1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-module state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenModule.h" 14 #include "ABIInfo.h" 15 #include "CGBlocks.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGCall.h" 19 #include "CGDebugInfo.h" 20 #include "CGHLSLRuntime.h" 21 #include "CGObjCRuntime.h" 22 #include "CGOpenCLRuntime.h" 23 #include "CGOpenMPRuntime.h" 24 #include "CGOpenMPRuntimeGPU.h" 25 #include "CodeGenFunction.h" 26 #include "CodeGenPGO.h" 27 #include "ConstantEmitter.h" 28 #include "CoverageMappingGen.h" 29 #include "TargetInfo.h" 30 #include "clang/AST/ASTContext.h" 31 #include "clang/AST/ASTLambda.h" 32 #include "clang/AST/CharUnits.h" 33 #include "clang/AST/Decl.h" 34 #include "clang/AST/DeclCXX.h" 35 #include "clang/AST/DeclObjC.h" 36 #include "clang/AST/DeclTemplate.h" 37 #include "clang/AST/Mangle.h" 38 #include "clang/AST/RecursiveASTVisitor.h" 39 #include "clang/AST/StmtVisitor.h" 40 #include "clang/Basic/Builtins.h" 41 #include "clang/Basic/CharInfo.h" 42 #include "clang/Basic/CodeGenOptions.h" 43 #include "clang/Basic/Diagnostic.h" 44 #include "clang/Basic/FileManager.h" 45 #include "clang/Basic/Module.h" 46 #include "clang/Basic/SourceManager.h" 47 #include "clang/Basic/TargetInfo.h" 48 #include "clang/Basic/Version.h" 49 #include "clang/CodeGen/BackendUtil.h" 50 #include "clang/CodeGen/ConstantInitBuilder.h" 51 #include "clang/Frontend/FrontendDiagnostic.h" 52 #include "llvm/ADT/STLExtras.h" 53 #include "llvm/ADT/StringExtras.h" 54 #include "llvm/ADT/StringSwitch.h" 55 #include "llvm/Analysis/TargetLibraryInfo.h" 56 #include "llvm/BinaryFormat/ELF.h" 57 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 58 #include "llvm/IR/AttributeMask.h" 59 #include "llvm/IR/CallingConv.h" 60 #include "llvm/IR/DataLayout.h" 61 #include "llvm/IR/Intrinsics.h" 62 #include "llvm/IR/LLVMContext.h" 63 #include "llvm/IR/Module.h" 64 #include "llvm/IR/ProfileSummary.h" 65 #include "llvm/ProfileData/InstrProfReader.h" 66 #include "llvm/ProfileData/SampleProf.h" 67 #include "llvm/Support/CRC.h" 68 #include "llvm/Support/CodeGen.h" 69 #include "llvm/Support/CommandLine.h" 70 #include "llvm/Support/ConvertUTF.h" 71 #include "llvm/Support/ErrorHandling.h" 72 #include "llvm/Support/TimeProfiler.h" 73 #include "llvm/Support/xxhash.h" 74 #include "llvm/TargetParser/RISCVISAInfo.h" 75 #include "llvm/TargetParser/Triple.h" 76 #include "llvm/TargetParser/X86TargetParser.h" 77 #include "llvm/Transforms/Utils/BuildLibCalls.h" 78 #include <optional> 79 80 using namespace clang; 81 using namespace CodeGen; 82 83 static llvm::cl::opt<bool> LimitedCoverage( 84 "limited-coverage-experimental", llvm::cl::Hidden, 85 llvm::cl::desc("Emit limited coverage mapping information (experimental)")); 86 87 static const char AnnotationSection[] = "llvm.metadata"; 88 89 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 90 switch (CGM.getContext().getCXXABIKind()) { 91 case TargetCXXABI::AppleARM64: 92 case TargetCXXABI::Fuchsia: 93 case TargetCXXABI::GenericAArch64: 94 case TargetCXXABI::GenericARM: 95 case TargetCXXABI::iOS: 96 case TargetCXXABI::WatchOS: 97 case TargetCXXABI::GenericMIPS: 98 case TargetCXXABI::GenericItanium: 99 case TargetCXXABI::WebAssembly: 100 case TargetCXXABI::XL: 101 return CreateItaniumCXXABI(CGM); 102 case TargetCXXABI::Microsoft: 103 return CreateMicrosoftCXXABI(CGM); 104 } 105 106 llvm_unreachable("invalid C++ ABI kind"); 107 } 108 109 static std::unique_ptr<TargetCodeGenInfo> 110 createTargetCodeGenInfo(CodeGenModule &CGM) { 111 const TargetInfo &Target = CGM.getTarget(); 112 const llvm::Triple &Triple = Target.getTriple(); 113 const CodeGenOptions &CodeGenOpts = CGM.getCodeGenOpts(); 114 115 switch (Triple.getArch()) { 116 default: 117 return createDefaultTargetCodeGenInfo(CGM); 118 119 case llvm::Triple::le32: 120 return createPNaClTargetCodeGenInfo(CGM); 121 case llvm::Triple::m68k: 122 return createM68kTargetCodeGenInfo(CGM); 123 case llvm::Triple::mips: 124 case llvm::Triple::mipsel: 125 if (Triple.getOS() == llvm::Triple::NaCl) 126 return createPNaClTargetCodeGenInfo(CGM); 127 return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/true); 128 129 case llvm::Triple::mips64: 130 case llvm::Triple::mips64el: 131 return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/false); 132 133 case llvm::Triple::avr: { 134 // For passing parameters, R8~R25 are used on avr, and R18~R25 are used 135 // on avrtiny. For passing return value, R18~R25 are used on avr, and 136 // R22~R25 are used on avrtiny. 137 unsigned NPR = Target.getABI() == "avrtiny" ? 6 : 18; 138 unsigned NRR = Target.getABI() == "avrtiny" ? 4 : 8; 139 return createAVRTargetCodeGenInfo(CGM, NPR, NRR); 140 } 141 142 case llvm::Triple::aarch64: 143 case llvm::Triple::aarch64_32: 144 case llvm::Triple::aarch64_be: { 145 AArch64ABIKind Kind = AArch64ABIKind::AAPCS; 146 if (Target.getABI() == "darwinpcs") 147 Kind = AArch64ABIKind::DarwinPCS; 148 else if (Triple.isOSWindows()) 149 return createWindowsAArch64TargetCodeGenInfo(CGM, AArch64ABIKind::Win64); 150 else if (Target.getABI() == "aapcs-soft") 151 Kind = AArch64ABIKind::AAPCSSoft; 152 else if (Target.getABI() == "pauthtest") 153 Kind = AArch64ABIKind::PAuthTest; 154 155 return createAArch64TargetCodeGenInfo(CGM, Kind); 156 } 157 158 case llvm::Triple::wasm32: 159 case llvm::Triple::wasm64: { 160 WebAssemblyABIKind Kind = WebAssemblyABIKind::MVP; 161 if (Target.getABI() == "experimental-mv") 162 Kind = WebAssemblyABIKind::ExperimentalMV; 163 return createWebAssemblyTargetCodeGenInfo(CGM, Kind); 164 } 165 166 case llvm::Triple::arm: 167 case llvm::Triple::armeb: 168 case llvm::Triple::thumb: 169 case llvm::Triple::thumbeb: { 170 if (Triple.getOS() == llvm::Triple::Win32) 171 return createWindowsARMTargetCodeGenInfo(CGM, ARMABIKind::AAPCS_VFP); 172 173 ARMABIKind Kind = ARMABIKind::AAPCS; 174 StringRef ABIStr = Target.getABI(); 175 if (ABIStr == "apcs-gnu") 176 Kind = ARMABIKind::APCS; 177 else if (ABIStr == "aapcs16") 178 Kind = ARMABIKind::AAPCS16_VFP; 179 else if (CodeGenOpts.FloatABI == "hard" || 180 (CodeGenOpts.FloatABI != "soft" && 181 (Triple.getEnvironment() == llvm::Triple::GNUEABIHF || 182 Triple.getEnvironment() == llvm::Triple::MuslEABIHF || 183 Triple.getEnvironment() == llvm::Triple::EABIHF))) 184 Kind = ARMABIKind::AAPCS_VFP; 185 186 return createARMTargetCodeGenInfo(CGM, Kind); 187 } 188 189 case llvm::Triple::ppc: { 190 if (Triple.isOSAIX()) 191 return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/false); 192 193 bool IsSoftFloat = 194 CodeGenOpts.FloatABI == "soft" || Target.hasFeature("spe"); 195 return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat); 196 } 197 case llvm::Triple::ppcle: { 198 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 199 return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat); 200 } 201 case llvm::Triple::ppc64: 202 if (Triple.isOSAIX()) 203 return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/true); 204 205 if (Triple.isOSBinFormatELF()) { 206 PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv1; 207 if (Target.getABI() == "elfv2") 208 Kind = PPC64_SVR4_ABIKind::ELFv2; 209 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 210 211 return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat); 212 } 213 return createPPC64TargetCodeGenInfo(CGM); 214 case llvm::Triple::ppc64le: { 215 assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!"); 216 PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv2; 217 if (Target.getABI() == "elfv1") 218 Kind = PPC64_SVR4_ABIKind::ELFv1; 219 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 220 221 return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat); 222 } 223 224 case llvm::Triple::nvptx: 225 case llvm::Triple::nvptx64: 226 return createNVPTXTargetCodeGenInfo(CGM); 227 228 case llvm::Triple::msp430: 229 return createMSP430TargetCodeGenInfo(CGM); 230 231 case llvm::Triple::riscv32: 232 case llvm::Triple::riscv64: { 233 StringRef ABIStr = Target.getABI(); 234 unsigned XLen = Target.getPointerWidth(LangAS::Default); 235 unsigned ABIFLen = 0; 236 if (ABIStr.ends_with("f")) 237 ABIFLen = 32; 238 else if (ABIStr.ends_with("d")) 239 ABIFLen = 64; 240 bool EABI = ABIStr.ends_with("e"); 241 return createRISCVTargetCodeGenInfo(CGM, XLen, ABIFLen, EABI); 242 } 243 244 case llvm::Triple::systemz: { 245 bool SoftFloat = CodeGenOpts.FloatABI == "soft"; 246 bool HasVector = !SoftFloat && Target.getABI() == "vector"; 247 return createSystemZTargetCodeGenInfo(CGM, HasVector, SoftFloat); 248 } 249 250 case llvm::Triple::tce: 251 case llvm::Triple::tcele: 252 return createTCETargetCodeGenInfo(CGM); 253 254 case llvm::Triple::x86: { 255 bool IsDarwinVectorABI = Triple.isOSDarwin(); 256 bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing(); 257 258 if (Triple.getOS() == llvm::Triple::Win32) { 259 return createWinX86_32TargetCodeGenInfo( 260 CGM, IsDarwinVectorABI, IsWin32FloatStructABI, 261 CodeGenOpts.NumRegisterParameters); 262 } 263 return createX86_32TargetCodeGenInfo( 264 CGM, IsDarwinVectorABI, IsWin32FloatStructABI, 265 CodeGenOpts.NumRegisterParameters, CodeGenOpts.FloatABI == "soft"); 266 } 267 268 case llvm::Triple::x86_64: { 269 StringRef ABI = Target.getABI(); 270 X86AVXABILevel AVXLevel = (ABI == "avx512" ? X86AVXABILevel::AVX512 271 : ABI == "avx" ? X86AVXABILevel::AVX 272 : X86AVXABILevel::None); 273 274 switch (Triple.getOS()) { 275 case llvm::Triple::Win32: 276 return createWinX86_64TargetCodeGenInfo(CGM, AVXLevel); 277 default: 278 return createX86_64TargetCodeGenInfo(CGM, AVXLevel); 279 } 280 } 281 case llvm::Triple::hexagon: 282 return createHexagonTargetCodeGenInfo(CGM); 283 case llvm::Triple::lanai: 284 return createLanaiTargetCodeGenInfo(CGM); 285 case llvm::Triple::r600: 286 return createAMDGPUTargetCodeGenInfo(CGM); 287 case llvm::Triple::amdgcn: 288 return createAMDGPUTargetCodeGenInfo(CGM); 289 case llvm::Triple::sparc: 290 return createSparcV8TargetCodeGenInfo(CGM); 291 case llvm::Triple::sparcv9: 292 return createSparcV9TargetCodeGenInfo(CGM); 293 case llvm::Triple::xcore: 294 return createXCoreTargetCodeGenInfo(CGM); 295 case llvm::Triple::arc: 296 return createARCTargetCodeGenInfo(CGM); 297 case llvm::Triple::spir: 298 case llvm::Triple::spir64: 299 return createCommonSPIRTargetCodeGenInfo(CGM); 300 case llvm::Triple::spirv32: 301 case llvm::Triple::spirv64: 302 return createSPIRVTargetCodeGenInfo(CGM); 303 case llvm::Triple::ve: 304 return createVETargetCodeGenInfo(CGM); 305 case llvm::Triple::csky: { 306 bool IsSoftFloat = !Target.hasFeature("hard-float-abi"); 307 bool hasFP64 = 308 Target.hasFeature("fpuv2_df") || Target.hasFeature("fpuv3_df"); 309 return createCSKYTargetCodeGenInfo(CGM, IsSoftFloat ? 0 310 : hasFP64 ? 64 311 : 32); 312 } 313 case llvm::Triple::bpfeb: 314 case llvm::Triple::bpfel: 315 return createBPFTargetCodeGenInfo(CGM); 316 case llvm::Triple::loongarch32: 317 case llvm::Triple::loongarch64: { 318 StringRef ABIStr = Target.getABI(); 319 unsigned ABIFRLen = 0; 320 if (ABIStr.ends_with("f")) 321 ABIFRLen = 32; 322 else if (ABIStr.ends_with("d")) 323 ABIFRLen = 64; 324 return createLoongArchTargetCodeGenInfo( 325 CGM, Target.getPointerWidth(LangAS::Default), ABIFRLen); 326 } 327 } 328 } 329 330 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { 331 if (!TheTargetCodeGenInfo) 332 TheTargetCodeGenInfo = createTargetCodeGenInfo(*this); 333 return *TheTargetCodeGenInfo; 334 } 335 336 CodeGenModule::CodeGenModule(ASTContext &C, 337 IntrusiveRefCntPtr<llvm::vfs::FileSystem> FS, 338 const HeaderSearchOptions &HSO, 339 const PreprocessorOptions &PPO, 340 const CodeGenOptions &CGO, llvm::Module &M, 341 DiagnosticsEngine &diags, 342 CoverageSourceInfo *CoverageInfo) 343 : Context(C), LangOpts(C.getLangOpts()), FS(FS), HeaderSearchOpts(HSO), 344 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 345 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 346 VMContext(M.getContext()), Types(*this), VTables(*this), 347 SanitizerMD(new SanitizerMetadata(*this)) { 348 349 // Initialize the type cache. 350 llvm::LLVMContext &LLVMContext = M.getContext(); 351 VoidTy = llvm::Type::getVoidTy(LLVMContext); 352 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 353 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 354 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 355 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 356 HalfTy = llvm::Type::getHalfTy(LLVMContext); 357 BFloatTy = llvm::Type::getBFloatTy(LLVMContext); 358 FloatTy = llvm::Type::getFloatTy(LLVMContext); 359 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 360 PointerWidthInBits = C.getTargetInfo().getPointerWidth(LangAS::Default); 361 PointerAlignInBytes = 362 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(LangAS::Default)) 363 .getQuantity(); 364 SizeSizeInBytes = 365 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 366 IntAlignInBytes = 367 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 368 CharTy = 369 llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth()); 370 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 371 IntPtrTy = llvm::IntegerType::get(LLVMContext, 372 C.getTargetInfo().getMaxPointerWidth()); 373 Int8PtrTy = llvm::PointerType::get(LLVMContext, 374 C.getTargetAddressSpace(LangAS::Default)); 375 const llvm::DataLayout &DL = M.getDataLayout(); 376 AllocaInt8PtrTy = 377 llvm::PointerType::get(LLVMContext, DL.getAllocaAddrSpace()); 378 GlobalsInt8PtrTy = 379 llvm::PointerType::get(LLVMContext, DL.getDefaultGlobalsAddressSpace()); 380 ConstGlobalsPtrTy = llvm::PointerType::get( 381 LLVMContext, C.getTargetAddressSpace(GetGlobalConstantAddressSpace())); 382 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 383 384 // Build C++20 Module initializers. 385 // TODO: Add Microsoft here once we know the mangling required for the 386 // initializers. 387 CXX20ModuleInits = 388 LangOpts.CPlusPlusModules && getCXXABI().getMangleContext().getKind() == 389 ItaniumMangleContext::MK_Itanium; 390 391 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 392 393 if (LangOpts.ObjC) 394 createObjCRuntime(); 395 if (LangOpts.OpenCL) 396 createOpenCLRuntime(); 397 if (LangOpts.OpenMP) 398 createOpenMPRuntime(); 399 if (LangOpts.CUDA) 400 createCUDARuntime(); 401 if (LangOpts.HLSL) 402 createHLSLRuntime(); 403 404 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 405 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 406 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 407 TBAA.reset(new CodeGenTBAA(Context, getTypes(), TheModule, CodeGenOpts, 408 getLangOpts(), getCXXABI().getMangleContext())); 409 410 // If debug info or coverage generation is enabled, create the CGDebugInfo 411 // object. 412 if (CodeGenOpts.getDebugInfo() != llvm::codegenoptions::NoDebugInfo || 413 CodeGenOpts.CoverageNotesFile.size() || 414 CodeGenOpts.CoverageDataFile.size()) 415 DebugInfo.reset(new CGDebugInfo(*this)); 416 417 Block.GlobalUniqueCount = 0; 418 419 if (C.getLangOpts().ObjC) 420 ObjCData.reset(new ObjCEntrypoints()); 421 422 if (CodeGenOpts.hasProfileClangUse()) { 423 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 424 CodeGenOpts.ProfileInstrumentUsePath, *FS, 425 CodeGenOpts.ProfileRemappingFile); 426 // We're checking for profile read errors in CompilerInvocation, so if 427 // there was an error it should've already been caught. If it hasn't been 428 // somehow, trip an assertion. 429 assert(ReaderOrErr); 430 PGOReader = std::move(ReaderOrErr.get()); 431 } 432 433 // If coverage mapping generation is enabled, create the 434 // CoverageMappingModuleGen object. 435 if (CodeGenOpts.CoverageMapping) 436 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 437 438 // Generate the module name hash here if needed. 439 if (CodeGenOpts.UniqueInternalLinkageNames && 440 !getModule().getSourceFileName().empty()) { 441 std::string Path = getModule().getSourceFileName(); 442 // Check if a path substitution is needed from the MacroPrefixMap. 443 for (const auto &Entry : LangOpts.MacroPrefixMap) 444 if (Path.rfind(Entry.first, 0) != std::string::npos) { 445 Path = Entry.second + Path.substr(Entry.first.size()); 446 break; 447 } 448 ModuleNameHash = llvm::getUniqueInternalLinkagePostfix(Path); 449 } 450 451 // Record mregparm value now so it is visible through all of codegen. 452 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 453 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 454 CodeGenOpts.NumRegisterParameters); 455 } 456 457 CodeGenModule::~CodeGenModule() {} 458 459 void CodeGenModule::createObjCRuntime() { 460 // This is just isGNUFamily(), but we want to force implementors of 461 // new ABIs to decide how best to do this. 462 switch (LangOpts.ObjCRuntime.getKind()) { 463 case ObjCRuntime::GNUstep: 464 case ObjCRuntime::GCC: 465 case ObjCRuntime::ObjFW: 466 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 467 return; 468 469 case ObjCRuntime::FragileMacOSX: 470 case ObjCRuntime::MacOSX: 471 case ObjCRuntime::iOS: 472 case ObjCRuntime::WatchOS: 473 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 474 return; 475 } 476 llvm_unreachable("bad runtime kind"); 477 } 478 479 void CodeGenModule::createOpenCLRuntime() { 480 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 481 } 482 483 void CodeGenModule::createOpenMPRuntime() { 484 // Select a specialized code generation class based on the target, if any. 485 // If it does not exist use the default implementation. 486 switch (getTriple().getArch()) { 487 case llvm::Triple::nvptx: 488 case llvm::Triple::nvptx64: 489 case llvm::Triple::amdgcn: 490 assert(getLangOpts().OpenMPIsTargetDevice && 491 "OpenMP AMDGPU/NVPTX is only prepared to deal with device code."); 492 OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this)); 493 break; 494 default: 495 if (LangOpts.OpenMPSimd) 496 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 497 else 498 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 499 break; 500 } 501 } 502 503 void CodeGenModule::createCUDARuntime() { 504 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 505 } 506 507 void CodeGenModule::createHLSLRuntime() { 508 HLSLRuntime.reset(new CGHLSLRuntime(*this)); 509 } 510 511 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 512 Replacements[Name] = C; 513 } 514 515 void CodeGenModule::applyReplacements() { 516 for (auto &I : Replacements) { 517 StringRef MangledName = I.first; 518 llvm::Constant *Replacement = I.second; 519 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 520 if (!Entry) 521 continue; 522 auto *OldF = cast<llvm::Function>(Entry); 523 auto *NewF = dyn_cast<llvm::Function>(Replacement); 524 if (!NewF) { 525 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 526 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 527 } else { 528 auto *CE = cast<llvm::ConstantExpr>(Replacement); 529 assert(CE->getOpcode() == llvm::Instruction::BitCast || 530 CE->getOpcode() == llvm::Instruction::GetElementPtr); 531 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 532 } 533 } 534 535 // Replace old with new, but keep the old order. 536 OldF->replaceAllUsesWith(Replacement); 537 if (NewF) { 538 NewF->removeFromParent(); 539 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 540 NewF); 541 } 542 OldF->eraseFromParent(); 543 } 544 } 545 546 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 547 GlobalValReplacements.push_back(std::make_pair(GV, C)); 548 } 549 550 void CodeGenModule::applyGlobalValReplacements() { 551 for (auto &I : GlobalValReplacements) { 552 llvm::GlobalValue *GV = I.first; 553 llvm::Constant *C = I.second; 554 555 GV->replaceAllUsesWith(C); 556 GV->eraseFromParent(); 557 } 558 } 559 560 // This is only used in aliases that we created and we know they have a 561 // linear structure. 562 static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) { 563 const llvm::Constant *C; 564 if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV)) 565 C = GA->getAliasee(); 566 else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV)) 567 C = GI->getResolver(); 568 else 569 return GV; 570 571 const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts()); 572 if (!AliaseeGV) 573 return nullptr; 574 575 const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject(); 576 if (FinalGV == GV) 577 return nullptr; 578 579 return FinalGV; 580 } 581 582 static bool checkAliasedGlobal( 583 const ASTContext &Context, DiagnosticsEngine &Diags, SourceLocation Location, 584 bool IsIFunc, const llvm::GlobalValue *Alias, const llvm::GlobalValue *&GV, 585 const llvm::MapVector<GlobalDecl, StringRef> &MangledDeclNames, 586 SourceRange AliasRange) { 587 GV = getAliasedGlobal(Alias); 588 if (!GV) { 589 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 590 return false; 591 } 592 593 if (GV->hasCommonLinkage()) { 594 const llvm::Triple &Triple = Context.getTargetInfo().getTriple(); 595 if (Triple.getObjectFormat() == llvm::Triple::XCOFF) { 596 Diags.Report(Location, diag::err_alias_to_common); 597 return false; 598 } 599 } 600 601 if (GV->isDeclaration()) { 602 Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc; 603 Diags.Report(Location, diag::note_alias_requires_mangled_name) 604 << IsIFunc << IsIFunc; 605 // Provide a note if the given function is not found and exists as a 606 // mangled name. 607 for (const auto &[Decl, Name] : MangledDeclNames) { 608 if (const auto *ND = dyn_cast<NamedDecl>(Decl.getDecl())) { 609 if (ND->getName() == GV->getName()) { 610 Diags.Report(Location, diag::note_alias_mangled_name_alternative) 611 << Name 612 << FixItHint::CreateReplacement( 613 AliasRange, 614 (Twine(IsIFunc ? "ifunc" : "alias") + "(\"" + Name + "\")") 615 .str()); 616 } 617 } 618 } 619 return false; 620 } 621 622 if (IsIFunc) { 623 // Check resolver function type. 624 const auto *F = dyn_cast<llvm::Function>(GV); 625 if (!F) { 626 Diags.Report(Location, diag::err_alias_to_undefined) 627 << IsIFunc << IsIFunc; 628 return false; 629 } 630 631 llvm::FunctionType *FTy = F->getFunctionType(); 632 if (!FTy->getReturnType()->isPointerTy()) { 633 Diags.Report(Location, diag::err_ifunc_resolver_return); 634 return false; 635 } 636 } 637 638 return true; 639 } 640 641 // Emit a warning if toc-data attribute is requested for global variables that 642 // have aliases and remove the toc-data attribute. 643 static void checkAliasForTocData(llvm::GlobalVariable *GVar, 644 const CodeGenOptions &CodeGenOpts, 645 DiagnosticsEngine &Diags, 646 SourceLocation Location) { 647 if (GVar->hasAttribute("toc-data")) { 648 auto GVId = GVar->getName(); 649 // Is this a global variable specified by the user as local? 650 if ((llvm::binary_search(CodeGenOpts.TocDataVarsUserSpecified, GVId))) { 651 Diags.Report(Location, diag::warn_toc_unsupported_type) 652 << GVId << "the variable has an alias"; 653 } 654 llvm::AttributeSet CurrAttributes = GVar->getAttributes(); 655 llvm::AttributeSet NewAttributes = 656 CurrAttributes.removeAttribute(GVar->getContext(), "toc-data"); 657 GVar->setAttributes(NewAttributes); 658 } 659 } 660 661 void CodeGenModule::checkAliases() { 662 // Check if the constructed aliases are well formed. It is really unfortunate 663 // that we have to do this in CodeGen, but we only construct mangled names 664 // and aliases during codegen. 665 bool Error = false; 666 DiagnosticsEngine &Diags = getDiags(); 667 for (const GlobalDecl &GD : Aliases) { 668 const auto *D = cast<ValueDecl>(GD.getDecl()); 669 SourceLocation Location; 670 SourceRange Range; 671 bool IsIFunc = D->hasAttr<IFuncAttr>(); 672 if (const Attr *A = D->getDefiningAttr()) { 673 Location = A->getLocation(); 674 Range = A->getRange(); 675 } else 676 llvm_unreachable("Not an alias or ifunc?"); 677 678 StringRef MangledName = getMangledName(GD); 679 llvm::GlobalValue *Alias = GetGlobalValue(MangledName); 680 const llvm::GlobalValue *GV = nullptr; 681 if (!checkAliasedGlobal(getContext(), Diags, Location, IsIFunc, Alias, GV, 682 MangledDeclNames, Range)) { 683 Error = true; 684 continue; 685 } 686 687 if (getContext().getTargetInfo().getTriple().isOSAIX()) 688 if (const llvm::GlobalVariable *GVar = 689 dyn_cast<const llvm::GlobalVariable>(GV)) 690 checkAliasForTocData(const_cast<llvm::GlobalVariable *>(GVar), 691 getCodeGenOpts(), Diags, Location); 692 693 llvm::Constant *Aliasee = 694 IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver() 695 : cast<llvm::GlobalAlias>(Alias)->getAliasee(); 696 697 llvm::GlobalValue *AliaseeGV; 698 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 699 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 700 else 701 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 702 703 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 704 StringRef AliasSection = SA->getName(); 705 if (AliasSection != AliaseeGV->getSection()) 706 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 707 << AliasSection << IsIFunc << IsIFunc; 708 } 709 710 // We have to handle alias to weak aliases in here. LLVM itself disallows 711 // this since the object semantics would not match the IL one. For 712 // compatibility with gcc we implement it by just pointing the alias 713 // to its aliasee's aliasee. We also warn, since the user is probably 714 // expecting the link to be weak. 715 if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) { 716 if (GA->isInterposable()) { 717 Diags.Report(Location, diag::warn_alias_to_weak_alias) 718 << GV->getName() << GA->getName() << IsIFunc; 719 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 720 GA->getAliasee(), Alias->getType()); 721 722 if (IsIFunc) 723 cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee); 724 else 725 cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee); 726 } 727 } 728 // ifunc resolvers are usually implemented to run before sanitizer 729 // initialization. Disable instrumentation to prevent the ordering issue. 730 if (IsIFunc) 731 cast<llvm::Function>(Aliasee)->addFnAttr( 732 llvm::Attribute::DisableSanitizerInstrumentation); 733 } 734 if (!Error) 735 return; 736 737 for (const GlobalDecl &GD : Aliases) { 738 StringRef MangledName = getMangledName(GD); 739 llvm::GlobalValue *Alias = GetGlobalValue(MangledName); 740 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 741 Alias->eraseFromParent(); 742 } 743 } 744 745 void CodeGenModule::clear() { 746 DeferredDeclsToEmit.clear(); 747 EmittedDeferredDecls.clear(); 748 DeferredAnnotations.clear(); 749 if (OpenMPRuntime) 750 OpenMPRuntime->clear(); 751 } 752 753 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 754 StringRef MainFile) { 755 if (!hasDiagnostics()) 756 return; 757 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 758 if (MainFile.empty()) 759 MainFile = "<stdin>"; 760 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 761 } else { 762 if (Mismatched > 0) 763 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 764 765 if (Missing > 0) 766 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 767 } 768 } 769 770 static std::optional<llvm::GlobalValue::VisibilityTypes> 771 getLLVMVisibility(clang::LangOptions::VisibilityFromDLLStorageClassKinds K) { 772 // Map to LLVM visibility. 773 switch (K) { 774 case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Keep: 775 return std::nullopt; 776 case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Default: 777 return llvm::GlobalValue::DefaultVisibility; 778 case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Hidden: 779 return llvm::GlobalValue::HiddenVisibility; 780 case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Protected: 781 return llvm::GlobalValue::ProtectedVisibility; 782 } 783 llvm_unreachable("unknown option value!"); 784 } 785 786 void setLLVMVisibility(llvm::GlobalValue &GV, 787 std::optional<llvm::GlobalValue::VisibilityTypes> V) { 788 if (!V) 789 return; 790 791 // Reset DSO locality before setting the visibility. This removes 792 // any effects that visibility options and annotations may have 793 // had on the DSO locality. Setting the visibility will implicitly set 794 // appropriate globals to DSO Local; however, this will be pessimistic 795 // w.r.t. to the normal compiler IRGen. 796 GV.setDSOLocal(false); 797 GV.setVisibility(*V); 798 } 799 800 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO, 801 llvm::Module &M) { 802 if (!LO.VisibilityFromDLLStorageClass) 803 return; 804 805 std::optional<llvm::GlobalValue::VisibilityTypes> DLLExportVisibility = 806 getLLVMVisibility(LO.getDLLExportVisibility()); 807 808 std::optional<llvm::GlobalValue::VisibilityTypes> 809 NoDLLStorageClassVisibility = 810 getLLVMVisibility(LO.getNoDLLStorageClassVisibility()); 811 812 std::optional<llvm::GlobalValue::VisibilityTypes> 813 ExternDeclDLLImportVisibility = 814 getLLVMVisibility(LO.getExternDeclDLLImportVisibility()); 815 816 std::optional<llvm::GlobalValue::VisibilityTypes> 817 ExternDeclNoDLLStorageClassVisibility = 818 getLLVMVisibility(LO.getExternDeclNoDLLStorageClassVisibility()); 819 820 for (llvm::GlobalValue &GV : M.global_values()) { 821 if (GV.hasAppendingLinkage() || GV.hasLocalLinkage()) 822 continue; 823 824 if (GV.isDeclarationForLinker()) 825 setLLVMVisibility(GV, GV.getDLLStorageClass() == 826 llvm::GlobalValue::DLLImportStorageClass 827 ? ExternDeclDLLImportVisibility 828 : ExternDeclNoDLLStorageClassVisibility); 829 else 830 setLLVMVisibility(GV, GV.getDLLStorageClass() == 831 llvm::GlobalValue::DLLExportStorageClass 832 ? DLLExportVisibility 833 : NoDLLStorageClassVisibility); 834 835 GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 836 } 837 } 838 839 static bool isStackProtectorOn(const LangOptions &LangOpts, 840 const llvm::Triple &Triple, 841 clang::LangOptions::StackProtectorMode Mode) { 842 if (Triple.isAMDGPU() || Triple.isNVPTX()) 843 return false; 844 return LangOpts.getStackProtector() == Mode; 845 } 846 847 void CodeGenModule::Release() { 848 Module *Primary = getContext().getCurrentNamedModule(); 849 if (CXX20ModuleInits && Primary && !Primary->isHeaderLikeModule()) 850 EmitModuleInitializers(Primary); 851 EmitDeferred(); 852 DeferredDecls.insert(EmittedDeferredDecls.begin(), 853 EmittedDeferredDecls.end()); 854 EmittedDeferredDecls.clear(); 855 EmitVTablesOpportunistically(); 856 applyGlobalValReplacements(); 857 applyReplacements(); 858 emitMultiVersionFunctions(); 859 860 if (Context.getLangOpts().IncrementalExtensions && 861 GlobalTopLevelStmtBlockInFlight.first) { 862 const TopLevelStmtDecl *TLSD = GlobalTopLevelStmtBlockInFlight.second; 863 GlobalTopLevelStmtBlockInFlight.first->FinishFunction(TLSD->getEndLoc()); 864 GlobalTopLevelStmtBlockInFlight = {nullptr, nullptr}; 865 } 866 867 // Module implementations are initialized the same way as a regular TU that 868 // imports one or more modules. 869 if (CXX20ModuleInits && Primary && Primary->isInterfaceOrPartition()) 870 EmitCXXModuleInitFunc(Primary); 871 else 872 EmitCXXGlobalInitFunc(); 873 EmitCXXGlobalCleanUpFunc(); 874 registerGlobalDtorsWithAtExit(); 875 EmitCXXThreadLocalInitFunc(); 876 if (ObjCRuntime) 877 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 878 AddGlobalCtor(ObjCInitFunction); 879 if (Context.getLangOpts().CUDA && CUDARuntime) { 880 if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule()) 881 AddGlobalCtor(CudaCtorFunction); 882 } 883 if (OpenMPRuntime) { 884 OpenMPRuntime->createOffloadEntriesAndInfoMetadata(); 885 OpenMPRuntime->clear(); 886 } 887 if (PGOReader) { 888 getModule().setProfileSummary( 889 PGOReader->getSummary(/* UseCS */ false).getMD(VMContext), 890 llvm::ProfileSummary::PSK_Instr); 891 if (PGOStats.hasDiagnostics()) 892 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 893 } 894 llvm::stable_sort(GlobalCtors, [](const Structor &L, const Structor &R) { 895 return L.LexOrder < R.LexOrder; 896 }); 897 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 898 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 899 EmitGlobalAnnotations(); 900 EmitStaticExternCAliases(); 901 checkAliases(); 902 EmitDeferredUnusedCoverageMappings(); 903 CodeGenPGO(*this).setValueProfilingFlag(getModule()); 904 CodeGenPGO(*this).setProfileVersion(getModule()); 905 if (CoverageMapping) 906 CoverageMapping->emit(); 907 if (CodeGenOpts.SanitizeCfiCrossDso) { 908 CodeGenFunction(*this).EmitCfiCheckFail(); 909 CodeGenFunction(*this).EmitCfiCheckStub(); 910 } 911 if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) 912 finalizeKCFITypes(); 913 emitAtAvailableLinkGuard(); 914 if (Context.getTargetInfo().getTriple().isWasm()) 915 EmitMainVoidAlias(); 916 917 if (getTriple().isAMDGPU() || 918 (getTriple().isSPIRV() && getTriple().getVendor() == llvm::Triple::AMD)) { 919 // Emit amdhsa_code_object_version module flag, which is code object version 920 // times 100. 921 if (getTarget().getTargetOpts().CodeObjectVersion != 922 llvm::CodeObjectVersionKind::COV_None) { 923 getModule().addModuleFlag(llvm::Module::Error, 924 "amdhsa_code_object_version", 925 getTarget().getTargetOpts().CodeObjectVersion); 926 } 927 928 // Currently, "-mprintf-kind" option is only supported for HIP 929 if (LangOpts.HIP) { 930 auto *MDStr = llvm::MDString::get( 931 getLLVMContext(), (getTarget().getTargetOpts().AMDGPUPrintfKindVal == 932 TargetOptions::AMDGPUPrintfKind::Hostcall) 933 ? "hostcall" 934 : "buffered"); 935 getModule().addModuleFlag(llvm::Module::Error, "amdgpu_printf_kind", 936 MDStr); 937 } 938 } 939 940 // Emit a global array containing all external kernels or device variables 941 // used by host functions and mark it as used for CUDA/HIP. This is necessary 942 // to get kernels or device variables in archives linked in even if these 943 // kernels or device variables are only used in host functions. 944 if (!Context.CUDAExternalDeviceDeclODRUsedByHost.empty()) { 945 SmallVector<llvm::Constant *, 8> UsedArray; 946 for (auto D : Context.CUDAExternalDeviceDeclODRUsedByHost) { 947 GlobalDecl GD; 948 if (auto *FD = dyn_cast<FunctionDecl>(D)) 949 GD = GlobalDecl(FD, KernelReferenceKind::Kernel); 950 else 951 GD = GlobalDecl(D); 952 UsedArray.push_back(llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 953 GetAddrOfGlobal(GD), Int8PtrTy)); 954 } 955 956 llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size()); 957 958 auto *GV = new llvm::GlobalVariable( 959 getModule(), ATy, false, llvm::GlobalValue::InternalLinkage, 960 llvm::ConstantArray::get(ATy, UsedArray), "__clang_gpu_used_external"); 961 addCompilerUsedGlobal(GV); 962 } 963 if (LangOpts.HIP && !getLangOpts().OffloadingNewDriver) { 964 // Emit a unique ID so that host and device binaries from the same 965 // compilation unit can be associated. 966 auto *GV = new llvm::GlobalVariable( 967 getModule(), Int8Ty, false, llvm::GlobalValue::ExternalLinkage, 968 llvm::Constant::getNullValue(Int8Ty), 969 "__hip_cuid_" + getContext().getCUIDHash()); 970 addCompilerUsedGlobal(GV); 971 } 972 emitLLVMUsed(); 973 if (SanStats) 974 SanStats->finish(); 975 976 if (CodeGenOpts.Autolink && 977 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 978 EmitModuleLinkOptions(); 979 } 980 981 // On ELF we pass the dependent library specifiers directly to the linker 982 // without manipulating them. This is in contrast to other platforms where 983 // they are mapped to a specific linker option by the compiler. This 984 // difference is a result of the greater variety of ELF linkers and the fact 985 // that ELF linkers tend to handle libraries in a more complicated fashion 986 // than on other platforms. This forces us to defer handling the dependent 987 // libs to the linker. 988 // 989 // CUDA/HIP device and host libraries are different. Currently there is no 990 // way to differentiate dependent libraries for host or device. Existing 991 // usage of #pragma comment(lib, *) is intended for host libraries on 992 // Windows. Therefore emit llvm.dependent-libraries only for host. 993 if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) { 994 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries"); 995 for (auto *MD : ELFDependentLibraries) 996 NMD->addOperand(MD); 997 } 998 999 if (CodeGenOpts.DwarfVersion) { 1000 getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version", 1001 CodeGenOpts.DwarfVersion); 1002 } 1003 1004 if (CodeGenOpts.Dwarf64) 1005 getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1); 1006 1007 if (Context.getLangOpts().SemanticInterposition) 1008 // Require various optimization to respect semantic interposition. 1009 getModule().setSemanticInterposition(true); 1010 1011 if (CodeGenOpts.EmitCodeView) { 1012 // Indicate that we want CodeView in the metadata. 1013 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 1014 } 1015 if (CodeGenOpts.CodeViewGHash) { 1016 getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1); 1017 } 1018 if (CodeGenOpts.ControlFlowGuard) { 1019 // Function ID tables and checks for Control Flow Guard (cfguard=2). 1020 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2); 1021 } else if (CodeGenOpts.ControlFlowGuardNoChecks) { 1022 // Function ID tables for Control Flow Guard (cfguard=1). 1023 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1); 1024 } 1025 if (CodeGenOpts.EHContGuard) { 1026 // Function ID tables for EH Continuation Guard. 1027 getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1); 1028 } 1029 if (Context.getLangOpts().Kernel) { 1030 // Note if we are compiling with /kernel. 1031 getModule().addModuleFlag(llvm::Module::Warning, "ms-kernel", 1); 1032 } 1033 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 1034 // We don't support LTO with 2 with different StrictVTablePointers 1035 // FIXME: we could support it by stripping all the information introduced 1036 // by StrictVTablePointers. 1037 1038 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 1039 1040 llvm::Metadata *Ops[2] = { 1041 llvm::MDString::get(VMContext, "StrictVTablePointers"), 1042 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1043 llvm::Type::getInt32Ty(VMContext), 1))}; 1044 1045 getModule().addModuleFlag(llvm::Module::Require, 1046 "StrictVTablePointersRequirement", 1047 llvm::MDNode::get(VMContext, Ops)); 1048 } 1049 if (getModuleDebugInfo()) 1050 // We support a single version in the linked module. The LLVM 1051 // parser will drop debug info with a different version number 1052 // (and warn about it, too). 1053 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 1054 llvm::DEBUG_METADATA_VERSION); 1055 1056 // We need to record the widths of enums and wchar_t, so that we can generate 1057 // the correct build attributes in the ARM backend. wchar_size is also used by 1058 // TargetLibraryInfo. 1059 uint64_t WCharWidth = 1060 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 1061 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 1062 1063 if (getTriple().isOSzOS()) { 1064 getModule().addModuleFlag(llvm::Module::Warning, 1065 "zos_product_major_version", 1066 uint32_t(CLANG_VERSION_MAJOR)); 1067 getModule().addModuleFlag(llvm::Module::Warning, 1068 "zos_product_minor_version", 1069 uint32_t(CLANG_VERSION_MINOR)); 1070 getModule().addModuleFlag(llvm::Module::Warning, "zos_product_patchlevel", 1071 uint32_t(CLANG_VERSION_PATCHLEVEL)); 1072 std::string ProductId = getClangVendor() + "clang"; 1073 getModule().addModuleFlag(llvm::Module::Error, "zos_product_id", 1074 llvm::MDString::get(VMContext, ProductId)); 1075 1076 // Record the language because we need it for the PPA2. 1077 StringRef lang_str = languageToString( 1078 LangStandard::getLangStandardForKind(LangOpts.LangStd).Language); 1079 getModule().addModuleFlag(llvm::Module::Error, "zos_cu_language", 1080 llvm::MDString::get(VMContext, lang_str)); 1081 1082 time_t TT = PreprocessorOpts.SourceDateEpoch 1083 ? *PreprocessorOpts.SourceDateEpoch 1084 : std::time(nullptr); 1085 getModule().addModuleFlag(llvm::Module::Max, "zos_translation_time", 1086 static_cast<uint64_t>(TT)); 1087 1088 // Multiple modes will be supported here. 1089 getModule().addModuleFlag(llvm::Module::Error, "zos_le_char_mode", 1090 llvm::MDString::get(VMContext, "ascii")); 1091 } 1092 1093 llvm::Triple T = Context.getTargetInfo().getTriple(); 1094 if (T.isARM() || T.isThumb()) { 1095 // The minimum width of an enum in bytes 1096 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 1097 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 1098 } 1099 1100 if (T.isRISCV()) { 1101 StringRef ABIStr = Target.getABI(); 1102 llvm::LLVMContext &Ctx = TheModule.getContext(); 1103 getModule().addModuleFlag(llvm::Module::Error, "target-abi", 1104 llvm::MDString::get(Ctx, ABIStr)); 1105 1106 // Add the canonical ISA string as metadata so the backend can set the ELF 1107 // attributes correctly. We use AppendUnique so LTO will keep all of the 1108 // unique ISA strings that were linked together. 1109 const std::vector<std::string> &Features = 1110 getTarget().getTargetOpts().Features; 1111 auto ParseResult = 1112 llvm::RISCVISAInfo::parseFeatures(T.isRISCV64() ? 64 : 32, Features); 1113 if (!errorToBool(ParseResult.takeError())) 1114 getModule().addModuleFlag( 1115 llvm::Module::AppendUnique, "riscv-isa", 1116 llvm::MDNode::get( 1117 Ctx, llvm::MDString::get(Ctx, (*ParseResult)->toString()))); 1118 } 1119 1120 if (CodeGenOpts.SanitizeCfiCrossDso) { 1121 // Indicate that we want cross-DSO control flow integrity checks. 1122 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 1123 } 1124 1125 if (CodeGenOpts.WholeProgramVTables) { 1126 // Indicate whether VFE was enabled for this module, so that the 1127 // vcall_visibility metadata added under whole program vtables is handled 1128 // appropriately in the optimizer. 1129 getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim", 1130 CodeGenOpts.VirtualFunctionElimination); 1131 } 1132 1133 if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) { 1134 getModule().addModuleFlag(llvm::Module::Override, 1135 "CFI Canonical Jump Tables", 1136 CodeGenOpts.SanitizeCfiCanonicalJumpTables); 1137 } 1138 1139 if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) { 1140 getModule().addModuleFlag(llvm::Module::Override, "kcfi", 1); 1141 // KCFI assumes patchable-function-prefix is the same for all indirectly 1142 // called functions. Store the expected offset for code generation. 1143 if (CodeGenOpts.PatchableFunctionEntryOffset) 1144 getModule().addModuleFlag(llvm::Module::Override, "kcfi-offset", 1145 CodeGenOpts.PatchableFunctionEntryOffset); 1146 } 1147 1148 if (CodeGenOpts.CFProtectionReturn && 1149 Target.checkCFProtectionReturnSupported(getDiags())) { 1150 // Indicate that we want to instrument return control flow protection. 1151 getModule().addModuleFlag(llvm::Module::Min, "cf-protection-return", 1152 1); 1153 } 1154 1155 if (CodeGenOpts.CFProtectionBranch && 1156 Target.checkCFProtectionBranchSupported(getDiags())) { 1157 // Indicate that we want to instrument branch control flow protection. 1158 getModule().addModuleFlag(llvm::Module::Min, "cf-protection-branch", 1159 1); 1160 } 1161 1162 if (CodeGenOpts.FunctionReturnThunks) 1163 getModule().addModuleFlag(llvm::Module::Override, "function_return_thunk_extern", 1); 1164 1165 if (CodeGenOpts.IndirectBranchCSPrefix) 1166 getModule().addModuleFlag(llvm::Module::Override, "indirect_branch_cs_prefix", 1); 1167 1168 // Add module metadata for return address signing (ignoring 1169 // non-leaf/all) and stack tagging. These are actually turned on by function 1170 // attributes, but we use module metadata to emit build attributes. This is 1171 // needed for LTO, where the function attributes are inside bitcode 1172 // serialised into a global variable by the time build attributes are 1173 // emitted, so we can't access them. LTO objects could be compiled with 1174 // different flags therefore module flags are set to "Min" behavior to achieve 1175 // the same end result of the normal build where e.g BTI is off if any object 1176 // doesn't support it. 1177 if (Context.getTargetInfo().hasFeature("ptrauth") && 1178 LangOpts.getSignReturnAddressScope() != 1179 LangOptions::SignReturnAddressScopeKind::None) 1180 getModule().addModuleFlag(llvm::Module::Override, 1181 "sign-return-address-buildattr", 1); 1182 if (LangOpts.Sanitize.has(SanitizerKind::MemtagStack)) 1183 getModule().addModuleFlag(llvm::Module::Override, 1184 "tag-stack-memory-buildattr", 1); 1185 1186 if (T.isARM() || T.isThumb() || T.isAArch64()) { 1187 if (LangOpts.BranchTargetEnforcement) 1188 getModule().addModuleFlag(llvm::Module::Min, "branch-target-enforcement", 1189 1); 1190 if (LangOpts.BranchProtectionPAuthLR) 1191 getModule().addModuleFlag(llvm::Module::Min, "branch-protection-pauth-lr", 1192 1); 1193 if (LangOpts.GuardedControlStack) 1194 getModule().addModuleFlag(llvm::Module::Min, "guarded-control-stack", 1); 1195 if (LangOpts.hasSignReturnAddress()) 1196 getModule().addModuleFlag(llvm::Module::Min, "sign-return-address", 1); 1197 if (LangOpts.isSignReturnAddressScopeAll()) 1198 getModule().addModuleFlag(llvm::Module::Min, "sign-return-address-all", 1199 1); 1200 if (!LangOpts.isSignReturnAddressWithAKey()) 1201 getModule().addModuleFlag(llvm::Module::Min, 1202 "sign-return-address-with-bkey", 1); 1203 1204 if (getTriple().isOSLinux()) { 1205 assert(getTriple().isOSBinFormatELF()); 1206 using namespace llvm::ELF; 1207 uint64_t PAuthABIVersion = 1208 (LangOpts.PointerAuthIntrinsics 1209 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INTRINSICS) | 1210 (LangOpts.PointerAuthCalls 1211 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_CALLS) | 1212 (LangOpts.PointerAuthReturns 1213 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_RETURNS) | 1214 (LangOpts.PointerAuthAuthTraps 1215 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_AUTHTRAPS) | 1216 (LangOpts.PointerAuthVTPtrAddressDiscrimination 1217 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_VPTRADDRDISCR) | 1218 (LangOpts.PointerAuthVTPtrTypeDiscrimination 1219 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_VPTRTYPEDISCR) | 1220 (LangOpts.PointerAuthInitFini 1221 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INITFINI); 1222 static_assert(AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INITFINI == 1223 AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_LAST, 1224 "Update when new enum items are defined"); 1225 if (PAuthABIVersion != 0) { 1226 getModule().addModuleFlag(llvm::Module::Error, 1227 "aarch64-elf-pauthabi-platform", 1228 AARCH64_PAUTH_PLATFORM_LLVM_LINUX); 1229 getModule().addModuleFlag(llvm::Module::Error, 1230 "aarch64-elf-pauthabi-version", 1231 PAuthABIVersion); 1232 } 1233 } 1234 } 1235 1236 if (CodeGenOpts.StackClashProtector) 1237 getModule().addModuleFlag( 1238 llvm::Module::Override, "probe-stack", 1239 llvm::MDString::get(TheModule.getContext(), "inline-asm")); 1240 1241 if (CodeGenOpts.StackProbeSize && CodeGenOpts.StackProbeSize != 4096) 1242 getModule().addModuleFlag(llvm::Module::Min, "stack-probe-size", 1243 CodeGenOpts.StackProbeSize); 1244 1245 if (!CodeGenOpts.MemoryProfileOutput.empty()) { 1246 llvm::LLVMContext &Ctx = TheModule.getContext(); 1247 getModule().addModuleFlag( 1248 llvm::Module::Error, "MemProfProfileFilename", 1249 llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput)); 1250 } 1251 1252 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 1253 // Indicate whether __nvvm_reflect should be configured to flush denormal 1254 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 1255 // property.) 1256 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 1257 CodeGenOpts.FP32DenormalMode.Output != 1258 llvm::DenormalMode::IEEE); 1259 } 1260 1261 if (LangOpts.EHAsynch) 1262 getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1); 1263 1264 // Indicate whether this Module was compiled with -fopenmp 1265 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 1266 getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP); 1267 if (getLangOpts().OpenMPIsTargetDevice) 1268 getModule().addModuleFlag(llvm::Module::Max, "openmp-device", 1269 LangOpts.OpenMP); 1270 1271 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 1272 if (LangOpts.OpenCL || (LangOpts.CUDAIsDevice && getTriple().isSPIRV())) { 1273 EmitOpenCLMetadata(); 1274 // Emit SPIR version. 1275 if (getTriple().isSPIR()) { 1276 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 1277 // opencl.spir.version named metadata. 1278 // C++ for OpenCL has a distinct mapping for version compatibility with 1279 // OpenCL. 1280 auto Version = LangOpts.getOpenCLCompatibleVersion(); 1281 llvm::Metadata *SPIRVerElts[] = { 1282 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1283 Int32Ty, Version / 100)), 1284 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1285 Int32Ty, (Version / 100 > 1) ? 0 : 2))}; 1286 llvm::NamedMDNode *SPIRVerMD = 1287 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 1288 llvm::LLVMContext &Ctx = TheModule.getContext(); 1289 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 1290 } 1291 } 1292 1293 // HLSL related end of code gen work items. 1294 if (LangOpts.HLSL) 1295 getHLSLRuntime().finishCodeGen(); 1296 1297 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 1298 assert(PLevel < 3 && "Invalid PIC Level"); 1299 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 1300 if (Context.getLangOpts().PIE) 1301 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 1302 } 1303 1304 if (getCodeGenOpts().CodeModel.size() > 0) { 1305 unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel) 1306 .Case("tiny", llvm::CodeModel::Tiny) 1307 .Case("small", llvm::CodeModel::Small) 1308 .Case("kernel", llvm::CodeModel::Kernel) 1309 .Case("medium", llvm::CodeModel::Medium) 1310 .Case("large", llvm::CodeModel::Large) 1311 .Default(~0u); 1312 if (CM != ~0u) { 1313 llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM); 1314 getModule().setCodeModel(codeModel); 1315 1316 if ((CM == llvm::CodeModel::Medium || CM == llvm::CodeModel::Large) && 1317 Context.getTargetInfo().getTriple().getArch() == 1318 llvm::Triple::x86_64) { 1319 getModule().setLargeDataThreshold(getCodeGenOpts().LargeDataThreshold); 1320 } 1321 } 1322 } 1323 1324 if (CodeGenOpts.NoPLT) 1325 getModule().setRtLibUseGOT(); 1326 if (getTriple().isOSBinFormatELF() && 1327 CodeGenOpts.DirectAccessExternalData != 1328 getModule().getDirectAccessExternalData()) { 1329 getModule().setDirectAccessExternalData( 1330 CodeGenOpts.DirectAccessExternalData); 1331 } 1332 if (CodeGenOpts.UnwindTables) 1333 getModule().setUwtable(llvm::UWTableKind(CodeGenOpts.UnwindTables)); 1334 1335 switch (CodeGenOpts.getFramePointer()) { 1336 case CodeGenOptions::FramePointerKind::None: 1337 // 0 ("none") is the default. 1338 break; 1339 case CodeGenOptions::FramePointerKind::Reserved: 1340 getModule().setFramePointer(llvm::FramePointerKind::Reserved); 1341 break; 1342 case CodeGenOptions::FramePointerKind::NonLeaf: 1343 getModule().setFramePointer(llvm::FramePointerKind::NonLeaf); 1344 break; 1345 case CodeGenOptions::FramePointerKind::All: 1346 getModule().setFramePointer(llvm::FramePointerKind::All); 1347 break; 1348 } 1349 1350 SimplifyPersonality(); 1351 1352 if (getCodeGenOpts().EmitDeclMetadata) 1353 EmitDeclMetadata(); 1354 1355 if (getCodeGenOpts().CoverageNotesFile.size() || 1356 getCodeGenOpts().CoverageDataFile.size()) 1357 EmitCoverageFile(); 1358 1359 if (CGDebugInfo *DI = getModuleDebugInfo()) 1360 DI->finalize(); 1361 1362 if (getCodeGenOpts().EmitVersionIdentMetadata) 1363 EmitVersionIdentMetadata(); 1364 1365 if (!getCodeGenOpts().RecordCommandLine.empty()) 1366 EmitCommandLineMetadata(); 1367 1368 if (!getCodeGenOpts().StackProtectorGuard.empty()) 1369 getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard); 1370 if (!getCodeGenOpts().StackProtectorGuardReg.empty()) 1371 getModule().setStackProtectorGuardReg( 1372 getCodeGenOpts().StackProtectorGuardReg); 1373 if (!getCodeGenOpts().StackProtectorGuardSymbol.empty()) 1374 getModule().setStackProtectorGuardSymbol( 1375 getCodeGenOpts().StackProtectorGuardSymbol); 1376 if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX) 1377 getModule().setStackProtectorGuardOffset( 1378 getCodeGenOpts().StackProtectorGuardOffset); 1379 if (getCodeGenOpts().StackAlignment) 1380 getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment); 1381 if (getCodeGenOpts().SkipRaxSetup) 1382 getModule().addModuleFlag(llvm::Module::Override, "SkipRaxSetup", 1); 1383 if (getLangOpts().RegCall4) 1384 getModule().addModuleFlag(llvm::Module::Override, "RegCallv4", 1); 1385 1386 if (getContext().getTargetInfo().getMaxTLSAlign()) 1387 getModule().addModuleFlag(llvm::Module::Error, "MaxTLSAlign", 1388 getContext().getTargetInfo().getMaxTLSAlign()); 1389 1390 getTargetCodeGenInfo().emitTargetGlobals(*this); 1391 1392 getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames); 1393 1394 EmitBackendOptionsMetadata(getCodeGenOpts()); 1395 1396 // If there is device offloading code embed it in the host now. 1397 EmbedObject(&getModule(), CodeGenOpts, getDiags()); 1398 1399 // Set visibility from DLL storage class 1400 // We do this at the end of LLVM IR generation; after any operation 1401 // that might affect the DLL storage class or the visibility, and 1402 // before anything that might act on these. 1403 setVisibilityFromDLLStorageClass(LangOpts, getModule()); 1404 1405 // Check the tail call symbols are truly undefined. 1406 if (getTriple().isPPC() && !MustTailCallUndefinedGlobals.empty()) { 1407 for (auto &I : MustTailCallUndefinedGlobals) { 1408 if (!I.first->isDefined()) 1409 getDiags().Report(I.second, diag::err_ppc_impossible_musttail) << 2; 1410 else { 1411 StringRef MangledName = getMangledName(GlobalDecl(I.first)); 1412 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1413 if (!Entry || Entry->isWeakForLinker() || 1414 Entry->isDeclarationForLinker()) 1415 getDiags().Report(I.second, diag::err_ppc_impossible_musttail) << 2; 1416 } 1417 } 1418 } 1419 } 1420 1421 void CodeGenModule::EmitOpenCLMetadata() { 1422 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 1423 // opencl.ocl.version named metadata node. 1424 // C++ for OpenCL has a distinct mapping for versions compatible with OpenCL. 1425 auto CLVersion = LangOpts.getOpenCLCompatibleVersion(); 1426 1427 auto EmitVersion = [this](StringRef MDName, int Version) { 1428 llvm::Metadata *OCLVerElts[] = { 1429 llvm::ConstantAsMetadata::get( 1430 llvm::ConstantInt::get(Int32Ty, Version / 100)), 1431 llvm::ConstantAsMetadata::get( 1432 llvm::ConstantInt::get(Int32Ty, (Version % 100) / 10))}; 1433 llvm::NamedMDNode *OCLVerMD = TheModule.getOrInsertNamedMetadata(MDName); 1434 llvm::LLVMContext &Ctx = TheModule.getContext(); 1435 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 1436 }; 1437 1438 EmitVersion("opencl.ocl.version", CLVersion); 1439 if (LangOpts.OpenCLCPlusPlus) { 1440 // In addition to the OpenCL compatible version, emit the C++ version. 1441 EmitVersion("opencl.cxx.version", LangOpts.OpenCLCPlusPlusVersion); 1442 } 1443 } 1444 1445 void CodeGenModule::EmitBackendOptionsMetadata( 1446 const CodeGenOptions &CodeGenOpts) { 1447 if (getTriple().isRISCV()) { 1448 getModule().addModuleFlag(llvm::Module::Min, "SmallDataLimit", 1449 CodeGenOpts.SmallDataLimit); 1450 } 1451 } 1452 1453 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 1454 // Make sure that this type is translated. 1455 Types.UpdateCompletedType(TD); 1456 } 1457 1458 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 1459 // Make sure that this type is translated. 1460 Types.RefreshTypeCacheForClass(RD); 1461 } 1462 1463 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 1464 if (!TBAA) 1465 return nullptr; 1466 return TBAA->getTypeInfo(QTy); 1467 } 1468 1469 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 1470 if (!TBAA) 1471 return TBAAAccessInfo(); 1472 if (getLangOpts().CUDAIsDevice) { 1473 // As CUDA builtin surface/texture types are replaced, skip generating TBAA 1474 // access info. 1475 if (AccessType->isCUDADeviceBuiltinSurfaceType()) { 1476 if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() != 1477 nullptr) 1478 return TBAAAccessInfo(); 1479 } else if (AccessType->isCUDADeviceBuiltinTextureType()) { 1480 if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() != 1481 nullptr) 1482 return TBAAAccessInfo(); 1483 } 1484 } 1485 return TBAA->getAccessInfo(AccessType); 1486 } 1487 1488 TBAAAccessInfo 1489 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 1490 if (!TBAA) 1491 return TBAAAccessInfo(); 1492 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 1493 } 1494 1495 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 1496 if (!TBAA) 1497 return nullptr; 1498 return TBAA->getTBAAStructInfo(QTy); 1499 } 1500 1501 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 1502 if (!TBAA) 1503 return nullptr; 1504 return TBAA->getBaseTypeInfo(QTy); 1505 } 1506 1507 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 1508 if (!TBAA) 1509 return nullptr; 1510 return TBAA->getAccessTagInfo(Info); 1511 } 1512 1513 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 1514 TBAAAccessInfo TargetInfo) { 1515 if (!TBAA) 1516 return TBAAAccessInfo(); 1517 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 1518 } 1519 1520 TBAAAccessInfo 1521 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 1522 TBAAAccessInfo InfoB) { 1523 if (!TBAA) 1524 return TBAAAccessInfo(); 1525 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 1526 } 1527 1528 TBAAAccessInfo 1529 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, 1530 TBAAAccessInfo SrcInfo) { 1531 if (!TBAA) 1532 return TBAAAccessInfo(); 1533 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); 1534 } 1535 1536 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 1537 TBAAAccessInfo TBAAInfo) { 1538 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 1539 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 1540 } 1541 1542 void CodeGenModule::DecorateInstructionWithInvariantGroup( 1543 llvm::Instruction *I, const CXXRecordDecl *RD) { 1544 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 1545 llvm::MDNode::get(getLLVMContext(), {})); 1546 } 1547 1548 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 1549 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 1550 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 1551 } 1552 1553 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1554 /// specified stmt yet. 1555 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 1556 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 1557 "cannot compile this %0 yet"); 1558 std::string Msg = Type; 1559 getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID) 1560 << Msg << S->getSourceRange(); 1561 } 1562 1563 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1564 /// specified decl yet. 1565 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 1566 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 1567 "cannot compile this %0 yet"); 1568 std::string Msg = Type; 1569 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 1570 } 1571 1572 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 1573 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 1574 } 1575 1576 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 1577 const NamedDecl *D) const { 1578 // Internal definitions always have default visibility. 1579 if (GV->hasLocalLinkage()) { 1580 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1581 return; 1582 } 1583 if (!D) 1584 return; 1585 1586 // Set visibility for definitions, and for declarations if requested globally 1587 // or set explicitly. 1588 LinkageInfo LV = D->getLinkageAndVisibility(); 1589 1590 // OpenMP declare target variables must be visible to the host so they can 1591 // be registered. We require protected visibility unless the variable has 1592 // the DT_nohost modifier and does not need to be registered. 1593 if (Context.getLangOpts().OpenMP && 1594 Context.getLangOpts().OpenMPIsTargetDevice && isa<VarDecl>(D) && 1595 D->hasAttr<OMPDeclareTargetDeclAttr>() && 1596 D->getAttr<OMPDeclareTargetDeclAttr>()->getDevType() != 1597 OMPDeclareTargetDeclAttr::DT_NoHost && 1598 LV.getVisibility() == HiddenVisibility) { 1599 GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 1600 return; 1601 } 1602 1603 if (GV->hasDLLExportStorageClass() || GV->hasDLLImportStorageClass()) { 1604 // Reject incompatible dlllstorage and visibility annotations. 1605 if (!LV.isVisibilityExplicit()) 1606 return; 1607 if (GV->hasDLLExportStorageClass()) { 1608 if (LV.getVisibility() == HiddenVisibility) 1609 getDiags().Report(D->getLocation(), 1610 diag::err_hidden_visibility_dllexport); 1611 } else if (LV.getVisibility() != DefaultVisibility) { 1612 getDiags().Report(D->getLocation(), 1613 diag::err_non_default_visibility_dllimport); 1614 } 1615 return; 1616 } 1617 1618 if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls || 1619 !GV->isDeclarationForLinker()) 1620 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 1621 } 1622 1623 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, 1624 llvm::GlobalValue *GV) { 1625 if (GV->hasLocalLinkage()) 1626 return true; 1627 1628 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()) 1629 return true; 1630 1631 // DLLImport explicitly marks the GV as external. 1632 if (GV->hasDLLImportStorageClass()) 1633 return false; 1634 1635 const llvm::Triple &TT = CGM.getTriple(); 1636 const auto &CGOpts = CGM.getCodeGenOpts(); 1637 if (TT.isWindowsGNUEnvironment()) { 1638 // In MinGW, variables without DLLImport can still be automatically 1639 // imported from a DLL by the linker; don't mark variables that 1640 // potentially could come from another DLL as DSO local. 1641 1642 // With EmulatedTLS, TLS variables can be autoimported from other DLLs 1643 // (and this actually happens in the public interface of libstdc++), so 1644 // such variables can't be marked as DSO local. (Native TLS variables 1645 // can't be dllimported at all, though.) 1646 if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) && 1647 (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS) && 1648 CGOpts.AutoImport) 1649 return false; 1650 } 1651 1652 // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols 1653 // remain unresolved in the link, they can be resolved to zero, which is 1654 // outside the current DSO. 1655 if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage()) 1656 return false; 1657 1658 // Every other GV is local on COFF. 1659 // Make an exception for windows OS in the triple: Some firmware builds use 1660 // *-win32-macho triples. This (accidentally?) produced windows relocations 1661 // without GOT tables in older clang versions; Keep this behaviour. 1662 // FIXME: even thread local variables? 1663 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) 1664 return true; 1665 1666 // Only handle COFF and ELF for now. 1667 if (!TT.isOSBinFormatELF()) 1668 return false; 1669 1670 // If this is not an executable, don't assume anything is local. 1671 llvm::Reloc::Model RM = CGOpts.RelocationModel; 1672 const auto &LOpts = CGM.getLangOpts(); 1673 if (RM != llvm::Reloc::Static && !LOpts.PIE) { 1674 // On ELF, if -fno-semantic-interposition is specified and the target 1675 // supports local aliases, there will be neither CC1 1676 // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set 1677 // dso_local on the function if using a local alias is preferable (can avoid 1678 // PLT indirection). 1679 if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias())) 1680 return false; 1681 return !(CGM.getLangOpts().SemanticInterposition || 1682 CGM.getLangOpts().HalfNoSemanticInterposition); 1683 } 1684 1685 // A definition cannot be preempted from an executable. 1686 if (!GV->isDeclarationForLinker()) 1687 return true; 1688 1689 // Most PIC code sequences that assume that a symbol is local cannot produce a 1690 // 0 if it turns out the symbol is undefined. While this is ABI and relocation 1691 // depended, it seems worth it to handle it here. 1692 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) 1693 return false; 1694 1695 // PowerPC64 prefers TOC indirection to avoid copy relocations. 1696 if (TT.isPPC64()) 1697 return false; 1698 1699 if (CGOpts.DirectAccessExternalData) { 1700 // If -fdirect-access-external-data (default for -fno-pic), set dso_local 1701 // for non-thread-local variables. If the symbol is not defined in the 1702 // executable, a copy relocation will be needed at link time. dso_local is 1703 // excluded for thread-local variables because they generally don't support 1704 // copy relocations. 1705 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV)) 1706 if (!Var->isThreadLocal()) 1707 return true; 1708 1709 // -fno-pic sets dso_local on a function declaration to allow direct 1710 // accesses when taking its address (similar to a data symbol). If the 1711 // function is not defined in the executable, a canonical PLT entry will be 1712 // needed at link time. -fno-direct-access-external-data can avoid the 1713 // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as 1714 // it could just cause trouble without providing perceptible benefits. 1715 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) 1716 return true; 1717 } 1718 1719 // If we can use copy relocations we can assume it is local. 1720 1721 // Otherwise don't assume it is local. 1722 return false; 1723 } 1724 1725 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { 1726 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV)); 1727 } 1728 1729 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1730 GlobalDecl GD) const { 1731 const auto *D = dyn_cast<NamedDecl>(GD.getDecl()); 1732 // C++ destructors have a few C++ ABI specific special cases. 1733 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) { 1734 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType()); 1735 return; 1736 } 1737 setDLLImportDLLExport(GV, D); 1738 } 1739 1740 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1741 const NamedDecl *D) const { 1742 if (D && D->isExternallyVisible()) { 1743 if (D->hasAttr<DLLImportAttr>()) 1744 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 1745 else if ((D->hasAttr<DLLExportAttr>() || 1746 shouldMapVisibilityToDLLExport(D)) && 1747 !GV->isDeclarationForLinker()) 1748 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 1749 } 1750 } 1751 1752 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1753 GlobalDecl GD) const { 1754 setDLLImportDLLExport(GV, GD); 1755 setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl())); 1756 } 1757 1758 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1759 const NamedDecl *D) const { 1760 setDLLImportDLLExport(GV, D); 1761 setGVPropertiesAux(GV, D); 1762 } 1763 1764 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV, 1765 const NamedDecl *D) const { 1766 setGlobalVisibility(GV, D); 1767 setDSOLocal(GV); 1768 GV->setPartition(CodeGenOpts.SymbolPartition); 1769 } 1770 1771 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 1772 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 1773 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 1774 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 1775 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 1776 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 1777 } 1778 1779 llvm::GlobalVariable::ThreadLocalMode 1780 CodeGenModule::GetDefaultLLVMTLSModel() const { 1781 switch (CodeGenOpts.getDefaultTLSModel()) { 1782 case CodeGenOptions::GeneralDynamicTLSModel: 1783 return llvm::GlobalVariable::GeneralDynamicTLSModel; 1784 case CodeGenOptions::LocalDynamicTLSModel: 1785 return llvm::GlobalVariable::LocalDynamicTLSModel; 1786 case CodeGenOptions::InitialExecTLSModel: 1787 return llvm::GlobalVariable::InitialExecTLSModel; 1788 case CodeGenOptions::LocalExecTLSModel: 1789 return llvm::GlobalVariable::LocalExecTLSModel; 1790 } 1791 llvm_unreachable("Invalid TLS model!"); 1792 } 1793 1794 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 1795 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 1796 1797 llvm::GlobalValue::ThreadLocalMode TLM; 1798 TLM = GetDefaultLLVMTLSModel(); 1799 1800 // Override the TLS model if it is explicitly specified. 1801 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 1802 TLM = GetLLVMTLSModel(Attr->getModel()); 1803 } 1804 1805 GV->setThreadLocalMode(TLM); 1806 } 1807 1808 static std::string getCPUSpecificMangling(const CodeGenModule &CGM, 1809 StringRef Name) { 1810 const TargetInfo &Target = CGM.getTarget(); 1811 return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str(); 1812 } 1813 1814 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM, 1815 const CPUSpecificAttr *Attr, 1816 unsigned CPUIndex, 1817 raw_ostream &Out) { 1818 // cpu_specific gets the current name, dispatch gets the resolver if IFunc is 1819 // supported. 1820 if (Attr) 1821 Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName()); 1822 else if (CGM.getTarget().supportsIFunc()) 1823 Out << ".resolver"; 1824 } 1825 1826 // Returns true if GD is a function decl with internal linkage and 1827 // needs a unique suffix after the mangled name. 1828 static bool isUniqueInternalLinkageDecl(GlobalDecl GD, 1829 CodeGenModule &CGM) { 1830 const Decl *D = GD.getDecl(); 1831 return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) && 1832 (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage); 1833 } 1834 1835 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD, 1836 const NamedDecl *ND, 1837 bool OmitMultiVersionMangling = false) { 1838 SmallString<256> Buffer; 1839 llvm::raw_svector_ostream Out(Buffer); 1840 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 1841 if (!CGM.getModuleNameHash().empty()) 1842 MC.needsUniqueInternalLinkageNames(); 1843 bool ShouldMangle = MC.shouldMangleDeclName(ND); 1844 if (ShouldMangle) 1845 MC.mangleName(GD.getWithDecl(ND), Out); 1846 else { 1847 IdentifierInfo *II = ND->getIdentifier(); 1848 assert(II && "Attempt to mangle unnamed decl."); 1849 const auto *FD = dyn_cast<FunctionDecl>(ND); 1850 1851 if (FD && 1852 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 1853 if (CGM.getLangOpts().RegCall4) 1854 Out << "__regcall4__" << II->getName(); 1855 else 1856 Out << "__regcall3__" << II->getName(); 1857 } else if (FD && FD->hasAttr<CUDAGlobalAttr>() && 1858 GD.getKernelReferenceKind() == KernelReferenceKind::Stub) { 1859 Out << "__device_stub__" << II->getName(); 1860 } else { 1861 Out << II->getName(); 1862 } 1863 } 1864 1865 // Check if the module name hash should be appended for internal linkage 1866 // symbols. This should come before multi-version target suffixes are 1867 // appended. This is to keep the name and module hash suffix of the 1868 // internal linkage function together. The unique suffix should only be 1869 // added when name mangling is done to make sure that the final name can 1870 // be properly demangled. For example, for C functions without prototypes, 1871 // name mangling is not done and the unique suffix should not be appeneded 1872 // then. 1873 if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) { 1874 assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames && 1875 "Hash computed when not explicitly requested"); 1876 Out << CGM.getModuleNameHash(); 1877 } 1878 1879 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 1880 if (FD->isMultiVersion() && !OmitMultiVersionMangling) { 1881 switch (FD->getMultiVersionKind()) { 1882 case MultiVersionKind::CPUDispatch: 1883 case MultiVersionKind::CPUSpecific: 1884 AppendCPUSpecificCPUDispatchMangling(CGM, 1885 FD->getAttr<CPUSpecificAttr>(), 1886 GD.getMultiVersionIndex(), Out); 1887 break; 1888 case MultiVersionKind::Target: { 1889 auto *Attr = FD->getAttr<TargetAttr>(); 1890 assert(Attr && "Expected TargetAttr to be present " 1891 "for attribute mangling"); 1892 const ABIInfo &Info = CGM.getTargetCodeGenInfo().getABIInfo(); 1893 Info.appendAttributeMangling(Attr, Out); 1894 break; 1895 } 1896 case MultiVersionKind::TargetVersion: { 1897 auto *Attr = FD->getAttr<TargetVersionAttr>(); 1898 assert(Attr && "Expected TargetVersionAttr to be present " 1899 "for attribute mangling"); 1900 const ABIInfo &Info = CGM.getTargetCodeGenInfo().getABIInfo(); 1901 Info.appendAttributeMangling(Attr, Out); 1902 break; 1903 } 1904 case MultiVersionKind::TargetClones: { 1905 auto *Attr = FD->getAttr<TargetClonesAttr>(); 1906 assert(Attr && "Expected TargetClonesAttr to be present " 1907 "for attribute mangling"); 1908 unsigned Index = GD.getMultiVersionIndex(); 1909 const ABIInfo &Info = CGM.getTargetCodeGenInfo().getABIInfo(); 1910 Info.appendAttributeMangling(Attr, Index, Out); 1911 break; 1912 } 1913 case MultiVersionKind::None: 1914 llvm_unreachable("None multiversion type isn't valid here"); 1915 } 1916 } 1917 1918 // Make unique name for device side static file-scope variable for HIP. 1919 if (CGM.getContext().shouldExternalize(ND) && 1920 CGM.getLangOpts().GPURelocatableDeviceCode && 1921 CGM.getLangOpts().CUDAIsDevice) 1922 CGM.printPostfixForExternalizedDecl(Out, ND); 1923 1924 return std::string(Out.str()); 1925 } 1926 1927 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 1928 const FunctionDecl *FD, 1929 StringRef &CurName) { 1930 if (!FD->isMultiVersion()) 1931 return; 1932 1933 // Get the name of what this would be without the 'target' attribute. This 1934 // allows us to lookup the version that was emitted when this wasn't a 1935 // multiversion function. 1936 std::string NonTargetName = 1937 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 1938 GlobalDecl OtherGD; 1939 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 1940 assert(OtherGD.getCanonicalDecl() 1941 .getDecl() 1942 ->getAsFunction() 1943 ->isMultiVersion() && 1944 "Other GD should now be a multiversioned function"); 1945 // OtherFD is the version of this function that was mangled BEFORE 1946 // becoming a MultiVersion function. It potentially needs to be updated. 1947 const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl() 1948 .getDecl() 1949 ->getAsFunction() 1950 ->getMostRecentDecl(); 1951 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 1952 // This is so that if the initial version was already the 'default' 1953 // version, we don't try to update it. 1954 if (OtherName != NonTargetName) { 1955 // Remove instead of erase, since others may have stored the StringRef 1956 // to this. 1957 const auto ExistingRecord = Manglings.find(NonTargetName); 1958 if (ExistingRecord != std::end(Manglings)) 1959 Manglings.remove(&(*ExistingRecord)); 1960 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 1961 StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] = 1962 Result.first->first(); 1963 // If this is the current decl is being created, make sure we update the name. 1964 if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl()) 1965 CurName = OtherNameRef; 1966 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 1967 Entry->setName(OtherName); 1968 } 1969 } 1970 } 1971 1972 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 1973 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 1974 1975 // Some ABIs don't have constructor variants. Make sure that base and 1976 // complete constructors get mangled the same. 1977 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 1978 if (!getTarget().getCXXABI().hasConstructorVariants()) { 1979 CXXCtorType OrigCtorType = GD.getCtorType(); 1980 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 1981 if (OrigCtorType == Ctor_Base) 1982 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 1983 } 1984 } 1985 1986 // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a 1987 // static device variable depends on whether the variable is referenced by 1988 // a host or device host function. Therefore the mangled name cannot be 1989 // cached. 1990 if (!LangOpts.CUDAIsDevice || !getContext().mayExternalize(GD.getDecl())) { 1991 auto FoundName = MangledDeclNames.find(CanonicalGD); 1992 if (FoundName != MangledDeclNames.end()) 1993 return FoundName->second; 1994 } 1995 1996 // Keep the first result in the case of a mangling collision. 1997 const auto *ND = cast<NamedDecl>(GD.getDecl()); 1998 std::string MangledName = getMangledNameImpl(*this, GD, ND); 1999 2000 // Ensure either we have different ABIs between host and device compilations, 2001 // says host compilation following MSVC ABI but device compilation follows 2002 // Itanium C++ ABI or, if they follow the same ABI, kernel names after 2003 // mangling should be the same after name stubbing. The later checking is 2004 // very important as the device kernel name being mangled in host-compilation 2005 // is used to resolve the device binaries to be executed. Inconsistent naming 2006 // result in undefined behavior. Even though we cannot check that naming 2007 // directly between host- and device-compilations, the host- and 2008 // device-mangling in host compilation could help catching certain ones. 2009 assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() || 2010 getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice || 2011 (getContext().getAuxTargetInfo() && 2012 (getContext().getAuxTargetInfo()->getCXXABI() != 2013 getContext().getTargetInfo().getCXXABI())) || 2014 getCUDARuntime().getDeviceSideName(ND) == 2015 getMangledNameImpl( 2016 *this, 2017 GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel), 2018 ND)); 2019 2020 auto Result = Manglings.insert(std::make_pair(MangledName, GD)); 2021 return MangledDeclNames[CanonicalGD] = Result.first->first(); 2022 } 2023 2024 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 2025 const BlockDecl *BD) { 2026 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 2027 const Decl *D = GD.getDecl(); 2028 2029 SmallString<256> Buffer; 2030 llvm::raw_svector_ostream Out(Buffer); 2031 if (!D) 2032 MangleCtx.mangleGlobalBlock(BD, 2033 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 2034 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 2035 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 2036 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 2037 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 2038 else 2039 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 2040 2041 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 2042 return Result.first->first(); 2043 } 2044 2045 const GlobalDecl CodeGenModule::getMangledNameDecl(StringRef Name) { 2046 auto it = MangledDeclNames.begin(); 2047 while (it != MangledDeclNames.end()) { 2048 if (it->second == Name) 2049 return it->first; 2050 it++; 2051 } 2052 return GlobalDecl(); 2053 } 2054 2055 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 2056 return getModule().getNamedValue(Name); 2057 } 2058 2059 /// AddGlobalCtor - Add a function to the list that will be called before 2060 /// main() runs. 2061 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 2062 unsigned LexOrder, 2063 llvm::Constant *AssociatedData) { 2064 // FIXME: Type coercion of void()* types. 2065 GlobalCtors.push_back(Structor(Priority, LexOrder, Ctor, AssociatedData)); 2066 } 2067 2068 /// AddGlobalDtor - Add a function to the list that will be called 2069 /// when the module is unloaded. 2070 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority, 2071 bool IsDtorAttrFunc) { 2072 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit && 2073 (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) { 2074 DtorsUsingAtExit[Priority].push_back(Dtor); 2075 return; 2076 } 2077 2078 // FIXME: Type coercion of void()* types. 2079 GlobalDtors.push_back(Structor(Priority, ~0U, Dtor, nullptr)); 2080 } 2081 2082 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 2083 if (Fns.empty()) return; 2084 2085 // Ctor function type is void()*. 2086 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 2087 llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy, 2088 TheModule.getDataLayout().getProgramAddressSpace()); 2089 2090 // Get the type of a ctor entry, { i32, void ()*, i8* }. 2091 llvm::StructType *CtorStructTy = llvm::StructType::get( 2092 Int32Ty, CtorPFTy, VoidPtrTy); 2093 2094 // Construct the constructor and destructor arrays. 2095 ConstantInitBuilder builder(*this); 2096 auto ctors = builder.beginArray(CtorStructTy); 2097 for (const auto &I : Fns) { 2098 auto ctor = ctors.beginStruct(CtorStructTy); 2099 ctor.addInt(Int32Ty, I.Priority); 2100 ctor.add(I.Initializer); 2101 if (I.AssociatedData) 2102 ctor.add(I.AssociatedData); 2103 else 2104 ctor.addNullPointer(VoidPtrTy); 2105 ctor.finishAndAddTo(ctors); 2106 } 2107 2108 auto list = 2109 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 2110 /*constant*/ false, 2111 llvm::GlobalValue::AppendingLinkage); 2112 2113 // The LTO linker doesn't seem to like it when we set an alignment 2114 // on appending variables. Take it off as a workaround. 2115 list->setAlignment(std::nullopt); 2116 2117 Fns.clear(); 2118 } 2119 2120 llvm::GlobalValue::LinkageTypes 2121 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 2122 const auto *D = cast<FunctionDecl>(GD.getDecl()); 2123 2124 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 2125 2126 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D)) 2127 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType()); 2128 2129 return getLLVMLinkageForDeclarator(D, Linkage); 2130 } 2131 2132 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 2133 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 2134 if (!MDS) return nullptr; 2135 2136 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 2137 } 2138 2139 llvm::ConstantInt *CodeGenModule::CreateKCFITypeId(QualType T) { 2140 if (auto *FnType = T->getAs<FunctionProtoType>()) 2141 T = getContext().getFunctionType( 2142 FnType->getReturnType(), FnType->getParamTypes(), 2143 FnType->getExtProtoInfo().withExceptionSpec(EST_None)); 2144 2145 std::string OutName; 2146 llvm::raw_string_ostream Out(OutName); 2147 getCXXABI().getMangleContext().mangleCanonicalTypeName( 2148 T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers); 2149 2150 if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers) 2151 Out << ".normalized"; 2152 2153 return llvm::ConstantInt::get(Int32Ty, 2154 static_cast<uint32_t>(llvm::xxHash64(OutName))); 2155 } 2156 2157 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD, 2158 const CGFunctionInfo &Info, 2159 llvm::Function *F, bool IsThunk) { 2160 unsigned CallingConv; 2161 llvm::AttributeList PAL; 2162 ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, 2163 /*AttrOnCallSite=*/false, IsThunk); 2164 if (CallingConv == llvm::CallingConv::X86_VectorCall && 2165 getTarget().getTriple().isWindowsArm64EC()) { 2166 SourceLocation Loc; 2167 if (const Decl *D = GD.getDecl()) 2168 Loc = D->getLocation(); 2169 2170 Error(Loc, "__vectorcall calling convention is not currently supported"); 2171 } 2172 F->setAttributes(PAL); 2173 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 2174 } 2175 2176 static void removeImageAccessQualifier(std::string& TyName) { 2177 std::string ReadOnlyQual("__read_only"); 2178 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 2179 if (ReadOnlyPos != std::string::npos) 2180 // "+ 1" for the space after access qualifier. 2181 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 2182 else { 2183 std::string WriteOnlyQual("__write_only"); 2184 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 2185 if (WriteOnlyPos != std::string::npos) 2186 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 2187 else { 2188 std::string ReadWriteQual("__read_write"); 2189 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 2190 if (ReadWritePos != std::string::npos) 2191 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 2192 } 2193 } 2194 } 2195 2196 // Returns the address space id that should be produced to the 2197 // kernel_arg_addr_space metadata. This is always fixed to the ids 2198 // as specified in the SPIR 2.0 specification in order to differentiate 2199 // for example in clGetKernelArgInfo() implementation between the address 2200 // spaces with targets without unique mapping to the OpenCL address spaces 2201 // (basically all single AS CPUs). 2202 static unsigned ArgInfoAddressSpace(LangAS AS) { 2203 switch (AS) { 2204 case LangAS::opencl_global: 2205 return 1; 2206 case LangAS::opencl_constant: 2207 return 2; 2208 case LangAS::opencl_local: 2209 return 3; 2210 case LangAS::opencl_generic: 2211 return 4; // Not in SPIR 2.0 specs. 2212 case LangAS::opencl_global_device: 2213 return 5; 2214 case LangAS::opencl_global_host: 2215 return 6; 2216 default: 2217 return 0; // Assume private. 2218 } 2219 } 2220 2221 void CodeGenModule::GenKernelArgMetadata(llvm::Function *Fn, 2222 const FunctionDecl *FD, 2223 CodeGenFunction *CGF) { 2224 assert(((FD && CGF) || (!FD && !CGF)) && 2225 "Incorrect use - FD and CGF should either be both null or not!"); 2226 // Create MDNodes that represent the kernel arg metadata. 2227 // Each MDNode is a list in the form of "key", N number of values which is 2228 // the same number of values as their are kernel arguments. 2229 2230 const PrintingPolicy &Policy = Context.getPrintingPolicy(); 2231 2232 // MDNode for the kernel argument address space qualifiers. 2233 SmallVector<llvm::Metadata *, 8> addressQuals; 2234 2235 // MDNode for the kernel argument access qualifiers (images only). 2236 SmallVector<llvm::Metadata *, 8> accessQuals; 2237 2238 // MDNode for the kernel argument type names. 2239 SmallVector<llvm::Metadata *, 8> argTypeNames; 2240 2241 // MDNode for the kernel argument base type names. 2242 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 2243 2244 // MDNode for the kernel argument type qualifiers. 2245 SmallVector<llvm::Metadata *, 8> argTypeQuals; 2246 2247 // MDNode for the kernel argument names. 2248 SmallVector<llvm::Metadata *, 8> argNames; 2249 2250 if (FD && CGF) 2251 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 2252 const ParmVarDecl *parm = FD->getParamDecl(i); 2253 // Get argument name. 2254 argNames.push_back(llvm::MDString::get(VMContext, parm->getName())); 2255 2256 if (!getLangOpts().OpenCL) 2257 continue; 2258 QualType ty = parm->getType(); 2259 std::string typeQuals; 2260 2261 // Get image and pipe access qualifier: 2262 if (ty->isImageType() || ty->isPipeType()) { 2263 const Decl *PDecl = parm; 2264 if (const auto *TD = ty->getAs<TypedefType>()) 2265 PDecl = TD->getDecl(); 2266 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>(); 2267 if (A && A->isWriteOnly()) 2268 accessQuals.push_back(llvm::MDString::get(VMContext, "write_only")); 2269 else if (A && A->isReadWrite()) 2270 accessQuals.push_back(llvm::MDString::get(VMContext, "read_write")); 2271 else 2272 accessQuals.push_back(llvm::MDString::get(VMContext, "read_only")); 2273 } else 2274 accessQuals.push_back(llvm::MDString::get(VMContext, "none")); 2275 2276 auto getTypeSpelling = [&](QualType Ty) { 2277 auto typeName = Ty.getUnqualifiedType().getAsString(Policy); 2278 2279 if (Ty.isCanonical()) { 2280 StringRef typeNameRef = typeName; 2281 // Turn "unsigned type" to "utype" 2282 if (typeNameRef.consume_front("unsigned ")) 2283 return std::string("u") + typeNameRef.str(); 2284 if (typeNameRef.consume_front("signed ")) 2285 return typeNameRef.str(); 2286 } 2287 2288 return typeName; 2289 }; 2290 2291 if (ty->isPointerType()) { 2292 QualType pointeeTy = ty->getPointeeType(); 2293 2294 // Get address qualifier. 2295 addressQuals.push_back( 2296 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32( 2297 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 2298 2299 // Get argument type name. 2300 std::string typeName = getTypeSpelling(pointeeTy) + "*"; 2301 std::string baseTypeName = 2302 getTypeSpelling(pointeeTy.getCanonicalType()) + "*"; 2303 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 2304 argBaseTypeNames.push_back( 2305 llvm::MDString::get(VMContext, baseTypeName)); 2306 2307 // Get argument type qualifiers: 2308 if (ty.isRestrictQualified()) 2309 typeQuals = "restrict"; 2310 if (pointeeTy.isConstQualified() || 2311 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 2312 typeQuals += typeQuals.empty() ? "const" : " const"; 2313 if (pointeeTy.isVolatileQualified()) 2314 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 2315 } else { 2316 uint32_t AddrSpc = 0; 2317 bool isPipe = ty->isPipeType(); 2318 if (ty->isImageType() || isPipe) 2319 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 2320 2321 addressQuals.push_back( 2322 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc))); 2323 2324 // Get argument type name. 2325 ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty; 2326 std::string typeName = getTypeSpelling(ty); 2327 std::string baseTypeName = getTypeSpelling(ty.getCanonicalType()); 2328 2329 // Remove access qualifiers on images 2330 // (as they are inseparable from type in clang implementation, 2331 // but OpenCL spec provides a special query to get access qualifier 2332 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 2333 if (ty->isImageType()) { 2334 removeImageAccessQualifier(typeName); 2335 removeImageAccessQualifier(baseTypeName); 2336 } 2337 2338 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 2339 argBaseTypeNames.push_back( 2340 llvm::MDString::get(VMContext, baseTypeName)); 2341 2342 if (isPipe) 2343 typeQuals = "pipe"; 2344 } 2345 argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals)); 2346 } 2347 2348 if (getLangOpts().OpenCL) { 2349 Fn->setMetadata("kernel_arg_addr_space", 2350 llvm::MDNode::get(VMContext, addressQuals)); 2351 Fn->setMetadata("kernel_arg_access_qual", 2352 llvm::MDNode::get(VMContext, accessQuals)); 2353 Fn->setMetadata("kernel_arg_type", 2354 llvm::MDNode::get(VMContext, argTypeNames)); 2355 Fn->setMetadata("kernel_arg_base_type", 2356 llvm::MDNode::get(VMContext, argBaseTypeNames)); 2357 Fn->setMetadata("kernel_arg_type_qual", 2358 llvm::MDNode::get(VMContext, argTypeQuals)); 2359 } 2360 if (getCodeGenOpts().EmitOpenCLArgMetadata || 2361 getCodeGenOpts().HIPSaveKernelArgName) 2362 Fn->setMetadata("kernel_arg_name", 2363 llvm::MDNode::get(VMContext, argNames)); 2364 } 2365 2366 /// Determines whether the language options require us to model 2367 /// unwind exceptions. We treat -fexceptions as mandating this 2368 /// except under the fragile ObjC ABI with only ObjC exceptions 2369 /// enabled. This means, for example, that C with -fexceptions 2370 /// enables this. 2371 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 2372 // If exceptions are completely disabled, obviously this is false. 2373 if (!LangOpts.Exceptions) return false; 2374 2375 // If C++ exceptions are enabled, this is true. 2376 if (LangOpts.CXXExceptions) return true; 2377 2378 // If ObjC exceptions are enabled, this depends on the ABI. 2379 if (LangOpts.ObjCExceptions) { 2380 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 2381 } 2382 2383 return true; 2384 } 2385 2386 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM, 2387 const CXXMethodDecl *MD) { 2388 // Check that the type metadata can ever actually be used by a call. 2389 if (!CGM.getCodeGenOpts().LTOUnit || 2390 !CGM.HasHiddenLTOVisibility(MD->getParent())) 2391 return false; 2392 2393 // Only functions whose address can be taken with a member function pointer 2394 // need this sort of type metadata. 2395 return MD->isImplicitObjectMemberFunction() && !MD->isVirtual() && 2396 !isa<CXXConstructorDecl, CXXDestructorDecl>(MD); 2397 } 2398 2399 SmallVector<const CXXRecordDecl *, 0> 2400 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) { 2401 llvm::SetVector<const CXXRecordDecl *> MostBases; 2402 2403 std::function<void (const CXXRecordDecl *)> CollectMostBases; 2404 CollectMostBases = [&](const CXXRecordDecl *RD) { 2405 if (RD->getNumBases() == 0) 2406 MostBases.insert(RD); 2407 for (const CXXBaseSpecifier &B : RD->bases()) 2408 CollectMostBases(B.getType()->getAsCXXRecordDecl()); 2409 }; 2410 CollectMostBases(RD); 2411 return MostBases.takeVector(); 2412 } 2413 2414 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 2415 llvm::Function *F) { 2416 llvm::AttrBuilder B(F->getContext()); 2417 2418 if ((!D || !D->hasAttr<NoUwtableAttr>()) && CodeGenOpts.UnwindTables) 2419 B.addUWTableAttr(llvm::UWTableKind(CodeGenOpts.UnwindTables)); 2420 2421 if (CodeGenOpts.StackClashProtector) 2422 B.addAttribute("probe-stack", "inline-asm"); 2423 2424 if (CodeGenOpts.StackProbeSize && CodeGenOpts.StackProbeSize != 4096) 2425 B.addAttribute("stack-probe-size", 2426 std::to_string(CodeGenOpts.StackProbeSize)); 2427 2428 if (!hasUnwindExceptions(LangOpts)) 2429 B.addAttribute(llvm::Attribute::NoUnwind); 2430 2431 if (D && D->hasAttr<NoStackProtectorAttr>()) 2432 ; // Do nothing. 2433 else if (D && D->hasAttr<StrictGuardStackCheckAttr>() && 2434 isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPOn)) 2435 B.addAttribute(llvm::Attribute::StackProtectStrong); 2436 else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPOn)) 2437 B.addAttribute(llvm::Attribute::StackProtect); 2438 else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPStrong)) 2439 B.addAttribute(llvm::Attribute::StackProtectStrong); 2440 else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPReq)) 2441 B.addAttribute(llvm::Attribute::StackProtectReq); 2442 2443 if (!D) { 2444 // If we don't have a declaration to control inlining, the function isn't 2445 // explicitly marked as alwaysinline for semantic reasons, and inlining is 2446 // disabled, mark the function as noinline. 2447 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 2448 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 2449 B.addAttribute(llvm::Attribute::NoInline); 2450 2451 F->addFnAttrs(B); 2452 return; 2453 } 2454 2455 // Handle SME attributes that apply to function definitions, 2456 // rather than to function prototypes. 2457 if (D->hasAttr<ArmLocallyStreamingAttr>()) 2458 B.addAttribute("aarch64_pstate_sm_body"); 2459 2460 if (auto *Attr = D->getAttr<ArmNewAttr>()) { 2461 if (Attr->isNewZA()) 2462 B.addAttribute("aarch64_new_za"); 2463 if (Attr->isNewZT0()) 2464 B.addAttribute("aarch64_new_zt0"); 2465 } 2466 2467 // Track whether we need to add the optnone LLVM attribute, 2468 // starting with the default for this optimization level. 2469 bool ShouldAddOptNone = 2470 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 2471 // We can't add optnone in the following cases, it won't pass the verifier. 2472 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 2473 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 2474 2475 // Add optnone, but do so only if the function isn't always_inline. 2476 if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) && 2477 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 2478 B.addAttribute(llvm::Attribute::OptimizeNone); 2479 2480 // OptimizeNone implies noinline; we should not be inlining such functions. 2481 B.addAttribute(llvm::Attribute::NoInline); 2482 2483 // We still need to handle naked functions even though optnone subsumes 2484 // much of their semantics. 2485 if (D->hasAttr<NakedAttr>()) 2486 B.addAttribute(llvm::Attribute::Naked); 2487 2488 // OptimizeNone wins over OptimizeForSize and MinSize. 2489 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 2490 F->removeFnAttr(llvm::Attribute::MinSize); 2491 } else if (D->hasAttr<NakedAttr>()) { 2492 // Naked implies noinline: we should not be inlining such functions. 2493 B.addAttribute(llvm::Attribute::Naked); 2494 B.addAttribute(llvm::Attribute::NoInline); 2495 } else if (D->hasAttr<NoDuplicateAttr>()) { 2496 B.addAttribute(llvm::Attribute::NoDuplicate); 2497 } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 2498 // Add noinline if the function isn't always_inline. 2499 B.addAttribute(llvm::Attribute::NoInline); 2500 } else if (D->hasAttr<AlwaysInlineAttr>() && 2501 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 2502 // (noinline wins over always_inline, and we can't specify both in IR) 2503 B.addAttribute(llvm::Attribute::AlwaysInline); 2504 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 2505 // If we're not inlining, then force everything that isn't always_inline to 2506 // carry an explicit noinline attribute. 2507 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 2508 B.addAttribute(llvm::Attribute::NoInline); 2509 } else { 2510 // Otherwise, propagate the inline hint attribute and potentially use its 2511 // absence to mark things as noinline. 2512 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 2513 // Search function and template pattern redeclarations for inline. 2514 auto CheckForInline = [](const FunctionDecl *FD) { 2515 auto CheckRedeclForInline = [](const FunctionDecl *Redecl) { 2516 return Redecl->isInlineSpecified(); 2517 }; 2518 if (any_of(FD->redecls(), CheckRedeclForInline)) 2519 return true; 2520 const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern(); 2521 if (!Pattern) 2522 return false; 2523 return any_of(Pattern->redecls(), CheckRedeclForInline); 2524 }; 2525 if (CheckForInline(FD)) { 2526 B.addAttribute(llvm::Attribute::InlineHint); 2527 } else if (CodeGenOpts.getInlining() == 2528 CodeGenOptions::OnlyHintInlining && 2529 !FD->isInlined() && 2530 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 2531 B.addAttribute(llvm::Attribute::NoInline); 2532 } 2533 } 2534 } 2535 2536 // Add other optimization related attributes if we are optimizing this 2537 // function. 2538 if (!D->hasAttr<OptimizeNoneAttr>()) { 2539 if (D->hasAttr<ColdAttr>()) { 2540 if (!ShouldAddOptNone) 2541 B.addAttribute(llvm::Attribute::OptimizeForSize); 2542 B.addAttribute(llvm::Attribute::Cold); 2543 } 2544 if (D->hasAttr<HotAttr>()) 2545 B.addAttribute(llvm::Attribute::Hot); 2546 if (D->hasAttr<MinSizeAttr>()) 2547 B.addAttribute(llvm::Attribute::MinSize); 2548 } 2549 2550 F->addFnAttrs(B); 2551 2552 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 2553 if (alignment) 2554 F->setAlignment(llvm::Align(alignment)); 2555 2556 if (!D->hasAttr<AlignedAttr>()) 2557 if (LangOpts.FunctionAlignment) 2558 F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment)); 2559 2560 // Some C++ ABIs require 2-byte alignment for member functions, in order to 2561 // reserve a bit for differentiating between virtual and non-virtual member 2562 // functions. If the current target's C++ ABI requires this and this is a 2563 // member function, set its alignment accordingly. 2564 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 2565 if (isa<CXXMethodDecl>(D) && F->getPointerAlignment(getDataLayout()) < 2) 2566 F->setAlignment(std::max(llvm::Align(2), F->getAlign().valueOrOne())); 2567 } 2568 2569 // In the cross-dso CFI mode with canonical jump tables, we want !type 2570 // attributes on definitions only. 2571 if (CodeGenOpts.SanitizeCfiCrossDso && 2572 CodeGenOpts.SanitizeCfiCanonicalJumpTables) { 2573 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 2574 // Skip available_externally functions. They won't be codegen'ed in the 2575 // current module anyway. 2576 if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally) 2577 CreateFunctionTypeMetadataForIcall(FD, F); 2578 } 2579 } 2580 2581 // Emit type metadata on member functions for member function pointer checks. 2582 // These are only ever necessary on definitions; we're guaranteed that the 2583 // definition will be present in the LTO unit as a result of LTO visibility. 2584 auto *MD = dyn_cast<CXXMethodDecl>(D); 2585 if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) { 2586 for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) { 2587 llvm::Metadata *Id = 2588 CreateMetadataIdentifierForType(Context.getMemberPointerType( 2589 MD->getType(), Context.getRecordType(Base).getTypePtr())); 2590 F->addTypeMetadata(0, Id); 2591 } 2592 } 2593 } 2594 2595 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { 2596 const Decl *D = GD.getDecl(); 2597 if (isa_and_nonnull<NamedDecl>(D)) 2598 setGVProperties(GV, GD); 2599 else 2600 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 2601 2602 if (D && D->hasAttr<UsedAttr>()) 2603 addUsedOrCompilerUsedGlobal(GV); 2604 2605 if (const auto *VD = dyn_cast_if_present<VarDecl>(D); 2606 VD && 2607 ((CodeGenOpts.KeepPersistentStorageVariables && 2608 (VD->getStorageDuration() == SD_Static || 2609 VD->getStorageDuration() == SD_Thread)) || 2610 (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static && 2611 VD->getType().isConstQualified()))) 2612 addUsedOrCompilerUsedGlobal(GV); 2613 } 2614 2615 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD, 2616 llvm::AttrBuilder &Attrs, 2617 bool SetTargetFeatures) { 2618 // Add target-cpu and target-features attributes to functions. If 2619 // we have a decl for the function and it has a target attribute then 2620 // parse that and add it to the feature set. 2621 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 2622 StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU; 2623 std::vector<std::string> Features; 2624 const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl()); 2625 FD = FD ? FD->getMostRecentDecl() : FD; 2626 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; 2627 const auto *TV = FD ? FD->getAttr<TargetVersionAttr>() : nullptr; 2628 assert((!TD || !TV) && "both target_version and target specified"); 2629 const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr; 2630 const auto *TC = FD ? FD->getAttr<TargetClonesAttr>() : nullptr; 2631 bool AddedAttr = false; 2632 if (TD || TV || SD || TC) { 2633 llvm::StringMap<bool> FeatureMap; 2634 getContext().getFunctionFeatureMap(FeatureMap, GD); 2635 2636 // Produce the canonical string for this set of features. 2637 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) 2638 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); 2639 2640 // Now add the target-cpu and target-features to the function. 2641 // While we populated the feature map above, we still need to 2642 // get and parse the target attribute so we can get the cpu for 2643 // the function. 2644 if (TD) { 2645 ParsedTargetAttr ParsedAttr = 2646 Target.parseTargetAttr(TD->getFeaturesStr()); 2647 if (!ParsedAttr.CPU.empty() && 2648 getTarget().isValidCPUName(ParsedAttr.CPU)) { 2649 TargetCPU = ParsedAttr.CPU; 2650 TuneCPU = ""; // Clear the tune CPU. 2651 } 2652 if (!ParsedAttr.Tune.empty() && 2653 getTarget().isValidCPUName(ParsedAttr.Tune)) 2654 TuneCPU = ParsedAttr.Tune; 2655 } 2656 2657 if (SD) { 2658 // Apply the given CPU name as the 'tune-cpu' so that the optimizer can 2659 // favor this processor. 2660 TuneCPU = SD->getCPUName(GD.getMultiVersionIndex())->getName(); 2661 } 2662 } else { 2663 // Otherwise just add the existing target cpu and target features to the 2664 // function. 2665 Features = getTarget().getTargetOpts().Features; 2666 } 2667 2668 if (!TargetCPU.empty()) { 2669 Attrs.addAttribute("target-cpu", TargetCPU); 2670 AddedAttr = true; 2671 } 2672 if (!TuneCPU.empty()) { 2673 Attrs.addAttribute("tune-cpu", TuneCPU); 2674 AddedAttr = true; 2675 } 2676 if (!Features.empty() && SetTargetFeatures) { 2677 llvm::erase_if(Features, [&](const std::string& F) { 2678 return getTarget().isReadOnlyFeature(F.substr(1)); 2679 }); 2680 llvm::sort(Features); 2681 Attrs.addAttribute("target-features", llvm::join(Features, ",")); 2682 AddedAttr = true; 2683 } 2684 2685 return AddedAttr; 2686 } 2687 2688 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD, 2689 llvm::GlobalObject *GO) { 2690 const Decl *D = GD.getDecl(); 2691 SetCommonAttributes(GD, GO); 2692 2693 if (D) { 2694 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 2695 if (D->hasAttr<RetainAttr>()) 2696 addUsedGlobal(GV); 2697 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 2698 GV->addAttribute("bss-section", SA->getName()); 2699 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 2700 GV->addAttribute("data-section", SA->getName()); 2701 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 2702 GV->addAttribute("rodata-section", SA->getName()); 2703 if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>()) 2704 GV->addAttribute("relro-section", SA->getName()); 2705 } 2706 2707 if (auto *F = dyn_cast<llvm::Function>(GO)) { 2708 if (D->hasAttr<RetainAttr>()) 2709 addUsedGlobal(F); 2710 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 2711 if (!D->getAttr<SectionAttr>()) 2712 F->setSection(SA->getName()); 2713 2714 llvm::AttrBuilder Attrs(F->getContext()); 2715 if (GetCPUAndFeaturesAttributes(GD, Attrs)) { 2716 // We know that GetCPUAndFeaturesAttributes will always have the 2717 // newest set, since it has the newest possible FunctionDecl, so the 2718 // new ones should replace the old. 2719 llvm::AttributeMask RemoveAttrs; 2720 RemoveAttrs.addAttribute("target-cpu"); 2721 RemoveAttrs.addAttribute("target-features"); 2722 RemoveAttrs.addAttribute("tune-cpu"); 2723 F->removeFnAttrs(RemoveAttrs); 2724 F->addFnAttrs(Attrs); 2725 } 2726 } 2727 2728 if (const auto *CSA = D->getAttr<CodeSegAttr>()) 2729 GO->setSection(CSA->getName()); 2730 else if (const auto *SA = D->getAttr<SectionAttr>()) 2731 GO->setSection(SA->getName()); 2732 } 2733 2734 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 2735 } 2736 2737 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD, 2738 llvm::Function *F, 2739 const CGFunctionInfo &FI) { 2740 const Decl *D = GD.getDecl(); 2741 SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false); 2742 SetLLVMFunctionAttributesForDefinition(D, F); 2743 2744 F->setLinkage(llvm::Function::InternalLinkage); 2745 2746 setNonAliasAttributes(GD, F); 2747 } 2748 2749 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) { 2750 // Set linkage and visibility in case we never see a definition. 2751 LinkageInfo LV = ND->getLinkageAndVisibility(); 2752 // Don't set internal linkage on declarations. 2753 // "extern_weak" is overloaded in LLVM; we probably should have 2754 // separate linkage types for this. 2755 if (isExternallyVisible(LV.getLinkage()) && 2756 (ND->hasAttr<WeakAttr>() || ND->isWeakImported())) 2757 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 2758 } 2759 2760 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD, 2761 llvm::Function *F) { 2762 // Only if we are checking indirect calls. 2763 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 2764 return; 2765 2766 // Non-static class methods are handled via vtable or member function pointer 2767 // checks elsewhere. 2768 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 2769 return; 2770 2771 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 2772 F->addTypeMetadata(0, MD); 2773 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 2774 2775 // Emit a hash-based bit set entry for cross-DSO calls. 2776 if (CodeGenOpts.SanitizeCfiCrossDso) 2777 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 2778 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 2779 } 2780 2781 void CodeGenModule::setKCFIType(const FunctionDecl *FD, llvm::Function *F) { 2782 llvm::LLVMContext &Ctx = F->getContext(); 2783 llvm::MDBuilder MDB(Ctx); 2784 F->setMetadata(llvm::LLVMContext::MD_kcfi_type, 2785 llvm::MDNode::get( 2786 Ctx, MDB.createConstant(CreateKCFITypeId(FD->getType())))); 2787 } 2788 2789 static bool allowKCFIIdentifier(StringRef Name) { 2790 // KCFI type identifier constants are only necessary for external assembly 2791 // functions, which means it's safe to skip unusual names. Subset of 2792 // MCAsmInfo::isAcceptableChar() and MCAsmInfoXCOFF::isAcceptableChar(). 2793 return llvm::all_of(Name, [](const char &C) { 2794 return llvm::isAlnum(C) || C == '_' || C == '.'; 2795 }); 2796 } 2797 2798 void CodeGenModule::finalizeKCFITypes() { 2799 llvm::Module &M = getModule(); 2800 for (auto &F : M.functions()) { 2801 // Remove KCFI type metadata from non-address-taken local functions. 2802 bool AddressTaken = F.hasAddressTaken(); 2803 if (!AddressTaken && F.hasLocalLinkage()) 2804 F.eraseMetadata(llvm::LLVMContext::MD_kcfi_type); 2805 2806 // Generate a constant with the expected KCFI type identifier for all 2807 // address-taken function declarations to support annotating indirectly 2808 // called assembly functions. 2809 if (!AddressTaken || !F.isDeclaration()) 2810 continue; 2811 2812 const llvm::ConstantInt *Type; 2813 if (const llvm::MDNode *MD = F.getMetadata(llvm::LLVMContext::MD_kcfi_type)) 2814 Type = llvm::mdconst::extract<llvm::ConstantInt>(MD->getOperand(0)); 2815 else 2816 continue; 2817 2818 StringRef Name = F.getName(); 2819 if (!allowKCFIIdentifier(Name)) 2820 continue; 2821 2822 std::string Asm = (".weak __kcfi_typeid_" + Name + "\n.set __kcfi_typeid_" + 2823 Name + ", " + Twine(Type->getZExtValue()) + "\n") 2824 .str(); 2825 M.appendModuleInlineAsm(Asm); 2826 } 2827 } 2828 2829 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 2830 bool IsIncompleteFunction, 2831 bool IsThunk) { 2832 2833 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 2834 // If this is an intrinsic function, set the function's attributes 2835 // to the intrinsic's attributes. 2836 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 2837 return; 2838 } 2839 2840 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2841 2842 if (!IsIncompleteFunction) 2843 SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F, 2844 IsThunk); 2845 2846 // Add the Returned attribute for "this", except for iOS 5 and earlier 2847 // where substantial code, including the libstdc++ dylib, was compiled with 2848 // GCC and does not actually return "this". 2849 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 2850 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 2851 assert(!F->arg_empty() && 2852 F->arg_begin()->getType() 2853 ->canLosslesslyBitCastTo(F->getReturnType()) && 2854 "unexpected this return"); 2855 F->addParamAttr(0, llvm::Attribute::Returned); 2856 } 2857 2858 // Only a few attributes are set on declarations; these may later be 2859 // overridden by a definition. 2860 2861 setLinkageForGV(F, FD); 2862 setGVProperties(F, FD); 2863 2864 // Setup target-specific attributes. 2865 if (!IsIncompleteFunction && F->isDeclaration()) 2866 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); 2867 2868 if (const auto *CSA = FD->getAttr<CodeSegAttr>()) 2869 F->setSection(CSA->getName()); 2870 else if (const auto *SA = FD->getAttr<SectionAttr>()) 2871 F->setSection(SA->getName()); 2872 2873 if (const auto *EA = FD->getAttr<ErrorAttr>()) { 2874 if (EA->isError()) 2875 F->addFnAttr("dontcall-error", EA->getUserDiagnostic()); 2876 else if (EA->isWarning()) 2877 F->addFnAttr("dontcall-warn", EA->getUserDiagnostic()); 2878 } 2879 2880 // If we plan on emitting this inline builtin, we can't treat it as a builtin. 2881 if (FD->isInlineBuiltinDeclaration()) { 2882 const FunctionDecl *FDBody; 2883 bool HasBody = FD->hasBody(FDBody); 2884 (void)HasBody; 2885 assert(HasBody && "Inline builtin declarations should always have an " 2886 "available body!"); 2887 if (shouldEmitFunction(FDBody)) 2888 F->addFnAttr(llvm::Attribute::NoBuiltin); 2889 } 2890 2891 if (FD->isReplaceableGlobalAllocationFunction()) { 2892 // A replaceable global allocation function does not act like a builtin by 2893 // default, only if it is invoked by a new-expression or delete-expression. 2894 F->addFnAttr(llvm::Attribute::NoBuiltin); 2895 } 2896 2897 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 2898 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2899 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 2900 if (MD->isVirtual()) 2901 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2902 2903 // Don't emit entries for function declarations in the cross-DSO mode. This 2904 // is handled with better precision by the receiving DSO. But if jump tables 2905 // are non-canonical then we need type metadata in order to produce the local 2906 // jump table. 2907 if (!CodeGenOpts.SanitizeCfiCrossDso || 2908 !CodeGenOpts.SanitizeCfiCanonicalJumpTables) 2909 CreateFunctionTypeMetadataForIcall(FD, F); 2910 2911 if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) 2912 setKCFIType(FD, F); 2913 2914 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 2915 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 2916 2917 if (CodeGenOpts.InlineMaxStackSize != UINT_MAX) 2918 F->addFnAttr("inline-max-stacksize", llvm::utostr(CodeGenOpts.InlineMaxStackSize)); 2919 2920 if (const auto *CB = FD->getAttr<CallbackAttr>()) { 2921 // Annotate the callback behavior as metadata: 2922 // - The callback callee (as argument number). 2923 // - The callback payloads (as argument numbers). 2924 llvm::LLVMContext &Ctx = F->getContext(); 2925 llvm::MDBuilder MDB(Ctx); 2926 2927 // The payload indices are all but the first one in the encoding. The first 2928 // identifies the callback callee. 2929 int CalleeIdx = *CB->encoding_begin(); 2930 ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end()); 2931 F->addMetadata(llvm::LLVMContext::MD_callback, 2932 *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding( 2933 CalleeIdx, PayloadIndices, 2934 /* VarArgsArePassed */ false)})); 2935 } 2936 } 2937 2938 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 2939 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2940 "Only globals with definition can force usage."); 2941 LLVMUsed.emplace_back(GV); 2942 } 2943 2944 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 2945 assert(!GV->isDeclaration() && 2946 "Only globals with definition can force usage."); 2947 LLVMCompilerUsed.emplace_back(GV); 2948 } 2949 2950 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) { 2951 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2952 "Only globals with definition can force usage."); 2953 if (getTriple().isOSBinFormatELF()) 2954 LLVMCompilerUsed.emplace_back(GV); 2955 else 2956 LLVMUsed.emplace_back(GV); 2957 } 2958 2959 static void emitUsed(CodeGenModule &CGM, StringRef Name, 2960 std::vector<llvm::WeakTrackingVH> &List) { 2961 // Don't create llvm.used if there is no need. 2962 if (List.empty()) 2963 return; 2964 2965 // Convert List to what ConstantArray needs. 2966 SmallVector<llvm::Constant*, 8> UsedArray; 2967 UsedArray.resize(List.size()); 2968 for (unsigned i = 0, e = List.size(); i != e; ++i) { 2969 UsedArray[i] = 2970 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 2971 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 2972 } 2973 2974 if (UsedArray.empty()) 2975 return; 2976 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 2977 2978 auto *GV = new llvm::GlobalVariable( 2979 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 2980 llvm::ConstantArray::get(ATy, UsedArray), Name); 2981 2982 GV->setSection("llvm.metadata"); 2983 } 2984 2985 void CodeGenModule::emitLLVMUsed() { 2986 emitUsed(*this, "llvm.used", LLVMUsed); 2987 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 2988 } 2989 2990 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 2991 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 2992 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2993 } 2994 2995 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 2996 llvm::SmallString<32> Opt; 2997 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 2998 if (Opt.empty()) 2999 return; 3000 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 3001 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 3002 } 3003 3004 void CodeGenModule::AddDependentLib(StringRef Lib) { 3005 auto &C = getLLVMContext(); 3006 if (getTarget().getTriple().isOSBinFormatELF()) { 3007 ELFDependentLibraries.push_back( 3008 llvm::MDNode::get(C, llvm::MDString::get(C, Lib))); 3009 return; 3010 } 3011 3012 llvm::SmallString<24> Opt; 3013 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 3014 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 3015 LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts)); 3016 } 3017 3018 /// Add link options implied by the given module, including modules 3019 /// it depends on, using a postorder walk. 3020 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 3021 SmallVectorImpl<llvm::MDNode *> &Metadata, 3022 llvm::SmallPtrSet<Module *, 16> &Visited) { 3023 // Import this module's parent. 3024 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 3025 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 3026 } 3027 3028 // Import this module's dependencies. 3029 for (Module *Import : llvm::reverse(Mod->Imports)) { 3030 if (Visited.insert(Import).second) 3031 addLinkOptionsPostorder(CGM, Import, Metadata, Visited); 3032 } 3033 3034 // Add linker options to link against the libraries/frameworks 3035 // described by this module. 3036 llvm::LLVMContext &Context = CGM.getLLVMContext(); 3037 bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF(); 3038 3039 // For modules that use export_as for linking, use that module 3040 // name instead. 3041 if (Mod->UseExportAsModuleLinkName) 3042 return; 3043 3044 for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) { 3045 // Link against a framework. Frameworks are currently Darwin only, so we 3046 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 3047 if (LL.IsFramework) { 3048 llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"), 3049 llvm::MDString::get(Context, LL.Library)}; 3050 3051 Metadata.push_back(llvm::MDNode::get(Context, Args)); 3052 continue; 3053 } 3054 3055 // Link against a library. 3056 if (IsELF) { 3057 llvm::Metadata *Args[2] = { 3058 llvm::MDString::get(Context, "lib"), 3059 llvm::MDString::get(Context, LL.Library), 3060 }; 3061 Metadata.push_back(llvm::MDNode::get(Context, Args)); 3062 } else { 3063 llvm::SmallString<24> Opt; 3064 CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt); 3065 auto *OptString = llvm::MDString::get(Context, Opt); 3066 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 3067 } 3068 } 3069 } 3070 3071 void CodeGenModule::EmitModuleInitializers(clang::Module *Primary) { 3072 assert(Primary->isNamedModuleUnit() && 3073 "We should only emit module initializers for named modules."); 3074 3075 // Emit the initializers in the order that sub-modules appear in the 3076 // source, first Global Module Fragments, if present. 3077 if (auto GMF = Primary->getGlobalModuleFragment()) { 3078 for (Decl *D : getContext().getModuleInitializers(GMF)) { 3079 if (isa<ImportDecl>(D)) 3080 continue; 3081 assert(isa<VarDecl>(D) && "GMF initializer decl is not a var?"); 3082 EmitTopLevelDecl(D); 3083 } 3084 } 3085 // Second any associated with the module, itself. 3086 for (Decl *D : getContext().getModuleInitializers(Primary)) { 3087 // Skip import decls, the inits for those are called explicitly. 3088 if (isa<ImportDecl>(D)) 3089 continue; 3090 EmitTopLevelDecl(D); 3091 } 3092 // Third any associated with the Privat eMOdule Fragment, if present. 3093 if (auto PMF = Primary->getPrivateModuleFragment()) { 3094 for (Decl *D : getContext().getModuleInitializers(PMF)) { 3095 // Skip import decls, the inits for those are called explicitly. 3096 if (isa<ImportDecl>(D)) 3097 continue; 3098 assert(isa<VarDecl>(D) && "PMF initializer decl is not a var?"); 3099 EmitTopLevelDecl(D); 3100 } 3101 } 3102 } 3103 3104 void CodeGenModule::EmitModuleLinkOptions() { 3105 // Collect the set of all of the modules we want to visit to emit link 3106 // options, which is essentially the imported modules and all of their 3107 // non-explicit child modules. 3108 llvm::SetVector<clang::Module *> LinkModules; 3109 llvm::SmallPtrSet<clang::Module *, 16> Visited; 3110 SmallVector<clang::Module *, 16> Stack; 3111 3112 // Seed the stack with imported modules. 3113 for (Module *M : ImportedModules) { 3114 // Do not add any link flags when an implementation TU of a module imports 3115 // a header of that same module. 3116 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 3117 !getLangOpts().isCompilingModule()) 3118 continue; 3119 if (Visited.insert(M).second) 3120 Stack.push_back(M); 3121 } 3122 3123 // Find all of the modules to import, making a little effort to prune 3124 // non-leaf modules. 3125 while (!Stack.empty()) { 3126 clang::Module *Mod = Stack.pop_back_val(); 3127 3128 bool AnyChildren = false; 3129 3130 // Visit the submodules of this module. 3131 for (const auto &SM : Mod->submodules()) { 3132 // Skip explicit children; they need to be explicitly imported to be 3133 // linked against. 3134 if (SM->IsExplicit) 3135 continue; 3136 3137 if (Visited.insert(SM).second) { 3138 Stack.push_back(SM); 3139 AnyChildren = true; 3140 } 3141 } 3142 3143 // We didn't find any children, so add this module to the list of 3144 // modules to link against. 3145 if (!AnyChildren) { 3146 LinkModules.insert(Mod); 3147 } 3148 } 3149 3150 // Add link options for all of the imported modules in reverse topological 3151 // order. We don't do anything to try to order import link flags with respect 3152 // to linker options inserted by things like #pragma comment(). 3153 SmallVector<llvm::MDNode *, 16> MetadataArgs; 3154 Visited.clear(); 3155 for (Module *M : LinkModules) 3156 if (Visited.insert(M).second) 3157 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 3158 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 3159 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 3160 3161 // Add the linker options metadata flag. 3162 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 3163 for (auto *MD : LinkerOptionsMetadata) 3164 NMD->addOperand(MD); 3165 } 3166 3167 void CodeGenModule::EmitDeferred() { 3168 // Emit deferred declare target declarations. 3169 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 3170 getOpenMPRuntime().emitDeferredTargetDecls(); 3171 3172 // Emit code for any potentially referenced deferred decls. Since a 3173 // previously unused static decl may become used during the generation of code 3174 // for a static function, iterate until no changes are made. 3175 3176 if (!DeferredVTables.empty()) { 3177 EmitDeferredVTables(); 3178 3179 // Emitting a vtable doesn't directly cause more vtables to 3180 // become deferred, although it can cause functions to be 3181 // emitted that then need those vtables. 3182 assert(DeferredVTables.empty()); 3183 } 3184 3185 // Emit CUDA/HIP static device variables referenced by host code only. 3186 // Note we should not clear CUDADeviceVarODRUsedByHost since it is still 3187 // needed for further handling. 3188 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) 3189 llvm::append_range(DeferredDeclsToEmit, 3190 getContext().CUDADeviceVarODRUsedByHost); 3191 3192 // Stop if we're out of both deferred vtables and deferred declarations. 3193 if (DeferredDeclsToEmit.empty()) 3194 return; 3195 3196 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 3197 // work, it will not interfere with this. 3198 std::vector<GlobalDecl> CurDeclsToEmit; 3199 CurDeclsToEmit.swap(DeferredDeclsToEmit); 3200 3201 for (GlobalDecl &D : CurDeclsToEmit) { 3202 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 3203 // to get GlobalValue with exactly the type we need, not something that 3204 // might had been created for another decl with the same mangled name but 3205 // different type. 3206 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 3207 GetAddrOfGlobal(D, ForDefinition)); 3208 3209 // In case of different address spaces, we may still get a cast, even with 3210 // IsForDefinition equal to true. Query mangled names table to get 3211 // GlobalValue. 3212 if (!GV) 3213 GV = GetGlobalValue(getMangledName(D)); 3214 3215 // Make sure GetGlobalValue returned non-null. 3216 assert(GV); 3217 3218 // Check to see if we've already emitted this. This is necessary 3219 // for a couple of reasons: first, decls can end up in the 3220 // deferred-decls queue multiple times, and second, decls can end 3221 // up with definitions in unusual ways (e.g. by an extern inline 3222 // function acquiring a strong function redefinition). Just 3223 // ignore these cases. 3224 if (!GV->isDeclaration()) 3225 continue; 3226 3227 // If this is OpenMP, check if it is legal to emit this global normally. 3228 if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D)) 3229 continue; 3230 3231 // Otherwise, emit the definition and move on to the next one. 3232 EmitGlobalDefinition(D, GV); 3233 3234 // If we found out that we need to emit more decls, do that recursively. 3235 // This has the advantage that the decls are emitted in a DFS and related 3236 // ones are close together, which is convenient for testing. 3237 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 3238 EmitDeferred(); 3239 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 3240 } 3241 } 3242 } 3243 3244 void CodeGenModule::EmitVTablesOpportunistically() { 3245 // Try to emit external vtables as available_externally if they have emitted 3246 // all inlined virtual functions. It runs after EmitDeferred() and therefore 3247 // is not allowed to create new references to things that need to be emitted 3248 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 3249 3250 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 3251 && "Only emit opportunistic vtables with optimizations"); 3252 3253 for (const CXXRecordDecl *RD : OpportunisticVTables) { 3254 assert(getVTables().isVTableExternal(RD) && 3255 "This queue should only contain external vtables"); 3256 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 3257 VTables.GenerateClassData(RD); 3258 } 3259 OpportunisticVTables.clear(); 3260 } 3261 3262 void CodeGenModule::EmitGlobalAnnotations() { 3263 for (const auto& [MangledName, VD] : DeferredAnnotations) { 3264 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 3265 if (GV) 3266 AddGlobalAnnotations(VD, GV); 3267 } 3268 DeferredAnnotations.clear(); 3269 3270 if (Annotations.empty()) 3271 return; 3272 3273 // Create a new global variable for the ConstantStruct in the Module. 3274 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 3275 Annotations[0]->getType(), Annotations.size()), Annotations); 3276 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 3277 llvm::GlobalValue::AppendingLinkage, 3278 Array, "llvm.global.annotations"); 3279 gv->setSection(AnnotationSection); 3280 } 3281 3282 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 3283 llvm::Constant *&AStr = AnnotationStrings[Str]; 3284 if (AStr) 3285 return AStr; 3286 3287 // Not found yet, create a new global. 3288 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 3289 auto *gv = new llvm::GlobalVariable( 3290 getModule(), s->getType(), true, llvm::GlobalValue::PrivateLinkage, s, 3291 ".str", nullptr, llvm::GlobalValue::NotThreadLocal, 3292 ConstGlobalsPtrTy->getAddressSpace()); 3293 gv->setSection(AnnotationSection); 3294 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3295 AStr = gv; 3296 return gv; 3297 } 3298 3299 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 3300 SourceManager &SM = getContext().getSourceManager(); 3301 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 3302 if (PLoc.isValid()) 3303 return EmitAnnotationString(PLoc.getFilename()); 3304 return EmitAnnotationString(SM.getBufferName(Loc)); 3305 } 3306 3307 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 3308 SourceManager &SM = getContext().getSourceManager(); 3309 PresumedLoc PLoc = SM.getPresumedLoc(L); 3310 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 3311 SM.getExpansionLineNumber(L); 3312 return llvm::ConstantInt::get(Int32Ty, LineNo); 3313 } 3314 3315 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) { 3316 ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()}; 3317 if (Exprs.empty()) 3318 return llvm::ConstantPointerNull::get(ConstGlobalsPtrTy); 3319 3320 llvm::FoldingSetNodeID ID; 3321 for (Expr *E : Exprs) { 3322 ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult()); 3323 } 3324 llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()]; 3325 if (Lookup) 3326 return Lookup; 3327 3328 llvm::SmallVector<llvm::Constant *, 4> LLVMArgs; 3329 LLVMArgs.reserve(Exprs.size()); 3330 ConstantEmitter ConstEmiter(*this); 3331 llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) { 3332 const auto *CE = cast<clang::ConstantExpr>(E); 3333 return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(), 3334 CE->getType()); 3335 }); 3336 auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs); 3337 auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true, 3338 llvm::GlobalValue::PrivateLinkage, Struct, 3339 ".args"); 3340 GV->setSection(AnnotationSection); 3341 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3342 3343 Lookup = GV; 3344 return GV; 3345 } 3346 3347 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 3348 const AnnotateAttr *AA, 3349 SourceLocation L) { 3350 // Get the globals for file name, annotation, and the line number. 3351 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 3352 *UnitGV = EmitAnnotationUnit(L), 3353 *LineNoCst = EmitAnnotationLineNo(L), 3354 *Args = EmitAnnotationArgs(AA); 3355 3356 llvm::Constant *GVInGlobalsAS = GV; 3357 if (GV->getAddressSpace() != 3358 getDataLayout().getDefaultGlobalsAddressSpace()) { 3359 GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast( 3360 GV, 3361 llvm::PointerType::get( 3362 GV->getContext(), getDataLayout().getDefaultGlobalsAddressSpace())); 3363 } 3364 3365 // Create the ConstantStruct for the global annotation. 3366 llvm::Constant *Fields[] = { 3367 GVInGlobalsAS, AnnoGV, UnitGV, LineNoCst, Args, 3368 }; 3369 return llvm::ConstantStruct::getAnon(Fields); 3370 } 3371 3372 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 3373 llvm::GlobalValue *GV) { 3374 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 3375 // Get the struct elements for these annotations. 3376 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 3377 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 3378 } 3379 3380 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn, 3381 SourceLocation Loc) const { 3382 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 3383 // NoSanitize by function name. 3384 if (NoSanitizeL.containsFunction(Kind, Fn->getName())) 3385 return true; 3386 // NoSanitize by location. Check "mainfile" prefix. 3387 auto &SM = Context.getSourceManager(); 3388 FileEntryRef MainFile = *SM.getFileEntryRefForID(SM.getMainFileID()); 3389 if (NoSanitizeL.containsMainFile(Kind, MainFile.getName())) 3390 return true; 3391 3392 // Check "src" prefix. 3393 if (Loc.isValid()) 3394 return NoSanitizeL.containsLocation(Kind, Loc); 3395 // If location is unknown, this may be a compiler-generated function. Assume 3396 // it's located in the main file. 3397 return NoSanitizeL.containsFile(Kind, MainFile.getName()); 3398 } 3399 3400 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, 3401 llvm::GlobalVariable *GV, 3402 SourceLocation Loc, QualType Ty, 3403 StringRef Category) const { 3404 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 3405 if (NoSanitizeL.containsGlobal(Kind, GV->getName(), Category)) 3406 return true; 3407 auto &SM = Context.getSourceManager(); 3408 if (NoSanitizeL.containsMainFile( 3409 Kind, SM.getFileEntryRefForID(SM.getMainFileID())->getName(), 3410 Category)) 3411 return true; 3412 if (NoSanitizeL.containsLocation(Kind, Loc, Category)) 3413 return true; 3414 3415 // Check global type. 3416 if (!Ty.isNull()) { 3417 // Drill down the array types: if global variable of a fixed type is 3418 // not sanitized, we also don't instrument arrays of them. 3419 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 3420 Ty = AT->getElementType(); 3421 Ty = Ty.getCanonicalType().getUnqualifiedType(); 3422 // Only record types (classes, structs etc.) are ignored. 3423 if (Ty->isRecordType()) { 3424 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 3425 if (NoSanitizeL.containsType(Kind, TypeStr, Category)) 3426 return true; 3427 } 3428 } 3429 return false; 3430 } 3431 3432 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 3433 StringRef Category) const { 3434 const auto &XRayFilter = getContext().getXRayFilter(); 3435 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 3436 auto Attr = ImbueAttr::NONE; 3437 if (Loc.isValid()) 3438 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 3439 if (Attr == ImbueAttr::NONE) 3440 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 3441 switch (Attr) { 3442 case ImbueAttr::NONE: 3443 return false; 3444 case ImbueAttr::ALWAYS: 3445 Fn->addFnAttr("function-instrument", "xray-always"); 3446 break; 3447 case ImbueAttr::ALWAYS_ARG1: 3448 Fn->addFnAttr("function-instrument", "xray-always"); 3449 Fn->addFnAttr("xray-log-args", "1"); 3450 break; 3451 case ImbueAttr::NEVER: 3452 Fn->addFnAttr("function-instrument", "xray-never"); 3453 break; 3454 } 3455 return true; 3456 } 3457 3458 ProfileList::ExclusionType 3459 CodeGenModule::isFunctionBlockedByProfileList(llvm::Function *Fn, 3460 SourceLocation Loc) const { 3461 const auto &ProfileList = getContext().getProfileList(); 3462 // If the profile list is empty, then instrument everything. 3463 if (ProfileList.isEmpty()) 3464 return ProfileList::Allow; 3465 CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr(); 3466 // First, check the function name. 3467 if (auto V = ProfileList.isFunctionExcluded(Fn->getName(), Kind)) 3468 return *V; 3469 // Next, check the source location. 3470 if (Loc.isValid()) 3471 if (auto V = ProfileList.isLocationExcluded(Loc, Kind)) 3472 return *V; 3473 // If location is unknown, this may be a compiler-generated function. Assume 3474 // it's located in the main file. 3475 auto &SM = Context.getSourceManager(); 3476 if (auto MainFile = SM.getFileEntryRefForID(SM.getMainFileID())) 3477 if (auto V = ProfileList.isFileExcluded(MainFile->getName(), Kind)) 3478 return *V; 3479 return ProfileList.getDefault(Kind); 3480 } 3481 3482 ProfileList::ExclusionType 3483 CodeGenModule::isFunctionBlockedFromProfileInstr(llvm::Function *Fn, 3484 SourceLocation Loc) const { 3485 auto V = isFunctionBlockedByProfileList(Fn, Loc); 3486 if (V != ProfileList::Allow) 3487 return V; 3488 3489 auto NumGroups = getCodeGenOpts().ProfileTotalFunctionGroups; 3490 if (NumGroups > 1) { 3491 auto Group = llvm::crc32(arrayRefFromStringRef(Fn->getName())) % NumGroups; 3492 if (Group != getCodeGenOpts().ProfileSelectedFunctionGroup) 3493 return ProfileList::Skip; 3494 } 3495 return ProfileList::Allow; 3496 } 3497 3498 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 3499 // Never defer when EmitAllDecls is specified. 3500 if (LangOpts.EmitAllDecls) 3501 return true; 3502 3503 const auto *VD = dyn_cast<VarDecl>(Global); 3504 if (VD && 3505 ((CodeGenOpts.KeepPersistentStorageVariables && 3506 (VD->getStorageDuration() == SD_Static || 3507 VD->getStorageDuration() == SD_Thread)) || 3508 (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static && 3509 VD->getType().isConstQualified()))) 3510 return true; 3511 3512 return getContext().DeclMustBeEmitted(Global); 3513 } 3514 3515 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 3516 // In OpenMP 5.0 variables and function may be marked as 3517 // device_type(host/nohost) and we should not emit them eagerly unless we sure 3518 // that they must be emitted on the host/device. To be sure we need to have 3519 // seen a declare target with an explicit mentioning of the function, we know 3520 // we have if the level of the declare target attribute is -1. Note that we 3521 // check somewhere else if we should emit this at all. 3522 if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) { 3523 std::optional<OMPDeclareTargetDeclAttr *> ActiveAttr = 3524 OMPDeclareTargetDeclAttr::getActiveAttr(Global); 3525 if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1) 3526 return false; 3527 } 3528 3529 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 3530 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 3531 // Implicit template instantiations may change linkage if they are later 3532 // explicitly instantiated, so they should not be emitted eagerly. 3533 return false; 3534 // Defer until all versions have been semantically checked. 3535 if (FD->hasAttr<TargetVersionAttr>() && !FD->isMultiVersion()) 3536 return false; 3537 } 3538 if (const auto *VD = dyn_cast<VarDecl>(Global)) { 3539 if (Context.getInlineVariableDefinitionKind(VD) == 3540 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 3541 // A definition of an inline constexpr static data member may change 3542 // linkage later if it's redeclared outside the class. 3543 return false; 3544 if (CXX20ModuleInits && VD->getOwningModule() && 3545 !VD->getOwningModule()->isModuleMapModule()) { 3546 // For CXX20, module-owned initializers need to be deferred, since it is 3547 // not known at this point if they will be run for the current module or 3548 // as part of the initializer for an imported one. 3549 return false; 3550 } 3551 } 3552 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 3553 // codegen for global variables, because they may be marked as threadprivate. 3554 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 3555 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) && 3556 !Global->getType().isConstantStorage(getContext(), false, false) && 3557 !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global)) 3558 return false; 3559 3560 return true; 3561 } 3562 3563 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) { 3564 StringRef Name = getMangledName(GD); 3565 3566 // The UUID descriptor should be pointer aligned. 3567 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 3568 3569 // Look for an existing global. 3570 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 3571 return ConstantAddress(GV, GV->getValueType(), Alignment); 3572 3573 ConstantEmitter Emitter(*this); 3574 llvm::Constant *Init; 3575 3576 APValue &V = GD->getAsAPValue(); 3577 if (!V.isAbsent()) { 3578 // If possible, emit the APValue version of the initializer. In particular, 3579 // this gets the type of the constant right. 3580 Init = Emitter.emitForInitializer( 3581 GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType()); 3582 } else { 3583 // As a fallback, directly construct the constant. 3584 // FIXME: This may get padding wrong under esoteric struct layout rules. 3585 // MSVC appears to create a complete type 'struct __s_GUID' that it 3586 // presumably uses to represent these constants. 3587 MSGuidDecl::Parts Parts = GD->getParts(); 3588 llvm::Constant *Fields[4] = { 3589 llvm::ConstantInt::get(Int32Ty, Parts.Part1), 3590 llvm::ConstantInt::get(Int16Ty, Parts.Part2), 3591 llvm::ConstantInt::get(Int16Ty, Parts.Part3), 3592 llvm::ConstantDataArray::getRaw( 3593 StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8, 3594 Int8Ty)}; 3595 Init = llvm::ConstantStruct::getAnon(Fields); 3596 } 3597 3598 auto *GV = new llvm::GlobalVariable( 3599 getModule(), Init->getType(), 3600 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 3601 if (supportsCOMDAT()) 3602 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3603 setDSOLocal(GV); 3604 3605 if (!V.isAbsent()) { 3606 Emitter.finalize(GV); 3607 return ConstantAddress(GV, GV->getValueType(), Alignment); 3608 } 3609 3610 llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType()); 3611 return ConstantAddress(GV, Ty, Alignment); 3612 } 3613 3614 ConstantAddress CodeGenModule::GetAddrOfUnnamedGlobalConstantDecl( 3615 const UnnamedGlobalConstantDecl *GCD) { 3616 CharUnits Alignment = getContext().getTypeAlignInChars(GCD->getType()); 3617 3618 llvm::GlobalVariable **Entry = nullptr; 3619 Entry = &UnnamedGlobalConstantDeclMap[GCD]; 3620 if (*Entry) 3621 return ConstantAddress(*Entry, (*Entry)->getValueType(), Alignment); 3622 3623 ConstantEmitter Emitter(*this); 3624 llvm::Constant *Init; 3625 3626 const APValue &V = GCD->getValue(); 3627 3628 assert(!V.isAbsent()); 3629 Init = Emitter.emitForInitializer(V, GCD->getType().getAddressSpace(), 3630 GCD->getType()); 3631 3632 auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(), 3633 /*isConstant=*/true, 3634 llvm::GlobalValue::PrivateLinkage, Init, 3635 ".constant"); 3636 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3637 GV->setAlignment(Alignment.getAsAlign()); 3638 3639 Emitter.finalize(GV); 3640 3641 *Entry = GV; 3642 return ConstantAddress(GV, GV->getValueType(), Alignment); 3643 } 3644 3645 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject( 3646 const TemplateParamObjectDecl *TPO) { 3647 StringRef Name = getMangledName(TPO); 3648 CharUnits Alignment = getNaturalTypeAlignment(TPO->getType()); 3649 3650 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 3651 return ConstantAddress(GV, GV->getValueType(), Alignment); 3652 3653 ConstantEmitter Emitter(*this); 3654 llvm::Constant *Init = Emitter.emitForInitializer( 3655 TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType()); 3656 3657 if (!Init) { 3658 ErrorUnsupported(TPO, "template parameter object"); 3659 return ConstantAddress::invalid(); 3660 } 3661 3662 llvm::GlobalValue::LinkageTypes Linkage = 3663 isExternallyVisible(TPO->getLinkageAndVisibility().getLinkage()) 3664 ? llvm::GlobalValue::LinkOnceODRLinkage 3665 : llvm::GlobalValue::InternalLinkage; 3666 auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(), 3667 /*isConstant=*/true, Linkage, Init, Name); 3668 setGVProperties(GV, TPO); 3669 if (supportsCOMDAT()) 3670 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3671 Emitter.finalize(GV); 3672 3673 return ConstantAddress(GV, GV->getValueType(), Alignment); 3674 } 3675 3676 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 3677 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 3678 assert(AA && "No alias?"); 3679 3680 CharUnits Alignment = getContext().getDeclAlign(VD); 3681 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 3682 3683 // See if there is already something with the target's name in the module. 3684 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 3685 if (Entry) 3686 return ConstantAddress(Entry, DeclTy, Alignment); 3687 3688 llvm::Constant *Aliasee; 3689 if (isa<llvm::FunctionType>(DeclTy)) 3690 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 3691 GlobalDecl(cast<FunctionDecl>(VD)), 3692 /*ForVTable=*/false); 3693 else 3694 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default, 3695 nullptr); 3696 3697 auto *F = cast<llvm::GlobalValue>(Aliasee); 3698 F->setLinkage(llvm::Function::ExternalWeakLinkage); 3699 WeakRefReferences.insert(F); 3700 3701 return ConstantAddress(Aliasee, DeclTy, Alignment); 3702 } 3703 3704 template <typename AttrT> static bool hasImplicitAttr(const ValueDecl *D) { 3705 if (!D) 3706 return false; 3707 if (auto *A = D->getAttr<AttrT>()) 3708 return A->isImplicit(); 3709 return D->isImplicit(); 3710 } 3711 3712 bool CodeGenModule::shouldEmitCUDAGlobalVar(const VarDecl *Global) const { 3713 assert(LangOpts.CUDA && "Should not be called by non-CUDA languages"); 3714 // We need to emit host-side 'shadows' for all global 3715 // device-side variables because the CUDA runtime needs their 3716 // size and host-side address in order to provide access to 3717 // their device-side incarnations. 3718 return !LangOpts.CUDAIsDevice || Global->hasAttr<CUDADeviceAttr>() || 3719 Global->hasAttr<CUDAConstantAttr>() || 3720 Global->hasAttr<CUDASharedAttr>() || 3721 Global->getType()->isCUDADeviceBuiltinSurfaceType() || 3722 Global->getType()->isCUDADeviceBuiltinTextureType(); 3723 } 3724 3725 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 3726 const auto *Global = cast<ValueDecl>(GD.getDecl()); 3727 3728 // Weak references don't produce any output by themselves. 3729 if (Global->hasAttr<WeakRefAttr>()) 3730 return; 3731 3732 // If this is an alias definition (which otherwise looks like a declaration) 3733 // emit it now. 3734 if (Global->hasAttr<AliasAttr>()) 3735 return EmitAliasDefinition(GD); 3736 3737 // IFunc like an alias whose value is resolved at runtime by calling resolver. 3738 if (Global->hasAttr<IFuncAttr>()) 3739 return emitIFuncDefinition(GD); 3740 3741 // If this is a cpu_dispatch multiversion function, emit the resolver. 3742 if (Global->hasAttr<CPUDispatchAttr>()) 3743 return emitCPUDispatchDefinition(GD); 3744 3745 // If this is CUDA, be selective about which declarations we emit. 3746 // Non-constexpr non-lambda implicit host device functions are not emitted 3747 // unless they are used on device side. 3748 if (LangOpts.CUDA) { 3749 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 3750 "Expected Variable or Function"); 3751 if (const auto *VD = dyn_cast<VarDecl>(Global)) { 3752 if (!shouldEmitCUDAGlobalVar(VD)) 3753 return; 3754 } else if (LangOpts.CUDAIsDevice) { 3755 const auto *FD = dyn_cast<FunctionDecl>(Global); 3756 if ((!Global->hasAttr<CUDADeviceAttr>() || 3757 (LangOpts.OffloadImplicitHostDeviceTemplates && 3758 hasImplicitAttr<CUDAHostAttr>(FD) && 3759 hasImplicitAttr<CUDADeviceAttr>(FD) && !FD->isConstexpr() && 3760 !isLambdaCallOperator(FD) && 3761 !getContext().CUDAImplicitHostDeviceFunUsedByDevice.count(FD))) && 3762 !Global->hasAttr<CUDAGlobalAttr>() && 3763 !(LangOpts.HIPStdPar && isa<FunctionDecl>(Global) && 3764 !Global->hasAttr<CUDAHostAttr>())) 3765 return; 3766 // Device-only functions are the only things we skip. 3767 } else if (!Global->hasAttr<CUDAHostAttr>() && 3768 Global->hasAttr<CUDADeviceAttr>()) 3769 return; 3770 } 3771 3772 if (LangOpts.OpenMP) { 3773 // If this is OpenMP, check if it is legal to emit this global normally. 3774 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 3775 return; 3776 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 3777 if (MustBeEmitted(Global)) 3778 EmitOMPDeclareReduction(DRD); 3779 return; 3780 } 3781 if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) { 3782 if (MustBeEmitted(Global)) 3783 EmitOMPDeclareMapper(DMD); 3784 return; 3785 } 3786 } 3787 3788 // Ignore declarations, they will be emitted on their first use. 3789 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 3790 // Update deferred annotations with the latest declaration if the function 3791 // function was already used or defined. 3792 if (FD->hasAttr<AnnotateAttr>()) { 3793 StringRef MangledName = getMangledName(GD); 3794 if (GetGlobalValue(MangledName)) 3795 DeferredAnnotations[MangledName] = FD; 3796 } 3797 3798 // Forward declarations are emitted lazily on first use. 3799 if (!FD->doesThisDeclarationHaveABody()) { 3800 if (!FD->doesDeclarationForceExternallyVisibleDefinition() && 3801 (!FD->isMultiVersion() || !getTarget().getTriple().isAArch64())) 3802 return; 3803 3804 StringRef MangledName = getMangledName(GD); 3805 3806 // Compute the function info and LLVM type. 3807 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3808 llvm::Type *Ty = getTypes().GetFunctionType(FI); 3809 3810 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 3811 /*DontDefer=*/false); 3812 return; 3813 } 3814 } else { 3815 const auto *VD = cast<VarDecl>(Global); 3816 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 3817 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 3818 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 3819 if (LangOpts.OpenMP) { 3820 // Emit declaration of the must-be-emitted declare target variable. 3821 if (std::optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 3822 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) { 3823 3824 // If this variable has external storage and doesn't require special 3825 // link handling we defer to its canonical definition. 3826 if (VD->hasExternalStorage() && 3827 Res != OMPDeclareTargetDeclAttr::MT_Link) 3828 return; 3829 3830 bool UnifiedMemoryEnabled = 3831 getOpenMPRuntime().hasRequiresUnifiedSharedMemory(); 3832 if ((*Res == OMPDeclareTargetDeclAttr::MT_To || 3833 *Res == OMPDeclareTargetDeclAttr::MT_Enter) && 3834 !UnifiedMemoryEnabled) { 3835 (void)GetAddrOfGlobalVar(VD); 3836 } else { 3837 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) || 3838 ((*Res == OMPDeclareTargetDeclAttr::MT_To || 3839 *Res == OMPDeclareTargetDeclAttr::MT_Enter) && 3840 UnifiedMemoryEnabled)) && 3841 "Link clause or to clause with unified memory expected."); 3842 (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD); 3843 } 3844 3845 return; 3846 } 3847 } 3848 // If this declaration may have caused an inline variable definition to 3849 // change linkage, make sure that it's emitted. 3850 if (Context.getInlineVariableDefinitionKind(VD) == 3851 ASTContext::InlineVariableDefinitionKind::Strong) 3852 GetAddrOfGlobalVar(VD); 3853 return; 3854 } 3855 } 3856 3857 // Defer code generation to first use when possible, e.g. if this is an inline 3858 // function. If the global must always be emitted, do it eagerly if possible 3859 // to benefit from cache locality. 3860 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 3861 // Emit the definition if it can't be deferred. 3862 EmitGlobalDefinition(GD); 3863 addEmittedDeferredDecl(GD); 3864 return; 3865 } 3866 3867 // If we're deferring emission of a C++ variable with an 3868 // initializer, remember the order in which it appeared in the file. 3869 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 3870 cast<VarDecl>(Global)->hasInit()) { 3871 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 3872 CXXGlobalInits.push_back(nullptr); 3873 } 3874 3875 StringRef MangledName = getMangledName(GD); 3876 if (GetGlobalValue(MangledName) != nullptr) { 3877 // The value has already been used and should therefore be emitted. 3878 addDeferredDeclToEmit(GD); 3879 } else if (MustBeEmitted(Global)) { 3880 // The value must be emitted, but cannot be emitted eagerly. 3881 assert(!MayBeEmittedEagerly(Global)); 3882 addDeferredDeclToEmit(GD); 3883 } else { 3884 // Otherwise, remember that we saw a deferred decl with this name. The 3885 // first use of the mangled name will cause it to move into 3886 // DeferredDeclsToEmit. 3887 DeferredDecls[MangledName] = GD; 3888 } 3889 } 3890 3891 // Check if T is a class type with a destructor that's not dllimport. 3892 static bool HasNonDllImportDtor(QualType T) { 3893 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 3894 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 3895 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 3896 return true; 3897 3898 return false; 3899 } 3900 3901 namespace { 3902 struct FunctionIsDirectlyRecursive 3903 : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> { 3904 const StringRef Name; 3905 const Builtin::Context &BI; 3906 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) 3907 : Name(N), BI(C) {} 3908 3909 bool VisitCallExpr(const CallExpr *E) { 3910 const FunctionDecl *FD = E->getDirectCallee(); 3911 if (!FD) 3912 return false; 3913 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 3914 if (Attr && Name == Attr->getLabel()) 3915 return true; 3916 unsigned BuiltinID = FD->getBuiltinID(); 3917 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 3918 return false; 3919 StringRef BuiltinName = BI.getName(BuiltinID); 3920 if (BuiltinName.starts_with("__builtin_") && 3921 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 3922 return true; 3923 } 3924 return false; 3925 } 3926 3927 bool VisitStmt(const Stmt *S) { 3928 for (const Stmt *Child : S->children()) 3929 if (Child && this->Visit(Child)) 3930 return true; 3931 return false; 3932 } 3933 }; 3934 3935 // Make sure we're not referencing non-imported vars or functions. 3936 struct DLLImportFunctionVisitor 3937 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 3938 bool SafeToInline = true; 3939 3940 bool shouldVisitImplicitCode() const { return true; } 3941 3942 bool VisitVarDecl(VarDecl *VD) { 3943 if (VD->getTLSKind()) { 3944 // A thread-local variable cannot be imported. 3945 SafeToInline = false; 3946 return SafeToInline; 3947 } 3948 3949 // A variable definition might imply a destructor call. 3950 if (VD->isThisDeclarationADefinition()) 3951 SafeToInline = !HasNonDllImportDtor(VD->getType()); 3952 3953 return SafeToInline; 3954 } 3955 3956 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 3957 if (const auto *D = E->getTemporary()->getDestructor()) 3958 SafeToInline = D->hasAttr<DLLImportAttr>(); 3959 return SafeToInline; 3960 } 3961 3962 bool VisitDeclRefExpr(DeclRefExpr *E) { 3963 ValueDecl *VD = E->getDecl(); 3964 if (isa<FunctionDecl>(VD)) 3965 SafeToInline = VD->hasAttr<DLLImportAttr>(); 3966 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 3967 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 3968 return SafeToInline; 3969 } 3970 3971 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 3972 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 3973 return SafeToInline; 3974 } 3975 3976 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 3977 CXXMethodDecl *M = E->getMethodDecl(); 3978 if (!M) { 3979 // Call through a pointer to member function. This is safe to inline. 3980 SafeToInline = true; 3981 } else { 3982 SafeToInline = M->hasAttr<DLLImportAttr>(); 3983 } 3984 return SafeToInline; 3985 } 3986 3987 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 3988 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 3989 return SafeToInline; 3990 } 3991 3992 bool VisitCXXNewExpr(CXXNewExpr *E) { 3993 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 3994 return SafeToInline; 3995 } 3996 }; 3997 } 3998 3999 // isTriviallyRecursive - Check if this function calls another 4000 // decl that, because of the asm attribute or the other decl being a builtin, 4001 // ends up pointing to itself. 4002 bool 4003 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 4004 StringRef Name; 4005 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 4006 // asm labels are a special kind of mangling we have to support. 4007 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 4008 if (!Attr) 4009 return false; 4010 Name = Attr->getLabel(); 4011 } else { 4012 Name = FD->getName(); 4013 } 4014 4015 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 4016 const Stmt *Body = FD->getBody(); 4017 return Body ? Walker.Visit(Body) : false; 4018 } 4019 4020 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 4021 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 4022 return true; 4023 4024 const auto *F = cast<FunctionDecl>(GD.getDecl()); 4025 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 4026 return false; 4027 4028 // We don't import function bodies from other named module units since that 4029 // behavior may break ABI compatibility of the current unit. 4030 if (const Module *M = F->getOwningModule(); 4031 M && M->getTopLevelModule()->isNamedModule() && 4032 getContext().getCurrentNamedModule() != M->getTopLevelModule()) { 4033 // There are practices to mark template member function as always-inline 4034 // and mark the template as extern explicit instantiation but not give 4035 // the definition for member function. So we have to emit the function 4036 // from explicitly instantiation with always-inline. 4037 // 4038 // See https://github.com/llvm/llvm-project/issues/86893 for details. 4039 // 4040 // TODO: Maybe it is better to give it a warning if we call a non-inline 4041 // function from other module units which is marked as always-inline. 4042 if (!F->isTemplateInstantiation() || !F->hasAttr<AlwaysInlineAttr>()) { 4043 return false; 4044 } 4045 } 4046 4047 if (F->hasAttr<NoInlineAttr>()) 4048 return false; 4049 4050 if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) { 4051 // Check whether it would be safe to inline this dllimport function. 4052 DLLImportFunctionVisitor Visitor; 4053 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 4054 if (!Visitor.SafeToInline) 4055 return false; 4056 4057 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 4058 // Implicit destructor invocations aren't captured in the AST, so the 4059 // check above can't see them. Check for them manually here. 4060 for (const Decl *Member : Dtor->getParent()->decls()) 4061 if (isa<FieldDecl>(Member)) 4062 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 4063 return false; 4064 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 4065 if (HasNonDllImportDtor(B.getType())) 4066 return false; 4067 } 4068 } 4069 4070 // Inline builtins declaration must be emitted. They often are fortified 4071 // functions. 4072 if (F->isInlineBuiltinDeclaration()) 4073 return true; 4074 4075 // PR9614. Avoid cases where the source code is lying to us. An available 4076 // externally function should have an equivalent function somewhere else, 4077 // but a function that calls itself through asm label/`__builtin_` trickery is 4078 // clearly not equivalent to the real implementation. 4079 // This happens in glibc's btowc and in some configure checks. 4080 return !isTriviallyRecursive(F); 4081 } 4082 4083 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 4084 return CodeGenOpts.OptimizationLevel > 0; 4085 } 4086 4087 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD, 4088 llvm::GlobalValue *GV) { 4089 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4090 4091 if (FD->isCPUSpecificMultiVersion()) { 4092 auto *Spec = FD->getAttr<CPUSpecificAttr>(); 4093 for (unsigned I = 0; I < Spec->cpus_size(); ++I) 4094 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 4095 } else if (auto *TC = FD->getAttr<TargetClonesAttr>()) { 4096 for (unsigned I = 0; I < TC->featuresStrs_size(); ++I) 4097 // AArch64 favors the default target version over the clone if any. 4098 if ((!TC->isDefaultVersion(I) || !getTarget().getTriple().isAArch64()) && 4099 TC->isFirstOfVersion(I)) 4100 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 4101 // Ensure that the resolver function is also emitted. 4102 GetOrCreateMultiVersionResolver(GD); 4103 } else 4104 EmitGlobalFunctionDefinition(GD, GV); 4105 4106 // Defer the resolver emission until we can reason whether the TU 4107 // contains a default target version implementation. 4108 if (FD->isTargetVersionMultiVersion()) 4109 AddDeferredMultiVersionResolverToEmit(GD); 4110 } 4111 4112 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 4113 const auto *D = cast<ValueDecl>(GD.getDecl()); 4114 4115 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 4116 Context.getSourceManager(), 4117 "Generating code for declaration"); 4118 4119 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 4120 // At -O0, don't generate IR for functions with available_externally 4121 // linkage. 4122 if (!shouldEmitFunction(GD)) 4123 return; 4124 4125 llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() { 4126 std::string Name; 4127 llvm::raw_string_ostream OS(Name); 4128 FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(), 4129 /*Qualified=*/true); 4130 return Name; 4131 }); 4132 4133 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 4134 // Make sure to emit the definition(s) before we emit the thunks. 4135 // This is necessary for the generation of certain thunks. 4136 if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method)) 4137 ABI->emitCXXStructor(GD); 4138 else if (FD->isMultiVersion()) 4139 EmitMultiVersionFunctionDefinition(GD, GV); 4140 else 4141 EmitGlobalFunctionDefinition(GD, GV); 4142 4143 if (Method->isVirtual()) 4144 getVTables().EmitThunks(GD); 4145 4146 return; 4147 } 4148 4149 if (FD->isMultiVersion()) 4150 return EmitMultiVersionFunctionDefinition(GD, GV); 4151 return EmitGlobalFunctionDefinition(GD, GV); 4152 } 4153 4154 if (const auto *VD = dyn_cast<VarDecl>(D)) 4155 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 4156 4157 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 4158 } 4159 4160 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 4161 llvm::Function *NewFn); 4162 4163 static unsigned 4164 TargetMVPriority(const TargetInfo &TI, 4165 const CodeGenFunction::MultiVersionResolverOption &RO) { 4166 unsigned Priority = 0; 4167 unsigned NumFeatures = 0; 4168 for (StringRef Feat : RO.Conditions.Features) { 4169 Priority = std::max(Priority, TI.multiVersionSortPriority(Feat)); 4170 NumFeatures++; 4171 } 4172 4173 if (!RO.Conditions.Architecture.empty()) 4174 Priority = std::max( 4175 Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture)); 4176 4177 Priority += TI.multiVersionFeatureCost() * NumFeatures; 4178 4179 return Priority; 4180 } 4181 4182 // Multiversion functions should be at most 'WeakODRLinkage' so that a different 4183 // TU can forward declare the function without causing problems. Particularly 4184 // in the cases of CPUDispatch, this causes issues. This also makes sure we 4185 // work with internal linkage functions, so that the same function name can be 4186 // used with internal linkage in multiple TUs. 4187 llvm::GlobalValue::LinkageTypes getMultiversionLinkage(CodeGenModule &CGM, 4188 GlobalDecl GD) { 4189 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 4190 if (FD->getFormalLinkage() == Linkage::Internal) 4191 return llvm::GlobalValue::InternalLinkage; 4192 return llvm::GlobalValue::WeakODRLinkage; 4193 } 4194 4195 void CodeGenModule::emitMultiVersionFunctions() { 4196 std::vector<GlobalDecl> MVFuncsToEmit; 4197 MultiVersionFuncs.swap(MVFuncsToEmit); 4198 for (GlobalDecl GD : MVFuncsToEmit) { 4199 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4200 assert(FD && "Expected a FunctionDecl"); 4201 4202 auto createFunction = [&](const FunctionDecl *Decl, unsigned MVIdx = 0) { 4203 GlobalDecl CurGD{Decl->isDefined() ? Decl->getDefinition() : Decl, MVIdx}; 4204 StringRef MangledName = getMangledName(CurGD); 4205 llvm::Constant *Func = GetGlobalValue(MangledName); 4206 if (!Func) { 4207 if (Decl->isDefined()) { 4208 EmitGlobalFunctionDefinition(CurGD, nullptr); 4209 Func = GetGlobalValue(MangledName); 4210 } else { 4211 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(CurGD); 4212 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4213 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 4214 /*DontDefer=*/false, ForDefinition); 4215 } 4216 assert(Func && "This should have just been created"); 4217 } 4218 return cast<llvm::Function>(Func); 4219 }; 4220 4221 // For AArch64, a resolver is only emitted if a function marked with 4222 // target_version("default")) or target_clones() is present and defined 4223 // in this TU. For other architectures it is always emitted. 4224 bool ShouldEmitResolver = !getTarget().getTriple().isAArch64(); 4225 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 4226 4227 getContext().forEachMultiversionedFunctionVersion( 4228 FD, [&](const FunctionDecl *CurFD) { 4229 llvm::SmallVector<StringRef, 8> Feats; 4230 bool IsDefined = CurFD->doesThisDeclarationHaveABody(); 4231 4232 if (const auto *TA = CurFD->getAttr<TargetAttr>()) { 4233 TA->getAddedFeatures(Feats); 4234 llvm::Function *Func = createFunction(CurFD); 4235 Options.emplace_back(Func, TA->getArchitecture(), Feats); 4236 } else if (const auto *TVA = CurFD->getAttr<TargetVersionAttr>()) { 4237 if (TVA->isDefaultVersion() && IsDefined) 4238 ShouldEmitResolver = true; 4239 TVA->getFeatures(Feats); 4240 llvm::Function *Func = createFunction(CurFD); 4241 Options.emplace_back(Func, /*Architecture*/ "", Feats); 4242 } else if (const auto *TC = CurFD->getAttr<TargetClonesAttr>()) { 4243 if (IsDefined) 4244 ShouldEmitResolver = true; 4245 for (unsigned I = 0; I < TC->featuresStrs_size(); ++I) { 4246 if (!TC->isFirstOfVersion(I)) 4247 continue; 4248 4249 llvm::Function *Func = createFunction(CurFD, I); 4250 StringRef Architecture; 4251 Feats.clear(); 4252 if (getTarget().getTriple().isAArch64()) 4253 TC->getFeatures(Feats, I); 4254 else { 4255 StringRef Version = TC->getFeatureStr(I); 4256 if (Version.starts_with("arch=")) 4257 Architecture = Version.drop_front(sizeof("arch=") - 1); 4258 else if (Version != "default") 4259 Feats.push_back(Version); 4260 } 4261 Options.emplace_back(Func, Architecture, Feats); 4262 } 4263 } else 4264 llvm_unreachable("unexpected MultiVersionKind"); 4265 }); 4266 4267 if (!ShouldEmitResolver) 4268 continue; 4269 4270 llvm::Constant *ResolverConstant = GetOrCreateMultiVersionResolver(GD); 4271 if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(ResolverConstant)) { 4272 ResolverConstant = IFunc->getResolver(); 4273 if (FD->isTargetClonesMultiVersion() && 4274 !getTarget().getTriple().isAArch64()) { 4275 std::string MangledName = getMangledNameImpl( 4276 *this, GD, FD, /*OmitMultiVersionMangling=*/true); 4277 if (!GetGlobalValue(MangledName + ".ifunc")) { 4278 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4279 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); 4280 // In prior versions of Clang, the mangling for ifuncs incorrectly 4281 // included an .ifunc suffix. This alias is generated for backward 4282 // compatibility. It is deprecated, and may be removed in the future. 4283 auto *Alias = llvm::GlobalAlias::create( 4284 DeclTy, 0, getMultiversionLinkage(*this, GD), 4285 MangledName + ".ifunc", IFunc, &getModule()); 4286 SetCommonAttributes(FD, Alias); 4287 } 4288 } 4289 } 4290 llvm::Function *ResolverFunc = cast<llvm::Function>(ResolverConstant); 4291 4292 ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD)); 4293 4294 if (!ResolverFunc->hasLocalLinkage() && supportsCOMDAT()) 4295 ResolverFunc->setComdat( 4296 getModule().getOrInsertComdat(ResolverFunc->getName())); 4297 4298 const TargetInfo &TI = getTarget(); 4299 llvm::stable_sort( 4300 Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS, 4301 const CodeGenFunction::MultiVersionResolverOption &RHS) { 4302 return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS); 4303 }); 4304 CodeGenFunction CGF(*this); 4305 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 4306 } 4307 4308 // Ensure that any additions to the deferred decls list caused by emitting a 4309 // variant are emitted. This can happen when the variant itself is inline and 4310 // calls a function without linkage. 4311 if (!MVFuncsToEmit.empty()) 4312 EmitDeferred(); 4313 4314 // Ensure that any additions to the multiversion funcs list from either the 4315 // deferred decls or the multiversion functions themselves are emitted. 4316 if (!MultiVersionFuncs.empty()) 4317 emitMultiVersionFunctions(); 4318 } 4319 4320 static void replaceDeclarationWith(llvm::GlobalValue *Old, 4321 llvm::Constant *New) { 4322 assert(cast<llvm::Function>(Old)->isDeclaration() && "Not a declaration"); 4323 New->takeName(Old); 4324 Old->replaceAllUsesWith(New); 4325 Old->eraseFromParent(); 4326 } 4327 4328 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) { 4329 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4330 assert(FD && "Not a FunctionDecl?"); 4331 assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?"); 4332 const auto *DD = FD->getAttr<CPUDispatchAttr>(); 4333 assert(DD && "Not a cpu_dispatch Function?"); 4334 4335 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4336 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); 4337 4338 StringRef ResolverName = getMangledName(GD); 4339 UpdateMultiVersionNames(GD, FD, ResolverName); 4340 4341 llvm::Type *ResolverType; 4342 GlobalDecl ResolverGD; 4343 if (getTarget().supportsIFunc()) { 4344 ResolverType = llvm::FunctionType::get( 4345 llvm::PointerType::get(DeclTy, 4346 getTypes().getTargetAddressSpace(FD->getType())), 4347 false); 4348 } 4349 else { 4350 ResolverType = DeclTy; 4351 ResolverGD = GD; 4352 } 4353 4354 auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction( 4355 ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false)); 4356 ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD)); 4357 if (supportsCOMDAT()) 4358 ResolverFunc->setComdat( 4359 getModule().getOrInsertComdat(ResolverFunc->getName())); 4360 4361 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 4362 const TargetInfo &Target = getTarget(); 4363 unsigned Index = 0; 4364 for (const IdentifierInfo *II : DD->cpus()) { 4365 // Get the name of the target function so we can look it up/create it. 4366 std::string MangledName = getMangledNameImpl(*this, GD, FD, true) + 4367 getCPUSpecificMangling(*this, II->getName()); 4368 4369 llvm::Constant *Func = GetGlobalValue(MangledName); 4370 4371 if (!Func) { 4372 GlobalDecl ExistingDecl = Manglings.lookup(MangledName); 4373 if (ExistingDecl.getDecl() && 4374 ExistingDecl.getDecl()->getAsFunction()->isDefined()) { 4375 EmitGlobalFunctionDefinition(ExistingDecl, nullptr); 4376 Func = GetGlobalValue(MangledName); 4377 } else { 4378 if (!ExistingDecl.getDecl()) 4379 ExistingDecl = GD.getWithMultiVersionIndex(Index); 4380 4381 Func = GetOrCreateLLVMFunction( 4382 MangledName, DeclTy, ExistingDecl, 4383 /*ForVTable=*/false, /*DontDefer=*/true, 4384 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition); 4385 } 4386 } 4387 4388 llvm::SmallVector<StringRef, 32> Features; 4389 Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features); 4390 llvm::transform(Features, Features.begin(), 4391 [](StringRef Str) { return Str.substr(1); }); 4392 llvm::erase_if(Features, [&Target](StringRef Feat) { 4393 return !Target.validateCpuSupports(Feat); 4394 }); 4395 Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features); 4396 ++Index; 4397 } 4398 4399 llvm::stable_sort( 4400 Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS, 4401 const CodeGenFunction::MultiVersionResolverOption &RHS) { 4402 return llvm::X86::getCpuSupportsMask(LHS.Conditions.Features) > 4403 llvm::X86::getCpuSupportsMask(RHS.Conditions.Features); 4404 }); 4405 4406 // If the list contains multiple 'default' versions, such as when it contains 4407 // 'pentium' and 'generic', don't emit the call to the generic one (since we 4408 // always run on at least a 'pentium'). We do this by deleting the 'least 4409 // advanced' (read, lowest mangling letter). 4410 while (Options.size() > 1 && 4411 llvm::all_of(llvm::X86::getCpuSupportsMask( 4412 (Options.end() - 2)->Conditions.Features), 4413 [](auto X) { return X == 0; })) { 4414 StringRef LHSName = (Options.end() - 2)->Function->getName(); 4415 StringRef RHSName = (Options.end() - 1)->Function->getName(); 4416 if (LHSName.compare(RHSName) < 0) 4417 Options.erase(Options.end() - 2); 4418 else 4419 Options.erase(Options.end() - 1); 4420 } 4421 4422 CodeGenFunction CGF(*this); 4423 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 4424 4425 if (getTarget().supportsIFunc()) { 4426 llvm::GlobalValue::LinkageTypes Linkage = getMultiversionLinkage(*this, GD); 4427 auto *IFunc = cast<llvm::GlobalValue>(GetOrCreateMultiVersionResolver(GD)); 4428 4429 // Fix up function declarations that were created for cpu_specific before 4430 // cpu_dispatch was known 4431 if (!isa<llvm::GlobalIFunc>(IFunc)) { 4432 auto *GI = llvm::GlobalIFunc::create(DeclTy, 0, Linkage, "", ResolverFunc, 4433 &getModule()); 4434 replaceDeclarationWith(IFunc, GI); 4435 IFunc = GI; 4436 } 4437 4438 std::string AliasName = getMangledNameImpl( 4439 *this, GD, FD, /*OmitMultiVersionMangling=*/true); 4440 llvm::Constant *AliasFunc = GetGlobalValue(AliasName); 4441 if (!AliasFunc) { 4442 auto *GA = llvm::GlobalAlias::create(DeclTy, 0, Linkage, AliasName, IFunc, 4443 &getModule()); 4444 SetCommonAttributes(GD, GA); 4445 } 4446 } 4447 } 4448 4449 /// Adds a declaration to the list of multi version functions if not present. 4450 void CodeGenModule::AddDeferredMultiVersionResolverToEmit(GlobalDecl GD) { 4451 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4452 assert(FD && "Not a FunctionDecl?"); 4453 4454 if (FD->isTargetVersionMultiVersion() || FD->isTargetClonesMultiVersion()) { 4455 std::string MangledName = 4456 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 4457 if (!DeferredResolversToEmit.insert(MangledName).second) 4458 return; 4459 } 4460 MultiVersionFuncs.push_back(GD); 4461 } 4462 4463 /// If a dispatcher for the specified mangled name is not in the module, create 4464 /// and return it. The dispatcher is either an llvm Function with the specified 4465 /// type, or a global ifunc. 4466 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(GlobalDecl GD) { 4467 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4468 assert(FD && "Not a FunctionDecl?"); 4469 4470 std::string MangledName = 4471 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 4472 4473 // Holds the name of the resolver, in ifunc mode this is the ifunc (which has 4474 // a separate resolver). 4475 std::string ResolverName = MangledName; 4476 if (getTarget().supportsIFunc()) { 4477 switch (FD->getMultiVersionKind()) { 4478 case MultiVersionKind::None: 4479 llvm_unreachable("unexpected MultiVersionKind::None for resolver"); 4480 case MultiVersionKind::Target: 4481 case MultiVersionKind::CPUSpecific: 4482 case MultiVersionKind::CPUDispatch: 4483 ResolverName += ".ifunc"; 4484 break; 4485 case MultiVersionKind::TargetClones: 4486 case MultiVersionKind::TargetVersion: 4487 break; 4488 } 4489 } else if (FD->isTargetMultiVersion()) { 4490 ResolverName += ".resolver"; 4491 } 4492 4493 // If the resolver has already been created, just return it. This lookup may 4494 // yield a function declaration instead of a resolver on AArch64. That is 4495 // because we didn't know whether a resolver will be generated when we first 4496 // encountered a use of the symbol named after this resolver. Therefore, 4497 // targets which support ifuncs should not return here unless we actually 4498 // found an ifunc. 4499 llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName); 4500 if (ResolverGV && 4501 (isa<llvm::GlobalIFunc>(ResolverGV) || !getTarget().supportsIFunc())) 4502 return ResolverGV; 4503 4504 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4505 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); 4506 4507 // The resolver needs to be created. For target and target_clones, defer 4508 // creation until the end of the TU. 4509 if (FD->isTargetMultiVersion() || FD->isTargetClonesMultiVersion()) 4510 AddDeferredMultiVersionResolverToEmit(GD); 4511 4512 // For cpu_specific, don't create an ifunc yet because we don't know if the 4513 // cpu_dispatch will be emitted in this translation unit. 4514 if (getTarget().supportsIFunc() && !FD->isCPUSpecificMultiVersion()) { 4515 llvm::Type *ResolverType = llvm::FunctionType::get( 4516 llvm::PointerType::get(DeclTy, 4517 getTypes().getTargetAddressSpace(FD->getType())), 4518 false); 4519 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 4520 MangledName + ".resolver", ResolverType, GlobalDecl{}, 4521 /*ForVTable=*/false); 4522 llvm::GlobalIFunc *GIF = 4523 llvm::GlobalIFunc::create(DeclTy, 0, getMultiversionLinkage(*this, GD), 4524 "", Resolver, &getModule()); 4525 GIF->setName(ResolverName); 4526 SetCommonAttributes(FD, GIF); 4527 if (ResolverGV) 4528 replaceDeclarationWith(ResolverGV, GIF); 4529 return GIF; 4530 } 4531 4532 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 4533 ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false); 4534 assert(isa<llvm::GlobalValue>(Resolver) && 4535 "Resolver should be created for the first time"); 4536 SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver)); 4537 if (ResolverGV) 4538 replaceDeclarationWith(ResolverGV, Resolver); 4539 return Resolver; 4540 } 4541 4542 bool CodeGenModule::shouldDropDLLAttribute(const Decl *D, 4543 const llvm::GlobalValue *GV) const { 4544 auto SC = GV->getDLLStorageClass(); 4545 if (SC == llvm::GlobalValue::DefaultStorageClass) 4546 return false; 4547 const Decl *MRD = D->getMostRecentDecl(); 4548 return (((SC == llvm::GlobalValue::DLLImportStorageClass && 4549 !MRD->hasAttr<DLLImportAttr>()) || 4550 (SC == llvm::GlobalValue::DLLExportStorageClass && 4551 !MRD->hasAttr<DLLExportAttr>())) && 4552 !shouldMapVisibilityToDLLExport(cast<NamedDecl>(MRD))); 4553 } 4554 4555 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 4556 /// module, create and return an llvm Function with the specified type. If there 4557 /// is something in the module with the specified name, return it potentially 4558 /// bitcasted to the right type. 4559 /// 4560 /// If D is non-null, it specifies a decl that correspond to this. This is used 4561 /// to set the attributes on the function when it is first created. 4562 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 4563 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 4564 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 4565 ForDefinition_t IsForDefinition) { 4566 const Decl *D = GD.getDecl(); 4567 4568 std::string NameWithoutMultiVersionMangling; 4569 // Any attempts to use a MultiVersion function should result in retrieving 4570 // the iFunc instead. Name Mangling will handle the rest of the changes. 4571 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 4572 // For the device mark the function as one that should be emitted. 4573 if (getLangOpts().OpenMPIsTargetDevice && OpenMPRuntime && 4574 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() && 4575 !DontDefer && !IsForDefinition) { 4576 if (const FunctionDecl *FDDef = FD->getDefinition()) { 4577 GlobalDecl GDDef; 4578 if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef)) 4579 GDDef = GlobalDecl(CD, GD.getCtorType()); 4580 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef)) 4581 GDDef = GlobalDecl(DD, GD.getDtorType()); 4582 else 4583 GDDef = GlobalDecl(FDDef); 4584 EmitGlobal(GDDef); 4585 } 4586 } 4587 4588 if (FD->isMultiVersion()) { 4589 UpdateMultiVersionNames(GD, FD, MangledName); 4590 if (!IsForDefinition) { 4591 // On AArch64 we do not immediatelly emit an ifunc resolver when a 4592 // function is used. Instead we defer the emission until we see a 4593 // default definition. In the meantime we just reference the symbol 4594 // without FMV mangling (it may or may not be replaced later). 4595 if (getTarget().getTriple().isAArch64()) { 4596 AddDeferredMultiVersionResolverToEmit(GD); 4597 NameWithoutMultiVersionMangling = getMangledNameImpl( 4598 *this, GD, FD, /*OmitMultiVersionMangling=*/true); 4599 } else 4600 return GetOrCreateMultiVersionResolver(GD); 4601 } 4602 } 4603 } 4604 4605 if (!NameWithoutMultiVersionMangling.empty()) 4606 MangledName = NameWithoutMultiVersionMangling; 4607 4608 // Lookup the entry, lazily creating it if necessary. 4609 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4610 if (Entry) { 4611 if (WeakRefReferences.erase(Entry)) { 4612 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 4613 if (FD && !FD->hasAttr<WeakAttr>()) 4614 Entry->setLinkage(llvm::Function::ExternalLinkage); 4615 } 4616 4617 // Handle dropped DLL attributes. 4618 if (D && shouldDropDLLAttribute(D, Entry)) { 4619 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 4620 setDSOLocal(Entry); 4621 } 4622 4623 // If there are two attempts to define the same mangled name, issue an 4624 // error. 4625 if (IsForDefinition && !Entry->isDeclaration()) { 4626 GlobalDecl OtherGD; 4627 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 4628 // to make sure that we issue an error only once. 4629 if (lookupRepresentativeDecl(MangledName, OtherGD) && 4630 (GD.getCanonicalDecl().getDecl() != 4631 OtherGD.getCanonicalDecl().getDecl()) && 4632 DiagnosedConflictingDefinitions.insert(GD).second) { 4633 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 4634 << MangledName; 4635 getDiags().Report(OtherGD.getDecl()->getLocation(), 4636 diag::note_previous_definition); 4637 } 4638 } 4639 4640 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 4641 (Entry->getValueType() == Ty)) { 4642 return Entry; 4643 } 4644 4645 // Make sure the result is of the correct type. 4646 // (If function is requested for a definition, we always need to create a new 4647 // function, not just return a bitcast.) 4648 if (!IsForDefinition) 4649 return Entry; 4650 } 4651 4652 // This function doesn't have a complete type (for example, the return 4653 // type is an incomplete struct). Use a fake type instead, and make 4654 // sure not to try to set attributes. 4655 bool IsIncompleteFunction = false; 4656 4657 llvm::FunctionType *FTy; 4658 if (isa<llvm::FunctionType>(Ty)) { 4659 FTy = cast<llvm::FunctionType>(Ty); 4660 } else { 4661 FTy = llvm::FunctionType::get(VoidTy, false); 4662 IsIncompleteFunction = true; 4663 } 4664 4665 llvm::Function *F = 4666 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 4667 Entry ? StringRef() : MangledName, &getModule()); 4668 4669 // Store the declaration associated with this function so it is potentially 4670 // updated by further declarations or definitions and emitted at the end. 4671 if (D && D->hasAttr<AnnotateAttr>()) 4672 DeferredAnnotations[MangledName] = cast<ValueDecl>(D); 4673 4674 // If we already created a function with the same mangled name (but different 4675 // type) before, take its name and add it to the list of functions to be 4676 // replaced with F at the end of CodeGen. 4677 // 4678 // This happens if there is a prototype for a function (e.g. "int f()") and 4679 // then a definition of a different type (e.g. "int f(int x)"). 4680 if (Entry) { 4681 F->takeName(Entry); 4682 4683 // This might be an implementation of a function without a prototype, in 4684 // which case, try to do special replacement of calls which match the new 4685 // prototype. The really key thing here is that we also potentially drop 4686 // arguments from the call site so as to make a direct call, which makes the 4687 // inliner happier and suppresses a number of optimizer warnings (!) about 4688 // dropping arguments. 4689 if (!Entry->use_empty()) { 4690 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 4691 Entry->removeDeadConstantUsers(); 4692 } 4693 4694 addGlobalValReplacement(Entry, F); 4695 } 4696 4697 assert(F->getName() == MangledName && "name was uniqued!"); 4698 if (D) 4699 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 4700 if (ExtraAttrs.hasFnAttrs()) { 4701 llvm::AttrBuilder B(F->getContext(), ExtraAttrs.getFnAttrs()); 4702 F->addFnAttrs(B); 4703 } 4704 4705 if (!DontDefer) { 4706 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 4707 // each other bottoming out with the base dtor. Therefore we emit non-base 4708 // dtors on usage, even if there is no dtor definition in the TU. 4709 if (isa_and_nonnull<CXXDestructorDecl>(D) && 4710 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 4711 GD.getDtorType())) 4712 addDeferredDeclToEmit(GD); 4713 4714 // This is the first use or definition of a mangled name. If there is a 4715 // deferred decl with this name, remember that we need to emit it at the end 4716 // of the file. 4717 auto DDI = DeferredDecls.find(MangledName); 4718 if (DDI != DeferredDecls.end()) { 4719 // Move the potentially referenced deferred decl to the 4720 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 4721 // don't need it anymore). 4722 addDeferredDeclToEmit(DDI->second); 4723 DeferredDecls.erase(DDI); 4724 4725 // Otherwise, there are cases we have to worry about where we're 4726 // using a declaration for which we must emit a definition but where 4727 // we might not find a top-level definition: 4728 // - member functions defined inline in their classes 4729 // - friend functions defined inline in some class 4730 // - special member functions with implicit definitions 4731 // If we ever change our AST traversal to walk into class methods, 4732 // this will be unnecessary. 4733 // 4734 // We also don't emit a definition for a function if it's going to be an 4735 // entry in a vtable, unless it's already marked as used. 4736 } else if (getLangOpts().CPlusPlus && D) { 4737 // Look for a declaration that's lexically in a record. 4738 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 4739 FD = FD->getPreviousDecl()) { 4740 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 4741 if (FD->doesThisDeclarationHaveABody()) { 4742 addDeferredDeclToEmit(GD.getWithDecl(FD)); 4743 break; 4744 } 4745 } 4746 } 4747 } 4748 } 4749 4750 // Make sure the result is of the requested type. 4751 if (!IsIncompleteFunction) { 4752 assert(F->getFunctionType() == Ty); 4753 return F; 4754 } 4755 4756 return F; 4757 } 4758 4759 /// GetAddrOfFunction - Return the address of the given function. If Ty is 4760 /// non-null, then this function will use the specified type if it has to 4761 /// create it (this occurs when we see a definition of the function). 4762 llvm::Constant * 4763 CodeGenModule::GetAddrOfFunction(GlobalDecl GD, llvm::Type *Ty, bool ForVTable, 4764 bool DontDefer, 4765 ForDefinition_t IsForDefinition) { 4766 // If there was no specific requested type, just convert it now. 4767 if (!Ty) { 4768 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4769 Ty = getTypes().ConvertType(FD->getType()); 4770 } 4771 4772 // Devirtualized destructor calls may come through here instead of via 4773 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead 4774 // of the complete destructor when necessary. 4775 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) { 4776 if (getTarget().getCXXABI().isMicrosoft() && 4777 GD.getDtorType() == Dtor_Complete && 4778 DD->getParent()->getNumVBases() == 0) 4779 GD = GlobalDecl(DD, Dtor_Base); 4780 } 4781 4782 StringRef MangledName = getMangledName(GD); 4783 auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 4784 /*IsThunk=*/false, llvm::AttributeList(), 4785 IsForDefinition); 4786 // Returns kernel handle for HIP kernel stub function. 4787 if (LangOpts.CUDA && !LangOpts.CUDAIsDevice && 4788 cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) { 4789 auto *Handle = getCUDARuntime().getKernelHandle( 4790 cast<llvm::Function>(F->stripPointerCasts()), GD); 4791 if (IsForDefinition) 4792 return F; 4793 return Handle; 4794 } 4795 return F; 4796 } 4797 4798 llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) { 4799 llvm::GlobalValue *F = 4800 cast<llvm::GlobalValue>(GetAddrOfFunction(Decl)->stripPointerCasts()); 4801 4802 return llvm::NoCFIValue::get(F); 4803 } 4804 4805 static const FunctionDecl * 4806 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 4807 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 4808 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 4809 4810 IdentifierInfo &CII = C.Idents.get(Name); 4811 for (const auto *Result : DC->lookup(&CII)) 4812 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 4813 return FD; 4814 4815 if (!C.getLangOpts().CPlusPlus) 4816 return nullptr; 4817 4818 // Demangle the premangled name from getTerminateFn() 4819 IdentifierInfo &CXXII = 4820 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ") 4821 ? C.Idents.get("terminate") 4822 : C.Idents.get(Name); 4823 4824 for (const auto &N : {"__cxxabiv1", "std"}) { 4825 IdentifierInfo &NS = C.Idents.get(N); 4826 for (const auto *Result : DC->lookup(&NS)) { 4827 const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 4828 if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result)) 4829 for (const auto *Result : LSD->lookup(&NS)) 4830 if ((ND = dyn_cast<NamespaceDecl>(Result))) 4831 break; 4832 4833 if (ND) 4834 for (const auto *Result : ND->lookup(&CXXII)) 4835 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 4836 return FD; 4837 } 4838 } 4839 4840 return nullptr; 4841 } 4842 4843 /// CreateRuntimeFunction - Create a new runtime function with the specified 4844 /// type and name. 4845 llvm::FunctionCallee 4846 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 4847 llvm::AttributeList ExtraAttrs, bool Local, 4848 bool AssumeConvergent) { 4849 if (AssumeConvergent) { 4850 ExtraAttrs = 4851 ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent); 4852 } 4853 4854 llvm::Constant *C = 4855 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 4856 /*DontDefer=*/false, /*IsThunk=*/false, 4857 ExtraAttrs); 4858 4859 if (auto *F = dyn_cast<llvm::Function>(C)) { 4860 if (F->empty()) { 4861 F->setCallingConv(getRuntimeCC()); 4862 4863 // In Windows Itanium environments, try to mark runtime functions 4864 // dllimport. For Mingw and MSVC, don't. We don't really know if the user 4865 // will link their standard library statically or dynamically. Marking 4866 // functions imported when they are not imported can cause linker errors 4867 // and warnings. 4868 if (!Local && getTriple().isWindowsItaniumEnvironment() && 4869 !getCodeGenOpts().LTOVisibilityPublicStd) { 4870 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 4871 if (!FD || FD->hasAttr<DLLImportAttr>()) { 4872 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 4873 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 4874 } 4875 } 4876 setDSOLocal(F); 4877 // FIXME: We should use CodeGenModule::SetLLVMFunctionAttributes() instead 4878 // of trying to approximate the attributes using the LLVM function 4879 // signature. This requires revising the API of CreateRuntimeFunction(). 4880 markRegisterParameterAttributes(F); 4881 } 4882 } 4883 4884 return {FTy, C}; 4885 } 4886 4887 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 4888 /// create and return an llvm GlobalVariable with the specified type and address 4889 /// space. If there is something in the module with the specified name, return 4890 /// it potentially bitcasted to the right type. 4891 /// 4892 /// If D is non-null, it specifies a decl that correspond to this. This is used 4893 /// to set the attributes on the global when it is first created. 4894 /// 4895 /// If IsForDefinition is true, it is guaranteed that an actual global with 4896 /// type Ty will be returned, not conversion of a variable with the same 4897 /// mangled name but some other type. 4898 llvm::Constant * 4899 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty, 4900 LangAS AddrSpace, const VarDecl *D, 4901 ForDefinition_t IsForDefinition) { 4902 // Lookup the entry, lazily creating it if necessary. 4903 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4904 unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace); 4905 if (Entry) { 4906 if (WeakRefReferences.erase(Entry)) { 4907 if (D && !D->hasAttr<WeakAttr>()) 4908 Entry->setLinkage(llvm::Function::ExternalLinkage); 4909 } 4910 4911 // Handle dropped DLL attributes. 4912 if (D && shouldDropDLLAttribute(D, Entry)) 4913 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 4914 4915 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D) 4916 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry); 4917 4918 if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS) 4919 return Entry; 4920 4921 // If there are two attempts to define the same mangled name, issue an 4922 // error. 4923 if (IsForDefinition && !Entry->isDeclaration()) { 4924 GlobalDecl OtherGD; 4925 const VarDecl *OtherD; 4926 4927 // Check that D is not yet in DiagnosedConflictingDefinitions is required 4928 // to make sure that we issue an error only once. 4929 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 4930 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 4931 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 4932 OtherD->hasInit() && 4933 DiagnosedConflictingDefinitions.insert(D).second) { 4934 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 4935 << MangledName; 4936 getDiags().Report(OtherGD.getDecl()->getLocation(), 4937 diag::note_previous_definition); 4938 } 4939 } 4940 4941 // Make sure the result is of the correct type. 4942 if (Entry->getType()->getAddressSpace() != TargetAS) 4943 return llvm::ConstantExpr::getAddrSpaceCast( 4944 Entry, llvm::PointerType::get(Ty->getContext(), TargetAS)); 4945 4946 // (If global is requested for a definition, we always need to create a new 4947 // global, not just return a bitcast.) 4948 if (!IsForDefinition) 4949 return Entry; 4950 } 4951 4952 auto DAddrSpace = GetGlobalVarAddressSpace(D); 4953 4954 auto *GV = new llvm::GlobalVariable( 4955 getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr, 4956 MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal, 4957 getContext().getTargetAddressSpace(DAddrSpace)); 4958 4959 // If we already created a global with the same mangled name (but different 4960 // type) before, take its name and remove it from its parent. 4961 if (Entry) { 4962 GV->takeName(Entry); 4963 4964 if (!Entry->use_empty()) { 4965 Entry->replaceAllUsesWith(GV); 4966 } 4967 4968 Entry->eraseFromParent(); 4969 } 4970 4971 // This is the first use or definition of a mangled name. If there is a 4972 // deferred decl with this name, remember that we need to emit it at the end 4973 // of the file. 4974 auto DDI = DeferredDecls.find(MangledName); 4975 if (DDI != DeferredDecls.end()) { 4976 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 4977 // list, and remove it from DeferredDecls (since we don't need it anymore). 4978 addDeferredDeclToEmit(DDI->second); 4979 DeferredDecls.erase(DDI); 4980 } 4981 4982 // Handle things which are present even on external declarations. 4983 if (D) { 4984 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd) 4985 getOpenMPRuntime().registerTargetGlobalVariable(D, GV); 4986 4987 // FIXME: This code is overly simple and should be merged with other global 4988 // handling. 4989 GV->setConstant(D->getType().isConstantStorage(getContext(), false, false)); 4990 4991 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 4992 4993 setLinkageForGV(GV, D); 4994 4995 if (D->getTLSKind()) { 4996 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 4997 CXXThreadLocals.push_back(D); 4998 setTLSMode(GV, *D); 4999 } 5000 5001 setGVProperties(GV, D); 5002 5003 // If required by the ABI, treat declarations of static data members with 5004 // inline initializers as definitions. 5005 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 5006 EmitGlobalVarDefinition(D); 5007 } 5008 5009 // Emit section information for extern variables. 5010 if (D->hasExternalStorage()) { 5011 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 5012 GV->setSection(SA->getName()); 5013 } 5014 5015 // Handle XCore specific ABI requirements. 5016 if (getTriple().getArch() == llvm::Triple::xcore && 5017 D->getLanguageLinkage() == CLanguageLinkage && 5018 D->getType().isConstant(Context) && 5019 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 5020 GV->setSection(".cp.rodata"); 5021 5022 // Handle code model attribute 5023 if (const auto *CMA = D->getAttr<CodeModelAttr>()) 5024 GV->setCodeModel(CMA->getModel()); 5025 5026 // Check if we a have a const declaration with an initializer, we may be 5027 // able to emit it as available_externally to expose it's value to the 5028 // optimizer. 5029 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 5030 D->getType().isConstQualified() && !GV->hasInitializer() && 5031 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 5032 const auto *Record = 5033 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 5034 bool HasMutableFields = Record && Record->hasMutableFields(); 5035 if (!HasMutableFields) { 5036 const VarDecl *InitDecl; 5037 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 5038 if (InitExpr) { 5039 ConstantEmitter emitter(*this); 5040 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 5041 if (Init) { 5042 auto *InitType = Init->getType(); 5043 if (GV->getValueType() != InitType) { 5044 // The type of the initializer does not match the definition. 5045 // This happens when an initializer has a different type from 5046 // the type of the global (because of padding at the end of a 5047 // structure for instance). 5048 GV->setName(StringRef()); 5049 // Make a new global with the correct type, this is now guaranteed 5050 // to work. 5051 auto *NewGV = cast<llvm::GlobalVariable>( 5052 GetAddrOfGlobalVar(D, InitType, IsForDefinition) 5053 ->stripPointerCasts()); 5054 5055 // Erase the old global, since it is no longer used. 5056 GV->eraseFromParent(); 5057 GV = NewGV; 5058 } else { 5059 GV->setInitializer(Init); 5060 GV->setConstant(true); 5061 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 5062 } 5063 emitter.finalize(GV); 5064 } 5065 } 5066 } 5067 } 5068 } 5069 5070 if (D && 5071 D->isThisDeclarationADefinition(Context) == VarDecl::DeclarationOnly) { 5072 getTargetCodeGenInfo().setTargetAttributes(D, GV, *this); 5073 // External HIP managed variables needed to be recorded for transformation 5074 // in both device and host compilations. 5075 if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() && 5076 D->hasExternalStorage()) 5077 getCUDARuntime().handleVarRegistration(D, *GV); 5078 } 5079 5080 if (D) 5081 SanitizerMD->reportGlobal(GV, *D); 5082 5083 LangAS ExpectedAS = 5084 D ? D->getType().getAddressSpace() 5085 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 5086 assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS); 5087 if (DAddrSpace != ExpectedAS) { 5088 return getTargetCodeGenInfo().performAddrSpaceCast( 5089 *this, GV, DAddrSpace, ExpectedAS, 5090 llvm::PointerType::get(getLLVMContext(), TargetAS)); 5091 } 5092 5093 return GV; 5094 } 5095 5096 llvm::Constant * 5097 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) { 5098 const Decl *D = GD.getDecl(); 5099 5100 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 5101 return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr, 5102 /*DontDefer=*/false, IsForDefinition); 5103 5104 if (isa<CXXMethodDecl>(D)) { 5105 auto FInfo = 5106 &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D)); 5107 auto Ty = getTypes().GetFunctionType(*FInfo); 5108 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 5109 IsForDefinition); 5110 } 5111 5112 if (isa<FunctionDecl>(D)) { 5113 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 5114 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 5115 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 5116 IsForDefinition); 5117 } 5118 5119 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition); 5120 } 5121 5122 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable( 5123 StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage, 5124 llvm::Align Alignment) { 5125 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 5126 llvm::GlobalVariable *OldGV = nullptr; 5127 5128 if (GV) { 5129 // Check if the variable has the right type. 5130 if (GV->getValueType() == Ty) 5131 return GV; 5132 5133 // Because C++ name mangling, the only way we can end up with an already 5134 // existing global with the same name is if it has been declared extern "C". 5135 assert(GV->isDeclaration() && "Declaration has wrong type!"); 5136 OldGV = GV; 5137 } 5138 5139 // Create a new variable. 5140 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 5141 Linkage, nullptr, Name); 5142 5143 if (OldGV) { 5144 // Replace occurrences of the old variable if needed. 5145 GV->takeName(OldGV); 5146 5147 if (!OldGV->use_empty()) { 5148 OldGV->replaceAllUsesWith(GV); 5149 } 5150 5151 OldGV->eraseFromParent(); 5152 } 5153 5154 if (supportsCOMDAT() && GV->isWeakForLinker() && 5155 !GV->hasAvailableExternallyLinkage()) 5156 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 5157 5158 GV->setAlignment(Alignment); 5159 5160 return GV; 5161 } 5162 5163 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 5164 /// given global variable. If Ty is non-null and if the global doesn't exist, 5165 /// then it will be created with the specified type instead of whatever the 5166 /// normal requested type would be. If IsForDefinition is true, it is guaranteed 5167 /// that an actual global with type Ty will be returned, not conversion of a 5168 /// variable with the same mangled name but some other type. 5169 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 5170 llvm::Type *Ty, 5171 ForDefinition_t IsForDefinition) { 5172 assert(D->hasGlobalStorage() && "Not a global variable"); 5173 QualType ASTTy = D->getType(); 5174 if (!Ty) 5175 Ty = getTypes().ConvertTypeForMem(ASTTy); 5176 5177 StringRef MangledName = getMangledName(D); 5178 return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D, 5179 IsForDefinition); 5180 } 5181 5182 /// CreateRuntimeVariable - Create a new runtime global variable with the 5183 /// specified type and name. 5184 llvm::Constant * 5185 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 5186 StringRef Name) { 5187 LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global 5188 : LangAS::Default; 5189 auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr); 5190 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts())); 5191 return Ret; 5192 } 5193 5194 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 5195 assert(!D->getInit() && "Cannot emit definite definitions here!"); 5196 5197 StringRef MangledName = getMangledName(D); 5198 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 5199 5200 // We already have a definition, not declaration, with the same mangled name. 5201 // Emitting of declaration is not required (and actually overwrites emitted 5202 // definition). 5203 if (GV && !GV->isDeclaration()) 5204 return; 5205 5206 // If we have not seen a reference to this variable yet, place it into the 5207 // deferred declarations table to be emitted if needed later. 5208 if (!MustBeEmitted(D) && !GV) { 5209 DeferredDecls[MangledName] = D; 5210 return; 5211 } 5212 5213 // The tentative definition is the only definition. 5214 EmitGlobalVarDefinition(D); 5215 } 5216 5217 void CodeGenModule::EmitExternalDeclaration(const DeclaratorDecl *D) { 5218 if (auto const *V = dyn_cast<const VarDecl>(D)) 5219 EmitExternalVarDeclaration(V); 5220 if (auto const *FD = dyn_cast<const FunctionDecl>(D)) 5221 EmitExternalFunctionDeclaration(FD); 5222 } 5223 5224 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 5225 return Context.toCharUnitsFromBits( 5226 getDataLayout().getTypeStoreSizeInBits(Ty)); 5227 } 5228 5229 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 5230 if (LangOpts.OpenCL) { 5231 LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 5232 assert(AS == LangAS::opencl_global || 5233 AS == LangAS::opencl_global_device || 5234 AS == LangAS::opencl_global_host || 5235 AS == LangAS::opencl_constant || 5236 AS == LangAS::opencl_local || 5237 AS >= LangAS::FirstTargetAddressSpace); 5238 return AS; 5239 } 5240 5241 if (LangOpts.SYCLIsDevice && 5242 (!D || D->getType().getAddressSpace() == LangAS::Default)) 5243 return LangAS::sycl_global; 5244 5245 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 5246 if (D) { 5247 if (D->hasAttr<CUDAConstantAttr>()) 5248 return LangAS::cuda_constant; 5249 if (D->hasAttr<CUDASharedAttr>()) 5250 return LangAS::cuda_shared; 5251 if (D->hasAttr<CUDADeviceAttr>()) 5252 return LangAS::cuda_device; 5253 if (D->getType().isConstQualified()) 5254 return LangAS::cuda_constant; 5255 } 5256 return LangAS::cuda_device; 5257 } 5258 5259 if (LangOpts.OpenMP) { 5260 LangAS AS; 5261 if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS)) 5262 return AS; 5263 } 5264 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 5265 } 5266 5267 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const { 5268 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 5269 if (LangOpts.OpenCL) 5270 return LangAS::opencl_constant; 5271 if (LangOpts.SYCLIsDevice) 5272 return LangAS::sycl_global; 5273 if (LangOpts.HIP && LangOpts.CUDAIsDevice && getTriple().isSPIRV()) 5274 // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V) 5275 // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up 5276 // with OpVariable instructions with Generic storage class which is not 5277 // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V 5278 // UniformConstant storage class is not viable as pointers to it may not be 5279 // casted to Generic pointers which are used to model HIP's "flat" pointers. 5280 return LangAS::cuda_device; 5281 if (auto AS = getTarget().getConstantAddressSpace()) 5282 return *AS; 5283 return LangAS::Default; 5284 } 5285 5286 // In address space agnostic languages, string literals are in default address 5287 // space in AST. However, certain targets (e.g. amdgcn) request them to be 5288 // emitted in constant address space in LLVM IR. To be consistent with other 5289 // parts of AST, string literal global variables in constant address space 5290 // need to be casted to default address space before being put into address 5291 // map and referenced by other part of CodeGen. 5292 // In OpenCL, string literals are in constant address space in AST, therefore 5293 // they should not be casted to default address space. 5294 static llvm::Constant * 5295 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM, 5296 llvm::GlobalVariable *GV) { 5297 llvm::Constant *Cast = GV; 5298 if (!CGM.getLangOpts().OpenCL) { 5299 auto AS = CGM.GetGlobalConstantAddressSpace(); 5300 if (AS != LangAS::Default) 5301 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast( 5302 CGM, GV, AS, LangAS::Default, 5303 llvm::PointerType::get( 5304 CGM.getLLVMContext(), 5305 CGM.getContext().getTargetAddressSpace(LangAS::Default))); 5306 } 5307 return Cast; 5308 } 5309 5310 template<typename SomeDecl> 5311 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 5312 llvm::GlobalValue *GV) { 5313 if (!getLangOpts().CPlusPlus) 5314 return; 5315 5316 // Must have 'used' attribute, or else inline assembly can't rely on 5317 // the name existing. 5318 if (!D->template hasAttr<UsedAttr>()) 5319 return; 5320 5321 // Must have internal linkage and an ordinary name. 5322 if (!D->getIdentifier() || D->getFormalLinkage() != Linkage::Internal) 5323 return; 5324 5325 // Must be in an extern "C" context. Entities declared directly within 5326 // a record are not extern "C" even if the record is in such a context. 5327 const SomeDecl *First = D->getFirstDecl(); 5328 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 5329 return; 5330 5331 // OK, this is an internal linkage entity inside an extern "C" linkage 5332 // specification. Make a note of that so we can give it the "expected" 5333 // mangled name if nothing else is using that name. 5334 std::pair<StaticExternCMap::iterator, bool> R = 5335 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 5336 5337 // If we have multiple internal linkage entities with the same name 5338 // in extern "C" regions, none of them gets that name. 5339 if (!R.second) 5340 R.first->second = nullptr; 5341 } 5342 5343 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 5344 if (!CGM.supportsCOMDAT()) 5345 return false; 5346 5347 if (D.hasAttr<SelectAnyAttr>()) 5348 return true; 5349 5350 GVALinkage Linkage; 5351 if (auto *VD = dyn_cast<VarDecl>(&D)) 5352 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 5353 else 5354 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 5355 5356 switch (Linkage) { 5357 case GVA_Internal: 5358 case GVA_AvailableExternally: 5359 case GVA_StrongExternal: 5360 return false; 5361 case GVA_DiscardableODR: 5362 case GVA_StrongODR: 5363 return true; 5364 } 5365 llvm_unreachable("No such linkage"); 5366 } 5367 5368 bool CodeGenModule::supportsCOMDAT() const { 5369 return getTriple().supportsCOMDAT(); 5370 } 5371 5372 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 5373 llvm::GlobalObject &GO) { 5374 if (!shouldBeInCOMDAT(*this, D)) 5375 return; 5376 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 5377 } 5378 5379 /// Pass IsTentative as true if you want to create a tentative definition. 5380 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 5381 bool IsTentative) { 5382 // OpenCL global variables of sampler type are translated to function calls, 5383 // therefore no need to be translated. 5384 QualType ASTTy = D->getType(); 5385 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 5386 return; 5387 5388 // If this is OpenMP device, check if it is legal to emit this global 5389 // normally. 5390 if (LangOpts.OpenMPIsTargetDevice && OpenMPRuntime && 5391 OpenMPRuntime->emitTargetGlobalVariable(D)) 5392 return; 5393 5394 llvm::TrackingVH<llvm::Constant> Init; 5395 bool NeedsGlobalCtor = false; 5396 // Whether the definition of the variable is available externally. 5397 // If yes, we shouldn't emit the GloablCtor and GlobalDtor for the variable 5398 // since this is the job for its original source. 5399 bool IsDefinitionAvailableExternally = 5400 getContext().GetGVALinkageForVariable(D) == GVA_AvailableExternally; 5401 bool NeedsGlobalDtor = 5402 !IsDefinitionAvailableExternally && 5403 D->needsDestruction(getContext()) == QualType::DK_cxx_destructor; 5404 5405 // It is helpless to emit the definition for an available_externally variable 5406 // which can't be marked as const. 5407 // We don't need to check if it needs global ctor or dtor. See the above 5408 // comment for ideas. 5409 if (IsDefinitionAvailableExternally && 5410 (!D->hasConstantInitialization() || 5411 // TODO: Update this when we have interface to check constexpr 5412 // destructor. 5413 D->needsDestruction(getContext()) || 5414 !D->getType().isConstantStorage(getContext(), true, true))) 5415 return; 5416 5417 const VarDecl *InitDecl; 5418 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 5419 5420 std::optional<ConstantEmitter> emitter; 5421 5422 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 5423 // as part of their declaration." Sema has already checked for 5424 // error cases, so we just need to set Init to UndefValue. 5425 bool IsCUDASharedVar = 5426 getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>(); 5427 // Shadows of initialized device-side global variables are also left 5428 // undefined. 5429 // Managed Variables should be initialized on both host side and device side. 5430 bool IsCUDAShadowVar = 5431 !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 5432 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() || 5433 D->hasAttr<CUDASharedAttr>()); 5434 bool IsCUDADeviceShadowVar = 5435 getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 5436 (D->getType()->isCUDADeviceBuiltinSurfaceType() || 5437 D->getType()->isCUDADeviceBuiltinTextureType()); 5438 if (getLangOpts().CUDA && 5439 (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar)) 5440 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy)); 5441 else if (D->hasAttr<LoaderUninitializedAttr>()) 5442 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy)); 5443 else if (!InitExpr) { 5444 // This is a tentative definition; tentative definitions are 5445 // implicitly initialized with { 0 }. 5446 // 5447 // Note that tentative definitions are only emitted at the end of 5448 // a translation unit, so they should never have incomplete 5449 // type. In addition, EmitTentativeDefinition makes sure that we 5450 // never attempt to emit a tentative definition if a real one 5451 // exists. A use may still exists, however, so we still may need 5452 // to do a RAUW. 5453 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 5454 Init = EmitNullConstant(D->getType()); 5455 } else { 5456 initializedGlobalDecl = GlobalDecl(D); 5457 emitter.emplace(*this); 5458 llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl); 5459 if (!Initializer) { 5460 QualType T = InitExpr->getType(); 5461 if (D->getType()->isReferenceType()) 5462 T = D->getType(); 5463 5464 if (getLangOpts().CPlusPlus) { 5465 if (InitDecl->hasFlexibleArrayInit(getContext())) 5466 ErrorUnsupported(D, "flexible array initializer"); 5467 Init = EmitNullConstant(T); 5468 5469 if (!IsDefinitionAvailableExternally) 5470 NeedsGlobalCtor = true; 5471 } else { 5472 ErrorUnsupported(D, "static initializer"); 5473 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 5474 } 5475 } else { 5476 Init = Initializer; 5477 // We don't need an initializer, so remove the entry for the delayed 5478 // initializer position (just in case this entry was delayed) if we 5479 // also don't need to register a destructor. 5480 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 5481 DelayedCXXInitPosition.erase(D); 5482 5483 #ifndef NDEBUG 5484 CharUnits VarSize = getContext().getTypeSizeInChars(ASTTy) + 5485 InitDecl->getFlexibleArrayInitChars(getContext()); 5486 CharUnits CstSize = CharUnits::fromQuantity( 5487 getDataLayout().getTypeAllocSize(Init->getType())); 5488 assert(VarSize == CstSize && "Emitted constant has unexpected size"); 5489 #endif 5490 } 5491 } 5492 5493 llvm::Type* InitType = Init->getType(); 5494 llvm::Constant *Entry = 5495 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 5496 5497 // Strip off pointer casts if we got them. 5498 Entry = Entry->stripPointerCasts(); 5499 5500 // Entry is now either a Function or GlobalVariable. 5501 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 5502 5503 // We have a definition after a declaration with the wrong type. 5504 // We must make a new GlobalVariable* and update everything that used OldGV 5505 // (a declaration or tentative definition) with the new GlobalVariable* 5506 // (which will be a definition). 5507 // 5508 // This happens if there is a prototype for a global (e.g. 5509 // "extern int x[];") and then a definition of a different type (e.g. 5510 // "int x[10];"). This also happens when an initializer has a different type 5511 // from the type of the global (this happens with unions). 5512 if (!GV || GV->getValueType() != InitType || 5513 GV->getType()->getAddressSpace() != 5514 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 5515 5516 // Move the old entry aside so that we'll create a new one. 5517 Entry->setName(StringRef()); 5518 5519 // Make a new global with the correct type, this is now guaranteed to work. 5520 GV = cast<llvm::GlobalVariable>( 5521 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)) 5522 ->stripPointerCasts()); 5523 5524 // Replace all uses of the old global with the new global 5525 llvm::Constant *NewPtrForOldDecl = 5526 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, 5527 Entry->getType()); 5528 Entry->replaceAllUsesWith(NewPtrForOldDecl); 5529 5530 // Erase the old global, since it is no longer used. 5531 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 5532 } 5533 5534 MaybeHandleStaticInExternC(D, GV); 5535 5536 if (D->hasAttr<AnnotateAttr>()) 5537 AddGlobalAnnotations(D, GV); 5538 5539 // Set the llvm linkage type as appropriate. 5540 llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(D); 5541 5542 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 5543 // the device. [...]" 5544 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 5545 // __device__, declares a variable that: [...] 5546 // Is accessible from all the threads within the grid and from the host 5547 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 5548 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 5549 if (LangOpts.CUDA) { 5550 if (LangOpts.CUDAIsDevice) { 5551 if (Linkage != llvm::GlobalValue::InternalLinkage && 5552 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() || 5553 D->getType()->isCUDADeviceBuiltinSurfaceType() || 5554 D->getType()->isCUDADeviceBuiltinTextureType())) 5555 GV->setExternallyInitialized(true); 5556 } else { 5557 getCUDARuntime().internalizeDeviceSideVar(D, Linkage); 5558 } 5559 getCUDARuntime().handleVarRegistration(D, *GV); 5560 } 5561 5562 GV->setInitializer(Init); 5563 if (emitter) 5564 emitter->finalize(GV); 5565 5566 // If it is safe to mark the global 'constant', do so now. 5567 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 5568 D->getType().isConstantStorage(getContext(), true, true)); 5569 5570 // If it is in a read-only section, mark it 'constant'. 5571 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 5572 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 5573 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 5574 GV->setConstant(true); 5575 } 5576 5577 CharUnits AlignVal = getContext().getDeclAlign(D); 5578 // Check for alignment specifed in an 'omp allocate' directive. 5579 if (std::optional<CharUnits> AlignValFromAllocate = 5580 getOMPAllocateAlignment(D)) 5581 AlignVal = *AlignValFromAllocate; 5582 GV->setAlignment(AlignVal.getAsAlign()); 5583 5584 // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper 5585 // function is only defined alongside the variable, not also alongside 5586 // callers. Normally, all accesses to a thread_local go through the 5587 // thread-wrapper in order to ensure initialization has occurred, underlying 5588 // variable will never be used other than the thread-wrapper, so it can be 5589 // converted to internal linkage. 5590 // 5591 // However, if the variable has the 'constinit' attribute, it _can_ be 5592 // referenced directly, without calling the thread-wrapper, so the linkage 5593 // must not be changed. 5594 // 5595 // Additionally, if the variable isn't plain external linkage, e.g. if it's 5596 // weak or linkonce, the de-duplication semantics are important to preserve, 5597 // so we don't change the linkage. 5598 if (D->getTLSKind() == VarDecl::TLS_Dynamic && 5599 Linkage == llvm::GlobalValue::ExternalLinkage && 5600 Context.getTargetInfo().getTriple().isOSDarwin() && 5601 !D->hasAttr<ConstInitAttr>()) 5602 Linkage = llvm::GlobalValue::InternalLinkage; 5603 5604 GV->setLinkage(Linkage); 5605 if (D->hasAttr<DLLImportAttr>()) 5606 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 5607 else if (D->hasAttr<DLLExportAttr>()) 5608 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 5609 else 5610 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 5611 5612 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 5613 // common vars aren't constant even if declared const. 5614 GV->setConstant(false); 5615 // Tentative definition of global variables may be initialized with 5616 // non-zero null pointers. In this case they should have weak linkage 5617 // since common linkage must have zero initializer and must not have 5618 // explicit section therefore cannot have non-zero initial value. 5619 if (!GV->getInitializer()->isNullValue()) 5620 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 5621 } 5622 5623 setNonAliasAttributes(D, GV); 5624 5625 if (D->getTLSKind() && !GV->isThreadLocal()) { 5626 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 5627 CXXThreadLocals.push_back(D); 5628 setTLSMode(GV, *D); 5629 } 5630 5631 maybeSetTrivialComdat(*D, *GV); 5632 5633 // Emit the initializer function if necessary. 5634 if (NeedsGlobalCtor || NeedsGlobalDtor) 5635 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 5636 5637 SanitizerMD->reportGlobal(GV, *D, NeedsGlobalCtor); 5638 5639 // Emit global variable debug information. 5640 if (CGDebugInfo *DI = getModuleDebugInfo()) 5641 if (getCodeGenOpts().hasReducedDebugInfo()) 5642 DI->EmitGlobalVariable(GV, D); 5643 } 5644 5645 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) { 5646 if (CGDebugInfo *DI = getModuleDebugInfo()) 5647 if (getCodeGenOpts().hasReducedDebugInfo()) { 5648 QualType ASTTy = D->getType(); 5649 llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType()); 5650 llvm::Constant *GV = 5651 GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D); 5652 DI->EmitExternalVariable( 5653 cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D); 5654 } 5655 } 5656 5657 void CodeGenModule::EmitExternalFunctionDeclaration(const FunctionDecl *FD) { 5658 if (CGDebugInfo *DI = getModuleDebugInfo()) 5659 if (getCodeGenOpts().hasReducedDebugInfo()) { 5660 auto *Ty = getTypes().ConvertType(FD->getType()); 5661 StringRef MangledName = getMangledName(FD); 5662 auto *Fn = dyn_cast<llvm::Function>( 5663 GetOrCreateLLVMFunction(MangledName, Ty, FD, /* ForVTable */ false)); 5664 if (!Fn->getSubprogram()) 5665 DI->EmitFunctionDecl(FD, FD->getLocation(), FD->getType(), Fn); 5666 } 5667 } 5668 5669 static bool isVarDeclStrongDefinition(const ASTContext &Context, 5670 CodeGenModule &CGM, const VarDecl *D, 5671 bool NoCommon) { 5672 // Don't give variables common linkage if -fno-common was specified unless it 5673 // was overridden by a NoCommon attribute. 5674 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 5675 return true; 5676 5677 // C11 6.9.2/2: 5678 // A declaration of an identifier for an object that has file scope without 5679 // an initializer, and without a storage-class specifier or with the 5680 // storage-class specifier static, constitutes a tentative definition. 5681 if (D->getInit() || D->hasExternalStorage()) 5682 return true; 5683 5684 // A variable cannot be both common and exist in a section. 5685 if (D->hasAttr<SectionAttr>()) 5686 return true; 5687 5688 // A variable cannot be both common and exist in a section. 5689 // We don't try to determine which is the right section in the front-end. 5690 // If no specialized section name is applicable, it will resort to default. 5691 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 5692 D->hasAttr<PragmaClangDataSectionAttr>() || 5693 D->hasAttr<PragmaClangRelroSectionAttr>() || 5694 D->hasAttr<PragmaClangRodataSectionAttr>()) 5695 return true; 5696 5697 // Thread local vars aren't considered common linkage. 5698 if (D->getTLSKind()) 5699 return true; 5700 5701 // Tentative definitions marked with WeakImportAttr are true definitions. 5702 if (D->hasAttr<WeakImportAttr>()) 5703 return true; 5704 5705 // A variable cannot be both common and exist in a comdat. 5706 if (shouldBeInCOMDAT(CGM, *D)) 5707 return true; 5708 5709 // Declarations with a required alignment do not have common linkage in MSVC 5710 // mode. 5711 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 5712 if (D->hasAttr<AlignedAttr>()) 5713 return true; 5714 QualType VarType = D->getType(); 5715 if (Context.isAlignmentRequired(VarType)) 5716 return true; 5717 5718 if (const auto *RT = VarType->getAs<RecordType>()) { 5719 const RecordDecl *RD = RT->getDecl(); 5720 for (const FieldDecl *FD : RD->fields()) { 5721 if (FD->isBitField()) 5722 continue; 5723 if (FD->hasAttr<AlignedAttr>()) 5724 return true; 5725 if (Context.isAlignmentRequired(FD->getType())) 5726 return true; 5727 } 5728 } 5729 } 5730 5731 // Microsoft's link.exe doesn't support alignments greater than 32 bytes for 5732 // common symbols, so symbols with greater alignment requirements cannot be 5733 // common. 5734 // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two 5735 // alignments for common symbols via the aligncomm directive, so this 5736 // restriction only applies to MSVC environments. 5737 if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() && 5738 Context.getTypeAlignIfKnown(D->getType()) > 5739 Context.toBits(CharUnits::fromQuantity(32))) 5740 return true; 5741 5742 return false; 5743 } 5744 5745 llvm::GlobalValue::LinkageTypes 5746 CodeGenModule::getLLVMLinkageForDeclarator(const DeclaratorDecl *D, 5747 GVALinkage Linkage) { 5748 if (Linkage == GVA_Internal) 5749 return llvm::Function::InternalLinkage; 5750 5751 if (D->hasAttr<WeakAttr>()) 5752 return llvm::GlobalVariable::WeakAnyLinkage; 5753 5754 if (const auto *FD = D->getAsFunction()) 5755 if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally) 5756 return llvm::GlobalVariable::LinkOnceAnyLinkage; 5757 5758 // We are guaranteed to have a strong definition somewhere else, 5759 // so we can use available_externally linkage. 5760 if (Linkage == GVA_AvailableExternally) 5761 return llvm::GlobalValue::AvailableExternallyLinkage; 5762 5763 // Note that Apple's kernel linker doesn't support symbol 5764 // coalescing, so we need to avoid linkonce and weak linkages there. 5765 // Normally, this means we just map to internal, but for explicit 5766 // instantiations we'll map to external. 5767 5768 // In C++, the compiler has to emit a definition in every translation unit 5769 // that references the function. We should use linkonce_odr because 5770 // a) if all references in this translation unit are optimized away, we 5771 // don't need to codegen it. b) if the function persists, it needs to be 5772 // merged with other definitions. c) C++ has the ODR, so we know the 5773 // definition is dependable. 5774 if (Linkage == GVA_DiscardableODR) 5775 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 5776 : llvm::Function::InternalLinkage; 5777 5778 // An explicit instantiation of a template has weak linkage, since 5779 // explicit instantiations can occur in multiple translation units 5780 // and must all be equivalent. However, we are not allowed to 5781 // throw away these explicit instantiations. 5782 // 5783 // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU, 5784 // so say that CUDA templates are either external (for kernels) or internal. 5785 // This lets llvm perform aggressive inter-procedural optimizations. For 5786 // -fgpu-rdc case, device function calls across multiple TU's are allowed, 5787 // therefore we need to follow the normal linkage paradigm. 5788 if (Linkage == GVA_StrongODR) { 5789 if (getLangOpts().AppleKext) 5790 return llvm::Function::ExternalLinkage; 5791 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 5792 !getLangOpts().GPURelocatableDeviceCode) 5793 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 5794 : llvm::Function::InternalLinkage; 5795 return llvm::Function::WeakODRLinkage; 5796 } 5797 5798 // C++ doesn't have tentative definitions and thus cannot have common 5799 // linkage. 5800 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 5801 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 5802 CodeGenOpts.NoCommon)) 5803 return llvm::GlobalVariable::CommonLinkage; 5804 5805 // selectany symbols are externally visible, so use weak instead of 5806 // linkonce. MSVC optimizes away references to const selectany globals, so 5807 // all definitions should be the same and ODR linkage should be used. 5808 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 5809 if (D->hasAttr<SelectAnyAttr>()) 5810 return llvm::GlobalVariable::WeakODRLinkage; 5811 5812 // Otherwise, we have strong external linkage. 5813 assert(Linkage == GVA_StrongExternal); 5814 return llvm::GlobalVariable::ExternalLinkage; 5815 } 5816 5817 llvm::GlobalValue::LinkageTypes 5818 CodeGenModule::getLLVMLinkageVarDefinition(const VarDecl *VD) { 5819 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 5820 return getLLVMLinkageForDeclarator(VD, Linkage); 5821 } 5822 5823 /// Replace the uses of a function that was declared with a non-proto type. 5824 /// We want to silently drop extra arguments from call sites 5825 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 5826 llvm::Function *newFn) { 5827 // Fast path. 5828 if (old->use_empty()) 5829 return; 5830 5831 llvm::Type *newRetTy = newFn->getReturnType(); 5832 SmallVector<llvm::Value *, 4> newArgs; 5833 5834 SmallVector<llvm::CallBase *> callSitesToBeRemovedFromParent; 5835 5836 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 5837 ui != ue; ui++) { 5838 llvm::User *user = ui->getUser(); 5839 5840 // Recognize and replace uses of bitcasts. Most calls to 5841 // unprototyped functions will use bitcasts. 5842 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 5843 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 5844 replaceUsesOfNonProtoConstant(bitcast, newFn); 5845 continue; 5846 } 5847 5848 // Recognize calls to the function. 5849 llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user); 5850 if (!callSite) 5851 continue; 5852 if (!callSite->isCallee(&*ui)) 5853 continue; 5854 5855 // If the return types don't match exactly, then we can't 5856 // transform this call unless it's dead. 5857 if (callSite->getType() != newRetTy && !callSite->use_empty()) 5858 continue; 5859 5860 // Get the call site's attribute list. 5861 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 5862 llvm::AttributeList oldAttrs = callSite->getAttributes(); 5863 5864 // If the function was passed too few arguments, don't transform. 5865 unsigned newNumArgs = newFn->arg_size(); 5866 if (callSite->arg_size() < newNumArgs) 5867 continue; 5868 5869 // If extra arguments were passed, we silently drop them. 5870 // If any of the types mismatch, we don't transform. 5871 unsigned argNo = 0; 5872 bool dontTransform = false; 5873 for (llvm::Argument &A : newFn->args()) { 5874 if (callSite->getArgOperand(argNo)->getType() != A.getType()) { 5875 dontTransform = true; 5876 break; 5877 } 5878 5879 // Add any parameter attributes. 5880 newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo)); 5881 argNo++; 5882 } 5883 if (dontTransform) 5884 continue; 5885 5886 // Okay, we can transform this. Create the new call instruction and copy 5887 // over the required information. 5888 newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo); 5889 5890 // Copy over any operand bundles. 5891 SmallVector<llvm::OperandBundleDef, 1> newBundles; 5892 callSite->getOperandBundlesAsDefs(newBundles); 5893 5894 llvm::CallBase *newCall; 5895 if (isa<llvm::CallInst>(callSite)) { 5896 newCall = 5897 llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite); 5898 } else { 5899 auto *oldInvoke = cast<llvm::InvokeInst>(callSite); 5900 newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(), 5901 oldInvoke->getUnwindDest(), newArgs, 5902 newBundles, "", callSite); 5903 } 5904 newArgs.clear(); // for the next iteration 5905 5906 if (!newCall->getType()->isVoidTy()) 5907 newCall->takeName(callSite); 5908 newCall->setAttributes( 5909 llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(), 5910 oldAttrs.getRetAttrs(), newArgAttrs)); 5911 newCall->setCallingConv(callSite->getCallingConv()); 5912 5913 // Finally, remove the old call, replacing any uses with the new one. 5914 if (!callSite->use_empty()) 5915 callSite->replaceAllUsesWith(newCall); 5916 5917 // Copy debug location attached to CI. 5918 if (callSite->getDebugLoc()) 5919 newCall->setDebugLoc(callSite->getDebugLoc()); 5920 5921 callSitesToBeRemovedFromParent.push_back(callSite); 5922 } 5923 5924 for (auto *callSite : callSitesToBeRemovedFromParent) { 5925 callSite->eraseFromParent(); 5926 } 5927 } 5928 5929 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 5930 /// implement a function with no prototype, e.g. "int foo() {}". If there are 5931 /// existing call uses of the old function in the module, this adjusts them to 5932 /// call the new function directly. 5933 /// 5934 /// This is not just a cleanup: the always_inline pass requires direct calls to 5935 /// functions to be able to inline them. If there is a bitcast in the way, it 5936 /// won't inline them. Instcombine normally deletes these calls, but it isn't 5937 /// run at -O0. 5938 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 5939 llvm::Function *NewFn) { 5940 // If we're redefining a global as a function, don't transform it. 5941 if (!isa<llvm::Function>(Old)) return; 5942 5943 replaceUsesOfNonProtoConstant(Old, NewFn); 5944 } 5945 5946 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 5947 auto DK = VD->isThisDeclarationADefinition(); 5948 if ((DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) || 5949 (LangOpts.CUDA && !shouldEmitCUDAGlobalVar(VD))) 5950 return; 5951 5952 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 5953 // If we have a definition, this might be a deferred decl. If the 5954 // instantiation is explicit, make sure we emit it at the end. 5955 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 5956 GetAddrOfGlobalVar(VD); 5957 5958 EmitTopLevelDecl(VD); 5959 } 5960 5961 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 5962 llvm::GlobalValue *GV) { 5963 const auto *D = cast<FunctionDecl>(GD.getDecl()); 5964 5965 // Compute the function info and LLVM type. 5966 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 5967 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 5968 5969 // Get or create the prototype for the function. 5970 if (!GV || (GV->getValueType() != Ty)) 5971 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 5972 /*DontDefer=*/true, 5973 ForDefinition)); 5974 5975 // Already emitted. 5976 if (!GV->isDeclaration()) 5977 return; 5978 5979 // We need to set linkage and visibility on the function before 5980 // generating code for it because various parts of IR generation 5981 // want to propagate this information down (e.g. to local static 5982 // declarations). 5983 auto *Fn = cast<llvm::Function>(GV); 5984 setFunctionLinkage(GD, Fn); 5985 5986 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 5987 setGVProperties(Fn, GD); 5988 5989 MaybeHandleStaticInExternC(D, Fn); 5990 5991 maybeSetTrivialComdat(*D, *Fn); 5992 5993 CodeGenFunction(*this).GenerateCode(GD, Fn, FI); 5994 5995 setNonAliasAttributes(GD, Fn); 5996 SetLLVMFunctionAttributesForDefinition(D, Fn); 5997 5998 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 5999 AddGlobalCtor(Fn, CA->getPriority()); 6000 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 6001 AddGlobalDtor(Fn, DA->getPriority(), true); 6002 if (getLangOpts().OpenMP && D->hasAttr<OMPDeclareTargetDeclAttr>()) 6003 getOpenMPRuntime().emitDeclareTargetFunction(D, GV); 6004 } 6005 6006 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 6007 const auto *D = cast<ValueDecl>(GD.getDecl()); 6008 const AliasAttr *AA = D->getAttr<AliasAttr>(); 6009 assert(AA && "Not an alias?"); 6010 6011 StringRef MangledName = getMangledName(GD); 6012 6013 if (AA->getAliasee() == MangledName) { 6014 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 6015 return; 6016 } 6017 6018 // If there is a definition in the module, then it wins over the alias. 6019 // This is dubious, but allow it to be safe. Just ignore the alias. 6020 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 6021 if (Entry && !Entry->isDeclaration()) 6022 return; 6023 6024 Aliases.push_back(GD); 6025 6026 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 6027 6028 // Create a reference to the named value. This ensures that it is emitted 6029 // if a deferred decl. 6030 llvm::Constant *Aliasee; 6031 llvm::GlobalValue::LinkageTypes LT; 6032 if (isa<llvm::FunctionType>(DeclTy)) { 6033 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 6034 /*ForVTable=*/false); 6035 LT = getFunctionLinkage(GD); 6036 } else { 6037 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default, 6038 /*D=*/nullptr); 6039 if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl())) 6040 LT = getLLVMLinkageVarDefinition(VD); 6041 else 6042 LT = getFunctionLinkage(GD); 6043 } 6044 6045 // Create the new alias itself, but don't set a name yet. 6046 unsigned AS = Aliasee->getType()->getPointerAddressSpace(); 6047 auto *GA = 6048 llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule()); 6049 6050 if (Entry) { 6051 if (GA->getAliasee() == Entry) { 6052 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 6053 return; 6054 } 6055 6056 assert(Entry->isDeclaration()); 6057 6058 // If there is a declaration in the module, then we had an extern followed 6059 // by the alias, as in: 6060 // extern int test6(); 6061 // ... 6062 // int test6() __attribute__((alias("test7"))); 6063 // 6064 // Remove it and replace uses of it with the alias. 6065 GA->takeName(Entry); 6066 6067 Entry->replaceAllUsesWith(GA); 6068 Entry->eraseFromParent(); 6069 } else { 6070 GA->setName(MangledName); 6071 } 6072 6073 // Set attributes which are particular to an alias; this is a 6074 // specialization of the attributes which may be set on a global 6075 // variable/function. 6076 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 6077 D->isWeakImported()) { 6078 GA->setLinkage(llvm::Function::WeakAnyLinkage); 6079 } 6080 6081 if (const auto *VD = dyn_cast<VarDecl>(D)) 6082 if (VD->getTLSKind()) 6083 setTLSMode(GA, *VD); 6084 6085 SetCommonAttributes(GD, GA); 6086 6087 // Emit global alias debug information. 6088 if (isa<VarDecl>(D)) 6089 if (CGDebugInfo *DI = getModuleDebugInfo()) 6090 DI->EmitGlobalAlias(cast<llvm::GlobalValue>(GA->getAliasee()->stripPointerCasts()), GD); 6091 } 6092 6093 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 6094 const auto *D = cast<ValueDecl>(GD.getDecl()); 6095 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 6096 assert(IFA && "Not an ifunc?"); 6097 6098 StringRef MangledName = getMangledName(GD); 6099 6100 if (IFA->getResolver() == MangledName) { 6101 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 6102 return; 6103 } 6104 6105 // Report an error if some definition overrides ifunc. 6106 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 6107 if (Entry && !Entry->isDeclaration()) { 6108 GlobalDecl OtherGD; 6109 if (lookupRepresentativeDecl(MangledName, OtherGD) && 6110 DiagnosedConflictingDefinitions.insert(GD).second) { 6111 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name) 6112 << MangledName; 6113 Diags.Report(OtherGD.getDecl()->getLocation(), 6114 diag::note_previous_definition); 6115 } 6116 return; 6117 } 6118 6119 Aliases.push_back(GD); 6120 6121 // The resolver might not be visited yet. Specify a dummy non-function type to 6122 // indicate IsIncompleteFunction. Either the type is ignored (if the resolver 6123 // was emitted) or the whole function will be replaced (if the resolver has 6124 // not been emitted). 6125 llvm::Constant *Resolver = 6126 GetOrCreateLLVMFunction(IFA->getResolver(), VoidTy, {}, 6127 /*ForVTable=*/false); 6128 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 6129 llvm::GlobalIFunc *GIF = 6130 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 6131 "", Resolver, &getModule()); 6132 if (Entry) { 6133 if (GIF->getResolver() == Entry) { 6134 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 6135 return; 6136 } 6137 assert(Entry->isDeclaration()); 6138 6139 // If there is a declaration in the module, then we had an extern followed 6140 // by the ifunc, as in: 6141 // extern int test(); 6142 // ... 6143 // int test() __attribute__((ifunc("resolver"))); 6144 // 6145 // Remove it and replace uses of it with the ifunc. 6146 GIF->takeName(Entry); 6147 6148 Entry->replaceAllUsesWith(GIF); 6149 Entry->eraseFromParent(); 6150 } else 6151 GIF->setName(MangledName); 6152 SetCommonAttributes(GD, GIF); 6153 } 6154 6155 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 6156 ArrayRef<llvm::Type*> Tys) { 6157 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 6158 Tys); 6159 } 6160 6161 static llvm::StringMapEntry<llvm::GlobalVariable *> & 6162 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 6163 const StringLiteral *Literal, bool TargetIsLSB, 6164 bool &IsUTF16, unsigned &StringLength) { 6165 StringRef String = Literal->getString(); 6166 unsigned NumBytes = String.size(); 6167 6168 // Check for simple case. 6169 if (!Literal->containsNonAsciiOrNull()) { 6170 StringLength = NumBytes; 6171 return *Map.insert(std::make_pair(String, nullptr)).first; 6172 } 6173 6174 // Otherwise, convert the UTF8 literals into a string of shorts. 6175 IsUTF16 = true; 6176 6177 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 6178 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 6179 llvm::UTF16 *ToPtr = &ToBuf[0]; 6180 6181 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 6182 ToPtr + NumBytes, llvm::strictConversion); 6183 6184 // ConvertUTF8toUTF16 returns the length in ToPtr. 6185 StringLength = ToPtr - &ToBuf[0]; 6186 6187 // Add an explicit null. 6188 *ToPtr = 0; 6189 return *Map.insert(std::make_pair( 6190 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 6191 (StringLength + 1) * 2), 6192 nullptr)).first; 6193 } 6194 6195 ConstantAddress 6196 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 6197 unsigned StringLength = 0; 6198 bool isUTF16 = false; 6199 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 6200 GetConstantCFStringEntry(CFConstantStringMap, Literal, 6201 getDataLayout().isLittleEndian(), isUTF16, 6202 StringLength); 6203 6204 if (auto *C = Entry.second) 6205 return ConstantAddress( 6206 C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment())); 6207 6208 const ASTContext &Context = getContext(); 6209 const llvm::Triple &Triple = getTriple(); 6210 6211 const auto CFRuntime = getLangOpts().CFRuntime; 6212 const bool IsSwiftABI = 6213 static_cast<unsigned>(CFRuntime) >= 6214 static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift); 6215 const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1; 6216 6217 // If we don't already have it, get __CFConstantStringClassReference. 6218 if (!CFConstantStringClassRef) { 6219 const char *CFConstantStringClassName = "__CFConstantStringClassReference"; 6220 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 6221 Ty = llvm::ArrayType::get(Ty, 0); 6222 6223 switch (CFRuntime) { 6224 default: break; 6225 case LangOptions::CoreFoundationABI::Swift: [[fallthrough]]; 6226 case LangOptions::CoreFoundationABI::Swift5_0: 6227 CFConstantStringClassName = 6228 Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN" 6229 : "$s10Foundation19_NSCFConstantStringCN"; 6230 Ty = IntPtrTy; 6231 break; 6232 case LangOptions::CoreFoundationABI::Swift4_2: 6233 CFConstantStringClassName = 6234 Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN" 6235 : "$S10Foundation19_NSCFConstantStringCN"; 6236 Ty = IntPtrTy; 6237 break; 6238 case LangOptions::CoreFoundationABI::Swift4_1: 6239 CFConstantStringClassName = 6240 Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN" 6241 : "__T010Foundation19_NSCFConstantStringCN"; 6242 Ty = IntPtrTy; 6243 break; 6244 } 6245 6246 llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName); 6247 6248 if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) { 6249 llvm::GlobalValue *GV = nullptr; 6250 6251 if ((GV = dyn_cast<llvm::GlobalValue>(C))) { 6252 IdentifierInfo &II = Context.Idents.get(GV->getName()); 6253 TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl(); 6254 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 6255 6256 const VarDecl *VD = nullptr; 6257 for (const auto *Result : DC->lookup(&II)) 6258 if ((VD = dyn_cast<VarDecl>(Result))) 6259 break; 6260 6261 if (Triple.isOSBinFormatELF()) { 6262 if (!VD) 6263 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 6264 } else { 6265 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 6266 if (!VD || !VD->hasAttr<DLLExportAttr>()) 6267 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 6268 else 6269 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 6270 } 6271 6272 setDSOLocal(GV); 6273 } 6274 } 6275 6276 // Decay array -> ptr 6277 CFConstantStringClassRef = 6278 IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) : C; 6279 } 6280 6281 QualType CFTy = Context.getCFConstantStringType(); 6282 6283 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 6284 6285 ConstantInitBuilder Builder(*this); 6286 auto Fields = Builder.beginStruct(STy); 6287 6288 // Class pointer. 6289 Fields.add(cast<llvm::Constant>(CFConstantStringClassRef)); 6290 6291 // Flags. 6292 if (IsSwiftABI) { 6293 Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01); 6294 Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8); 6295 } else { 6296 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 6297 } 6298 6299 // String pointer. 6300 llvm::Constant *C = nullptr; 6301 if (isUTF16) { 6302 auto Arr = llvm::ArrayRef( 6303 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 6304 Entry.first().size() / 2); 6305 C = llvm::ConstantDataArray::get(VMContext, Arr); 6306 } else { 6307 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 6308 } 6309 6310 // Note: -fwritable-strings doesn't make the backing store strings of 6311 // CFStrings writable. 6312 auto *GV = 6313 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 6314 llvm::GlobalValue::PrivateLinkage, C, ".str"); 6315 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 6316 // Don't enforce the target's minimum global alignment, since the only use 6317 // of the string is via this class initializer. 6318 CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy) 6319 : Context.getTypeAlignInChars(Context.CharTy); 6320 GV->setAlignment(Align.getAsAlign()); 6321 6322 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 6323 // Without it LLVM can merge the string with a non unnamed_addr one during 6324 // LTO. Doing that changes the section it ends in, which surprises ld64. 6325 if (Triple.isOSBinFormatMachO()) 6326 GV->setSection(isUTF16 ? "__TEXT,__ustring" 6327 : "__TEXT,__cstring,cstring_literals"); 6328 // Make sure the literal ends up in .rodata to allow for safe ICF and for 6329 // the static linker to adjust permissions to read-only later on. 6330 else if (Triple.isOSBinFormatELF()) 6331 GV->setSection(".rodata"); 6332 6333 // String. 6334 Fields.add(GV); 6335 6336 // String length. 6337 llvm::IntegerType *LengthTy = 6338 llvm::IntegerType::get(getModule().getContext(), 6339 Context.getTargetInfo().getLongWidth()); 6340 if (IsSwiftABI) { 6341 if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 || 6342 CFRuntime == LangOptions::CoreFoundationABI::Swift4_2) 6343 LengthTy = Int32Ty; 6344 else 6345 LengthTy = IntPtrTy; 6346 } 6347 Fields.addInt(LengthTy, StringLength); 6348 6349 // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is 6350 // properly aligned on 32-bit platforms. 6351 CharUnits Alignment = 6352 IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign(); 6353 6354 // The struct. 6355 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 6356 /*isConstant=*/false, 6357 llvm::GlobalVariable::PrivateLinkage); 6358 GV->addAttribute("objc_arc_inert"); 6359 switch (Triple.getObjectFormat()) { 6360 case llvm::Triple::UnknownObjectFormat: 6361 llvm_unreachable("unknown file format"); 6362 case llvm::Triple::DXContainer: 6363 case llvm::Triple::GOFF: 6364 case llvm::Triple::SPIRV: 6365 case llvm::Triple::XCOFF: 6366 llvm_unreachable("unimplemented"); 6367 case llvm::Triple::COFF: 6368 case llvm::Triple::ELF: 6369 case llvm::Triple::Wasm: 6370 GV->setSection("cfstring"); 6371 break; 6372 case llvm::Triple::MachO: 6373 GV->setSection("__DATA,__cfstring"); 6374 break; 6375 } 6376 Entry.second = GV; 6377 6378 return ConstantAddress(GV, GV->getValueType(), Alignment); 6379 } 6380 6381 bool CodeGenModule::getExpressionLocationsEnabled() const { 6382 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 6383 } 6384 6385 QualType CodeGenModule::getObjCFastEnumerationStateType() { 6386 if (ObjCFastEnumerationStateType.isNull()) { 6387 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 6388 D->startDefinition(); 6389 6390 QualType FieldTypes[] = { 6391 Context.UnsignedLongTy, Context.getPointerType(Context.getObjCIdType()), 6392 Context.getPointerType(Context.UnsignedLongTy), 6393 Context.getConstantArrayType(Context.UnsignedLongTy, llvm::APInt(32, 5), 6394 nullptr, ArraySizeModifier::Normal, 0)}; 6395 6396 for (size_t i = 0; i < 4; ++i) { 6397 FieldDecl *Field = FieldDecl::Create(Context, 6398 D, 6399 SourceLocation(), 6400 SourceLocation(), nullptr, 6401 FieldTypes[i], /*TInfo=*/nullptr, 6402 /*BitWidth=*/nullptr, 6403 /*Mutable=*/false, 6404 ICIS_NoInit); 6405 Field->setAccess(AS_public); 6406 D->addDecl(Field); 6407 } 6408 6409 D->completeDefinition(); 6410 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 6411 } 6412 6413 return ObjCFastEnumerationStateType; 6414 } 6415 6416 llvm::Constant * 6417 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 6418 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 6419 6420 // Don't emit it as the address of the string, emit the string data itself 6421 // as an inline array. 6422 if (E->getCharByteWidth() == 1) { 6423 SmallString<64> Str(E->getString()); 6424 6425 // Resize the string to the right size, which is indicated by its type. 6426 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 6427 assert(CAT && "String literal not of constant array type!"); 6428 Str.resize(CAT->getZExtSize()); 6429 return llvm::ConstantDataArray::getString(VMContext, Str, false); 6430 } 6431 6432 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 6433 llvm::Type *ElemTy = AType->getElementType(); 6434 unsigned NumElements = AType->getNumElements(); 6435 6436 // Wide strings have either 2-byte or 4-byte elements. 6437 if (ElemTy->getPrimitiveSizeInBits() == 16) { 6438 SmallVector<uint16_t, 32> Elements; 6439 Elements.reserve(NumElements); 6440 6441 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 6442 Elements.push_back(E->getCodeUnit(i)); 6443 Elements.resize(NumElements); 6444 return llvm::ConstantDataArray::get(VMContext, Elements); 6445 } 6446 6447 assert(ElemTy->getPrimitiveSizeInBits() == 32); 6448 SmallVector<uint32_t, 32> Elements; 6449 Elements.reserve(NumElements); 6450 6451 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 6452 Elements.push_back(E->getCodeUnit(i)); 6453 Elements.resize(NumElements); 6454 return llvm::ConstantDataArray::get(VMContext, Elements); 6455 } 6456 6457 static llvm::GlobalVariable * 6458 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 6459 CodeGenModule &CGM, StringRef GlobalName, 6460 CharUnits Alignment) { 6461 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace( 6462 CGM.GetGlobalConstantAddressSpace()); 6463 6464 llvm::Module &M = CGM.getModule(); 6465 // Create a global variable for this string 6466 auto *GV = new llvm::GlobalVariable( 6467 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 6468 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 6469 GV->setAlignment(Alignment.getAsAlign()); 6470 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 6471 if (GV->isWeakForLinker()) { 6472 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 6473 GV->setComdat(M.getOrInsertComdat(GV->getName())); 6474 } 6475 CGM.setDSOLocal(GV); 6476 6477 return GV; 6478 } 6479 6480 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 6481 /// constant array for the given string literal. 6482 ConstantAddress 6483 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 6484 StringRef Name) { 6485 CharUnits Alignment = 6486 getContext().getAlignOfGlobalVarInChars(S->getType(), /*VD=*/nullptr); 6487 6488 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 6489 llvm::GlobalVariable **Entry = nullptr; 6490 if (!LangOpts.WritableStrings) { 6491 Entry = &ConstantStringMap[C]; 6492 if (auto GV = *Entry) { 6493 if (uint64_t(Alignment.getQuantity()) > GV->getAlignment()) 6494 GV->setAlignment(Alignment.getAsAlign()); 6495 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 6496 GV->getValueType(), Alignment); 6497 } 6498 } 6499 6500 SmallString<256> MangledNameBuffer; 6501 StringRef GlobalVariableName; 6502 llvm::GlobalValue::LinkageTypes LT; 6503 6504 // Mangle the string literal if that's how the ABI merges duplicate strings. 6505 // Don't do it if they are writable, since we don't want writes in one TU to 6506 // affect strings in another. 6507 if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) && 6508 !LangOpts.WritableStrings) { 6509 llvm::raw_svector_ostream Out(MangledNameBuffer); 6510 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 6511 LT = llvm::GlobalValue::LinkOnceODRLinkage; 6512 GlobalVariableName = MangledNameBuffer; 6513 } else { 6514 LT = llvm::GlobalValue::PrivateLinkage; 6515 GlobalVariableName = Name; 6516 } 6517 6518 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 6519 6520 CGDebugInfo *DI = getModuleDebugInfo(); 6521 if (DI && getCodeGenOpts().hasReducedDebugInfo()) 6522 DI->AddStringLiteralDebugInfo(GV, S); 6523 6524 if (Entry) 6525 *Entry = GV; 6526 6527 SanitizerMD->reportGlobal(GV, S->getStrTokenLoc(0), "<string literal>"); 6528 6529 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 6530 GV->getValueType(), Alignment); 6531 } 6532 6533 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 6534 /// array for the given ObjCEncodeExpr node. 6535 ConstantAddress 6536 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 6537 std::string Str; 6538 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 6539 6540 return GetAddrOfConstantCString(Str); 6541 } 6542 6543 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 6544 /// the literal and a terminating '\0' character. 6545 /// The result has pointer to array type. 6546 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 6547 const std::string &Str, const char *GlobalName) { 6548 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 6549 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars( 6550 getContext().CharTy, /*VD=*/nullptr); 6551 6552 llvm::Constant *C = 6553 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 6554 6555 // Don't share any string literals if strings aren't constant. 6556 llvm::GlobalVariable **Entry = nullptr; 6557 if (!LangOpts.WritableStrings) { 6558 Entry = &ConstantStringMap[C]; 6559 if (auto GV = *Entry) { 6560 if (uint64_t(Alignment.getQuantity()) > GV->getAlignment()) 6561 GV->setAlignment(Alignment.getAsAlign()); 6562 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 6563 GV->getValueType(), Alignment); 6564 } 6565 } 6566 6567 // Get the default prefix if a name wasn't specified. 6568 if (!GlobalName) 6569 GlobalName = ".str"; 6570 // Create a global variable for this. 6571 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 6572 GlobalName, Alignment); 6573 if (Entry) 6574 *Entry = GV; 6575 6576 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 6577 GV->getValueType(), Alignment); 6578 } 6579 6580 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 6581 const MaterializeTemporaryExpr *E, const Expr *Init) { 6582 assert((E->getStorageDuration() == SD_Static || 6583 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 6584 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 6585 6586 // If we're not materializing a subobject of the temporary, keep the 6587 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 6588 QualType MaterializedType = Init->getType(); 6589 if (Init == E->getSubExpr()) 6590 MaterializedType = E->getType(); 6591 6592 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 6593 6594 auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr}); 6595 if (!InsertResult.second) { 6596 // We've seen this before: either we already created it or we're in the 6597 // process of doing so. 6598 if (!InsertResult.first->second) { 6599 // We recursively re-entered this function, probably during emission of 6600 // the initializer. Create a placeholder. We'll clean this up in the 6601 // outer call, at the end of this function. 6602 llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType); 6603 InsertResult.first->second = new llvm::GlobalVariable( 6604 getModule(), Type, false, llvm::GlobalVariable::InternalLinkage, 6605 nullptr); 6606 } 6607 return ConstantAddress(InsertResult.first->second, 6608 llvm::cast<llvm::GlobalVariable>( 6609 InsertResult.first->second->stripPointerCasts()) 6610 ->getValueType(), 6611 Align); 6612 } 6613 6614 // FIXME: If an externally-visible declaration extends multiple temporaries, 6615 // we need to give each temporary the same name in every translation unit (and 6616 // we also need to make the temporaries externally-visible). 6617 SmallString<256> Name; 6618 llvm::raw_svector_ostream Out(Name); 6619 getCXXABI().getMangleContext().mangleReferenceTemporary( 6620 VD, E->getManglingNumber(), Out); 6621 6622 APValue *Value = nullptr; 6623 if (E->getStorageDuration() == SD_Static && VD->evaluateValue()) { 6624 // If the initializer of the extending declaration is a constant 6625 // initializer, we should have a cached constant initializer for this 6626 // temporary. Note that this might have a different value from the value 6627 // computed by evaluating the initializer if the surrounding constant 6628 // expression modifies the temporary. 6629 Value = E->getOrCreateValue(false); 6630 } 6631 6632 // Try evaluating it now, it might have a constant initializer. 6633 Expr::EvalResult EvalResult; 6634 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 6635 !EvalResult.hasSideEffects()) 6636 Value = &EvalResult.Val; 6637 6638 LangAS AddrSpace = GetGlobalVarAddressSpace(VD); 6639 6640 std::optional<ConstantEmitter> emitter; 6641 llvm::Constant *InitialValue = nullptr; 6642 bool Constant = false; 6643 llvm::Type *Type; 6644 if (Value) { 6645 // The temporary has a constant initializer, use it. 6646 emitter.emplace(*this); 6647 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 6648 MaterializedType); 6649 Constant = 6650 MaterializedType.isConstantStorage(getContext(), /*ExcludeCtor*/ Value, 6651 /*ExcludeDtor*/ false); 6652 Type = InitialValue->getType(); 6653 } else { 6654 // No initializer, the initialization will be provided when we 6655 // initialize the declaration which performed lifetime extension. 6656 Type = getTypes().ConvertTypeForMem(MaterializedType); 6657 } 6658 6659 // Create a global variable for this lifetime-extended temporary. 6660 llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(VD); 6661 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 6662 const VarDecl *InitVD; 6663 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 6664 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 6665 // Temporaries defined inside a class get linkonce_odr linkage because the 6666 // class can be defined in multiple translation units. 6667 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 6668 } else { 6669 // There is no need for this temporary to have external linkage if the 6670 // VarDecl has external linkage. 6671 Linkage = llvm::GlobalVariable::InternalLinkage; 6672 } 6673 } 6674 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 6675 auto *GV = new llvm::GlobalVariable( 6676 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 6677 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 6678 if (emitter) emitter->finalize(GV); 6679 // Don't assign dllimport or dllexport to local linkage globals. 6680 if (!llvm::GlobalValue::isLocalLinkage(Linkage)) { 6681 setGVProperties(GV, VD); 6682 if (GV->getDLLStorageClass() == llvm::GlobalVariable::DLLExportStorageClass) 6683 // The reference temporary should never be dllexport. 6684 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 6685 } 6686 GV->setAlignment(Align.getAsAlign()); 6687 if (supportsCOMDAT() && GV->isWeakForLinker()) 6688 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 6689 if (VD->getTLSKind()) 6690 setTLSMode(GV, *VD); 6691 llvm::Constant *CV = GV; 6692 if (AddrSpace != LangAS::Default) 6693 CV = getTargetCodeGenInfo().performAddrSpaceCast( 6694 *this, GV, AddrSpace, LangAS::Default, 6695 llvm::PointerType::get( 6696 getLLVMContext(), 6697 getContext().getTargetAddressSpace(LangAS::Default))); 6698 6699 // Update the map with the new temporary. If we created a placeholder above, 6700 // replace it with the new global now. 6701 llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E]; 6702 if (Entry) { 6703 Entry->replaceAllUsesWith(CV); 6704 llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent(); 6705 } 6706 Entry = CV; 6707 6708 return ConstantAddress(CV, Type, Align); 6709 } 6710 6711 /// EmitObjCPropertyImplementations - Emit information for synthesized 6712 /// properties for an implementation. 6713 void CodeGenModule::EmitObjCPropertyImplementations(const 6714 ObjCImplementationDecl *D) { 6715 for (const auto *PID : D->property_impls()) { 6716 // Dynamic is just for type-checking. 6717 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 6718 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 6719 6720 // Determine which methods need to be implemented, some may have 6721 // been overridden. Note that ::isPropertyAccessor is not the method 6722 // we want, that just indicates if the decl came from a 6723 // property. What we want to know is if the method is defined in 6724 // this implementation. 6725 auto *Getter = PID->getGetterMethodDecl(); 6726 if (!Getter || Getter->isSynthesizedAccessorStub()) 6727 CodeGenFunction(*this).GenerateObjCGetter( 6728 const_cast<ObjCImplementationDecl *>(D), PID); 6729 auto *Setter = PID->getSetterMethodDecl(); 6730 if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub())) 6731 CodeGenFunction(*this).GenerateObjCSetter( 6732 const_cast<ObjCImplementationDecl *>(D), PID); 6733 } 6734 } 6735 } 6736 6737 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 6738 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 6739 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 6740 ivar; ivar = ivar->getNextIvar()) 6741 if (ivar->getType().isDestructedType()) 6742 return true; 6743 6744 return false; 6745 } 6746 6747 static bool AllTrivialInitializers(CodeGenModule &CGM, 6748 ObjCImplementationDecl *D) { 6749 CodeGenFunction CGF(CGM); 6750 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 6751 E = D->init_end(); B != E; ++B) { 6752 CXXCtorInitializer *CtorInitExp = *B; 6753 Expr *Init = CtorInitExp->getInit(); 6754 if (!CGF.isTrivialInitializer(Init)) 6755 return false; 6756 } 6757 return true; 6758 } 6759 6760 /// EmitObjCIvarInitializations - Emit information for ivar initialization 6761 /// for an implementation. 6762 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 6763 // We might need a .cxx_destruct even if we don't have any ivar initializers. 6764 if (needsDestructMethod(D)) { 6765 const IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 6766 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 6767 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create( 6768 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 6769 getContext().VoidTy, nullptr, D, 6770 /*isInstance=*/true, /*isVariadic=*/false, 6771 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 6772 /*isImplicitlyDeclared=*/true, 6773 /*isDefined=*/false, ObjCImplementationControl::Required); 6774 D->addInstanceMethod(DTORMethod); 6775 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 6776 D->setHasDestructors(true); 6777 } 6778 6779 // If the implementation doesn't have any ivar initializers, we don't need 6780 // a .cxx_construct. 6781 if (D->getNumIvarInitializers() == 0 || 6782 AllTrivialInitializers(*this, D)) 6783 return; 6784 6785 const IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 6786 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 6787 // The constructor returns 'self'. 6788 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create( 6789 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 6790 getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true, 6791 /*isVariadic=*/false, 6792 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 6793 /*isImplicitlyDeclared=*/true, 6794 /*isDefined=*/false, ObjCImplementationControl::Required); 6795 D->addInstanceMethod(CTORMethod); 6796 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 6797 D->setHasNonZeroConstructors(true); 6798 } 6799 6800 // EmitLinkageSpec - Emit all declarations in a linkage spec. 6801 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 6802 if (LSD->getLanguage() != LinkageSpecLanguageIDs::C && 6803 LSD->getLanguage() != LinkageSpecLanguageIDs::CXX) { 6804 ErrorUnsupported(LSD, "linkage spec"); 6805 return; 6806 } 6807 6808 EmitDeclContext(LSD); 6809 } 6810 6811 void CodeGenModule::EmitTopLevelStmt(const TopLevelStmtDecl *D) { 6812 // Device code should not be at top level. 6813 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 6814 return; 6815 6816 std::unique_ptr<CodeGenFunction> &CurCGF = 6817 GlobalTopLevelStmtBlockInFlight.first; 6818 6819 // We emitted a top-level stmt but after it there is initialization. 6820 // Stop squashing the top-level stmts into a single function. 6821 if (CurCGF && CXXGlobalInits.back() != CurCGF->CurFn) { 6822 CurCGF->FinishFunction(D->getEndLoc()); 6823 CurCGF = nullptr; 6824 } 6825 6826 if (!CurCGF) { 6827 // void __stmts__N(void) 6828 // FIXME: Ask the ABI name mangler to pick a name. 6829 std::string Name = "__stmts__" + llvm::utostr(CXXGlobalInits.size()); 6830 FunctionArgList Args; 6831 QualType RetTy = getContext().VoidTy; 6832 const CGFunctionInfo &FnInfo = 6833 getTypes().arrangeBuiltinFunctionDeclaration(RetTy, Args); 6834 llvm::FunctionType *FnTy = getTypes().GetFunctionType(FnInfo); 6835 llvm::Function *Fn = llvm::Function::Create( 6836 FnTy, llvm::GlobalValue::InternalLinkage, Name, &getModule()); 6837 6838 CurCGF.reset(new CodeGenFunction(*this)); 6839 GlobalTopLevelStmtBlockInFlight.second = D; 6840 CurCGF->StartFunction(GlobalDecl(), RetTy, Fn, FnInfo, Args, 6841 D->getBeginLoc(), D->getBeginLoc()); 6842 CXXGlobalInits.push_back(Fn); 6843 } 6844 6845 CurCGF->EmitStmt(D->getStmt()); 6846 } 6847 6848 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 6849 for (auto *I : DC->decls()) { 6850 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 6851 // are themselves considered "top-level", so EmitTopLevelDecl on an 6852 // ObjCImplDecl does not recursively visit them. We need to do that in 6853 // case they're nested inside another construct (LinkageSpecDecl / 6854 // ExportDecl) that does stop them from being considered "top-level". 6855 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 6856 for (auto *M : OID->methods()) 6857 EmitTopLevelDecl(M); 6858 } 6859 6860 EmitTopLevelDecl(I); 6861 } 6862 } 6863 6864 /// EmitTopLevelDecl - Emit code for a single top level declaration. 6865 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 6866 // Ignore dependent declarations. 6867 if (D->isTemplated()) 6868 return; 6869 6870 // Consteval function shouldn't be emitted. 6871 if (auto *FD = dyn_cast<FunctionDecl>(D); FD && FD->isImmediateFunction()) 6872 return; 6873 6874 switch (D->getKind()) { 6875 case Decl::CXXConversion: 6876 case Decl::CXXMethod: 6877 case Decl::Function: 6878 EmitGlobal(cast<FunctionDecl>(D)); 6879 // Always provide some coverage mapping 6880 // even for the functions that aren't emitted. 6881 AddDeferredUnusedCoverageMapping(D); 6882 break; 6883 6884 case Decl::CXXDeductionGuide: 6885 // Function-like, but does not result in code emission. 6886 break; 6887 6888 case Decl::Var: 6889 case Decl::Decomposition: 6890 case Decl::VarTemplateSpecialization: 6891 EmitGlobal(cast<VarDecl>(D)); 6892 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 6893 for (auto *B : DD->bindings()) 6894 if (auto *HD = B->getHoldingVar()) 6895 EmitGlobal(HD); 6896 break; 6897 6898 // Indirect fields from global anonymous structs and unions can be 6899 // ignored; only the actual variable requires IR gen support. 6900 case Decl::IndirectField: 6901 break; 6902 6903 // C++ Decls 6904 case Decl::Namespace: 6905 EmitDeclContext(cast<NamespaceDecl>(D)); 6906 break; 6907 case Decl::ClassTemplateSpecialization: { 6908 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 6909 if (CGDebugInfo *DI = getModuleDebugInfo()) 6910 if (Spec->getSpecializationKind() == 6911 TSK_ExplicitInstantiationDefinition && 6912 Spec->hasDefinition()) 6913 DI->completeTemplateDefinition(*Spec); 6914 } [[fallthrough]]; 6915 case Decl::CXXRecord: { 6916 CXXRecordDecl *CRD = cast<CXXRecordDecl>(D); 6917 if (CGDebugInfo *DI = getModuleDebugInfo()) { 6918 if (CRD->hasDefinition()) 6919 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 6920 if (auto *ES = D->getASTContext().getExternalSource()) 6921 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 6922 DI->completeUnusedClass(*CRD); 6923 } 6924 // Emit any static data members, they may be definitions. 6925 for (auto *I : CRD->decls()) 6926 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 6927 EmitTopLevelDecl(I); 6928 break; 6929 } 6930 // No code generation needed. 6931 case Decl::UsingShadow: 6932 case Decl::ClassTemplate: 6933 case Decl::VarTemplate: 6934 case Decl::Concept: 6935 case Decl::VarTemplatePartialSpecialization: 6936 case Decl::FunctionTemplate: 6937 case Decl::TypeAliasTemplate: 6938 case Decl::Block: 6939 case Decl::Empty: 6940 case Decl::Binding: 6941 break; 6942 case Decl::Using: // using X; [C++] 6943 if (CGDebugInfo *DI = getModuleDebugInfo()) 6944 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 6945 break; 6946 case Decl::UsingEnum: // using enum X; [C++] 6947 if (CGDebugInfo *DI = getModuleDebugInfo()) 6948 DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D)); 6949 break; 6950 case Decl::NamespaceAlias: 6951 if (CGDebugInfo *DI = getModuleDebugInfo()) 6952 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 6953 break; 6954 case Decl::UsingDirective: // using namespace X; [C++] 6955 if (CGDebugInfo *DI = getModuleDebugInfo()) 6956 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 6957 break; 6958 case Decl::CXXConstructor: 6959 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 6960 break; 6961 case Decl::CXXDestructor: 6962 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 6963 break; 6964 6965 case Decl::StaticAssert: 6966 // Nothing to do. 6967 break; 6968 6969 // Objective-C Decls 6970 6971 // Forward declarations, no (immediate) code generation. 6972 case Decl::ObjCInterface: 6973 case Decl::ObjCCategory: 6974 break; 6975 6976 case Decl::ObjCProtocol: { 6977 auto *Proto = cast<ObjCProtocolDecl>(D); 6978 if (Proto->isThisDeclarationADefinition()) 6979 ObjCRuntime->GenerateProtocol(Proto); 6980 break; 6981 } 6982 6983 case Decl::ObjCCategoryImpl: 6984 // Categories have properties but don't support synthesize so we 6985 // can ignore them here. 6986 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 6987 break; 6988 6989 case Decl::ObjCImplementation: { 6990 auto *OMD = cast<ObjCImplementationDecl>(D); 6991 EmitObjCPropertyImplementations(OMD); 6992 EmitObjCIvarInitializations(OMD); 6993 ObjCRuntime->GenerateClass(OMD); 6994 // Emit global variable debug information. 6995 if (CGDebugInfo *DI = getModuleDebugInfo()) 6996 if (getCodeGenOpts().hasReducedDebugInfo()) 6997 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 6998 OMD->getClassInterface()), OMD->getLocation()); 6999 break; 7000 } 7001 case Decl::ObjCMethod: { 7002 auto *OMD = cast<ObjCMethodDecl>(D); 7003 // If this is not a prototype, emit the body. 7004 if (OMD->getBody()) 7005 CodeGenFunction(*this).GenerateObjCMethod(OMD); 7006 break; 7007 } 7008 case Decl::ObjCCompatibleAlias: 7009 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 7010 break; 7011 7012 case Decl::PragmaComment: { 7013 const auto *PCD = cast<PragmaCommentDecl>(D); 7014 switch (PCD->getCommentKind()) { 7015 case PCK_Unknown: 7016 llvm_unreachable("unexpected pragma comment kind"); 7017 case PCK_Linker: 7018 AppendLinkerOptions(PCD->getArg()); 7019 break; 7020 case PCK_Lib: 7021 AddDependentLib(PCD->getArg()); 7022 break; 7023 case PCK_Compiler: 7024 case PCK_ExeStr: 7025 case PCK_User: 7026 break; // We ignore all of these. 7027 } 7028 break; 7029 } 7030 7031 case Decl::PragmaDetectMismatch: { 7032 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 7033 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 7034 break; 7035 } 7036 7037 case Decl::LinkageSpec: 7038 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 7039 break; 7040 7041 case Decl::FileScopeAsm: { 7042 // File-scope asm is ignored during device-side CUDA compilation. 7043 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 7044 break; 7045 // File-scope asm is ignored during device-side OpenMP compilation. 7046 if (LangOpts.OpenMPIsTargetDevice) 7047 break; 7048 // File-scope asm is ignored during device-side SYCL compilation. 7049 if (LangOpts.SYCLIsDevice) 7050 break; 7051 auto *AD = cast<FileScopeAsmDecl>(D); 7052 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 7053 break; 7054 } 7055 7056 case Decl::TopLevelStmt: 7057 EmitTopLevelStmt(cast<TopLevelStmtDecl>(D)); 7058 break; 7059 7060 case Decl::Import: { 7061 auto *Import = cast<ImportDecl>(D); 7062 7063 // If we've already imported this module, we're done. 7064 if (!ImportedModules.insert(Import->getImportedModule())) 7065 break; 7066 7067 // Emit debug information for direct imports. 7068 if (!Import->getImportedOwningModule()) { 7069 if (CGDebugInfo *DI = getModuleDebugInfo()) 7070 DI->EmitImportDecl(*Import); 7071 } 7072 7073 // For C++ standard modules we are done - we will call the module 7074 // initializer for imported modules, and that will likewise call those for 7075 // any imports it has. 7076 if (CXX20ModuleInits && Import->getImportedOwningModule() && 7077 !Import->getImportedOwningModule()->isModuleMapModule()) 7078 break; 7079 7080 // For clang C++ module map modules the initializers for sub-modules are 7081 // emitted here. 7082 7083 // Find all of the submodules and emit the module initializers. 7084 llvm::SmallPtrSet<clang::Module *, 16> Visited; 7085 SmallVector<clang::Module *, 16> Stack; 7086 Visited.insert(Import->getImportedModule()); 7087 Stack.push_back(Import->getImportedModule()); 7088 7089 while (!Stack.empty()) { 7090 clang::Module *Mod = Stack.pop_back_val(); 7091 if (!EmittedModuleInitializers.insert(Mod).second) 7092 continue; 7093 7094 for (auto *D : Context.getModuleInitializers(Mod)) 7095 EmitTopLevelDecl(D); 7096 7097 // Visit the submodules of this module. 7098 for (auto *Submodule : Mod->submodules()) { 7099 // Skip explicit children; they need to be explicitly imported to emit 7100 // the initializers. 7101 if (Submodule->IsExplicit) 7102 continue; 7103 7104 if (Visited.insert(Submodule).second) 7105 Stack.push_back(Submodule); 7106 } 7107 } 7108 break; 7109 } 7110 7111 case Decl::Export: 7112 EmitDeclContext(cast<ExportDecl>(D)); 7113 break; 7114 7115 case Decl::OMPThreadPrivate: 7116 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 7117 break; 7118 7119 case Decl::OMPAllocate: 7120 EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D)); 7121 break; 7122 7123 case Decl::OMPDeclareReduction: 7124 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 7125 break; 7126 7127 case Decl::OMPDeclareMapper: 7128 EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D)); 7129 break; 7130 7131 case Decl::OMPRequires: 7132 EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D)); 7133 break; 7134 7135 case Decl::Typedef: 7136 case Decl::TypeAlias: // using foo = bar; [C++11] 7137 if (CGDebugInfo *DI = getModuleDebugInfo()) 7138 DI->EmitAndRetainType( 7139 getContext().getTypedefType(cast<TypedefNameDecl>(D))); 7140 break; 7141 7142 case Decl::Record: 7143 if (CGDebugInfo *DI = getModuleDebugInfo()) 7144 if (cast<RecordDecl>(D)->getDefinition()) 7145 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 7146 break; 7147 7148 case Decl::Enum: 7149 if (CGDebugInfo *DI = getModuleDebugInfo()) 7150 if (cast<EnumDecl>(D)->getDefinition()) 7151 DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D))); 7152 break; 7153 7154 case Decl::HLSLBuffer: 7155 getHLSLRuntime().addBuffer(cast<HLSLBufferDecl>(D)); 7156 break; 7157 7158 default: 7159 // Make sure we handled everything we should, every other kind is a 7160 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 7161 // function. Need to recode Decl::Kind to do that easily. 7162 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 7163 break; 7164 } 7165 } 7166 7167 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 7168 // Do we need to generate coverage mapping? 7169 if (!CodeGenOpts.CoverageMapping) 7170 return; 7171 switch (D->getKind()) { 7172 case Decl::CXXConversion: 7173 case Decl::CXXMethod: 7174 case Decl::Function: 7175 case Decl::ObjCMethod: 7176 case Decl::CXXConstructor: 7177 case Decl::CXXDestructor: { 7178 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 7179 break; 7180 SourceManager &SM = getContext().getSourceManager(); 7181 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc())) 7182 break; 7183 if (!llvm::coverage::SystemHeadersCoverage && 7184 SM.isInSystemHeader(D->getBeginLoc())) 7185 break; 7186 DeferredEmptyCoverageMappingDecls.try_emplace(D, true); 7187 break; 7188 } 7189 default: 7190 break; 7191 }; 7192 } 7193 7194 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 7195 // Do we need to generate coverage mapping? 7196 if (!CodeGenOpts.CoverageMapping) 7197 return; 7198 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 7199 if (Fn->isTemplateInstantiation()) 7200 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 7201 } 7202 DeferredEmptyCoverageMappingDecls.insert_or_assign(D, false); 7203 } 7204 7205 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 7206 // We call takeVector() here to avoid use-after-free. 7207 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 7208 // we deserialize function bodies to emit coverage info for them, and that 7209 // deserializes more declarations. How should we handle that case? 7210 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 7211 if (!Entry.second) 7212 continue; 7213 const Decl *D = Entry.first; 7214 switch (D->getKind()) { 7215 case Decl::CXXConversion: 7216 case Decl::CXXMethod: 7217 case Decl::Function: 7218 case Decl::ObjCMethod: { 7219 CodeGenPGO PGO(*this); 7220 GlobalDecl GD(cast<FunctionDecl>(D)); 7221 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 7222 getFunctionLinkage(GD)); 7223 break; 7224 } 7225 case Decl::CXXConstructor: { 7226 CodeGenPGO PGO(*this); 7227 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 7228 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 7229 getFunctionLinkage(GD)); 7230 break; 7231 } 7232 case Decl::CXXDestructor: { 7233 CodeGenPGO PGO(*this); 7234 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 7235 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 7236 getFunctionLinkage(GD)); 7237 break; 7238 } 7239 default: 7240 break; 7241 }; 7242 } 7243 } 7244 7245 void CodeGenModule::EmitMainVoidAlias() { 7246 // In order to transition away from "__original_main" gracefully, emit an 7247 // alias for "main" in the no-argument case so that libc can detect when 7248 // new-style no-argument main is in used. 7249 if (llvm::Function *F = getModule().getFunction("main")) { 7250 if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() && 7251 F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) { 7252 auto *GA = llvm::GlobalAlias::create("__main_void", F); 7253 GA->setVisibility(llvm::GlobalValue::HiddenVisibility); 7254 } 7255 } 7256 } 7257 7258 /// Turns the given pointer into a constant. 7259 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 7260 const void *Ptr) { 7261 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 7262 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 7263 return llvm::ConstantInt::get(i64, PtrInt); 7264 } 7265 7266 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 7267 llvm::NamedMDNode *&GlobalMetadata, 7268 GlobalDecl D, 7269 llvm::GlobalValue *Addr) { 7270 if (!GlobalMetadata) 7271 GlobalMetadata = 7272 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 7273 7274 // TODO: should we report variant information for ctors/dtors? 7275 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 7276 llvm::ConstantAsMetadata::get(GetPointerConstant( 7277 CGM.getLLVMContext(), D.getDecl()))}; 7278 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 7279 } 7280 7281 bool CodeGenModule::CheckAndReplaceExternCIFuncs(llvm::GlobalValue *Elem, 7282 llvm::GlobalValue *CppFunc) { 7283 // Store the list of ifuncs we need to replace uses in. 7284 llvm::SmallVector<llvm::GlobalIFunc *> IFuncs; 7285 // List of ConstantExprs that we should be able to delete when we're done 7286 // here. 7287 llvm::SmallVector<llvm::ConstantExpr *> CEs; 7288 7289 // It isn't valid to replace the extern-C ifuncs if all we find is itself! 7290 if (Elem == CppFunc) 7291 return false; 7292 7293 // First make sure that all users of this are ifuncs (or ifuncs via a 7294 // bitcast), and collect the list of ifuncs and CEs so we can work on them 7295 // later. 7296 for (llvm::User *User : Elem->users()) { 7297 // Users can either be a bitcast ConstExpr that is used by the ifuncs, OR an 7298 // ifunc directly. In any other case, just give up, as we don't know what we 7299 // could break by changing those. 7300 if (auto *ConstExpr = dyn_cast<llvm::ConstantExpr>(User)) { 7301 if (ConstExpr->getOpcode() != llvm::Instruction::BitCast) 7302 return false; 7303 7304 for (llvm::User *CEUser : ConstExpr->users()) { 7305 if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(CEUser)) { 7306 IFuncs.push_back(IFunc); 7307 } else { 7308 return false; 7309 } 7310 } 7311 CEs.push_back(ConstExpr); 7312 } else if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(User)) { 7313 IFuncs.push_back(IFunc); 7314 } else { 7315 // This user is one we don't know how to handle, so fail redirection. This 7316 // will result in an ifunc retaining a resolver name that will ultimately 7317 // fail to be resolved to a defined function. 7318 return false; 7319 } 7320 } 7321 7322 // Now we know this is a valid case where we can do this alias replacement, we 7323 // need to remove all of the references to Elem (and the bitcasts!) so we can 7324 // delete it. 7325 for (llvm::GlobalIFunc *IFunc : IFuncs) 7326 IFunc->setResolver(nullptr); 7327 for (llvm::ConstantExpr *ConstExpr : CEs) 7328 ConstExpr->destroyConstant(); 7329 7330 // We should now be out of uses for the 'old' version of this function, so we 7331 // can erase it as well. 7332 Elem->eraseFromParent(); 7333 7334 for (llvm::GlobalIFunc *IFunc : IFuncs) { 7335 // The type of the resolver is always just a function-type that returns the 7336 // type of the IFunc, so create that here. If the type of the actual 7337 // resolver doesn't match, it just gets bitcast to the right thing. 7338 auto *ResolverTy = 7339 llvm::FunctionType::get(IFunc->getType(), /*isVarArg*/ false); 7340 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 7341 CppFunc->getName(), ResolverTy, {}, /*ForVTable*/ false); 7342 IFunc->setResolver(Resolver); 7343 } 7344 return true; 7345 } 7346 7347 /// For each function which is declared within an extern "C" region and marked 7348 /// as 'used', but has internal linkage, create an alias from the unmangled 7349 /// name to the mangled name if possible. People expect to be able to refer 7350 /// to such functions with an unmangled name from inline assembly within the 7351 /// same translation unit. 7352 void CodeGenModule::EmitStaticExternCAliases() { 7353 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases()) 7354 return; 7355 for (auto &I : StaticExternCValues) { 7356 const IdentifierInfo *Name = I.first; 7357 llvm::GlobalValue *Val = I.second; 7358 7359 // If Val is null, that implies there were multiple declarations that each 7360 // had a claim to the unmangled name. In this case, generation of the alias 7361 // is suppressed. See CodeGenModule::MaybeHandleStaticInExternC. 7362 if (!Val) 7363 break; 7364 7365 llvm::GlobalValue *ExistingElem = 7366 getModule().getNamedValue(Name->getName()); 7367 7368 // If there is either not something already by this name, or we were able to 7369 // replace all uses from IFuncs, create the alias. 7370 if (!ExistingElem || CheckAndReplaceExternCIFuncs(ExistingElem, Val)) 7371 addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 7372 } 7373 } 7374 7375 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 7376 GlobalDecl &Result) const { 7377 auto Res = Manglings.find(MangledName); 7378 if (Res == Manglings.end()) 7379 return false; 7380 Result = Res->getValue(); 7381 return true; 7382 } 7383 7384 /// Emits metadata nodes associating all the global values in the 7385 /// current module with the Decls they came from. This is useful for 7386 /// projects using IR gen as a subroutine. 7387 /// 7388 /// Since there's currently no way to associate an MDNode directly 7389 /// with an llvm::GlobalValue, we create a global named metadata 7390 /// with the name 'clang.global.decl.ptrs'. 7391 void CodeGenModule::EmitDeclMetadata() { 7392 llvm::NamedMDNode *GlobalMetadata = nullptr; 7393 7394 for (auto &I : MangledDeclNames) { 7395 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 7396 // Some mangled names don't necessarily have an associated GlobalValue 7397 // in this module, e.g. if we mangled it for DebugInfo. 7398 if (Addr) 7399 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 7400 } 7401 } 7402 7403 /// Emits metadata nodes for all the local variables in the current 7404 /// function. 7405 void CodeGenFunction::EmitDeclMetadata() { 7406 if (LocalDeclMap.empty()) return; 7407 7408 llvm::LLVMContext &Context = getLLVMContext(); 7409 7410 // Find the unique metadata ID for this name. 7411 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 7412 7413 llvm::NamedMDNode *GlobalMetadata = nullptr; 7414 7415 for (auto &I : LocalDeclMap) { 7416 const Decl *D = I.first; 7417 llvm::Value *Addr = I.second.emitRawPointer(*this); 7418 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 7419 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 7420 Alloca->setMetadata( 7421 DeclPtrKind, llvm::MDNode::get( 7422 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 7423 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 7424 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 7425 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 7426 } 7427 } 7428 } 7429 7430 void CodeGenModule::EmitVersionIdentMetadata() { 7431 llvm::NamedMDNode *IdentMetadata = 7432 TheModule.getOrInsertNamedMetadata("llvm.ident"); 7433 std::string Version = getClangFullVersion(); 7434 llvm::LLVMContext &Ctx = TheModule.getContext(); 7435 7436 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 7437 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 7438 } 7439 7440 void CodeGenModule::EmitCommandLineMetadata() { 7441 llvm::NamedMDNode *CommandLineMetadata = 7442 TheModule.getOrInsertNamedMetadata("llvm.commandline"); 7443 std::string CommandLine = getCodeGenOpts().RecordCommandLine; 7444 llvm::LLVMContext &Ctx = TheModule.getContext(); 7445 7446 llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)}; 7447 CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode)); 7448 } 7449 7450 void CodeGenModule::EmitCoverageFile() { 7451 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 7452 if (!CUNode) 7453 return; 7454 7455 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 7456 llvm::LLVMContext &Ctx = TheModule.getContext(); 7457 auto *CoverageDataFile = 7458 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 7459 auto *CoverageNotesFile = 7460 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 7461 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 7462 llvm::MDNode *CU = CUNode->getOperand(i); 7463 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 7464 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 7465 } 7466 } 7467 7468 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 7469 bool ForEH) { 7470 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 7471 // FIXME: should we even be calling this method if RTTI is disabled 7472 // and it's not for EH? 7473 if (!shouldEmitRTTI(ForEH)) 7474 return llvm::Constant::getNullValue(GlobalsInt8PtrTy); 7475 7476 if (ForEH && Ty->isObjCObjectPointerType() && 7477 LangOpts.ObjCRuntime.isGNUFamily()) 7478 return ObjCRuntime->GetEHType(Ty); 7479 7480 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 7481 } 7482 7483 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 7484 // Do not emit threadprivates in simd-only mode. 7485 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 7486 return; 7487 for (auto RefExpr : D->varlists()) { 7488 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 7489 bool PerformInit = 7490 VD->getAnyInitializer() && 7491 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 7492 /*ForRef=*/false); 7493 7494 Address Addr(GetAddrOfGlobalVar(VD), 7495 getTypes().ConvertTypeForMem(VD->getType()), 7496 getContext().getDeclAlign(VD)); 7497 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 7498 VD, Addr, RefExpr->getBeginLoc(), PerformInit)) 7499 CXXGlobalInits.push_back(InitFunction); 7500 } 7501 } 7502 7503 llvm::Metadata * 7504 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map, 7505 StringRef Suffix) { 7506 if (auto *FnType = T->getAs<FunctionProtoType>()) 7507 T = getContext().getFunctionType( 7508 FnType->getReturnType(), FnType->getParamTypes(), 7509 FnType->getExtProtoInfo().withExceptionSpec(EST_None)); 7510 7511 llvm::Metadata *&InternalId = Map[T.getCanonicalType()]; 7512 if (InternalId) 7513 return InternalId; 7514 7515 if (isExternallyVisible(T->getLinkage())) { 7516 std::string OutName; 7517 llvm::raw_string_ostream Out(OutName); 7518 getCXXABI().getMangleContext().mangleCanonicalTypeName( 7519 T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers); 7520 7521 if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers) 7522 Out << ".normalized"; 7523 7524 Out << Suffix; 7525 7526 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 7527 } else { 7528 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 7529 llvm::ArrayRef<llvm::Metadata *>()); 7530 } 7531 7532 return InternalId; 7533 } 7534 7535 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 7536 return CreateMetadataIdentifierImpl(T, MetadataIdMap, ""); 7537 } 7538 7539 llvm::Metadata * 7540 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) { 7541 return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual"); 7542 } 7543 7544 // Generalize pointer types to a void pointer with the qualifiers of the 7545 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 7546 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 7547 // 'void *'. 7548 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 7549 if (!Ty->isPointerType()) 7550 return Ty; 7551 7552 return Ctx.getPointerType( 7553 QualType(Ctx.VoidTy).withCVRQualifiers( 7554 Ty->getPointeeType().getCVRQualifiers())); 7555 } 7556 7557 // Apply type generalization to a FunctionType's return and argument types 7558 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 7559 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 7560 SmallVector<QualType, 8> GeneralizedParams; 7561 for (auto &Param : FnType->param_types()) 7562 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 7563 7564 return Ctx.getFunctionType( 7565 GeneralizeType(Ctx, FnType->getReturnType()), 7566 GeneralizedParams, FnType->getExtProtoInfo()); 7567 } 7568 7569 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 7570 return Ctx.getFunctionNoProtoType( 7571 GeneralizeType(Ctx, FnType->getReturnType())); 7572 7573 llvm_unreachable("Encountered unknown FunctionType"); 7574 } 7575 7576 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 7577 return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T), 7578 GeneralizedMetadataIdMap, ".generalized"); 7579 } 7580 7581 /// Returns whether this module needs the "all-vtables" type identifier. 7582 bool CodeGenModule::NeedAllVtablesTypeId() const { 7583 // Returns true if at least one of vtable-based CFI checkers is enabled and 7584 // is not in the trapping mode. 7585 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 7586 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 7587 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 7588 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 7589 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 7590 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 7591 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 7592 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 7593 } 7594 7595 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 7596 CharUnits Offset, 7597 const CXXRecordDecl *RD) { 7598 llvm::Metadata *MD = 7599 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 7600 VTable->addTypeMetadata(Offset.getQuantity(), MD); 7601 7602 if (CodeGenOpts.SanitizeCfiCrossDso) 7603 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 7604 VTable->addTypeMetadata(Offset.getQuantity(), 7605 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 7606 7607 if (NeedAllVtablesTypeId()) { 7608 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 7609 VTable->addTypeMetadata(Offset.getQuantity(), MD); 7610 } 7611 } 7612 7613 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 7614 if (!SanStats) 7615 SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule()); 7616 7617 return *SanStats; 7618 } 7619 7620 llvm::Value * 7621 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 7622 CodeGenFunction &CGF) { 7623 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 7624 auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 7625 auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 7626 auto *Call = CGF.EmitRuntimeCall( 7627 CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C}); 7628 return Call; 7629 } 7630 7631 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment( 7632 QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) { 7633 return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo, 7634 /* forPointeeType= */ true); 7635 } 7636 7637 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T, 7638 LValueBaseInfo *BaseInfo, 7639 TBAAAccessInfo *TBAAInfo, 7640 bool forPointeeType) { 7641 if (TBAAInfo) 7642 *TBAAInfo = getTBAAAccessInfo(T); 7643 7644 // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But 7645 // that doesn't return the information we need to compute BaseInfo. 7646 7647 // Honor alignment typedef attributes even on incomplete types. 7648 // We also honor them straight for C++ class types, even as pointees; 7649 // there's an expressivity gap here. 7650 if (auto TT = T->getAs<TypedefType>()) { 7651 if (auto Align = TT->getDecl()->getMaxAlignment()) { 7652 if (BaseInfo) 7653 *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType); 7654 return getContext().toCharUnitsFromBits(Align); 7655 } 7656 } 7657 7658 bool AlignForArray = T->isArrayType(); 7659 7660 // Analyze the base element type, so we don't get confused by incomplete 7661 // array types. 7662 T = getContext().getBaseElementType(T); 7663 7664 if (T->isIncompleteType()) { 7665 // We could try to replicate the logic from 7666 // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the 7667 // type is incomplete, so it's impossible to test. We could try to reuse 7668 // getTypeAlignIfKnown, but that doesn't return the information we need 7669 // to set BaseInfo. So just ignore the possibility that the alignment is 7670 // greater than one. 7671 if (BaseInfo) 7672 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 7673 return CharUnits::One(); 7674 } 7675 7676 if (BaseInfo) 7677 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 7678 7679 CharUnits Alignment; 7680 const CXXRecordDecl *RD; 7681 if (T.getQualifiers().hasUnaligned()) { 7682 Alignment = CharUnits::One(); 7683 } else if (forPointeeType && !AlignForArray && 7684 (RD = T->getAsCXXRecordDecl())) { 7685 // For C++ class pointees, we don't know whether we're pointing at a 7686 // base or a complete object, so we generally need to use the 7687 // non-virtual alignment. 7688 Alignment = getClassPointerAlignment(RD); 7689 } else { 7690 Alignment = getContext().getTypeAlignInChars(T); 7691 } 7692 7693 // Cap to the global maximum type alignment unless the alignment 7694 // was somehow explicit on the type. 7695 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 7696 if (Alignment.getQuantity() > MaxAlign && 7697 !getContext().isAlignmentRequired(T)) 7698 Alignment = CharUnits::fromQuantity(MaxAlign); 7699 } 7700 return Alignment; 7701 } 7702 7703 bool CodeGenModule::stopAutoInit() { 7704 unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter; 7705 if (StopAfter) { 7706 // This number is positive only when -ftrivial-auto-var-init-stop-after=* is 7707 // used 7708 if (NumAutoVarInit >= StopAfter) { 7709 return true; 7710 } 7711 if (!NumAutoVarInit) { 7712 unsigned DiagID = getDiags().getCustomDiagID( 7713 DiagnosticsEngine::Warning, 7714 "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the " 7715 "number of times ftrivial-auto-var-init=%1 gets applied."); 7716 getDiags().Report(DiagID) 7717 << StopAfter 7718 << (getContext().getLangOpts().getTrivialAutoVarInit() == 7719 LangOptions::TrivialAutoVarInitKind::Zero 7720 ? "zero" 7721 : "pattern"); 7722 } 7723 ++NumAutoVarInit; 7724 } 7725 return false; 7726 } 7727 7728 void CodeGenModule::printPostfixForExternalizedDecl(llvm::raw_ostream &OS, 7729 const Decl *D) const { 7730 // ptxas does not allow '.' in symbol names. On the other hand, HIP prefers 7731 // postfix beginning with '.' since the symbol name can be demangled. 7732 if (LangOpts.HIP) 7733 OS << (isa<VarDecl>(D) ? ".static." : ".intern."); 7734 else 7735 OS << (isa<VarDecl>(D) ? "__static__" : "__intern__"); 7736 7737 // If the CUID is not specified we try to generate a unique postfix. 7738 if (getLangOpts().CUID.empty()) { 7739 SourceManager &SM = getContext().getSourceManager(); 7740 PresumedLoc PLoc = SM.getPresumedLoc(D->getLocation()); 7741 assert(PLoc.isValid() && "Source location is expected to be valid."); 7742 7743 // Get the hash of the user defined macros. 7744 llvm::MD5 Hash; 7745 llvm::MD5::MD5Result Result; 7746 for (const auto &Arg : PreprocessorOpts.Macros) 7747 Hash.update(Arg.first); 7748 Hash.final(Result); 7749 7750 // Get the UniqueID for the file containing the decl. 7751 llvm::sys::fs::UniqueID ID; 7752 if (llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) { 7753 PLoc = SM.getPresumedLoc(D->getLocation(), /*UseLineDirectives=*/false); 7754 assert(PLoc.isValid() && "Source location is expected to be valid."); 7755 if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) 7756 SM.getDiagnostics().Report(diag::err_cannot_open_file) 7757 << PLoc.getFilename() << EC.message(); 7758 } 7759 OS << llvm::format("%x", ID.getFile()) << llvm::format("%x", ID.getDevice()) 7760 << "_" << llvm::utohexstr(Result.low(), /*LowerCase=*/true, /*Width=*/8); 7761 } else { 7762 OS << getContext().getCUIDHash(); 7763 } 7764 } 7765 7766 void CodeGenModule::moveLazyEmissionStates(CodeGenModule *NewBuilder) { 7767 assert(DeferredDeclsToEmit.empty() && 7768 "Should have emitted all decls deferred to emit."); 7769 assert(NewBuilder->DeferredDecls.empty() && 7770 "Newly created module should not have deferred decls"); 7771 NewBuilder->DeferredDecls = std::move(DeferredDecls); 7772 assert(EmittedDeferredDecls.empty() && 7773 "Still have (unmerged) EmittedDeferredDecls deferred decls"); 7774 7775 assert(NewBuilder->DeferredVTables.empty() && 7776 "Newly created module should not have deferred vtables"); 7777 NewBuilder->DeferredVTables = std::move(DeferredVTables); 7778 7779 assert(NewBuilder->MangledDeclNames.empty() && 7780 "Newly created module should not have mangled decl names"); 7781 assert(NewBuilder->Manglings.empty() && 7782 "Newly created module should not have manglings"); 7783 NewBuilder->Manglings = std::move(Manglings); 7784 7785 NewBuilder->WeakRefReferences = std::move(WeakRefReferences); 7786 7787 NewBuilder->TBAA = std::move(TBAA); 7788 7789 NewBuilder->ABI->MangleCtx = std::move(ABI->MangleCtx); 7790 } 7791