1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGBlocks.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGCall.h" 19 #include "CGDebugInfo.h" 20 #include "CGObjCRuntime.h" 21 #include "CGOpenCLRuntime.h" 22 #include "CGOpenMPRuntime.h" 23 #include "CGOpenMPRuntimeNVPTX.h" 24 #include "CodeGenFunction.h" 25 #include "CodeGenPGO.h" 26 #include "CodeGenTBAA.h" 27 #include "CoverageMappingGen.h" 28 #include "TargetInfo.h" 29 #include "clang/AST/ASTContext.h" 30 #include "clang/AST/CharUnits.h" 31 #include "clang/AST/DeclCXX.h" 32 #include "clang/AST/DeclObjC.h" 33 #include "clang/AST/DeclTemplate.h" 34 #include "clang/AST/Mangle.h" 35 #include "clang/AST/RecordLayout.h" 36 #include "clang/AST/RecursiveASTVisitor.h" 37 #include "clang/Basic/Builtins.h" 38 #include "clang/Basic/CharInfo.h" 39 #include "clang/Basic/Diagnostic.h" 40 #include "clang/Basic/Module.h" 41 #include "clang/Basic/SourceManager.h" 42 #include "clang/Basic/TargetInfo.h" 43 #include "clang/Basic/Version.h" 44 #include "clang/Frontend/CodeGenOptions.h" 45 #include "clang/Sema/SemaDiagnostic.h" 46 #include "llvm/ADT/APSInt.h" 47 #include "llvm/ADT/Triple.h" 48 #include "llvm/IR/CallSite.h" 49 #include "llvm/IR/CallingConv.h" 50 #include "llvm/IR/DataLayout.h" 51 #include "llvm/IR/Intrinsics.h" 52 #include "llvm/IR/LLVMContext.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/ProfileData/InstrProfReader.h" 55 #include "llvm/Support/ConvertUTF.h" 56 #include "llvm/Support/ErrorHandling.h" 57 #include "llvm/Support/MD5.h" 58 59 using namespace clang; 60 using namespace CodeGen; 61 62 static const char AnnotationSection[] = "llvm.metadata"; 63 64 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 65 switch (CGM.getTarget().getCXXABI().getKind()) { 66 case TargetCXXABI::GenericAArch64: 67 case TargetCXXABI::GenericARM: 68 case TargetCXXABI::iOS: 69 case TargetCXXABI::iOS64: 70 case TargetCXXABI::WatchOS: 71 case TargetCXXABI::GenericMIPS: 72 case TargetCXXABI::GenericItanium: 73 case TargetCXXABI::WebAssembly: 74 return CreateItaniumCXXABI(CGM); 75 case TargetCXXABI::Microsoft: 76 return CreateMicrosoftCXXABI(CGM); 77 } 78 79 llvm_unreachable("invalid C++ ABI kind"); 80 } 81 82 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 83 const PreprocessorOptions &PPO, 84 const CodeGenOptions &CGO, llvm::Module &M, 85 DiagnosticsEngine &diags, 86 CoverageSourceInfo *CoverageInfo) 87 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 88 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 89 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 90 VMContext(M.getContext()), Types(*this), VTables(*this), 91 SanitizerMD(new SanitizerMetadata(*this)) { 92 93 // Initialize the type cache. 94 llvm::LLVMContext &LLVMContext = M.getContext(); 95 VoidTy = llvm::Type::getVoidTy(LLVMContext); 96 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 97 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 98 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 99 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 100 FloatTy = llvm::Type::getFloatTy(LLVMContext); 101 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 102 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 103 PointerAlignInBytes = 104 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 105 IntAlignInBytes = 106 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 107 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 108 IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits); 109 Int8PtrTy = Int8Ty->getPointerTo(0); 110 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 111 112 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 113 BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC(); 114 115 if (LangOpts.ObjC1) 116 createObjCRuntime(); 117 if (LangOpts.OpenCL) 118 createOpenCLRuntime(); 119 if (LangOpts.OpenMP) 120 createOpenMPRuntime(); 121 if (LangOpts.CUDA) 122 createCUDARuntime(); 123 124 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 125 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 126 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 127 TBAA.reset(new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(), 128 getCXXABI().getMangleContext())); 129 130 // If debug info or coverage generation is enabled, create the CGDebugInfo 131 // object. 132 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 133 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 134 DebugInfo.reset(new CGDebugInfo(*this)); 135 136 Block.GlobalUniqueCount = 0; 137 138 if (C.getLangOpts().ObjC1) 139 ObjCData.reset(new ObjCEntrypoints()); 140 141 if (CodeGenOpts.hasProfileClangUse()) { 142 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 143 CodeGenOpts.ProfileInstrumentUsePath); 144 if (auto E = ReaderOrErr.takeError()) { 145 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 146 "Could not read profile %0: %1"); 147 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) { 148 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 149 << EI.message(); 150 }); 151 } else 152 PGOReader = std::move(ReaderOrErr.get()); 153 } 154 155 // If coverage mapping generation is enabled, create the 156 // CoverageMappingModuleGen object. 157 if (CodeGenOpts.CoverageMapping) 158 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 159 } 160 161 CodeGenModule::~CodeGenModule() {} 162 163 void CodeGenModule::createObjCRuntime() { 164 // This is just isGNUFamily(), but we want to force implementors of 165 // new ABIs to decide how best to do this. 166 switch (LangOpts.ObjCRuntime.getKind()) { 167 case ObjCRuntime::GNUstep: 168 case ObjCRuntime::GCC: 169 case ObjCRuntime::ObjFW: 170 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 171 return; 172 173 case ObjCRuntime::FragileMacOSX: 174 case ObjCRuntime::MacOSX: 175 case ObjCRuntime::iOS: 176 case ObjCRuntime::WatchOS: 177 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 178 return; 179 } 180 llvm_unreachable("bad runtime kind"); 181 } 182 183 void CodeGenModule::createOpenCLRuntime() { 184 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 185 } 186 187 void CodeGenModule::createOpenMPRuntime() { 188 // Select a specialized code generation class based on the target, if any. 189 // If it does not exist use the default implementation. 190 switch (getTarget().getTriple().getArch()) { 191 192 case llvm::Triple::nvptx: 193 case llvm::Triple::nvptx64: 194 assert(getLangOpts().OpenMPIsDevice && 195 "OpenMP NVPTX is only prepared to deal with device code."); 196 OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this)); 197 break; 198 default: 199 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 200 break; 201 } 202 } 203 204 void CodeGenModule::createCUDARuntime() { 205 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 206 } 207 208 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 209 Replacements[Name] = C; 210 } 211 212 void CodeGenModule::applyReplacements() { 213 for (auto &I : Replacements) { 214 StringRef MangledName = I.first(); 215 llvm::Constant *Replacement = I.second; 216 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 217 if (!Entry) 218 continue; 219 auto *OldF = cast<llvm::Function>(Entry); 220 auto *NewF = dyn_cast<llvm::Function>(Replacement); 221 if (!NewF) { 222 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 223 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 224 } else { 225 auto *CE = cast<llvm::ConstantExpr>(Replacement); 226 assert(CE->getOpcode() == llvm::Instruction::BitCast || 227 CE->getOpcode() == llvm::Instruction::GetElementPtr); 228 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 229 } 230 } 231 232 // Replace old with new, but keep the old order. 233 OldF->replaceAllUsesWith(Replacement); 234 if (NewF) { 235 NewF->removeFromParent(); 236 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 237 NewF); 238 } 239 OldF->eraseFromParent(); 240 } 241 } 242 243 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 244 GlobalValReplacements.push_back(std::make_pair(GV, C)); 245 } 246 247 void CodeGenModule::applyGlobalValReplacements() { 248 for (auto &I : GlobalValReplacements) { 249 llvm::GlobalValue *GV = I.first; 250 llvm::Constant *C = I.second; 251 252 GV->replaceAllUsesWith(C); 253 GV->eraseFromParent(); 254 } 255 } 256 257 // This is only used in aliases that we created and we know they have a 258 // linear structure. 259 static const llvm::GlobalObject *getAliasedGlobal( 260 const llvm::GlobalIndirectSymbol &GIS) { 261 llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited; 262 const llvm::Constant *C = &GIS; 263 for (;;) { 264 C = C->stripPointerCasts(); 265 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 266 return GO; 267 // stripPointerCasts will not walk over weak aliases. 268 auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C); 269 if (!GIS2) 270 return nullptr; 271 if (!Visited.insert(GIS2).second) 272 return nullptr; 273 C = GIS2->getIndirectSymbol(); 274 } 275 } 276 277 void CodeGenModule::checkAliases() { 278 // Check if the constructed aliases are well formed. It is really unfortunate 279 // that we have to do this in CodeGen, but we only construct mangled names 280 // and aliases during codegen. 281 bool Error = false; 282 DiagnosticsEngine &Diags = getDiags(); 283 for (const GlobalDecl &GD : Aliases) { 284 const auto *D = cast<ValueDecl>(GD.getDecl()); 285 SourceLocation Location; 286 bool IsIFunc = D->hasAttr<IFuncAttr>(); 287 if (const Attr *A = D->getDefiningAttr()) 288 Location = A->getLocation(); 289 else 290 llvm_unreachable("Not an alias or ifunc?"); 291 StringRef MangledName = getMangledName(GD); 292 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 293 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry); 294 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 295 if (!GV) { 296 Error = true; 297 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 298 } else if (GV->isDeclaration()) { 299 Error = true; 300 Diags.Report(Location, diag::err_alias_to_undefined) 301 << IsIFunc << IsIFunc; 302 } else if (IsIFunc) { 303 // Check resolver function type. 304 llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>( 305 GV->getType()->getPointerElementType()); 306 assert(FTy); 307 if (!FTy->getReturnType()->isPointerTy()) 308 Diags.Report(Location, diag::err_ifunc_resolver_return); 309 if (FTy->getNumParams()) 310 Diags.Report(Location, diag::err_ifunc_resolver_params); 311 } 312 313 llvm::Constant *Aliasee = Alias->getIndirectSymbol(); 314 llvm::GlobalValue *AliaseeGV; 315 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 316 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 317 else 318 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 319 320 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 321 StringRef AliasSection = SA->getName(); 322 if (AliasSection != AliaseeGV->getSection()) 323 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 324 << AliasSection << IsIFunc << IsIFunc; 325 } 326 327 // We have to handle alias to weak aliases in here. LLVM itself disallows 328 // this since the object semantics would not match the IL one. For 329 // compatibility with gcc we implement it by just pointing the alias 330 // to its aliasee's aliasee. We also warn, since the user is probably 331 // expecting the link to be weak. 332 if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) { 333 if (GA->isInterposable()) { 334 Diags.Report(Location, diag::warn_alias_to_weak_alias) 335 << GV->getName() << GA->getName() << IsIFunc; 336 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 337 GA->getIndirectSymbol(), Alias->getType()); 338 Alias->setIndirectSymbol(Aliasee); 339 } 340 } 341 } 342 if (!Error) 343 return; 344 345 for (const GlobalDecl &GD : Aliases) { 346 StringRef MangledName = getMangledName(GD); 347 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 348 auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry); 349 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 350 Alias->eraseFromParent(); 351 } 352 } 353 354 void CodeGenModule::clear() { 355 DeferredDeclsToEmit.clear(); 356 if (OpenMPRuntime) 357 OpenMPRuntime->clear(); 358 } 359 360 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 361 StringRef MainFile) { 362 if (!hasDiagnostics()) 363 return; 364 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 365 if (MainFile.empty()) 366 MainFile = "<stdin>"; 367 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 368 } else 369 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Missing 370 << Mismatched; 371 } 372 373 void CodeGenModule::Release() { 374 EmitDeferred(); 375 applyGlobalValReplacements(); 376 applyReplacements(); 377 checkAliases(); 378 EmitCXXGlobalInitFunc(); 379 EmitCXXGlobalDtorFunc(); 380 EmitCXXThreadLocalInitFunc(); 381 if (ObjCRuntime) 382 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 383 AddGlobalCtor(ObjCInitFunction); 384 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice && 385 CUDARuntime) { 386 if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction()) 387 AddGlobalCtor(CudaCtorFunction); 388 if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction()) 389 AddGlobalDtor(CudaDtorFunction); 390 } 391 if (OpenMPRuntime) 392 if (llvm::Function *OpenMPRegistrationFunction = 393 OpenMPRuntime->emitRegistrationFunction()) 394 AddGlobalCtor(OpenMPRegistrationFunction, 0); 395 if (PGOReader) { 396 getModule().setMaximumFunctionCount(PGOReader->getMaximumFunctionCount()); 397 getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext)); 398 if (PGOStats.hasDiagnostics()) 399 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 400 } 401 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 402 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 403 EmitGlobalAnnotations(); 404 EmitStaticExternCAliases(); 405 EmitDeferredUnusedCoverageMappings(); 406 if (CoverageMapping) 407 CoverageMapping->emit(); 408 if (CodeGenOpts.SanitizeCfiCrossDso) 409 CodeGenFunction(*this).EmitCfiCheckFail(); 410 emitLLVMUsed(); 411 if (SanStats) 412 SanStats->finish(); 413 414 if (CodeGenOpts.Autolink && 415 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 416 EmitModuleLinkOptions(); 417 } 418 if (CodeGenOpts.DwarfVersion) { 419 // We actually want the latest version when there are conflicts. 420 // We can change from Warning to Latest if such mode is supported. 421 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 422 CodeGenOpts.DwarfVersion); 423 } 424 if (CodeGenOpts.EmitCodeView) { 425 // Indicate that we want CodeView in the metadata. 426 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 427 } 428 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 429 // We don't support LTO with 2 with different StrictVTablePointers 430 // FIXME: we could support it by stripping all the information introduced 431 // by StrictVTablePointers. 432 433 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 434 435 llvm::Metadata *Ops[2] = { 436 llvm::MDString::get(VMContext, "StrictVTablePointers"), 437 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 438 llvm::Type::getInt32Ty(VMContext), 1))}; 439 440 getModule().addModuleFlag(llvm::Module::Require, 441 "StrictVTablePointersRequirement", 442 llvm::MDNode::get(VMContext, Ops)); 443 } 444 if (DebugInfo) 445 // We support a single version in the linked module. The LLVM 446 // parser will drop debug info with a different version number 447 // (and warn about it, too). 448 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 449 llvm::DEBUG_METADATA_VERSION); 450 451 // We need to record the widths of enums and wchar_t, so that we can generate 452 // the correct build attributes in the ARM backend. 453 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 454 if ( Arch == llvm::Triple::arm 455 || Arch == llvm::Triple::armeb 456 || Arch == llvm::Triple::thumb 457 || Arch == llvm::Triple::thumbeb) { 458 // Width of wchar_t in bytes 459 uint64_t WCharWidth = 460 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 461 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 462 463 // The minimum width of an enum in bytes 464 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 465 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 466 } 467 468 if (CodeGenOpts.SanitizeCfiCrossDso) { 469 // Indicate that we want cross-DSO control flow integrity checks. 470 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 471 } 472 473 if (LangOpts.CUDAIsDevice && getTarget().getTriple().isNVPTX()) { 474 // Indicate whether __nvvm_reflect should be configured to flush denormal 475 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 476 // property.) 477 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 478 LangOpts.CUDADeviceFlushDenormalsToZero ? 1 : 0); 479 } 480 481 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 482 assert(PLevel < 3 && "Invalid PIC Level"); 483 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 484 } 485 486 if (uint32_t PLevel = Context.getLangOpts().PIELevel) { 487 assert(PLevel < 3 && "Invalid PIE Level"); 488 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 489 } 490 491 SimplifyPersonality(); 492 493 if (getCodeGenOpts().EmitDeclMetadata) 494 EmitDeclMetadata(); 495 496 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 497 EmitCoverageFile(); 498 499 if (DebugInfo) 500 DebugInfo->finalize(); 501 502 EmitVersionIdentMetadata(); 503 504 EmitTargetMetadata(); 505 } 506 507 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 508 // Make sure that this type is translated. 509 Types.UpdateCompletedType(TD); 510 } 511 512 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 513 // Make sure that this type is translated. 514 Types.RefreshTypeCacheForClass(RD); 515 } 516 517 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 518 if (!TBAA) 519 return nullptr; 520 return TBAA->getTBAAInfo(QTy); 521 } 522 523 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() { 524 if (!TBAA) 525 return nullptr; 526 return TBAA->getTBAAInfoForVTablePtr(); 527 } 528 529 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 530 if (!TBAA) 531 return nullptr; 532 return TBAA->getTBAAStructInfo(QTy); 533 } 534 535 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy, 536 llvm::MDNode *AccessN, 537 uint64_t O) { 538 if (!TBAA) 539 return nullptr; 540 return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O); 541 } 542 543 /// Decorate the instruction with a TBAA tag. For both scalar TBAA 544 /// and struct-path aware TBAA, the tag has the same format: 545 /// base type, access type and offset. 546 /// When ConvertTypeToTag is true, we create a tag based on the scalar type. 547 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 548 llvm::MDNode *TBAAInfo, 549 bool ConvertTypeToTag) { 550 if (ConvertTypeToTag && TBAA) 551 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, 552 TBAA->getTBAAScalarTagInfo(TBAAInfo)); 553 else 554 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 555 } 556 557 void CodeGenModule::DecorateInstructionWithInvariantGroup( 558 llvm::Instruction *I, const CXXRecordDecl *RD) { 559 llvm::Metadata *MD = CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 560 auto *MetaDataNode = dyn_cast<llvm::MDNode>(MD); 561 // Check if we have to wrap MDString in MDNode. 562 if (!MetaDataNode) 563 MetaDataNode = llvm::MDNode::get(getLLVMContext(), MD); 564 I->setMetadata(llvm::LLVMContext::MD_invariant_group, MetaDataNode); 565 } 566 567 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 568 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 569 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 570 } 571 572 /// ErrorUnsupported - Print out an error that codegen doesn't support the 573 /// specified stmt yet. 574 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 575 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 576 "cannot compile this %0 yet"); 577 std::string Msg = Type; 578 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 579 << Msg << S->getSourceRange(); 580 } 581 582 /// ErrorUnsupported - Print out an error that codegen doesn't support the 583 /// specified decl yet. 584 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 585 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 586 "cannot compile this %0 yet"); 587 std::string Msg = Type; 588 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 589 } 590 591 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 592 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 593 } 594 595 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 596 const NamedDecl *D) const { 597 // Internal definitions always have default visibility. 598 if (GV->hasLocalLinkage()) { 599 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 600 return; 601 } 602 603 // Set visibility for definitions. 604 LinkageInfo LV = D->getLinkageAndVisibility(); 605 if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 606 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 607 } 608 609 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 610 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 611 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 612 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 613 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 614 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 615 } 616 617 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 618 CodeGenOptions::TLSModel M) { 619 switch (M) { 620 case CodeGenOptions::GeneralDynamicTLSModel: 621 return llvm::GlobalVariable::GeneralDynamicTLSModel; 622 case CodeGenOptions::LocalDynamicTLSModel: 623 return llvm::GlobalVariable::LocalDynamicTLSModel; 624 case CodeGenOptions::InitialExecTLSModel: 625 return llvm::GlobalVariable::InitialExecTLSModel; 626 case CodeGenOptions::LocalExecTLSModel: 627 return llvm::GlobalVariable::LocalExecTLSModel; 628 } 629 llvm_unreachable("Invalid TLS model!"); 630 } 631 632 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 633 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 634 635 llvm::GlobalValue::ThreadLocalMode TLM; 636 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 637 638 // Override the TLS model if it is explicitly specified. 639 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 640 TLM = GetLLVMTLSModel(Attr->getModel()); 641 } 642 643 GV->setThreadLocalMode(TLM); 644 } 645 646 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 647 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 648 649 // Some ABIs don't have constructor variants. Make sure that base and 650 // complete constructors get mangled the same. 651 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 652 if (!getTarget().getCXXABI().hasConstructorVariants()) { 653 CXXCtorType OrigCtorType = GD.getCtorType(); 654 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 655 if (OrigCtorType == Ctor_Base) 656 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 657 } 658 } 659 660 StringRef &FoundStr = MangledDeclNames[CanonicalGD]; 661 if (!FoundStr.empty()) 662 return FoundStr; 663 664 const auto *ND = cast<NamedDecl>(GD.getDecl()); 665 SmallString<256> Buffer; 666 StringRef Str; 667 if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 668 llvm::raw_svector_ostream Out(Buffer); 669 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) 670 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 671 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) 672 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 673 else 674 getCXXABI().getMangleContext().mangleName(ND, Out); 675 Str = Out.str(); 676 } else { 677 IdentifierInfo *II = ND->getIdentifier(); 678 assert(II && "Attempt to mangle unnamed decl."); 679 Str = II->getName(); 680 } 681 682 // Keep the first result in the case of a mangling collision. 683 auto Result = Manglings.insert(std::make_pair(Str, GD)); 684 return FoundStr = Result.first->first(); 685 } 686 687 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 688 const BlockDecl *BD) { 689 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 690 const Decl *D = GD.getDecl(); 691 692 SmallString<256> Buffer; 693 llvm::raw_svector_ostream Out(Buffer); 694 if (!D) 695 MangleCtx.mangleGlobalBlock(BD, 696 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 697 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 698 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 699 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 700 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 701 else 702 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 703 704 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 705 return Result.first->first(); 706 } 707 708 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 709 return getModule().getNamedValue(Name); 710 } 711 712 /// AddGlobalCtor - Add a function to the list that will be called before 713 /// main() runs. 714 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 715 llvm::Constant *AssociatedData) { 716 // FIXME: Type coercion of void()* types. 717 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 718 } 719 720 /// AddGlobalDtor - Add a function to the list that will be called 721 /// when the module is unloaded. 722 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 723 // FIXME: Type coercion of void()* types. 724 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 725 } 726 727 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 728 // Ctor function type is void()*. 729 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 730 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 731 732 // Get the type of a ctor entry, { i32, void ()*, i8* }. 733 llvm::StructType *CtorStructTy = llvm::StructType::get( 734 Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy, nullptr); 735 736 // Construct the constructor and destructor arrays. 737 SmallVector<llvm::Constant *, 8> Ctors; 738 for (const auto &I : Fns) { 739 llvm::Constant *S[] = { 740 llvm::ConstantInt::get(Int32Ty, I.Priority, false), 741 llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy), 742 (I.AssociatedData 743 ? llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy) 744 : llvm::Constant::getNullValue(VoidPtrTy))}; 745 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 746 } 747 748 if (!Ctors.empty()) { 749 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 750 new llvm::GlobalVariable(TheModule, AT, false, 751 llvm::GlobalValue::AppendingLinkage, 752 llvm::ConstantArray::get(AT, Ctors), 753 GlobalName); 754 } 755 } 756 757 llvm::GlobalValue::LinkageTypes 758 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 759 const auto *D = cast<FunctionDecl>(GD.getDecl()); 760 761 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 762 763 if (isa<CXXDestructorDecl>(D) && 764 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 765 GD.getDtorType())) { 766 // Destructor variants in the Microsoft C++ ABI are always internal or 767 // linkonce_odr thunks emitted on an as-needed basis. 768 return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage 769 : llvm::GlobalValue::LinkOnceODRLinkage; 770 } 771 772 return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false); 773 } 774 775 void CodeGenModule::setFunctionDLLStorageClass(GlobalDecl GD, llvm::Function *F) { 776 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 777 778 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) { 779 if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) { 780 // Don't dllexport/import destructor thunks. 781 F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 782 return; 783 } 784 } 785 786 if (FD->hasAttr<DLLImportAttr>()) 787 F->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 788 else if (FD->hasAttr<DLLExportAttr>()) 789 F->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 790 else 791 F->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 792 } 793 794 llvm::ConstantInt * 795 CodeGenModule::CreateCfiIdForTypeMetadata(llvm::Metadata *MD) { 796 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 797 if (!MDS) return nullptr; 798 799 llvm::MD5 md5; 800 llvm::MD5::MD5Result result; 801 md5.update(MDS->getString()); 802 md5.final(result); 803 uint64_t id = 0; 804 for (int i = 0; i < 8; ++i) 805 id |= static_cast<uint64_t>(result[i]) << (i * 8); 806 return llvm::ConstantInt::get(Int64Ty, id); 807 } 808 809 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D, 810 llvm::Function *F) { 811 setNonAliasAttributes(D, F); 812 } 813 814 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 815 const CGFunctionInfo &Info, 816 llvm::Function *F) { 817 unsigned CallingConv; 818 AttributeListType AttributeList; 819 ConstructAttributeList(F->getName(), Info, D, AttributeList, CallingConv, 820 false); 821 F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList)); 822 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 823 } 824 825 /// Determines whether the language options require us to model 826 /// unwind exceptions. We treat -fexceptions as mandating this 827 /// except under the fragile ObjC ABI with only ObjC exceptions 828 /// enabled. This means, for example, that C with -fexceptions 829 /// enables this. 830 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 831 // If exceptions are completely disabled, obviously this is false. 832 if (!LangOpts.Exceptions) return false; 833 834 // If C++ exceptions are enabled, this is true. 835 if (LangOpts.CXXExceptions) return true; 836 837 // If ObjC exceptions are enabled, this depends on the ABI. 838 if (LangOpts.ObjCExceptions) { 839 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 840 } 841 842 return true; 843 } 844 845 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 846 llvm::Function *F) { 847 llvm::AttrBuilder B; 848 849 if (CodeGenOpts.UnwindTables) 850 B.addAttribute(llvm::Attribute::UWTable); 851 852 if (!hasUnwindExceptions(LangOpts)) 853 B.addAttribute(llvm::Attribute::NoUnwind); 854 855 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 856 B.addAttribute(llvm::Attribute::StackProtect); 857 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 858 B.addAttribute(llvm::Attribute::StackProtectStrong); 859 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 860 B.addAttribute(llvm::Attribute::StackProtectReq); 861 862 if (!D) { 863 F->addAttributes(llvm::AttributeSet::FunctionIndex, 864 llvm::AttributeSet::get( 865 F->getContext(), 866 llvm::AttributeSet::FunctionIndex, B)); 867 return; 868 } 869 870 if (D->hasAttr<NakedAttr>()) { 871 // Naked implies noinline: we should not be inlining such functions. 872 B.addAttribute(llvm::Attribute::Naked); 873 B.addAttribute(llvm::Attribute::NoInline); 874 } else if (D->hasAttr<NoDuplicateAttr>()) { 875 B.addAttribute(llvm::Attribute::NoDuplicate); 876 } else if (D->hasAttr<NoInlineAttr>()) { 877 B.addAttribute(llvm::Attribute::NoInline); 878 } else if (D->hasAttr<AlwaysInlineAttr>() && 879 !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex, 880 llvm::Attribute::NoInline)) { 881 // (noinline wins over always_inline, and we can't specify both in IR) 882 B.addAttribute(llvm::Attribute::AlwaysInline); 883 } 884 885 if (D->hasAttr<ColdAttr>()) { 886 if (!D->hasAttr<OptimizeNoneAttr>()) 887 B.addAttribute(llvm::Attribute::OptimizeForSize); 888 B.addAttribute(llvm::Attribute::Cold); 889 } 890 891 if (D->hasAttr<MinSizeAttr>()) 892 B.addAttribute(llvm::Attribute::MinSize); 893 894 F->addAttributes(llvm::AttributeSet::FunctionIndex, 895 llvm::AttributeSet::get( 896 F->getContext(), llvm::AttributeSet::FunctionIndex, B)); 897 898 if (D->hasAttr<OptimizeNoneAttr>()) { 899 // OptimizeNone implies noinline; we should not be inlining such functions. 900 F->addFnAttr(llvm::Attribute::OptimizeNone); 901 F->addFnAttr(llvm::Attribute::NoInline); 902 903 // OptimizeNone wins over OptimizeForSize, MinSize, AlwaysInline. 904 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 905 F->removeFnAttr(llvm::Attribute::MinSize); 906 assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 907 "OptimizeNone and AlwaysInline on same function!"); 908 909 // Attribute 'inlinehint' has no effect on 'optnone' functions. 910 // Explicitly remove it from the set of function attributes. 911 F->removeFnAttr(llvm::Attribute::InlineHint); 912 } 913 914 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 915 if (alignment) 916 F->setAlignment(alignment); 917 918 // Some C++ ABIs require 2-byte alignment for member functions, in order to 919 // reserve a bit for differentiating between virtual and non-virtual member 920 // functions. If the current target's C++ ABI requires this and this is a 921 // member function, set its alignment accordingly. 922 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 923 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 924 F->setAlignment(2); 925 } 926 } 927 928 void CodeGenModule::SetCommonAttributes(const Decl *D, 929 llvm::GlobalValue *GV) { 930 if (const auto *ND = dyn_cast_or_null<NamedDecl>(D)) 931 setGlobalVisibility(GV, ND); 932 else 933 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 934 935 if (D && D->hasAttr<UsedAttr>()) 936 addUsedGlobal(GV); 937 } 938 939 void CodeGenModule::setAliasAttributes(const Decl *D, 940 llvm::GlobalValue *GV) { 941 SetCommonAttributes(D, GV); 942 943 // Process the dllexport attribute based on whether the original definition 944 // (not necessarily the aliasee) was exported. 945 if (D->hasAttr<DLLExportAttr>()) 946 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 947 } 948 949 void CodeGenModule::setNonAliasAttributes(const Decl *D, 950 llvm::GlobalObject *GO) { 951 SetCommonAttributes(D, GO); 952 953 if (D) 954 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 955 GO->setSection(SA->getName()); 956 957 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 958 } 959 960 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 961 llvm::Function *F, 962 const CGFunctionInfo &FI) { 963 SetLLVMFunctionAttributes(D, FI, F); 964 SetLLVMFunctionAttributesForDefinition(D, F); 965 966 F->setLinkage(llvm::Function::InternalLinkage); 967 968 setNonAliasAttributes(D, F); 969 } 970 971 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV, 972 const NamedDecl *ND) { 973 // Set linkage and visibility in case we never see a definition. 974 LinkageInfo LV = ND->getLinkageAndVisibility(); 975 if (LV.getLinkage() != ExternalLinkage) { 976 // Don't set internal linkage on declarations. 977 } else { 978 if (ND->hasAttr<DLLImportAttr>()) { 979 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 980 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 981 } else if (ND->hasAttr<DLLExportAttr>()) { 982 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 983 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 984 } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) { 985 // "extern_weak" is overloaded in LLVM; we probably should have 986 // separate linkage types for this. 987 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 988 } 989 990 // Set visibility on a declaration only if it's explicit. 991 if (LV.isVisibilityExplicit()) 992 GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility())); 993 } 994 } 995 996 void CodeGenModule::CreateFunctionBitSetEntry(const FunctionDecl *FD, 997 llvm::Function *F) { 998 // Only if we are checking indirect calls. 999 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 1000 return; 1001 1002 // Non-static class methods are handled via vtable pointer checks elsewhere. 1003 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 1004 return; 1005 1006 // Additionally, if building with cross-DSO support... 1007 if (CodeGenOpts.SanitizeCfiCrossDso) { 1008 // Don't emit entries for function declarations. In cross-DSO mode these are 1009 // handled with better precision at run time. 1010 if (!FD->hasBody()) 1011 return; 1012 // Skip available_externally functions. They won't be codegen'ed in the 1013 // current module anyway. 1014 if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally) 1015 return; 1016 } 1017 1018 llvm::NamedMDNode *BitsetsMD = 1019 getModule().getOrInsertNamedMetadata("llvm.bitsets"); 1020 1021 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 1022 llvm::Metadata *BitsetOps[] = { 1023 MD, llvm::ConstantAsMetadata::get(F), 1024 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(Int64Ty, 0))}; 1025 BitsetsMD->addOperand(llvm::MDTuple::get(getLLVMContext(), BitsetOps)); 1026 1027 // Emit a hash-based bit set entry for cross-DSO calls. 1028 if (CodeGenOpts.SanitizeCfiCrossDso) { 1029 if (auto TypeId = CreateCfiIdForTypeMetadata(MD)) { 1030 llvm::Metadata *BitsetOps2[] = { 1031 llvm::ConstantAsMetadata::get(TypeId), 1032 llvm::ConstantAsMetadata::get(F), 1033 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(Int64Ty, 0))}; 1034 BitsetsMD->addOperand(llvm::MDTuple::get(getLLVMContext(), BitsetOps2)); 1035 } 1036 } 1037 } 1038 1039 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 1040 bool IsIncompleteFunction, 1041 bool IsThunk) { 1042 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 1043 // If this is an intrinsic function, set the function's attributes 1044 // to the intrinsic's attributes. 1045 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 1046 return; 1047 } 1048 1049 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 1050 1051 if (!IsIncompleteFunction) 1052 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 1053 1054 // Add the Returned attribute for "this", except for iOS 5 and earlier 1055 // where substantial code, including the libstdc++ dylib, was compiled with 1056 // GCC and does not actually return "this". 1057 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 1058 !(getTarget().getTriple().isiOS() && 1059 getTarget().getTriple().isOSVersionLT(6))) { 1060 assert(!F->arg_empty() && 1061 F->arg_begin()->getType() 1062 ->canLosslesslyBitCastTo(F->getReturnType()) && 1063 "unexpected this return"); 1064 F->addAttribute(1, llvm::Attribute::Returned); 1065 } 1066 1067 // Only a few attributes are set on declarations; these may later be 1068 // overridden by a definition. 1069 1070 setLinkageAndVisibilityForGV(F, FD); 1071 1072 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 1073 F->setSection(SA->getName()); 1074 1075 if (FD->isReplaceableGlobalAllocationFunction()) { 1076 // A replaceable global allocation function does not act like a builtin by 1077 // default, only if it is invoked by a new-expression or delete-expression. 1078 F->addAttribute(llvm::AttributeSet::FunctionIndex, 1079 llvm::Attribute::NoBuiltin); 1080 1081 // A sane operator new returns a non-aliasing pointer. 1082 // FIXME: Also add NonNull attribute to the return value 1083 // for the non-nothrow forms? 1084 auto Kind = FD->getDeclName().getCXXOverloadedOperator(); 1085 if (getCodeGenOpts().AssumeSaneOperatorNew && 1086 (Kind == OO_New || Kind == OO_Array_New)) 1087 F->addAttribute(llvm::AttributeSet::ReturnIndex, 1088 llvm::Attribute::NoAlias); 1089 } 1090 1091 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 1092 F->setUnnamedAddr(true); 1093 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 1094 if (MD->isVirtual()) 1095 F->setUnnamedAddr(true); 1096 1097 CreateFunctionBitSetEntry(FD, F); 1098 } 1099 1100 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 1101 assert(!GV->isDeclaration() && 1102 "Only globals with definition can force usage."); 1103 LLVMUsed.emplace_back(GV); 1104 } 1105 1106 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 1107 assert(!GV->isDeclaration() && 1108 "Only globals with definition can force usage."); 1109 LLVMCompilerUsed.emplace_back(GV); 1110 } 1111 1112 static void emitUsed(CodeGenModule &CGM, StringRef Name, 1113 std::vector<llvm::WeakVH> &List) { 1114 // Don't create llvm.used if there is no need. 1115 if (List.empty()) 1116 return; 1117 1118 // Convert List to what ConstantArray needs. 1119 SmallVector<llvm::Constant*, 8> UsedArray; 1120 UsedArray.resize(List.size()); 1121 for (unsigned i = 0, e = List.size(); i != e; ++i) { 1122 UsedArray[i] = 1123 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 1124 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 1125 } 1126 1127 if (UsedArray.empty()) 1128 return; 1129 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 1130 1131 auto *GV = new llvm::GlobalVariable( 1132 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 1133 llvm::ConstantArray::get(ATy, UsedArray), Name); 1134 1135 GV->setSection("llvm.metadata"); 1136 } 1137 1138 void CodeGenModule::emitLLVMUsed() { 1139 emitUsed(*this, "llvm.used", LLVMUsed); 1140 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 1141 } 1142 1143 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 1144 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 1145 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1146 } 1147 1148 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 1149 llvm::SmallString<32> Opt; 1150 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 1151 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1152 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1153 } 1154 1155 void CodeGenModule::AddDependentLib(StringRef Lib) { 1156 llvm::SmallString<24> Opt; 1157 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 1158 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1159 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1160 } 1161 1162 /// \brief Add link options implied by the given module, including modules 1163 /// it depends on, using a postorder walk. 1164 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 1165 SmallVectorImpl<llvm::Metadata *> &Metadata, 1166 llvm::SmallPtrSet<Module *, 16> &Visited) { 1167 // Import this module's parent. 1168 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 1169 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 1170 } 1171 1172 // Import this module's dependencies. 1173 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 1174 if (Visited.insert(Mod->Imports[I - 1]).second) 1175 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 1176 } 1177 1178 // Add linker options to link against the libraries/frameworks 1179 // described by this module. 1180 llvm::LLVMContext &Context = CGM.getLLVMContext(); 1181 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 1182 // Link against a framework. Frameworks are currently Darwin only, so we 1183 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 1184 if (Mod->LinkLibraries[I-1].IsFramework) { 1185 llvm::Metadata *Args[2] = { 1186 llvm::MDString::get(Context, "-framework"), 1187 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 1188 1189 Metadata.push_back(llvm::MDNode::get(Context, Args)); 1190 continue; 1191 } 1192 1193 // Link against a library. 1194 llvm::SmallString<24> Opt; 1195 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 1196 Mod->LinkLibraries[I-1].Library, Opt); 1197 auto *OptString = llvm::MDString::get(Context, Opt); 1198 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 1199 } 1200 } 1201 1202 void CodeGenModule::EmitModuleLinkOptions() { 1203 // Collect the set of all of the modules we want to visit to emit link 1204 // options, which is essentially the imported modules and all of their 1205 // non-explicit child modules. 1206 llvm::SetVector<clang::Module *> LinkModules; 1207 llvm::SmallPtrSet<clang::Module *, 16> Visited; 1208 SmallVector<clang::Module *, 16> Stack; 1209 1210 // Seed the stack with imported modules. 1211 for (Module *M : ImportedModules) 1212 if (Visited.insert(M).second) 1213 Stack.push_back(M); 1214 1215 // Find all of the modules to import, making a little effort to prune 1216 // non-leaf modules. 1217 while (!Stack.empty()) { 1218 clang::Module *Mod = Stack.pop_back_val(); 1219 1220 bool AnyChildren = false; 1221 1222 // Visit the submodules of this module. 1223 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 1224 SubEnd = Mod->submodule_end(); 1225 Sub != SubEnd; ++Sub) { 1226 // Skip explicit children; they need to be explicitly imported to be 1227 // linked against. 1228 if ((*Sub)->IsExplicit) 1229 continue; 1230 1231 if (Visited.insert(*Sub).second) { 1232 Stack.push_back(*Sub); 1233 AnyChildren = true; 1234 } 1235 } 1236 1237 // We didn't find any children, so add this module to the list of 1238 // modules to link against. 1239 if (!AnyChildren) { 1240 LinkModules.insert(Mod); 1241 } 1242 } 1243 1244 // Add link options for all of the imported modules in reverse topological 1245 // order. We don't do anything to try to order import link flags with respect 1246 // to linker options inserted by things like #pragma comment(). 1247 SmallVector<llvm::Metadata *, 16> MetadataArgs; 1248 Visited.clear(); 1249 for (Module *M : LinkModules) 1250 if (Visited.insert(M).second) 1251 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 1252 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 1253 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 1254 1255 // Add the linker options metadata flag. 1256 getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options", 1257 llvm::MDNode::get(getLLVMContext(), 1258 LinkerOptionsMetadata)); 1259 } 1260 1261 void CodeGenModule::EmitDeferred() { 1262 // Emit code for any potentially referenced deferred decls. Since a 1263 // previously unused static decl may become used during the generation of code 1264 // for a static function, iterate until no changes are made. 1265 1266 if (!DeferredVTables.empty()) { 1267 EmitDeferredVTables(); 1268 1269 // Emitting a vtable doesn't directly cause more vtables to 1270 // become deferred, although it can cause functions to be 1271 // emitted that then need those vtables. 1272 assert(DeferredVTables.empty()); 1273 } 1274 1275 // Stop if we're out of both deferred vtables and deferred declarations. 1276 if (DeferredDeclsToEmit.empty()) 1277 return; 1278 1279 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 1280 // work, it will not interfere with this. 1281 std::vector<DeferredGlobal> CurDeclsToEmit; 1282 CurDeclsToEmit.swap(DeferredDeclsToEmit); 1283 1284 for (DeferredGlobal &G : CurDeclsToEmit) { 1285 GlobalDecl D = G.GD; 1286 G.GV = nullptr; 1287 1288 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 1289 // to get GlobalValue with exactly the type we need, not something that 1290 // might had been created for another decl with the same mangled name but 1291 // different type. 1292 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 1293 GetAddrOfGlobal(D, /*IsForDefinition=*/true)); 1294 1295 // In case of different address spaces, we may still get a cast, even with 1296 // IsForDefinition equal to true. Query mangled names table to get 1297 // GlobalValue. 1298 if (!GV) 1299 GV = GetGlobalValue(getMangledName(D)); 1300 1301 // Make sure GetGlobalValue returned non-null. 1302 assert(GV); 1303 1304 // Check to see if we've already emitted this. This is necessary 1305 // for a couple of reasons: first, decls can end up in the 1306 // deferred-decls queue multiple times, and second, decls can end 1307 // up with definitions in unusual ways (e.g. by an extern inline 1308 // function acquiring a strong function redefinition). Just 1309 // ignore these cases. 1310 if (!GV->isDeclaration()) 1311 continue; 1312 1313 // Otherwise, emit the definition and move on to the next one. 1314 EmitGlobalDefinition(D, GV); 1315 1316 // If we found out that we need to emit more decls, do that recursively. 1317 // This has the advantage that the decls are emitted in a DFS and related 1318 // ones are close together, which is convenient for testing. 1319 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 1320 EmitDeferred(); 1321 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 1322 } 1323 } 1324 } 1325 1326 void CodeGenModule::EmitGlobalAnnotations() { 1327 if (Annotations.empty()) 1328 return; 1329 1330 // Create a new global variable for the ConstantStruct in the Module. 1331 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 1332 Annotations[0]->getType(), Annotations.size()), Annotations); 1333 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 1334 llvm::GlobalValue::AppendingLinkage, 1335 Array, "llvm.global.annotations"); 1336 gv->setSection(AnnotationSection); 1337 } 1338 1339 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 1340 llvm::Constant *&AStr = AnnotationStrings[Str]; 1341 if (AStr) 1342 return AStr; 1343 1344 // Not found yet, create a new global. 1345 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 1346 auto *gv = 1347 new llvm::GlobalVariable(getModule(), s->getType(), true, 1348 llvm::GlobalValue::PrivateLinkage, s, ".str"); 1349 gv->setSection(AnnotationSection); 1350 gv->setUnnamedAddr(true); 1351 AStr = gv; 1352 return gv; 1353 } 1354 1355 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1356 SourceManager &SM = getContext().getSourceManager(); 1357 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1358 if (PLoc.isValid()) 1359 return EmitAnnotationString(PLoc.getFilename()); 1360 return EmitAnnotationString(SM.getBufferName(Loc)); 1361 } 1362 1363 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1364 SourceManager &SM = getContext().getSourceManager(); 1365 PresumedLoc PLoc = SM.getPresumedLoc(L); 1366 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1367 SM.getExpansionLineNumber(L); 1368 return llvm::ConstantInt::get(Int32Ty, LineNo); 1369 } 1370 1371 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1372 const AnnotateAttr *AA, 1373 SourceLocation L) { 1374 // Get the globals for file name, annotation, and the line number. 1375 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1376 *UnitGV = EmitAnnotationUnit(L), 1377 *LineNoCst = EmitAnnotationLineNo(L); 1378 1379 // Create the ConstantStruct for the global annotation. 1380 llvm::Constant *Fields[4] = { 1381 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1382 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1383 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1384 LineNoCst 1385 }; 1386 return llvm::ConstantStruct::getAnon(Fields); 1387 } 1388 1389 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1390 llvm::GlobalValue *GV) { 1391 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1392 // Get the struct elements for these annotations. 1393 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1394 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 1395 } 1396 1397 bool CodeGenModule::isInSanitizerBlacklist(llvm::Function *Fn, 1398 SourceLocation Loc) const { 1399 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1400 // Blacklist by function name. 1401 if (SanitizerBL.isBlacklistedFunction(Fn->getName())) 1402 return true; 1403 // Blacklist by location. 1404 if (Loc.isValid()) 1405 return SanitizerBL.isBlacklistedLocation(Loc); 1406 // If location is unknown, this may be a compiler-generated function. Assume 1407 // it's located in the main file. 1408 auto &SM = Context.getSourceManager(); 1409 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 1410 return SanitizerBL.isBlacklistedFile(MainFile->getName()); 1411 } 1412 return false; 1413 } 1414 1415 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 1416 SourceLocation Loc, QualType Ty, 1417 StringRef Category) const { 1418 // For now globals can be blacklisted only in ASan and KASan. 1419 if (!LangOpts.Sanitize.hasOneOf( 1420 SanitizerKind::Address | SanitizerKind::KernelAddress)) 1421 return false; 1422 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1423 if (SanitizerBL.isBlacklistedGlobal(GV->getName(), Category)) 1424 return true; 1425 if (SanitizerBL.isBlacklistedLocation(Loc, Category)) 1426 return true; 1427 // Check global type. 1428 if (!Ty.isNull()) { 1429 // Drill down the array types: if global variable of a fixed type is 1430 // blacklisted, we also don't instrument arrays of them. 1431 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 1432 Ty = AT->getElementType(); 1433 Ty = Ty.getCanonicalType().getUnqualifiedType(); 1434 // We allow to blacklist only record types (classes, structs etc.) 1435 if (Ty->isRecordType()) { 1436 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 1437 if (SanitizerBL.isBlacklistedType(TypeStr, Category)) 1438 return true; 1439 } 1440 } 1441 return false; 1442 } 1443 1444 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 1445 // Never defer when EmitAllDecls is specified. 1446 if (LangOpts.EmitAllDecls) 1447 return true; 1448 1449 return getContext().DeclMustBeEmitted(Global); 1450 } 1451 1452 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 1453 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) 1454 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 1455 // Implicit template instantiations may change linkage if they are later 1456 // explicitly instantiated, so they should not be emitted eagerly. 1457 return false; 1458 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 1459 // codegen for global variables, because they may be marked as threadprivate. 1460 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 1461 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global)) 1462 return false; 1463 1464 return true; 1465 } 1466 1467 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor( 1468 const CXXUuidofExpr* E) { 1469 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 1470 // well-formed. 1471 StringRef Uuid = E->getUuidStr(); 1472 std::string Name = "_GUID_" + Uuid.lower(); 1473 std::replace(Name.begin(), Name.end(), '-', '_'); 1474 1475 // The UUID descriptor should be pointer aligned. 1476 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 1477 1478 // Look for an existing global. 1479 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 1480 return ConstantAddress(GV, Alignment); 1481 1482 llvm::Constant *Init = EmitUuidofInitializer(Uuid); 1483 assert(Init && "failed to initialize as constant"); 1484 1485 auto *GV = new llvm::GlobalVariable( 1486 getModule(), Init->getType(), 1487 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 1488 if (supportsCOMDAT()) 1489 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 1490 return ConstantAddress(GV, Alignment); 1491 } 1492 1493 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 1494 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 1495 assert(AA && "No alias?"); 1496 1497 CharUnits Alignment = getContext().getDeclAlign(VD); 1498 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 1499 1500 // See if there is already something with the target's name in the module. 1501 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 1502 if (Entry) { 1503 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 1504 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 1505 return ConstantAddress(Ptr, Alignment); 1506 } 1507 1508 llvm::Constant *Aliasee; 1509 if (isa<llvm::FunctionType>(DeclTy)) 1510 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 1511 GlobalDecl(cast<FunctionDecl>(VD)), 1512 /*ForVTable=*/false); 1513 else 1514 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1515 llvm::PointerType::getUnqual(DeclTy), 1516 nullptr); 1517 1518 auto *F = cast<llvm::GlobalValue>(Aliasee); 1519 F->setLinkage(llvm::Function::ExternalWeakLinkage); 1520 WeakRefReferences.insert(F); 1521 1522 return ConstantAddress(Aliasee, Alignment); 1523 } 1524 1525 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 1526 const auto *Global = cast<ValueDecl>(GD.getDecl()); 1527 1528 // Weak references don't produce any output by themselves. 1529 if (Global->hasAttr<WeakRefAttr>()) 1530 return; 1531 1532 // If this is an alias definition (which otherwise looks like a declaration) 1533 // emit it now. 1534 if (Global->hasAttr<AliasAttr>()) 1535 return EmitAliasDefinition(GD); 1536 1537 // IFunc like an alias whose value is resolved at runtime by calling resolver. 1538 if (Global->hasAttr<IFuncAttr>()) 1539 return emitIFuncDefinition(GD); 1540 1541 // If this is CUDA, be selective about which declarations we emit. 1542 if (LangOpts.CUDA) { 1543 if (LangOpts.CUDAIsDevice) { 1544 if (!Global->hasAttr<CUDADeviceAttr>() && 1545 !Global->hasAttr<CUDAGlobalAttr>() && 1546 !Global->hasAttr<CUDAConstantAttr>() && 1547 !Global->hasAttr<CUDASharedAttr>()) 1548 return; 1549 } else { 1550 // We need to emit host-side 'shadows' for all global 1551 // device-side variables because the CUDA runtime needs their 1552 // size and host-side address in order to provide access to 1553 // their device-side incarnations. 1554 1555 // So device-only functions are the only things we skip. 1556 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 1557 Global->hasAttr<CUDADeviceAttr>()) 1558 return; 1559 1560 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 1561 "Expected Variable or Function"); 1562 } 1563 } 1564 1565 if (LangOpts.OpenMP) { 1566 // If this is OpenMP device, check if it is legal to emit this global 1567 // normally. 1568 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 1569 return; 1570 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 1571 if (MustBeEmitted(Global)) 1572 EmitOMPDeclareReduction(DRD); 1573 return; 1574 } 1575 } 1576 1577 // Ignore declarations, they will be emitted on their first use. 1578 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 1579 // Forward declarations are emitted lazily on first use. 1580 if (!FD->doesThisDeclarationHaveABody()) { 1581 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 1582 return; 1583 1584 StringRef MangledName = getMangledName(GD); 1585 1586 // Compute the function info and LLVM type. 1587 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 1588 llvm::Type *Ty = getTypes().GetFunctionType(FI); 1589 1590 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 1591 /*DontDefer=*/false); 1592 return; 1593 } 1594 } else { 1595 const auto *VD = cast<VarDecl>(Global); 1596 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 1597 // We need to emit device-side global CUDA variables even if a 1598 // variable does not have a definition -- we still need to define 1599 // host-side shadow for it. 1600 bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice && 1601 !VD->hasDefinition() && 1602 (VD->hasAttr<CUDAConstantAttr>() || 1603 VD->hasAttr<CUDADeviceAttr>()); 1604 if (!MustEmitForCuda && 1605 VD->isThisDeclarationADefinition() != VarDecl::Definition && 1606 !Context.isMSStaticDataMemberInlineDefinition(VD)) 1607 return; 1608 } 1609 1610 // Defer code generation to first use when possible, e.g. if this is an inline 1611 // function. If the global must always be emitted, do it eagerly if possible 1612 // to benefit from cache locality. 1613 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 1614 // Emit the definition if it can't be deferred. 1615 EmitGlobalDefinition(GD); 1616 return; 1617 } 1618 1619 // If we're deferring emission of a C++ variable with an 1620 // initializer, remember the order in which it appeared in the file. 1621 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 1622 cast<VarDecl>(Global)->hasInit()) { 1623 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 1624 CXXGlobalInits.push_back(nullptr); 1625 } 1626 1627 StringRef MangledName = getMangledName(GD); 1628 if (llvm::GlobalValue *GV = GetGlobalValue(MangledName)) { 1629 // The value has already been used and should therefore be emitted. 1630 addDeferredDeclToEmit(GV, GD); 1631 } else if (MustBeEmitted(Global)) { 1632 // The value must be emitted, but cannot be emitted eagerly. 1633 assert(!MayBeEmittedEagerly(Global)); 1634 addDeferredDeclToEmit(/*GV=*/nullptr, GD); 1635 } else { 1636 // Otherwise, remember that we saw a deferred decl with this name. The 1637 // first use of the mangled name will cause it to move into 1638 // DeferredDeclsToEmit. 1639 DeferredDecls[MangledName] = GD; 1640 } 1641 } 1642 1643 namespace { 1644 struct FunctionIsDirectlyRecursive : 1645 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 1646 const StringRef Name; 1647 const Builtin::Context &BI; 1648 bool Result; 1649 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 1650 Name(N), BI(C), Result(false) { 1651 } 1652 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 1653 1654 bool TraverseCallExpr(CallExpr *E) { 1655 const FunctionDecl *FD = E->getDirectCallee(); 1656 if (!FD) 1657 return true; 1658 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1659 if (Attr && Name == Attr->getLabel()) { 1660 Result = true; 1661 return false; 1662 } 1663 unsigned BuiltinID = FD->getBuiltinID(); 1664 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 1665 return true; 1666 StringRef BuiltinName = BI.getName(BuiltinID); 1667 if (BuiltinName.startswith("__builtin_") && 1668 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 1669 Result = true; 1670 return false; 1671 } 1672 return true; 1673 } 1674 }; 1675 1676 struct DLLImportFunctionVisitor 1677 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 1678 bool SafeToInline = true; 1679 1680 bool VisitVarDecl(VarDecl *VD) { 1681 // A thread-local variable cannot be imported. 1682 SafeToInline = !VD->getTLSKind(); 1683 return SafeToInline; 1684 } 1685 1686 // Make sure we're not referencing non-imported vars or functions. 1687 bool VisitDeclRefExpr(DeclRefExpr *E) { 1688 ValueDecl *VD = E->getDecl(); 1689 if (isa<FunctionDecl>(VD)) 1690 SafeToInline = VD->hasAttr<DLLImportAttr>(); 1691 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 1692 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 1693 return SafeToInline; 1694 } 1695 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 1696 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 1697 return SafeToInline; 1698 } 1699 bool VisitCXXNewExpr(CXXNewExpr *E) { 1700 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 1701 return SafeToInline; 1702 } 1703 }; 1704 } 1705 1706 // isTriviallyRecursive - Check if this function calls another 1707 // decl that, because of the asm attribute or the other decl being a builtin, 1708 // ends up pointing to itself. 1709 bool 1710 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 1711 StringRef Name; 1712 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 1713 // asm labels are a special kind of mangling we have to support. 1714 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1715 if (!Attr) 1716 return false; 1717 Name = Attr->getLabel(); 1718 } else { 1719 Name = FD->getName(); 1720 } 1721 1722 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 1723 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 1724 return Walker.Result; 1725 } 1726 1727 bool 1728 CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 1729 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 1730 return true; 1731 const auto *F = cast<FunctionDecl>(GD.getDecl()); 1732 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 1733 return false; 1734 1735 if (F->hasAttr<DLLImportAttr>()) { 1736 // Check whether it would be safe to inline this dllimport function. 1737 DLLImportFunctionVisitor Visitor; 1738 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 1739 if (!Visitor.SafeToInline) 1740 return false; 1741 } 1742 1743 // PR9614. Avoid cases where the source code is lying to us. An available 1744 // externally function should have an equivalent function somewhere else, 1745 // but a function that calls itself is clearly not equivalent to the real 1746 // implementation. 1747 // This happens in glibc's btowc and in some configure checks. 1748 return !isTriviallyRecursive(F); 1749 } 1750 1751 /// If the type for the method's class was generated by 1752 /// CGDebugInfo::createContextChain(), the cache contains only a 1753 /// limited DIType without any declarations. Since EmitFunctionStart() 1754 /// needs to find the canonical declaration for each method, we need 1755 /// to construct the complete type prior to emitting the method. 1756 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) { 1757 if (!D->isInstance()) 1758 return; 1759 1760 if (CGDebugInfo *DI = getModuleDebugInfo()) 1761 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) { 1762 const auto *ThisPtr = cast<PointerType>(D->getThisType(getContext())); 1763 DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation()); 1764 } 1765 } 1766 1767 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 1768 const auto *D = cast<ValueDecl>(GD.getDecl()); 1769 1770 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 1771 Context.getSourceManager(), 1772 "Generating code for declaration"); 1773 1774 if (isa<FunctionDecl>(D)) { 1775 // At -O0, don't generate IR for functions with available_externally 1776 // linkage. 1777 if (!shouldEmitFunction(GD)) 1778 return; 1779 1780 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 1781 CompleteDIClassType(Method); 1782 // Make sure to emit the definition(s) before we emit the thunks. 1783 // This is necessary for the generation of certain thunks. 1784 if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method)) 1785 ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType())); 1786 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method)) 1787 ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType())); 1788 else 1789 EmitGlobalFunctionDefinition(GD, GV); 1790 1791 if (Method->isVirtual()) 1792 getVTables().EmitThunks(GD); 1793 1794 return; 1795 } 1796 1797 return EmitGlobalFunctionDefinition(GD, GV); 1798 } 1799 1800 if (const auto *VD = dyn_cast<VarDecl>(D)) 1801 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 1802 1803 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 1804 } 1805 1806 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1807 llvm::Function *NewFn); 1808 1809 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 1810 /// module, create and return an llvm Function with the specified type. If there 1811 /// is something in the module with the specified name, return it potentially 1812 /// bitcasted to the right type. 1813 /// 1814 /// If D is non-null, it specifies a decl that correspond to this. This is used 1815 /// to set the attributes on the function when it is first created. 1816 llvm::Constant * 1817 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName, 1818 llvm::Type *Ty, 1819 GlobalDecl GD, bool ForVTable, 1820 bool DontDefer, bool IsThunk, 1821 llvm::AttributeSet ExtraAttrs, 1822 bool IsForDefinition) { 1823 const Decl *D = GD.getDecl(); 1824 1825 // Lookup the entry, lazily creating it if necessary. 1826 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1827 if (Entry) { 1828 if (WeakRefReferences.erase(Entry)) { 1829 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 1830 if (FD && !FD->hasAttr<WeakAttr>()) 1831 Entry->setLinkage(llvm::Function::ExternalLinkage); 1832 } 1833 1834 // Handle dropped DLL attributes. 1835 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 1836 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 1837 1838 // If there are two attempts to define the same mangled name, issue an 1839 // error. 1840 if (IsForDefinition && !Entry->isDeclaration()) { 1841 GlobalDecl OtherGD; 1842 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 1843 // to make sure that we issue an error only once. 1844 if (lookupRepresentativeDecl(MangledName, OtherGD) && 1845 (GD.getCanonicalDecl().getDecl() != 1846 OtherGD.getCanonicalDecl().getDecl()) && 1847 DiagnosedConflictingDefinitions.insert(GD).second) { 1848 getDiags().Report(D->getLocation(), 1849 diag::err_duplicate_mangled_name); 1850 getDiags().Report(OtherGD.getDecl()->getLocation(), 1851 diag::note_previous_definition); 1852 } 1853 } 1854 1855 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 1856 (Entry->getType()->getElementType() == Ty)) { 1857 return Entry; 1858 } 1859 1860 // Make sure the result is of the correct type. 1861 // (If function is requested for a definition, we always need to create a new 1862 // function, not just return a bitcast.) 1863 if (!IsForDefinition) 1864 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 1865 } 1866 1867 // This function doesn't have a complete type (for example, the return 1868 // type is an incomplete struct). Use a fake type instead, and make 1869 // sure not to try to set attributes. 1870 bool IsIncompleteFunction = false; 1871 1872 llvm::FunctionType *FTy; 1873 if (isa<llvm::FunctionType>(Ty)) { 1874 FTy = cast<llvm::FunctionType>(Ty); 1875 } else { 1876 FTy = llvm::FunctionType::get(VoidTy, false); 1877 IsIncompleteFunction = true; 1878 } 1879 1880 llvm::Function *F = 1881 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 1882 Entry ? StringRef() : MangledName, &getModule()); 1883 1884 // If we already created a function with the same mangled name (but different 1885 // type) before, take its name and add it to the list of functions to be 1886 // replaced with F at the end of CodeGen. 1887 // 1888 // This happens if there is a prototype for a function (e.g. "int f()") and 1889 // then a definition of a different type (e.g. "int f(int x)"). 1890 if (Entry) { 1891 F->takeName(Entry); 1892 1893 // This might be an implementation of a function without a prototype, in 1894 // which case, try to do special replacement of calls which match the new 1895 // prototype. The really key thing here is that we also potentially drop 1896 // arguments from the call site so as to make a direct call, which makes the 1897 // inliner happier and suppresses a number of optimizer warnings (!) about 1898 // dropping arguments. 1899 if (!Entry->use_empty()) { 1900 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 1901 Entry->removeDeadConstantUsers(); 1902 } 1903 1904 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 1905 F, Entry->getType()->getElementType()->getPointerTo()); 1906 addGlobalValReplacement(Entry, BC); 1907 } 1908 1909 assert(F->getName() == MangledName && "name was uniqued!"); 1910 if (D) 1911 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 1912 if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) { 1913 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex); 1914 F->addAttributes(llvm::AttributeSet::FunctionIndex, 1915 llvm::AttributeSet::get(VMContext, 1916 llvm::AttributeSet::FunctionIndex, 1917 B)); 1918 } 1919 1920 if (!DontDefer) { 1921 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 1922 // each other bottoming out with the base dtor. Therefore we emit non-base 1923 // dtors on usage, even if there is no dtor definition in the TU. 1924 if (D && isa<CXXDestructorDecl>(D) && 1925 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 1926 GD.getDtorType())) 1927 addDeferredDeclToEmit(F, GD); 1928 1929 // This is the first use or definition of a mangled name. If there is a 1930 // deferred decl with this name, remember that we need to emit it at the end 1931 // of the file. 1932 auto DDI = DeferredDecls.find(MangledName); 1933 if (DDI != DeferredDecls.end()) { 1934 // Move the potentially referenced deferred decl to the 1935 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 1936 // don't need it anymore). 1937 addDeferredDeclToEmit(F, DDI->second); 1938 DeferredDecls.erase(DDI); 1939 1940 // Otherwise, there are cases we have to worry about where we're 1941 // using a declaration for which we must emit a definition but where 1942 // we might not find a top-level definition: 1943 // - member functions defined inline in their classes 1944 // - friend functions defined inline in some class 1945 // - special member functions with implicit definitions 1946 // If we ever change our AST traversal to walk into class methods, 1947 // this will be unnecessary. 1948 // 1949 // We also don't emit a definition for a function if it's going to be an 1950 // entry in a vtable, unless it's already marked as used. 1951 } else if (getLangOpts().CPlusPlus && D) { 1952 // Look for a declaration that's lexically in a record. 1953 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 1954 FD = FD->getPreviousDecl()) { 1955 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 1956 if (FD->doesThisDeclarationHaveABody()) { 1957 addDeferredDeclToEmit(F, GD.getWithDecl(FD)); 1958 break; 1959 } 1960 } 1961 } 1962 } 1963 } 1964 1965 // Make sure the result is of the requested type. 1966 if (!IsIncompleteFunction) { 1967 assert(F->getType()->getElementType() == Ty); 1968 return F; 1969 } 1970 1971 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 1972 return llvm::ConstantExpr::getBitCast(F, PTy); 1973 } 1974 1975 /// GetAddrOfFunction - Return the address of the given function. If Ty is 1976 /// non-null, then this function will use the specified type if it has to 1977 /// create it (this occurs when we see a definition of the function). 1978 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 1979 llvm::Type *Ty, 1980 bool ForVTable, 1981 bool DontDefer, 1982 bool IsForDefinition) { 1983 // If there was no specific requested type, just convert it now. 1984 if (!Ty) { 1985 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 1986 auto CanonTy = Context.getCanonicalType(FD->getType()); 1987 Ty = getTypes().ConvertFunctionType(CanonTy, FD); 1988 } 1989 1990 StringRef MangledName = getMangledName(GD); 1991 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 1992 /*IsThunk=*/false, llvm::AttributeSet(), 1993 IsForDefinition); 1994 } 1995 1996 /// CreateRuntimeFunction - Create a new runtime function with the specified 1997 /// type and name. 1998 llvm::Constant * 1999 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, 2000 StringRef Name, 2001 llvm::AttributeSet ExtraAttrs) { 2002 llvm::Constant *C = 2003 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 2004 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); 2005 if (auto *F = dyn_cast<llvm::Function>(C)) 2006 if (F->empty()) 2007 F->setCallingConv(getRuntimeCC()); 2008 return C; 2009 } 2010 2011 /// CreateBuiltinFunction - Create a new builtin function with the specified 2012 /// type and name. 2013 llvm::Constant * 2014 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, 2015 StringRef Name, 2016 llvm::AttributeSet ExtraAttrs) { 2017 llvm::Constant *C = 2018 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 2019 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); 2020 if (auto *F = dyn_cast<llvm::Function>(C)) 2021 if (F->empty()) 2022 F->setCallingConv(getBuiltinCC()); 2023 return C; 2024 } 2025 2026 /// isTypeConstant - Determine whether an object of this type can be emitted 2027 /// as a constant. 2028 /// 2029 /// If ExcludeCtor is true, the duration when the object's constructor runs 2030 /// will not be considered. The caller will need to verify that the object is 2031 /// not written to during its construction. 2032 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 2033 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 2034 return false; 2035 2036 if (Context.getLangOpts().CPlusPlus) { 2037 if (const CXXRecordDecl *Record 2038 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 2039 return ExcludeCtor && !Record->hasMutableFields() && 2040 Record->hasTrivialDestructor(); 2041 } 2042 2043 return true; 2044 } 2045 2046 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 2047 /// create and return an llvm GlobalVariable with the specified type. If there 2048 /// is something in the module with the specified name, return it potentially 2049 /// bitcasted to the right type. 2050 /// 2051 /// If D is non-null, it specifies a decl that correspond to this. This is used 2052 /// to set the attributes on the global when it is first created. 2053 /// 2054 /// If IsForDefinition is true, it is guranteed that an actual global with 2055 /// type Ty will be returned, not conversion of a variable with the same 2056 /// mangled name but some other type. 2057 llvm::Constant * 2058 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 2059 llvm::PointerType *Ty, 2060 const VarDecl *D, 2061 bool IsForDefinition) { 2062 // Lookup the entry, lazily creating it if necessary. 2063 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2064 if (Entry) { 2065 if (WeakRefReferences.erase(Entry)) { 2066 if (D && !D->hasAttr<WeakAttr>()) 2067 Entry->setLinkage(llvm::Function::ExternalLinkage); 2068 } 2069 2070 // Handle dropped DLL attributes. 2071 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 2072 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 2073 2074 if (Entry->getType() == Ty) 2075 return Entry; 2076 2077 // If there are two attempts to define the same mangled name, issue an 2078 // error. 2079 if (IsForDefinition && !Entry->isDeclaration()) { 2080 GlobalDecl OtherGD; 2081 const VarDecl *OtherD; 2082 2083 // Check that D is not yet in DiagnosedConflictingDefinitions is required 2084 // to make sure that we issue an error only once. 2085 if (lookupRepresentativeDecl(MangledName, OtherGD) && 2086 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 2087 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 2088 OtherD->hasInit() && 2089 DiagnosedConflictingDefinitions.insert(D).second) { 2090 getDiags().Report(D->getLocation(), 2091 diag::err_duplicate_mangled_name); 2092 getDiags().Report(OtherGD.getDecl()->getLocation(), 2093 diag::note_previous_definition); 2094 } 2095 } 2096 2097 // Make sure the result is of the correct type. 2098 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 2099 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 2100 2101 // (If global is requested for a definition, we always need to create a new 2102 // global, not just return a bitcast.) 2103 if (!IsForDefinition) 2104 return llvm::ConstantExpr::getBitCast(Entry, Ty); 2105 } 2106 2107 unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace()); 2108 auto *GV = new llvm::GlobalVariable( 2109 getModule(), Ty->getElementType(), false, 2110 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 2111 llvm::GlobalVariable::NotThreadLocal, AddrSpace); 2112 2113 // If we already created a global with the same mangled name (but different 2114 // type) before, take its name and remove it from its parent. 2115 if (Entry) { 2116 GV->takeName(Entry); 2117 2118 if (!Entry->use_empty()) { 2119 llvm::Constant *NewPtrForOldDecl = 2120 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2121 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2122 } 2123 2124 Entry->eraseFromParent(); 2125 } 2126 2127 // This is the first use or definition of a mangled name. If there is a 2128 // deferred decl with this name, remember that we need to emit it at the end 2129 // of the file. 2130 auto DDI = DeferredDecls.find(MangledName); 2131 if (DDI != DeferredDecls.end()) { 2132 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 2133 // list, and remove it from DeferredDecls (since we don't need it anymore). 2134 addDeferredDeclToEmit(GV, DDI->second); 2135 DeferredDecls.erase(DDI); 2136 } 2137 2138 // Handle things which are present even on external declarations. 2139 if (D) { 2140 // FIXME: This code is overly simple and should be merged with other global 2141 // handling. 2142 GV->setConstant(isTypeConstant(D->getType(), false)); 2143 2144 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2145 2146 setLinkageAndVisibilityForGV(GV, D); 2147 2148 if (D->getTLSKind()) { 2149 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2150 CXXThreadLocals.push_back(D); 2151 setTLSMode(GV, *D); 2152 } 2153 2154 // If required by the ABI, treat declarations of static data members with 2155 // inline initializers as definitions. 2156 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 2157 EmitGlobalVarDefinition(D); 2158 } 2159 2160 // Handle XCore specific ABI requirements. 2161 if (getTarget().getTriple().getArch() == llvm::Triple::xcore && 2162 D->getLanguageLinkage() == CLanguageLinkage && 2163 D->getType().isConstant(Context) && 2164 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 2165 GV->setSection(".cp.rodata"); 2166 } 2167 2168 if (AddrSpace != Ty->getAddressSpace()) 2169 return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty); 2170 2171 return GV; 2172 } 2173 2174 llvm::Constant * 2175 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, 2176 bool IsForDefinition) { 2177 if (isa<CXXConstructorDecl>(GD.getDecl())) 2178 return getAddrOfCXXStructor(cast<CXXConstructorDecl>(GD.getDecl()), 2179 getFromCtorType(GD.getCtorType()), 2180 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2181 /*DontDefer=*/false, IsForDefinition); 2182 else if (isa<CXXDestructorDecl>(GD.getDecl())) 2183 return getAddrOfCXXStructor(cast<CXXDestructorDecl>(GD.getDecl()), 2184 getFromDtorType(GD.getDtorType()), 2185 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2186 /*DontDefer=*/false, IsForDefinition); 2187 else if (isa<CXXMethodDecl>(GD.getDecl())) { 2188 auto FInfo = &getTypes().arrangeCXXMethodDeclaration( 2189 cast<CXXMethodDecl>(GD.getDecl())); 2190 auto Ty = getTypes().GetFunctionType(*FInfo); 2191 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2192 IsForDefinition); 2193 } else if (isa<FunctionDecl>(GD.getDecl())) { 2194 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2195 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2196 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2197 IsForDefinition); 2198 } else 2199 return GetAddrOfGlobalVar(cast<VarDecl>(GD.getDecl()), /*Ty=*/nullptr, 2200 IsForDefinition); 2201 } 2202 2203 llvm::GlobalVariable * 2204 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 2205 llvm::Type *Ty, 2206 llvm::GlobalValue::LinkageTypes Linkage) { 2207 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 2208 llvm::GlobalVariable *OldGV = nullptr; 2209 2210 if (GV) { 2211 // Check if the variable has the right type. 2212 if (GV->getType()->getElementType() == Ty) 2213 return GV; 2214 2215 // Because C++ name mangling, the only way we can end up with an already 2216 // existing global with the same name is if it has been declared extern "C". 2217 assert(GV->isDeclaration() && "Declaration has wrong type!"); 2218 OldGV = GV; 2219 } 2220 2221 // Create a new variable. 2222 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 2223 Linkage, nullptr, Name); 2224 2225 if (OldGV) { 2226 // Replace occurrences of the old variable if needed. 2227 GV->takeName(OldGV); 2228 2229 if (!OldGV->use_empty()) { 2230 llvm::Constant *NewPtrForOldDecl = 2231 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 2232 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 2233 } 2234 2235 OldGV->eraseFromParent(); 2236 } 2237 2238 if (supportsCOMDAT() && GV->isWeakForLinker() && 2239 !GV->hasAvailableExternallyLinkage()) 2240 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2241 2242 return GV; 2243 } 2244 2245 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 2246 /// given global variable. If Ty is non-null and if the global doesn't exist, 2247 /// then it will be created with the specified type instead of whatever the 2248 /// normal requested type would be. If IsForDefinition is true, it is guranteed 2249 /// that an actual global with type Ty will be returned, not conversion of a 2250 /// variable with the same mangled name but some other type. 2251 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 2252 llvm::Type *Ty, 2253 bool IsForDefinition) { 2254 assert(D->hasGlobalStorage() && "Not a global variable"); 2255 QualType ASTTy = D->getType(); 2256 if (!Ty) 2257 Ty = getTypes().ConvertTypeForMem(ASTTy); 2258 2259 llvm::PointerType *PTy = 2260 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 2261 2262 StringRef MangledName = getMangledName(D); 2263 return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition); 2264 } 2265 2266 /// CreateRuntimeVariable - Create a new runtime global variable with the 2267 /// specified type and name. 2268 llvm::Constant * 2269 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 2270 StringRef Name) { 2271 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr); 2272 } 2273 2274 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 2275 assert(!D->getInit() && "Cannot emit definite definitions here!"); 2276 2277 StringRef MangledName = getMangledName(D); 2278 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 2279 2280 // We already have a definition, not declaration, with the same mangled name. 2281 // Emitting of declaration is not required (and actually overwrites emitted 2282 // definition). 2283 if (GV && !GV->isDeclaration()) 2284 return; 2285 2286 // If we have not seen a reference to this variable yet, place it into the 2287 // deferred declarations table to be emitted if needed later. 2288 if (!MustBeEmitted(D) && !GV) { 2289 DeferredDecls[MangledName] = D; 2290 return; 2291 } 2292 2293 // The tentative definition is the only definition. 2294 EmitGlobalVarDefinition(D); 2295 } 2296 2297 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 2298 return Context.toCharUnitsFromBits( 2299 getDataLayout().getTypeStoreSizeInBits(Ty)); 2300 } 2301 2302 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D, 2303 unsigned AddrSpace) { 2304 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 2305 if (D->hasAttr<CUDAConstantAttr>()) 2306 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant); 2307 else if (D->hasAttr<CUDASharedAttr>()) 2308 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared); 2309 else 2310 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device); 2311 } 2312 2313 return AddrSpace; 2314 } 2315 2316 template<typename SomeDecl> 2317 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 2318 llvm::GlobalValue *GV) { 2319 if (!getLangOpts().CPlusPlus) 2320 return; 2321 2322 // Must have 'used' attribute, or else inline assembly can't rely on 2323 // the name existing. 2324 if (!D->template hasAttr<UsedAttr>()) 2325 return; 2326 2327 // Must have internal linkage and an ordinary name. 2328 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 2329 return; 2330 2331 // Must be in an extern "C" context. Entities declared directly within 2332 // a record are not extern "C" even if the record is in such a context. 2333 const SomeDecl *First = D->getFirstDecl(); 2334 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 2335 return; 2336 2337 // OK, this is an internal linkage entity inside an extern "C" linkage 2338 // specification. Make a note of that so we can give it the "expected" 2339 // mangled name if nothing else is using that name. 2340 std::pair<StaticExternCMap::iterator, bool> R = 2341 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 2342 2343 // If we have multiple internal linkage entities with the same name 2344 // in extern "C" regions, none of them gets that name. 2345 if (!R.second) 2346 R.first->second = nullptr; 2347 } 2348 2349 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 2350 if (!CGM.supportsCOMDAT()) 2351 return false; 2352 2353 if (D.hasAttr<SelectAnyAttr>()) 2354 return true; 2355 2356 GVALinkage Linkage; 2357 if (auto *VD = dyn_cast<VarDecl>(&D)) 2358 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 2359 else 2360 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 2361 2362 switch (Linkage) { 2363 case GVA_Internal: 2364 case GVA_AvailableExternally: 2365 case GVA_StrongExternal: 2366 return false; 2367 case GVA_DiscardableODR: 2368 case GVA_StrongODR: 2369 return true; 2370 } 2371 llvm_unreachable("No such linkage"); 2372 } 2373 2374 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 2375 llvm::GlobalObject &GO) { 2376 if (!shouldBeInCOMDAT(*this, D)) 2377 return; 2378 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 2379 } 2380 2381 /// Pass IsTentative as true if you want to create a tentative definition. 2382 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 2383 bool IsTentative) { 2384 llvm::Constant *Init = nullptr; 2385 QualType ASTTy = D->getType(); 2386 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 2387 bool NeedsGlobalCtor = false; 2388 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 2389 2390 const VarDecl *InitDecl; 2391 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 2392 2393 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 2394 // as part of their declaration." Sema has already checked for 2395 // error cases, so we just need to set Init to UndefValue. 2396 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 2397 D->hasAttr<CUDASharedAttr>()) 2398 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 2399 else if (!InitExpr) { 2400 // This is a tentative definition; tentative definitions are 2401 // implicitly initialized with { 0 }. 2402 // 2403 // Note that tentative definitions are only emitted at the end of 2404 // a translation unit, so they should never have incomplete 2405 // type. In addition, EmitTentativeDefinition makes sure that we 2406 // never attempt to emit a tentative definition if a real one 2407 // exists. A use may still exists, however, so we still may need 2408 // to do a RAUW. 2409 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 2410 Init = EmitNullConstant(D->getType()); 2411 } else { 2412 initializedGlobalDecl = GlobalDecl(D); 2413 Init = EmitConstantInit(*InitDecl); 2414 2415 if (!Init) { 2416 QualType T = InitExpr->getType(); 2417 if (D->getType()->isReferenceType()) 2418 T = D->getType(); 2419 2420 if (getLangOpts().CPlusPlus) { 2421 Init = EmitNullConstant(T); 2422 NeedsGlobalCtor = true; 2423 } else { 2424 ErrorUnsupported(D, "static initializer"); 2425 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 2426 } 2427 } else { 2428 // We don't need an initializer, so remove the entry for the delayed 2429 // initializer position (just in case this entry was delayed) if we 2430 // also don't need to register a destructor. 2431 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 2432 DelayedCXXInitPosition.erase(D); 2433 } 2434 } 2435 2436 llvm::Type* InitType = Init->getType(); 2437 llvm::Constant *Entry = 2438 GetAddrOfGlobalVar(D, InitType, /*IsForDefinition=*/!IsTentative); 2439 2440 // Strip off a bitcast if we got one back. 2441 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 2442 assert(CE->getOpcode() == llvm::Instruction::BitCast || 2443 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 2444 // All zero index gep. 2445 CE->getOpcode() == llvm::Instruction::GetElementPtr); 2446 Entry = CE->getOperand(0); 2447 } 2448 2449 // Entry is now either a Function or GlobalVariable. 2450 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 2451 2452 // We have a definition after a declaration with the wrong type. 2453 // We must make a new GlobalVariable* and update everything that used OldGV 2454 // (a declaration or tentative definition) with the new GlobalVariable* 2455 // (which will be a definition). 2456 // 2457 // This happens if there is a prototype for a global (e.g. 2458 // "extern int x[];") and then a definition of a different type (e.g. 2459 // "int x[10];"). This also happens when an initializer has a different type 2460 // from the type of the global (this happens with unions). 2461 if (!GV || 2462 GV->getType()->getElementType() != InitType || 2463 GV->getType()->getAddressSpace() != 2464 GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) { 2465 2466 // Move the old entry aside so that we'll create a new one. 2467 Entry->setName(StringRef()); 2468 2469 // Make a new global with the correct type, this is now guaranteed to work. 2470 GV = cast<llvm::GlobalVariable>( 2471 GetAddrOfGlobalVar(D, InitType, /*IsForDefinition=*/!IsTentative)); 2472 2473 // Replace all uses of the old global with the new global 2474 llvm::Constant *NewPtrForOldDecl = 2475 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2476 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2477 2478 // Erase the old global, since it is no longer used. 2479 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 2480 } 2481 2482 MaybeHandleStaticInExternC(D, GV); 2483 2484 if (D->hasAttr<AnnotateAttr>()) 2485 AddGlobalAnnotations(D, GV); 2486 2487 // Set the llvm linkage type as appropriate. 2488 llvm::GlobalValue::LinkageTypes Linkage = 2489 getLLVMLinkageVarDefinition(D, GV->isConstant()); 2490 2491 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 2492 // the device. [...]" 2493 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 2494 // __device__, declares a variable that: [...] 2495 // Is accessible from all the threads within the grid and from the host 2496 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 2497 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 2498 if (GV && LangOpts.CUDA) { 2499 if (LangOpts.CUDAIsDevice) { 2500 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) 2501 GV->setExternallyInitialized(true); 2502 } else { 2503 // Host-side shadows of external declarations of device-side 2504 // global variables become internal definitions. These have to 2505 // be internal in order to prevent name conflicts with global 2506 // host variables with the same name in a different TUs. 2507 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) { 2508 Linkage = llvm::GlobalValue::InternalLinkage; 2509 2510 // Shadow variables and their properties must be registered 2511 // with CUDA runtime. 2512 unsigned Flags = 0; 2513 if (!D->hasDefinition()) 2514 Flags |= CGCUDARuntime::ExternDeviceVar; 2515 if (D->hasAttr<CUDAConstantAttr>()) 2516 Flags |= CGCUDARuntime::ConstantDeviceVar; 2517 getCUDARuntime().registerDeviceVar(*GV, Flags); 2518 } else if (D->hasAttr<CUDASharedAttr>()) 2519 // __shared__ variables are odd. Shadows do get created, but 2520 // they are not registered with the CUDA runtime, so they 2521 // can't really be used to access their device-side 2522 // counterparts. It's not clear yet whether it's nvcc's bug or 2523 // a feature, but we've got to do the same for compatibility. 2524 Linkage = llvm::GlobalValue::InternalLinkage; 2525 } 2526 } 2527 GV->setInitializer(Init); 2528 2529 // If it is safe to mark the global 'constant', do so now. 2530 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 2531 isTypeConstant(D->getType(), true)); 2532 2533 // If it is in a read-only section, mark it 'constant'. 2534 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 2535 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 2536 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 2537 GV->setConstant(true); 2538 } 2539 2540 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2541 2542 2543 // On Darwin, if the normal linkage of a C++ thread_local variable is 2544 // LinkOnce or Weak, we keep the normal linkage to prevent multiple 2545 // copies within a linkage unit; otherwise, the backing variable has 2546 // internal linkage and all accesses should just be calls to the 2547 // Itanium-specified entry point, which has the normal linkage of the 2548 // variable. This is to preserve the ability to change the implementation 2549 // behind the scenes. 2550 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic && 2551 Context.getTargetInfo().getTriple().isOSDarwin() && 2552 !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) && 2553 !llvm::GlobalVariable::isWeakLinkage(Linkage)) 2554 Linkage = llvm::GlobalValue::InternalLinkage; 2555 2556 GV->setLinkage(Linkage); 2557 if (D->hasAttr<DLLImportAttr>()) 2558 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 2559 else if (D->hasAttr<DLLExportAttr>()) 2560 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 2561 else 2562 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 2563 2564 if (Linkage == llvm::GlobalVariable::CommonLinkage) 2565 // common vars aren't constant even if declared const. 2566 GV->setConstant(false); 2567 2568 setNonAliasAttributes(D, GV); 2569 2570 if (D->getTLSKind() && !GV->isThreadLocal()) { 2571 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2572 CXXThreadLocals.push_back(D); 2573 setTLSMode(GV, *D); 2574 } 2575 2576 maybeSetTrivialComdat(*D, *GV); 2577 2578 // Emit the initializer function if necessary. 2579 if (NeedsGlobalCtor || NeedsGlobalDtor) 2580 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 2581 2582 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 2583 2584 // Emit global variable debug information. 2585 if (CGDebugInfo *DI = getModuleDebugInfo()) 2586 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 2587 DI->EmitGlobalVariable(GV, D); 2588 } 2589 2590 static bool isVarDeclStrongDefinition(const ASTContext &Context, 2591 CodeGenModule &CGM, const VarDecl *D, 2592 bool NoCommon) { 2593 // Don't give variables common linkage if -fno-common was specified unless it 2594 // was overridden by a NoCommon attribute. 2595 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 2596 return true; 2597 2598 // C11 6.9.2/2: 2599 // A declaration of an identifier for an object that has file scope without 2600 // an initializer, and without a storage-class specifier or with the 2601 // storage-class specifier static, constitutes a tentative definition. 2602 if (D->getInit() || D->hasExternalStorage()) 2603 return true; 2604 2605 // A variable cannot be both common and exist in a section. 2606 if (D->hasAttr<SectionAttr>()) 2607 return true; 2608 2609 // Thread local vars aren't considered common linkage. 2610 if (D->getTLSKind()) 2611 return true; 2612 2613 // Tentative definitions marked with WeakImportAttr are true definitions. 2614 if (D->hasAttr<WeakImportAttr>()) 2615 return true; 2616 2617 // A variable cannot be both common and exist in a comdat. 2618 if (shouldBeInCOMDAT(CGM, *D)) 2619 return true; 2620 2621 // Declarations with a required alignment do not have common linakge in MSVC 2622 // mode. 2623 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 2624 if (D->hasAttr<AlignedAttr>()) 2625 return true; 2626 QualType VarType = D->getType(); 2627 if (Context.isAlignmentRequired(VarType)) 2628 return true; 2629 2630 if (const auto *RT = VarType->getAs<RecordType>()) { 2631 const RecordDecl *RD = RT->getDecl(); 2632 for (const FieldDecl *FD : RD->fields()) { 2633 if (FD->isBitField()) 2634 continue; 2635 if (FD->hasAttr<AlignedAttr>()) 2636 return true; 2637 if (Context.isAlignmentRequired(FD->getType())) 2638 return true; 2639 } 2640 } 2641 } 2642 2643 return false; 2644 } 2645 2646 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 2647 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 2648 if (Linkage == GVA_Internal) 2649 return llvm::Function::InternalLinkage; 2650 2651 if (D->hasAttr<WeakAttr>()) { 2652 if (IsConstantVariable) 2653 return llvm::GlobalVariable::WeakODRLinkage; 2654 else 2655 return llvm::GlobalVariable::WeakAnyLinkage; 2656 } 2657 2658 // We are guaranteed to have a strong definition somewhere else, 2659 // so we can use available_externally linkage. 2660 if (Linkage == GVA_AvailableExternally) 2661 return llvm::Function::AvailableExternallyLinkage; 2662 2663 // Note that Apple's kernel linker doesn't support symbol 2664 // coalescing, so we need to avoid linkonce and weak linkages there. 2665 // Normally, this means we just map to internal, but for explicit 2666 // instantiations we'll map to external. 2667 2668 // In C++, the compiler has to emit a definition in every translation unit 2669 // that references the function. We should use linkonce_odr because 2670 // a) if all references in this translation unit are optimized away, we 2671 // don't need to codegen it. b) if the function persists, it needs to be 2672 // merged with other definitions. c) C++ has the ODR, so we know the 2673 // definition is dependable. 2674 if (Linkage == GVA_DiscardableODR) 2675 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 2676 : llvm::Function::InternalLinkage; 2677 2678 // An explicit instantiation of a template has weak linkage, since 2679 // explicit instantiations can occur in multiple translation units 2680 // and must all be equivalent. However, we are not allowed to 2681 // throw away these explicit instantiations. 2682 if (Linkage == GVA_StrongODR) 2683 return !Context.getLangOpts().AppleKext ? llvm::Function::WeakODRLinkage 2684 : llvm::Function::ExternalLinkage; 2685 2686 // C++ doesn't have tentative definitions and thus cannot have common 2687 // linkage. 2688 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 2689 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 2690 CodeGenOpts.NoCommon)) 2691 return llvm::GlobalVariable::CommonLinkage; 2692 2693 // selectany symbols are externally visible, so use weak instead of 2694 // linkonce. MSVC optimizes away references to const selectany globals, so 2695 // all definitions should be the same and ODR linkage should be used. 2696 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 2697 if (D->hasAttr<SelectAnyAttr>()) 2698 return llvm::GlobalVariable::WeakODRLinkage; 2699 2700 // Otherwise, we have strong external linkage. 2701 assert(Linkage == GVA_StrongExternal); 2702 return llvm::GlobalVariable::ExternalLinkage; 2703 } 2704 2705 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 2706 const VarDecl *VD, bool IsConstant) { 2707 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 2708 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 2709 } 2710 2711 /// Replace the uses of a function that was declared with a non-proto type. 2712 /// We want to silently drop extra arguments from call sites 2713 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 2714 llvm::Function *newFn) { 2715 // Fast path. 2716 if (old->use_empty()) return; 2717 2718 llvm::Type *newRetTy = newFn->getReturnType(); 2719 SmallVector<llvm::Value*, 4> newArgs; 2720 SmallVector<llvm::OperandBundleDef, 1> newBundles; 2721 2722 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 2723 ui != ue; ) { 2724 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 2725 llvm::User *user = use->getUser(); 2726 2727 // Recognize and replace uses of bitcasts. Most calls to 2728 // unprototyped functions will use bitcasts. 2729 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 2730 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 2731 replaceUsesOfNonProtoConstant(bitcast, newFn); 2732 continue; 2733 } 2734 2735 // Recognize calls to the function. 2736 llvm::CallSite callSite(user); 2737 if (!callSite) continue; 2738 if (!callSite.isCallee(&*use)) continue; 2739 2740 // If the return types don't match exactly, then we can't 2741 // transform this call unless it's dead. 2742 if (callSite->getType() != newRetTy && !callSite->use_empty()) 2743 continue; 2744 2745 // Get the call site's attribute list. 2746 SmallVector<llvm::AttributeSet, 8> newAttrs; 2747 llvm::AttributeSet oldAttrs = callSite.getAttributes(); 2748 2749 // Collect any return attributes from the call. 2750 if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex)) 2751 newAttrs.push_back( 2752 llvm::AttributeSet::get(newFn->getContext(), 2753 oldAttrs.getRetAttributes())); 2754 2755 // If the function was passed too few arguments, don't transform. 2756 unsigned newNumArgs = newFn->arg_size(); 2757 if (callSite.arg_size() < newNumArgs) continue; 2758 2759 // If extra arguments were passed, we silently drop them. 2760 // If any of the types mismatch, we don't transform. 2761 unsigned argNo = 0; 2762 bool dontTransform = false; 2763 for (llvm::Function::arg_iterator ai = newFn->arg_begin(), 2764 ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) { 2765 if (callSite.getArgument(argNo)->getType() != ai->getType()) { 2766 dontTransform = true; 2767 break; 2768 } 2769 2770 // Add any parameter attributes. 2771 if (oldAttrs.hasAttributes(argNo + 1)) 2772 newAttrs. 2773 push_back(llvm:: 2774 AttributeSet::get(newFn->getContext(), 2775 oldAttrs.getParamAttributes(argNo + 1))); 2776 } 2777 if (dontTransform) 2778 continue; 2779 2780 if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) 2781 newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(), 2782 oldAttrs.getFnAttributes())); 2783 2784 // Okay, we can transform this. Create the new call instruction and copy 2785 // over the required information. 2786 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 2787 2788 // Copy over any operand bundles. 2789 callSite.getOperandBundlesAsDefs(newBundles); 2790 2791 llvm::CallSite newCall; 2792 if (callSite.isCall()) { 2793 newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "", 2794 callSite.getInstruction()); 2795 } else { 2796 auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction()); 2797 newCall = llvm::InvokeInst::Create(newFn, 2798 oldInvoke->getNormalDest(), 2799 oldInvoke->getUnwindDest(), 2800 newArgs, newBundles, "", 2801 callSite.getInstruction()); 2802 } 2803 newArgs.clear(); // for the next iteration 2804 2805 if (!newCall->getType()->isVoidTy()) 2806 newCall->takeName(callSite.getInstruction()); 2807 newCall.setAttributes( 2808 llvm::AttributeSet::get(newFn->getContext(), newAttrs)); 2809 newCall.setCallingConv(callSite.getCallingConv()); 2810 2811 // Finally, remove the old call, replacing any uses with the new one. 2812 if (!callSite->use_empty()) 2813 callSite->replaceAllUsesWith(newCall.getInstruction()); 2814 2815 // Copy debug location attached to CI. 2816 if (callSite->getDebugLoc()) 2817 newCall->setDebugLoc(callSite->getDebugLoc()); 2818 2819 callSite->eraseFromParent(); 2820 } 2821 } 2822 2823 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 2824 /// implement a function with no prototype, e.g. "int foo() {}". If there are 2825 /// existing call uses of the old function in the module, this adjusts them to 2826 /// call the new function directly. 2827 /// 2828 /// This is not just a cleanup: the always_inline pass requires direct calls to 2829 /// functions to be able to inline them. If there is a bitcast in the way, it 2830 /// won't inline them. Instcombine normally deletes these calls, but it isn't 2831 /// run at -O0. 2832 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2833 llvm::Function *NewFn) { 2834 // If we're redefining a global as a function, don't transform it. 2835 if (!isa<llvm::Function>(Old)) return; 2836 2837 replaceUsesOfNonProtoConstant(Old, NewFn); 2838 } 2839 2840 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 2841 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 2842 // If we have a definition, this might be a deferred decl. If the 2843 // instantiation is explicit, make sure we emit it at the end. 2844 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 2845 GetAddrOfGlobalVar(VD); 2846 2847 EmitTopLevelDecl(VD); 2848 } 2849 2850 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 2851 llvm::GlobalValue *GV) { 2852 const auto *D = cast<FunctionDecl>(GD.getDecl()); 2853 2854 // Compute the function info and LLVM type. 2855 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2856 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2857 2858 // Get or create the prototype for the function. 2859 if (!GV || (GV->getType()->getElementType() != Ty)) 2860 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 2861 /*DontDefer=*/true, 2862 /*IsForDefinition=*/true)); 2863 2864 // Already emitted. 2865 if (!GV->isDeclaration()) 2866 return; 2867 2868 // We need to set linkage and visibility on the function before 2869 // generating code for it because various parts of IR generation 2870 // want to propagate this information down (e.g. to local static 2871 // declarations). 2872 auto *Fn = cast<llvm::Function>(GV); 2873 setFunctionLinkage(GD, Fn); 2874 setFunctionDLLStorageClass(GD, Fn); 2875 2876 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 2877 setGlobalVisibility(Fn, D); 2878 2879 MaybeHandleStaticInExternC(D, Fn); 2880 2881 maybeSetTrivialComdat(*D, *Fn); 2882 2883 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 2884 2885 setFunctionDefinitionAttributes(D, Fn); 2886 SetLLVMFunctionAttributesForDefinition(D, Fn); 2887 2888 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 2889 AddGlobalCtor(Fn, CA->getPriority()); 2890 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 2891 AddGlobalDtor(Fn, DA->getPriority()); 2892 if (D->hasAttr<AnnotateAttr>()) 2893 AddGlobalAnnotations(D, Fn); 2894 } 2895 2896 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 2897 const auto *D = cast<ValueDecl>(GD.getDecl()); 2898 const AliasAttr *AA = D->getAttr<AliasAttr>(); 2899 assert(AA && "Not an alias?"); 2900 2901 StringRef MangledName = getMangledName(GD); 2902 2903 if (AA->getAliasee() == MangledName) { 2904 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 2905 return; 2906 } 2907 2908 // If there is a definition in the module, then it wins over the alias. 2909 // This is dubious, but allow it to be safe. Just ignore the alias. 2910 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2911 if (Entry && !Entry->isDeclaration()) 2912 return; 2913 2914 Aliases.push_back(GD); 2915 2916 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 2917 2918 // Create a reference to the named value. This ensures that it is emitted 2919 // if a deferred decl. 2920 llvm::Constant *Aliasee; 2921 if (isa<llvm::FunctionType>(DeclTy)) 2922 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 2923 /*ForVTable=*/false); 2924 else 2925 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2926 llvm::PointerType::getUnqual(DeclTy), 2927 /*D=*/nullptr); 2928 2929 // Create the new alias itself, but don't set a name yet. 2930 auto *GA = llvm::GlobalAlias::create( 2931 DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule()); 2932 2933 if (Entry) { 2934 if (GA->getAliasee() == Entry) { 2935 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 2936 return; 2937 } 2938 2939 assert(Entry->isDeclaration()); 2940 2941 // If there is a declaration in the module, then we had an extern followed 2942 // by the alias, as in: 2943 // extern int test6(); 2944 // ... 2945 // int test6() __attribute__((alias("test7"))); 2946 // 2947 // Remove it and replace uses of it with the alias. 2948 GA->takeName(Entry); 2949 2950 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 2951 Entry->getType())); 2952 Entry->eraseFromParent(); 2953 } else { 2954 GA->setName(MangledName); 2955 } 2956 2957 // Set attributes which are particular to an alias; this is a 2958 // specialization of the attributes which may be set on a global 2959 // variable/function. 2960 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 2961 D->isWeakImported()) { 2962 GA->setLinkage(llvm::Function::WeakAnyLinkage); 2963 } 2964 2965 if (const auto *VD = dyn_cast<VarDecl>(D)) 2966 if (VD->getTLSKind()) 2967 setTLSMode(GA, *VD); 2968 2969 setAliasAttributes(D, GA); 2970 } 2971 2972 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 2973 const auto *D = cast<ValueDecl>(GD.getDecl()); 2974 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 2975 assert(IFA && "Not an ifunc?"); 2976 2977 StringRef MangledName = getMangledName(GD); 2978 2979 if (IFA->getResolver() == MangledName) { 2980 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 2981 return; 2982 } 2983 2984 // Report an error if some definition overrides ifunc. 2985 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2986 if (Entry && !Entry->isDeclaration()) { 2987 GlobalDecl OtherGD; 2988 if (lookupRepresentativeDecl(MangledName, OtherGD) && 2989 DiagnosedConflictingDefinitions.insert(GD).second) { 2990 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name); 2991 Diags.Report(OtherGD.getDecl()->getLocation(), 2992 diag::note_previous_definition); 2993 } 2994 return; 2995 } 2996 2997 Aliases.push_back(GD); 2998 2999 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 3000 llvm::Constant *Resolver = 3001 GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD, 3002 /*ForVTable=*/false); 3003 llvm::GlobalIFunc *GIF = 3004 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 3005 "", Resolver, &getModule()); 3006 if (Entry) { 3007 if (GIF->getResolver() == Entry) { 3008 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 3009 return; 3010 } 3011 assert(Entry->isDeclaration()); 3012 3013 // If there is a declaration in the module, then we had an extern followed 3014 // by the ifunc, as in: 3015 // extern int test(); 3016 // ... 3017 // int test() __attribute__((ifunc("resolver"))); 3018 // 3019 // Remove it and replace uses of it with the ifunc. 3020 GIF->takeName(Entry); 3021 3022 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 3023 Entry->getType())); 3024 Entry->eraseFromParent(); 3025 } else 3026 GIF->setName(MangledName); 3027 3028 SetCommonAttributes(D, GIF); 3029 } 3030 3031 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 3032 ArrayRef<llvm::Type*> Tys) { 3033 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 3034 Tys); 3035 } 3036 3037 static llvm::StringMapEntry<llvm::GlobalVariable *> & 3038 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 3039 const StringLiteral *Literal, bool TargetIsLSB, 3040 bool &IsUTF16, unsigned &StringLength) { 3041 StringRef String = Literal->getString(); 3042 unsigned NumBytes = String.size(); 3043 3044 // Check for simple case. 3045 if (!Literal->containsNonAsciiOrNull()) { 3046 StringLength = NumBytes; 3047 return *Map.insert(std::make_pair(String, nullptr)).first; 3048 } 3049 3050 // Otherwise, convert the UTF8 literals into a string of shorts. 3051 IsUTF16 = true; 3052 3053 SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 3054 const UTF8 *FromPtr = (const UTF8 *)String.data(); 3055 UTF16 *ToPtr = &ToBuf[0]; 3056 3057 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 3058 &ToPtr, ToPtr + NumBytes, 3059 strictConversion); 3060 3061 // ConvertUTF8toUTF16 returns the length in ToPtr. 3062 StringLength = ToPtr - &ToBuf[0]; 3063 3064 // Add an explicit null. 3065 *ToPtr = 0; 3066 return *Map.insert(std::make_pair( 3067 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 3068 (StringLength + 1) * 2), 3069 nullptr)).first; 3070 } 3071 3072 static llvm::StringMapEntry<llvm::GlobalVariable *> & 3073 GetConstantStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 3074 const StringLiteral *Literal, unsigned &StringLength) { 3075 StringRef String = Literal->getString(); 3076 StringLength = String.size(); 3077 return *Map.insert(std::make_pair(String, nullptr)).first; 3078 } 3079 3080 ConstantAddress 3081 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 3082 unsigned StringLength = 0; 3083 bool isUTF16 = false; 3084 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 3085 GetConstantCFStringEntry(CFConstantStringMap, Literal, 3086 getDataLayout().isLittleEndian(), isUTF16, 3087 StringLength); 3088 3089 if (auto *C = Entry.second) 3090 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 3091 3092 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 3093 llvm::Constant *Zeros[] = { Zero, Zero }; 3094 llvm::Value *V; 3095 3096 // If we don't already have it, get __CFConstantStringClassReference. 3097 if (!CFConstantStringClassRef) { 3098 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 3099 Ty = llvm::ArrayType::get(Ty, 0); 3100 llvm::Constant *GV = CreateRuntimeVariable(Ty, 3101 "__CFConstantStringClassReference"); 3102 // Decay array -> ptr 3103 V = llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros); 3104 CFConstantStringClassRef = V; 3105 } 3106 else 3107 V = CFConstantStringClassRef; 3108 3109 QualType CFTy = getContext().getCFConstantStringType(); 3110 3111 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 3112 3113 llvm::Constant *Fields[4]; 3114 3115 // Class pointer. 3116 Fields[0] = cast<llvm::ConstantExpr>(V); 3117 3118 // Flags. 3119 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 3120 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 3121 llvm::ConstantInt::get(Ty, 0x07C8); 3122 3123 // String pointer. 3124 llvm::Constant *C = nullptr; 3125 if (isUTF16) { 3126 auto Arr = llvm::makeArrayRef( 3127 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 3128 Entry.first().size() / 2); 3129 C = llvm::ConstantDataArray::get(VMContext, Arr); 3130 } else { 3131 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 3132 } 3133 3134 // Note: -fwritable-strings doesn't make the backing store strings of 3135 // CFStrings writable. (See <rdar://problem/10657500>) 3136 auto *GV = 3137 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 3138 llvm::GlobalValue::PrivateLinkage, C, ".str"); 3139 GV->setUnnamedAddr(true); 3140 // Don't enforce the target's minimum global alignment, since the only use 3141 // of the string is via this class initializer. 3142 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. Without 3143 // it LLVM can merge the string with a non unnamed_addr one during LTO. Doing 3144 // that changes the section it ends in, which surprises ld64. 3145 if (isUTF16) { 3146 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 3147 GV->setAlignment(Align.getQuantity()); 3148 GV->setSection("__TEXT,__ustring"); 3149 } else { 3150 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 3151 GV->setAlignment(Align.getQuantity()); 3152 GV->setSection("__TEXT,__cstring,cstring_literals"); 3153 } 3154 3155 // String. 3156 Fields[2] = 3157 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 3158 3159 if (isUTF16) 3160 // Cast the UTF16 string to the correct type. 3161 Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy); 3162 3163 // String length. 3164 Ty = getTypes().ConvertType(getContext().LongTy); 3165 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 3166 3167 CharUnits Alignment = getPointerAlign(); 3168 3169 // The struct. 3170 C = llvm::ConstantStruct::get(STy, Fields); 3171 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 3172 llvm::GlobalVariable::PrivateLinkage, C, 3173 "_unnamed_cfstring_"); 3174 GV->setSection("__DATA,__cfstring"); 3175 GV->setAlignment(Alignment.getQuantity()); 3176 Entry.second = GV; 3177 3178 return ConstantAddress(GV, Alignment); 3179 } 3180 3181 ConstantAddress 3182 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) { 3183 unsigned StringLength = 0; 3184 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 3185 GetConstantStringEntry(CFConstantStringMap, Literal, StringLength); 3186 3187 if (auto *C = Entry.second) 3188 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 3189 3190 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 3191 llvm::Constant *Zeros[] = { Zero, Zero }; 3192 llvm::Value *V; 3193 // If we don't already have it, get _NSConstantStringClassReference. 3194 if (!ConstantStringClassRef) { 3195 std::string StringClass(getLangOpts().ObjCConstantStringClass); 3196 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 3197 llvm::Constant *GV; 3198 if (LangOpts.ObjCRuntime.isNonFragile()) { 3199 std::string str = 3200 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString" 3201 : "OBJC_CLASS_$_" + StringClass; 3202 GV = getObjCRuntime().GetClassGlobal(str); 3203 // Make sure the result is of the correct type. 3204 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 3205 V = llvm::ConstantExpr::getBitCast(GV, PTy); 3206 ConstantStringClassRef = V; 3207 } else { 3208 std::string str = 3209 StringClass.empty() ? "_NSConstantStringClassReference" 3210 : "_" + StringClass + "ClassReference"; 3211 llvm::Type *PTy = llvm::ArrayType::get(Ty, 0); 3212 GV = CreateRuntimeVariable(PTy, str); 3213 // Decay array -> ptr 3214 V = llvm::ConstantExpr::getGetElementPtr(PTy, GV, Zeros); 3215 ConstantStringClassRef = V; 3216 } 3217 } else 3218 V = ConstantStringClassRef; 3219 3220 if (!NSConstantStringType) { 3221 // Construct the type for a constant NSString. 3222 RecordDecl *D = Context.buildImplicitRecord("__builtin_NSString"); 3223 D->startDefinition(); 3224 3225 QualType FieldTypes[3]; 3226 3227 // const int *isa; 3228 FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst()); 3229 // const char *str; 3230 FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst()); 3231 // unsigned int length; 3232 FieldTypes[2] = Context.UnsignedIntTy; 3233 3234 // Create fields 3235 for (unsigned i = 0; i < 3; ++i) { 3236 FieldDecl *Field = FieldDecl::Create(Context, D, 3237 SourceLocation(), 3238 SourceLocation(), nullptr, 3239 FieldTypes[i], /*TInfo=*/nullptr, 3240 /*BitWidth=*/nullptr, 3241 /*Mutable=*/false, 3242 ICIS_NoInit); 3243 Field->setAccess(AS_public); 3244 D->addDecl(Field); 3245 } 3246 3247 D->completeDefinition(); 3248 QualType NSTy = Context.getTagDeclType(D); 3249 NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 3250 } 3251 3252 llvm::Constant *Fields[3]; 3253 3254 // Class pointer. 3255 Fields[0] = cast<llvm::ConstantExpr>(V); 3256 3257 // String pointer. 3258 llvm::Constant *C = 3259 llvm::ConstantDataArray::getString(VMContext, Entry.first()); 3260 3261 llvm::GlobalValue::LinkageTypes Linkage; 3262 bool isConstant; 3263 Linkage = llvm::GlobalValue::PrivateLinkage; 3264 isConstant = !LangOpts.WritableStrings; 3265 3266 auto *GV = new llvm::GlobalVariable(getModule(), C->getType(), isConstant, 3267 Linkage, C, ".str"); 3268 GV->setUnnamedAddr(true); 3269 // Don't enforce the target's minimum global alignment, since the only use 3270 // of the string is via this class initializer. 3271 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 3272 GV->setAlignment(Align.getQuantity()); 3273 Fields[1] = 3274 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 3275 3276 // String length. 3277 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 3278 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 3279 3280 // The struct. 3281 CharUnits Alignment = getPointerAlign(); 3282 C = llvm::ConstantStruct::get(NSConstantStringType, Fields); 3283 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 3284 llvm::GlobalVariable::PrivateLinkage, C, 3285 "_unnamed_nsstring_"); 3286 GV->setAlignment(Alignment.getQuantity()); 3287 const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip"; 3288 const char *NSStringNonFragileABISection = 3289 "__DATA,__objc_stringobj,regular,no_dead_strip"; 3290 // FIXME. Fix section. 3291 GV->setSection(LangOpts.ObjCRuntime.isNonFragile() 3292 ? NSStringNonFragileABISection 3293 : NSStringSection); 3294 Entry.second = GV; 3295 3296 return ConstantAddress(GV, Alignment); 3297 } 3298 3299 QualType CodeGenModule::getObjCFastEnumerationStateType() { 3300 if (ObjCFastEnumerationStateType.isNull()) { 3301 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 3302 D->startDefinition(); 3303 3304 QualType FieldTypes[] = { 3305 Context.UnsignedLongTy, 3306 Context.getPointerType(Context.getObjCIdType()), 3307 Context.getPointerType(Context.UnsignedLongTy), 3308 Context.getConstantArrayType(Context.UnsignedLongTy, 3309 llvm::APInt(32, 5), ArrayType::Normal, 0) 3310 }; 3311 3312 for (size_t i = 0; i < 4; ++i) { 3313 FieldDecl *Field = FieldDecl::Create(Context, 3314 D, 3315 SourceLocation(), 3316 SourceLocation(), nullptr, 3317 FieldTypes[i], /*TInfo=*/nullptr, 3318 /*BitWidth=*/nullptr, 3319 /*Mutable=*/false, 3320 ICIS_NoInit); 3321 Field->setAccess(AS_public); 3322 D->addDecl(Field); 3323 } 3324 3325 D->completeDefinition(); 3326 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 3327 } 3328 3329 return ObjCFastEnumerationStateType; 3330 } 3331 3332 llvm::Constant * 3333 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 3334 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 3335 3336 // Don't emit it as the address of the string, emit the string data itself 3337 // as an inline array. 3338 if (E->getCharByteWidth() == 1) { 3339 SmallString<64> Str(E->getString()); 3340 3341 // Resize the string to the right size, which is indicated by its type. 3342 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 3343 Str.resize(CAT->getSize().getZExtValue()); 3344 return llvm::ConstantDataArray::getString(VMContext, Str, false); 3345 } 3346 3347 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 3348 llvm::Type *ElemTy = AType->getElementType(); 3349 unsigned NumElements = AType->getNumElements(); 3350 3351 // Wide strings have either 2-byte or 4-byte elements. 3352 if (ElemTy->getPrimitiveSizeInBits() == 16) { 3353 SmallVector<uint16_t, 32> Elements; 3354 Elements.reserve(NumElements); 3355 3356 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3357 Elements.push_back(E->getCodeUnit(i)); 3358 Elements.resize(NumElements); 3359 return llvm::ConstantDataArray::get(VMContext, Elements); 3360 } 3361 3362 assert(ElemTy->getPrimitiveSizeInBits() == 32); 3363 SmallVector<uint32_t, 32> Elements; 3364 Elements.reserve(NumElements); 3365 3366 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3367 Elements.push_back(E->getCodeUnit(i)); 3368 Elements.resize(NumElements); 3369 return llvm::ConstantDataArray::get(VMContext, Elements); 3370 } 3371 3372 static llvm::GlobalVariable * 3373 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 3374 CodeGenModule &CGM, StringRef GlobalName, 3375 CharUnits Alignment) { 3376 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 3377 unsigned AddrSpace = 0; 3378 if (CGM.getLangOpts().OpenCL) 3379 AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant); 3380 3381 llvm::Module &M = CGM.getModule(); 3382 // Create a global variable for this string 3383 auto *GV = new llvm::GlobalVariable( 3384 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 3385 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 3386 GV->setAlignment(Alignment.getQuantity()); 3387 GV->setUnnamedAddr(true); 3388 if (GV->isWeakForLinker()) { 3389 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 3390 GV->setComdat(M.getOrInsertComdat(GV->getName())); 3391 } 3392 3393 return GV; 3394 } 3395 3396 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 3397 /// constant array for the given string literal. 3398 ConstantAddress 3399 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 3400 StringRef Name) { 3401 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 3402 3403 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 3404 llvm::GlobalVariable **Entry = nullptr; 3405 if (!LangOpts.WritableStrings) { 3406 Entry = &ConstantStringMap[C]; 3407 if (auto GV = *Entry) { 3408 if (Alignment.getQuantity() > GV->getAlignment()) 3409 GV->setAlignment(Alignment.getQuantity()); 3410 return ConstantAddress(GV, Alignment); 3411 } 3412 } 3413 3414 SmallString<256> MangledNameBuffer; 3415 StringRef GlobalVariableName; 3416 llvm::GlobalValue::LinkageTypes LT; 3417 3418 // Mangle the string literal if the ABI allows for it. However, we cannot 3419 // do this if we are compiling with ASan or -fwritable-strings because they 3420 // rely on strings having normal linkage. 3421 if (!LangOpts.WritableStrings && 3422 !LangOpts.Sanitize.has(SanitizerKind::Address) && 3423 getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) { 3424 llvm::raw_svector_ostream Out(MangledNameBuffer); 3425 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 3426 3427 LT = llvm::GlobalValue::LinkOnceODRLinkage; 3428 GlobalVariableName = MangledNameBuffer; 3429 } else { 3430 LT = llvm::GlobalValue::PrivateLinkage; 3431 GlobalVariableName = Name; 3432 } 3433 3434 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 3435 if (Entry) 3436 *Entry = GV; 3437 3438 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 3439 QualType()); 3440 return ConstantAddress(GV, Alignment); 3441 } 3442 3443 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 3444 /// array for the given ObjCEncodeExpr node. 3445 ConstantAddress 3446 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 3447 std::string Str; 3448 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 3449 3450 return GetAddrOfConstantCString(Str); 3451 } 3452 3453 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 3454 /// the literal and a terminating '\0' character. 3455 /// The result has pointer to array type. 3456 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 3457 const std::string &Str, const char *GlobalName) { 3458 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 3459 CharUnits Alignment = 3460 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 3461 3462 llvm::Constant *C = 3463 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 3464 3465 // Don't share any string literals if strings aren't constant. 3466 llvm::GlobalVariable **Entry = nullptr; 3467 if (!LangOpts.WritableStrings) { 3468 Entry = &ConstantStringMap[C]; 3469 if (auto GV = *Entry) { 3470 if (Alignment.getQuantity() > GV->getAlignment()) 3471 GV->setAlignment(Alignment.getQuantity()); 3472 return ConstantAddress(GV, Alignment); 3473 } 3474 } 3475 3476 // Get the default prefix if a name wasn't specified. 3477 if (!GlobalName) 3478 GlobalName = ".str"; 3479 // Create a global variable for this. 3480 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 3481 GlobalName, Alignment); 3482 if (Entry) 3483 *Entry = GV; 3484 return ConstantAddress(GV, Alignment); 3485 } 3486 3487 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 3488 const MaterializeTemporaryExpr *E, const Expr *Init) { 3489 assert((E->getStorageDuration() == SD_Static || 3490 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 3491 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 3492 3493 // If we're not materializing a subobject of the temporary, keep the 3494 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 3495 QualType MaterializedType = Init->getType(); 3496 if (Init == E->GetTemporaryExpr()) 3497 MaterializedType = E->getType(); 3498 3499 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 3500 3501 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E]) 3502 return ConstantAddress(Slot, Align); 3503 3504 // FIXME: If an externally-visible declaration extends multiple temporaries, 3505 // we need to give each temporary the same name in every translation unit (and 3506 // we also need to make the temporaries externally-visible). 3507 SmallString<256> Name; 3508 llvm::raw_svector_ostream Out(Name); 3509 getCXXABI().getMangleContext().mangleReferenceTemporary( 3510 VD, E->getManglingNumber(), Out); 3511 3512 APValue *Value = nullptr; 3513 if (E->getStorageDuration() == SD_Static) { 3514 // We might have a cached constant initializer for this temporary. Note 3515 // that this might have a different value from the value computed by 3516 // evaluating the initializer if the surrounding constant expression 3517 // modifies the temporary. 3518 Value = getContext().getMaterializedTemporaryValue(E, false); 3519 if (Value && Value->isUninit()) 3520 Value = nullptr; 3521 } 3522 3523 // Try evaluating it now, it might have a constant initializer. 3524 Expr::EvalResult EvalResult; 3525 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 3526 !EvalResult.hasSideEffects()) 3527 Value = &EvalResult.Val; 3528 3529 llvm::Constant *InitialValue = nullptr; 3530 bool Constant = false; 3531 llvm::Type *Type; 3532 if (Value) { 3533 // The temporary has a constant initializer, use it. 3534 InitialValue = EmitConstantValue(*Value, MaterializedType, nullptr); 3535 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 3536 Type = InitialValue->getType(); 3537 } else { 3538 // No initializer, the initialization will be provided when we 3539 // initialize the declaration which performed lifetime extension. 3540 Type = getTypes().ConvertTypeForMem(MaterializedType); 3541 } 3542 3543 // Create a global variable for this lifetime-extended temporary. 3544 llvm::GlobalValue::LinkageTypes Linkage = 3545 getLLVMLinkageVarDefinition(VD, Constant); 3546 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 3547 const VarDecl *InitVD; 3548 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 3549 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 3550 // Temporaries defined inside a class get linkonce_odr linkage because the 3551 // class can be defined in multipe translation units. 3552 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 3553 } else { 3554 // There is no need for this temporary to have external linkage if the 3555 // VarDecl has external linkage. 3556 Linkage = llvm::GlobalVariable::InternalLinkage; 3557 } 3558 } 3559 unsigned AddrSpace = GetGlobalVarAddressSpace( 3560 VD, getContext().getTargetAddressSpace(MaterializedType)); 3561 auto *GV = new llvm::GlobalVariable( 3562 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 3563 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, 3564 AddrSpace); 3565 setGlobalVisibility(GV, VD); 3566 GV->setAlignment(Align.getQuantity()); 3567 if (supportsCOMDAT() && GV->isWeakForLinker()) 3568 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3569 if (VD->getTLSKind()) 3570 setTLSMode(GV, *VD); 3571 MaterializedGlobalTemporaryMap[E] = GV; 3572 return ConstantAddress(GV, Align); 3573 } 3574 3575 /// EmitObjCPropertyImplementations - Emit information for synthesized 3576 /// properties for an implementation. 3577 void CodeGenModule::EmitObjCPropertyImplementations(const 3578 ObjCImplementationDecl *D) { 3579 for (const auto *PID : D->property_impls()) { 3580 // Dynamic is just for type-checking. 3581 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 3582 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 3583 3584 // Determine which methods need to be implemented, some may have 3585 // been overridden. Note that ::isPropertyAccessor is not the method 3586 // we want, that just indicates if the decl came from a 3587 // property. What we want to know is if the method is defined in 3588 // this implementation. 3589 if (!D->getInstanceMethod(PD->getGetterName())) 3590 CodeGenFunction(*this).GenerateObjCGetter( 3591 const_cast<ObjCImplementationDecl *>(D), PID); 3592 if (!PD->isReadOnly() && 3593 !D->getInstanceMethod(PD->getSetterName())) 3594 CodeGenFunction(*this).GenerateObjCSetter( 3595 const_cast<ObjCImplementationDecl *>(D), PID); 3596 } 3597 } 3598 } 3599 3600 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 3601 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 3602 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 3603 ivar; ivar = ivar->getNextIvar()) 3604 if (ivar->getType().isDestructedType()) 3605 return true; 3606 3607 return false; 3608 } 3609 3610 static bool AllTrivialInitializers(CodeGenModule &CGM, 3611 ObjCImplementationDecl *D) { 3612 CodeGenFunction CGF(CGM); 3613 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 3614 E = D->init_end(); B != E; ++B) { 3615 CXXCtorInitializer *CtorInitExp = *B; 3616 Expr *Init = CtorInitExp->getInit(); 3617 if (!CGF.isTrivialInitializer(Init)) 3618 return false; 3619 } 3620 return true; 3621 } 3622 3623 /// EmitObjCIvarInitializations - Emit information for ivar initialization 3624 /// for an implementation. 3625 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 3626 // We might need a .cxx_destruct even if we don't have any ivar initializers. 3627 if (needsDestructMethod(D)) { 3628 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 3629 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3630 ObjCMethodDecl *DTORMethod = 3631 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 3632 cxxSelector, getContext().VoidTy, nullptr, D, 3633 /*isInstance=*/true, /*isVariadic=*/false, 3634 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 3635 /*isDefined=*/false, ObjCMethodDecl::Required); 3636 D->addInstanceMethod(DTORMethod); 3637 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 3638 D->setHasDestructors(true); 3639 } 3640 3641 // If the implementation doesn't have any ivar initializers, we don't need 3642 // a .cxx_construct. 3643 if (D->getNumIvarInitializers() == 0 || 3644 AllTrivialInitializers(*this, D)) 3645 return; 3646 3647 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 3648 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3649 // The constructor returns 'self'. 3650 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 3651 D->getLocation(), 3652 D->getLocation(), 3653 cxxSelector, 3654 getContext().getObjCIdType(), 3655 nullptr, D, /*isInstance=*/true, 3656 /*isVariadic=*/false, 3657 /*isPropertyAccessor=*/true, 3658 /*isImplicitlyDeclared=*/true, 3659 /*isDefined=*/false, 3660 ObjCMethodDecl::Required); 3661 D->addInstanceMethod(CTORMethod); 3662 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 3663 D->setHasNonZeroConstructors(true); 3664 } 3665 3666 /// EmitNamespace - Emit all declarations in a namespace. 3667 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 3668 for (auto *I : ND->decls()) { 3669 if (const auto *VD = dyn_cast<VarDecl>(I)) 3670 if (VD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization && 3671 VD->getTemplateSpecializationKind() != TSK_Undeclared) 3672 continue; 3673 EmitTopLevelDecl(I); 3674 } 3675 } 3676 3677 // EmitLinkageSpec - Emit all declarations in a linkage spec. 3678 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 3679 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 3680 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 3681 ErrorUnsupported(LSD, "linkage spec"); 3682 return; 3683 } 3684 3685 for (auto *I : LSD->decls()) { 3686 // Meta-data for ObjC class includes references to implemented methods. 3687 // Generate class's method definitions first. 3688 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 3689 for (auto *M : OID->methods()) 3690 EmitTopLevelDecl(M); 3691 } 3692 EmitTopLevelDecl(I); 3693 } 3694 } 3695 3696 /// EmitTopLevelDecl - Emit code for a single top level declaration. 3697 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 3698 // Ignore dependent declarations. 3699 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 3700 return; 3701 3702 switch (D->getKind()) { 3703 case Decl::CXXConversion: 3704 case Decl::CXXMethod: 3705 case Decl::Function: 3706 // Skip function templates 3707 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3708 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3709 return; 3710 3711 EmitGlobal(cast<FunctionDecl>(D)); 3712 // Always provide some coverage mapping 3713 // even for the functions that aren't emitted. 3714 AddDeferredUnusedCoverageMapping(D); 3715 break; 3716 3717 case Decl::Var: 3718 // Skip variable templates 3719 if (cast<VarDecl>(D)->getDescribedVarTemplate()) 3720 return; 3721 case Decl::VarTemplateSpecialization: 3722 EmitGlobal(cast<VarDecl>(D)); 3723 break; 3724 3725 // Indirect fields from global anonymous structs and unions can be 3726 // ignored; only the actual variable requires IR gen support. 3727 case Decl::IndirectField: 3728 break; 3729 3730 // C++ Decls 3731 case Decl::Namespace: 3732 EmitNamespace(cast<NamespaceDecl>(D)); 3733 break; 3734 // No code generation needed. 3735 case Decl::UsingShadow: 3736 case Decl::ClassTemplate: 3737 case Decl::VarTemplate: 3738 case Decl::VarTemplatePartialSpecialization: 3739 case Decl::FunctionTemplate: 3740 case Decl::TypeAliasTemplate: 3741 case Decl::Block: 3742 case Decl::Empty: 3743 break; 3744 case Decl::Using: // using X; [C++] 3745 if (CGDebugInfo *DI = getModuleDebugInfo()) 3746 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 3747 return; 3748 case Decl::NamespaceAlias: 3749 if (CGDebugInfo *DI = getModuleDebugInfo()) 3750 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 3751 return; 3752 case Decl::UsingDirective: // using namespace X; [C++] 3753 if (CGDebugInfo *DI = getModuleDebugInfo()) 3754 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 3755 return; 3756 case Decl::CXXConstructor: 3757 // Skip function templates 3758 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3759 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3760 return; 3761 3762 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 3763 break; 3764 case Decl::CXXDestructor: 3765 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 3766 return; 3767 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 3768 break; 3769 3770 case Decl::StaticAssert: 3771 // Nothing to do. 3772 break; 3773 3774 // Objective-C Decls 3775 3776 // Forward declarations, no (immediate) code generation. 3777 case Decl::ObjCInterface: 3778 case Decl::ObjCCategory: 3779 break; 3780 3781 case Decl::ObjCProtocol: { 3782 auto *Proto = cast<ObjCProtocolDecl>(D); 3783 if (Proto->isThisDeclarationADefinition()) 3784 ObjCRuntime->GenerateProtocol(Proto); 3785 break; 3786 } 3787 3788 case Decl::ObjCCategoryImpl: 3789 // Categories have properties but don't support synthesize so we 3790 // can ignore them here. 3791 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 3792 break; 3793 3794 case Decl::ObjCImplementation: { 3795 auto *OMD = cast<ObjCImplementationDecl>(D); 3796 EmitObjCPropertyImplementations(OMD); 3797 EmitObjCIvarInitializations(OMD); 3798 ObjCRuntime->GenerateClass(OMD); 3799 // Emit global variable debug information. 3800 if (CGDebugInfo *DI = getModuleDebugInfo()) 3801 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 3802 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 3803 OMD->getClassInterface()), OMD->getLocation()); 3804 break; 3805 } 3806 case Decl::ObjCMethod: { 3807 auto *OMD = cast<ObjCMethodDecl>(D); 3808 // If this is not a prototype, emit the body. 3809 if (OMD->getBody()) 3810 CodeGenFunction(*this).GenerateObjCMethod(OMD); 3811 break; 3812 } 3813 case Decl::ObjCCompatibleAlias: 3814 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 3815 break; 3816 3817 case Decl::PragmaComment: { 3818 const auto *PCD = cast<PragmaCommentDecl>(D); 3819 switch (PCD->getCommentKind()) { 3820 case PCK_Unknown: 3821 llvm_unreachable("unexpected pragma comment kind"); 3822 case PCK_Linker: 3823 AppendLinkerOptions(PCD->getArg()); 3824 break; 3825 case PCK_Lib: 3826 AddDependentLib(PCD->getArg()); 3827 break; 3828 case PCK_Compiler: 3829 case PCK_ExeStr: 3830 case PCK_User: 3831 break; // We ignore all of these. 3832 } 3833 break; 3834 } 3835 3836 case Decl::PragmaDetectMismatch: { 3837 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 3838 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 3839 break; 3840 } 3841 3842 case Decl::LinkageSpec: 3843 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 3844 break; 3845 3846 case Decl::FileScopeAsm: { 3847 // File-scope asm is ignored during device-side CUDA compilation. 3848 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 3849 break; 3850 // File-scope asm is ignored during device-side OpenMP compilation. 3851 if (LangOpts.OpenMPIsDevice) 3852 break; 3853 auto *AD = cast<FileScopeAsmDecl>(D); 3854 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 3855 break; 3856 } 3857 3858 case Decl::Import: { 3859 auto *Import = cast<ImportDecl>(D); 3860 3861 // Ignore import declarations that come from imported modules. 3862 if (Import->getImportedOwningModule()) 3863 break; 3864 if (CGDebugInfo *DI = getModuleDebugInfo()) 3865 DI->EmitImportDecl(*Import); 3866 3867 ImportedModules.insert(Import->getImportedModule()); 3868 break; 3869 } 3870 3871 case Decl::OMPThreadPrivate: 3872 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 3873 break; 3874 3875 case Decl::ClassTemplateSpecialization: { 3876 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 3877 if (DebugInfo && 3878 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition && 3879 Spec->hasDefinition()) 3880 DebugInfo->completeTemplateDefinition(*Spec); 3881 break; 3882 } 3883 3884 case Decl::OMPDeclareReduction: 3885 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 3886 break; 3887 3888 default: 3889 // Make sure we handled everything we should, every other kind is a 3890 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 3891 // function. Need to recode Decl::Kind to do that easily. 3892 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 3893 break; 3894 } 3895 } 3896 3897 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 3898 // Do we need to generate coverage mapping? 3899 if (!CodeGenOpts.CoverageMapping) 3900 return; 3901 switch (D->getKind()) { 3902 case Decl::CXXConversion: 3903 case Decl::CXXMethod: 3904 case Decl::Function: 3905 case Decl::ObjCMethod: 3906 case Decl::CXXConstructor: 3907 case Decl::CXXDestructor: { 3908 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 3909 return; 3910 auto I = DeferredEmptyCoverageMappingDecls.find(D); 3911 if (I == DeferredEmptyCoverageMappingDecls.end()) 3912 DeferredEmptyCoverageMappingDecls[D] = true; 3913 break; 3914 } 3915 default: 3916 break; 3917 }; 3918 } 3919 3920 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 3921 // Do we need to generate coverage mapping? 3922 if (!CodeGenOpts.CoverageMapping) 3923 return; 3924 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 3925 if (Fn->isTemplateInstantiation()) 3926 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 3927 } 3928 auto I = DeferredEmptyCoverageMappingDecls.find(D); 3929 if (I == DeferredEmptyCoverageMappingDecls.end()) 3930 DeferredEmptyCoverageMappingDecls[D] = false; 3931 else 3932 I->second = false; 3933 } 3934 3935 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 3936 std::vector<const Decl *> DeferredDecls; 3937 for (const auto &I : DeferredEmptyCoverageMappingDecls) { 3938 if (!I.second) 3939 continue; 3940 DeferredDecls.push_back(I.first); 3941 } 3942 // Sort the declarations by their location to make sure that the tests get a 3943 // predictable order for the coverage mapping for the unused declarations. 3944 if (CodeGenOpts.DumpCoverageMapping) 3945 std::sort(DeferredDecls.begin(), DeferredDecls.end(), 3946 [] (const Decl *LHS, const Decl *RHS) { 3947 return LHS->getLocStart() < RHS->getLocStart(); 3948 }); 3949 for (const auto *D : DeferredDecls) { 3950 switch (D->getKind()) { 3951 case Decl::CXXConversion: 3952 case Decl::CXXMethod: 3953 case Decl::Function: 3954 case Decl::ObjCMethod: { 3955 CodeGenPGO PGO(*this); 3956 GlobalDecl GD(cast<FunctionDecl>(D)); 3957 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 3958 getFunctionLinkage(GD)); 3959 break; 3960 } 3961 case Decl::CXXConstructor: { 3962 CodeGenPGO PGO(*this); 3963 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 3964 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 3965 getFunctionLinkage(GD)); 3966 break; 3967 } 3968 case Decl::CXXDestructor: { 3969 CodeGenPGO PGO(*this); 3970 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 3971 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 3972 getFunctionLinkage(GD)); 3973 break; 3974 } 3975 default: 3976 break; 3977 }; 3978 } 3979 } 3980 3981 /// Turns the given pointer into a constant. 3982 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 3983 const void *Ptr) { 3984 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 3985 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 3986 return llvm::ConstantInt::get(i64, PtrInt); 3987 } 3988 3989 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 3990 llvm::NamedMDNode *&GlobalMetadata, 3991 GlobalDecl D, 3992 llvm::GlobalValue *Addr) { 3993 if (!GlobalMetadata) 3994 GlobalMetadata = 3995 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 3996 3997 // TODO: should we report variant information for ctors/dtors? 3998 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 3999 llvm::ConstantAsMetadata::get(GetPointerConstant( 4000 CGM.getLLVMContext(), D.getDecl()))}; 4001 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 4002 } 4003 4004 /// For each function which is declared within an extern "C" region and marked 4005 /// as 'used', but has internal linkage, create an alias from the unmangled 4006 /// name to the mangled name if possible. People expect to be able to refer 4007 /// to such functions with an unmangled name from inline assembly within the 4008 /// same translation unit. 4009 void CodeGenModule::EmitStaticExternCAliases() { 4010 // Don't do anything if we're generating CUDA device code -- the NVPTX 4011 // assembly target doesn't support aliases. 4012 if (Context.getTargetInfo().getTriple().isNVPTX()) 4013 return; 4014 for (auto &I : StaticExternCValues) { 4015 IdentifierInfo *Name = I.first; 4016 llvm::GlobalValue *Val = I.second; 4017 if (Val && !getModule().getNamedValue(Name->getName())) 4018 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 4019 } 4020 } 4021 4022 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 4023 GlobalDecl &Result) const { 4024 auto Res = Manglings.find(MangledName); 4025 if (Res == Manglings.end()) 4026 return false; 4027 Result = Res->getValue(); 4028 return true; 4029 } 4030 4031 /// Emits metadata nodes associating all the global values in the 4032 /// current module with the Decls they came from. This is useful for 4033 /// projects using IR gen as a subroutine. 4034 /// 4035 /// Since there's currently no way to associate an MDNode directly 4036 /// with an llvm::GlobalValue, we create a global named metadata 4037 /// with the name 'clang.global.decl.ptrs'. 4038 void CodeGenModule::EmitDeclMetadata() { 4039 llvm::NamedMDNode *GlobalMetadata = nullptr; 4040 4041 for (auto &I : MangledDeclNames) { 4042 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 4043 // Some mangled names don't necessarily have an associated GlobalValue 4044 // in this module, e.g. if we mangled it for DebugInfo. 4045 if (Addr) 4046 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 4047 } 4048 } 4049 4050 /// Emits metadata nodes for all the local variables in the current 4051 /// function. 4052 void CodeGenFunction::EmitDeclMetadata() { 4053 if (LocalDeclMap.empty()) return; 4054 4055 llvm::LLVMContext &Context = getLLVMContext(); 4056 4057 // Find the unique metadata ID for this name. 4058 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 4059 4060 llvm::NamedMDNode *GlobalMetadata = nullptr; 4061 4062 for (auto &I : LocalDeclMap) { 4063 const Decl *D = I.first; 4064 llvm::Value *Addr = I.second.getPointer(); 4065 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 4066 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 4067 Alloca->setMetadata( 4068 DeclPtrKind, llvm::MDNode::get( 4069 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 4070 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 4071 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 4072 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 4073 } 4074 } 4075 } 4076 4077 void CodeGenModule::EmitVersionIdentMetadata() { 4078 llvm::NamedMDNode *IdentMetadata = 4079 TheModule.getOrInsertNamedMetadata("llvm.ident"); 4080 std::string Version = getClangFullVersion(); 4081 llvm::LLVMContext &Ctx = TheModule.getContext(); 4082 4083 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 4084 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 4085 } 4086 4087 void CodeGenModule::EmitTargetMetadata() { 4088 // Warning, new MangledDeclNames may be appended within this loop. 4089 // We rely on MapVector insertions adding new elements to the end 4090 // of the container. 4091 // FIXME: Move this loop into the one target that needs it, and only 4092 // loop over those declarations for which we couldn't emit the target 4093 // metadata when we emitted the declaration. 4094 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 4095 auto Val = *(MangledDeclNames.begin() + I); 4096 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 4097 llvm::GlobalValue *GV = GetGlobalValue(Val.second); 4098 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 4099 } 4100 } 4101 4102 void CodeGenModule::EmitCoverageFile() { 4103 if (!getCodeGenOpts().CoverageFile.empty()) { 4104 if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) { 4105 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 4106 llvm::LLVMContext &Ctx = TheModule.getContext(); 4107 llvm::MDString *CoverageFile = 4108 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile); 4109 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 4110 llvm::MDNode *CU = CUNode->getOperand(i); 4111 llvm::Metadata *Elts[] = {CoverageFile, CU}; 4112 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 4113 } 4114 } 4115 } 4116 } 4117 4118 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) { 4119 // Sema has checked that all uuid strings are of the form 4120 // "12345678-1234-1234-1234-1234567890ab". 4121 assert(Uuid.size() == 36); 4122 for (unsigned i = 0; i < 36; ++i) { 4123 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 4124 else assert(isHexDigit(Uuid[i])); 4125 } 4126 4127 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab". 4128 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 4129 4130 llvm::Constant *Field3[8]; 4131 for (unsigned Idx = 0; Idx < 8; ++Idx) 4132 Field3[Idx] = llvm::ConstantInt::get( 4133 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 4134 4135 llvm::Constant *Fields[4] = { 4136 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 4137 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 4138 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 4139 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 4140 }; 4141 4142 return llvm::ConstantStruct::getAnon(Fields); 4143 } 4144 4145 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 4146 bool ForEH) { 4147 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 4148 // FIXME: should we even be calling this method if RTTI is disabled 4149 // and it's not for EH? 4150 if (!ForEH && !getLangOpts().RTTI) 4151 return llvm::Constant::getNullValue(Int8PtrTy); 4152 4153 if (ForEH && Ty->isObjCObjectPointerType() && 4154 LangOpts.ObjCRuntime.isGNUFamily()) 4155 return ObjCRuntime->GetEHType(Ty); 4156 4157 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 4158 } 4159 4160 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 4161 for (auto RefExpr : D->varlists()) { 4162 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 4163 bool PerformInit = 4164 VD->getAnyInitializer() && 4165 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 4166 /*ForRef=*/false); 4167 4168 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 4169 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 4170 VD, Addr, RefExpr->getLocStart(), PerformInit)) 4171 CXXGlobalInits.push_back(InitFunction); 4172 } 4173 } 4174 4175 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 4176 llvm::Metadata *&InternalId = MetadataIdMap[T.getCanonicalType()]; 4177 if (InternalId) 4178 return InternalId; 4179 4180 if (isExternallyVisible(T->getLinkage())) { 4181 std::string OutName; 4182 llvm::raw_string_ostream Out(OutName); 4183 getCXXABI().getMangleContext().mangleTypeName(T, Out); 4184 4185 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 4186 } else { 4187 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 4188 llvm::ArrayRef<llvm::Metadata *>()); 4189 } 4190 4191 return InternalId; 4192 } 4193 4194 /// Returns whether this module needs the "all-vtables" bitset. 4195 bool CodeGenModule::NeedAllVtablesBitSet() const { 4196 // Returns true if at least one of vtable-based CFI checkers is enabled and 4197 // is not in the trapping mode. 4198 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 4199 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 4200 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 4201 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 4202 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 4203 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 4204 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 4205 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 4206 } 4207 4208 void CodeGenModule::CreateVTableBitSetEntry(llvm::NamedMDNode *BitsetsMD, 4209 llvm::GlobalVariable *VTable, 4210 CharUnits Offset, 4211 const CXXRecordDecl *RD) { 4212 llvm::Metadata *MD = 4213 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 4214 llvm::Metadata *BitsetOps[] = { 4215 MD, llvm::ConstantAsMetadata::get(VTable), 4216 llvm::ConstantAsMetadata::get( 4217 llvm::ConstantInt::get(Int64Ty, Offset.getQuantity()))}; 4218 BitsetsMD->addOperand(llvm::MDTuple::get(getLLVMContext(), BitsetOps)); 4219 4220 if (CodeGenOpts.SanitizeCfiCrossDso) { 4221 if (auto TypeId = CreateCfiIdForTypeMetadata(MD)) { 4222 llvm::Metadata *BitsetOps2[] = { 4223 llvm::ConstantAsMetadata::get(TypeId), 4224 llvm::ConstantAsMetadata::get(VTable), 4225 llvm::ConstantAsMetadata::get( 4226 llvm::ConstantInt::get(Int64Ty, Offset.getQuantity()))}; 4227 BitsetsMD->addOperand(llvm::MDTuple::get(getLLVMContext(), BitsetOps2)); 4228 } 4229 } 4230 4231 if (NeedAllVtablesBitSet()) { 4232 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 4233 llvm::Metadata *BitsetOps[] = { 4234 MD, llvm::ConstantAsMetadata::get(VTable), 4235 llvm::ConstantAsMetadata::get( 4236 llvm::ConstantInt::get(Int64Ty, Offset.getQuantity()))}; 4237 // Avoid adding a node to BitsetsMD twice. 4238 if (!llvm::MDTuple::getIfExists(getLLVMContext(), BitsetOps)) 4239 BitsetsMD->addOperand(llvm::MDTuple::get(getLLVMContext(), BitsetOps)); 4240 } 4241 } 4242 4243 // Fills in the supplied string map with the set of target features for the 4244 // passed in function. 4245 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap, 4246 const FunctionDecl *FD) { 4247 StringRef TargetCPU = Target.getTargetOpts().CPU; 4248 if (const auto *TD = FD->getAttr<TargetAttr>()) { 4249 // If we have a TargetAttr build up the feature map based on that. 4250 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 4251 4252 // Make a copy of the features as passed on the command line into the 4253 // beginning of the additional features from the function to override. 4254 ParsedAttr.first.insert(ParsedAttr.first.begin(), 4255 Target.getTargetOpts().FeaturesAsWritten.begin(), 4256 Target.getTargetOpts().FeaturesAsWritten.end()); 4257 4258 if (ParsedAttr.second != "") 4259 TargetCPU = ParsedAttr.second; 4260 4261 // Now populate the feature map, first with the TargetCPU which is either 4262 // the default or a new one from the target attribute string. Then we'll use 4263 // the passed in features (FeaturesAsWritten) along with the new ones from 4264 // the attribute. 4265 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, ParsedAttr.first); 4266 } else { 4267 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 4268 Target.getTargetOpts().Features); 4269 } 4270 } 4271 4272 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 4273 if (!SanStats) 4274 SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule()); 4275 4276 return *SanStats; 4277 } 4278