1210 llvm::StringMapEntry<llvm::Constant *> &Entry = 1211 CFConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 1212 1213 if (llvm::Constant *C = Entry.getValue()) 1214 return C; 1215 1216 llvm::Constant *Zero = llvm::Constant::getNullValue(llvm::Type::Int32Ty); 1217 llvm::Constant *Zeros[] = { Zero, Zero }; 1218 1219 if (!CFConstantStringClassRef) { 1220 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1221 Ty = llvm::ArrayType::get(Ty, 0); 1222 1223 // FIXME: This is fairly broken if __CFConstantStringClassReference is 1224 // already defined, in that it will get renamed and the user will most 1225 // likely see an opaque error message. This is a general issue with relying 1226 // on particular names. 1227 llvm::GlobalVariable *GV = 1228 new llvm::GlobalVariable(Ty, false, 1229 llvm::GlobalVariable::ExternalLinkage, 0, 1230 "__CFConstantStringClassReference", 1231 &getModule()); 1232 1233 // Decay array -> ptr 1234 CFConstantStringClassRef = 1235 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1236 } 1237 1238 QualType CFTy = getContext().getCFConstantStringType(); 1239 RecordDecl *CFRD = CFTy->getAsRecordType()->getDecl(); 1240 1241 const llvm::StructType *STy = 1242 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 1243 1244 std::vector<llvm::Constant*> Fields; 1245 RecordDecl::field_iterator Field = CFRD->field_begin(getContext()); 1246 1247 // Class pointer. 1248 FieldDecl *CurField = *Field++; 1249 FieldDecl *NextField = *Field++; 1250 appendFieldAndPadding(*this, Fields, CurField, NextField, 1251 CFConstantStringClassRef, CFRD, STy); 1252 1253 // Flags. 1254 CurField = NextField; 1255 NextField = *Field++; 1256 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1257 appendFieldAndPadding(*this, Fields, CurField, NextField, 1258 isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) 1259 : llvm::ConstantInt::get(Ty, 0x07C8), 1260 CFRD, STy); 1261 1262 // String pointer. 1263 CurField = NextField; 1264 NextField = *Field++; 1265 llvm::Constant *C = llvm::ConstantArray::get(str); 1266 1267 const char *Sect, *Prefix; 1268 bool isConstant; 1269 if (isUTF16) { 1270 Prefix = getContext().Target.getUnicodeStringSymbolPrefix(); 1271 Sect = getContext().Target.getUnicodeStringSection(); 1272 // FIXME: Why does GCC not set constant here? 1273 isConstant = false; 1274 } else { 1275 Prefix = getContext().Target.getStringSymbolPrefix(true); 1276 Sect = getContext().Target.getCFStringDataSection(); 1277 // FIXME: -fwritable-strings should probably affect this, but we 1278 // are following gcc here. 1279 isConstant = true; 1280 } 1281 llvm::GlobalVariable *GV = 1282 new llvm::GlobalVariable(C->getType(), isConstant, 1283 llvm::GlobalValue::InternalLinkage, 1284 C, Prefix, &getModule()); 1285 if (Sect) 1286 GV->setSection(Sect); 1287 if (isUTF16) { 1288 unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8; 1289 GV->setAlignment(Align); 1290 } 1291 appendFieldAndPadding(*this, Fields, CurField, NextField, 1292 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2), 1293 CFRD, STy); 1294 1295 // String length. 1296 CurField = NextField; 1297 NextField = 0; 1298 Ty = getTypes().ConvertType(getContext().LongTy); 1299 appendFieldAndPadding(*this, Fields, CurField, NextField, 1300 llvm::ConstantInt::get(Ty, StringLength), CFRD, STy); 1301 1302 // The struct. 1303 C = llvm::ConstantStruct::get(STy, Fields); 1304 GV = new llvm::GlobalVariable(C->getType(), true, 1305 llvm::GlobalVariable::InternalLinkage, C, 1306 getContext().Target.getCFStringSymbolPrefix(), 1307 &getModule()); 1308 if (const char *Sect = getContext().Target.getCFStringSection()) 1309 GV->setSection(Sect); 1310 Entry.setValue(GV); 1311 1312 return GV; 1313 } 1314 1315 /// GetStringForStringLiteral - Return the appropriate bytes for a 1316 /// string literal, properly padded to match the literal type. 1317 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) { 1318 const char *StrData = E->getStrData(); 1319 unsigned Len = E->getByteLength(); 1320 1321 const ConstantArrayType *CAT = 1322 getContext().getAsConstantArrayType(E->getType()); 1323 assert(CAT && "String isn't pointer or array!"); 1324 1325 // Resize the string to the right size. 1326 std::string Str(StrData, StrData+Len); 1327 uint64_t RealLen = CAT->getSize().getZExtValue(); 1328 1329 if (E->isWide()) 1330 RealLen *= getContext().Target.getWCharWidth()/8; 1331 1332 Str.resize(RealLen, '\0'); 1333 1334 return Str; 1335 } 1336 1337 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 1338 /// constant array for the given string literal. 1339 llvm::Constant * 1340 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 1341 // FIXME: This can be more efficient. 1342 return GetAddrOfConstantString(GetStringForStringLiteral(S)); 1343 } 1344 1345 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 1346 /// array for the given ObjCEncodeExpr node. 1347 llvm::Constant * 1348 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 1349 std::string Str; 1350 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 1351 1352 return GetAddrOfConstantCString(Str); 1353 } 1354 1355 1356 /// GenerateWritableString -- Creates storage for a string literal. 1357 static llvm::Constant *GenerateStringLiteral(const std::string &str, 1358 bool constant, 1359 CodeGenModule &CGM, 1360 const char *GlobalName) { 1361 // Create Constant for this string literal. Don't add a '\0'. 1362 llvm::Constant *C = llvm::ConstantArray::get(str, false); 1363 1364 // Create a global variable for this string 1365 return new llvm::GlobalVariable(C->getType(), constant, 1366 llvm::GlobalValue::InternalLinkage, 1367 C, GlobalName, &CGM.getModule()); 1368 } 1369 1370 /// GetAddrOfConstantString - Returns a pointer to a character array 1371 /// containing the literal. This contents are exactly that of the 1372 /// given string, i.e. it will not be null terminated automatically; 1373 /// see GetAddrOfConstantCString. Note that whether the result is 1374 /// actually a pointer to an LLVM constant depends on 1375 /// Feature.WriteableStrings. 1376 /// 1377 /// The result has pointer to array type. 1378 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str, 1379 const char *GlobalName) { 1380 bool IsConstant = !Features.WritableStrings; 1381 1382 // Get the default prefix if a name wasn't specified. 1383 if (!GlobalName) 1384 GlobalName = getContext().Target.getStringSymbolPrefix(IsConstant); 1385 1386 // Don't share any string literals if strings aren't constant. 1387 if (!IsConstant) 1388 return GenerateStringLiteral(str, false, *this, GlobalName); 1389 1390 llvm::StringMapEntry<llvm::Constant *> &Entry = 1391 ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 1392 1393 if (Entry.getValue()) 1394 return Entry.getValue(); 1395 1396 // Create a global variable for this. 1397 llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName); 1398 Entry.setValue(C); 1399 return C; 1400 } 1401 1402 /// GetAddrOfConstantCString - Returns a pointer to a character 1403 /// array containing the literal and a terminating '\-' 1404 /// character. The result has pointer to array type. 1405 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str, 1406 const char *GlobalName){ 1407 return GetAddrOfConstantString(str + '\0', GlobalName); 1408 } 1409 1410 /// EmitObjCPropertyImplementations - Emit information for synthesized 1411 /// properties for an implementation. 1412 void CodeGenModule::EmitObjCPropertyImplementations(const 1413 ObjCImplementationDecl *D) { 1414 for (ObjCImplementationDecl::propimpl_iterator 1415 i = D->propimpl_begin(getContext()), 1416 e = D->propimpl_end(getContext()); i != e; ++i) { 1417 ObjCPropertyImplDecl *PID = *i; 1418 1419 // Dynamic is just for type-checking. 1420 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 1421 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1422 1423 // Determine which methods need to be implemented, some may have 1424 // been overridden. Note that ::isSynthesized is not the method 1425 // we want, that just indicates if the decl came from a 1426 // property. What we want to know is if the method is defined in 1427 // this implementation. 1428 if (!D->getInstanceMethod(getContext(), PD->getGetterName())) 1429 CodeGenFunction(*this).GenerateObjCGetter( 1430 const_cast<ObjCImplementationDecl *>(D), PID); 1431 if (!PD->isReadOnly() && 1432 !D->getInstanceMethod(getContext(), PD->getSetterName())) 1433 CodeGenFunction(*this).GenerateObjCSetter( 1434 const_cast<ObjCImplementationDecl *>(D), PID); 1435 } 1436 } 1437 } 1438 1439 /// EmitNamespace - Emit all declarations in a namespace. 1440 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 1441 for (RecordDecl::decl_iterator I = ND->decls_begin(getContext()), 1442 E = ND->decls_end(getContext()); 1443 I != E; ++I) 1444 EmitTopLevelDecl(*I); 1445 } 1446 1447 // EmitLinkageSpec - Emit all declarations in a linkage spec. 1448 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 1449 if (LSD->getLanguage() != LinkageSpecDecl::lang_c) { 1450 ErrorUnsupported(LSD, "linkage spec"); 1451 return; 1452 } 1453 1454 for (RecordDecl::decl_iterator I = LSD->decls_begin(getContext()), 1455 E = LSD->decls_end(getContext()); 1456 I != E; ++I) 1457 EmitTopLevelDecl(*I); 1458 } 1459 1460 /// EmitTopLevelDecl - Emit code for a single top level declaration. 1461 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 1462 // If an error has occurred, stop code generation, but continue 1463 // parsing and semantic analysis (to ensure all warnings and errors 1464 // are emitted). 1465 if (Diags.hasErrorOccurred()) 1466 return; 1467 1468 switch (D->getKind()) { 1469 case Decl::CXXMethod: 1470 case Decl::Function: 1471 case Decl::Var: 1472 EmitGlobal(GlobalDecl(cast<ValueDecl>(D))); 1473 break; 1474 1475 // C++ Decls 1476 case Decl::Namespace: 1477 EmitNamespace(cast<NamespaceDecl>(D)); 1478 break; 1479 case Decl::CXXConstructor: 1480 EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 1481 break; 1482 case Decl::CXXDestructor: 1483 EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 1484 break; 1485 1486 case Decl::StaticAssert: 1487 // Nothing to do. 1488 break; 1489 1490 // Objective-C Decls 1491 1492 // Forward declarations, no (immediate) code generation. 1493 case Decl::ObjCClass: 1494 case Decl::ObjCForwardProtocol: 1495 case Decl::ObjCCategory: 1496 case Decl::ObjCInterface: 1497 break; 1498 1499 case Decl::ObjCProtocol: 1500 Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D)); 1501 break; 1502 1503 case Decl::ObjCCategoryImpl: 1504 // Categories have properties but don't support synthesize so we 1505 // can ignore them here. 1506 Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 1507 break; 1508 1509 case Decl::ObjCImplementation: { 1510 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 1511 EmitObjCPropertyImplementations(OMD); 1512 Runtime->GenerateClass(OMD); 1513 break; 1514 } 1515 case Decl::ObjCMethod: { 1516 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 1517 // If this is not a prototype, emit the body. 1518 if (OMD->getBody(getContext())) 1519 CodeGenFunction(*this).GenerateObjCMethod(OMD); 1520 break; 1521 } 1522 case Decl::ObjCCompatibleAlias: 1523 // compatibility-alias is a directive and has no code gen. 1524 break; 1525 1526 case Decl::LinkageSpec: 1527 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 1528 break; 1529 1530 case Decl::FileScopeAsm: { 1531 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 1532 std::string AsmString(AD->getAsmString()->getStrData(), 1533 AD->getAsmString()->getByteLength()); 1534 1535 const std::string &S = getModule().getModuleInlineAsm(); 1536 if (S.empty()) 1537 getModule().setModuleInlineAsm(AsmString); 1538 else 1539 getModule().setModuleInlineAsm(S + '\n' + AsmString); 1540 break; 1541 } 1542 1543 default: 1544 // Make sure we handled everything we should, every other kind is a 1545 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 1546 // function. Need to recode Decl::Kind to do that easily. 1547 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 1548 } 1549 } 1550