xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 146fd7cd454d71afb94d5d7ad7a3dbd6f3344d04)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-module state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenModule.h"
14 #include "ABIInfo.h"
15 #include "CGBlocks.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGCall.h"
19 #include "CGDebugInfo.h"
20 #include "CGHLSLRuntime.h"
21 #include "CGObjCRuntime.h"
22 #include "CGOpenCLRuntime.h"
23 #include "CGOpenMPRuntime.h"
24 #include "CGOpenMPRuntimeGPU.h"
25 #include "CodeGenFunction.h"
26 #include "CodeGenPGO.h"
27 #include "ConstantEmitter.h"
28 #include "CoverageMappingGen.h"
29 #include "TargetInfo.h"
30 #include "clang/AST/ASTContext.h"
31 #include "clang/AST/ASTLambda.h"
32 #include "clang/AST/CharUnits.h"
33 #include "clang/AST/Decl.h"
34 #include "clang/AST/DeclCXX.h"
35 #include "clang/AST/DeclObjC.h"
36 #include "clang/AST/DeclTemplate.h"
37 #include "clang/AST/Mangle.h"
38 #include "clang/AST/RecursiveASTVisitor.h"
39 #include "clang/AST/StmtVisitor.h"
40 #include "clang/Basic/Builtins.h"
41 #include "clang/Basic/CharInfo.h"
42 #include "clang/Basic/CodeGenOptions.h"
43 #include "clang/Basic/Diagnostic.h"
44 #include "clang/Basic/FileManager.h"
45 #include "clang/Basic/Module.h"
46 #include "clang/Basic/SourceManager.h"
47 #include "clang/Basic/TargetInfo.h"
48 #include "clang/Basic/Version.h"
49 #include "clang/CodeGen/BackendUtil.h"
50 #include "clang/CodeGen/ConstantInitBuilder.h"
51 #include "clang/Frontend/FrontendDiagnostic.h"
52 #include "llvm/ADT/STLExtras.h"
53 #include "llvm/ADT/StringExtras.h"
54 #include "llvm/ADT/StringSwitch.h"
55 #include "llvm/Analysis/TargetLibraryInfo.h"
56 #include "llvm/BinaryFormat/ELF.h"
57 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
58 #include "llvm/IR/AttributeMask.h"
59 #include "llvm/IR/CallingConv.h"
60 #include "llvm/IR/DataLayout.h"
61 #include "llvm/IR/Intrinsics.h"
62 #include "llvm/IR/LLVMContext.h"
63 #include "llvm/IR/Module.h"
64 #include "llvm/IR/ProfileSummary.h"
65 #include "llvm/ProfileData/InstrProfReader.h"
66 #include "llvm/ProfileData/SampleProf.h"
67 #include "llvm/Support/CRC.h"
68 #include "llvm/Support/CodeGen.h"
69 #include "llvm/Support/CommandLine.h"
70 #include "llvm/Support/ConvertUTF.h"
71 #include "llvm/Support/ErrorHandling.h"
72 #include "llvm/Support/TimeProfiler.h"
73 #include "llvm/Support/xxhash.h"
74 #include "llvm/TargetParser/RISCVISAInfo.h"
75 #include "llvm/TargetParser/Triple.h"
76 #include "llvm/TargetParser/X86TargetParser.h"
77 #include "llvm/Transforms/Utils/BuildLibCalls.h"
78 #include <optional>
79 
80 using namespace clang;
81 using namespace CodeGen;
82 
83 static llvm::cl::opt<bool> LimitedCoverage(
84     "limited-coverage-experimental", llvm::cl::Hidden,
85     llvm::cl::desc("Emit limited coverage mapping information (experimental)"));
86 
87 static const char AnnotationSection[] = "llvm.metadata";
88 
89 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
90   switch (CGM.getContext().getCXXABIKind()) {
91   case TargetCXXABI::AppleARM64:
92   case TargetCXXABI::Fuchsia:
93   case TargetCXXABI::GenericAArch64:
94   case TargetCXXABI::GenericARM:
95   case TargetCXXABI::iOS:
96   case TargetCXXABI::WatchOS:
97   case TargetCXXABI::GenericMIPS:
98   case TargetCXXABI::GenericItanium:
99   case TargetCXXABI::WebAssembly:
100   case TargetCXXABI::XL:
101     return CreateItaniumCXXABI(CGM);
102   case TargetCXXABI::Microsoft:
103     return CreateMicrosoftCXXABI(CGM);
104   }
105 
106   llvm_unreachable("invalid C++ ABI kind");
107 }
108 
109 static std::unique_ptr<TargetCodeGenInfo>
110 createTargetCodeGenInfo(CodeGenModule &CGM) {
111   const TargetInfo &Target = CGM.getTarget();
112   const llvm::Triple &Triple = Target.getTriple();
113   const CodeGenOptions &CodeGenOpts = CGM.getCodeGenOpts();
114 
115   switch (Triple.getArch()) {
116   default:
117     return createDefaultTargetCodeGenInfo(CGM);
118 
119   case llvm::Triple::le32:
120     return createPNaClTargetCodeGenInfo(CGM);
121   case llvm::Triple::m68k:
122     return createM68kTargetCodeGenInfo(CGM);
123   case llvm::Triple::mips:
124   case llvm::Triple::mipsel:
125     if (Triple.getOS() == llvm::Triple::NaCl)
126       return createPNaClTargetCodeGenInfo(CGM);
127     return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/true);
128 
129   case llvm::Triple::mips64:
130   case llvm::Triple::mips64el:
131     return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/false);
132 
133   case llvm::Triple::avr: {
134     // For passing parameters, R8~R25 are used on avr, and R18~R25 are used
135     // on avrtiny. For passing return value, R18~R25 are used on avr, and
136     // R22~R25 are used on avrtiny.
137     unsigned NPR = Target.getABI() == "avrtiny" ? 6 : 18;
138     unsigned NRR = Target.getABI() == "avrtiny" ? 4 : 8;
139     return createAVRTargetCodeGenInfo(CGM, NPR, NRR);
140   }
141 
142   case llvm::Triple::aarch64:
143   case llvm::Triple::aarch64_32:
144   case llvm::Triple::aarch64_be: {
145     AArch64ABIKind Kind = AArch64ABIKind::AAPCS;
146     if (Target.getABI() == "darwinpcs")
147       Kind = AArch64ABIKind::DarwinPCS;
148     else if (Triple.isOSWindows())
149       return createWindowsAArch64TargetCodeGenInfo(CGM, AArch64ABIKind::Win64);
150     else if (Target.getABI() == "aapcs-soft")
151       Kind = AArch64ABIKind::AAPCSSoft;
152     else if (Target.getABI() == "pauthtest")
153       Kind = AArch64ABIKind::PAuthTest;
154 
155     return createAArch64TargetCodeGenInfo(CGM, Kind);
156   }
157 
158   case llvm::Triple::wasm32:
159   case llvm::Triple::wasm64: {
160     WebAssemblyABIKind Kind = WebAssemblyABIKind::MVP;
161     if (Target.getABI() == "experimental-mv")
162       Kind = WebAssemblyABIKind::ExperimentalMV;
163     return createWebAssemblyTargetCodeGenInfo(CGM, Kind);
164   }
165 
166   case llvm::Triple::arm:
167   case llvm::Triple::armeb:
168   case llvm::Triple::thumb:
169   case llvm::Triple::thumbeb: {
170     if (Triple.getOS() == llvm::Triple::Win32)
171       return createWindowsARMTargetCodeGenInfo(CGM, ARMABIKind::AAPCS_VFP);
172 
173     ARMABIKind Kind = ARMABIKind::AAPCS;
174     StringRef ABIStr = Target.getABI();
175     if (ABIStr == "apcs-gnu")
176       Kind = ARMABIKind::APCS;
177     else if (ABIStr == "aapcs16")
178       Kind = ARMABIKind::AAPCS16_VFP;
179     else if (CodeGenOpts.FloatABI == "hard" ||
180              (CodeGenOpts.FloatABI != "soft" &&
181               (Triple.getEnvironment() == llvm::Triple::GNUEABIHF ||
182                Triple.getEnvironment() == llvm::Triple::MuslEABIHF ||
183                Triple.getEnvironment() == llvm::Triple::EABIHF)))
184       Kind = ARMABIKind::AAPCS_VFP;
185 
186     return createARMTargetCodeGenInfo(CGM, Kind);
187   }
188 
189   case llvm::Triple::ppc: {
190     if (Triple.isOSAIX())
191       return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/false);
192 
193     bool IsSoftFloat =
194         CodeGenOpts.FloatABI == "soft" || Target.hasFeature("spe");
195     return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat);
196   }
197   case llvm::Triple::ppcle: {
198     bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
199     return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat);
200   }
201   case llvm::Triple::ppc64:
202     if (Triple.isOSAIX())
203       return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/true);
204 
205     if (Triple.isOSBinFormatELF()) {
206       PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv1;
207       if (Target.getABI() == "elfv2")
208         Kind = PPC64_SVR4_ABIKind::ELFv2;
209       bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
210 
211       return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat);
212     }
213     return createPPC64TargetCodeGenInfo(CGM);
214   case llvm::Triple::ppc64le: {
215     assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
216     PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv2;
217     if (Target.getABI() == "elfv1")
218       Kind = PPC64_SVR4_ABIKind::ELFv1;
219     bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
220 
221     return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat);
222   }
223 
224   case llvm::Triple::nvptx:
225   case llvm::Triple::nvptx64:
226     return createNVPTXTargetCodeGenInfo(CGM);
227 
228   case llvm::Triple::msp430:
229     return createMSP430TargetCodeGenInfo(CGM);
230 
231   case llvm::Triple::riscv32:
232   case llvm::Triple::riscv64: {
233     StringRef ABIStr = Target.getABI();
234     unsigned XLen = Target.getPointerWidth(LangAS::Default);
235     unsigned ABIFLen = 0;
236     if (ABIStr.ends_with("f"))
237       ABIFLen = 32;
238     else if (ABIStr.ends_with("d"))
239       ABIFLen = 64;
240     bool EABI = ABIStr.ends_with("e");
241     return createRISCVTargetCodeGenInfo(CGM, XLen, ABIFLen, EABI);
242   }
243 
244   case llvm::Triple::systemz: {
245     bool SoftFloat = CodeGenOpts.FloatABI == "soft";
246     bool HasVector = !SoftFloat && Target.getABI() == "vector";
247     return createSystemZTargetCodeGenInfo(CGM, HasVector, SoftFloat);
248   }
249 
250   case llvm::Triple::tce:
251   case llvm::Triple::tcele:
252     return createTCETargetCodeGenInfo(CGM);
253 
254   case llvm::Triple::x86: {
255     bool IsDarwinVectorABI = Triple.isOSDarwin();
256     bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing();
257 
258     if (Triple.getOS() == llvm::Triple::Win32) {
259       return createWinX86_32TargetCodeGenInfo(
260           CGM, IsDarwinVectorABI, IsWin32FloatStructABI,
261           CodeGenOpts.NumRegisterParameters);
262     }
263     return createX86_32TargetCodeGenInfo(
264         CGM, IsDarwinVectorABI, IsWin32FloatStructABI,
265         CodeGenOpts.NumRegisterParameters, CodeGenOpts.FloatABI == "soft");
266   }
267 
268   case llvm::Triple::x86_64: {
269     StringRef ABI = Target.getABI();
270     X86AVXABILevel AVXLevel = (ABI == "avx512" ? X86AVXABILevel::AVX512
271                                : ABI == "avx"  ? X86AVXABILevel::AVX
272                                                : X86AVXABILevel::None);
273 
274     switch (Triple.getOS()) {
275     case llvm::Triple::Win32:
276       return createWinX86_64TargetCodeGenInfo(CGM, AVXLevel);
277     default:
278       return createX86_64TargetCodeGenInfo(CGM, AVXLevel);
279     }
280   }
281   case llvm::Triple::hexagon:
282     return createHexagonTargetCodeGenInfo(CGM);
283   case llvm::Triple::lanai:
284     return createLanaiTargetCodeGenInfo(CGM);
285   case llvm::Triple::r600:
286     return createAMDGPUTargetCodeGenInfo(CGM);
287   case llvm::Triple::amdgcn:
288     return createAMDGPUTargetCodeGenInfo(CGM);
289   case llvm::Triple::sparc:
290     return createSparcV8TargetCodeGenInfo(CGM);
291   case llvm::Triple::sparcv9:
292     return createSparcV9TargetCodeGenInfo(CGM);
293   case llvm::Triple::xcore:
294     return createXCoreTargetCodeGenInfo(CGM);
295   case llvm::Triple::arc:
296     return createARCTargetCodeGenInfo(CGM);
297   case llvm::Triple::spir:
298   case llvm::Triple::spir64:
299     return createCommonSPIRTargetCodeGenInfo(CGM);
300   case llvm::Triple::spirv32:
301   case llvm::Triple::spirv64:
302     return createSPIRVTargetCodeGenInfo(CGM);
303   case llvm::Triple::ve:
304     return createVETargetCodeGenInfo(CGM);
305   case llvm::Triple::csky: {
306     bool IsSoftFloat = !Target.hasFeature("hard-float-abi");
307     bool hasFP64 =
308         Target.hasFeature("fpuv2_df") || Target.hasFeature("fpuv3_df");
309     return createCSKYTargetCodeGenInfo(CGM, IsSoftFloat ? 0
310                                             : hasFP64   ? 64
311                                                         : 32);
312   }
313   case llvm::Triple::bpfeb:
314   case llvm::Triple::bpfel:
315     return createBPFTargetCodeGenInfo(CGM);
316   case llvm::Triple::loongarch32:
317   case llvm::Triple::loongarch64: {
318     StringRef ABIStr = Target.getABI();
319     unsigned ABIFRLen = 0;
320     if (ABIStr.ends_with("f"))
321       ABIFRLen = 32;
322     else if (ABIStr.ends_with("d"))
323       ABIFRLen = 64;
324     return createLoongArchTargetCodeGenInfo(
325         CGM, Target.getPointerWidth(LangAS::Default), ABIFRLen);
326   }
327   }
328 }
329 
330 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
331   if (!TheTargetCodeGenInfo)
332     TheTargetCodeGenInfo = createTargetCodeGenInfo(*this);
333   return *TheTargetCodeGenInfo;
334 }
335 
336 CodeGenModule::CodeGenModule(ASTContext &C,
337                              IntrusiveRefCntPtr<llvm::vfs::FileSystem> FS,
338                              const HeaderSearchOptions &HSO,
339                              const PreprocessorOptions &PPO,
340                              const CodeGenOptions &CGO, llvm::Module &M,
341                              DiagnosticsEngine &diags,
342                              CoverageSourceInfo *CoverageInfo)
343     : Context(C), LangOpts(C.getLangOpts()), FS(FS), HeaderSearchOpts(HSO),
344       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
345       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
346       VMContext(M.getContext()), Types(*this), VTables(*this),
347       SanitizerMD(new SanitizerMetadata(*this)) {
348 
349   // Initialize the type cache.
350   llvm::LLVMContext &LLVMContext = M.getContext();
351   VoidTy = llvm::Type::getVoidTy(LLVMContext);
352   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
353   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
354   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
355   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
356   HalfTy = llvm::Type::getHalfTy(LLVMContext);
357   BFloatTy = llvm::Type::getBFloatTy(LLVMContext);
358   FloatTy = llvm::Type::getFloatTy(LLVMContext);
359   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
360   PointerWidthInBits = C.getTargetInfo().getPointerWidth(LangAS::Default);
361   PointerAlignInBytes =
362       C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(LangAS::Default))
363           .getQuantity();
364   SizeSizeInBytes =
365     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
366   IntAlignInBytes =
367     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
368   CharTy =
369     llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth());
370   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
371   IntPtrTy = llvm::IntegerType::get(LLVMContext,
372     C.getTargetInfo().getMaxPointerWidth());
373   Int8PtrTy = llvm::PointerType::get(LLVMContext,
374                                      C.getTargetAddressSpace(LangAS::Default));
375   const llvm::DataLayout &DL = M.getDataLayout();
376   AllocaInt8PtrTy =
377       llvm::PointerType::get(LLVMContext, DL.getAllocaAddrSpace());
378   GlobalsInt8PtrTy =
379       llvm::PointerType::get(LLVMContext, DL.getDefaultGlobalsAddressSpace());
380   ConstGlobalsPtrTy = llvm::PointerType::get(
381       LLVMContext, C.getTargetAddressSpace(GetGlobalConstantAddressSpace()));
382   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
383 
384   // Build C++20 Module initializers.
385   // TODO: Add Microsoft here once we know the mangling required for the
386   // initializers.
387   CXX20ModuleInits =
388       LangOpts.CPlusPlusModules && getCXXABI().getMangleContext().getKind() ==
389                                        ItaniumMangleContext::MK_Itanium;
390 
391   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
392 
393   if (LangOpts.ObjC)
394     createObjCRuntime();
395   if (LangOpts.OpenCL)
396     createOpenCLRuntime();
397   if (LangOpts.OpenMP)
398     createOpenMPRuntime();
399   if (LangOpts.CUDA)
400     createCUDARuntime();
401   if (LangOpts.HLSL)
402     createHLSLRuntime();
403 
404   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
405   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
406       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
407     TBAA.reset(new CodeGenTBAA(Context, getTypes(), TheModule, CodeGenOpts,
408                                getLangOpts(), getCXXABI().getMangleContext()));
409 
410   // If debug info or coverage generation is enabled, create the CGDebugInfo
411   // object.
412   if (CodeGenOpts.getDebugInfo() != llvm::codegenoptions::NoDebugInfo ||
413       CodeGenOpts.CoverageNotesFile.size() ||
414       CodeGenOpts.CoverageDataFile.size())
415     DebugInfo.reset(new CGDebugInfo(*this));
416 
417   Block.GlobalUniqueCount = 0;
418 
419   if (C.getLangOpts().ObjC)
420     ObjCData.reset(new ObjCEntrypoints());
421 
422   if (CodeGenOpts.hasProfileClangUse()) {
423     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
424         CodeGenOpts.ProfileInstrumentUsePath, *FS,
425         CodeGenOpts.ProfileRemappingFile);
426     // We're checking for profile read errors in CompilerInvocation, so if
427     // there was an error it should've already been caught. If it hasn't been
428     // somehow, trip an assertion.
429     assert(ReaderOrErr);
430     PGOReader = std::move(ReaderOrErr.get());
431   }
432 
433   // If coverage mapping generation is enabled, create the
434   // CoverageMappingModuleGen object.
435   if (CodeGenOpts.CoverageMapping)
436     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
437 
438   // Generate the module name hash here if needed.
439   if (CodeGenOpts.UniqueInternalLinkageNames &&
440       !getModule().getSourceFileName().empty()) {
441     std::string Path = getModule().getSourceFileName();
442     // Check if a path substitution is needed from the MacroPrefixMap.
443     for (const auto &Entry : LangOpts.MacroPrefixMap)
444       if (Path.rfind(Entry.first, 0) != std::string::npos) {
445         Path = Entry.second + Path.substr(Entry.first.size());
446         break;
447       }
448     ModuleNameHash = llvm::getUniqueInternalLinkagePostfix(Path);
449   }
450 
451   // Record mregparm value now so it is visible through all of codegen.
452   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
453     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
454                               CodeGenOpts.NumRegisterParameters);
455 }
456 
457 CodeGenModule::~CodeGenModule() {}
458 
459 void CodeGenModule::createObjCRuntime() {
460   // This is just isGNUFamily(), but we want to force implementors of
461   // new ABIs to decide how best to do this.
462   switch (LangOpts.ObjCRuntime.getKind()) {
463   case ObjCRuntime::GNUstep:
464   case ObjCRuntime::GCC:
465   case ObjCRuntime::ObjFW:
466     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
467     return;
468 
469   case ObjCRuntime::FragileMacOSX:
470   case ObjCRuntime::MacOSX:
471   case ObjCRuntime::iOS:
472   case ObjCRuntime::WatchOS:
473     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
474     return;
475   }
476   llvm_unreachable("bad runtime kind");
477 }
478 
479 void CodeGenModule::createOpenCLRuntime() {
480   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
481 }
482 
483 void CodeGenModule::createOpenMPRuntime() {
484   // Select a specialized code generation class based on the target, if any.
485   // If it does not exist use the default implementation.
486   switch (getTriple().getArch()) {
487   case llvm::Triple::nvptx:
488   case llvm::Triple::nvptx64:
489   case llvm::Triple::amdgcn:
490     assert(getLangOpts().OpenMPIsTargetDevice &&
491            "OpenMP AMDGPU/NVPTX is only prepared to deal with device code.");
492     OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this));
493     break;
494   default:
495     if (LangOpts.OpenMPSimd)
496       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
497     else
498       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
499     break;
500   }
501 }
502 
503 void CodeGenModule::createCUDARuntime() {
504   CUDARuntime.reset(CreateNVCUDARuntime(*this));
505 }
506 
507 void CodeGenModule::createHLSLRuntime() {
508   HLSLRuntime.reset(new CGHLSLRuntime(*this));
509 }
510 
511 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
512   Replacements[Name] = C;
513 }
514 
515 void CodeGenModule::applyReplacements() {
516   for (auto &I : Replacements) {
517     StringRef MangledName = I.first;
518     llvm::Constant *Replacement = I.second;
519     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
520     if (!Entry)
521       continue;
522     auto *OldF = cast<llvm::Function>(Entry);
523     auto *NewF = dyn_cast<llvm::Function>(Replacement);
524     if (!NewF) {
525       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
526         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
527       } else {
528         auto *CE = cast<llvm::ConstantExpr>(Replacement);
529         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
530                CE->getOpcode() == llvm::Instruction::GetElementPtr);
531         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
532       }
533     }
534 
535     // Replace old with new, but keep the old order.
536     OldF->replaceAllUsesWith(Replacement);
537     if (NewF) {
538       NewF->removeFromParent();
539       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
540                                                        NewF);
541     }
542     OldF->eraseFromParent();
543   }
544 }
545 
546 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
547   GlobalValReplacements.push_back(std::make_pair(GV, C));
548 }
549 
550 void CodeGenModule::applyGlobalValReplacements() {
551   for (auto &I : GlobalValReplacements) {
552     llvm::GlobalValue *GV = I.first;
553     llvm::Constant *C = I.second;
554 
555     GV->replaceAllUsesWith(C);
556     GV->eraseFromParent();
557   }
558 }
559 
560 // This is only used in aliases that we created and we know they have a
561 // linear structure.
562 static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) {
563   const llvm::Constant *C;
564   if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV))
565     C = GA->getAliasee();
566   else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV))
567     C = GI->getResolver();
568   else
569     return GV;
570 
571   const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts());
572   if (!AliaseeGV)
573     return nullptr;
574 
575   const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject();
576   if (FinalGV == GV)
577     return nullptr;
578 
579   return FinalGV;
580 }
581 
582 static bool checkAliasedGlobal(
583     const ASTContext &Context, DiagnosticsEngine &Diags, SourceLocation Location,
584     bool IsIFunc, const llvm::GlobalValue *Alias, const llvm::GlobalValue *&GV,
585     const llvm::MapVector<GlobalDecl, StringRef> &MangledDeclNames,
586     SourceRange AliasRange) {
587   GV = getAliasedGlobal(Alias);
588   if (!GV) {
589     Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
590     return false;
591   }
592 
593   if (GV->hasCommonLinkage()) {
594     const llvm::Triple &Triple = Context.getTargetInfo().getTriple();
595     if (Triple.getObjectFormat() == llvm::Triple::XCOFF) {
596       Diags.Report(Location, diag::err_alias_to_common);
597       return false;
598     }
599   }
600 
601   if (GV->isDeclaration()) {
602     Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc;
603     Diags.Report(Location, diag::note_alias_requires_mangled_name)
604         << IsIFunc << IsIFunc;
605     // Provide a note if the given function is not found and exists as a
606     // mangled name.
607     for (const auto &[Decl, Name] : MangledDeclNames) {
608       if (const auto *ND = dyn_cast<NamedDecl>(Decl.getDecl())) {
609         if (ND->getName() == GV->getName()) {
610           Diags.Report(Location, diag::note_alias_mangled_name_alternative)
611               << Name
612               << FixItHint::CreateReplacement(
613                      AliasRange,
614                      (Twine(IsIFunc ? "ifunc" : "alias") + "(\"" + Name + "\")")
615                          .str());
616         }
617       }
618     }
619     return false;
620   }
621 
622   if (IsIFunc) {
623     // Check resolver function type.
624     const auto *F = dyn_cast<llvm::Function>(GV);
625     if (!F) {
626       Diags.Report(Location, diag::err_alias_to_undefined)
627           << IsIFunc << IsIFunc;
628       return false;
629     }
630 
631     llvm::FunctionType *FTy = F->getFunctionType();
632     if (!FTy->getReturnType()->isPointerTy()) {
633       Diags.Report(Location, diag::err_ifunc_resolver_return);
634       return false;
635     }
636   }
637 
638   return true;
639 }
640 
641 // Emit a warning if toc-data attribute is requested for global variables that
642 // have aliases and remove the toc-data attribute.
643 static void checkAliasForTocData(llvm::GlobalVariable *GVar,
644                                  const CodeGenOptions &CodeGenOpts,
645                                  DiagnosticsEngine &Diags,
646                                  SourceLocation Location) {
647   if (GVar->hasAttribute("toc-data")) {
648     auto GVId = GVar->getName();
649     // Is this a global variable specified by the user as local?
650     if ((llvm::binary_search(CodeGenOpts.TocDataVarsUserSpecified, GVId))) {
651       Diags.Report(Location, diag::warn_toc_unsupported_type)
652           << GVId << "the variable has an alias";
653     }
654     llvm::AttributeSet CurrAttributes = GVar->getAttributes();
655     llvm::AttributeSet NewAttributes =
656         CurrAttributes.removeAttribute(GVar->getContext(), "toc-data");
657     GVar->setAttributes(NewAttributes);
658   }
659 }
660 
661 void CodeGenModule::checkAliases() {
662   // Check if the constructed aliases are well formed. It is really unfortunate
663   // that we have to do this in CodeGen, but we only construct mangled names
664   // and aliases during codegen.
665   bool Error = false;
666   DiagnosticsEngine &Diags = getDiags();
667   for (const GlobalDecl &GD : Aliases) {
668     const auto *D = cast<ValueDecl>(GD.getDecl());
669     SourceLocation Location;
670     SourceRange Range;
671     bool IsIFunc = D->hasAttr<IFuncAttr>();
672     if (const Attr *A = D->getDefiningAttr()) {
673       Location = A->getLocation();
674       Range = A->getRange();
675     } else
676       llvm_unreachable("Not an alias or ifunc?");
677 
678     StringRef MangledName = getMangledName(GD);
679     llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
680     const llvm::GlobalValue *GV = nullptr;
681     if (!checkAliasedGlobal(getContext(), Diags, Location, IsIFunc, Alias, GV,
682                             MangledDeclNames, Range)) {
683       Error = true;
684       continue;
685     }
686 
687     if (getContext().getTargetInfo().getTriple().isOSAIX())
688       if (const llvm::GlobalVariable *GVar =
689               dyn_cast<const llvm::GlobalVariable>(GV))
690         checkAliasForTocData(const_cast<llvm::GlobalVariable *>(GVar),
691                              getCodeGenOpts(), Diags, Location);
692 
693     llvm::Constant *Aliasee =
694         IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver()
695                 : cast<llvm::GlobalAlias>(Alias)->getAliasee();
696 
697     llvm::GlobalValue *AliaseeGV;
698     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
699       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
700     else
701       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
702 
703     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
704       StringRef AliasSection = SA->getName();
705       if (AliasSection != AliaseeGV->getSection())
706         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
707             << AliasSection << IsIFunc << IsIFunc;
708     }
709 
710     // We have to handle alias to weak aliases in here. LLVM itself disallows
711     // this since the object semantics would not match the IL one. For
712     // compatibility with gcc we implement it by just pointing the alias
713     // to its aliasee's aliasee. We also warn, since the user is probably
714     // expecting the link to be weak.
715     if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) {
716       if (GA->isInterposable()) {
717         Diags.Report(Location, diag::warn_alias_to_weak_alias)
718             << GV->getName() << GA->getName() << IsIFunc;
719         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
720             GA->getAliasee(), Alias->getType());
721 
722         if (IsIFunc)
723           cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee);
724         else
725           cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee);
726       }
727     }
728     // ifunc resolvers are usually implemented to run before sanitizer
729     // initialization. Disable instrumentation to prevent the ordering issue.
730     if (IsIFunc)
731       cast<llvm::Function>(Aliasee)->addFnAttr(
732           llvm::Attribute::DisableSanitizerInstrumentation);
733   }
734   if (!Error)
735     return;
736 
737   for (const GlobalDecl &GD : Aliases) {
738     StringRef MangledName = getMangledName(GD);
739     llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
740     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
741     Alias->eraseFromParent();
742   }
743 }
744 
745 void CodeGenModule::clear() {
746   DeferredDeclsToEmit.clear();
747   EmittedDeferredDecls.clear();
748   DeferredAnnotations.clear();
749   if (OpenMPRuntime)
750     OpenMPRuntime->clear();
751 }
752 
753 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
754                                        StringRef MainFile) {
755   if (!hasDiagnostics())
756     return;
757   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
758     if (MainFile.empty())
759       MainFile = "<stdin>";
760     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
761   } else {
762     if (Mismatched > 0)
763       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
764 
765     if (Missing > 0)
766       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
767   }
768 }
769 
770 static std::optional<llvm::GlobalValue::VisibilityTypes>
771 getLLVMVisibility(clang::LangOptions::VisibilityFromDLLStorageClassKinds K) {
772   // Map to LLVM visibility.
773   switch (K) {
774   case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Keep:
775     return std::nullopt;
776   case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Default:
777     return llvm::GlobalValue::DefaultVisibility;
778   case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Hidden:
779     return llvm::GlobalValue::HiddenVisibility;
780   case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Protected:
781     return llvm::GlobalValue::ProtectedVisibility;
782   }
783   llvm_unreachable("unknown option value!");
784 }
785 
786 void setLLVMVisibility(llvm::GlobalValue &GV,
787                        std::optional<llvm::GlobalValue::VisibilityTypes> V) {
788   if (!V)
789     return;
790 
791   // Reset DSO locality before setting the visibility. This removes
792   // any effects that visibility options and annotations may have
793   // had on the DSO locality. Setting the visibility will implicitly set
794   // appropriate globals to DSO Local; however, this will be pessimistic
795   // w.r.t. to the normal compiler IRGen.
796   GV.setDSOLocal(false);
797   GV.setVisibility(*V);
798 }
799 
800 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO,
801                                              llvm::Module &M) {
802   if (!LO.VisibilityFromDLLStorageClass)
803     return;
804 
805   std::optional<llvm::GlobalValue::VisibilityTypes> DLLExportVisibility =
806       getLLVMVisibility(LO.getDLLExportVisibility());
807 
808   std::optional<llvm::GlobalValue::VisibilityTypes>
809       NoDLLStorageClassVisibility =
810           getLLVMVisibility(LO.getNoDLLStorageClassVisibility());
811 
812   std::optional<llvm::GlobalValue::VisibilityTypes>
813       ExternDeclDLLImportVisibility =
814           getLLVMVisibility(LO.getExternDeclDLLImportVisibility());
815 
816   std::optional<llvm::GlobalValue::VisibilityTypes>
817       ExternDeclNoDLLStorageClassVisibility =
818           getLLVMVisibility(LO.getExternDeclNoDLLStorageClassVisibility());
819 
820   for (llvm::GlobalValue &GV : M.global_values()) {
821     if (GV.hasAppendingLinkage() || GV.hasLocalLinkage())
822       continue;
823 
824     if (GV.isDeclarationForLinker())
825       setLLVMVisibility(GV, GV.getDLLStorageClass() ==
826                                     llvm::GlobalValue::DLLImportStorageClass
827                                 ? ExternDeclDLLImportVisibility
828                                 : ExternDeclNoDLLStorageClassVisibility);
829     else
830       setLLVMVisibility(GV, GV.getDLLStorageClass() ==
831                                     llvm::GlobalValue::DLLExportStorageClass
832                                 ? DLLExportVisibility
833                                 : NoDLLStorageClassVisibility);
834 
835     GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
836   }
837 }
838 
839 static bool isStackProtectorOn(const LangOptions &LangOpts,
840                                const llvm::Triple &Triple,
841                                clang::LangOptions::StackProtectorMode Mode) {
842   if (Triple.isAMDGPU() || Triple.isNVPTX())
843     return false;
844   return LangOpts.getStackProtector() == Mode;
845 }
846 
847 void CodeGenModule::Release() {
848   Module *Primary = getContext().getCurrentNamedModule();
849   if (CXX20ModuleInits && Primary && !Primary->isHeaderLikeModule())
850     EmitModuleInitializers(Primary);
851   EmitDeferred();
852   DeferredDecls.insert(EmittedDeferredDecls.begin(),
853                        EmittedDeferredDecls.end());
854   EmittedDeferredDecls.clear();
855   EmitVTablesOpportunistically();
856   applyGlobalValReplacements();
857   applyReplacements();
858   emitMultiVersionFunctions();
859 
860   if (Context.getLangOpts().IncrementalExtensions &&
861       GlobalTopLevelStmtBlockInFlight.first) {
862     const TopLevelStmtDecl *TLSD = GlobalTopLevelStmtBlockInFlight.second;
863     GlobalTopLevelStmtBlockInFlight.first->FinishFunction(TLSD->getEndLoc());
864     GlobalTopLevelStmtBlockInFlight = {nullptr, nullptr};
865   }
866 
867   // Module implementations are initialized the same way as a regular TU that
868   // imports one or more modules.
869   if (CXX20ModuleInits && Primary && Primary->isInterfaceOrPartition())
870     EmitCXXModuleInitFunc(Primary);
871   else
872     EmitCXXGlobalInitFunc();
873   EmitCXXGlobalCleanUpFunc();
874   registerGlobalDtorsWithAtExit();
875   EmitCXXThreadLocalInitFunc();
876   if (ObjCRuntime)
877     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
878       AddGlobalCtor(ObjCInitFunction);
879   if (Context.getLangOpts().CUDA && CUDARuntime) {
880     if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule())
881       AddGlobalCtor(CudaCtorFunction);
882   }
883   if (OpenMPRuntime) {
884     OpenMPRuntime->createOffloadEntriesAndInfoMetadata();
885     OpenMPRuntime->clear();
886   }
887   if (PGOReader) {
888     getModule().setProfileSummary(
889         PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
890         llvm::ProfileSummary::PSK_Instr);
891     if (PGOStats.hasDiagnostics())
892       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
893   }
894   llvm::stable_sort(GlobalCtors, [](const Structor &L, const Structor &R) {
895     return L.LexOrder < R.LexOrder;
896   });
897   EmitCtorList(GlobalCtors, "llvm.global_ctors");
898   EmitCtorList(GlobalDtors, "llvm.global_dtors");
899   EmitGlobalAnnotations();
900   EmitStaticExternCAliases();
901   checkAliases();
902   EmitDeferredUnusedCoverageMappings();
903   CodeGenPGO(*this).setValueProfilingFlag(getModule());
904   CodeGenPGO(*this).setProfileVersion(getModule());
905   if (CoverageMapping)
906     CoverageMapping->emit();
907   if (CodeGenOpts.SanitizeCfiCrossDso) {
908     CodeGenFunction(*this).EmitCfiCheckFail();
909     CodeGenFunction(*this).EmitCfiCheckStub();
910   }
911   if (LangOpts.Sanitize.has(SanitizerKind::KCFI))
912     finalizeKCFITypes();
913   emitAtAvailableLinkGuard();
914   if (Context.getTargetInfo().getTriple().isWasm())
915     EmitMainVoidAlias();
916 
917   if (getTriple().isAMDGPU() ||
918       (getTriple().isSPIRV() && getTriple().getVendor() == llvm::Triple::AMD)) {
919     // Emit amdhsa_code_object_version module flag, which is code object version
920     // times 100.
921     if (getTarget().getTargetOpts().CodeObjectVersion !=
922         llvm::CodeObjectVersionKind::COV_None) {
923       getModule().addModuleFlag(llvm::Module::Error,
924                                 "amdhsa_code_object_version",
925                                 getTarget().getTargetOpts().CodeObjectVersion);
926     }
927 
928     // Currently, "-mprintf-kind" option is only supported for HIP
929     if (LangOpts.HIP) {
930       auto *MDStr = llvm::MDString::get(
931           getLLVMContext(), (getTarget().getTargetOpts().AMDGPUPrintfKindVal ==
932                              TargetOptions::AMDGPUPrintfKind::Hostcall)
933                                 ? "hostcall"
934                                 : "buffered");
935       getModule().addModuleFlag(llvm::Module::Error, "amdgpu_printf_kind",
936                                 MDStr);
937     }
938   }
939 
940   // Emit a global array containing all external kernels or device variables
941   // used by host functions and mark it as used for CUDA/HIP. This is necessary
942   // to get kernels or device variables in archives linked in even if these
943   // kernels or device variables are only used in host functions.
944   if (!Context.CUDAExternalDeviceDeclODRUsedByHost.empty()) {
945     SmallVector<llvm::Constant *, 8> UsedArray;
946     for (auto D : Context.CUDAExternalDeviceDeclODRUsedByHost) {
947       GlobalDecl GD;
948       if (auto *FD = dyn_cast<FunctionDecl>(D))
949         GD = GlobalDecl(FD, KernelReferenceKind::Kernel);
950       else
951         GD = GlobalDecl(D);
952       UsedArray.push_back(llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
953           GetAddrOfGlobal(GD), Int8PtrTy));
954     }
955 
956     llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
957 
958     auto *GV = new llvm::GlobalVariable(
959         getModule(), ATy, false, llvm::GlobalValue::InternalLinkage,
960         llvm::ConstantArray::get(ATy, UsedArray), "__clang_gpu_used_external");
961     addCompilerUsedGlobal(GV);
962   }
963   if (LangOpts.HIP && !getLangOpts().OffloadingNewDriver) {
964     // Emit a unique ID so that host and device binaries from the same
965     // compilation unit can be associated.
966     auto *GV = new llvm::GlobalVariable(
967         getModule(), Int8Ty, false, llvm::GlobalValue::ExternalLinkage,
968         llvm::Constant::getNullValue(Int8Ty),
969         "__hip_cuid_" + getContext().getCUIDHash());
970     addCompilerUsedGlobal(GV);
971   }
972   emitLLVMUsed();
973   if (SanStats)
974     SanStats->finish();
975 
976   if (CodeGenOpts.Autolink &&
977       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
978     EmitModuleLinkOptions();
979   }
980 
981   // On ELF we pass the dependent library specifiers directly to the linker
982   // without manipulating them. This is in contrast to other platforms where
983   // they are mapped to a specific linker option by the compiler. This
984   // difference is a result of the greater variety of ELF linkers and the fact
985   // that ELF linkers tend to handle libraries in a more complicated fashion
986   // than on other platforms. This forces us to defer handling the dependent
987   // libs to the linker.
988   //
989   // CUDA/HIP device and host libraries are different. Currently there is no
990   // way to differentiate dependent libraries for host or device. Existing
991   // usage of #pragma comment(lib, *) is intended for host libraries on
992   // Windows. Therefore emit llvm.dependent-libraries only for host.
993   if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
994     auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
995     for (auto *MD : ELFDependentLibraries)
996       NMD->addOperand(MD);
997   }
998 
999   if (CodeGenOpts.DwarfVersion) {
1000     getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version",
1001                               CodeGenOpts.DwarfVersion);
1002   }
1003 
1004   if (CodeGenOpts.Dwarf64)
1005     getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1);
1006 
1007   if (Context.getLangOpts().SemanticInterposition)
1008     // Require various optimization to respect semantic interposition.
1009     getModule().setSemanticInterposition(true);
1010 
1011   if (CodeGenOpts.EmitCodeView) {
1012     // Indicate that we want CodeView in the metadata.
1013     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
1014   }
1015   if (CodeGenOpts.CodeViewGHash) {
1016     getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
1017   }
1018   if (CodeGenOpts.ControlFlowGuard) {
1019     // Function ID tables and checks for Control Flow Guard (cfguard=2).
1020     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2);
1021   } else if (CodeGenOpts.ControlFlowGuardNoChecks) {
1022     // Function ID tables for Control Flow Guard (cfguard=1).
1023     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
1024   }
1025   if (CodeGenOpts.EHContGuard) {
1026     // Function ID tables for EH Continuation Guard.
1027     getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1);
1028   }
1029   if (Context.getLangOpts().Kernel) {
1030     // Note if we are compiling with /kernel.
1031     getModule().addModuleFlag(llvm::Module::Warning, "ms-kernel", 1);
1032   }
1033   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
1034     // We don't support LTO with 2 with different StrictVTablePointers
1035     // FIXME: we could support it by stripping all the information introduced
1036     // by StrictVTablePointers.
1037 
1038     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
1039 
1040     llvm::Metadata *Ops[2] = {
1041               llvm::MDString::get(VMContext, "StrictVTablePointers"),
1042               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1043                   llvm::Type::getInt32Ty(VMContext), 1))};
1044 
1045     getModule().addModuleFlag(llvm::Module::Require,
1046                               "StrictVTablePointersRequirement",
1047                               llvm::MDNode::get(VMContext, Ops));
1048   }
1049   if (getModuleDebugInfo())
1050     // We support a single version in the linked module. The LLVM
1051     // parser will drop debug info with a different version number
1052     // (and warn about it, too).
1053     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
1054                               llvm::DEBUG_METADATA_VERSION);
1055 
1056   // We need to record the widths of enums and wchar_t, so that we can generate
1057   // the correct build attributes in the ARM backend. wchar_size is also used by
1058   // TargetLibraryInfo.
1059   uint64_t WCharWidth =
1060       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
1061   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
1062 
1063   if (getTriple().isOSzOS()) {
1064     getModule().addModuleFlag(llvm::Module::Warning,
1065                               "zos_product_major_version",
1066                               uint32_t(CLANG_VERSION_MAJOR));
1067     getModule().addModuleFlag(llvm::Module::Warning,
1068                               "zos_product_minor_version",
1069                               uint32_t(CLANG_VERSION_MINOR));
1070     getModule().addModuleFlag(llvm::Module::Warning, "zos_product_patchlevel",
1071                               uint32_t(CLANG_VERSION_PATCHLEVEL));
1072     std::string ProductId = getClangVendor() + "clang";
1073     getModule().addModuleFlag(llvm::Module::Error, "zos_product_id",
1074                               llvm::MDString::get(VMContext, ProductId));
1075 
1076     // Record the language because we need it for the PPA2.
1077     StringRef lang_str = languageToString(
1078         LangStandard::getLangStandardForKind(LangOpts.LangStd).Language);
1079     getModule().addModuleFlag(llvm::Module::Error, "zos_cu_language",
1080                               llvm::MDString::get(VMContext, lang_str));
1081 
1082     time_t TT = PreprocessorOpts.SourceDateEpoch
1083                     ? *PreprocessorOpts.SourceDateEpoch
1084                     : std::time(nullptr);
1085     getModule().addModuleFlag(llvm::Module::Max, "zos_translation_time",
1086                               static_cast<uint64_t>(TT));
1087 
1088     // Multiple modes will be supported here.
1089     getModule().addModuleFlag(llvm::Module::Error, "zos_le_char_mode",
1090                               llvm::MDString::get(VMContext, "ascii"));
1091   }
1092 
1093   llvm::Triple T = Context.getTargetInfo().getTriple();
1094   if (T.isARM() || T.isThumb()) {
1095     // The minimum width of an enum in bytes
1096     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
1097     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
1098   }
1099 
1100   if (T.isRISCV()) {
1101     StringRef ABIStr = Target.getABI();
1102     llvm::LLVMContext &Ctx = TheModule.getContext();
1103     getModule().addModuleFlag(llvm::Module::Error, "target-abi",
1104                               llvm::MDString::get(Ctx, ABIStr));
1105 
1106     // Add the canonical ISA string as metadata so the backend can set the ELF
1107     // attributes correctly. We use AppendUnique so LTO will keep all of the
1108     // unique ISA strings that were linked together.
1109     const std::vector<std::string> &Features =
1110         getTarget().getTargetOpts().Features;
1111     auto ParseResult =
1112         llvm::RISCVISAInfo::parseFeatures(T.isRISCV64() ? 64 : 32, Features);
1113     if (!errorToBool(ParseResult.takeError()))
1114       getModule().addModuleFlag(
1115           llvm::Module::AppendUnique, "riscv-isa",
1116           llvm::MDNode::get(
1117               Ctx, llvm::MDString::get(Ctx, (*ParseResult)->toString())));
1118   }
1119 
1120   if (CodeGenOpts.SanitizeCfiCrossDso) {
1121     // Indicate that we want cross-DSO control flow integrity checks.
1122     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
1123   }
1124 
1125   if (CodeGenOpts.WholeProgramVTables) {
1126     // Indicate whether VFE was enabled for this module, so that the
1127     // vcall_visibility metadata added under whole program vtables is handled
1128     // appropriately in the optimizer.
1129     getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim",
1130                               CodeGenOpts.VirtualFunctionElimination);
1131   }
1132 
1133   if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) {
1134     getModule().addModuleFlag(llvm::Module::Override,
1135                               "CFI Canonical Jump Tables",
1136                               CodeGenOpts.SanitizeCfiCanonicalJumpTables);
1137   }
1138 
1139   if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) {
1140     getModule().addModuleFlag(llvm::Module::Override, "kcfi", 1);
1141     // KCFI assumes patchable-function-prefix is the same for all indirectly
1142     // called functions. Store the expected offset for code generation.
1143     if (CodeGenOpts.PatchableFunctionEntryOffset)
1144       getModule().addModuleFlag(llvm::Module::Override, "kcfi-offset",
1145                                 CodeGenOpts.PatchableFunctionEntryOffset);
1146   }
1147 
1148   if (CodeGenOpts.CFProtectionReturn &&
1149       Target.checkCFProtectionReturnSupported(getDiags())) {
1150     // Indicate that we want to instrument return control flow protection.
1151     getModule().addModuleFlag(llvm::Module::Min, "cf-protection-return",
1152                               1);
1153   }
1154 
1155   if (CodeGenOpts.CFProtectionBranch &&
1156       Target.checkCFProtectionBranchSupported(getDiags())) {
1157     // Indicate that we want to instrument branch control flow protection.
1158     getModule().addModuleFlag(llvm::Module::Min, "cf-protection-branch",
1159                               1);
1160   }
1161 
1162   if (CodeGenOpts.FunctionReturnThunks)
1163     getModule().addModuleFlag(llvm::Module::Override, "function_return_thunk_extern", 1);
1164 
1165   if (CodeGenOpts.IndirectBranchCSPrefix)
1166     getModule().addModuleFlag(llvm::Module::Override, "indirect_branch_cs_prefix", 1);
1167 
1168   // Add module metadata for return address signing (ignoring
1169   // non-leaf/all) and stack tagging. These are actually turned on by function
1170   // attributes, but we use module metadata to emit build attributes. This is
1171   // needed for LTO, where the function attributes are inside bitcode
1172   // serialised into a global variable by the time build attributes are
1173   // emitted, so we can't access them. LTO objects could be compiled with
1174   // different flags therefore module flags are set to "Min" behavior to achieve
1175   // the same end result of the normal build where e.g BTI is off if any object
1176   // doesn't support it.
1177   if (Context.getTargetInfo().hasFeature("ptrauth") &&
1178       LangOpts.getSignReturnAddressScope() !=
1179           LangOptions::SignReturnAddressScopeKind::None)
1180     getModule().addModuleFlag(llvm::Module::Override,
1181                               "sign-return-address-buildattr", 1);
1182   if (LangOpts.Sanitize.has(SanitizerKind::MemtagStack))
1183     getModule().addModuleFlag(llvm::Module::Override,
1184                               "tag-stack-memory-buildattr", 1);
1185 
1186   if (T.isARM() || T.isThumb() || T.isAArch64()) {
1187     if (LangOpts.BranchTargetEnforcement)
1188       getModule().addModuleFlag(llvm::Module::Min, "branch-target-enforcement",
1189                                 1);
1190     if (LangOpts.BranchProtectionPAuthLR)
1191       getModule().addModuleFlag(llvm::Module::Min, "branch-protection-pauth-lr",
1192                                 1);
1193     if (LangOpts.GuardedControlStack)
1194       getModule().addModuleFlag(llvm::Module::Min, "guarded-control-stack", 1);
1195     if (LangOpts.hasSignReturnAddress())
1196       getModule().addModuleFlag(llvm::Module::Min, "sign-return-address", 1);
1197     if (LangOpts.isSignReturnAddressScopeAll())
1198       getModule().addModuleFlag(llvm::Module::Min, "sign-return-address-all",
1199                                 1);
1200     if (!LangOpts.isSignReturnAddressWithAKey())
1201       getModule().addModuleFlag(llvm::Module::Min,
1202                                 "sign-return-address-with-bkey", 1);
1203 
1204     if (getTriple().isOSLinux()) {
1205       assert(getTriple().isOSBinFormatELF());
1206       using namespace llvm::ELF;
1207       uint64_t PAuthABIVersion =
1208           (LangOpts.PointerAuthIntrinsics
1209            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INTRINSICS) |
1210           (LangOpts.PointerAuthCalls
1211            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_CALLS) |
1212           (LangOpts.PointerAuthReturns
1213            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_RETURNS) |
1214           (LangOpts.PointerAuthAuthTraps
1215            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_AUTHTRAPS) |
1216           (LangOpts.PointerAuthVTPtrAddressDiscrimination
1217            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_VPTRADDRDISCR) |
1218           (LangOpts.PointerAuthVTPtrTypeDiscrimination
1219            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_VPTRTYPEDISCR) |
1220           (LangOpts.PointerAuthInitFini
1221            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INITFINI);
1222       static_assert(AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INITFINI ==
1223                         AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_LAST,
1224                     "Update when new enum items are defined");
1225       if (PAuthABIVersion != 0) {
1226         getModule().addModuleFlag(llvm::Module::Error,
1227                                   "aarch64-elf-pauthabi-platform",
1228                                   AARCH64_PAUTH_PLATFORM_LLVM_LINUX);
1229         getModule().addModuleFlag(llvm::Module::Error,
1230                                   "aarch64-elf-pauthabi-version",
1231                                   PAuthABIVersion);
1232       }
1233     }
1234   }
1235 
1236   if (CodeGenOpts.StackClashProtector)
1237     getModule().addModuleFlag(
1238         llvm::Module::Override, "probe-stack",
1239         llvm::MDString::get(TheModule.getContext(), "inline-asm"));
1240 
1241   if (CodeGenOpts.StackProbeSize && CodeGenOpts.StackProbeSize != 4096)
1242     getModule().addModuleFlag(llvm::Module::Min, "stack-probe-size",
1243                               CodeGenOpts.StackProbeSize);
1244 
1245   if (!CodeGenOpts.MemoryProfileOutput.empty()) {
1246     llvm::LLVMContext &Ctx = TheModule.getContext();
1247     getModule().addModuleFlag(
1248         llvm::Module::Error, "MemProfProfileFilename",
1249         llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput));
1250   }
1251 
1252   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
1253     // Indicate whether __nvvm_reflect should be configured to flush denormal
1254     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
1255     // property.)
1256     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
1257                               CodeGenOpts.FP32DenormalMode.Output !=
1258                                   llvm::DenormalMode::IEEE);
1259   }
1260 
1261   if (LangOpts.EHAsynch)
1262     getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1);
1263 
1264   // Indicate whether this Module was compiled with -fopenmp
1265   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
1266     getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP);
1267   if (getLangOpts().OpenMPIsTargetDevice)
1268     getModule().addModuleFlag(llvm::Module::Max, "openmp-device",
1269                               LangOpts.OpenMP);
1270 
1271   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
1272   if (LangOpts.OpenCL || (LangOpts.CUDAIsDevice && getTriple().isSPIRV())) {
1273     EmitOpenCLMetadata();
1274     // Emit SPIR version.
1275     if (getTriple().isSPIR()) {
1276       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
1277       // opencl.spir.version named metadata.
1278       // C++ for OpenCL has a distinct mapping for version compatibility with
1279       // OpenCL.
1280       auto Version = LangOpts.getOpenCLCompatibleVersion();
1281       llvm::Metadata *SPIRVerElts[] = {
1282           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1283               Int32Ty, Version / 100)),
1284           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1285               Int32Ty, (Version / 100 > 1) ? 0 : 2))};
1286       llvm::NamedMDNode *SPIRVerMD =
1287           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
1288       llvm::LLVMContext &Ctx = TheModule.getContext();
1289       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
1290     }
1291   }
1292 
1293   // HLSL related end of code gen work items.
1294   if (LangOpts.HLSL)
1295     getHLSLRuntime().finishCodeGen();
1296 
1297   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
1298     assert(PLevel < 3 && "Invalid PIC Level");
1299     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
1300     if (Context.getLangOpts().PIE)
1301       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
1302   }
1303 
1304   if (getCodeGenOpts().CodeModel.size() > 0) {
1305     unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
1306                   .Case("tiny", llvm::CodeModel::Tiny)
1307                   .Case("small", llvm::CodeModel::Small)
1308                   .Case("kernel", llvm::CodeModel::Kernel)
1309                   .Case("medium", llvm::CodeModel::Medium)
1310                   .Case("large", llvm::CodeModel::Large)
1311                   .Default(~0u);
1312     if (CM != ~0u) {
1313       llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
1314       getModule().setCodeModel(codeModel);
1315 
1316       if ((CM == llvm::CodeModel::Medium || CM == llvm::CodeModel::Large) &&
1317           Context.getTargetInfo().getTriple().getArch() ==
1318               llvm::Triple::x86_64) {
1319         getModule().setLargeDataThreshold(getCodeGenOpts().LargeDataThreshold);
1320       }
1321     }
1322   }
1323 
1324   if (CodeGenOpts.NoPLT)
1325     getModule().setRtLibUseGOT();
1326   if (getTriple().isOSBinFormatELF() &&
1327       CodeGenOpts.DirectAccessExternalData !=
1328           getModule().getDirectAccessExternalData()) {
1329     getModule().setDirectAccessExternalData(
1330         CodeGenOpts.DirectAccessExternalData);
1331   }
1332   if (CodeGenOpts.UnwindTables)
1333     getModule().setUwtable(llvm::UWTableKind(CodeGenOpts.UnwindTables));
1334 
1335   switch (CodeGenOpts.getFramePointer()) {
1336   case CodeGenOptions::FramePointerKind::None:
1337     // 0 ("none") is the default.
1338     break;
1339   case CodeGenOptions::FramePointerKind::Reserved:
1340     getModule().setFramePointer(llvm::FramePointerKind::Reserved);
1341     break;
1342   case CodeGenOptions::FramePointerKind::NonLeaf:
1343     getModule().setFramePointer(llvm::FramePointerKind::NonLeaf);
1344     break;
1345   case CodeGenOptions::FramePointerKind::All:
1346     getModule().setFramePointer(llvm::FramePointerKind::All);
1347     break;
1348   }
1349 
1350   SimplifyPersonality();
1351 
1352   if (getCodeGenOpts().EmitDeclMetadata)
1353     EmitDeclMetadata();
1354 
1355   if (getCodeGenOpts().CoverageNotesFile.size() ||
1356       getCodeGenOpts().CoverageDataFile.size())
1357     EmitCoverageFile();
1358 
1359   if (CGDebugInfo *DI = getModuleDebugInfo())
1360     DI->finalize();
1361 
1362   if (getCodeGenOpts().EmitVersionIdentMetadata)
1363     EmitVersionIdentMetadata();
1364 
1365   if (!getCodeGenOpts().RecordCommandLine.empty())
1366     EmitCommandLineMetadata();
1367 
1368   if (!getCodeGenOpts().StackProtectorGuard.empty())
1369     getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard);
1370   if (!getCodeGenOpts().StackProtectorGuardReg.empty())
1371     getModule().setStackProtectorGuardReg(
1372         getCodeGenOpts().StackProtectorGuardReg);
1373   if (!getCodeGenOpts().StackProtectorGuardSymbol.empty())
1374     getModule().setStackProtectorGuardSymbol(
1375         getCodeGenOpts().StackProtectorGuardSymbol);
1376   if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX)
1377     getModule().setStackProtectorGuardOffset(
1378         getCodeGenOpts().StackProtectorGuardOffset);
1379   if (getCodeGenOpts().StackAlignment)
1380     getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment);
1381   if (getCodeGenOpts().SkipRaxSetup)
1382     getModule().addModuleFlag(llvm::Module::Override, "SkipRaxSetup", 1);
1383   if (getLangOpts().RegCall4)
1384     getModule().addModuleFlag(llvm::Module::Override, "RegCallv4", 1);
1385 
1386   if (getContext().getTargetInfo().getMaxTLSAlign())
1387     getModule().addModuleFlag(llvm::Module::Error, "MaxTLSAlign",
1388                               getContext().getTargetInfo().getMaxTLSAlign());
1389 
1390   getTargetCodeGenInfo().emitTargetGlobals(*this);
1391 
1392   getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames);
1393 
1394   EmitBackendOptionsMetadata(getCodeGenOpts());
1395 
1396   // If there is device offloading code embed it in the host now.
1397   EmbedObject(&getModule(), CodeGenOpts, getDiags());
1398 
1399   // Set visibility from DLL storage class
1400   // We do this at the end of LLVM IR generation; after any operation
1401   // that might affect the DLL storage class or the visibility, and
1402   // before anything that might act on these.
1403   setVisibilityFromDLLStorageClass(LangOpts, getModule());
1404 
1405   // Check the tail call symbols are truly undefined.
1406   if (getTriple().isPPC() && !MustTailCallUndefinedGlobals.empty()) {
1407     for (auto &I : MustTailCallUndefinedGlobals) {
1408       if (!I.first->isDefined())
1409         getDiags().Report(I.second, diag::err_ppc_impossible_musttail) << 2;
1410       else {
1411         StringRef MangledName = getMangledName(GlobalDecl(I.first));
1412         llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1413         if (!Entry || Entry->isWeakForLinker() ||
1414             Entry->isDeclarationForLinker())
1415           getDiags().Report(I.second, diag::err_ppc_impossible_musttail) << 2;
1416       }
1417     }
1418   }
1419 }
1420 
1421 void CodeGenModule::EmitOpenCLMetadata() {
1422   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
1423   // opencl.ocl.version named metadata node.
1424   // C++ for OpenCL has a distinct mapping for versions compatible with OpenCL.
1425   auto CLVersion = LangOpts.getOpenCLCompatibleVersion();
1426 
1427   auto EmitVersion = [this](StringRef MDName, int Version) {
1428     llvm::Metadata *OCLVerElts[] = {
1429         llvm::ConstantAsMetadata::get(
1430             llvm::ConstantInt::get(Int32Ty, Version / 100)),
1431         llvm::ConstantAsMetadata::get(
1432             llvm::ConstantInt::get(Int32Ty, (Version % 100) / 10))};
1433     llvm::NamedMDNode *OCLVerMD = TheModule.getOrInsertNamedMetadata(MDName);
1434     llvm::LLVMContext &Ctx = TheModule.getContext();
1435     OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
1436   };
1437 
1438   EmitVersion("opencl.ocl.version", CLVersion);
1439   if (LangOpts.OpenCLCPlusPlus) {
1440     // In addition to the OpenCL compatible version, emit the C++ version.
1441     EmitVersion("opencl.cxx.version", LangOpts.OpenCLCPlusPlusVersion);
1442   }
1443 }
1444 
1445 void CodeGenModule::EmitBackendOptionsMetadata(
1446     const CodeGenOptions &CodeGenOpts) {
1447   if (getTriple().isRISCV()) {
1448     getModule().addModuleFlag(llvm::Module::Min, "SmallDataLimit",
1449                               CodeGenOpts.SmallDataLimit);
1450   }
1451 }
1452 
1453 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
1454   // Make sure that this type is translated.
1455   Types.UpdateCompletedType(TD);
1456 }
1457 
1458 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
1459   // Make sure that this type is translated.
1460   Types.RefreshTypeCacheForClass(RD);
1461 }
1462 
1463 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
1464   if (!TBAA)
1465     return nullptr;
1466   return TBAA->getTypeInfo(QTy);
1467 }
1468 
1469 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
1470   if (!TBAA)
1471     return TBAAAccessInfo();
1472   if (getLangOpts().CUDAIsDevice) {
1473     // As CUDA builtin surface/texture types are replaced, skip generating TBAA
1474     // access info.
1475     if (AccessType->isCUDADeviceBuiltinSurfaceType()) {
1476       if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() !=
1477           nullptr)
1478         return TBAAAccessInfo();
1479     } else if (AccessType->isCUDADeviceBuiltinTextureType()) {
1480       if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() !=
1481           nullptr)
1482         return TBAAAccessInfo();
1483     }
1484   }
1485   return TBAA->getAccessInfo(AccessType);
1486 }
1487 
1488 TBAAAccessInfo
1489 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
1490   if (!TBAA)
1491     return TBAAAccessInfo();
1492   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
1493 }
1494 
1495 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
1496   if (!TBAA)
1497     return nullptr;
1498   return TBAA->getTBAAStructInfo(QTy);
1499 }
1500 
1501 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
1502   if (!TBAA)
1503     return nullptr;
1504   return TBAA->getBaseTypeInfo(QTy);
1505 }
1506 
1507 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
1508   if (!TBAA)
1509     return nullptr;
1510   return TBAA->getAccessTagInfo(Info);
1511 }
1512 
1513 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
1514                                                    TBAAAccessInfo TargetInfo) {
1515   if (!TBAA)
1516     return TBAAAccessInfo();
1517   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
1518 }
1519 
1520 TBAAAccessInfo
1521 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
1522                                                    TBAAAccessInfo InfoB) {
1523   if (!TBAA)
1524     return TBAAAccessInfo();
1525   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
1526 }
1527 
1528 TBAAAccessInfo
1529 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
1530                                               TBAAAccessInfo SrcInfo) {
1531   if (!TBAA)
1532     return TBAAAccessInfo();
1533   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
1534 }
1535 
1536 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
1537                                                 TBAAAccessInfo TBAAInfo) {
1538   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
1539     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
1540 }
1541 
1542 void CodeGenModule::DecorateInstructionWithInvariantGroup(
1543     llvm::Instruction *I, const CXXRecordDecl *RD) {
1544   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
1545                  llvm::MDNode::get(getLLVMContext(), {}));
1546 }
1547 
1548 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
1549   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
1550   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
1551 }
1552 
1553 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1554 /// specified stmt yet.
1555 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
1556   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1557                                                "cannot compile this %0 yet");
1558   std::string Msg = Type;
1559   getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
1560       << Msg << S->getSourceRange();
1561 }
1562 
1563 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1564 /// specified decl yet.
1565 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
1566   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1567                                                "cannot compile this %0 yet");
1568   std::string Msg = Type;
1569   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
1570 }
1571 
1572 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
1573   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
1574 }
1575 
1576 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
1577                                         const NamedDecl *D) const {
1578   // Internal definitions always have default visibility.
1579   if (GV->hasLocalLinkage()) {
1580     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1581     return;
1582   }
1583   if (!D)
1584     return;
1585 
1586   // Set visibility for definitions, and for declarations if requested globally
1587   // or set explicitly.
1588   LinkageInfo LV = D->getLinkageAndVisibility();
1589 
1590   // OpenMP declare target variables must be visible to the host so they can
1591   // be registered. We require protected visibility unless the variable has
1592   // the DT_nohost modifier and does not need to be registered.
1593   if (Context.getLangOpts().OpenMP &&
1594       Context.getLangOpts().OpenMPIsTargetDevice && isa<VarDecl>(D) &&
1595       D->hasAttr<OMPDeclareTargetDeclAttr>() &&
1596       D->getAttr<OMPDeclareTargetDeclAttr>()->getDevType() !=
1597           OMPDeclareTargetDeclAttr::DT_NoHost &&
1598       LV.getVisibility() == HiddenVisibility) {
1599     GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
1600     return;
1601   }
1602 
1603   if (GV->hasDLLExportStorageClass() || GV->hasDLLImportStorageClass()) {
1604     // Reject incompatible dlllstorage and visibility annotations.
1605     if (!LV.isVisibilityExplicit())
1606       return;
1607     if (GV->hasDLLExportStorageClass()) {
1608       if (LV.getVisibility() == HiddenVisibility)
1609         getDiags().Report(D->getLocation(),
1610                           diag::err_hidden_visibility_dllexport);
1611     } else if (LV.getVisibility() != DefaultVisibility) {
1612       getDiags().Report(D->getLocation(),
1613                         diag::err_non_default_visibility_dllimport);
1614     }
1615     return;
1616   }
1617 
1618   if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
1619       !GV->isDeclarationForLinker())
1620     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
1621 }
1622 
1623 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
1624                                  llvm::GlobalValue *GV) {
1625   if (GV->hasLocalLinkage())
1626     return true;
1627 
1628   if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
1629     return true;
1630 
1631   // DLLImport explicitly marks the GV as external.
1632   if (GV->hasDLLImportStorageClass())
1633     return false;
1634 
1635   const llvm::Triple &TT = CGM.getTriple();
1636   const auto &CGOpts = CGM.getCodeGenOpts();
1637   if (TT.isWindowsGNUEnvironment()) {
1638     // In MinGW, variables without DLLImport can still be automatically
1639     // imported from a DLL by the linker; don't mark variables that
1640     // potentially could come from another DLL as DSO local.
1641 
1642     // With EmulatedTLS, TLS variables can be autoimported from other DLLs
1643     // (and this actually happens in the public interface of libstdc++), so
1644     // such variables can't be marked as DSO local. (Native TLS variables
1645     // can't be dllimported at all, though.)
1646     if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
1647         (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS) &&
1648         CGOpts.AutoImport)
1649       return false;
1650   }
1651 
1652   // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
1653   // remain unresolved in the link, they can be resolved to zero, which is
1654   // outside the current DSO.
1655   if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
1656     return false;
1657 
1658   // Every other GV is local on COFF.
1659   // Make an exception for windows OS in the triple: Some firmware builds use
1660   // *-win32-macho triples. This (accidentally?) produced windows relocations
1661   // without GOT tables in older clang versions; Keep this behaviour.
1662   // FIXME: even thread local variables?
1663   if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
1664     return true;
1665 
1666   // Only handle COFF and ELF for now.
1667   if (!TT.isOSBinFormatELF())
1668     return false;
1669 
1670   // If this is not an executable, don't assume anything is local.
1671   llvm::Reloc::Model RM = CGOpts.RelocationModel;
1672   const auto &LOpts = CGM.getLangOpts();
1673   if (RM != llvm::Reloc::Static && !LOpts.PIE) {
1674     // On ELF, if -fno-semantic-interposition is specified and the target
1675     // supports local aliases, there will be neither CC1
1676     // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set
1677     // dso_local on the function if using a local alias is preferable (can avoid
1678     // PLT indirection).
1679     if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias()))
1680       return false;
1681     return !(CGM.getLangOpts().SemanticInterposition ||
1682              CGM.getLangOpts().HalfNoSemanticInterposition);
1683   }
1684 
1685   // A definition cannot be preempted from an executable.
1686   if (!GV->isDeclarationForLinker())
1687     return true;
1688 
1689   // Most PIC code sequences that assume that a symbol is local cannot produce a
1690   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
1691   // depended, it seems worth it to handle it here.
1692   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
1693     return false;
1694 
1695   // PowerPC64 prefers TOC indirection to avoid copy relocations.
1696   if (TT.isPPC64())
1697     return false;
1698 
1699   if (CGOpts.DirectAccessExternalData) {
1700     // If -fdirect-access-external-data (default for -fno-pic), set dso_local
1701     // for non-thread-local variables. If the symbol is not defined in the
1702     // executable, a copy relocation will be needed at link time. dso_local is
1703     // excluded for thread-local variables because they generally don't support
1704     // copy relocations.
1705     if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
1706       if (!Var->isThreadLocal())
1707         return true;
1708 
1709     // -fno-pic sets dso_local on a function declaration to allow direct
1710     // accesses when taking its address (similar to a data symbol). If the
1711     // function is not defined in the executable, a canonical PLT entry will be
1712     // needed at link time. -fno-direct-access-external-data can avoid the
1713     // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as
1714     // it could just cause trouble without providing perceptible benefits.
1715     if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
1716       return true;
1717   }
1718 
1719   // If we can use copy relocations we can assume it is local.
1720 
1721   // Otherwise don't assume it is local.
1722   return false;
1723 }
1724 
1725 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
1726   GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
1727 }
1728 
1729 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1730                                           GlobalDecl GD) const {
1731   const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
1732   // C++ destructors have a few C++ ABI specific special cases.
1733   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
1734     getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
1735     return;
1736   }
1737   setDLLImportDLLExport(GV, D);
1738 }
1739 
1740 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1741                                           const NamedDecl *D) const {
1742   if (D && D->isExternallyVisible()) {
1743     if (D->hasAttr<DLLImportAttr>())
1744       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
1745     else if ((D->hasAttr<DLLExportAttr>() ||
1746               shouldMapVisibilityToDLLExport(D)) &&
1747              !GV->isDeclarationForLinker())
1748       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
1749   }
1750 }
1751 
1752 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1753                                     GlobalDecl GD) const {
1754   setDLLImportDLLExport(GV, GD);
1755   setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl()));
1756 }
1757 
1758 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1759                                     const NamedDecl *D) const {
1760   setDLLImportDLLExport(GV, D);
1761   setGVPropertiesAux(GV, D);
1762 }
1763 
1764 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV,
1765                                        const NamedDecl *D) const {
1766   setGlobalVisibility(GV, D);
1767   setDSOLocal(GV);
1768   GV->setPartition(CodeGenOpts.SymbolPartition);
1769 }
1770 
1771 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
1772   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
1773       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
1774       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
1775       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
1776       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
1777 }
1778 
1779 llvm::GlobalVariable::ThreadLocalMode
1780 CodeGenModule::GetDefaultLLVMTLSModel() const {
1781   switch (CodeGenOpts.getDefaultTLSModel()) {
1782   case CodeGenOptions::GeneralDynamicTLSModel:
1783     return llvm::GlobalVariable::GeneralDynamicTLSModel;
1784   case CodeGenOptions::LocalDynamicTLSModel:
1785     return llvm::GlobalVariable::LocalDynamicTLSModel;
1786   case CodeGenOptions::InitialExecTLSModel:
1787     return llvm::GlobalVariable::InitialExecTLSModel;
1788   case CodeGenOptions::LocalExecTLSModel:
1789     return llvm::GlobalVariable::LocalExecTLSModel;
1790   }
1791   llvm_unreachable("Invalid TLS model!");
1792 }
1793 
1794 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
1795   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
1796 
1797   llvm::GlobalValue::ThreadLocalMode TLM;
1798   TLM = GetDefaultLLVMTLSModel();
1799 
1800   // Override the TLS model if it is explicitly specified.
1801   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
1802     TLM = GetLLVMTLSModel(Attr->getModel());
1803   }
1804 
1805   GV->setThreadLocalMode(TLM);
1806 }
1807 
1808 static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
1809                                           StringRef Name) {
1810   const TargetInfo &Target = CGM.getTarget();
1811   return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
1812 }
1813 
1814 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
1815                                                  const CPUSpecificAttr *Attr,
1816                                                  unsigned CPUIndex,
1817                                                  raw_ostream &Out) {
1818   // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
1819   // supported.
1820   if (Attr)
1821     Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
1822   else if (CGM.getTarget().supportsIFunc())
1823     Out << ".resolver";
1824 }
1825 
1826 // Returns true if GD is a function decl with internal linkage and
1827 // needs a unique suffix after the mangled name.
1828 static bool isUniqueInternalLinkageDecl(GlobalDecl GD,
1829                                         CodeGenModule &CGM) {
1830   const Decl *D = GD.getDecl();
1831   return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) &&
1832          (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage);
1833 }
1834 
1835 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD,
1836                                       const NamedDecl *ND,
1837                                       bool OmitMultiVersionMangling = false) {
1838   SmallString<256> Buffer;
1839   llvm::raw_svector_ostream Out(Buffer);
1840   MangleContext &MC = CGM.getCXXABI().getMangleContext();
1841   if (!CGM.getModuleNameHash().empty())
1842     MC.needsUniqueInternalLinkageNames();
1843   bool ShouldMangle = MC.shouldMangleDeclName(ND);
1844   if (ShouldMangle)
1845     MC.mangleName(GD.getWithDecl(ND), Out);
1846   else {
1847     IdentifierInfo *II = ND->getIdentifier();
1848     assert(II && "Attempt to mangle unnamed decl.");
1849     const auto *FD = dyn_cast<FunctionDecl>(ND);
1850 
1851     if (FD &&
1852         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
1853       if (CGM.getLangOpts().RegCall4)
1854         Out << "__regcall4__" << II->getName();
1855       else
1856         Out << "__regcall3__" << II->getName();
1857     } else if (FD && FD->hasAttr<CUDAGlobalAttr>() &&
1858                GD.getKernelReferenceKind() == KernelReferenceKind::Stub) {
1859       Out << "__device_stub__" << II->getName();
1860     } else {
1861       Out << II->getName();
1862     }
1863   }
1864 
1865   // Check if the module name hash should be appended for internal linkage
1866   // symbols.   This should come before multi-version target suffixes are
1867   // appended. This is to keep the name and module hash suffix of the
1868   // internal linkage function together.  The unique suffix should only be
1869   // added when name mangling is done to make sure that the final name can
1870   // be properly demangled.  For example, for C functions without prototypes,
1871   // name mangling is not done and the unique suffix should not be appeneded
1872   // then.
1873   if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) {
1874     assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames &&
1875            "Hash computed when not explicitly requested");
1876     Out << CGM.getModuleNameHash();
1877   }
1878 
1879   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1880     if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
1881       switch (FD->getMultiVersionKind()) {
1882       case MultiVersionKind::CPUDispatch:
1883       case MultiVersionKind::CPUSpecific:
1884         AppendCPUSpecificCPUDispatchMangling(CGM,
1885                                              FD->getAttr<CPUSpecificAttr>(),
1886                                              GD.getMultiVersionIndex(), Out);
1887         break;
1888       case MultiVersionKind::Target: {
1889         auto *Attr = FD->getAttr<TargetAttr>();
1890         assert(Attr && "Expected TargetAttr to be present "
1891                        "for attribute mangling");
1892         const ABIInfo &Info = CGM.getTargetCodeGenInfo().getABIInfo();
1893         Info.appendAttributeMangling(Attr, Out);
1894         break;
1895       }
1896       case MultiVersionKind::TargetVersion: {
1897         auto *Attr = FD->getAttr<TargetVersionAttr>();
1898         assert(Attr && "Expected TargetVersionAttr to be present "
1899                        "for attribute mangling");
1900         const ABIInfo &Info = CGM.getTargetCodeGenInfo().getABIInfo();
1901         Info.appendAttributeMangling(Attr, Out);
1902         break;
1903       }
1904       case MultiVersionKind::TargetClones: {
1905         auto *Attr = FD->getAttr<TargetClonesAttr>();
1906         assert(Attr && "Expected TargetClonesAttr to be present "
1907                        "for attribute mangling");
1908         unsigned Index = GD.getMultiVersionIndex();
1909         const ABIInfo &Info = CGM.getTargetCodeGenInfo().getABIInfo();
1910         Info.appendAttributeMangling(Attr, Index, Out);
1911         break;
1912       }
1913       case MultiVersionKind::None:
1914         llvm_unreachable("None multiversion type isn't valid here");
1915       }
1916     }
1917 
1918   // Make unique name for device side static file-scope variable for HIP.
1919   if (CGM.getContext().shouldExternalize(ND) &&
1920       CGM.getLangOpts().GPURelocatableDeviceCode &&
1921       CGM.getLangOpts().CUDAIsDevice)
1922     CGM.printPostfixForExternalizedDecl(Out, ND);
1923 
1924   return std::string(Out.str());
1925 }
1926 
1927 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
1928                                             const FunctionDecl *FD,
1929                                             StringRef &CurName) {
1930   if (!FD->isMultiVersion())
1931     return;
1932 
1933   // Get the name of what this would be without the 'target' attribute.  This
1934   // allows us to lookup the version that was emitted when this wasn't a
1935   // multiversion function.
1936   std::string NonTargetName =
1937       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1938   GlobalDecl OtherGD;
1939   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1940     assert(OtherGD.getCanonicalDecl()
1941                .getDecl()
1942                ->getAsFunction()
1943                ->isMultiVersion() &&
1944            "Other GD should now be a multiversioned function");
1945     // OtherFD is the version of this function that was mangled BEFORE
1946     // becoming a MultiVersion function.  It potentially needs to be updated.
1947     const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1948                                       .getDecl()
1949                                       ->getAsFunction()
1950                                       ->getMostRecentDecl();
1951     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1952     // This is so that if the initial version was already the 'default'
1953     // version, we don't try to update it.
1954     if (OtherName != NonTargetName) {
1955       // Remove instead of erase, since others may have stored the StringRef
1956       // to this.
1957       const auto ExistingRecord = Manglings.find(NonTargetName);
1958       if (ExistingRecord != std::end(Manglings))
1959         Manglings.remove(&(*ExistingRecord));
1960       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1961       StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] =
1962           Result.first->first();
1963       // If this is the current decl is being created, make sure we update the name.
1964       if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl())
1965         CurName = OtherNameRef;
1966       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
1967         Entry->setName(OtherName);
1968     }
1969   }
1970 }
1971 
1972 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
1973   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
1974 
1975   // Some ABIs don't have constructor variants.  Make sure that base and
1976   // complete constructors get mangled the same.
1977   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
1978     if (!getTarget().getCXXABI().hasConstructorVariants()) {
1979       CXXCtorType OrigCtorType = GD.getCtorType();
1980       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
1981       if (OrigCtorType == Ctor_Base)
1982         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
1983     }
1984   }
1985 
1986   // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a
1987   // static device variable depends on whether the variable is referenced by
1988   // a host or device host function. Therefore the mangled name cannot be
1989   // cached.
1990   if (!LangOpts.CUDAIsDevice || !getContext().mayExternalize(GD.getDecl())) {
1991     auto FoundName = MangledDeclNames.find(CanonicalGD);
1992     if (FoundName != MangledDeclNames.end())
1993       return FoundName->second;
1994   }
1995 
1996   // Keep the first result in the case of a mangling collision.
1997   const auto *ND = cast<NamedDecl>(GD.getDecl());
1998   std::string MangledName = getMangledNameImpl(*this, GD, ND);
1999 
2000   // Ensure either we have different ABIs between host and device compilations,
2001   // says host compilation following MSVC ABI but device compilation follows
2002   // Itanium C++ ABI or, if they follow the same ABI, kernel names after
2003   // mangling should be the same after name stubbing. The later checking is
2004   // very important as the device kernel name being mangled in host-compilation
2005   // is used to resolve the device binaries to be executed. Inconsistent naming
2006   // result in undefined behavior. Even though we cannot check that naming
2007   // directly between host- and device-compilations, the host- and
2008   // device-mangling in host compilation could help catching certain ones.
2009   assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() ||
2010          getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice ||
2011          (getContext().getAuxTargetInfo() &&
2012           (getContext().getAuxTargetInfo()->getCXXABI() !=
2013            getContext().getTargetInfo().getCXXABI())) ||
2014          getCUDARuntime().getDeviceSideName(ND) ==
2015              getMangledNameImpl(
2016                  *this,
2017                  GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel),
2018                  ND));
2019 
2020   auto Result = Manglings.insert(std::make_pair(MangledName, GD));
2021   return MangledDeclNames[CanonicalGD] = Result.first->first();
2022 }
2023 
2024 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
2025                                              const BlockDecl *BD) {
2026   MangleContext &MangleCtx = getCXXABI().getMangleContext();
2027   const Decl *D = GD.getDecl();
2028 
2029   SmallString<256> Buffer;
2030   llvm::raw_svector_ostream Out(Buffer);
2031   if (!D)
2032     MangleCtx.mangleGlobalBlock(BD,
2033       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
2034   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
2035     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
2036   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
2037     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
2038   else
2039     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
2040 
2041   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
2042   return Result.first->first();
2043 }
2044 
2045 const GlobalDecl CodeGenModule::getMangledNameDecl(StringRef Name) {
2046   auto it = MangledDeclNames.begin();
2047   while (it != MangledDeclNames.end()) {
2048     if (it->second == Name)
2049       return it->first;
2050     it++;
2051   }
2052   return GlobalDecl();
2053 }
2054 
2055 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
2056   return getModule().getNamedValue(Name);
2057 }
2058 
2059 /// AddGlobalCtor - Add a function to the list that will be called before
2060 /// main() runs.
2061 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
2062                                   unsigned LexOrder,
2063                                   llvm::Constant *AssociatedData) {
2064   // FIXME: Type coercion of void()* types.
2065   GlobalCtors.push_back(Structor(Priority, LexOrder, Ctor, AssociatedData));
2066 }
2067 
2068 /// AddGlobalDtor - Add a function to the list that will be called
2069 /// when the module is unloaded.
2070 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority,
2071                                   bool IsDtorAttrFunc) {
2072   if (CodeGenOpts.RegisterGlobalDtorsWithAtExit &&
2073       (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) {
2074     DtorsUsingAtExit[Priority].push_back(Dtor);
2075     return;
2076   }
2077 
2078   // FIXME: Type coercion of void()* types.
2079   GlobalDtors.push_back(Structor(Priority, ~0U, Dtor, nullptr));
2080 }
2081 
2082 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
2083   if (Fns.empty()) return;
2084 
2085   // Ctor function type is void()*.
2086   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
2087   llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy,
2088       TheModule.getDataLayout().getProgramAddressSpace());
2089 
2090   // Get the type of a ctor entry, { i32, void ()*, i8* }.
2091   llvm::StructType *CtorStructTy = llvm::StructType::get(
2092       Int32Ty, CtorPFTy, VoidPtrTy);
2093 
2094   // Construct the constructor and destructor arrays.
2095   ConstantInitBuilder builder(*this);
2096   auto ctors = builder.beginArray(CtorStructTy);
2097   for (const auto &I : Fns) {
2098     auto ctor = ctors.beginStruct(CtorStructTy);
2099     ctor.addInt(Int32Ty, I.Priority);
2100     ctor.add(I.Initializer);
2101     if (I.AssociatedData)
2102       ctor.add(I.AssociatedData);
2103     else
2104       ctor.addNullPointer(VoidPtrTy);
2105     ctor.finishAndAddTo(ctors);
2106   }
2107 
2108   auto list =
2109     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
2110                                 /*constant*/ false,
2111                                 llvm::GlobalValue::AppendingLinkage);
2112 
2113   // The LTO linker doesn't seem to like it when we set an alignment
2114   // on appending variables.  Take it off as a workaround.
2115   list->setAlignment(std::nullopt);
2116 
2117   Fns.clear();
2118 }
2119 
2120 llvm::GlobalValue::LinkageTypes
2121 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
2122   const auto *D = cast<FunctionDecl>(GD.getDecl());
2123 
2124   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
2125 
2126   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
2127     return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
2128 
2129   return getLLVMLinkageForDeclarator(D, Linkage);
2130 }
2131 
2132 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
2133   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
2134   if (!MDS) return nullptr;
2135 
2136   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
2137 }
2138 
2139 llvm::ConstantInt *CodeGenModule::CreateKCFITypeId(QualType T) {
2140   if (auto *FnType = T->getAs<FunctionProtoType>())
2141     T = getContext().getFunctionType(
2142         FnType->getReturnType(), FnType->getParamTypes(),
2143         FnType->getExtProtoInfo().withExceptionSpec(EST_None));
2144 
2145   std::string OutName;
2146   llvm::raw_string_ostream Out(OutName);
2147   getCXXABI().getMangleContext().mangleCanonicalTypeName(
2148       T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers);
2149 
2150   if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers)
2151     Out << ".normalized";
2152 
2153   return llvm::ConstantInt::get(Int32Ty,
2154                                 static_cast<uint32_t>(llvm::xxHash64(OutName)));
2155 }
2156 
2157 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
2158                                               const CGFunctionInfo &Info,
2159                                               llvm::Function *F, bool IsThunk) {
2160   unsigned CallingConv;
2161   llvm::AttributeList PAL;
2162   ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv,
2163                          /*AttrOnCallSite=*/false, IsThunk);
2164   if (CallingConv == llvm::CallingConv::X86_VectorCall &&
2165       getTarget().getTriple().isWindowsArm64EC()) {
2166     SourceLocation Loc;
2167     if (const Decl *D = GD.getDecl())
2168       Loc = D->getLocation();
2169 
2170     Error(Loc, "__vectorcall calling convention is not currently supported");
2171   }
2172   F->setAttributes(PAL);
2173   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
2174 }
2175 
2176 static void removeImageAccessQualifier(std::string& TyName) {
2177   std::string ReadOnlyQual("__read_only");
2178   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
2179   if (ReadOnlyPos != std::string::npos)
2180     // "+ 1" for the space after access qualifier.
2181     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
2182   else {
2183     std::string WriteOnlyQual("__write_only");
2184     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
2185     if (WriteOnlyPos != std::string::npos)
2186       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
2187     else {
2188       std::string ReadWriteQual("__read_write");
2189       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
2190       if (ReadWritePos != std::string::npos)
2191         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
2192     }
2193   }
2194 }
2195 
2196 // Returns the address space id that should be produced to the
2197 // kernel_arg_addr_space metadata. This is always fixed to the ids
2198 // as specified in the SPIR 2.0 specification in order to differentiate
2199 // for example in clGetKernelArgInfo() implementation between the address
2200 // spaces with targets without unique mapping to the OpenCL address spaces
2201 // (basically all single AS CPUs).
2202 static unsigned ArgInfoAddressSpace(LangAS AS) {
2203   switch (AS) {
2204   case LangAS::opencl_global:
2205     return 1;
2206   case LangAS::opencl_constant:
2207     return 2;
2208   case LangAS::opencl_local:
2209     return 3;
2210   case LangAS::opencl_generic:
2211     return 4; // Not in SPIR 2.0 specs.
2212   case LangAS::opencl_global_device:
2213     return 5;
2214   case LangAS::opencl_global_host:
2215     return 6;
2216   default:
2217     return 0; // Assume private.
2218   }
2219 }
2220 
2221 void CodeGenModule::GenKernelArgMetadata(llvm::Function *Fn,
2222                                          const FunctionDecl *FD,
2223                                          CodeGenFunction *CGF) {
2224   assert(((FD && CGF) || (!FD && !CGF)) &&
2225          "Incorrect use - FD and CGF should either be both null or not!");
2226   // Create MDNodes that represent the kernel arg metadata.
2227   // Each MDNode is a list in the form of "key", N number of values which is
2228   // the same number of values as their are kernel arguments.
2229 
2230   const PrintingPolicy &Policy = Context.getPrintingPolicy();
2231 
2232   // MDNode for the kernel argument address space qualifiers.
2233   SmallVector<llvm::Metadata *, 8> addressQuals;
2234 
2235   // MDNode for the kernel argument access qualifiers (images only).
2236   SmallVector<llvm::Metadata *, 8> accessQuals;
2237 
2238   // MDNode for the kernel argument type names.
2239   SmallVector<llvm::Metadata *, 8> argTypeNames;
2240 
2241   // MDNode for the kernel argument base type names.
2242   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
2243 
2244   // MDNode for the kernel argument type qualifiers.
2245   SmallVector<llvm::Metadata *, 8> argTypeQuals;
2246 
2247   // MDNode for the kernel argument names.
2248   SmallVector<llvm::Metadata *, 8> argNames;
2249 
2250   if (FD && CGF)
2251     for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
2252       const ParmVarDecl *parm = FD->getParamDecl(i);
2253       // Get argument name.
2254       argNames.push_back(llvm::MDString::get(VMContext, parm->getName()));
2255 
2256       if (!getLangOpts().OpenCL)
2257         continue;
2258       QualType ty = parm->getType();
2259       std::string typeQuals;
2260 
2261       // Get image and pipe access qualifier:
2262       if (ty->isImageType() || ty->isPipeType()) {
2263         const Decl *PDecl = parm;
2264         if (const auto *TD = ty->getAs<TypedefType>())
2265           PDecl = TD->getDecl();
2266         const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
2267         if (A && A->isWriteOnly())
2268           accessQuals.push_back(llvm::MDString::get(VMContext, "write_only"));
2269         else if (A && A->isReadWrite())
2270           accessQuals.push_back(llvm::MDString::get(VMContext, "read_write"));
2271         else
2272           accessQuals.push_back(llvm::MDString::get(VMContext, "read_only"));
2273       } else
2274         accessQuals.push_back(llvm::MDString::get(VMContext, "none"));
2275 
2276       auto getTypeSpelling = [&](QualType Ty) {
2277         auto typeName = Ty.getUnqualifiedType().getAsString(Policy);
2278 
2279         if (Ty.isCanonical()) {
2280           StringRef typeNameRef = typeName;
2281           // Turn "unsigned type" to "utype"
2282           if (typeNameRef.consume_front("unsigned "))
2283             return std::string("u") + typeNameRef.str();
2284           if (typeNameRef.consume_front("signed "))
2285             return typeNameRef.str();
2286         }
2287 
2288         return typeName;
2289       };
2290 
2291       if (ty->isPointerType()) {
2292         QualType pointeeTy = ty->getPointeeType();
2293 
2294         // Get address qualifier.
2295         addressQuals.push_back(
2296             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(
2297                 ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
2298 
2299         // Get argument type name.
2300         std::string typeName = getTypeSpelling(pointeeTy) + "*";
2301         std::string baseTypeName =
2302             getTypeSpelling(pointeeTy.getCanonicalType()) + "*";
2303         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
2304         argBaseTypeNames.push_back(
2305             llvm::MDString::get(VMContext, baseTypeName));
2306 
2307         // Get argument type qualifiers:
2308         if (ty.isRestrictQualified())
2309           typeQuals = "restrict";
2310         if (pointeeTy.isConstQualified() ||
2311             (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
2312           typeQuals += typeQuals.empty() ? "const" : " const";
2313         if (pointeeTy.isVolatileQualified())
2314           typeQuals += typeQuals.empty() ? "volatile" : " volatile";
2315       } else {
2316         uint32_t AddrSpc = 0;
2317         bool isPipe = ty->isPipeType();
2318         if (ty->isImageType() || isPipe)
2319           AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
2320 
2321         addressQuals.push_back(
2322             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc)));
2323 
2324         // Get argument type name.
2325         ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty;
2326         std::string typeName = getTypeSpelling(ty);
2327         std::string baseTypeName = getTypeSpelling(ty.getCanonicalType());
2328 
2329         // Remove access qualifiers on images
2330         // (as they are inseparable from type in clang implementation,
2331         // but OpenCL spec provides a special query to get access qualifier
2332         // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
2333         if (ty->isImageType()) {
2334           removeImageAccessQualifier(typeName);
2335           removeImageAccessQualifier(baseTypeName);
2336         }
2337 
2338         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
2339         argBaseTypeNames.push_back(
2340             llvm::MDString::get(VMContext, baseTypeName));
2341 
2342         if (isPipe)
2343           typeQuals = "pipe";
2344       }
2345       argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals));
2346     }
2347 
2348   if (getLangOpts().OpenCL) {
2349     Fn->setMetadata("kernel_arg_addr_space",
2350                     llvm::MDNode::get(VMContext, addressQuals));
2351     Fn->setMetadata("kernel_arg_access_qual",
2352                     llvm::MDNode::get(VMContext, accessQuals));
2353     Fn->setMetadata("kernel_arg_type",
2354                     llvm::MDNode::get(VMContext, argTypeNames));
2355     Fn->setMetadata("kernel_arg_base_type",
2356                     llvm::MDNode::get(VMContext, argBaseTypeNames));
2357     Fn->setMetadata("kernel_arg_type_qual",
2358                     llvm::MDNode::get(VMContext, argTypeQuals));
2359   }
2360   if (getCodeGenOpts().EmitOpenCLArgMetadata ||
2361       getCodeGenOpts().HIPSaveKernelArgName)
2362     Fn->setMetadata("kernel_arg_name",
2363                     llvm::MDNode::get(VMContext, argNames));
2364 }
2365 
2366 /// Determines whether the language options require us to model
2367 /// unwind exceptions.  We treat -fexceptions as mandating this
2368 /// except under the fragile ObjC ABI with only ObjC exceptions
2369 /// enabled.  This means, for example, that C with -fexceptions
2370 /// enables this.
2371 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
2372   // If exceptions are completely disabled, obviously this is false.
2373   if (!LangOpts.Exceptions) return false;
2374 
2375   // If C++ exceptions are enabled, this is true.
2376   if (LangOpts.CXXExceptions) return true;
2377 
2378   // If ObjC exceptions are enabled, this depends on the ABI.
2379   if (LangOpts.ObjCExceptions) {
2380     return LangOpts.ObjCRuntime.hasUnwindExceptions();
2381   }
2382 
2383   return true;
2384 }
2385 
2386 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
2387                                                       const CXXMethodDecl *MD) {
2388   // Check that the type metadata can ever actually be used by a call.
2389   if (!CGM.getCodeGenOpts().LTOUnit ||
2390       !CGM.HasHiddenLTOVisibility(MD->getParent()))
2391     return false;
2392 
2393   // Only functions whose address can be taken with a member function pointer
2394   // need this sort of type metadata.
2395   return MD->isImplicitObjectMemberFunction() && !MD->isVirtual() &&
2396          !isa<CXXConstructorDecl, CXXDestructorDecl>(MD);
2397 }
2398 
2399 SmallVector<const CXXRecordDecl *, 0>
2400 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
2401   llvm::SetVector<const CXXRecordDecl *> MostBases;
2402 
2403   std::function<void (const CXXRecordDecl *)> CollectMostBases;
2404   CollectMostBases = [&](const CXXRecordDecl *RD) {
2405     if (RD->getNumBases() == 0)
2406       MostBases.insert(RD);
2407     for (const CXXBaseSpecifier &B : RD->bases())
2408       CollectMostBases(B.getType()->getAsCXXRecordDecl());
2409   };
2410   CollectMostBases(RD);
2411   return MostBases.takeVector();
2412 }
2413 
2414 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
2415                                                            llvm::Function *F) {
2416   llvm::AttrBuilder B(F->getContext());
2417 
2418   if ((!D || !D->hasAttr<NoUwtableAttr>()) && CodeGenOpts.UnwindTables)
2419     B.addUWTableAttr(llvm::UWTableKind(CodeGenOpts.UnwindTables));
2420 
2421   if (CodeGenOpts.StackClashProtector)
2422     B.addAttribute("probe-stack", "inline-asm");
2423 
2424   if (CodeGenOpts.StackProbeSize && CodeGenOpts.StackProbeSize != 4096)
2425     B.addAttribute("stack-probe-size",
2426                    std::to_string(CodeGenOpts.StackProbeSize));
2427 
2428   if (!hasUnwindExceptions(LangOpts))
2429     B.addAttribute(llvm::Attribute::NoUnwind);
2430 
2431   if (D && D->hasAttr<NoStackProtectorAttr>())
2432     ; // Do nothing.
2433   else if (D && D->hasAttr<StrictGuardStackCheckAttr>() &&
2434            isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPOn))
2435     B.addAttribute(llvm::Attribute::StackProtectStrong);
2436   else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPOn))
2437     B.addAttribute(llvm::Attribute::StackProtect);
2438   else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPStrong))
2439     B.addAttribute(llvm::Attribute::StackProtectStrong);
2440   else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPReq))
2441     B.addAttribute(llvm::Attribute::StackProtectReq);
2442 
2443   if (!D) {
2444     // If we don't have a declaration to control inlining, the function isn't
2445     // explicitly marked as alwaysinline for semantic reasons, and inlining is
2446     // disabled, mark the function as noinline.
2447     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
2448         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
2449       B.addAttribute(llvm::Attribute::NoInline);
2450 
2451     F->addFnAttrs(B);
2452     return;
2453   }
2454 
2455   // Handle SME attributes that apply to function definitions,
2456   // rather than to function prototypes.
2457   if (D->hasAttr<ArmLocallyStreamingAttr>())
2458     B.addAttribute("aarch64_pstate_sm_body");
2459 
2460   if (auto *Attr = D->getAttr<ArmNewAttr>()) {
2461     if (Attr->isNewZA())
2462       B.addAttribute("aarch64_new_za");
2463     if (Attr->isNewZT0())
2464       B.addAttribute("aarch64_new_zt0");
2465   }
2466 
2467   // Track whether we need to add the optnone LLVM attribute,
2468   // starting with the default for this optimization level.
2469   bool ShouldAddOptNone =
2470       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
2471   // We can't add optnone in the following cases, it won't pass the verifier.
2472   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
2473   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
2474 
2475   // Add optnone, but do so only if the function isn't always_inline.
2476   if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) &&
2477       !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2478     B.addAttribute(llvm::Attribute::OptimizeNone);
2479 
2480     // OptimizeNone implies noinline; we should not be inlining such functions.
2481     B.addAttribute(llvm::Attribute::NoInline);
2482 
2483     // We still need to handle naked functions even though optnone subsumes
2484     // much of their semantics.
2485     if (D->hasAttr<NakedAttr>())
2486       B.addAttribute(llvm::Attribute::Naked);
2487 
2488     // OptimizeNone wins over OptimizeForSize and MinSize.
2489     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
2490     F->removeFnAttr(llvm::Attribute::MinSize);
2491   } else if (D->hasAttr<NakedAttr>()) {
2492     // Naked implies noinline: we should not be inlining such functions.
2493     B.addAttribute(llvm::Attribute::Naked);
2494     B.addAttribute(llvm::Attribute::NoInline);
2495   } else if (D->hasAttr<NoDuplicateAttr>()) {
2496     B.addAttribute(llvm::Attribute::NoDuplicate);
2497   } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2498     // Add noinline if the function isn't always_inline.
2499     B.addAttribute(llvm::Attribute::NoInline);
2500   } else if (D->hasAttr<AlwaysInlineAttr>() &&
2501              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
2502     // (noinline wins over always_inline, and we can't specify both in IR)
2503     B.addAttribute(llvm::Attribute::AlwaysInline);
2504   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
2505     // If we're not inlining, then force everything that isn't always_inline to
2506     // carry an explicit noinline attribute.
2507     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
2508       B.addAttribute(llvm::Attribute::NoInline);
2509   } else {
2510     // Otherwise, propagate the inline hint attribute and potentially use its
2511     // absence to mark things as noinline.
2512     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
2513       // Search function and template pattern redeclarations for inline.
2514       auto CheckForInline = [](const FunctionDecl *FD) {
2515         auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
2516           return Redecl->isInlineSpecified();
2517         };
2518         if (any_of(FD->redecls(), CheckRedeclForInline))
2519           return true;
2520         const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
2521         if (!Pattern)
2522           return false;
2523         return any_of(Pattern->redecls(), CheckRedeclForInline);
2524       };
2525       if (CheckForInline(FD)) {
2526         B.addAttribute(llvm::Attribute::InlineHint);
2527       } else if (CodeGenOpts.getInlining() ==
2528                      CodeGenOptions::OnlyHintInlining &&
2529                  !FD->isInlined() &&
2530                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2531         B.addAttribute(llvm::Attribute::NoInline);
2532       }
2533     }
2534   }
2535 
2536   // Add other optimization related attributes if we are optimizing this
2537   // function.
2538   if (!D->hasAttr<OptimizeNoneAttr>()) {
2539     if (D->hasAttr<ColdAttr>()) {
2540       if (!ShouldAddOptNone)
2541         B.addAttribute(llvm::Attribute::OptimizeForSize);
2542       B.addAttribute(llvm::Attribute::Cold);
2543     }
2544     if (D->hasAttr<HotAttr>())
2545       B.addAttribute(llvm::Attribute::Hot);
2546     if (D->hasAttr<MinSizeAttr>())
2547       B.addAttribute(llvm::Attribute::MinSize);
2548   }
2549 
2550   F->addFnAttrs(B);
2551 
2552   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
2553   if (alignment)
2554     F->setAlignment(llvm::Align(alignment));
2555 
2556   if (!D->hasAttr<AlignedAttr>())
2557     if (LangOpts.FunctionAlignment)
2558       F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment));
2559 
2560   // Some C++ ABIs require 2-byte alignment for member functions, in order to
2561   // reserve a bit for differentiating between virtual and non-virtual member
2562   // functions. If the current target's C++ ABI requires this and this is a
2563   // member function, set its alignment accordingly.
2564   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
2565     if (isa<CXXMethodDecl>(D) && F->getPointerAlignment(getDataLayout()) < 2)
2566       F->setAlignment(std::max(llvm::Align(2), F->getAlign().valueOrOne()));
2567   }
2568 
2569   // In the cross-dso CFI mode with canonical jump tables, we want !type
2570   // attributes on definitions only.
2571   if (CodeGenOpts.SanitizeCfiCrossDso &&
2572       CodeGenOpts.SanitizeCfiCanonicalJumpTables) {
2573     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
2574       // Skip available_externally functions. They won't be codegen'ed in the
2575       // current module anyway.
2576       if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally)
2577         CreateFunctionTypeMetadataForIcall(FD, F);
2578     }
2579   }
2580 
2581   // Emit type metadata on member functions for member function pointer checks.
2582   // These are only ever necessary on definitions; we're guaranteed that the
2583   // definition will be present in the LTO unit as a result of LTO visibility.
2584   auto *MD = dyn_cast<CXXMethodDecl>(D);
2585   if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
2586     for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
2587       llvm::Metadata *Id =
2588           CreateMetadataIdentifierForType(Context.getMemberPointerType(
2589               MD->getType(), Context.getRecordType(Base).getTypePtr()));
2590       F->addTypeMetadata(0, Id);
2591     }
2592   }
2593 }
2594 
2595 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
2596   const Decl *D = GD.getDecl();
2597   if (isa_and_nonnull<NamedDecl>(D))
2598     setGVProperties(GV, GD);
2599   else
2600     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
2601 
2602   if (D && D->hasAttr<UsedAttr>())
2603     addUsedOrCompilerUsedGlobal(GV);
2604 
2605   if (const auto *VD = dyn_cast_if_present<VarDecl>(D);
2606       VD &&
2607       ((CodeGenOpts.KeepPersistentStorageVariables &&
2608         (VD->getStorageDuration() == SD_Static ||
2609          VD->getStorageDuration() == SD_Thread)) ||
2610        (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static &&
2611         VD->getType().isConstQualified())))
2612     addUsedOrCompilerUsedGlobal(GV);
2613 }
2614 
2615 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
2616                                                 llvm::AttrBuilder &Attrs,
2617                                                 bool SetTargetFeatures) {
2618   // Add target-cpu and target-features attributes to functions. If
2619   // we have a decl for the function and it has a target attribute then
2620   // parse that and add it to the feature set.
2621   StringRef TargetCPU = getTarget().getTargetOpts().CPU;
2622   StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU;
2623   std::vector<std::string> Features;
2624   const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
2625   FD = FD ? FD->getMostRecentDecl() : FD;
2626   const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
2627   const auto *TV = FD ? FD->getAttr<TargetVersionAttr>() : nullptr;
2628   assert((!TD || !TV) && "both target_version and target specified");
2629   const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
2630   const auto *TC = FD ? FD->getAttr<TargetClonesAttr>() : nullptr;
2631   bool AddedAttr = false;
2632   if (TD || TV || SD || TC) {
2633     llvm::StringMap<bool> FeatureMap;
2634     getContext().getFunctionFeatureMap(FeatureMap, GD);
2635 
2636     // Produce the canonical string for this set of features.
2637     for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
2638       Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
2639 
2640     // Now add the target-cpu and target-features to the function.
2641     // While we populated the feature map above, we still need to
2642     // get and parse the target attribute so we can get the cpu for
2643     // the function.
2644     if (TD) {
2645       ParsedTargetAttr ParsedAttr =
2646           Target.parseTargetAttr(TD->getFeaturesStr());
2647       if (!ParsedAttr.CPU.empty() &&
2648           getTarget().isValidCPUName(ParsedAttr.CPU)) {
2649         TargetCPU = ParsedAttr.CPU;
2650         TuneCPU = ""; // Clear the tune CPU.
2651       }
2652       if (!ParsedAttr.Tune.empty() &&
2653           getTarget().isValidCPUName(ParsedAttr.Tune))
2654         TuneCPU = ParsedAttr.Tune;
2655     }
2656 
2657     if (SD) {
2658       // Apply the given CPU name as the 'tune-cpu' so that the optimizer can
2659       // favor this processor.
2660       TuneCPU = SD->getCPUName(GD.getMultiVersionIndex())->getName();
2661     }
2662   } else {
2663     // Otherwise just add the existing target cpu and target features to the
2664     // function.
2665     Features = getTarget().getTargetOpts().Features;
2666   }
2667 
2668   if (!TargetCPU.empty()) {
2669     Attrs.addAttribute("target-cpu", TargetCPU);
2670     AddedAttr = true;
2671   }
2672   if (!TuneCPU.empty()) {
2673     Attrs.addAttribute("tune-cpu", TuneCPU);
2674     AddedAttr = true;
2675   }
2676   if (!Features.empty() && SetTargetFeatures) {
2677     llvm::erase_if(Features, [&](const std::string& F) {
2678        return getTarget().isReadOnlyFeature(F.substr(1));
2679     });
2680     llvm::sort(Features);
2681     Attrs.addAttribute("target-features", llvm::join(Features, ","));
2682     AddedAttr = true;
2683   }
2684 
2685   return AddedAttr;
2686 }
2687 
2688 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
2689                                           llvm::GlobalObject *GO) {
2690   const Decl *D = GD.getDecl();
2691   SetCommonAttributes(GD, GO);
2692 
2693   if (D) {
2694     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
2695       if (D->hasAttr<RetainAttr>())
2696         addUsedGlobal(GV);
2697       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
2698         GV->addAttribute("bss-section", SA->getName());
2699       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
2700         GV->addAttribute("data-section", SA->getName());
2701       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
2702         GV->addAttribute("rodata-section", SA->getName());
2703       if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>())
2704         GV->addAttribute("relro-section", SA->getName());
2705     }
2706 
2707     if (auto *F = dyn_cast<llvm::Function>(GO)) {
2708       if (D->hasAttr<RetainAttr>())
2709         addUsedGlobal(F);
2710       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
2711         if (!D->getAttr<SectionAttr>())
2712           F->setSection(SA->getName());
2713 
2714       llvm::AttrBuilder Attrs(F->getContext());
2715       if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
2716         // We know that GetCPUAndFeaturesAttributes will always have the
2717         // newest set, since it has the newest possible FunctionDecl, so the
2718         // new ones should replace the old.
2719         llvm::AttributeMask RemoveAttrs;
2720         RemoveAttrs.addAttribute("target-cpu");
2721         RemoveAttrs.addAttribute("target-features");
2722         RemoveAttrs.addAttribute("tune-cpu");
2723         F->removeFnAttrs(RemoveAttrs);
2724         F->addFnAttrs(Attrs);
2725       }
2726     }
2727 
2728     if (const auto *CSA = D->getAttr<CodeSegAttr>())
2729       GO->setSection(CSA->getName());
2730     else if (const auto *SA = D->getAttr<SectionAttr>())
2731       GO->setSection(SA->getName());
2732   }
2733 
2734   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
2735 }
2736 
2737 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
2738                                                   llvm::Function *F,
2739                                                   const CGFunctionInfo &FI) {
2740   const Decl *D = GD.getDecl();
2741   SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false);
2742   SetLLVMFunctionAttributesForDefinition(D, F);
2743 
2744   F->setLinkage(llvm::Function::InternalLinkage);
2745 
2746   setNonAliasAttributes(GD, F);
2747 }
2748 
2749 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
2750   // Set linkage and visibility in case we never see a definition.
2751   LinkageInfo LV = ND->getLinkageAndVisibility();
2752   // Don't set internal linkage on declarations.
2753   // "extern_weak" is overloaded in LLVM; we probably should have
2754   // separate linkage types for this.
2755   if (isExternallyVisible(LV.getLinkage()) &&
2756       (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
2757     GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
2758 }
2759 
2760 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
2761                                                        llvm::Function *F) {
2762   // Only if we are checking indirect calls.
2763   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
2764     return;
2765 
2766   // Non-static class methods are handled via vtable or member function pointer
2767   // checks elsewhere.
2768   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
2769     return;
2770 
2771   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
2772   F->addTypeMetadata(0, MD);
2773   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
2774 
2775   // Emit a hash-based bit set entry for cross-DSO calls.
2776   if (CodeGenOpts.SanitizeCfiCrossDso)
2777     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
2778       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
2779 }
2780 
2781 void CodeGenModule::setKCFIType(const FunctionDecl *FD, llvm::Function *F) {
2782   llvm::LLVMContext &Ctx = F->getContext();
2783   llvm::MDBuilder MDB(Ctx);
2784   F->setMetadata(llvm::LLVMContext::MD_kcfi_type,
2785                  llvm::MDNode::get(
2786                      Ctx, MDB.createConstant(CreateKCFITypeId(FD->getType()))));
2787 }
2788 
2789 static bool allowKCFIIdentifier(StringRef Name) {
2790   // KCFI type identifier constants are only necessary for external assembly
2791   // functions, which means it's safe to skip unusual names. Subset of
2792   // MCAsmInfo::isAcceptableChar() and MCAsmInfoXCOFF::isAcceptableChar().
2793   return llvm::all_of(Name, [](const char &C) {
2794     return llvm::isAlnum(C) || C == '_' || C == '.';
2795   });
2796 }
2797 
2798 void CodeGenModule::finalizeKCFITypes() {
2799   llvm::Module &M = getModule();
2800   for (auto &F : M.functions()) {
2801     // Remove KCFI type metadata from non-address-taken local functions.
2802     bool AddressTaken = F.hasAddressTaken();
2803     if (!AddressTaken && F.hasLocalLinkage())
2804       F.eraseMetadata(llvm::LLVMContext::MD_kcfi_type);
2805 
2806     // Generate a constant with the expected KCFI type identifier for all
2807     // address-taken function declarations to support annotating indirectly
2808     // called assembly functions.
2809     if (!AddressTaken || !F.isDeclaration())
2810       continue;
2811 
2812     const llvm::ConstantInt *Type;
2813     if (const llvm::MDNode *MD = F.getMetadata(llvm::LLVMContext::MD_kcfi_type))
2814       Type = llvm::mdconst::extract<llvm::ConstantInt>(MD->getOperand(0));
2815     else
2816       continue;
2817 
2818     StringRef Name = F.getName();
2819     if (!allowKCFIIdentifier(Name))
2820       continue;
2821 
2822     std::string Asm = (".weak __kcfi_typeid_" + Name + "\n.set __kcfi_typeid_" +
2823                        Name + ", " + Twine(Type->getZExtValue()) + "\n")
2824                           .str();
2825     M.appendModuleInlineAsm(Asm);
2826   }
2827 }
2828 
2829 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
2830                                           bool IsIncompleteFunction,
2831                                           bool IsThunk) {
2832 
2833   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
2834     // If this is an intrinsic function, set the function's attributes
2835     // to the intrinsic's attributes.
2836     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
2837     return;
2838   }
2839 
2840   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2841 
2842   if (!IsIncompleteFunction)
2843     SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F,
2844                               IsThunk);
2845 
2846   // Add the Returned attribute for "this", except for iOS 5 and earlier
2847   // where substantial code, including the libstdc++ dylib, was compiled with
2848   // GCC and does not actually return "this".
2849   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
2850       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
2851     assert(!F->arg_empty() &&
2852            F->arg_begin()->getType()
2853              ->canLosslesslyBitCastTo(F->getReturnType()) &&
2854            "unexpected this return");
2855     F->addParamAttr(0, llvm::Attribute::Returned);
2856   }
2857 
2858   // Only a few attributes are set on declarations; these may later be
2859   // overridden by a definition.
2860 
2861   setLinkageForGV(F, FD);
2862   setGVProperties(F, FD);
2863 
2864   // Setup target-specific attributes.
2865   if (!IsIncompleteFunction && F->isDeclaration())
2866     getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
2867 
2868   if (const auto *CSA = FD->getAttr<CodeSegAttr>())
2869     F->setSection(CSA->getName());
2870   else if (const auto *SA = FD->getAttr<SectionAttr>())
2871      F->setSection(SA->getName());
2872 
2873   if (const auto *EA = FD->getAttr<ErrorAttr>()) {
2874     if (EA->isError())
2875       F->addFnAttr("dontcall-error", EA->getUserDiagnostic());
2876     else if (EA->isWarning())
2877       F->addFnAttr("dontcall-warn", EA->getUserDiagnostic());
2878   }
2879 
2880   // If we plan on emitting this inline builtin, we can't treat it as a builtin.
2881   if (FD->isInlineBuiltinDeclaration()) {
2882     const FunctionDecl *FDBody;
2883     bool HasBody = FD->hasBody(FDBody);
2884     (void)HasBody;
2885     assert(HasBody && "Inline builtin declarations should always have an "
2886                       "available body!");
2887     if (shouldEmitFunction(FDBody))
2888       F->addFnAttr(llvm::Attribute::NoBuiltin);
2889   }
2890 
2891   if (FD->isReplaceableGlobalAllocationFunction()) {
2892     // A replaceable global allocation function does not act like a builtin by
2893     // default, only if it is invoked by a new-expression or delete-expression.
2894     F->addFnAttr(llvm::Attribute::NoBuiltin);
2895   }
2896 
2897   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
2898     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2899   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
2900     if (MD->isVirtual())
2901       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2902 
2903   // Don't emit entries for function declarations in the cross-DSO mode. This
2904   // is handled with better precision by the receiving DSO. But if jump tables
2905   // are non-canonical then we need type metadata in order to produce the local
2906   // jump table.
2907   if (!CodeGenOpts.SanitizeCfiCrossDso ||
2908       !CodeGenOpts.SanitizeCfiCanonicalJumpTables)
2909     CreateFunctionTypeMetadataForIcall(FD, F);
2910 
2911   if (LangOpts.Sanitize.has(SanitizerKind::KCFI))
2912     setKCFIType(FD, F);
2913 
2914   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
2915     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
2916 
2917   if (CodeGenOpts.InlineMaxStackSize != UINT_MAX)
2918     F->addFnAttr("inline-max-stacksize", llvm::utostr(CodeGenOpts.InlineMaxStackSize));
2919 
2920   if (const auto *CB = FD->getAttr<CallbackAttr>()) {
2921     // Annotate the callback behavior as metadata:
2922     //  - The callback callee (as argument number).
2923     //  - The callback payloads (as argument numbers).
2924     llvm::LLVMContext &Ctx = F->getContext();
2925     llvm::MDBuilder MDB(Ctx);
2926 
2927     // The payload indices are all but the first one in the encoding. The first
2928     // identifies the callback callee.
2929     int CalleeIdx = *CB->encoding_begin();
2930     ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
2931     F->addMetadata(llvm::LLVMContext::MD_callback,
2932                    *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
2933                                                CalleeIdx, PayloadIndices,
2934                                                /* VarArgsArePassed */ false)}));
2935   }
2936 }
2937 
2938 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
2939   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2940          "Only globals with definition can force usage.");
2941   LLVMUsed.emplace_back(GV);
2942 }
2943 
2944 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
2945   assert(!GV->isDeclaration() &&
2946          "Only globals with definition can force usage.");
2947   LLVMCompilerUsed.emplace_back(GV);
2948 }
2949 
2950 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) {
2951   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2952          "Only globals with definition can force usage.");
2953   if (getTriple().isOSBinFormatELF())
2954     LLVMCompilerUsed.emplace_back(GV);
2955   else
2956     LLVMUsed.emplace_back(GV);
2957 }
2958 
2959 static void emitUsed(CodeGenModule &CGM, StringRef Name,
2960                      std::vector<llvm::WeakTrackingVH> &List) {
2961   // Don't create llvm.used if there is no need.
2962   if (List.empty())
2963     return;
2964 
2965   // Convert List to what ConstantArray needs.
2966   SmallVector<llvm::Constant*, 8> UsedArray;
2967   UsedArray.resize(List.size());
2968   for (unsigned i = 0, e = List.size(); i != e; ++i) {
2969     UsedArray[i] =
2970         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
2971             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
2972   }
2973 
2974   if (UsedArray.empty())
2975     return;
2976   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
2977 
2978   auto *GV = new llvm::GlobalVariable(
2979       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
2980       llvm::ConstantArray::get(ATy, UsedArray), Name);
2981 
2982   GV->setSection("llvm.metadata");
2983 }
2984 
2985 void CodeGenModule::emitLLVMUsed() {
2986   emitUsed(*this, "llvm.used", LLVMUsed);
2987   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
2988 }
2989 
2990 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
2991   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
2992   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2993 }
2994 
2995 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
2996   llvm::SmallString<32> Opt;
2997   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
2998   if (Opt.empty())
2999     return;
3000   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
3001   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
3002 }
3003 
3004 void CodeGenModule::AddDependentLib(StringRef Lib) {
3005   auto &C = getLLVMContext();
3006   if (getTarget().getTriple().isOSBinFormatELF()) {
3007       ELFDependentLibraries.push_back(
3008         llvm::MDNode::get(C, llvm::MDString::get(C, Lib)));
3009     return;
3010   }
3011 
3012   llvm::SmallString<24> Opt;
3013   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
3014   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
3015   LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts));
3016 }
3017 
3018 /// Add link options implied by the given module, including modules
3019 /// it depends on, using a postorder walk.
3020 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
3021                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
3022                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
3023   // Import this module's parent.
3024   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
3025     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
3026   }
3027 
3028   // Import this module's dependencies.
3029   for (Module *Import : llvm::reverse(Mod->Imports)) {
3030     if (Visited.insert(Import).second)
3031       addLinkOptionsPostorder(CGM, Import, Metadata, Visited);
3032   }
3033 
3034   // Add linker options to link against the libraries/frameworks
3035   // described by this module.
3036   llvm::LLVMContext &Context = CGM.getLLVMContext();
3037   bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
3038 
3039   // For modules that use export_as for linking, use that module
3040   // name instead.
3041   if (Mod->UseExportAsModuleLinkName)
3042     return;
3043 
3044   for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) {
3045     // Link against a framework.  Frameworks are currently Darwin only, so we
3046     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
3047     if (LL.IsFramework) {
3048       llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"),
3049                                  llvm::MDString::get(Context, LL.Library)};
3050 
3051       Metadata.push_back(llvm::MDNode::get(Context, Args));
3052       continue;
3053     }
3054 
3055     // Link against a library.
3056     if (IsELF) {
3057       llvm::Metadata *Args[2] = {
3058           llvm::MDString::get(Context, "lib"),
3059           llvm::MDString::get(Context, LL.Library),
3060       };
3061       Metadata.push_back(llvm::MDNode::get(Context, Args));
3062     } else {
3063       llvm::SmallString<24> Opt;
3064       CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt);
3065       auto *OptString = llvm::MDString::get(Context, Opt);
3066       Metadata.push_back(llvm::MDNode::get(Context, OptString));
3067     }
3068   }
3069 }
3070 
3071 void CodeGenModule::EmitModuleInitializers(clang::Module *Primary) {
3072   assert(Primary->isNamedModuleUnit() &&
3073          "We should only emit module initializers for named modules.");
3074 
3075   // Emit the initializers in the order that sub-modules appear in the
3076   // source, first Global Module Fragments, if present.
3077   if (auto GMF = Primary->getGlobalModuleFragment()) {
3078     for (Decl *D : getContext().getModuleInitializers(GMF)) {
3079       if (isa<ImportDecl>(D))
3080         continue;
3081       assert(isa<VarDecl>(D) && "GMF initializer decl is not a var?");
3082       EmitTopLevelDecl(D);
3083     }
3084   }
3085   // Second any associated with the module, itself.
3086   for (Decl *D : getContext().getModuleInitializers(Primary)) {
3087     // Skip import decls, the inits for those are called explicitly.
3088     if (isa<ImportDecl>(D))
3089       continue;
3090     EmitTopLevelDecl(D);
3091   }
3092   // Third any associated with the Privat eMOdule Fragment, if present.
3093   if (auto PMF = Primary->getPrivateModuleFragment()) {
3094     for (Decl *D : getContext().getModuleInitializers(PMF)) {
3095       // Skip import decls, the inits for those are called explicitly.
3096       if (isa<ImportDecl>(D))
3097         continue;
3098       assert(isa<VarDecl>(D) && "PMF initializer decl is not a var?");
3099       EmitTopLevelDecl(D);
3100     }
3101   }
3102 }
3103 
3104 void CodeGenModule::EmitModuleLinkOptions() {
3105   // Collect the set of all of the modules we want to visit to emit link
3106   // options, which is essentially the imported modules and all of their
3107   // non-explicit child modules.
3108   llvm::SetVector<clang::Module *> LinkModules;
3109   llvm::SmallPtrSet<clang::Module *, 16> Visited;
3110   SmallVector<clang::Module *, 16> Stack;
3111 
3112   // Seed the stack with imported modules.
3113   for (Module *M : ImportedModules) {
3114     // Do not add any link flags when an implementation TU of a module imports
3115     // a header of that same module.
3116     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
3117         !getLangOpts().isCompilingModule())
3118       continue;
3119     if (Visited.insert(M).second)
3120       Stack.push_back(M);
3121   }
3122 
3123   // Find all of the modules to import, making a little effort to prune
3124   // non-leaf modules.
3125   while (!Stack.empty()) {
3126     clang::Module *Mod = Stack.pop_back_val();
3127 
3128     bool AnyChildren = false;
3129 
3130     // Visit the submodules of this module.
3131     for (const auto &SM : Mod->submodules()) {
3132       // Skip explicit children; they need to be explicitly imported to be
3133       // linked against.
3134       if (SM->IsExplicit)
3135         continue;
3136 
3137       if (Visited.insert(SM).second) {
3138         Stack.push_back(SM);
3139         AnyChildren = true;
3140       }
3141     }
3142 
3143     // We didn't find any children, so add this module to the list of
3144     // modules to link against.
3145     if (!AnyChildren) {
3146       LinkModules.insert(Mod);
3147     }
3148   }
3149 
3150   // Add link options for all of the imported modules in reverse topological
3151   // order.  We don't do anything to try to order import link flags with respect
3152   // to linker options inserted by things like #pragma comment().
3153   SmallVector<llvm::MDNode *, 16> MetadataArgs;
3154   Visited.clear();
3155   for (Module *M : LinkModules)
3156     if (Visited.insert(M).second)
3157       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
3158   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
3159   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
3160 
3161   // Add the linker options metadata flag.
3162   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
3163   for (auto *MD : LinkerOptionsMetadata)
3164     NMD->addOperand(MD);
3165 }
3166 
3167 void CodeGenModule::EmitDeferred() {
3168   // Emit deferred declare target declarations.
3169   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
3170     getOpenMPRuntime().emitDeferredTargetDecls();
3171 
3172   // Emit code for any potentially referenced deferred decls.  Since a
3173   // previously unused static decl may become used during the generation of code
3174   // for a static function, iterate until no changes are made.
3175 
3176   if (!DeferredVTables.empty()) {
3177     EmitDeferredVTables();
3178 
3179     // Emitting a vtable doesn't directly cause more vtables to
3180     // become deferred, although it can cause functions to be
3181     // emitted that then need those vtables.
3182     assert(DeferredVTables.empty());
3183   }
3184 
3185   // Emit CUDA/HIP static device variables referenced by host code only.
3186   // Note we should not clear CUDADeviceVarODRUsedByHost since it is still
3187   // needed for further handling.
3188   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice)
3189     llvm::append_range(DeferredDeclsToEmit,
3190                        getContext().CUDADeviceVarODRUsedByHost);
3191 
3192   // Stop if we're out of both deferred vtables and deferred declarations.
3193   if (DeferredDeclsToEmit.empty())
3194     return;
3195 
3196   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
3197   // work, it will not interfere with this.
3198   std::vector<GlobalDecl> CurDeclsToEmit;
3199   CurDeclsToEmit.swap(DeferredDeclsToEmit);
3200 
3201   for (GlobalDecl &D : CurDeclsToEmit) {
3202     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
3203     // to get GlobalValue with exactly the type we need, not something that
3204     // might had been created for another decl with the same mangled name but
3205     // different type.
3206     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
3207         GetAddrOfGlobal(D, ForDefinition));
3208 
3209     // In case of different address spaces, we may still get a cast, even with
3210     // IsForDefinition equal to true. Query mangled names table to get
3211     // GlobalValue.
3212     if (!GV)
3213       GV = GetGlobalValue(getMangledName(D));
3214 
3215     // Make sure GetGlobalValue returned non-null.
3216     assert(GV);
3217 
3218     // Check to see if we've already emitted this.  This is necessary
3219     // for a couple of reasons: first, decls can end up in the
3220     // deferred-decls queue multiple times, and second, decls can end
3221     // up with definitions in unusual ways (e.g. by an extern inline
3222     // function acquiring a strong function redefinition).  Just
3223     // ignore these cases.
3224     if (!GV->isDeclaration())
3225       continue;
3226 
3227     // If this is OpenMP, check if it is legal to emit this global normally.
3228     if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D))
3229       continue;
3230 
3231     // Otherwise, emit the definition and move on to the next one.
3232     EmitGlobalDefinition(D, GV);
3233 
3234     // If we found out that we need to emit more decls, do that recursively.
3235     // This has the advantage that the decls are emitted in a DFS and related
3236     // ones are close together, which is convenient for testing.
3237     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
3238       EmitDeferred();
3239       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
3240     }
3241   }
3242 }
3243 
3244 void CodeGenModule::EmitVTablesOpportunistically() {
3245   // Try to emit external vtables as available_externally if they have emitted
3246   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
3247   // is not allowed to create new references to things that need to be emitted
3248   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
3249 
3250   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
3251          && "Only emit opportunistic vtables with optimizations");
3252 
3253   for (const CXXRecordDecl *RD : OpportunisticVTables) {
3254     assert(getVTables().isVTableExternal(RD) &&
3255            "This queue should only contain external vtables");
3256     if (getCXXABI().canSpeculativelyEmitVTable(RD))
3257       VTables.GenerateClassData(RD);
3258   }
3259   OpportunisticVTables.clear();
3260 }
3261 
3262 void CodeGenModule::EmitGlobalAnnotations() {
3263   for (const auto& [MangledName, VD] : DeferredAnnotations) {
3264     llvm::GlobalValue *GV = GetGlobalValue(MangledName);
3265     if (GV)
3266       AddGlobalAnnotations(VD, GV);
3267   }
3268   DeferredAnnotations.clear();
3269 
3270   if (Annotations.empty())
3271     return;
3272 
3273   // Create a new global variable for the ConstantStruct in the Module.
3274   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
3275     Annotations[0]->getType(), Annotations.size()), Annotations);
3276   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
3277                                       llvm::GlobalValue::AppendingLinkage,
3278                                       Array, "llvm.global.annotations");
3279   gv->setSection(AnnotationSection);
3280 }
3281 
3282 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
3283   llvm::Constant *&AStr = AnnotationStrings[Str];
3284   if (AStr)
3285     return AStr;
3286 
3287   // Not found yet, create a new global.
3288   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
3289   auto *gv = new llvm::GlobalVariable(
3290       getModule(), s->getType(), true, llvm::GlobalValue::PrivateLinkage, s,
3291       ".str", nullptr, llvm::GlobalValue::NotThreadLocal,
3292       ConstGlobalsPtrTy->getAddressSpace());
3293   gv->setSection(AnnotationSection);
3294   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3295   AStr = gv;
3296   return gv;
3297 }
3298 
3299 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
3300   SourceManager &SM = getContext().getSourceManager();
3301   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
3302   if (PLoc.isValid())
3303     return EmitAnnotationString(PLoc.getFilename());
3304   return EmitAnnotationString(SM.getBufferName(Loc));
3305 }
3306 
3307 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
3308   SourceManager &SM = getContext().getSourceManager();
3309   PresumedLoc PLoc = SM.getPresumedLoc(L);
3310   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
3311     SM.getExpansionLineNumber(L);
3312   return llvm::ConstantInt::get(Int32Ty, LineNo);
3313 }
3314 
3315 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) {
3316   ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()};
3317   if (Exprs.empty())
3318     return llvm::ConstantPointerNull::get(ConstGlobalsPtrTy);
3319 
3320   llvm::FoldingSetNodeID ID;
3321   for (Expr *E : Exprs) {
3322     ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult());
3323   }
3324   llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()];
3325   if (Lookup)
3326     return Lookup;
3327 
3328   llvm::SmallVector<llvm::Constant *, 4> LLVMArgs;
3329   LLVMArgs.reserve(Exprs.size());
3330   ConstantEmitter ConstEmiter(*this);
3331   llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) {
3332     const auto *CE = cast<clang::ConstantExpr>(E);
3333     return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(),
3334                                     CE->getType());
3335   });
3336   auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs);
3337   auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true,
3338                                       llvm::GlobalValue::PrivateLinkage, Struct,
3339                                       ".args");
3340   GV->setSection(AnnotationSection);
3341   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3342 
3343   Lookup = GV;
3344   return GV;
3345 }
3346 
3347 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
3348                                                 const AnnotateAttr *AA,
3349                                                 SourceLocation L) {
3350   // Get the globals for file name, annotation, and the line number.
3351   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
3352                  *UnitGV = EmitAnnotationUnit(L),
3353                  *LineNoCst = EmitAnnotationLineNo(L),
3354                  *Args = EmitAnnotationArgs(AA);
3355 
3356   llvm::Constant *GVInGlobalsAS = GV;
3357   if (GV->getAddressSpace() !=
3358       getDataLayout().getDefaultGlobalsAddressSpace()) {
3359     GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast(
3360         GV,
3361         llvm::PointerType::get(
3362             GV->getContext(), getDataLayout().getDefaultGlobalsAddressSpace()));
3363   }
3364 
3365   // Create the ConstantStruct for the global annotation.
3366   llvm::Constant *Fields[] = {
3367       GVInGlobalsAS, AnnoGV, UnitGV, LineNoCst, Args,
3368   };
3369   return llvm::ConstantStruct::getAnon(Fields);
3370 }
3371 
3372 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
3373                                          llvm::GlobalValue *GV) {
3374   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
3375   // Get the struct elements for these annotations.
3376   for (const auto *I : D->specific_attrs<AnnotateAttr>())
3377     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
3378 }
3379 
3380 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn,
3381                                        SourceLocation Loc) const {
3382   const auto &NoSanitizeL = getContext().getNoSanitizeList();
3383   // NoSanitize by function name.
3384   if (NoSanitizeL.containsFunction(Kind, Fn->getName()))
3385     return true;
3386   // NoSanitize by location. Check "mainfile" prefix.
3387   auto &SM = Context.getSourceManager();
3388   FileEntryRef MainFile = *SM.getFileEntryRefForID(SM.getMainFileID());
3389   if (NoSanitizeL.containsMainFile(Kind, MainFile.getName()))
3390     return true;
3391 
3392   // Check "src" prefix.
3393   if (Loc.isValid())
3394     return NoSanitizeL.containsLocation(Kind, Loc);
3395   // If location is unknown, this may be a compiler-generated function. Assume
3396   // it's located in the main file.
3397   return NoSanitizeL.containsFile(Kind, MainFile.getName());
3398 }
3399 
3400 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind,
3401                                        llvm::GlobalVariable *GV,
3402                                        SourceLocation Loc, QualType Ty,
3403                                        StringRef Category) const {
3404   const auto &NoSanitizeL = getContext().getNoSanitizeList();
3405   if (NoSanitizeL.containsGlobal(Kind, GV->getName(), Category))
3406     return true;
3407   auto &SM = Context.getSourceManager();
3408   if (NoSanitizeL.containsMainFile(
3409           Kind, SM.getFileEntryRefForID(SM.getMainFileID())->getName(),
3410           Category))
3411     return true;
3412   if (NoSanitizeL.containsLocation(Kind, Loc, Category))
3413     return true;
3414 
3415   // Check global type.
3416   if (!Ty.isNull()) {
3417     // Drill down the array types: if global variable of a fixed type is
3418     // not sanitized, we also don't instrument arrays of them.
3419     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
3420       Ty = AT->getElementType();
3421     Ty = Ty.getCanonicalType().getUnqualifiedType();
3422     // Only record types (classes, structs etc.) are ignored.
3423     if (Ty->isRecordType()) {
3424       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
3425       if (NoSanitizeL.containsType(Kind, TypeStr, Category))
3426         return true;
3427     }
3428   }
3429   return false;
3430 }
3431 
3432 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
3433                                    StringRef Category) const {
3434   const auto &XRayFilter = getContext().getXRayFilter();
3435   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
3436   auto Attr = ImbueAttr::NONE;
3437   if (Loc.isValid())
3438     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
3439   if (Attr == ImbueAttr::NONE)
3440     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
3441   switch (Attr) {
3442   case ImbueAttr::NONE:
3443     return false;
3444   case ImbueAttr::ALWAYS:
3445     Fn->addFnAttr("function-instrument", "xray-always");
3446     break;
3447   case ImbueAttr::ALWAYS_ARG1:
3448     Fn->addFnAttr("function-instrument", "xray-always");
3449     Fn->addFnAttr("xray-log-args", "1");
3450     break;
3451   case ImbueAttr::NEVER:
3452     Fn->addFnAttr("function-instrument", "xray-never");
3453     break;
3454   }
3455   return true;
3456 }
3457 
3458 ProfileList::ExclusionType
3459 CodeGenModule::isFunctionBlockedByProfileList(llvm::Function *Fn,
3460                                               SourceLocation Loc) const {
3461   const auto &ProfileList = getContext().getProfileList();
3462   // If the profile list is empty, then instrument everything.
3463   if (ProfileList.isEmpty())
3464     return ProfileList::Allow;
3465   CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr();
3466   // First, check the function name.
3467   if (auto V = ProfileList.isFunctionExcluded(Fn->getName(), Kind))
3468     return *V;
3469   // Next, check the source location.
3470   if (Loc.isValid())
3471     if (auto V = ProfileList.isLocationExcluded(Loc, Kind))
3472       return *V;
3473   // If location is unknown, this may be a compiler-generated function. Assume
3474   // it's located in the main file.
3475   auto &SM = Context.getSourceManager();
3476   if (auto MainFile = SM.getFileEntryRefForID(SM.getMainFileID()))
3477     if (auto V = ProfileList.isFileExcluded(MainFile->getName(), Kind))
3478       return *V;
3479   return ProfileList.getDefault(Kind);
3480 }
3481 
3482 ProfileList::ExclusionType
3483 CodeGenModule::isFunctionBlockedFromProfileInstr(llvm::Function *Fn,
3484                                                  SourceLocation Loc) const {
3485   auto V = isFunctionBlockedByProfileList(Fn, Loc);
3486   if (V != ProfileList::Allow)
3487     return V;
3488 
3489   auto NumGroups = getCodeGenOpts().ProfileTotalFunctionGroups;
3490   if (NumGroups > 1) {
3491     auto Group = llvm::crc32(arrayRefFromStringRef(Fn->getName())) % NumGroups;
3492     if (Group != getCodeGenOpts().ProfileSelectedFunctionGroup)
3493       return ProfileList::Skip;
3494   }
3495   return ProfileList::Allow;
3496 }
3497 
3498 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
3499   // Never defer when EmitAllDecls is specified.
3500   if (LangOpts.EmitAllDecls)
3501     return true;
3502 
3503   const auto *VD = dyn_cast<VarDecl>(Global);
3504   if (VD &&
3505       ((CodeGenOpts.KeepPersistentStorageVariables &&
3506         (VD->getStorageDuration() == SD_Static ||
3507          VD->getStorageDuration() == SD_Thread)) ||
3508        (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static &&
3509         VD->getType().isConstQualified())))
3510     return true;
3511 
3512   return getContext().DeclMustBeEmitted(Global);
3513 }
3514 
3515 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
3516   // In OpenMP 5.0 variables and function may be marked as
3517   // device_type(host/nohost) and we should not emit them eagerly unless we sure
3518   // that they must be emitted on the host/device. To be sure we need to have
3519   // seen a declare target with an explicit mentioning of the function, we know
3520   // we have if the level of the declare target attribute is -1. Note that we
3521   // check somewhere else if we should emit this at all.
3522   if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) {
3523     std::optional<OMPDeclareTargetDeclAttr *> ActiveAttr =
3524         OMPDeclareTargetDeclAttr::getActiveAttr(Global);
3525     if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1)
3526       return false;
3527   }
3528 
3529   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
3530     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
3531       // Implicit template instantiations may change linkage if they are later
3532       // explicitly instantiated, so they should not be emitted eagerly.
3533       return false;
3534     // Defer until all versions have been semantically checked.
3535     if (FD->hasAttr<TargetVersionAttr>() && !FD->isMultiVersion())
3536       return false;
3537   }
3538   if (const auto *VD = dyn_cast<VarDecl>(Global)) {
3539     if (Context.getInlineVariableDefinitionKind(VD) ==
3540         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
3541       // A definition of an inline constexpr static data member may change
3542       // linkage later if it's redeclared outside the class.
3543       return false;
3544     if (CXX20ModuleInits && VD->getOwningModule() &&
3545         !VD->getOwningModule()->isModuleMapModule()) {
3546       // For CXX20, module-owned initializers need to be deferred, since it is
3547       // not known at this point if they will be run for the current module or
3548       // as part of the initializer for an imported one.
3549       return false;
3550     }
3551   }
3552   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
3553   // codegen for global variables, because they may be marked as threadprivate.
3554   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
3555       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
3556       !Global->getType().isConstantStorage(getContext(), false, false) &&
3557       !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
3558     return false;
3559 
3560   return true;
3561 }
3562 
3563 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) {
3564   StringRef Name = getMangledName(GD);
3565 
3566   // The UUID descriptor should be pointer aligned.
3567   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
3568 
3569   // Look for an existing global.
3570   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
3571     return ConstantAddress(GV, GV->getValueType(), Alignment);
3572 
3573   ConstantEmitter Emitter(*this);
3574   llvm::Constant *Init;
3575 
3576   APValue &V = GD->getAsAPValue();
3577   if (!V.isAbsent()) {
3578     // If possible, emit the APValue version of the initializer. In particular,
3579     // this gets the type of the constant right.
3580     Init = Emitter.emitForInitializer(
3581         GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType());
3582   } else {
3583     // As a fallback, directly construct the constant.
3584     // FIXME: This may get padding wrong under esoteric struct layout rules.
3585     // MSVC appears to create a complete type 'struct __s_GUID' that it
3586     // presumably uses to represent these constants.
3587     MSGuidDecl::Parts Parts = GD->getParts();
3588     llvm::Constant *Fields[4] = {
3589         llvm::ConstantInt::get(Int32Ty, Parts.Part1),
3590         llvm::ConstantInt::get(Int16Ty, Parts.Part2),
3591         llvm::ConstantInt::get(Int16Ty, Parts.Part3),
3592         llvm::ConstantDataArray::getRaw(
3593             StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8,
3594             Int8Ty)};
3595     Init = llvm::ConstantStruct::getAnon(Fields);
3596   }
3597 
3598   auto *GV = new llvm::GlobalVariable(
3599       getModule(), Init->getType(),
3600       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
3601   if (supportsCOMDAT())
3602     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3603   setDSOLocal(GV);
3604 
3605   if (!V.isAbsent()) {
3606     Emitter.finalize(GV);
3607     return ConstantAddress(GV, GV->getValueType(), Alignment);
3608   }
3609 
3610   llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType());
3611   return ConstantAddress(GV, Ty, Alignment);
3612 }
3613 
3614 ConstantAddress CodeGenModule::GetAddrOfUnnamedGlobalConstantDecl(
3615     const UnnamedGlobalConstantDecl *GCD) {
3616   CharUnits Alignment = getContext().getTypeAlignInChars(GCD->getType());
3617 
3618   llvm::GlobalVariable **Entry = nullptr;
3619   Entry = &UnnamedGlobalConstantDeclMap[GCD];
3620   if (*Entry)
3621     return ConstantAddress(*Entry, (*Entry)->getValueType(), Alignment);
3622 
3623   ConstantEmitter Emitter(*this);
3624   llvm::Constant *Init;
3625 
3626   const APValue &V = GCD->getValue();
3627 
3628   assert(!V.isAbsent());
3629   Init = Emitter.emitForInitializer(V, GCD->getType().getAddressSpace(),
3630                                     GCD->getType());
3631 
3632   auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(),
3633                                       /*isConstant=*/true,
3634                                       llvm::GlobalValue::PrivateLinkage, Init,
3635                                       ".constant");
3636   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3637   GV->setAlignment(Alignment.getAsAlign());
3638 
3639   Emitter.finalize(GV);
3640 
3641   *Entry = GV;
3642   return ConstantAddress(GV, GV->getValueType(), Alignment);
3643 }
3644 
3645 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject(
3646     const TemplateParamObjectDecl *TPO) {
3647   StringRef Name = getMangledName(TPO);
3648   CharUnits Alignment = getNaturalTypeAlignment(TPO->getType());
3649 
3650   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
3651     return ConstantAddress(GV, GV->getValueType(), Alignment);
3652 
3653   ConstantEmitter Emitter(*this);
3654   llvm::Constant *Init = Emitter.emitForInitializer(
3655         TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType());
3656 
3657   if (!Init) {
3658     ErrorUnsupported(TPO, "template parameter object");
3659     return ConstantAddress::invalid();
3660   }
3661 
3662   llvm::GlobalValue::LinkageTypes Linkage =
3663       isExternallyVisible(TPO->getLinkageAndVisibility().getLinkage())
3664           ? llvm::GlobalValue::LinkOnceODRLinkage
3665           : llvm::GlobalValue::InternalLinkage;
3666   auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(),
3667                                       /*isConstant=*/true, Linkage, Init, Name);
3668   setGVProperties(GV, TPO);
3669   if (supportsCOMDAT())
3670     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3671   Emitter.finalize(GV);
3672 
3673     return ConstantAddress(GV, GV->getValueType(), Alignment);
3674 }
3675 
3676 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
3677   const AliasAttr *AA = VD->getAttr<AliasAttr>();
3678   assert(AA && "No alias?");
3679 
3680   CharUnits Alignment = getContext().getDeclAlign(VD);
3681   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
3682 
3683   // See if there is already something with the target's name in the module.
3684   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
3685   if (Entry)
3686     return ConstantAddress(Entry, DeclTy, Alignment);
3687 
3688   llvm::Constant *Aliasee;
3689   if (isa<llvm::FunctionType>(DeclTy))
3690     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
3691                                       GlobalDecl(cast<FunctionDecl>(VD)),
3692                                       /*ForVTable=*/false);
3693   else
3694     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
3695                                     nullptr);
3696 
3697   auto *F = cast<llvm::GlobalValue>(Aliasee);
3698   F->setLinkage(llvm::Function::ExternalWeakLinkage);
3699   WeakRefReferences.insert(F);
3700 
3701   return ConstantAddress(Aliasee, DeclTy, Alignment);
3702 }
3703 
3704 template <typename AttrT> static bool hasImplicitAttr(const ValueDecl *D) {
3705   if (!D)
3706     return false;
3707   if (auto *A = D->getAttr<AttrT>())
3708     return A->isImplicit();
3709   return D->isImplicit();
3710 }
3711 
3712 bool CodeGenModule::shouldEmitCUDAGlobalVar(const VarDecl *Global) const {
3713   assert(LangOpts.CUDA && "Should not be called by non-CUDA languages");
3714   // We need to emit host-side 'shadows' for all global
3715   // device-side variables because the CUDA runtime needs their
3716   // size and host-side address in order to provide access to
3717   // their device-side incarnations.
3718   return !LangOpts.CUDAIsDevice || Global->hasAttr<CUDADeviceAttr>() ||
3719          Global->hasAttr<CUDAConstantAttr>() ||
3720          Global->hasAttr<CUDASharedAttr>() ||
3721          Global->getType()->isCUDADeviceBuiltinSurfaceType() ||
3722          Global->getType()->isCUDADeviceBuiltinTextureType();
3723 }
3724 
3725 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
3726   const auto *Global = cast<ValueDecl>(GD.getDecl());
3727 
3728   // Weak references don't produce any output by themselves.
3729   if (Global->hasAttr<WeakRefAttr>())
3730     return;
3731 
3732   // If this is an alias definition (which otherwise looks like a declaration)
3733   // emit it now.
3734   if (Global->hasAttr<AliasAttr>())
3735     return EmitAliasDefinition(GD);
3736 
3737   // IFunc like an alias whose value is resolved at runtime by calling resolver.
3738   if (Global->hasAttr<IFuncAttr>())
3739     return emitIFuncDefinition(GD);
3740 
3741   // If this is a cpu_dispatch multiversion function, emit the resolver.
3742   if (Global->hasAttr<CPUDispatchAttr>())
3743     return emitCPUDispatchDefinition(GD);
3744 
3745   // If this is CUDA, be selective about which declarations we emit.
3746   // Non-constexpr non-lambda implicit host device functions are not emitted
3747   // unless they are used on device side.
3748   if (LangOpts.CUDA) {
3749     assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
3750            "Expected Variable or Function");
3751     if (const auto *VD = dyn_cast<VarDecl>(Global)) {
3752       if (!shouldEmitCUDAGlobalVar(VD))
3753         return;
3754     } else if (LangOpts.CUDAIsDevice) {
3755       const auto *FD = dyn_cast<FunctionDecl>(Global);
3756       if ((!Global->hasAttr<CUDADeviceAttr>() ||
3757            (LangOpts.OffloadImplicitHostDeviceTemplates &&
3758             hasImplicitAttr<CUDAHostAttr>(FD) &&
3759             hasImplicitAttr<CUDADeviceAttr>(FD) && !FD->isConstexpr() &&
3760             !isLambdaCallOperator(FD) &&
3761             !getContext().CUDAImplicitHostDeviceFunUsedByDevice.count(FD))) &&
3762           !Global->hasAttr<CUDAGlobalAttr>() &&
3763           !(LangOpts.HIPStdPar && isa<FunctionDecl>(Global) &&
3764             !Global->hasAttr<CUDAHostAttr>()))
3765         return;
3766       // Device-only functions are the only things we skip.
3767     } else if (!Global->hasAttr<CUDAHostAttr>() &&
3768                Global->hasAttr<CUDADeviceAttr>())
3769       return;
3770   }
3771 
3772   if (LangOpts.OpenMP) {
3773     // If this is OpenMP, check if it is legal to emit this global normally.
3774     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
3775       return;
3776     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
3777       if (MustBeEmitted(Global))
3778         EmitOMPDeclareReduction(DRD);
3779       return;
3780     }
3781     if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
3782       if (MustBeEmitted(Global))
3783         EmitOMPDeclareMapper(DMD);
3784       return;
3785     }
3786   }
3787 
3788   // Ignore declarations, they will be emitted on their first use.
3789   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
3790     // Update deferred annotations with the latest declaration if the function
3791     // function was already used or defined.
3792     if (FD->hasAttr<AnnotateAttr>()) {
3793       StringRef MangledName = getMangledName(GD);
3794       if (GetGlobalValue(MangledName))
3795         DeferredAnnotations[MangledName] = FD;
3796     }
3797 
3798     // Forward declarations are emitted lazily on first use.
3799     if (!FD->doesThisDeclarationHaveABody()) {
3800       if (!FD->doesDeclarationForceExternallyVisibleDefinition() &&
3801           (!FD->isMultiVersion() || !getTarget().getTriple().isAArch64()))
3802         return;
3803 
3804       StringRef MangledName = getMangledName(GD);
3805 
3806       // Compute the function info and LLVM type.
3807       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3808       llvm::Type *Ty = getTypes().GetFunctionType(FI);
3809 
3810       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
3811                               /*DontDefer=*/false);
3812       return;
3813     }
3814   } else {
3815     const auto *VD = cast<VarDecl>(Global);
3816     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
3817     if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
3818         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
3819       if (LangOpts.OpenMP) {
3820         // Emit declaration of the must-be-emitted declare target variable.
3821         if (std::optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
3822                 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
3823 
3824           // If this variable has external storage and doesn't require special
3825           // link handling we defer to its canonical definition.
3826           if (VD->hasExternalStorage() &&
3827               Res != OMPDeclareTargetDeclAttr::MT_Link)
3828             return;
3829 
3830           bool UnifiedMemoryEnabled =
3831               getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
3832           if ((*Res == OMPDeclareTargetDeclAttr::MT_To ||
3833                *Res == OMPDeclareTargetDeclAttr::MT_Enter) &&
3834               !UnifiedMemoryEnabled) {
3835             (void)GetAddrOfGlobalVar(VD);
3836           } else {
3837             assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
3838                     ((*Res == OMPDeclareTargetDeclAttr::MT_To ||
3839                       *Res == OMPDeclareTargetDeclAttr::MT_Enter) &&
3840                      UnifiedMemoryEnabled)) &&
3841                    "Link clause or to clause with unified memory expected.");
3842             (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
3843           }
3844 
3845           return;
3846         }
3847       }
3848       // If this declaration may have caused an inline variable definition to
3849       // change linkage, make sure that it's emitted.
3850       if (Context.getInlineVariableDefinitionKind(VD) ==
3851           ASTContext::InlineVariableDefinitionKind::Strong)
3852         GetAddrOfGlobalVar(VD);
3853       return;
3854     }
3855   }
3856 
3857   // Defer code generation to first use when possible, e.g. if this is an inline
3858   // function. If the global must always be emitted, do it eagerly if possible
3859   // to benefit from cache locality.
3860   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
3861     // Emit the definition if it can't be deferred.
3862     EmitGlobalDefinition(GD);
3863     addEmittedDeferredDecl(GD);
3864     return;
3865   }
3866 
3867   // If we're deferring emission of a C++ variable with an
3868   // initializer, remember the order in which it appeared in the file.
3869   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
3870       cast<VarDecl>(Global)->hasInit()) {
3871     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
3872     CXXGlobalInits.push_back(nullptr);
3873   }
3874 
3875   StringRef MangledName = getMangledName(GD);
3876   if (GetGlobalValue(MangledName) != nullptr) {
3877     // The value has already been used and should therefore be emitted.
3878     addDeferredDeclToEmit(GD);
3879   } else if (MustBeEmitted(Global)) {
3880     // The value must be emitted, but cannot be emitted eagerly.
3881     assert(!MayBeEmittedEagerly(Global));
3882     addDeferredDeclToEmit(GD);
3883   } else {
3884     // Otherwise, remember that we saw a deferred decl with this name.  The
3885     // first use of the mangled name will cause it to move into
3886     // DeferredDeclsToEmit.
3887     DeferredDecls[MangledName] = GD;
3888   }
3889 }
3890 
3891 // Check if T is a class type with a destructor that's not dllimport.
3892 static bool HasNonDllImportDtor(QualType T) {
3893   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
3894     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
3895       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
3896         return true;
3897 
3898   return false;
3899 }
3900 
3901 namespace {
3902   struct FunctionIsDirectlyRecursive
3903       : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
3904     const StringRef Name;
3905     const Builtin::Context &BI;
3906     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
3907         : Name(N), BI(C) {}
3908 
3909     bool VisitCallExpr(const CallExpr *E) {
3910       const FunctionDecl *FD = E->getDirectCallee();
3911       if (!FD)
3912         return false;
3913       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3914       if (Attr && Name == Attr->getLabel())
3915         return true;
3916       unsigned BuiltinID = FD->getBuiltinID();
3917       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
3918         return false;
3919       StringRef BuiltinName = BI.getName(BuiltinID);
3920       if (BuiltinName.starts_with("__builtin_") &&
3921           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
3922         return true;
3923       }
3924       return false;
3925     }
3926 
3927     bool VisitStmt(const Stmt *S) {
3928       for (const Stmt *Child : S->children())
3929         if (Child && this->Visit(Child))
3930           return true;
3931       return false;
3932     }
3933   };
3934 
3935   // Make sure we're not referencing non-imported vars or functions.
3936   struct DLLImportFunctionVisitor
3937       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
3938     bool SafeToInline = true;
3939 
3940     bool shouldVisitImplicitCode() const { return true; }
3941 
3942     bool VisitVarDecl(VarDecl *VD) {
3943       if (VD->getTLSKind()) {
3944         // A thread-local variable cannot be imported.
3945         SafeToInline = false;
3946         return SafeToInline;
3947       }
3948 
3949       // A variable definition might imply a destructor call.
3950       if (VD->isThisDeclarationADefinition())
3951         SafeToInline = !HasNonDllImportDtor(VD->getType());
3952 
3953       return SafeToInline;
3954     }
3955 
3956     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
3957       if (const auto *D = E->getTemporary()->getDestructor())
3958         SafeToInline = D->hasAttr<DLLImportAttr>();
3959       return SafeToInline;
3960     }
3961 
3962     bool VisitDeclRefExpr(DeclRefExpr *E) {
3963       ValueDecl *VD = E->getDecl();
3964       if (isa<FunctionDecl>(VD))
3965         SafeToInline = VD->hasAttr<DLLImportAttr>();
3966       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
3967         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
3968       return SafeToInline;
3969     }
3970 
3971     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
3972       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
3973       return SafeToInline;
3974     }
3975 
3976     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
3977       CXXMethodDecl *M = E->getMethodDecl();
3978       if (!M) {
3979         // Call through a pointer to member function. This is safe to inline.
3980         SafeToInline = true;
3981       } else {
3982         SafeToInline = M->hasAttr<DLLImportAttr>();
3983       }
3984       return SafeToInline;
3985     }
3986 
3987     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
3988       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
3989       return SafeToInline;
3990     }
3991 
3992     bool VisitCXXNewExpr(CXXNewExpr *E) {
3993       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
3994       return SafeToInline;
3995     }
3996   };
3997 }
3998 
3999 // isTriviallyRecursive - Check if this function calls another
4000 // decl that, because of the asm attribute or the other decl being a builtin,
4001 // ends up pointing to itself.
4002 bool
4003 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
4004   StringRef Name;
4005   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
4006     // asm labels are a special kind of mangling we have to support.
4007     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
4008     if (!Attr)
4009       return false;
4010     Name = Attr->getLabel();
4011   } else {
4012     Name = FD->getName();
4013   }
4014 
4015   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
4016   const Stmt *Body = FD->getBody();
4017   return Body ? Walker.Visit(Body) : false;
4018 }
4019 
4020 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
4021   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
4022     return true;
4023 
4024   const auto *F = cast<FunctionDecl>(GD.getDecl());
4025   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
4026     return false;
4027 
4028   // We don't import function bodies from other named module units since that
4029   // behavior may break ABI compatibility of the current unit.
4030   if (const Module *M = F->getOwningModule();
4031       M && M->getTopLevelModule()->isNamedModule() &&
4032       getContext().getCurrentNamedModule() != M->getTopLevelModule()) {
4033     // There are practices to mark template member function as always-inline
4034     // and mark the template as extern explicit instantiation but not give
4035     // the definition for member function. So we have to emit the function
4036     // from explicitly instantiation with always-inline.
4037     //
4038     // See https://github.com/llvm/llvm-project/issues/86893 for details.
4039     //
4040     // TODO: Maybe it is better to give it a warning if we call a non-inline
4041     // function from other module units which is marked as always-inline.
4042     if (!F->isTemplateInstantiation() || !F->hasAttr<AlwaysInlineAttr>()) {
4043       return false;
4044     }
4045   }
4046 
4047   if (F->hasAttr<NoInlineAttr>())
4048     return false;
4049 
4050   if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) {
4051     // Check whether it would be safe to inline this dllimport function.
4052     DLLImportFunctionVisitor Visitor;
4053     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
4054     if (!Visitor.SafeToInline)
4055       return false;
4056 
4057     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
4058       // Implicit destructor invocations aren't captured in the AST, so the
4059       // check above can't see them. Check for them manually here.
4060       for (const Decl *Member : Dtor->getParent()->decls())
4061         if (isa<FieldDecl>(Member))
4062           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
4063             return false;
4064       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
4065         if (HasNonDllImportDtor(B.getType()))
4066           return false;
4067     }
4068   }
4069 
4070   // Inline builtins declaration must be emitted. They often are fortified
4071   // functions.
4072   if (F->isInlineBuiltinDeclaration())
4073     return true;
4074 
4075   // PR9614. Avoid cases where the source code is lying to us. An available
4076   // externally function should have an equivalent function somewhere else,
4077   // but a function that calls itself through asm label/`__builtin_` trickery is
4078   // clearly not equivalent to the real implementation.
4079   // This happens in glibc's btowc and in some configure checks.
4080   return !isTriviallyRecursive(F);
4081 }
4082 
4083 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
4084   return CodeGenOpts.OptimizationLevel > 0;
4085 }
4086 
4087 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
4088                                                        llvm::GlobalValue *GV) {
4089   const auto *FD = cast<FunctionDecl>(GD.getDecl());
4090 
4091   if (FD->isCPUSpecificMultiVersion()) {
4092     auto *Spec = FD->getAttr<CPUSpecificAttr>();
4093     for (unsigned I = 0; I < Spec->cpus_size(); ++I)
4094       EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
4095   } else if (auto *TC = FD->getAttr<TargetClonesAttr>()) {
4096     for (unsigned I = 0; I < TC->featuresStrs_size(); ++I)
4097       // AArch64 favors the default target version over the clone if any.
4098       if ((!TC->isDefaultVersion(I) || !getTarget().getTriple().isAArch64()) &&
4099           TC->isFirstOfVersion(I))
4100         EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
4101     // Ensure that the resolver function is also emitted.
4102     GetOrCreateMultiVersionResolver(GD);
4103   } else
4104     EmitGlobalFunctionDefinition(GD, GV);
4105 
4106   // Defer the resolver emission until we can reason whether the TU
4107   // contains a default target version implementation.
4108   if (FD->isTargetVersionMultiVersion())
4109     AddDeferredMultiVersionResolverToEmit(GD);
4110 }
4111 
4112 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
4113   const auto *D = cast<ValueDecl>(GD.getDecl());
4114 
4115   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
4116                                  Context.getSourceManager(),
4117                                  "Generating code for declaration");
4118 
4119   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
4120     // At -O0, don't generate IR for functions with available_externally
4121     // linkage.
4122     if (!shouldEmitFunction(GD))
4123       return;
4124 
4125     llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
4126       std::string Name;
4127       llvm::raw_string_ostream OS(Name);
4128       FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(),
4129                                /*Qualified=*/true);
4130       return Name;
4131     });
4132 
4133     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
4134       // Make sure to emit the definition(s) before we emit the thunks.
4135       // This is necessary for the generation of certain thunks.
4136       if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method))
4137         ABI->emitCXXStructor(GD);
4138       else if (FD->isMultiVersion())
4139         EmitMultiVersionFunctionDefinition(GD, GV);
4140       else
4141         EmitGlobalFunctionDefinition(GD, GV);
4142 
4143       if (Method->isVirtual())
4144         getVTables().EmitThunks(GD);
4145 
4146       return;
4147     }
4148 
4149     if (FD->isMultiVersion())
4150       return EmitMultiVersionFunctionDefinition(GD, GV);
4151     return EmitGlobalFunctionDefinition(GD, GV);
4152   }
4153 
4154   if (const auto *VD = dyn_cast<VarDecl>(D))
4155     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
4156 
4157   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
4158 }
4159 
4160 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
4161                                                       llvm::Function *NewFn);
4162 
4163 static unsigned
4164 TargetMVPriority(const TargetInfo &TI,
4165                  const CodeGenFunction::MultiVersionResolverOption &RO) {
4166   unsigned Priority = 0;
4167   unsigned NumFeatures = 0;
4168   for (StringRef Feat : RO.Conditions.Features) {
4169     Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
4170     NumFeatures++;
4171   }
4172 
4173   if (!RO.Conditions.Architecture.empty())
4174     Priority = std::max(
4175         Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
4176 
4177   Priority += TI.multiVersionFeatureCost() * NumFeatures;
4178 
4179   return Priority;
4180 }
4181 
4182 // Multiversion functions should be at most 'WeakODRLinkage' so that a different
4183 // TU can forward declare the function without causing problems.  Particularly
4184 // in the cases of CPUDispatch, this causes issues. This also makes sure we
4185 // work with internal linkage functions, so that the same function name can be
4186 // used with internal linkage in multiple TUs.
4187 llvm::GlobalValue::LinkageTypes getMultiversionLinkage(CodeGenModule &CGM,
4188                                                        GlobalDecl GD) {
4189   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
4190   if (FD->getFormalLinkage() == Linkage::Internal)
4191     return llvm::GlobalValue::InternalLinkage;
4192   return llvm::GlobalValue::WeakODRLinkage;
4193 }
4194 
4195 void CodeGenModule::emitMultiVersionFunctions() {
4196   std::vector<GlobalDecl> MVFuncsToEmit;
4197   MultiVersionFuncs.swap(MVFuncsToEmit);
4198   for (GlobalDecl GD : MVFuncsToEmit) {
4199     const auto *FD = cast<FunctionDecl>(GD.getDecl());
4200     assert(FD && "Expected a FunctionDecl");
4201 
4202     auto createFunction = [&](const FunctionDecl *Decl, unsigned MVIdx = 0) {
4203       GlobalDecl CurGD{Decl->isDefined() ? Decl->getDefinition() : Decl, MVIdx};
4204       StringRef MangledName = getMangledName(CurGD);
4205       llvm::Constant *Func = GetGlobalValue(MangledName);
4206       if (!Func) {
4207         if (Decl->isDefined()) {
4208           EmitGlobalFunctionDefinition(CurGD, nullptr);
4209           Func = GetGlobalValue(MangledName);
4210         } else {
4211           const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(CurGD);
4212           llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4213           Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
4214                                    /*DontDefer=*/false, ForDefinition);
4215         }
4216         assert(Func && "This should have just been created");
4217       }
4218       return cast<llvm::Function>(Func);
4219     };
4220 
4221     // For AArch64, a resolver is only emitted if a function marked with
4222     // target_version("default")) or target_clones() is present and defined
4223     // in this TU. For other architectures it is always emitted.
4224     bool ShouldEmitResolver = !getTarget().getTriple().isAArch64();
4225     SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
4226 
4227     getContext().forEachMultiversionedFunctionVersion(
4228         FD, [&](const FunctionDecl *CurFD) {
4229           llvm::SmallVector<StringRef, 8> Feats;
4230           bool IsDefined = CurFD->doesThisDeclarationHaveABody();
4231 
4232           if (const auto *TA = CurFD->getAttr<TargetAttr>()) {
4233             TA->getAddedFeatures(Feats);
4234             llvm::Function *Func = createFunction(CurFD);
4235             Options.emplace_back(Func, TA->getArchitecture(), Feats);
4236           } else if (const auto *TVA = CurFD->getAttr<TargetVersionAttr>()) {
4237             if (TVA->isDefaultVersion() && IsDefined)
4238               ShouldEmitResolver = true;
4239             TVA->getFeatures(Feats);
4240             llvm::Function *Func = createFunction(CurFD);
4241             Options.emplace_back(Func, /*Architecture*/ "", Feats);
4242           } else if (const auto *TC = CurFD->getAttr<TargetClonesAttr>()) {
4243             if (IsDefined)
4244               ShouldEmitResolver = true;
4245             for (unsigned I = 0; I < TC->featuresStrs_size(); ++I) {
4246               if (!TC->isFirstOfVersion(I))
4247                 continue;
4248 
4249               llvm::Function *Func = createFunction(CurFD, I);
4250               StringRef Architecture;
4251               Feats.clear();
4252               if (getTarget().getTriple().isAArch64())
4253                 TC->getFeatures(Feats, I);
4254               else {
4255                 StringRef Version = TC->getFeatureStr(I);
4256                 if (Version.starts_with("arch="))
4257                   Architecture = Version.drop_front(sizeof("arch=") - 1);
4258                 else if (Version != "default")
4259                   Feats.push_back(Version);
4260               }
4261               Options.emplace_back(Func, Architecture, Feats);
4262             }
4263           } else
4264             llvm_unreachable("unexpected MultiVersionKind");
4265         });
4266 
4267     if (!ShouldEmitResolver)
4268       continue;
4269 
4270     llvm::Constant *ResolverConstant = GetOrCreateMultiVersionResolver(GD);
4271     if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(ResolverConstant)) {
4272       ResolverConstant = IFunc->getResolver();
4273       if (FD->isTargetClonesMultiVersion() &&
4274           !getTarget().getTriple().isAArch64()) {
4275         std::string MangledName = getMangledNameImpl(
4276             *this, GD, FD, /*OmitMultiVersionMangling=*/true);
4277         if (!GetGlobalValue(MangledName + ".ifunc")) {
4278           const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4279           llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
4280           // In prior versions of Clang, the mangling for ifuncs incorrectly
4281           // included an .ifunc suffix. This alias is generated for backward
4282           // compatibility. It is deprecated, and may be removed in the future.
4283           auto *Alias = llvm::GlobalAlias::create(
4284               DeclTy, 0, getMultiversionLinkage(*this, GD),
4285               MangledName + ".ifunc", IFunc, &getModule());
4286           SetCommonAttributes(FD, Alias);
4287         }
4288       }
4289     }
4290     llvm::Function *ResolverFunc = cast<llvm::Function>(ResolverConstant);
4291 
4292     ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
4293 
4294     if (!ResolverFunc->hasLocalLinkage() && supportsCOMDAT())
4295       ResolverFunc->setComdat(
4296           getModule().getOrInsertComdat(ResolverFunc->getName()));
4297 
4298     const TargetInfo &TI = getTarget();
4299     llvm::stable_sort(
4300         Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
4301                        const CodeGenFunction::MultiVersionResolverOption &RHS) {
4302           return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
4303         });
4304     CodeGenFunction CGF(*this);
4305     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
4306   }
4307 
4308   // Ensure that any additions to the deferred decls list caused by emitting a
4309   // variant are emitted.  This can happen when the variant itself is inline and
4310   // calls a function without linkage.
4311   if (!MVFuncsToEmit.empty())
4312     EmitDeferred();
4313 
4314   // Ensure that any additions to the multiversion funcs list from either the
4315   // deferred decls or the multiversion functions themselves are emitted.
4316   if (!MultiVersionFuncs.empty())
4317     emitMultiVersionFunctions();
4318 }
4319 
4320 static void replaceDeclarationWith(llvm::GlobalValue *Old,
4321                                    llvm::Constant *New) {
4322   assert(cast<llvm::Function>(Old)->isDeclaration() && "Not a declaration");
4323   New->takeName(Old);
4324   Old->replaceAllUsesWith(New);
4325   Old->eraseFromParent();
4326 }
4327 
4328 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
4329   const auto *FD = cast<FunctionDecl>(GD.getDecl());
4330   assert(FD && "Not a FunctionDecl?");
4331   assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?");
4332   const auto *DD = FD->getAttr<CPUDispatchAttr>();
4333   assert(DD && "Not a cpu_dispatch Function?");
4334 
4335   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4336   llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
4337 
4338   StringRef ResolverName = getMangledName(GD);
4339   UpdateMultiVersionNames(GD, FD, ResolverName);
4340 
4341   llvm::Type *ResolverType;
4342   GlobalDecl ResolverGD;
4343   if (getTarget().supportsIFunc()) {
4344     ResolverType = llvm::FunctionType::get(
4345         llvm::PointerType::get(DeclTy,
4346                                getTypes().getTargetAddressSpace(FD->getType())),
4347         false);
4348   }
4349   else {
4350     ResolverType = DeclTy;
4351     ResolverGD = GD;
4352   }
4353 
4354   auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
4355       ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
4356   ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
4357   if (supportsCOMDAT())
4358     ResolverFunc->setComdat(
4359         getModule().getOrInsertComdat(ResolverFunc->getName()));
4360 
4361   SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
4362   const TargetInfo &Target = getTarget();
4363   unsigned Index = 0;
4364   for (const IdentifierInfo *II : DD->cpus()) {
4365     // Get the name of the target function so we can look it up/create it.
4366     std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
4367                               getCPUSpecificMangling(*this, II->getName());
4368 
4369     llvm::Constant *Func = GetGlobalValue(MangledName);
4370 
4371     if (!Func) {
4372       GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
4373       if (ExistingDecl.getDecl() &&
4374           ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
4375         EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
4376         Func = GetGlobalValue(MangledName);
4377       } else {
4378         if (!ExistingDecl.getDecl())
4379           ExistingDecl = GD.getWithMultiVersionIndex(Index);
4380 
4381       Func = GetOrCreateLLVMFunction(
4382           MangledName, DeclTy, ExistingDecl,
4383           /*ForVTable=*/false, /*DontDefer=*/true,
4384           /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
4385       }
4386     }
4387 
4388     llvm::SmallVector<StringRef, 32> Features;
4389     Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
4390     llvm::transform(Features, Features.begin(),
4391                     [](StringRef Str) { return Str.substr(1); });
4392     llvm::erase_if(Features, [&Target](StringRef Feat) {
4393       return !Target.validateCpuSupports(Feat);
4394     });
4395     Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
4396     ++Index;
4397   }
4398 
4399   llvm::stable_sort(
4400       Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
4401                   const CodeGenFunction::MultiVersionResolverOption &RHS) {
4402         return llvm::X86::getCpuSupportsMask(LHS.Conditions.Features) >
4403                llvm::X86::getCpuSupportsMask(RHS.Conditions.Features);
4404       });
4405 
4406   // If the list contains multiple 'default' versions, such as when it contains
4407   // 'pentium' and 'generic', don't emit the call to the generic one (since we
4408   // always run on at least a 'pentium'). We do this by deleting the 'least
4409   // advanced' (read, lowest mangling letter).
4410   while (Options.size() > 1 &&
4411          llvm::all_of(llvm::X86::getCpuSupportsMask(
4412                           (Options.end() - 2)->Conditions.Features),
4413                       [](auto X) { return X == 0; })) {
4414     StringRef LHSName = (Options.end() - 2)->Function->getName();
4415     StringRef RHSName = (Options.end() - 1)->Function->getName();
4416     if (LHSName.compare(RHSName) < 0)
4417       Options.erase(Options.end() - 2);
4418     else
4419       Options.erase(Options.end() - 1);
4420   }
4421 
4422   CodeGenFunction CGF(*this);
4423   CGF.EmitMultiVersionResolver(ResolverFunc, Options);
4424 
4425   if (getTarget().supportsIFunc()) {
4426     llvm::GlobalValue::LinkageTypes Linkage = getMultiversionLinkage(*this, GD);
4427     auto *IFunc = cast<llvm::GlobalValue>(GetOrCreateMultiVersionResolver(GD));
4428 
4429     // Fix up function declarations that were created for cpu_specific before
4430     // cpu_dispatch was known
4431     if (!isa<llvm::GlobalIFunc>(IFunc)) {
4432       auto *GI = llvm::GlobalIFunc::create(DeclTy, 0, Linkage, "", ResolverFunc,
4433                                            &getModule());
4434       replaceDeclarationWith(IFunc, GI);
4435       IFunc = GI;
4436     }
4437 
4438     std::string AliasName = getMangledNameImpl(
4439         *this, GD, FD, /*OmitMultiVersionMangling=*/true);
4440     llvm::Constant *AliasFunc = GetGlobalValue(AliasName);
4441     if (!AliasFunc) {
4442       auto *GA = llvm::GlobalAlias::create(DeclTy, 0, Linkage, AliasName, IFunc,
4443                                            &getModule());
4444       SetCommonAttributes(GD, GA);
4445     }
4446   }
4447 }
4448 
4449 /// Adds a declaration to the list of multi version functions if not present.
4450 void CodeGenModule::AddDeferredMultiVersionResolverToEmit(GlobalDecl GD) {
4451   const auto *FD = cast<FunctionDecl>(GD.getDecl());
4452   assert(FD && "Not a FunctionDecl?");
4453 
4454   if (FD->isTargetVersionMultiVersion() || FD->isTargetClonesMultiVersion()) {
4455     std::string MangledName =
4456         getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
4457     if (!DeferredResolversToEmit.insert(MangledName).second)
4458       return;
4459   }
4460   MultiVersionFuncs.push_back(GD);
4461 }
4462 
4463 /// If a dispatcher for the specified mangled name is not in the module, create
4464 /// and return it. The dispatcher is either an llvm Function with the specified
4465 /// type, or a global ifunc.
4466 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(GlobalDecl GD) {
4467   const auto *FD = cast<FunctionDecl>(GD.getDecl());
4468   assert(FD && "Not a FunctionDecl?");
4469 
4470   std::string MangledName =
4471       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
4472 
4473   // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
4474   // a separate resolver).
4475   std::string ResolverName = MangledName;
4476   if (getTarget().supportsIFunc()) {
4477     switch (FD->getMultiVersionKind()) {
4478     case MultiVersionKind::None:
4479       llvm_unreachable("unexpected MultiVersionKind::None for resolver");
4480     case MultiVersionKind::Target:
4481     case MultiVersionKind::CPUSpecific:
4482     case MultiVersionKind::CPUDispatch:
4483       ResolverName += ".ifunc";
4484       break;
4485     case MultiVersionKind::TargetClones:
4486     case MultiVersionKind::TargetVersion:
4487       break;
4488     }
4489   } else if (FD->isTargetMultiVersion()) {
4490     ResolverName += ".resolver";
4491   }
4492 
4493   // If the resolver has already been created, just return it. This lookup may
4494   // yield a function declaration instead of a resolver on AArch64. That is
4495   // because we didn't know whether a resolver will be generated when we first
4496   // encountered a use of the symbol named after this resolver. Therefore,
4497   // targets which support ifuncs should not return here unless we actually
4498   // found an ifunc.
4499   llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName);
4500   if (ResolverGV &&
4501       (isa<llvm::GlobalIFunc>(ResolverGV) || !getTarget().supportsIFunc()))
4502     return ResolverGV;
4503 
4504   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4505   llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
4506 
4507   // The resolver needs to be created. For target and target_clones, defer
4508   // creation until the end of the TU.
4509   if (FD->isTargetMultiVersion() || FD->isTargetClonesMultiVersion())
4510     AddDeferredMultiVersionResolverToEmit(GD);
4511 
4512   // For cpu_specific, don't create an ifunc yet because we don't know if the
4513   // cpu_dispatch will be emitted in this translation unit.
4514   if (getTarget().supportsIFunc() && !FD->isCPUSpecificMultiVersion()) {
4515     llvm::Type *ResolverType = llvm::FunctionType::get(
4516         llvm::PointerType::get(DeclTy,
4517                                getTypes().getTargetAddressSpace(FD->getType())),
4518         false);
4519     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
4520         MangledName + ".resolver", ResolverType, GlobalDecl{},
4521         /*ForVTable=*/false);
4522     llvm::GlobalIFunc *GIF =
4523         llvm::GlobalIFunc::create(DeclTy, 0, getMultiversionLinkage(*this, GD),
4524                                   "", Resolver, &getModule());
4525     GIF->setName(ResolverName);
4526     SetCommonAttributes(FD, GIF);
4527     if (ResolverGV)
4528       replaceDeclarationWith(ResolverGV, GIF);
4529     return GIF;
4530   }
4531 
4532   llvm::Constant *Resolver = GetOrCreateLLVMFunction(
4533       ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
4534   assert(isa<llvm::GlobalValue>(Resolver) &&
4535          "Resolver should be created for the first time");
4536   SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
4537   if (ResolverGV)
4538     replaceDeclarationWith(ResolverGV, Resolver);
4539   return Resolver;
4540 }
4541 
4542 bool CodeGenModule::shouldDropDLLAttribute(const Decl *D,
4543                                            const llvm::GlobalValue *GV) const {
4544   auto SC = GV->getDLLStorageClass();
4545   if (SC == llvm::GlobalValue::DefaultStorageClass)
4546     return false;
4547   const Decl *MRD = D->getMostRecentDecl();
4548   return (((SC == llvm::GlobalValue::DLLImportStorageClass &&
4549             !MRD->hasAttr<DLLImportAttr>()) ||
4550            (SC == llvm::GlobalValue::DLLExportStorageClass &&
4551             !MRD->hasAttr<DLLExportAttr>())) &&
4552           !shouldMapVisibilityToDLLExport(cast<NamedDecl>(MRD)));
4553 }
4554 
4555 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
4556 /// module, create and return an llvm Function with the specified type. If there
4557 /// is something in the module with the specified name, return it potentially
4558 /// bitcasted to the right type.
4559 ///
4560 /// If D is non-null, it specifies a decl that correspond to this.  This is used
4561 /// to set the attributes on the function when it is first created.
4562 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
4563     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
4564     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
4565     ForDefinition_t IsForDefinition) {
4566   const Decl *D = GD.getDecl();
4567 
4568   std::string NameWithoutMultiVersionMangling;
4569   // Any attempts to use a MultiVersion function should result in retrieving
4570   // the iFunc instead. Name Mangling will handle the rest of the changes.
4571   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
4572     // For the device mark the function as one that should be emitted.
4573     if (getLangOpts().OpenMPIsTargetDevice && OpenMPRuntime &&
4574         !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
4575         !DontDefer && !IsForDefinition) {
4576       if (const FunctionDecl *FDDef = FD->getDefinition()) {
4577         GlobalDecl GDDef;
4578         if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
4579           GDDef = GlobalDecl(CD, GD.getCtorType());
4580         else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
4581           GDDef = GlobalDecl(DD, GD.getDtorType());
4582         else
4583           GDDef = GlobalDecl(FDDef);
4584         EmitGlobal(GDDef);
4585       }
4586     }
4587 
4588     if (FD->isMultiVersion()) {
4589       UpdateMultiVersionNames(GD, FD, MangledName);
4590       if (!IsForDefinition) {
4591         // On AArch64 we do not immediatelly emit an ifunc resolver when a
4592         // function is used. Instead we defer the emission until we see a
4593         // default definition. In the meantime we just reference the symbol
4594         // without FMV mangling (it may or may not be replaced later).
4595         if (getTarget().getTriple().isAArch64()) {
4596           AddDeferredMultiVersionResolverToEmit(GD);
4597           NameWithoutMultiVersionMangling = getMangledNameImpl(
4598               *this, GD, FD, /*OmitMultiVersionMangling=*/true);
4599         } else
4600           return GetOrCreateMultiVersionResolver(GD);
4601       }
4602     }
4603   }
4604 
4605   if (!NameWithoutMultiVersionMangling.empty())
4606     MangledName = NameWithoutMultiVersionMangling;
4607 
4608   // Lookup the entry, lazily creating it if necessary.
4609   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4610   if (Entry) {
4611     if (WeakRefReferences.erase(Entry)) {
4612       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
4613       if (FD && !FD->hasAttr<WeakAttr>())
4614         Entry->setLinkage(llvm::Function::ExternalLinkage);
4615     }
4616 
4617     // Handle dropped DLL attributes.
4618     if (D && shouldDropDLLAttribute(D, Entry)) {
4619       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
4620       setDSOLocal(Entry);
4621     }
4622 
4623     // If there are two attempts to define the same mangled name, issue an
4624     // error.
4625     if (IsForDefinition && !Entry->isDeclaration()) {
4626       GlobalDecl OtherGD;
4627       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
4628       // to make sure that we issue an error only once.
4629       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
4630           (GD.getCanonicalDecl().getDecl() !=
4631            OtherGD.getCanonicalDecl().getDecl()) &&
4632           DiagnosedConflictingDefinitions.insert(GD).second) {
4633         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
4634             << MangledName;
4635         getDiags().Report(OtherGD.getDecl()->getLocation(),
4636                           diag::note_previous_definition);
4637       }
4638     }
4639 
4640     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
4641         (Entry->getValueType() == Ty)) {
4642       return Entry;
4643     }
4644 
4645     // Make sure the result is of the correct type.
4646     // (If function is requested for a definition, we always need to create a new
4647     // function, not just return a bitcast.)
4648     if (!IsForDefinition)
4649       return Entry;
4650   }
4651 
4652   // This function doesn't have a complete type (for example, the return
4653   // type is an incomplete struct). Use a fake type instead, and make
4654   // sure not to try to set attributes.
4655   bool IsIncompleteFunction = false;
4656 
4657   llvm::FunctionType *FTy;
4658   if (isa<llvm::FunctionType>(Ty)) {
4659     FTy = cast<llvm::FunctionType>(Ty);
4660   } else {
4661     FTy = llvm::FunctionType::get(VoidTy, false);
4662     IsIncompleteFunction = true;
4663   }
4664 
4665   llvm::Function *F =
4666       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
4667                              Entry ? StringRef() : MangledName, &getModule());
4668 
4669   // Store the declaration associated with this function so it is potentially
4670   // updated by further declarations or definitions and emitted at the end.
4671   if (D && D->hasAttr<AnnotateAttr>())
4672     DeferredAnnotations[MangledName] = cast<ValueDecl>(D);
4673 
4674   // If we already created a function with the same mangled name (but different
4675   // type) before, take its name and add it to the list of functions to be
4676   // replaced with F at the end of CodeGen.
4677   //
4678   // This happens if there is a prototype for a function (e.g. "int f()") and
4679   // then a definition of a different type (e.g. "int f(int x)").
4680   if (Entry) {
4681     F->takeName(Entry);
4682 
4683     // This might be an implementation of a function without a prototype, in
4684     // which case, try to do special replacement of calls which match the new
4685     // prototype.  The really key thing here is that we also potentially drop
4686     // arguments from the call site so as to make a direct call, which makes the
4687     // inliner happier and suppresses a number of optimizer warnings (!) about
4688     // dropping arguments.
4689     if (!Entry->use_empty()) {
4690       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
4691       Entry->removeDeadConstantUsers();
4692     }
4693 
4694     addGlobalValReplacement(Entry, F);
4695   }
4696 
4697   assert(F->getName() == MangledName && "name was uniqued!");
4698   if (D)
4699     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
4700   if (ExtraAttrs.hasFnAttrs()) {
4701     llvm::AttrBuilder B(F->getContext(), ExtraAttrs.getFnAttrs());
4702     F->addFnAttrs(B);
4703   }
4704 
4705   if (!DontDefer) {
4706     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
4707     // each other bottoming out with the base dtor.  Therefore we emit non-base
4708     // dtors on usage, even if there is no dtor definition in the TU.
4709     if (isa_and_nonnull<CXXDestructorDecl>(D) &&
4710         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
4711                                            GD.getDtorType()))
4712       addDeferredDeclToEmit(GD);
4713 
4714     // This is the first use or definition of a mangled name.  If there is a
4715     // deferred decl with this name, remember that we need to emit it at the end
4716     // of the file.
4717     auto DDI = DeferredDecls.find(MangledName);
4718     if (DDI != DeferredDecls.end()) {
4719       // Move the potentially referenced deferred decl to the
4720       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
4721       // don't need it anymore).
4722       addDeferredDeclToEmit(DDI->second);
4723       DeferredDecls.erase(DDI);
4724 
4725       // Otherwise, there are cases we have to worry about where we're
4726       // using a declaration for which we must emit a definition but where
4727       // we might not find a top-level definition:
4728       //   - member functions defined inline in their classes
4729       //   - friend functions defined inline in some class
4730       //   - special member functions with implicit definitions
4731       // If we ever change our AST traversal to walk into class methods,
4732       // this will be unnecessary.
4733       //
4734       // We also don't emit a definition for a function if it's going to be an
4735       // entry in a vtable, unless it's already marked as used.
4736     } else if (getLangOpts().CPlusPlus && D) {
4737       // Look for a declaration that's lexically in a record.
4738       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
4739            FD = FD->getPreviousDecl()) {
4740         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
4741           if (FD->doesThisDeclarationHaveABody()) {
4742             addDeferredDeclToEmit(GD.getWithDecl(FD));
4743             break;
4744           }
4745         }
4746       }
4747     }
4748   }
4749 
4750   // Make sure the result is of the requested type.
4751   if (!IsIncompleteFunction) {
4752     assert(F->getFunctionType() == Ty);
4753     return F;
4754   }
4755 
4756   return F;
4757 }
4758 
4759 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
4760 /// non-null, then this function will use the specified type if it has to
4761 /// create it (this occurs when we see a definition of the function).
4762 llvm::Constant *
4763 CodeGenModule::GetAddrOfFunction(GlobalDecl GD, llvm::Type *Ty, bool ForVTable,
4764                                  bool DontDefer,
4765                                  ForDefinition_t IsForDefinition) {
4766   // If there was no specific requested type, just convert it now.
4767   if (!Ty) {
4768     const auto *FD = cast<FunctionDecl>(GD.getDecl());
4769     Ty = getTypes().ConvertType(FD->getType());
4770   }
4771 
4772   // Devirtualized destructor calls may come through here instead of via
4773   // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
4774   // of the complete destructor when necessary.
4775   if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
4776     if (getTarget().getCXXABI().isMicrosoft() &&
4777         GD.getDtorType() == Dtor_Complete &&
4778         DD->getParent()->getNumVBases() == 0)
4779       GD = GlobalDecl(DD, Dtor_Base);
4780   }
4781 
4782   StringRef MangledName = getMangledName(GD);
4783   auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
4784                                     /*IsThunk=*/false, llvm::AttributeList(),
4785                                     IsForDefinition);
4786   // Returns kernel handle for HIP kernel stub function.
4787   if (LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
4788       cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) {
4789     auto *Handle = getCUDARuntime().getKernelHandle(
4790         cast<llvm::Function>(F->stripPointerCasts()), GD);
4791     if (IsForDefinition)
4792       return F;
4793     return Handle;
4794   }
4795   return F;
4796 }
4797 
4798 llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) {
4799   llvm::GlobalValue *F =
4800       cast<llvm::GlobalValue>(GetAddrOfFunction(Decl)->stripPointerCasts());
4801 
4802   return llvm::NoCFIValue::get(F);
4803 }
4804 
4805 static const FunctionDecl *
4806 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
4807   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
4808   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
4809 
4810   IdentifierInfo &CII = C.Idents.get(Name);
4811   for (const auto *Result : DC->lookup(&CII))
4812     if (const auto *FD = dyn_cast<FunctionDecl>(Result))
4813       return FD;
4814 
4815   if (!C.getLangOpts().CPlusPlus)
4816     return nullptr;
4817 
4818   // Demangle the premangled name from getTerminateFn()
4819   IdentifierInfo &CXXII =
4820       (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
4821           ? C.Idents.get("terminate")
4822           : C.Idents.get(Name);
4823 
4824   for (const auto &N : {"__cxxabiv1", "std"}) {
4825     IdentifierInfo &NS = C.Idents.get(N);
4826     for (const auto *Result : DC->lookup(&NS)) {
4827       const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
4828       if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result))
4829         for (const auto *Result : LSD->lookup(&NS))
4830           if ((ND = dyn_cast<NamespaceDecl>(Result)))
4831             break;
4832 
4833       if (ND)
4834         for (const auto *Result : ND->lookup(&CXXII))
4835           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
4836             return FD;
4837     }
4838   }
4839 
4840   return nullptr;
4841 }
4842 
4843 /// CreateRuntimeFunction - Create a new runtime function with the specified
4844 /// type and name.
4845 llvm::FunctionCallee
4846 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
4847                                      llvm::AttributeList ExtraAttrs, bool Local,
4848                                      bool AssumeConvergent) {
4849   if (AssumeConvergent) {
4850     ExtraAttrs =
4851         ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent);
4852   }
4853 
4854   llvm::Constant *C =
4855       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
4856                               /*DontDefer=*/false, /*IsThunk=*/false,
4857                               ExtraAttrs);
4858 
4859   if (auto *F = dyn_cast<llvm::Function>(C)) {
4860     if (F->empty()) {
4861       F->setCallingConv(getRuntimeCC());
4862 
4863       // In Windows Itanium environments, try to mark runtime functions
4864       // dllimport. For Mingw and MSVC, don't. We don't really know if the user
4865       // will link their standard library statically or dynamically. Marking
4866       // functions imported when they are not imported can cause linker errors
4867       // and warnings.
4868       if (!Local && getTriple().isWindowsItaniumEnvironment() &&
4869           !getCodeGenOpts().LTOVisibilityPublicStd) {
4870         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
4871         if (!FD || FD->hasAttr<DLLImportAttr>()) {
4872           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
4873           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
4874         }
4875       }
4876       setDSOLocal(F);
4877       // FIXME: We should use CodeGenModule::SetLLVMFunctionAttributes() instead
4878       // of trying to approximate the attributes using the LLVM function
4879       // signature. This requires revising the API of CreateRuntimeFunction().
4880       markRegisterParameterAttributes(F);
4881     }
4882   }
4883 
4884   return {FTy, C};
4885 }
4886 
4887 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
4888 /// create and return an llvm GlobalVariable with the specified type and address
4889 /// space. If there is something in the module with the specified name, return
4890 /// it potentially bitcasted to the right type.
4891 ///
4892 /// If D is non-null, it specifies a decl that correspond to this.  This is used
4893 /// to set the attributes on the global when it is first created.
4894 ///
4895 /// If IsForDefinition is true, it is guaranteed that an actual global with
4896 /// type Ty will be returned, not conversion of a variable with the same
4897 /// mangled name but some other type.
4898 llvm::Constant *
4899 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty,
4900                                      LangAS AddrSpace, const VarDecl *D,
4901                                      ForDefinition_t IsForDefinition) {
4902   // Lookup the entry, lazily creating it if necessary.
4903   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4904   unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace);
4905   if (Entry) {
4906     if (WeakRefReferences.erase(Entry)) {
4907       if (D && !D->hasAttr<WeakAttr>())
4908         Entry->setLinkage(llvm::Function::ExternalLinkage);
4909     }
4910 
4911     // Handle dropped DLL attributes.
4912     if (D && shouldDropDLLAttribute(D, Entry))
4913       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
4914 
4915     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
4916       getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
4917 
4918     if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS)
4919       return Entry;
4920 
4921     // If there are two attempts to define the same mangled name, issue an
4922     // error.
4923     if (IsForDefinition && !Entry->isDeclaration()) {
4924       GlobalDecl OtherGD;
4925       const VarDecl *OtherD;
4926 
4927       // Check that D is not yet in DiagnosedConflictingDefinitions is required
4928       // to make sure that we issue an error only once.
4929       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
4930           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
4931           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
4932           OtherD->hasInit() &&
4933           DiagnosedConflictingDefinitions.insert(D).second) {
4934         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
4935             << MangledName;
4936         getDiags().Report(OtherGD.getDecl()->getLocation(),
4937                           diag::note_previous_definition);
4938       }
4939     }
4940 
4941     // Make sure the result is of the correct type.
4942     if (Entry->getType()->getAddressSpace() != TargetAS)
4943       return llvm::ConstantExpr::getAddrSpaceCast(
4944           Entry, llvm::PointerType::get(Ty->getContext(), TargetAS));
4945 
4946     // (If global is requested for a definition, we always need to create a new
4947     // global, not just return a bitcast.)
4948     if (!IsForDefinition)
4949       return Entry;
4950   }
4951 
4952   auto DAddrSpace = GetGlobalVarAddressSpace(D);
4953 
4954   auto *GV = new llvm::GlobalVariable(
4955       getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr,
4956       MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal,
4957       getContext().getTargetAddressSpace(DAddrSpace));
4958 
4959   // If we already created a global with the same mangled name (but different
4960   // type) before, take its name and remove it from its parent.
4961   if (Entry) {
4962     GV->takeName(Entry);
4963 
4964     if (!Entry->use_empty()) {
4965       Entry->replaceAllUsesWith(GV);
4966     }
4967 
4968     Entry->eraseFromParent();
4969   }
4970 
4971   // This is the first use or definition of a mangled name.  If there is a
4972   // deferred decl with this name, remember that we need to emit it at the end
4973   // of the file.
4974   auto DDI = DeferredDecls.find(MangledName);
4975   if (DDI != DeferredDecls.end()) {
4976     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
4977     // list, and remove it from DeferredDecls (since we don't need it anymore).
4978     addDeferredDeclToEmit(DDI->second);
4979     DeferredDecls.erase(DDI);
4980   }
4981 
4982   // Handle things which are present even on external declarations.
4983   if (D) {
4984     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
4985       getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
4986 
4987     // FIXME: This code is overly simple and should be merged with other global
4988     // handling.
4989     GV->setConstant(D->getType().isConstantStorage(getContext(), false, false));
4990 
4991     GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
4992 
4993     setLinkageForGV(GV, D);
4994 
4995     if (D->getTLSKind()) {
4996       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4997         CXXThreadLocals.push_back(D);
4998       setTLSMode(GV, *D);
4999     }
5000 
5001     setGVProperties(GV, D);
5002 
5003     // If required by the ABI, treat declarations of static data members with
5004     // inline initializers as definitions.
5005     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
5006       EmitGlobalVarDefinition(D);
5007     }
5008 
5009     // Emit section information for extern variables.
5010     if (D->hasExternalStorage()) {
5011       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
5012         GV->setSection(SA->getName());
5013     }
5014 
5015     // Handle XCore specific ABI requirements.
5016     if (getTriple().getArch() == llvm::Triple::xcore &&
5017         D->getLanguageLinkage() == CLanguageLinkage &&
5018         D->getType().isConstant(Context) &&
5019         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
5020       GV->setSection(".cp.rodata");
5021 
5022     // Handle code model attribute
5023     if (const auto *CMA = D->getAttr<CodeModelAttr>())
5024       GV->setCodeModel(CMA->getModel());
5025 
5026     // Check if we a have a const declaration with an initializer, we may be
5027     // able to emit it as available_externally to expose it's value to the
5028     // optimizer.
5029     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
5030         D->getType().isConstQualified() && !GV->hasInitializer() &&
5031         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
5032       const auto *Record =
5033           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
5034       bool HasMutableFields = Record && Record->hasMutableFields();
5035       if (!HasMutableFields) {
5036         const VarDecl *InitDecl;
5037         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
5038         if (InitExpr) {
5039           ConstantEmitter emitter(*this);
5040           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
5041           if (Init) {
5042             auto *InitType = Init->getType();
5043             if (GV->getValueType() != InitType) {
5044               // The type of the initializer does not match the definition.
5045               // This happens when an initializer has a different type from
5046               // the type of the global (because of padding at the end of a
5047               // structure for instance).
5048               GV->setName(StringRef());
5049               // Make a new global with the correct type, this is now guaranteed
5050               // to work.
5051               auto *NewGV = cast<llvm::GlobalVariable>(
5052                   GetAddrOfGlobalVar(D, InitType, IsForDefinition)
5053                       ->stripPointerCasts());
5054 
5055               // Erase the old global, since it is no longer used.
5056               GV->eraseFromParent();
5057               GV = NewGV;
5058             } else {
5059               GV->setInitializer(Init);
5060               GV->setConstant(true);
5061               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
5062             }
5063             emitter.finalize(GV);
5064           }
5065         }
5066       }
5067     }
5068   }
5069 
5070   if (D &&
5071       D->isThisDeclarationADefinition(Context) == VarDecl::DeclarationOnly) {
5072     getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
5073     // External HIP managed variables needed to be recorded for transformation
5074     // in both device and host compilations.
5075     if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() &&
5076         D->hasExternalStorage())
5077       getCUDARuntime().handleVarRegistration(D, *GV);
5078   }
5079 
5080   if (D)
5081     SanitizerMD->reportGlobal(GV, *D);
5082 
5083   LangAS ExpectedAS =
5084       D ? D->getType().getAddressSpace()
5085         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
5086   assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS);
5087   if (DAddrSpace != ExpectedAS) {
5088     return getTargetCodeGenInfo().performAddrSpaceCast(
5089         *this, GV, DAddrSpace, ExpectedAS,
5090         llvm::PointerType::get(getLLVMContext(), TargetAS));
5091   }
5092 
5093   return GV;
5094 }
5095 
5096 llvm::Constant *
5097 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) {
5098   const Decl *D = GD.getDecl();
5099 
5100   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
5101     return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
5102                                 /*DontDefer=*/false, IsForDefinition);
5103 
5104   if (isa<CXXMethodDecl>(D)) {
5105     auto FInfo =
5106         &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D));
5107     auto Ty = getTypes().GetFunctionType(*FInfo);
5108     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
5109                              IsForDefinition);
5110   }
5111 
5112   if (isa<FunctionDecl>(D)) {
5113     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
5114     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
5115     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
5116                              IsForDefinition);
5117   }
5118 
5119   return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition);
5120 }
5121 
5122 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
5123     StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
5124     llvm::Align Alignment) {
5125   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
5126   llvm::GlobalVariable *OldGV = nullptr;
5127 
5128   if (GV) {
5129     // Check if the variable has the right type.
5130     if (GV->getValueType() == Ty)
5131       return GV;
5132 
5133     // Because C++ name mangling, the only way we can end up with an already
5134     // existing global with the same name is if it has been declared extern "C".
5135     assert(GV->isDeclaration() && "Declaration has wrong type!");
5136     OldGV = GV;
5137   }
5138 
5139   // Create a new variable.
5140   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
5141                                 Linkage, nullptr, Name);
5142 
5143   if (OldGV) {
5144     // Replace occurrences of the old variable if needed.
5145     GV->takeName(OldGV);
5146 
5147     if (!OldGV->use_empty()) {
5148       OldGV->replaceAllUsesWith(GV);
5149     }
5150 
5151     OldGV->eraseFromParent();
5152   }
5153 
5154   if (supportsCOMDAT() && GV->isWeakForLinker() &&
5155       !GV->hasAvailableExternallyLinkage())
5156     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
5157 
5158   GV->setAlignment(Alignment);
5159 
5160   return GV;
5161 }
5162 
5163 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
5164 /// given global variable.  If Ty is non-null and if the global doesn't exist,
5165 /// then it will be created with the specified type instead of whatever the
5166 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
5167 /// that an actual global with type Ty will be returned, not conversion of a
5168 /// variable with the same mangled name but some other type.
5169 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
5170                                                   llvm::Type *Ty,
5171                                            ForDefinition_t IsForDefinition) {
5172   assert(D->hasGlobalStorage() && "Not a global variable");
5173   QualType ASTTy = D->getType();
5174   if (!Ty)
5175     Ty = getTypes().ConvertTypeForMem(ASTTy);
5176 
5177   StringRef MangledName = getMangledName(D);
5178   return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D,
5179                                IsForDefinition);
5180 }
5181 
5182 /// CreateRuntimeVariable - Create a new runtime global variable with the
5183 /// specified type and name.
5184 llvm::Constant *
5185 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
5186                                      StringRef Name) {
5187   LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global
5188                                                        : LangAS::Default;
5189   auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr);
5190   setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
5191   return Ret;
5192 }
5193 
5194 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
5195   assert(!D->getInit() && "Cannot emit definite definitions here!");
5196 
5197   StringRef MangledName = getMangledName(D);
5198   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
5199 
5200   // We already have a definition, not declaration, with the same mangled name.
5201   // Emitting of declaration is not required (and actually overwrites emitted
5202   // definition).
5203   if (GV && !GV->isDeclaration())
5204     return;
5205 
5206   // If we have not seen a reference to this variable yet, place it into the
5207   // deferred declarations table to be emitted if needed later.
5208   if (!MustBeEmitted(D) && !GV) {
5209       DeferredDecls[MangledName] = D;
5210       return;
5211   }
5212 
5213   // The tentative definition is the only definition.
5214   EmitGlobalVarDefinition(D);
5215 }
5216 
5217 void CodeGenModule::EmitExternalDeclaration(const DeclaratorDecl *D) {
5218   if (auto const *V = dyn_cast<const VarDecl>(D))
5219     EmitExternalVarDeclaration(V);
5220   if (auto const *FD = dyn_cast<const FunctionDecl>(D))
5221     EmitExternalFunctionDeclaration(FD);
5222 }
5223 
5224 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
5225   return Context.toCharUnitsFromBits(
5226       getDataLayout().getTypeStoreSizeInBits(Ty));
5227 }
5228 
5229 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
5230   if (LangOpts.OpenCL) {
5231     LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
5232     assert(AS == LangAS::opencl_global ||
5233            AS == LangAS::opencl_global_device ||
5234            AS == LangAS::opencl_global_host ||
5235            AS == LangAS::opencl_constant ||
5236            AS == LangAS::opencl_local ||
5237            AS >= LangAS::FirstTargetAddressSpace);
5238     return AS;
5239   }
5240 
5241   if (LangOpts.SYCLIsDevice &&
5242       (!D || D->getType().getAddressSpace() == LangAS::Default))
5243     return LangAS::sycl_global;
5244 
5245   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
5246     if (D) {
5247       if (D->hasAttr<CUDAConstantAttr>())
5248         return LangAS::cuda_constant;
5249       if (D->hasAttr<CUDASharedAttr>())
5250         return LangAS::cuda_shared;
5251       if (D->hasAttr<CUDADeviceAttr>())
5252         return LangAS::cuda_device;
5253       if (D->getType().isConstQualified())
5254         return LangAS::cuda_constant;
5255     }
5256     return LangAS::cuda_device;
5257   }
5258 
5259   if (LangOpts.OpenMP) {
5260     LangAS AS;
5261     if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS))
5262       return AS;
5263   }
5264   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
5265 }
5266 
5267 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const {
5268   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
5269   if (LangOpts.OpenCL)
5270     return LangAS::opencl_constant;
5271   if (LangOpts.SYCLIsDevice)
5272     return LangAS::sycl_global;
5273   if (LangOpts.HIP && LangOpts.CUDAIsDevice && getTriple().isSPIRV())
5274     // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V)
5275     // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up
5276     // with OpVariable instructions with Generic storage class which is not
5277     // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V
5278     // UniformConstant storage class is not viable as pointers to it may not be
5279     // casted to Generic pointers which are used to model HIP's "flat" pointers.
5280     return LangAS::cuda_device;
5281   if (auto AS = getTarget().getConstantAddressSpace())
5282     return *AS;
5283   return LangAS::Default;
5284 }
5285 
5286 // In address space agnostic languages, string literals are in default address
5287 // space in AST. However, certain targets (e.g. amdgcn) request them to be
5288 // emitted in constant address space in LLVM IR. To be consistent with other
5289 // parts of AST, string literal global variables in constant address space
5290 // need to be casted to default address space before being put into address
5291 // map and referenced by other part of CodeGen.
5292 // In OpenCL, string literals are in constant address space in AST, therefore
5293 // they should not be casted to default address space.
5294 static llvm::Constant *
5295 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
5296                                        llvm::GlobalVariable *GV) {
5297   llvm::Constant *Cast = GV;
5298   if (!CGM.getLangOpts().OpenCL) {
5299     auto AS = CGM.GetGlobalConstantAddressSpace();
5300     if (AS != LangAS::Default)
5301       Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
5302           CGM, GV, AS, LangAS::Default,
5303           llvm::PointerType::get(
5304               CGM.getLLVMContext(),
5305               CGM.getContext().getTargetAddressSpace(LangAS::Default)));
5306   }
5307   return Cast;
5308 }
5309 
5310 template<typename SomeDecl>
5311 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
5312                                                llvm::GlobalValue *GV) {
5313   if (!getLangOpts().CPlusPlus)
5314     return;
5315 
5316   // Must have 'used' attribute, or else inline assembly can't rely on
5317   // the name existing.
5318   if (!D->template hasAttr<UsedAttr>())
5319     return;
5320 
5321   // Must have internal linkage and an ordinary name.
5322   if (!D->getIdentifier() || D->getFormalLinkage() != Linkage::Internal)
5323     return;
5324 
5325   // Must be in an extern "C" context. Entities declared directly within
5326   // a record are not extern "C" even if the record is in such a context.
5327   const SomeDecl *First = D->getFirstDecl();
5328   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
5329     return;
5330 
5331   // OK, this is an internal linkage entity inside an extern "C" linkage
5332   // specification. Make a note of that so we can give it the "expected"
5333   // mangled name if nothing else is using that name.
5334   std::pair<StaticExternCMap::iterator, bool> R =
5335       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
5336 
5337   // If we have multiple internal linkage entities with the same name
5338   // in extern "C" regions, none of them gets that name.
5339   if (!R.second)
5340     R.first->second = nullptr;
5341 }
5342 
5343 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
5344   if (!CGM.supportsCOMDAT())
5345     return false;
5346 
5347   if (D.hasAttr<SelectAnyAttr>())
5348     return true;
5349 
5350   GVALinkage Linkage;
5351   if (auto *VD = dyn_cast<VarDecl>(&D))
5352     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
5353   else
5354     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
5355 
5356   switch (Linkage) {
5357   case GVA_Internal:
5358   case GVA_AvailableExternally:
5359   case GVA_StrongExternal:
5360     return false;
5361   case GVA_DiscardableODR:
5362   case GVA_StrongODR:
5363     return true;
5364   }
5365   llvm_unreachable("No such linkage");
5366 }
5367 
5368 bool CodeGenModule::supportsCOMDAT() const {
5369   return getTriple().supportsCOMDAT();
5370 }
5371 
5372 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
5373                                           llvm::GlobalObject &GO) {
5374   if (!shouldBeInCOMDAT(*this, D))
5375     return;
5376   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
5377 }
5378 
5379 /// Pass IsTentative as true if you want to create a tentative definition.
5380 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
5381                                             bool IsTentative) {
5382   // OpenCL global variables of sampler type are translated to function calls,
5383   // therefore no need to be translated.
5384   QualType ASTTy = D->getType();
5385   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
5386     return;
5387 
5388   // If this is OpenMP device, check if it is legal to emit this global
5389   // normally.
5390   if (LangOpts.OpenMPIsTargetDevice && OpenMPRuntime &&
5391       OpenMPRuntime->emitTargetGlobalVariable(D))
5392     return;
5393 
5394   llvm::TrackingVH<llvm::Constant> Init;
5395   bool NeedsGlobalCtor = false;
5396   // Whether the definition of the variable is available externally.
5397   // If yes, we shouldn't emit the GloablCtor and GlobalDtor for the variable
5398   // since this is the job for its original source.
5399   bool IsDefinitionAvailableExternally =
5400       getContext().GetGVALinkageForVariable(D) == GVA_AvailableExternally;
5401   bool NeedsGlobalDtor =
5402       !IsDefinitionAvailableExternally &&
5403       D->needsDestruction(getContext()) == QualType::DK_cxx_destructor;
5404 
5405   // It is helpless to emit the definition for an available_externally variable
5406   // which can't be marked as const.
5407   // We don't need to check if it needs global ctor or dtor. See the above
5408   // comment for ideas.
5409   if (IsDefinitionAvailableExternally &&
5410       (!D->hasConstantInitialization() ||
5411        // TODO: Update this when we have interface to check constexpr
5412        // destructor.
5413        D->needsDestruction(getContext()) ||
5414        !D->getType().isConstantStorage(getContext(), true, true)))
5415     return;
5416 
5417   const VarDecl *InitDecl;
5418   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
5419 
5420   std::optional<ConstantEmitter> emitter;
5421 
5422   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
5423   // as part of their declaration."  Sema has already checked for
5424   // error cases, so we just need to set Init to UndefValue.
5425   bool IsCUDASharedVar =
5426       getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
5427   // Shadows of initialized device-side global variables are also left
5428   // undefined.
5429   // Managed Variables should be initialized on both host side and device side.
5430   bool IsCUDAShadowVar =
5431       !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
5432       (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
5433        D->hasAttr<CUDASharedAttr>());
5434   bool IsCUDADeviceShadowVar =
5435       getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
5436       (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
5437        D->getType()->isCUDADeviceBuiltinTextureType());
5438   if (getLangOpts().CUDA &&
5439       (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar))
5440     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
5441   else if (D->hasAttr<LoaderUninitializedAttr>())
5442     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
5443   else if (!InitExpr) {
5444     // This is a tentative definition; tentative definitions are
5445     // implicitly initialized with { 0 }.
5446     //
5447     // Note that tentative definitions are only emitted at the end of
5448     // a translation unit, so they should never have incomplete
5449     // type. In addition, EmitTentativeDefinition makes sure that we
5450     // never attempt to emit a tentative definition if a real one
5451     // exists. A use may still exists, however, so we still may need
5452     // to do a RAUW.
5453     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
5454     Init = EmitNullConstant(D->getType());
5455   } else {
5456     initializedGlobalDecl = GlobalDecl(D);
5457     emitter.emplace(*this);
5458     llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl);
5459     if (!Initializer) {
5460       QualType T = InitExpr->getType();
5461       if (D->getType()->isReferenceType())
5462         T = D->getType();
5463 
5464       if (getLangOpts().CPlusPlus) {
5465         if (InitDecl->hasFlexibleArrayInit(getContext()))
5466           ErrorUnsupported(D, "flexible array initializer");
5467         Init = EmitNullConstant(T);
5468 
5469         if (!IsDefinitionAvailableExternally)
5470           NeedsGlobalCtor = true;
5471       } else {
5472         ErrorUnsupported(D, "static initializer");
5473         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
5474       }
5475     } else {
5476       Init = Initializer;
5477       // We don't need an initializer, so remove the entry for the delayed
5478       // initializer position (just in case this entry was delayed) if we
5479       // also don't need to register a destructor.
5480       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
5481         DelayedCXXInitPosition.erase(D);
5482 
5483 #ifndef NDEBUG
5484       CharUnits VarSize = getContext().getTypeSizeInChars(ASTTy) +
5485                           InitDecl->getFlexibleArrayInitChars(getContext());
5486       CharUnits CstSize = CharUnits::fromQuantity(
5487           getDataLayout().getTypeAllocSize(Init->getType()));
5488       assert(VarSize == CstSize && "Emitted constant has unexpected size");
5489 #endif
5490     }
5491   }
5492 
5493   llvm::Type* InitType = Init->getType();
5494   llvm::Constant *Entry =
5495       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
5496 
5497   // Strip off pointer casts if we got them.
5498   Entry = Entry->stripPointerCasts();
5499 
5500   // Entry is now either a Function or GlobalVariable.
5501   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
5502 
5503   // We have a definition after a declaration with the wrong type.
5504   // We must make a new GlobalVariable* and update everything that used OldGV
5505   // (a declaration or tentative definition) with the new GlobalVariable*
5506   // (which will be a definition).
5507   //
5508   // This happens if there is a prototype for a global (e.g.
5509   // "extern int x[];") and then a definition of a different type (e.g.
5510   // "int x[10];"). This also happens when an initializer has a different type
5511   // from the type of the global (this happens with unions).
5512   if (!GV || GV->getValueType() != InitType ||
5513       GV->getType()->getAddressSpace() !=
5514           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
5515 
5516     // Move the old entry aside so that we'll create a new one.
5517     Entry->setName(StringRef());
5518 
5519     // Make a new global with the correct type, this is now guaranteed to work.
5520     GV = cast<llvm::GlobalVariable>(
5521         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))
5522             ->stripPointerCasts());
5523 
5524     // Replace all uses of the old global with the new global
5525     llvm::Constant *NewPtrForOldDecl =
5526         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV,
5527                                                              Entry->getType());
5528     Entry->replaceAllUsesWith(NewPtrForOldDecl);
5529 
5530     // Erase the old global, since it is no longer used.
5531     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
5532   }
5533 
5534   MaybeHandleStaticInExternC(D, GV);
5535 
5536   if (D->hasAttr<AnnotateAttr>())
5537     AddGlobalAnnotations(D, GV);
5538 
5539   // Set the llvm linkage type as appropriate.
5540   llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(D);
5541 
5542   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
5543   // the device. [...]"
5544   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
5545   // __device__, declares a variable that: [...]
5546   // Is accessible from all the threads within the grid and from the host
5547   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
5548   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
5549   if (LangOpts.CUDA) {
5550     if (LangOpts.CUDAIsDevice) {
5551       if (Linkage != llvm::GlobalValue::InternalLinkage &&
5552           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
5553            D->getType()->isCUDADeviceBuiltinSurfaceType() ||
5554            D->getType()->isCUDADeviceBuiltinTextureType()))
5555         GV->setExternallyInitialized(true);
5556     } else {
5557       getCUDARuntime().internalizeDeviceSideVar(D, Linkage);
5558     }
5559     getCUDARuntime().handleVarRegistration(D, *GV);
5560   }
5561 
5562   GV->setInitializer(Init);
5563   if (emitter)
5564     emitter->finalize(GV);
5565 
5566   // If it is safe to mark the global 'constant', do so now.
5567   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
5568                   D->getType().isConstantStorage(getContext(), true, true));
5569 
5570   // If it is in a read-only section, mark it 'constant'.
5571   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
5572     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
5573     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
5574       GV->setConstant(true);
5575   }
5576 
5577   CharUnits AlignVal = getContext().getDeclAlign(D);
5578   // Check for alignment specifed in an 'omp allocate' directive.
5579   if (std::optional<CharUnits> AlignValFromAllocate =
5580           getOMPAllocateAlignment(D))
5581     AlignVal = *AlignValFromAllocate;
5582   GV->setAlignment(AlignVal.getAsAlign());
5583 
5584   // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper
5585   // function is only defined alongside the variable, not also alongside
5586   // callers. Normally, all accesses to a thread_local go through the
5587   // thread-wrapper in order to ensure initialization has occurred, underlying
5588   // variable will never be used other than the thread-wrapper, so it can be
5589   // converted to internal linkage.
5590   //
5591   // However, if the variable has the 'constinit' attribute, it _can_ be
5592   // referenced directly, without calling the thread-wrapper, so the linkage
5593   // must not be changed.
5594   //
5595   // Additionally, if the variable isn't plain external linkage, e.g. if it's
5596   // weak or linkonce, the de-duplication semantics are important to preserve,
5597   // so we don't change the linkage.
5598   if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
5599       Linkage == llvm::GlobalValue::ExternalLinkage &&
5600       Context.getTargetInfo().getTriple().isOSDarwin() &&
5601       !D->hasAttr<ConstInitAttr>())
5602     Linkage = llvm::GlobalValue::InternalLinkage;
5603 
5604   GV->setLinkage(Linkage);
5605   if (D->hasAttr<DLLImportAttr>())
5606     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
5607   else if (D->hasAttr<DLLExportAttr>())
5608     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
5609   else
5610     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
5611 
5612   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
5613     // common vars aren't constant even if declared const.
5614     GV->setConstant(false);
5615     // Tentative definition of global variables may be initialized with
5616     // non-zero null pointers. In this case they should have weak linkage
5617     // since common linkage must have zero initializer and must not have
5618     // explicit section therefore cannot have non-zero initial value.
5619     if (!GV->getInitializer()->isNullValue())
5620       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
5621   }
5622 
5623   setNonAliasAttributes(D, GV);
5624 
5625   if (D->getTLSKind() && !GV->isThreadLocal()) {
5626     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
5627       CXXThreadLocals.push_back(D);
5628     setTLSMode(GV, *D);
5629   }
5630 
5631   maybeSetTrivialComdat(*D, *GV);
5632 
5633   // Emit the initializer function if necessary.
5634   if (NeedsGlobalCtor || NeedsGlobalDtor)
5635     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
5636 
5637   SanitizerMD->reportGlobal(GV, *D, NeedsGlobalCtor);
5638 
5639   // Emit global variable debug information.
5640   if (CGDebugInfo *DI = getModuleDebugInfo())
5641     if (getCodeGenOpts().hasReducedDebugInfo())
5642       DI->EmitGlobalVariable(GV, D);
5643 }
5644 
5645 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) {
5646   if (CGDebugInfo *DI = getModuleDebugInfo())
5647     if (getCodeGenOpts().hasReducedDebugInfo()) {
5648       QualType ASTTy = D->getType();
5649       llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType());
5650       llvm::Constant *GV =
5651           GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D);
5652       DI->EmitExternalVariable(
5653           cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D);
5654     }
5655 }
5656 
5657 void CodeGenModule::EmitExternalFunctionDeclaration(const FunctionDecl *FD) {
5658   if (CGDebugInfo *DI = getModuleDebugInfo())
5659     if (getCodeGenOpts().hasReducedDebugInfo()) {
5660       auto *Ty = getTypes().ConvertType(FD->getType());
5661       StringRef MangledName = getMangledName(FD);
5662       auto *Fn = dyn_cast<llvm::Function>(
5663           GetOrCreateLLVMFunction(MangledName, Ty, FD, /* ForVTable */ false));
5664       if (!Fn->getSubprogram())
5665         DI->EmitFunctionDecl(FD, FD->getLocation(), FD->getType(), Fn);
5666     }
5667 }
5668 
5669 static bool isVarDeclStrongDefinition(const ASTContext &Context,
5670                                       CodeGenModule &CGM, const VarDecl *D,
5671                                       bool NoCommon) {
5672   // Don't give variables common linkage if -fno-common was specified unless it
5673   // was overridden by a NoCommon attribute.
5674   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
5675     return true;
5676 
5677   // C11 6.9.2/2:
5678   //   A declaration of an identifier for an object that has file scope without
5679   //   an initializer, and without a storage-class specifier or with the
5680   //   storage-class specifier static, constitutes a tentative definition.
5681   if (D->getInit() || D->hasExternalStorage())
5682     return true;
5683 
5684   // A variable cannot be both common and exist in a section.
5685   if (D->hasAttr<SectionAttr>())
5686     return true;
5687 
5688   // A variable cannot be both common and exist in a section.
5689   // We don't try to determine which is the right section in the front-end.
5690   // If no specialized section name is applicable, it will resort to default.
5691   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
5692       D->hasAttr<PragmaClangDataSectionAttr>() ||
5693       D->hasAttr<PragmaClangRelroSectionAttr>() ||
5694       D->hasAttr<PragmaClangRodataSectionAttr>())
5695     return true;
5696 
5697   // Thread local vars aren't considered common linkage.
5698   if (D->getTLSKind())
5699     return true;
5700 
5701   // Tentative definitions marked with WeakImportAttr are true definitions.
5702   if (D->hasAttr<WeakImportAttr>())
5703     return true;
5704 
5705   // A variable cannot be both common and exist in a comdat.
5706   if (shouldBeInCOMDAT(CGM, *D))
5707     return true;
5708 
5709   // Declarations with a required alignment do not have common linkage in MSVC
5710   // mode.
5711   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
5712     if (D->hasAttr<AlignedAttr>())
5713       return true;
5714     QualType VarType = D->getType();
5715     if (Context.isAlignmentRequired(VarType))
5716       return true;
5717 
5718     if (const auto *RT = VarType->getAs<RecordType>()) {
5719       const RecordDecl *RD = RT->getDecl();
5720       for (const FieldDecl *FD : RD->fields()) {
5721         if (FD->isBitField())
5722           continue;
5723         if (FD->hasAttr<AlignedAttr>())
5724           return true;
5725         if (Context.isAlignmentRequired(FD->getType()))
5726           return true;
5727       }
5728     }
5729   }
5730 
5731   // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
5732   // common symbols, so symbols with greater alignment requirements cannot be
5733   // common.
5734   // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
5735   // alignments for common symbols via the aligncomm directive, so this
5736   // restriction only applies to MSVC environments.
5737   if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
5738       Context.getTypeAlignIfKnown(D->getType()) >
5739           Context.toBits(CharUnits::fromQuantity(32)))
5740     return true;
5741 
5742   return false;
5743 }
5744 
5745 llvm::GlobalValue::LinkageTypes
5746 CodeGenModule::getLLVMLinkageForDeclarator(const DeclaratorDecl *D,
5747                                            GVALinkage Linkage) {
5748   if (Linkage == GVA_Internal)
5749     return llvm::Function::InternalLinkage;
5750 
5751   if (D->hasAttr<WeakAttr>())
5752     return llvm::GlobalVariable::WeakAnyLinkage;
5753 
5754   if (const auto *FD = D->getAsFunction())
5755     if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
5756       return llvm::GlobalVariable::LinkOnceAnyLinkage;
5757 
5758   // We are guaranteed to have a strong definition somewhere else,
5759   // so we can use available_externally linkage.
5760   if (Linkage == GVA_AvailableExternally)
5761     return llvm::GlobalValue::AvailableExternallyLinkage;
5762 
5763   // Note that Apple's kernel linker doesn't support symbol
5764   // coalescing, so we need to avoid linkonce and weak linkages there.
5765   // Normally, this means we just map to internal, but for explicit
5766   // instantiations we'll map to external.
5767 
5768   // In C++, the compiler has to emit a definition in every translation unit
5769   // that references the function.  We should use linkonce_odr because
5770   // a) if all references in this translation unit are optimized away, we
5771   // don't need to codegen it.  b) if the function persists, it needs to be
5772   // merged with other definitions. c) C++ has the ODR, so we know the
5773   // definition is dependable.
5774   if (Linkage == GVA_DiscardableODR)
5775     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
5776                                             : llvm::Function::InternalLinkage;
5777 
5778   // An explicit instantiation of a template has weak linkage, since
5779   // explicit instantiations can occur in multiple translation units
5780   // and must all be equivalent. However, we are not allowed to
5781   // throw away these explicit instantiations.
5782   //
5783   // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU,
5784   // so say that CUDA templates are either external (for kernels) or internal.
5785   // This lets llvm perform aggressive inter-procedural optimizations. For
5786   // -fgpu-rdc case, device function calls across multiple TU's are allowed,
5787   // therefore we need to follow the normal linkage paradigm.
5788   if (Linkage == GVA_StrongODR) {
5789     if (getLangOpts().AppleKext)
5790       return llvm::Function::ExternalLinkage;
5791     if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
5792         !getLangOpts().GPURelocatableDeviceCode)
5793       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
5794                                           : llvm::Function::InternalLinkage;
5795     return llvm::Function::WeakODRLinkage;
5796   }
5797 
5798   // C++ doesn't have tentative definitions and thus cannot have common
5799   // linkage.
5800   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
5801       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
5802                                  CodeGenOpts.NoCommon))
5803     return llvm::GlobalVariable::CommonLinkage;
5804 
5805   // selectany symbols are externally visible, so use weak instead of
5806   // linkonce.  MSVC optimizes away references to const selectany globals, so
5807   // all definitions should be the same and ODR linkage should be used.
5808   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
5809   if (D->hasAttr<SelectAnyAttr>())
5810     return llvm::GlobalVariable::WeakODRLinkage;
5811 
5812   // Otherwise, we have strong external linkage.
5813   assert(Linkage == GVA_StrongExternal);
5814   return llvm::GlobalVariable::ExternalLinkage;
5815 }
5816 
5817 llvm::GlobalValue::LinkageTypes
5818 CodeGenModule::getLLVMLinkageVarDefinition(const VarDecl *VD) {
5819   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
5820   return getLLVMLinkageForDeclarator(VD, Linkage);
5821 }
5822 
5823 /// Replace the uses of a function that was declared with a non-proto type.
5824 /// We want to silently drop extra arguments from call sites
5825 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
5826                                           llvm::Function *newFn) {
5827   // Fast path.
5828   if (old->use_empty())
5829     return;
5830 
5831   llvm::Type *newRetTy = newFn->getReturnType();
5832   SmallVector<llvm::Value *, 4> newArgs;
5833 
5834   SmallVector<llvm::CallBase *> callSitesToBeRemovedFromParent;
5835 
5836   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
5837        ui != ue; ui++) {
5838     llvm::User *user = ui->getUser();
5839 
5840     // Recognize and replace uses of bitcasts.  Most calls to
5841     // unprototyped functions will use bitcasts.
5842     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
5843       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
5844         replaceUsesOfNonProtoConstant(bitcast, newFn);
5845       continue;
5846     }
5847 
5848     // Recognize calls to the function.
5849     llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
5850     if (!callSite)
5851       continue;
5852     if (!callSite->isCallee(&*ui))
5853       continue;
5854 
5855     // If the return types don't match exactly, then we can't
5856     // transform this call unless it's dead.
5857     if (callSite->getType() != newRetTy && !callSite->use_empty())
5858       continue;
5859 
5860     // Get the call site's attribute list.
5861     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
5862     llvm::AttributeList oldAttrs = callSite->getAttributes();
5863 
5864     // If the function was passed too few arguments, don't transform.
5865     unsigned newNumArgs = newFn->arg_size();
5866     if (callSite->arg_size() < newNumArgs)
5867       continue;
5868 
5869     // If extra arguments were passed, we silently drop them.
5870     // If any of the types mismatch, we don't transform.
5871     unsigned argNo = 0;
5872     bool dontTransform = false;
5873     for (llvm::Argument &A : newFn->args()) {
5874       if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
5875         dontTransform = true;
5876         break;
5877       }
5878 
5879       // Add any parameter attributes.
5880       newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo));
5881       argNo++;
5882     }
5883     if (dontTransform)
5884       continue;
5885 
5886     // Okay, we can transform this.  Create the new call instruction and copy
5887     // over the required information.
5888     newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
5889 
5890     // Copy over any operand bundles.
5891     SmallVector<llvm::OperandBundleDef, 1> newBundles;
5892     callSite->getOperandBundlesAsDefs(newBundles);
5893 
5894     llvm::CallBase *newCall;
5895     if (isa<llvm::CallInst>(callSite)) {
5896       newCall =
5897           llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite);
5898     } else {
5899       auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
5900       newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(),
5901                                          oldInvoke->getUnwindDest(), newArgs,
5902                                          newBundles, "", callSite);
5903     }
5904     newArgs.clear(); // for the next iteration
5905 
5906     if (!newCall->getType()->isVoidTy())
5907       newCall->takeName(callSite);
5908     newCall->setAttributes(
5909         llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(),
5910                                  oldAttrs.getRetAttrs(), newArgAttrs));
5911     newCall->setCallingConv(callSite->getCallingConv());
5912 
5913     // Finally, remove the old call, replacing any uses with the new one.
5914     if (!callSite->use_empty())
5915       callSite->replaceAllUsesWith(newCall);
5916 
5917     // Copy debug location attached to CI.
5918     if (callSite->getDebugLoc())
5919       newCall->setDebugLoc(callSite->getDebugLoc());
5920 
5921     callSitesToBeRemovedFromParent.push_back(callSite);
5922   }
5923 
5924   for (auto *callSite : callSitesToBeRemovedFromParent) {
5925     callSite->eraseFromParent();
5926   }
5927 }
5928 
5929 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
5930 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
5931 /// existing call uses of the old function in the module, this adjusts them to
5932 /// call the new function directly.
5933 ///
5934 /// This is not just a cleanup: the always_inline pass requires direct calls to
5935 /// functions to be able to inline them.  If there is a bitcast in the way, it
5936 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
5937 /// run at -O0.
5938 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
5939                                                       llvm::Function *NewFn) {
5940   // If we're redefining a global as a function, don't transform it.
5941   if (!isa<llvm::Function>(Old)) return;
5942 
5943   replaceUsesOfNonProtoConstant(Old, NewFn);
5944 }
5945 
5946 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
5947   auto DK = VD->isThisDeclarationADefinition();
5948   if ((DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) ||
5949       (LangOpts.CUDA && !shouldEmitCUDAGlobalVar(VD)))
5950     return;
5951 
5952   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
5953   // If we have a definition, this might be a deferred decl. If the
5954   // instantiation is explicit, make sure we emit it at the end.
5955   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
5956     GetAddrOfGlobalVar(VD);
5957 
5958   EmitTopLevelDecl(VD);
5959 }
5960 
5961 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
5962                                                  llvm::GlobalValue *GV) {
5963   const auto *D = cast<FunctionDecl>(GD.getDecl());
5964 
5965   // Compute the function info and LLVM type.
5966   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
5967   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
5968 
5969   // Get or create the prototype for the function.
5970   if (!GV || (GV->getValueType() != Ty))
5971     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
5972                                                    /*DontDefer=*/true,
5973                                                    ForDefinition));
5974 
5975   // Already emitted.
5976   if (!GV->isDeclaration())
5977     return;
5978 
5979   // We need to set linkage and visibility on the function before
5980   // generating code for it because various parts of IR generation
5981   // want to propagate this information down (e.g. to local static
5982   // declarations).
5983   auto *Fn = cast<llvm::Function>(GV);
5984   setFunctionLinkage(GD, Fn);
5985 
5986   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
5987   setGVProperties(Fn, GD);
5988 
5989   MaybeHandleStaticInExternC(D, Fn);
5990 
5991   maybeSetTrivialComdat(*D, *Fn);
5992 
5993   CodeGenFunction(*this).GenerateCode(GD, Fn, FI);
5994 
5995   setNonAliasAttributes(GD, Fn);
5996   SetLLVMFunctionAttributesForDefinition(D, Fn);
5997 
5998   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
5999     AddGlobalCtor(Fn, CA->getPriority());
6000   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
6001     AddGlobalDtor(Fn, DA->getPriority(), true);
6002   if (getLangOpts().OpenMP && D->hasAttr<OMPDeclareTargetDeclAttr>())
6003     getOpenMPRuntime().emitDeclareTargetFunction(D, GV);
6004 }
6005 
6006 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
6007   const auto *D = cast<ValueDecl>(GD.getDecl());
6008   const AliasAttr *AA = D->getAttr<AliasAttr>();
6009   assert(AA && "Not an alias?");
6010 
6011   StringRef MangledName = getMangledName(GD);
6012 
6013   if (AA->getAliasee() == MangledName) {
6014     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
6015     return;
6016   }
6017 
6018   // If there is a definition in the module, then it wins over the alias.
6019   // This is dubious, but allow it to be safe.  Just ignore the alias.
6020   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
6021   if (Entry && !Entry->isDeclaration())
6022     return;
6023 
6024   Aliases.push_back(GD);
6025 
6026   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
6027 
6028   // Create a reference to the named value.  This ensures that it is emitted
6029   // if a deferred decl.
6030   llvm::Constant *Aliasee;
6031   llvm::GlobalValue::LinkageTypes LT;
6032   if (isa<llvm::FunctionType>(DeclTy)) {
6033     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
6034                                       /*ForVTable=*/false);
6035     LT = getFunctionLinkage(GD);
6036   } else {
6037     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
6038                                     /*D=*/nullptr);
6039     if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl()))
6040       LT = getLLVMLinkageVarDefinition(VD);
6041     else
6042       LT = getFunctionLinkage(GD);
6043   }
6044 
6045   // Create the new alias itself, but don't set a name yet.
6046   unsigned AS = Aliasee->getType()->getPointerAddressSpace();
6047   auto *GA =
6048       llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule());
6049 
6050   if (Entry) {
6051     if (GA->getAliasee() == Entry) {
6052       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
6053       return;
6054     }
6055 
6056     assert(Entry->isDeclaration());
6057 
6058     // If there is a declaration in the module, then we had an extern followed
6059     // by the alias, as in:
6060     //   extern int test6();
6061     //   ...
6062     //   int test6() __attribute__((alias("test7")));
6063     //
6064     // Remove it and replace uses of it with the alias.
6065     GA->takeName(Entry);
6066 
6067     Entry->replaceAllUsesWith(GA);
6068     Entry->eraseFromParent();
6069   } else {
6070     GA->setName(MangledName);
6071   }
6072 
6073   // Set attributes which are particular to an alias; this is a
6074   // specialization of the attributes which may be set on a global
6075   // variable/function.
6076   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
6077       D->isWeakImported()) {
6078     GA->setLinkage(llvm::Function::WeakAnyLinkage);
6079   }
6080 
6081   if (const auto *VD = dyn_cast<VarDecl>(D))
6082     if (VD->getTLSKind())
6083       setTLSMode(GA, *VD);
6084 
6085   SetCommonAttributes(GD, GA);
6086 
6087   // Emit global alias debug information.
6088   if (isa<VarDecl>(D))
6089     if (CGDebugInfo *DI = getModuleDebugInfo())
6090       DI->EmitGlobalAlias(cast<llvm::GlobalValue>(GA->getAliasee()->stripPointerCasts()), GD);
6091 }
6092 
6093 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
6094   const auto *D = cast<ValueDecl>(GD.getDecl());
6095   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
6096   assert(IFA && "Not an ifunc?");
6097 
6098   StringRef MangledName = getMangledName(GD);
6099 
6100   if (IFA->getResolver() == MangledName) {
6101     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
6102     return;
6103   }
6104 
6105   // Report an error if some definition overrides ifunc.
6106   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
6107   if (Entry && !Entry->isDeclaration()) {
6108     GlobalDecl OtherGD;
6109     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
6110         DiagnosedConflictingDefinitions.insert(GD).second) {
6111       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
6112           << MangledName;
6113       Diags.Report(OtherGD.getDecl()->getLocation(),
6114                    diag::note_previous_definition);
6115     }
6116     return;
6117   }
6118 
6119   Aliases.push_back(GD);
6120 
6121   // The resolver might not be visited yet. Specify a dummy non-function type to
6122   // indicate IsIncompleteFunction. Either the type is ignored (if the resolver
6123   // was emitted) or the whole function will be replaced (if the resolver has
6124   // not been emitted).
6125   llvm::Constant *Resolver =
6126       GetOrCreateLLVMFunction(IFA->getResolver(), VoidTy, {},
6127                               /*ForVTable=*/false);
6128   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
6129   llvm::GlobalIFunc *GIF =
6130       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
6131                                 "", Resolver, &getModule());
6132   if (Entry) {
6133     if (GIF->getResolver() == Entry) {
6134       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
6135       return;
6136     }
6137     assert(Entry->isDeclaration());
6138 
6139     // If there is a declaration in the module, then we had an extern followed
6140     // by the ifunc, as in:
6141     //   extern int test();
6142     //   ...
6143     //   int test() __attribute__((ifunc("resolver")));
6144     //
6145     // Remove it and replace uses of it with the ifunc.
6146     GIF->takeName(Entry);
6147 
6148     Entry->replaceAllUsesWith(GIF);
6149     Entry->eraseFromParent();
6150   } else
6151     GIF->setName(MangledName);
6152   SetCommonAttributes(GD, GIF);
6153 }
6154 
6155 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
6156                                             ArrayRef<llvm::Type*> Tys) {
6157   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
6158                                          Tys);
6159 }
6160 
6161 static llvm::StringMapEntry<llvm::GlobalVariable *> &
6162 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
6163                          const StringLiteral *Literal, bool TargetIsLSB,
6164                          bool &IsUTF16, unsigned &StringLength) {
6165   StringRef String = Literal->getString();
6166   unsigned NumBytes = String.size();
6167 
6168   // Check for simple case.
6169   if (!Literal->containsNonAsciiOrNull()) {
6170     StringLength = NumBytes;
6171     return *Map.insert(std::make_pair(String, nullptr)).first;
6172   }
6173 
6174   // Otherwise, convert the UTF8 literals into a string of shorts.
6175   IsUTF16 = true;
6176 
6177   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
6178   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
6179   llvm::UTF16 *ToPtr = &ToBuf[0];
6180 
6181   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
6182                                  ToPtr + NumBytes, llvm::strictConversion);
6183 
6184   // ConvertUTF8toUTF16 returns the length in ToPtr.
6185   StringLength = ToPtr - &ToBuf[0];
6186 
6187   // Add an explicit null.
6188   *ToPtr = 0;
6189   return *Map.insert(std::make_pair(
6190                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
6191                                    (StringLength + 1) * 2),
6192                          nullptr)).first;
6193 }
6194 
6195 ConstantAddress
6196 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
6197   unsigned StringLength = 0;
6198   bool isUTF16 = false;
6199   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
6200       GetConstantCFStringEntry(CFConstantStringMap, Literal,
6201                                getDataLayout().isLittleEndian(), isUTF16,
6202                                StringLength);
6203 
6204   if (auto *C = Entry.second)
6205     return ConstantAddress(
6206         C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment()));
6207 
6208   const ASTContext &Context = getContext();
6209   const llvm::Triple &Triple = getTriple();
6210 
6211   const auto CFRuntime = getLangOpts().CFRuntime;
6212   const bool IsSwiftABI =
6213       static_cast<unsigned>(CFRuntime) >=
6214       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
6215   const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
6216 
6217   // If we don't already have it, get __CFConstantStringClassReference.
6218   if (!CFConstantStringClassRef) {
6219     const char *CFConstantStringClassName = "__CFConstantStringClassReference";
6220     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
6221     Ty = llvm::ArrayType::get(Ty, 0);
6222 
6223     switch (CFRuntime) {
6224     default: break;
6225     case LangOptions::CoreFoundationABI::Swift: [[fallthrough]];
6226     case LangOptions::CoreFoundationABI::Swift5_0:
6227       CFConstantStringClassName =
6228           Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
6229                               : "$s10Foundation19_NSCFConstantStringCN";
6230       Ty = IntPtrTy;
6231       break;
6232     case LangOptions::CoreFoundationABI::Swift4_2:
6233       CFConstantStringClassName =
6234           Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
6235                               : "$S10Foundation19_NSCFConstantStringCN";
6236       Ty = IntPtrTy;
6237       break;
6238     case LangOptions::CoreFoundationABI::Swift4_1:
6239       CFConstantStringClassName =
6240           Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
6241                               : "__T010Foundation19_NSCFConstantStringCN";
6242       Ty = IntPtrTy;
6243       break;
6244     }
6245 
6246     llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
6247 
6248     if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
6249       llvm::GlobalValue *GV = nullptr;
6250 
6251       if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
6252         IdentifierInfo &II = Context.Idents.get(GV->getName());
6253         TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
6254         DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
6255 
6256         const VarDecl *VD = nullptr;
6257         for (const auto *Result : DC->lookup(&II))
6258           if ((VD = dyn_cast<VarDecl>(Result)))
6259             break;
6260 
6261         if (Triple.isOSBinFormatELF()) {
6262           if (!VD)
6263             GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
6264         } else {
6265           GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
6266           if (!VD || !VD->hasAttr<DLLExportAttr>())
6267             GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
6268           else
6269             GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
6270         }
6271 
6272         setDSOLocal(GV);
6273       }
6274     }
6275 
6276     // Decay array -> ptr
6277     CFConstantStringClassRef =
6278         IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) : C;
6279   }
6280 
6281   QualType CFTy = Context.getCFConstantStringType();
6282 
6283   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
6284 
6285   ConstantInitBuilder Builder(*this);
6286   auto Fields = Builder.beginStruct(STy);
6287 
6288   // Class pointer.
6289   Fields.add(cast<llvm::Constant>(CFConstantStringClassRef));
6290 
6291   // Flags.
6292   if (IsSwiftABI) {
6293     Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
6294     Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
6295   } else {
6296     Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
6297   }
6298 
6299   // String pointer.
6300   llvm::Constant *C = nullptr;
6301   if (isUTF16) {
6302     auto Arr = llvm::ArrayRef(
6303         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
6304         Entry.first().size() / 2);
6305     C = llvm::ConstantDataArray::get(VMContext, Arr);
6306   } else {
6307     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
6308   }
6309 
6310   // Note: -fwritable-strings doesn't make the backing store strings of
6311   // CFStrings writable.
6312   auto *GV =
6313       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
6314                                llvm::GlobalValue::PrivateLinkage, C, ".str");
6315   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
6316   // Don't enforce the target's minimum global alignment, since the only use
6317   // of the string is via this class initializer.
6318   CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
6319                             : Context.getTypeAlignInChars(Context.CharTy);
6320   GV->setAlignment(Align.getAsAlign());
6321 
6322   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
6323   // Without it LLVM can merge the string with a non unnamed_addr one during
6324   // LTO.  Doing that changes the section it ends in, which surprises ld64.
6325   if (Triple.isOSBinFormatMachO())
6326     GV->setSection(isUTF16 ? "__TEXT,__ustring"
6327                            : "__TEXT,__cstring,cstring_literals");
6328   // Make sure the literal ends up in .rodata to allow for safe ICF and for
6329   // the static linker to adjust permissions to read-only later on.
6330   else if (Triple.isOSBinFormatELF())
6331     GV->setSection(".rodata");
6332 
6333   // String.
6334   Fields.add(GV);
6335 
6336   // String length.
6337   llvm::IntegerType *LengthTy =
6338       llvm::IntegerType::get(getModule().getContext(),
6339                              Context.getTargetInfo().getLongWidth());
6340   if (IsSwiftABI) {
6341     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
6342         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
6343       LengthTy = Int32Ty;
6344     else
6345       LengthTy = IntPtrTy;
6346   }
6347   Fields.addInt(LengthTy, StringLength);
6348 
6349   // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is
6350   // properly aligned on 32-bit platforms.
6351   CharUnits Alignment =
6352       IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign();
6353 
6354   // The struct.
6355   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
6356                                     /*isConstant=*/false,
6357                                     llvm::GlobalVariable::PrivateLinkage);
6358   GV->addAttribute("objc_arc_inert");
6359   switch (Triple.getObjectFormat()) {
6360   case llvm::Triple::UnknownObjectFormat:
6361     llvm_unreachable("unknown file format");
6362   case llvm::Triple::DXContainer:
6363   case llvm::Triple::GOFF:
6364   case llvm::Triple::SPIRV:
6365   case llvm::Triple::XCOFF:
6366     llvm_unreachable("unimplemented");
6367   case llvm::Triple::COFF:
6368   case llvm::Triple::ELF:
6369   case llvm::Triple::Wasm:
6370     GV->setSection("cfstring");
6371     break;
6372   case llvm::Triple::MachO:
6373     GV->setSection("__DATA,__cfstring");
6374     break;
6375   }
6376   Entry.second = GV;
6377 
6378   return ConstantAddress(GV, GV->getValueType(), Alignment);
6379 }
6380 
6381 bool CodeGenModule::getExpressionLocationsEnabled() const {
6382   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
6383 }
6384 
6385 QualType CodeGenModule::getObjCFastEnumerationStateType() {
6386   if (ObjCFastEnumerationStateType.isNull()) {
6387     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
6388     D->startDefinition();
6389 
6390     QualType FieldTypes[] = {
6391         Context.UnsignedLongTy, Context.getPointerType(Context.getObjCIdType()),
6392         Context.getPointerType(Context.UnsignedLongTy),
6393         Context.getConstantArrayType(Context.UnsignedLongTy, llvm::APInt(32, 5),
6394                                      nullptr, ArraySizeModifier::Normal, 0)};
6395 
6396     for (size_t i = 0; i < 4; ++i) {
6397       FieldDecl *Field = FieldDecl::Create(Context,
6398                                            D,
6399                                            SourceLocation(),
6400                                            SourceLocation(), nullptr,
6401                                            FieldTypes[i], /*TInfo=*/nullptr,
6402                                            /*BitWidth=*/nullptr,
6403                                            /*Mutable=*/false,
6404                                            ICIS_NoInit);
6405       Field->setAccess(AS_public);
6406       D->addDecl(Field);
6407     }
6408 
6409     D->completeDefinition();
6410     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
6411   }
6412 
6413   return ObjCFastEnumerationStateType;
6414 }
6415 
6416 llvm::Constant *
6417 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
6418   assert(!E->getType()->isPointerType() && "Strings are always arrays");
6419 
6420   // Don't emit it as the address of the string, emit the string data itself
6421   // as an inline array.
6422   if (E->getCharByteWidth() == 1) {
6423     SmallString<64> Str(E->getString());
6424 
6425     // Resize the string to the right size, which is indicated by its type.
6426     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
6427     assert(CAT && "String literal not of constant array type!");
6428     Str.resize(CAT->getZExtSize());
6429     return llvm::ConstantDataArray::getString(VMContext, Str, false);
6430   }
6431 
6432   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
6433   llvm::Type *ElemTy = AType->getElementType();
6434   unsigned NumElements = AType->getNumElements();
6435 
6436   // Wide strings have either 2-byte or 4-byte elements.
6437   if (ElemTy->getPrimitiveSizeInBits() == 16) {
6438     SmallVector<uint16_t, 32> Elements;
6439     Elements.reserve(NumElements);
6440 
6441     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
6442       Elements.push_back(E->getCodeUnit(i));
6443     Elements.resize(NumElements);
6444     return llvm::ConstantDataArray::get(VMContext, Elements);
6445   }
6446 
6447   assert(ElemTy->getPrimitiveSizeInBits() == 32);
6448   SmallVector<uint32_t, 32> Elements;
6449   Elements.reserve(NumElements);
6450 
6451   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
6452     Elements.push_back(E->getCodeUnit(i));
6453   Elements.resize(NumElements);
6454   return llvm::ConstantDataArray::get(VMContext, Elements);
6455 }
6456 
6457 static llvm::GlobalVariable *
6458 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
6459                       CodeGenModule &CGM, StringRef GlobalName,
6460                       CharUnits Alignment) {
6461   unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
6462       CGM.GetGlobalConstantAddressSpace());
6463 
6464   llvm::Module &M = CGM.getModule();
6465   // Create a global variable for this string
6466   auto *GV = new llvm::GlobalVariable(
6467       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
6468       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
6469   GV->setAlignment(Alignment.getAsAlign());
6470   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
6471   if (GV->isWeakForLinker()) {
6472     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
6473     GV->setComdat(M.getOrInsertComdat(GV->getName()));
6474   }
6475   CGM.setDSOLocal(GV);
6476 
6477   return GV;
6478 }
6479 
6480 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
6481 /// constant array for the given string literal.
6482 ConstantAddress
6483 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
6484                                                   StringRef Name) {
6485   CharUnits Alignment =
6486       getContext().getAlignOfGlobalVarInChars(S->getType(), /*VD=*/nullptr);
6487 
6488   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
6489   llvm::GlobalVariable **Entry = nullptr;
6490   if (!LangOpts.WritableStrings) {
6491     Entry = &ConstantStringMap[C];
6492     if (auto GV = *Entry) {
6493       if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
6494         GV->setAlignment(Alignment.getAsAlign());
6495       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6496                              GV->getValueType(), Alignment);
6497     }
6498   }
6499 
6500   SmallString<256> MangledNameBuffer;
6501   StringRef GlobalVariableName;
6502   llvm::GlobalValue::LinkageTypes LT;
6503 
6504   // Mangle the string literal if that's how the ABI merges duplicate strings.
6505   // Don't do it if they are writable, since we don't want writes in one TU to
6506   // affect strings in another.
6507   if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
6508       !LangOpts.WritableStrings) {
6509     llvm::raw_svector_ostream Out(MangledNameBuffer);
6510     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
6511     LT = llvm::GlobalValue::LinkOnceODRLinkage;
6512     GlobalVariableName = MangledNameBuffer;
6513   } else {
6514     LT = llvm::GlobalValue::PrivateLinkage;
6515     GlobalVariableName = Name;
6516   }
6517 
6518   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
6519 
6520   CGDebugInfo *DI = getModuleDebugInfo();
6521   if (DI && getCodeGenOpts().hasReducedDebugInfo())
6522     DI->AddStringLiteralDebugInfo(GV, S);
6523 
6524   if (Entry)
6525     *Entry = GV;
6526 
6527   SanitizerMD->reportGlobal(GV, S->getStrTokenLoc(0), "<string literal>");
6528 
6529   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6530                          GV->getValueType(), Alignment);
6531 }
6532 
6533 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
6534 /// array for the given ObjCEncodeExpr node.
6535 ConstantAddress
6536 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
6537   std::string Str;
6538   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
6539 
6540   return GetAddrOfConstantCString(Str);
6541 }
6542 
6543 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
6544 /// the literal and a terminating '\0' character.
6545 /// The result has pointer to array type.
6546 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
6547     const std::string &Str, const char *GlobalName) {
6548   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
6549   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(
6550       getContext().CharTy, /*VD=*/nullptr);
6551 
6552   llvm::Constant *C =
6553       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
6554 
6555   // Don't share any string literals if strings aren't constant.
6556   llvm::GlobalVariable **Entry = nullptr;
6557   if (!LangOpts.WritableStrings) {
6558     Entry = &ConstantStringMap[C];
6559     if (auto GV = *Entry) {
6560       if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
6561         GV->setAlignment(Alignment.getAsAlign());
6562       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6563                              GV->getValueType(), Alignment);
6564     }
6565   }
6566 
6567   // Get the default prefix if a name wasn't specified.
6568   if (!GlobalName)
6569     GlobalName = ".str";
6570   // Create a global variable for this.
6571   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
6572                                   GlobalName, Alignment);
6573   if (Entry)
6574     *Entry = GV;
6575 
6576   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6577                          GV->getValueType(), Alignment);
6578 }
6579 
6580 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
6581     const MaterializeTemporaryExpr *E, const Expr *Init) {
6582   assert((E->getStorageDuration() == SD_Static ||
6583           E->getStorageDuration() == SD_Thread) && "not a global temporary");
6584   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
6585 
6586   // If we're not materializing a subobject of the temporary, keep the
6587   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
6588   QualType MaterializedType = Init->getType();
6589   if (Init == E->getSubExpr())
6590     MaterializedType = E->getType();
6591 
6592   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
6593 
6594   auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr});
6595   if (!InsertResult.second) {
6596     // We've seen this before: either we already created it or we're in the
6597     // process of doing so.
6598     if (!InsertResult.first->second) {
6599       // We recursively re-entered this function, probably during emission of
6600       // the initializer. Create a placeholder. We'll clean this up in the
6601       // outer call, at the end of this function.
6602       llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType);
6603       InsertResult.first->second = new llvm::GlobalVariable(
6604           getModule(), Type, false, llvm::GlobalVariable::InternalLinkage,
6605           nullptr);
6606     }
6607     return ConstantAddress(InsertResult.first->second,
6608                            llvm::cast<llvm::GlobalVariable>(
6609                                InsertResult.first->second->stripPointerCasts())
6610                                ->getValueType(),
6611                            Align);
6612   }
6613 
6614   // FIXME: If an externally-visible declaration extends multiple temporaries,
6615   // we need to give each temporary the same name in every translation unit (and
6616   // we also need to make the temporaries externally-visible).
6617   SmallString<256> Name;
6618   llvm::raw_svector_ostream Out(Name);
6619   getCXXABI().getMangleContext().mangleReferenceTemporary(
6620       VD, E->getManglingNumber(), Out);
6621 
6622   APValue *Value = nullptr;
6623   if (E->getStorageDuration() == SD_Static && VD->evaluateValue()) {
6624     // If the initializer of the extending declaration is a constant
6625     // initializer, we should have a cached constant initializer for this
6626     // temporary. Note that this might have a different value from the value
6627     // computed by evaluating the initializer if the surrounding constant
6628     // expression modifies the temporary.
6629     Value = E->getOrCreateValue(false);
6630   }
6631 
6632   // Try evaluating it now, it might have a constant initializer.
6633   Expr::EvalResult EvalResult;
6634   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
6635       !EvalResult.hasSideEffects())
6636     Value = &EvalResult.Val;
6637 
6638   LangAS AddrSpace = GetGlobalVarAddressSpace(VD);
6639 
6640   std::optional<ConstantEmitter> emitter;
6641   llvm::Constant *InitialValue = nullptr;
6642   bool Constant = false;
6643   llvm::Type *Type;
6644   if (Value) {
6645     // The temporary has a constant initializer, use it.
6646     emitter.emplace(*this);
6647     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
6648                                                MaterializedType);
6649     Constant =
6650         MaterializedType.isConstantStorage(getContext(), /*ExcludeCtor*/ Value,
6651                                            /*ExcludeDtor*/ false);
6652     Type = InitialValue->getType();
6653   } else {
6654     // No initializer, the initialization will be provided when we
6655     // initialize the declaration which performed lifetime extension.
6656     Type = getTypes().ConvertTypeForMem(MaterializedType);
6657   }
6658 
6659   // Create a global variable for this lifetime-extended temporary.
6660   llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(VD);
6661   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
6662     const VarDecl *InitVD;
6663     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
6664         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
6665       // Temporaries defined inside a class get linkonce_odr linkage because the
6666       // class can be defined in multiple translation units.
6667       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
6668     } else {
6669       // There is no need for this temporary to have external linkage if the
6670       // VarDecl has external linkage.
6671       Linkage = llvm::GlobalVariable::InternalLinkage;
6672     }
6673   }
6674   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
6675   auto *GV = new llvm::GlobalVariable(
6676       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
6677       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
6678   if (emitter) emitter->finalize(GV);
6679   // Don't assign dllimport or dllexport to local linkage globals.
6680   if (!llvm::GlobalValue::isLocalLinkage(Linkage)) {
6681     setGVProperties(GV, VD);
6682     if (GV->getDLLStorageClass() == llvm::GlobalVariable::DLLExportStorageClass)
6683       // The reference temporary should never be dllexport.
6684       GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
6685   }
6686   GV->setAlignment(Align.getAsAlign());
6687   if (supportsCOMDAT() && GV->isWeakForLinker())
6688     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
6689   if (VD->getTLSKind())
6690     setTLSMode(GV, *VD);
6691   llvm::Constant *CV = GV;
6692   if (AddrSpace != LangAS::Default)
6693     CV = getTargetCodeGenInfo().performAddrSpaceCast(
6694         *this, GV, AddrSpace, LangAS::Default,
6695         llvm::PointerType::get(
6696             getLLVMContext(),
6697             getContext().getTargetAddressSpace(LangAS::Default)));
6698 
6699   // Update the map with the new temporary. If we created a placeholder above,
6700   // replace it with the new global now.
6701   llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E];
6702   if (Entry) {
6703     Entry->replaceAllUsesWith(CV);
6704     llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent();
6705   }
6706   Entry = CV;
6707 
6708   return ConstantAddress(CV, Type, Align);
6709 }
6710 
6711 /// EmitObjCPropertyImplementations - Emit information for synthesized
6712 /// properties for an implementation.
6713 void CodeGenModule::EmitObjCPropertyImplementations(const
6714                                                     ObjCImplementationDecl *D) {
6715   for (const auto *PID : D->property_impls()) {
6716     // Dynamic is just for type-checking.
6717     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
6718       ObjCPropertyDecl *PD = PID->getPropertyDecl();
6719 
6720       // Determine which methods need to be implemented, some may have
6721       // been overridden. Note that ::isPropertyAccessor is not the method
6722       // we want, that just indicates if the decl came from a
6723       // property. What we want to know is if the method is defined in
6724       // this implementation.
6725       auto *Getter = PID->getGetterMethodDecl();
6726       if (!Getter || Getter->isSynthesizedAccessorStub())
6727         CodeGenFunction(*this).GenerateObjCGetter(
6728             const_cast<ObjCImplementationDecl *>(D), PID);
6729       auto *Setter = PID->getSetterMethodDecl();
6730       if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub()))
6731         CodeGenFunction(*this).GenerateObjCSetter(
6732                                  const_cast<ObjCImplementationDecl *>(D), PID);
6733     }
6734   }
6735 }
6736 
6737 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
6738   const ObjCInterfaceDecl *iface = impl->getClassInterface();
6739   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
6740        ivar; ivar = ivar->getNextIvar())
6741     if (ivar->getType().isDestructedType())
6742       return true;
6743 
6744   return false;
6745 }
6746 
6747 static bool AllTrivialInitializers(CodeGenModule &CGM,
6748                                    ObjCImplementationDecl *D) {
6749   CodeGenFunction CGF(CGM);
6750   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
6751        E = D->init_end(); B != E; ++B) {
6752     CXXCtorInitializer *CtorInitExp = *B;
6753     Expr *Init = CtorInitExp->getInit();
6754     if (!CGF.isTrivialInitializer(Init))
6755       return false;
6756   }
6757   return true;
6758 }
6759 
6760 /// EmitObjCIvarInitializations - Emit information for ivar initialization
6761 /// for an implementation.
6762 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
6763   // We might need a .cxx_destruct even if we don't have any ivar initializers.
6764   if (needsDestructMethod(D)) {
6765     const IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
6766     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
6767     ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(
6768         getContext(), D->getLocation(), D->getLocation(), cxxSelector,
6769         getContext().VoidTy, nullptr, D,
6770         /*isInstance=*/true, /*isVariadic=*/false,
6771         /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
6772         /*isImplicitlyDeclared=*/true,
6773         /*isDefined=*/false, ObjCImplementationControl::Required);
6774     D->addInstanceMethod(DTORMethod);
6775     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
6776     D->setHasDestructors(true);
6777   }
6778 
6779   // If the implementation doesn't have any ivar initializers, we don't need
6780   // a .cxx_construct.
6781   if (D->getNumIvarInitializers() == 0 ||
6782       AllTrivialInitializers(*this, D))
6783     return;
6784 
6785   const IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
6786   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
6787   // The constructor returns 'self'.
6788   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(
6789       getContext(), D->getLocation(), D->getLocation(), cxxSelector,
6790       getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true,
6791       /*isVariadic=*/false,
6792       /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
6793       /*isImplicitlyDeclared=*/true,
6794       /*isDefined=*/false, ObjCImplementationControl::Required);
6795   D->addInstanceMethod(CTORMethod);
6796   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
6797   D->setHasNonZeroConstructors(true);
6798 }
6799 
6800 // EmitLinkageSpec - Emit all declarations in a linkage spec.
6801 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
6802   if (LSD->getLanguage() != LinkageSpecLanguageIDs::C &&
6803       LSD->getLanguage() != LinkageSpecLanguageIDs::CXX) {
6804     ErrorUnsupported(LSD, "linkage spec");
6805     return;
6806   }
6807 
6808   EmitDeclContext(LSD);
6809 }
6810 
6811 void CodeGenModule::EmitTopLevelStmt(const TopLevelStmtDecl *D) {
6812   // Device code should not be at top level.
6813   if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
6814     return;
6815 
6816   std::unique_ptr<CodeGenFunction> &CurCGF =
6817       GlobalTopLevelStmtBlockInFlight.first;
6818 
6819   // We emitted a top-level stmt but after it there is initialization.
6820   // Stop squashing the top-level stmts into a single function.
6821   if (CurCGF && CXXGlobalInits.back() != CurCGF->CurFn) {
6822     CurCGF->FinishFunction(D->getEndLoc());
6823     CurCGF = nullptr;
6824   }
6825 
6826   if (!CurCGF) {
6827     // void __stmts__N(void)
6828     // FIXME: Ask the ABI name mangler to pick a name.
6829     std::string Name = "__stmts__" + llvm::utostr(CXXGlobalInits.size());
6830     FunctionArgList Args;
6831     QualType RetTy = getContext().VoidTy;
6832     const CGFunctionInfo &FnInfo =
6833         getTypes().arrangeBuiltinFunctionDeclaration(RetTy, Args);
6834     llvm::FunctionType *FnTy = getTypes().GetFunctionType(FnInfo);
6835     llvm::Function *Fn = llvm::Function::Create(
6836         FnTy, llvm::GlobalValue::InternalLinkage, Name, &getModule());
6837 
6838     CurCGF.reset(new CodeGenFunction(*this));
6839     GlobalTopLevelStmtBlockInFlight.second = D;
6840     CurCGF->StartFunction(GlobalDecl(), RetTy, Fn, FnInfo, Args,
6841                           D->getBeginLoc(), D->getBeginLoc());
6842     CXXGlobalInits.push_back(Fn);
6843   }
6844 
6845   CurCGF->EmitStmt(D->getStmt());
6846 }
6847 
6848 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
6849   for (auto *I : DC->decls()) {
6850     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
6851     // are themselves considered "top-level", so EmitTopLevelDecl on an
6852     // ObjCImplDecl does not recursively visit them. We need to do that in
6853     // case they're nested inside another construct (LinkageSpecDecl /
6854     // ExportDecl) that does stop them from being considered "top-level".
6855     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
6856       for (auto *M : OID->methods())
6857         EmitTopLevelDecl(M);
6858     }
6859 
6860     EmitTopLevelDecl(I);
6861   }
6862 }
6863 
6864 /// EmitTopLevelDecl - Emit code for a single top level declaration.
6865 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
6866   // Ignore dependent declarations.
6867   if (D->isTemplated())
6868     return;
6869 
6870   // Consteval function shouldn't be emitted.
6871   if (auto *FD = dyn_cast<FunctionDecl>(D); FD && FD->isImmediateFunction())
6872     return;
6873 
6874   switch (D->getKind()) {
6875   case Decl::CXXConversion:
6876   case Decl::CXXMethod:
6877   case Decl::Function:
6878     EmitGlobal(cast<FunctionDecl>(D));
6879     // Always provide some coverage mapping
6880     // even for the functions that aren't emitted.
6881     AddDeferredUnusedCoverageMapping(D);
6882     break;
6883 
6884   case Decl::CXXDeductionGuide:
6885     // Function-like, but does not result in code emission.
6886     break;
6887 
6888   case Decl::Var:
6889   case Decl::Decomposition:
6890   case Decl::VarTemplateSpecialization:
6891     EmitGlobal(cast<VarDecl>(D));
6892     if (auto *DD = dyn_cast<DecompositionDecl>(D))
6893       for (auto *B : DD->bindings())
6894         if (auto *HD = B->getHoldingVar())
6895           EmitGlobal(HD);
6896     break;
6897 
6898   // Indirect fields from global anonymous structs and unions can be
6899   // ignored; only the actual variable requires IR gen support.
6900   case Decl::IndirectField:
6901     break;
6902 
6903   // C++ Decls
6904   case Decl::Namespace:
6905     EmitDeclContext(cast<NamespaceDecl>(D));
6906     break;
6907   case Decl::ClassTemplateSpecialization: {
6908     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
6909     if (CGDebugInfo *DI = getModuleDebugInfo())
6910       if (Spec->getSpecializationKind() ==
6911               TSK_ExplicitInstantiationDefinition &&
6912           Spec->hasDefinition())
6913         DI->completeTemplateDefinition(*Spec);
6914   } [[fallthrough]];
6915   case Decl::CXXRecord: {
6916     CXXRecordDecl *CRD = cast<CXXRecordDecl>(D);
6917     if (CGDebugInfo *DI = getModuleDebugInfo()) {
6918       if (CRD->hasDefinition())
6919         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
6920       if (auto *ES = D->getASTContext().getExternalSource())
6921         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
6922           DI->completeUnusedClass(*CRD);
6923     }
6924     // Emit any static data members, they may be definitions.
6925     for (auto *I : CRD->decls())
6926       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
6927         EmitTopLevelDecl(I);
6928     break;
6929   }
6930     // No code generation needed.
6931   case Decl::UsingShadow:
6932   case Decl::ClassTemplate:
6933   case Decl::VarTemplate:
6934   case Decl::Concept:
6935   case Decl::VarTemplatePartialSpecialization:
6936   case Decl::FunctionTemplate:
6937   case Decl::TypeAliasTemplate:
6938   case Decl::Block:
6939   case Decl::Empty:
6940   case Decl::Binding:
6941     break;
6942   case Decl::Using:          // using X; [C++]
6943     if (CGDebugInfo *DI = getModuleDebugInfo())
6944         DI->EmitUsingDecl(cast<UsingDecl>(*D));
6945     break;
6946   case Decl::UsingEnum: // using enum X; [C++]
6947     if (CGDebugInfo *DI = getModuleDebugInfo())
6948       DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D));
6949     break;
6950   case Decl::NamespaceAlias:
6951     if (CGDebugInfo *DI = getModuleDebugInfo())
6952         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
6953     break;
6954   case Decl::UsingDirective: // using namespace X; [C++]
6955     if (CGDebugInfo *DI = getModuleDebugInfo())
6956       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
6957     break;
6958   case Decl::CXXConstructor:
6959     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
6960     break;
6961   case Decl::CXXDestructor:
6962     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
6963     break;
6964 
6965   case Decl::StaticAssert:
6966     // Nothing to do.
6967     break;
6968 
6969   // Objective-C Decls
6970 
6971   // Forward declarations, no (immediate) code generation.
6972   case Decl::ObjCInterface:
6973   case Decl::ObjCCategory:
6974     break;
6975 
6976   case Decl::ObjCProtocol: {
6977     auto *Proto = cast<ObjCProtocolDecl>(D);
6978     if (Proto->isThisDeclarationADefinition())
6979       ObjCRuntime->GenerateProtocol(Proto);
6980     break;
6981   }
6982 
6983   case Decl::ObjCCategoryImpl:
6984     // Categories have properties but don't support synthesize so we
6985     // can ignore them here.
6986     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
6987     break;
6988 
6989   case Decl::ObjCImplementation: {
6990     auto *OMD = cast<ObjCImplementationDecl>(D);
6991     EmitObjCPropertyImplementations(OMD);
6992     EmitObjCIvarInitializations(OMD);
6993     ObjCRuntime->GenerateClass(OMD);
6994     // Emit global variable debug information.
6995     if (CGDebugInfo *DI = getModuleDebugInfo())
6996       if (getCodeGenOpts().hasReducedDebugInfo())
6997         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
6998             OMD->getClassInterface()), OMD->getLocation());
6999     break;
7000   }
7001   case Decl::ObjCMethod: {
7002     auto *OMD = cast<ObjCMethodDecl>(D);
7003     // If this is not a prototype, emit the body.
7004     if (OMD->getBody())
7005       CodeGenFunction(*this).GenerateObjCMethod(OMD);
7006     break;
7007   }
7008   case Decl::ObjCCompatibleAlias:
7009     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
7010     break;
7011 
7012   case Decl::PragmaComment: {
7013     const auto *PCD = cast<PragmaCommentDecl>(D);
7014     switch (PCD->getCommentKind()) {
7015     case PCK_Unknown:
7016       llvm_unreachable("unexpected pragma comment kind");
7017     case PCK_Linker:
7018       AppendLinkerOptions(PCD->getArg());
7019       break;
7020     case PCK_Lib:
7021         AddDependentLib(PCD->getArg());
7022       break;
7023     case PCK_Compiler:
7024     case PCK_ExeStr:
7025     case PCK_User:
7026       break; // We ignore all of these.
7027     }
7028     break;
7029   }
7030 
7031   case Decl::PragmaDetectMismatch: {
7032     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
7033     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
7034     break;
7035   }
7036 
7037   case Decl::LinkageSpec:
7038     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
7039     break;
7040 
7041   case Decl::FileScopeAsm: {
7042     // File-scope asm is ignored during device-side CUDA compilation.
7043     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
7044       break;
7045     // File-scope asm is ignored during device-side OpenMP compilation.
7046     if (LangOpts.OpenMPIsTargetDevice)
7047       break;
7048     // File-scope asm is ignored during device-side SYCL compilation.
7049     if (LangOpts.SYCLIsDevice)
7050       break;
7051     auto *AD = cast<FileScopeAsmDecl>(D);
7052     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
7053     break;
7054   }
7055 
7056   case Decl::TopLevelStmt:
7057     EmitTopLevelStmt(cast<TopLevelStmtDecl>(D));
7058     break;
7059 
7060   case Decl::Import: {
7061     auto *Import = cast<ImportDecl>(D);
7062 
7063     // If we've already imported this module, we're done.
7064     if (!ImportedModules.insert(Import->getImportedModule()))
7065       break;
7066 
7067     // Emit debug information for direct imports.
7068     if (!Import->getImportedOwningModule()) {
7069       if (CGDebugInfo *DI = getModuleDebugInfo())
7070         DI->EmitImportDecl(*Import);
7071     }
7072 
7073     // For C++ standard modules we are done - we will call the module
7074     // initializer for imported modules, and that will likewise call those for
7075     // any imports it has.
7076     if (CXX20ModuleInits && Import->getImportedOwningModule() &&
7077         !Import->getImportedOwningModule()->isModuleMapModule())
7078       break;
7079 
7080     // For clang C++ module map modules the initializers for sub-modules are
7081     // emitted here.
7082 
7083     // Find all of the submodules and emit the module initializers.
7084     llvm::SmallPtrSet<clang::Module *, 16> Visited;
7085     SmallVector<clang::Module *, 16> Stack;
7086     Visited.insert(Import->getImportedModule());
7087     Stack.push_back(Import->getImportedModule());
7088 
7089     while (!Stack.empty()) {
7090       clang::Module *Mod = Stack.pop_back_val();
7091       if (!EmittedModuleInitializers.insert(Mod).second)
7092         continue;
7093 
7094       for (auto *D : Context.getModuleInitializers(Mod))
7095         EmitTopLevelDecl(D);
7096 
7097       // Visit the submodules of this module.
7098       for (auto *Submodule : Mod->submodules()) {
7099         // Skip explicit children; they need to be explicitly imported to emit
7100         // the initializers.
7101         if (Submodule->IsExplicit)
7102           continue;
7103 
7104         if (Visited.insert(Submodule).second)
7105           Stack.push_back(Submodule);
7106       }
7107     }
7108     break;
7109   }
7110 
7111   case Decl::Export:
7112     EmitDeclContext(cast<ExportDecl>(D));
7113     break;
7114 
7115   case Decl::OMPThreadPrivate:
7116     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
7117     break;
7118 
7119   case Decl::OMPAllocate:
7120     EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D));
7121     break;
7122 
7123   case Decl::OMPDeclareReduction:
7124     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
7125     break;
7126 
7127   case Decl::OMPDeclareMapper:
7128     EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
7129     break;
7130 
7131   case Decl::OMPRequires:
7132     EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
7133     break;
7134 
7135   case Decl::Typedef:
7136   case Decl::TypeAlias: // using foo = bar; [C++11]
7137     if (CGDebugInfo *DI = getModuleDebugInfo())
7138       DI->EmitAndRetainType(
7139           getContext().getTypedefType(cast<TypedefNameDecl>(D)));
7140     break;
7141 
7142   case Decl::Record:
7143     if (CGDebugInfo *DI = getModuleDebugInfo())
7144       if (cast<RecordDecl>(D)->getDefinition())
7145         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
7146     break;
7147 
7148   case Decl::Enum:
7149     if (CGDebugInfo *DI = getModuleDebugInfo())
7150       if (cast<EnumDecl>(D)->getDefinition())
7151         DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D)));
7152     break;
7153 
7154   case Decl::HLSLBuffer:
7155     getHLSLRuntime().addBuffer(cast<HLSLBufferDecl>(D));
7156     break;
7157 
7158   default:
7159     // Make sure we handled everything we should, every other kind is a
7160     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
7161     // function. Need to recode Decl::Kind to do that easily.
7162     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
7163     break;
7164   }
7165 }
7166 
7167 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
7168   // Do we need to generate coverage mapping?
7169   if (!CodeGenOpts.CoverageMapping)
7170     return;
7171   switch (D->getKind()) {
7172   case Decl::CXXConversion:
7173   case Decl::CXXMethod:
7174   case Decl::Function:
7175   case Decl::ObjCMethod:
7176   case Decl::CXXConstructor:
7177   case Decl::CXXDestructor: {
7178     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
7179       break;
7180     SourceManager &SM = getContext().getSourceManager();
7181     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
7182       break;
7183     if (!llvm::coverage::SystemHeadersCoverage &&
7184         SM.isInSystemHeader(D->getBeginLoc()))
7185       break;
7186     DeferredEmptyCoverageMappingDecls.try_emplace(D, true);
7187     break;
7188   }
7189   default:
7190     break;
7191   };
7192 }
7193 
7194 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
7195   // Do we need to generate coverage mapping?
7196   if (!CodeGenOpts.CoverageMapping)
7197     return;
7198   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
7199     if (Fn->isTemplateInstantiation())
7200       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
7201   }
7202   DeferredEmptyCoverageMappingDecls.insert_or_assign(D, false);
7203 }
7204 
7205 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
7206   // We call takeVector() here to avoid use-after-free.
7207   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
7208   // we deserialize function bodies to emit coverage info for them, and that
7209   // deserializes more declarations. How should we handle that case?
7210   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
7211     if (!Entry.second)
7212       continue;
7213     const Decl *D = Entry.first;
7214     switch (D->getKind()) {
7215     case Decl::CXXConversion:
7216     case Decl::CXXMethod:
7217     case Decl::Function:
7218     case Decl::ObjCMethod: {
7219       CodeGenPGO PGO(*this);
7220       GlobalDecl GD(cast<FunctionDecl>(D));
7221       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
7222                                   getFunctionLinkage(GD));
7223       break;
7224     }
7225     case Decl::CXXConstructor: {
7226       CodeGenPGO PGO(*this);
7227       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
7228       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
7229                                   getFunctionLinkage(GD));
7230       break;
7231     }
7232     case Decl::CXXDestructor: {
7233       CodeGenPGO PGO(*this);
7234       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
7235       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
7236                                   getFunctionLinkage(GD));
7237       break;
7238     }
7239     default:
7240       break;
7241     };
7242   }
7243 }
7244 
7245 void CodeGenModule::EmitMainVoidAlias() {
7246   // In order to transition away from "__original_main" gracefully, emit an
7247   // alias for "main" in the no-argument case so that libc can detect when
7248   // new-style no-argument main is in used.
7249   if (llvm::Function *F = getModule().getFunction("main")) {
7250     if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() &&
7251         F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) {
7252       auto *GA = llvm::GlobalAlias::create("__main_void", F);
7253       GA->setVisibility(llvm::GlobalValue::HiddenVisibility);
7254     }
7255   }
7256 }
7257 
7258 /// Turns the given pointer into a constant.
7259 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
7260                                           const void *Ptr) {
7261   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
7262   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
7263   return llvm::ConstantInt::get(i64, PtrInt);
7264 }
7265 
7266 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
7267                                    llvm::NamedMDNode *&GlobalMetadata,
7268                                    GlobalDecl D,
7269                                    llvm::GlobalValue *Addr) {
7270   if (!GlobalMetadata)
7271     GlobalMetadata =
7272       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
7273 
7274   // TODO: should we report variant information for ctors/dtors?
7275   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
7276                            llvm::ConstantAsMetadata::get(GetPointerConstant(
7277                                CGM.getLLVMContext(), D.getDecl()))};
7278   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
7279 }
7280 
7281 bool CodeGenModule::CheckAndReplaceExternCIFuncs(llvm::GlobalValue *Elem,
7282                                                  llvm::GlobalValue *CppFunc) {
7283   // Store the list of ifuncs we need to replace uses in.
7284   llvm::SmallVector<llvm::GlobalIFunc *> IFuncs;
7285   // List of ConstantExprs that we should be able to delete when we're done
7286   // here.
7287   llvm::SmallVector<llvm::ConstantExpr *> CEs;
7288 
7289   // It isn't valid to replace the extern-C ifuncs if all we find is itself!
7290   if (Elem == CppFunc)
7291     return false;
7292 
7293   // First make sure that all users of this are ifuncs (or ifuncs via a
7294   // bitcast), and collect the list of ifuncs and CEs so we can work on them
7295   // later.
7296   for (llvm::User *User : Elem->users()) {
7297     // Users can either be a bitcast ConstExpr that is used by the ifuncs, OR an
7298     // ifunc directly. In any other case, just give up, as we don't know what we
7299     // could break by changing those.
7300     if (auto *ConstExpr = dyn_cast<llvm::ConstantExpr>(User)) {
7301       if (ConstExpr->getOpcode() != llvm::Instruction::BitCast)
7302         return false;
7303 
7304       for (llvm::User *CEUser : ConstExpr->users()) {
7305         if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(CEUser)) {
7306           IFuncs.push_back(IFunc);
7307         } else {
7308           return false;
7309         }
7310       }
7311       CEs.push_back(ConstExpr);
7312     } else if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(User)) {
7313       IFuncs.push_back(IFunc);
7314     } else {
7315       // This user is one we don't know how to handle, so fail redirection. This
7316       // will result in an ifunc retaining a resolver name that will ultimately
7317       // fail to be resolved to a defined function.
7318       return false;
7319     }
7320   }
7321 
7322   // Now we know this is a valid case where we can do this alias replacement, we
7323   // need to remove all of the references to Elem (and the bitcasts!) so we can
7324   // delete it.
7325   for (llvm::GlobalIFunc *IFunc : IFuncs)
7326     IFunc->setResolver(nullptr);
7327   for (llvm::ConstantExpr *ConstExpr : CEs)
7328     ConstExpr->destroyConstant();
7329 
7330   // We should now be out of uses for the 'old' version of this function, so we
7331   // can erase it as well.
7332   Elem->eraseFromParent();
7333 
7334   for (llvm::GlobalIFunc *IFunc : IFuncs) {
7335     // The type of the resolver is always just a function-type that returns the
7336     // type of the IFunc, so create that here. If the type of the actual
7337     // resolver doesn't match, it just gets bitcast to the right thing.
7338     auto *ResolverTy =
7339         llvm::FunctionType::get(IFunc->getType(), /*isVarArg*/ false);
7340     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
7341         CppFunc->getName(), ResolverTy, {}, /*ForVTable*/ false);
7342     IFunc->setResolver(Resolver);
7343   }
7344   return true;
7345 }
7346 
7347 /// For each function which is declared within an extern "C" region and marked
7348 /// as 'used', but has internal linkage, create an alias from the unmangled
7349 /// name to the mangled name if possible. People expect to be able to refer
7350 /// to such functions with an unmangled name from inline assembly within the
7351 /// same translation unit.
7352 void CodeGenModule::EmitStaticExternCAliases() {
7353   if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
7354     return;
7355   for (auto &I : StaticExternCValues) {
7356     const IdentifierInfo *Name = I.first;
7357     llvm::GlobalValue *Val = I.second;
7358 
7359     // If Val is null, that implies there were multiple declarations that each
7360     // had a claim to the unmangled name. In this case, generation of the alias
7361     // is suppressed. See CodeGenModule::MaybeHandleStaticInExternC.
7362     if (!Val)
7363       break;
7364 
7365     llvm::GlobalValue *ExistingElem =
7366         getModule().getNamedValue(Name->getName());
7367 
7368     // If there is either not something already by this name, or we were able to
7369     // replace all uses from IFuncs, create the alias.
7370     if (!ExistingElem || CheckAndReplaceExternCIFuncs(ExistingElem, Val))
7371       addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
7372   }
7373 }
7374 
7375 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
7376                                              GlobalDecl &Result) const {
7377   auto Res = Manglings.find(MangledName);
7378   if (Res == Manglings.end())
7379     return false;
7380   Result = Res->getValue();
7381   return true;
7382 }
7383 
7384 /// Emits metadata nodes associating all the global values in the
7385 /// current module with the Decls they came from.  This is useful for
7386 /// projects using IR gen as a subroutine.
7387 ///
7388 /// Since there's currently no way to associate an MDNode directly
7389 /// with an llvm::GlobalValue, we create a global named metadata
7390 /// with the name 'clang.global.decl.ptrs'.
7391 void CodeGenModule::EmitDeclMetadata() {
7392   llvm::NamedMDNode *GlobalMetadata = nullptr;
7393 
7394   for (auto &I : MangledDeclNames) {
7395     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
7396     // Some mangled names don't necessarily have an associated GlobalValue
7397     // in this module, e.g. if we mangled it for DebugInfo.
7398     if (Addr)
7399       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
7400   }
7401 }
7402 
7403 /// Emits metadata nodes for all the local variables in the current
7404 /// function.
7405 void CodeGenFunction::EmitDeclMetadata() {
7406   if (LocalDeclMap.empty()) return;
7407 
7408   llvm::LLVMContext &Context = getLLVMContext();
7409 
7410   // Find the unique metadata ID for this name.
7411   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
7412 
7413   llvm::NamedMDNode *GlobalMetadata = nullptr;
7414 
7415   for (auto &I : LocalDeclMap) {
7416     const Decl *D = I.first;
7417     llvm::Value *Addr = I.second.emitRawPointer(*this);
7418     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
7419       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
7420       Alloca->setMetadata(
7421           DeclPtrKind, llvm::MDNode::get(
7422                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
7423     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
7424       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
7425       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
7426     }
7427   }
7428 }
7429 
7430 void CodeGenModule::EmitVersionIdentMetadata() {
7431   llvm::NamedMDNode *IdentMetadata =
7432     TheModule.getOrInsertNamedMetadata("llvm.ident");
7433   std::string Version = getClangFullVersion();
7434   llvm::LLVMContext &Ctx = TheModule.getContext();
7435 
7436   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
7437   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
7438 }
7439 
7440 void CodeGenModule::EmitCommandLineMetadata() {
7441   llvm::NamedMDNode *CommandLineMetadata =
7442     TheModule.getOrInsertNamedMetadata("llvm.commandline");
7443   std::string CommandLine = getCodeGenOpts().RecordCommandLine;
7444   llvm::LLVMContext &Ctx = TheModule.getContext();
7445 
7446   llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
7447   CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
7448 }
7449 
7450 void CodeGenModule::EmitCoverageFile() {
7451   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
7452   if (!CUNode)
7453     return;
7454 
7455   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
7456   llvm::LLVMContext &Ctx = TheModule.getContext();
7457   auto *CoverageDataFile =
7458       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
7459   auto *CoverageNotesFile =
7460       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
7461   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
7462     llvm::MDNode *CU = CUNode->getOperand(i);
7463     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
7464     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
7465   }
7466 }
7467 
7468 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
7469                                                        bool ForEH) {
7470   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
7471   // FIXME: should we even be calling this method if RTTI is disabled
7472   // and it's not for EH?
7473   if (!shouldEmitRTTI(ForEH))
7474     return llvm::Constant::getNullValue(GlobalsInt8PtrTy);
7475 
7476   if (ForEH && Ty->isObjCObjectPointerType() &&
7477       LangOpts.ObjCRuntime.isGNUFamily())
7478     return ObjCRuntime->GetEHType(Ty);
7479 
7480   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
7481 }
7482 
7483 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
7484   // Do not emit threadprivates in simd-only mode.
7485   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
7486     return;
7487   for (auto RefExpr : D->varlists()) {
7488     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
7489     bool PerformInit =
7490         VD->getAnyInitializer() &&
7491         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
7492                                                         /*ForRef=*/false);
7493 
7494     Address Addr(GetAddrOfGlobalVar(VD),
7495                  getTypes().ConvertTypeForMem(VD->getType()),
7496                  getContext().getDeclAlign(VD));
7497     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
7498             VD, Addr, RefExpr->getBeginLoc(), PerformInit))
7499       CXXGlobalInits.push_back(InitFunction);
7500   }
7501 }
7502 
7503 llvm::Metadata *
7504 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
7505                                             StringRef Suffix) {
7506   if (auto *FnType = T->getAs<FunctionProtoType>())
7507     T = getContext().getFunctionType(
7508         FnType->getReturnType(), FnType->getParamTypes(),
7509         FnType->getExtProtoInfo().withExceptionSpec(EST_None));
7510 
7511   llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
7512   if (InternalId)
7513     return InternalId;
7514 
7515   if (isExternallyVisible(T->getLinkage())) {
7516     std::string OutName;
7517     llvm::raw_string_ostream Out(OutName);
7518     getCXXABI().getMangleContext().mangleCanonicalTypeName(
7519         T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers);
7520 
7521     if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers)
7522       Out << ".normalized";
7523 
7524     Out << Suffix;
7525 
7526     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
7527   } else {
7528     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
7529                                            llvm::ArrayRef<llvm::Metadata *>());
7530   }
7531 
7532   return InternalId;
7533 }
7534 
7535 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
7536   return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
7537 }
7538 
7539 llvm::Metadata *
7540 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
7541   return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
7542 }
7543 
7544 // Generalize pointer types to a void pointer with the qualifiers of the
7545 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
7546 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
7547 // 'void *'.
7548 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
7549   if (!Ty->isPointerType())
7550     return Ty;
7551 
7552   return Ctx.getPointerType(
7553       QualType(Ctx.VoidTy).withCVRQualifiers(
7554           Ty->getPointeeType().getCVRQualifiers()));
7555 }
7556 
7557 // Apply type generalization to a FunctionType's return and argument types
7558 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
7559   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
7560     SmallVector<QualType, 8> GeneralizedParams;
7561     for (auto &Param : FnType->param_types())
7562       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
7563 
7564     return Ctx.getFunctionType(
7565         GeneralizeType(Ctx, FnType->getReturnType()),
7566         GeneralizedParams, FnType->getExtProtoInfo());
7567   }
7568 
7569   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
7570     return Ctx.getFunctionNoProtoType(
7571         GeneralizeType(Ctx, FnType->getReturnType()));
7572 
7573   llvm_unreachable("Encountered unknown FunctionType");
7574 }
7575 
7576 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
7577   return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
7578                                       GeneralizedMetadataIdMap, ".generalized");
7579 }
7580 
7581 /// Returns whether this module needs the "all-vtables" type identifier.
7582 bool CodeGenModule::NeedAllVtablesTypeId() const {
7583   // Returns true if at least one of vtable-based CFI checkers is enabled and
7584   // is not in the trapping mode.
7585   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
7586            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
7587           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
7588            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
7589           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
7590            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
7591           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
7592            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
7593 }
7594 
7595 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
7596                                           CharUnits Offset,
7597                                           const CXXRecordDecl *RD) {
7598   llvm::Metadata *MD =
7599       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
7600   VTable->addTypeMetadata(Offset.getQuantity(), MD);
7601 
7602   if (CodeGenOpts.SanitizeCfiCrossDso)
7603     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
7604       VTable->addTypeMetadata(Offset.getQuantity(),
7605                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
7606 
7607   if (NeedAllVtablesTypeId()) {
7608     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
7609     VTable->addTypeMetadata(Offset.getQuantity(), MD);
7610   }
7611 }
7612 
7613 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
7614   if (!SanStats)
7615     SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule());
7616 
7617   return *SanStats;
7618 }
7619 
7620 llvm::Value *
7621 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
7622                                                   CodeGenFunction &CGF) {
7623   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
7624   auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
7625   auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
7626   auto *Call = CGF.EmitRuntimeCall(
7627       CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C});
7628   return Call;
7629 }
7630 
7631 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment(
7632     QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) {
7633   return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
7634                                  /* forPointeeType= */ true);
7635 }
7636 
7637 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T,
7638                                                  LValueBaseInfo *BaseInfo,
7639                                                  TBAAAccessInfo *TBAAInfo,
7640                                                  bool forPointeeType) {
7641   if (TBAAInfo)
7642     *TBAAInfo = getTBAAAccessInfo(T);
7643 
7644   // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But
7645   // that doesn't return the information we need to compute BaseInfo.
7646 
7647   // Honor alignment typedef attributes even on incomplete types.
7648   // We also honor them straight for C++ class types, even as pointees;
7649   // there's an expressivity gap here.
7650   if (auto TT = T->getAs<TypedefType>()) {
7651     if (auto Align = TT->getDecl()->getMaxAlignment()) {
7652       if (BaseInfo)
7653         *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
7654       return getContext().toCharUnitsFromBits(Align);
7655     }
7656   }
7657 
7658   bool AlignForArray = T->isArrayType();
7659 
7660   // Analyze the base element type, so we don't get confused by incomplete
7661   // array types.
7662   T = getContext().getBaseElementType(T);
7663 
7664   if (T->isIncompleteType()) {
7665     // We could try to replicate the logic from
7666     // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the
7667     // type is incomplete, so it's impossible to test. We could try to reuse
7668     // getTypeAlignIfKnown, but that doesn't return the information we need
7669     // to set BaseInfo.  So just ignore the possibility that the alignment is
7670     // greater than one.
7671     if (BaseInfo)
7672       *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
7673     return CharUnits::One();
7674   }
7675 
7676   if (BaseInfo)
7677     *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
7678 
7679   CharUnits Alignment;
7680   const CXXRecordDecl *RD;
7681   if (T.getQualifiers().hasUnaligned()) {
7682     Alignment = CharUnits::One();
7683   } else if (forPointeeType && !AlignForArray &&
7684              (RD = T->getAsCXXRecordDecl())) {
7685     // For C++ class pointees, we don't know whether we're pointing at a
7686     // base or a complete object, so we generally need to use the
7687     // non-virtual alignment.
7688     Alignment = getClassPointerAlignment(RD);
7689   } else {
7690     Alignment = getContext().getTypeAlignInChars(T);
7691   }
7692 
7693   // Cap to the global maximum type alignment unless the alignment
7694   // was somehow explicit on the type.
7695   if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
7696     if (Alignment.getQuantity() > MaxAlign &&
7697         !getContext().isAlignmentRequired(T))
7698       Alignment = CharUnits::fromQuantity(MaxAlign);
7699   }
7700   return Alignment;
7701 }
7702 
7703 bool CodeGenModule::stopAutoInit() {
7704   unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter;
7705   if (StopAfter) {
7706     // This number is positive only when -ftrivial-auto-var-init-stop-after=* is
7707     // used
7708     if (NumAutoVarInit >= StopAfter) {
7709       return true;
7710     }
7711     if (!NumAutoVarInit) {
7712       unsigned DiagID = getDiags().getCustomDiagID(
7713           DiagnosticsEngine::Warning,
7714           "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the "
7715           "number of times ftrivial-auto-var-init=%1 gets applied.");
7716       getDiags().Report(DiagID)
7717           << StopAfter
7718           << (getContext().getLangOpts().getTrivialAutoVarInit() ==
7719                       LangOptions::TrivialAutoVarInitKind::Zero
7720                   ? "zero"
7721                   : "pattern");
7722     }
7723     ++NumAutoVarInit;
7724   }
7725   return false;
7726 }
7727 
7728 void CodeGenModule::printPostfixForExternalizedDecl(llvm::raw_ostream &OS,
7729                                                     const Decl *D) const {
7730   // ptxas does not allow '.' in symbol names. On the other hand, HIP prefers
7731   // postfix beginning with '.' since the symbol name can be demangled.
7732   if (LangOpts.HIP)
7733     OS << (isa<VarDecl>(D) ? ".static." : ".intern.");
7734   else
7735     OS << (isa<VarDecl>(D) ? "__static__" : "__intern__");
7736 
7737   // If the CUID is not specified we try to generate a unique postfix.
7738   if (getLangOpts().CUID.empty()) {
7739     SourceManager &SM = getContext().getSourceManager();
7740     PresumedLoc PLoc = SM.getPresumedLoc(D->getLocation());
7741     assert(PLoc.isValid() && "Source location is expected to be valid.");
7742 
7743     // Get the hash of the user defined macros.
7744     llvm::MD5 Hash;
7745     llvm::MD5::MD5Result Result;
7746     for (const auto &Arg : PreprocessorOpts.Macros)
7747       Hash.update(Arg.first);
7748     Hash.final(Result);
7749 
7750     // Get the UniqueID for the file containing the decl.
7751     llvm::sys::fs::UniqueID ID;
7752     if (llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) {
7753       PLoc = SM.getPresumedLoc(D->getLocation(), /*UseLineDirectives=*/false);
7754       assert(PLoc.isValid() && "Source location is expected to be valid.");
7755       if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID))
7756         SM.getDiagnostics().Report(diag::err_cannot_open_file)
7757             << PLoc.getFilename() << EC.message();
7758     }
7759     OS << llvm::format("%x", ID.getFile()) << llvm::format("%x", ID.getDevice())
7760        << "_" << llvm::utohexstr(Result.low(), /*LowerCase=*/true, /*Width=*/8);
7761   } else {
7762     OS << getContext().getCUIDHash();
7763   }
7764 }
7765 
7766 void CodeGenModule::moveLazyEmissionStates(CodeGenModule *NewBuilder) {
7767   assert(DeferredDeclsToEmit.empty() &&
7768          "Should have emitted all decls deferred to emit.");
7769   assert(NewBuilder->DeferredDecls.empty() &&
7770          "Newly created module should not have deferred decls");
7771   NewBuilder->DeferredDecls = std::move(DeferredDecls);
7772   assert(EmittedDeferredDecls.empty() &&
7773          "Still have (unmerged) EmittedDeferredDecls deferred decls");
7774 
7775   assert(NewBuilder->DeferredVTables.empty() &&
7776          "Newly created module should not have deferred vtables");
7777   NewBuilder->DeferredVTables = std::move(DeferredVTables);
7778 
7779   assert(NewBuilder->MangledDeclNames.empty() &&
7780          "Newly created module should not have mangled decl names");
7781   assert(NewBuilder->Manglings.empty() &&
7782          "Newly created module should not have manglings");
7783   NewBuilder->Manglings = std::move(Manglings);
7784 
7785   NewBuilder->WeakRefReferences = std::move(WeakRefReferences);
7786 
7787   NewBuilder->TBAA = std::move(TBAA);
7788 
7789   NewBuilder->ABI->MangleCtx = std::move(ABI->MangleCtx);
7790 }
7791