1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-function state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGDebugInfo.h" 18 #include "CGOpenMPRuntime.h" 19 #include "CodeGenModule.h" 20 #include "CodeGenPGO.h" 21 #include "TargetInfo.h" 22 #include "clang/AST/ASTContext.h" 23 #include "clang/AST/Decl.h" 24 #include "clang/AST/DeclCXX.h" 25 #include "clang/AST/StmtCXX.h" 26 #include "clang/Basic/TargetInfo.h" 27 #include "clang/CodeGen/CGFunctionInfo.h" 28 #include "clang/Frontend/CodeGenOptions.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/Intrinsics.h" 31 #include "llvm/IR/MDBuilder.h" 32 #include "llvm/IR/Operator.h" 33 using namespace clang; 34 using namespace CodeGen; 35 36 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 37 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 38 Builder(cgm.getModule().getContext(), llvm::ConstantFolder(), 39 CGBuilderInserterTy(this)), 40 CurFn(nullptr), CapturedStmtInfo(nullptr), 41 SanOpts(CGM.getLangOpts().Sanitize), IsSanitizerScope(false), 42 CurFuncIsThunk(false), AutoreleaseResult(false), SawAsmBlock(false), 43 BlockInfo(nullptr), BlockPointer(nullptr), 44 LambdaThisCaptureField(nullptr), NormalCleanupDest(nullptr), 45 NextCleanupDestIndex(1), FirstBlockInfo(nullptr), EHResumeBlock(nullptr), 46 ExceptionSlot(nullptr), EHSelectorSlot(nullptr), 47 AbnormalTerminationSlot(nullptr), SEHPointersDecl(nullptr), 48 DebugInfo(CGM.getModuleDebugInfo()), DisableDebugInfo(false), 49 DidCallStackSave(false), IndirectBranch(nullptr), PGO(cgm), 50 SwitchInsn(nullptr), SwitchWeights(nullptr), CaseRangeBlock(nullptr), 51 UnreachableBlock(nullptr), NumReturnExprs(0), NumSimpleReturnExprs(0), 52 CXXABIThisDecl(nullptr), CXXABIThisValue(nullptr), CXXThisValue(nullptr), 53 CXXDefaultInitExprThis(nullptr), CXXStructorImplicitParamDecl(nullptr), 54 CXXStructorImplicitParamValue(nullptr), OutermostConditional(nullptr), 55 CurLexicalScope(nullptr), TerminateLandingPad(nullptr), 56 TerminateHandler(nullptr), TrapBB(nullptr) { 57 if (!suppressNewContext) 58 CGM.getCXXABI().getMangleContext().startNewFunction(); 59 60 llvm::FastMathFlags FMF; 61 if (CGM.getLangOpts().FastMath) 62 FMF.setUnsafeAlgebra(); 63 if (CGM.getLangOpts().FiniteMathOnly) { 64 FMF.setNoNaNs(); 65 FMF.setNoInfs(); 66 } 67 if (CGM.getCodeGenOpts().NoNaNsFPMath) { 68 FMF.setNoNaNs(); 69 } 70 if (CGM.getCodeGenOpts().NoSignedZeros) { 71 FMF.setNoSignedZeros(); 72 } 73 Builder.SetFastMathFlags(FMF); 74 } 75 76 CodeGenFunction::~CodeGenFunction() { 77 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 78 79 // If there are any unclaimed block infos, go ahead and destroy them 80 // now. This can happen if IR-gen gets clever and skips evaluating 81 // something. 82 if (FirstBlockInfo) 83 destroyBlockInfos(FirstBlockInfo); 84 85 if (getLangOpts().OpenMP) { 86 CGM.getOpenMPRuntime().FunctionFinished(*this); 87 } 88 } 89 90 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { 91 CharUnits Alignment; 92 if (CGM.getCXXABI().isTypeInfoCalculable(T)) { 93 Alignment = getContext().getTypeAlignInChars(T); 94 unsigned MaxAlign = getContext().getLangOpts().MaxTypeAlign; 95 if (MaxAlign && Alignment.getQuantity() > MaxAlign && 96 !getContext().isAlignmentRequired(T)) 97 Alignment = CharUnits::fromQuantity(MaxAlign); 98 } 99 return LValue::MakeAddr(V, T, Alignment, getContext(), CGM.getTBAAInfo(T)); 100 } 101 102 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 103 return CGM.getTypes().ConvertTypeForMem(T); 104 } 105 106 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 107 return CGM.getTypes().ConvertType(T); 108 } 109 110 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 111 type = type.getCanonicalType(); 112 while (true) { 113 switch (type->getTypeClass()) { 114 #define TYPE(name, parent) 115 #define ABSTRACT_TYPE(name, parent) 116 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 117 #define DEPENDENT_TYPE(name, parent) case Type::name: 118 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 119 #include "clang/AST/TypeNodes.def" 120 llvm_unreachable("non-canonical or dependent type in IR-generation"); 121 122 case Type::Auto: 123 llvm_unreachable("undeduced auto type in IR-generation"); 124 125 // Various scalar types. 126 case Type::Builtin: 127 case Type::Pointer: 128 case Type::BlockPointer: 129 case Type::LValueReference: 130 case Type::RValueReference: 131 case Type::MemberPointer: 132 case Type::Vector: 133 case Type::ExtVector: 134 case Type::FunctionProto: 135 case Type::FunctionNoProto: 136 case Type::Enum: 137 case Type::ObjCObjectPointer: 138 return TEK_Scalar; 139 140 // Complexes. 141 case Type::Complex: 142 return TEK_Complex; 143 144 // Arrays, records, and Objective-C objects. 145 case Type::ConstantArray: 146 case Type::IncompleteArray: 147 case Type::VariableArray: 148 case Type::Record: 149 case Type::ObjCObject: 150 case Type::ObjCInterface: 151 return TEK_Aggregate; 152 153 // We operate on atomic values according to their underlying type. 154 case Type::Atomic: 155 type = cast<AtomicType>(type)->getValueType(); 156 continue; 157 } 158 llvm_unreachable("unknown type kind!"); 159 } 160 } 161 162 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() { 163 // For cleanliness, we try to avoid emitting the return block for 164 // simple cases. 165 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 166 167 if (CurBB) { 168 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 169 170 // We have a valid insert point, reuse it if it is empty or there are no 171 // explicit jumps to the return block. 172 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 173 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 174 delete ReturnBlock.getBlock(); 175 } else 176 EmitBlock(ReturnBlock.getBlock()); 177 return llvm::DebugLoc(); 178 } 179 180 // Otherwise, if the return block is the target of a single direct 181 // branch then we can just put the code in that block instead. This 182 // cleans up functions which started with a unified return block. 183 if (ReturnBlock.getBlock()->hasOneUse()) { 184 llvm::BranchInst *BI = 185 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin()); 186 if (BI && BI->isUnconditional() && 187 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 188 // Record/return the DebugLoc of the simple 'return' expression to be used 189 // later by the actual 'ret' instruction. 190 llvm::DebugLoc Loc = BI->getDebugLoc(); 191 Builder.SetInsertPoint(BI->getParent()); 192 BI->eraseFromParent(); 193 delete ReturnBlock.getBlock(); 194 return Loc; 195 } 196 } 197 198 // FIXME: We are at an unreachable point, there is no reason to emit the block 199 // unless it has uses. However, we still need a place to put the debug 200 // region.end for now. 201 202 EmitBlock(ReturnBlock.getBlock()); 203 return llvm::DebugLoc(); 204 } 205 206 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 207 if (!BB) return; 208 if (!BB->use_empty()) 209 return CGF.CurFn->getBasicBlockList().push_back(BB); 210 delete BB; 211 } 212 213 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 214 assert(BreakContinueStack.empty() && 215 "mismatched push/pop in break/continue stack!"); 216 217 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 218 && NumSimpleReturnExprs == NumReturnExprs 219 && ReturnBlock.getBlock()->use_empty(); 220 // Usually the return expression is evaluated before the cleanup 221 // code. If the function contains only a simple return statement, 222 // such as a constant, the location before the cleanup code becomes 223 // the last useful breakpoint in the function, because the simple 224 // return expression will be evaluated after the cleanup code. To be 225 // safe, set the debug location for cleanup code to the location of 226 // the return statement. Otherwise the cleanup code should be at the 227 // end of the function's lexical scope. 228 // 229 // If there are multiple branches to the return block, the branch 230 // instructions will get the location of the return statements and 231 // all will be fine. 232 if (CGDebugInfo *DI = getDebugInfo()) { 233 if (OnlySimpleReturnStmts) 234 DI->EmitLocation(Builder, LastStopPoint); 235 else 236 DI->EmitLocation(Builder, EndLoc); 237 } 238 239 // Pop any cleanups that might have been associated with the 240 // parameters. Do this in whatever block we're currently in; it's 241 // important to do this before we enter the return block or return 242 // edges will be *really* confused. 243 bool EmitRetDbgLoc = true; 244 if (EHStack.stable_begin() != PrologueCleanupDepth) { 245 // Make sure the line table doesn't jump back into the body for 246 // the ret after it's been at EndLoc. 247 EmitRetDbgLoc = false; 248 249 if (CGDebugInfo *DI = getDebugInfo()) 250 if (OnlySimpleReturnStmts) 251 DI->EmitLocation(Builder, EndLoc); 252 253 PopCleanupBlocks(PrologueCleanupDepth); 254 } 255 256 // Emit function epilog (to return). 257 llvm::DebugLoc Loc = EmitReturnBlock(); 258 259 if (ShouldInstrumentFunction()) 260 EmitFunctionInstrumentation("__cyg_profile_func_exit"); 261 262 // Emit debug descriptor for function end. 263 if (CGDebugInfo *DI = getDebugInfo()) 264 DI->EmitFunctionEnd(Builder); 265 266 // Reset the debug location to that of the simple 'return' expression, if any 267 // rather than that of the end of the function's scope '}'. 268 ApplyDebugLocation AL(*this, Loc); 269 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 270 EmitEndEHSpec(CurCodeDecl); 271 272 assert(EHStack.empty() && 273 "did not remove all scopes from cleanup stack!"); 274 275 // If someone did an indirect goto, emit the indirect goto block at the end of 276 // the function. 277 if (IndirectBranch) { 278 EmitBlock(IndirectBranch->getParent()); 279 Builder.ClearInsertionPoint(); 280 } 281 282 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 283 llvm::Instruction *Ptr = AllocaInsertPt; 284 AllocaInsertPt = nullptr; 285 Ptr->eraseFromParent(); 286 287 // If someone took the address of a label but never did an indirect goto, we 288 // made a zero entry PHI node, which is illegal, zap it now. 289 if (IndirectBranch) { 290 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 291 if (PN->getNumIncomingValues() == 0) { 292 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 293 PN->eraseFromParent(); 294 } 295 } 296 297 EmitIfUsed(*this, EHResumeBlock); 298 EmitIfUsed(*this, TerminateLandingPad); 299 EmitIfUsed(*this, TerminateHandler); 300 EmitIfUsed(*this, UnreachableBlock); 301 302 if (CGM.getCodeGenOpts().EmitDeclMetadata) 303 EmitDeclMetadata(); 304 305 for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator 306 I = DeferredReplacements.begin(), 307 E = DeferredReplacements.end(); 308 I != E; ++I) { 309 I->first->replaceAllUsesWith(I->second); 310 I->first->eraseFromParent(); 311 } 312 } 313 314 /// ShouldInstrumentFunction - Return true if the current function should be 315 /// instrumented with __cyg_profile_func_* calls 316 bool CodeGenFunction::ShouldInstrumentFunction() { 317 if (!CGM.getCodeGenOpts().InstrumentFunctions) 318 return false; 319 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 320 return false; 321 return true; 322 } 323 324 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 325 /// instrumentation function with the current function and the call site, if 326 /// function instrumentation is enabled. 327 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) { 328 // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site); 329 llvm::PointerType *PointerTy = Int8PtrTy; 330 llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy }; 331 llvm::FunctionType *FunctionTy = 332 llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false); 333 334 llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn); 335 llvm::CallInst *CallSite = Builder.CreateCall( 336 CGM.getIntrinsic(llvm::Intrinsic::returnaddress), 337 llvm::ConstantInt::get(Int32Ty, 0), 338 "callsite"); 339 340 llvm::Value *args[] = { 341 llvm::ConstantExpr::getBitCast(CurFn, PointerTy), 342 CallSite 343 }; 344 345 EmitNounwindRuntimeCall(F, args); 346 } 347 348 void CodeGenFunction::EmitMCountInstrumentation() { 349 llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false); 350 351 llvm::Constant *MCountFn = 352 CGM.CreateRuntimeFunction(FTy, getTarget().getMCountName()); 353 EmitNounwindRuntimeCall(MCountFn); 354 } 355 356 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument 357 // information in the program executable. The argument information stored 358 // includes the argument name, its type, the address and access qualifiers used. 359 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn, 360 CodeGenModule &CGM, llvm::LLVMContext &Context, 361 SmallVector<llvm::Metadata *, 5> &kernelMDArgs, 362 CGBuilderTy &Builder, ASTContext &ASTCtx) { 363 // Create MDNodes that represent the kernel arg metadata. 364 // Each MDNode is a list in the form of "key", N number of values which is 365 // the same number of values as their are kernel arguments. 366 367 const PrintingPolicy &Policy = ASTCtx.getPrintingPolicy(); 368 369 // MDNode for the kernel argument address space qualifiers. 370 SmallVector<llvm::Metadata *, 8> addressQuals; 371 addressQuals.push_back(llvm::MDString::get(Context, "kernel_arg_addr_space")); 372 373 // MDNode for the kernel argument access qualifiers (images only). 374 SmallVector<llvm::Metadata *, 8> accessQuals; 375 accessQuals.push_back(llvm::MDString::get(Context, "kernel_arg_access_qual")); 376 377 // MDNode for the kernel argument type names. 378 SmallVector<llvm::Metadata *, 8> argTypeNames; 379 argTypeNames.push_back(llvm::MDString::get(Context, "kernel_arg_type")); 380 381 // MDNode for the kernel argument base type names. 382 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 383 argBaseTypeNames.push_back( 384 llvm::MDString::get(Context, "kernel_arg_base_type")); 385 386 // MDNode for the kernel argument type qualifiers. 387 SmallVector<llvm::Metadata *, 8> argTypeQuals; 388 argTypeQuals.push_back(llvm::MDString::get(Context, "kernel_arg_type_qual")); 389 390 // MDNode for the kernel argument names. 391 SmallVector<llvm::Metadata *, 8> argNames; 392 argNames.push_back(llvm::MDString::get(Context, "kernel_arg_name")); 393 394 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 395 const ParmVarDecl *parm = FD->getParamDecl(i); 396 QualType ty = parm->getType(); 397 std::string typeQuals; 398 399 if (ty->isPointerType()) { 400 QualType pointeeTy = ty->getPointeeType(); 401 402 // Get address qualifier. 403 addressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32( 404 ASTCtx.getTargetAddressSpace(pointeeTy.getAddressSpace())))); 405 406 // Get argument type name. 407 std::string typeName = 408 pointeeTy.getUnqualifiedType().getAsString(Policy) + "*"; 409 410 // Turn "unsigned type" to "utype" 411 std::string::size_type pos = typeName.find("unsigned"); 412 if (pointeeTy.isCanonical() && pos != std::string::npos) 413 typeName.erase(pos+1, 8); 414 415 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 416 417 std::string baseTypeName = 418 pointeeTy.getUnqualifiedType().getCanonicalType().getAsString( 419 Policy) + 420 "*"; 421 422 // Turn "unsigned type" to "utype" 423 pos = baseTypeName.find("unsigned"); 424 if (pos != std::string::npos) 425 baseTypeName.erase(pos+1, 8); 426 427 argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName)); 428 429 // Get argument type qualifiers: 430 if (ty.isRestrictQualified()) 431 typeQuals = "restrict"; 432 if (pointeeTy.isConstQualified() || 433 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 434 typeQuals += typeQuals.empty() ? "const" : " const"; 435 if (pointeeTy.isVolatileQualified()) 436 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 437 } else { 438 uint32_t AddrSpc = 0; 439 if (ty->isImageType()) 440 AddrSpc = 441 CGM.getContext().getTargetAddressSpace(LangAS::opencl_global); 442 443 addressQuals.push_back( 444 llvm::ConstantAsMetadata::get(Builder.getInt32(AddrSpc))); 445 446 // Get argument type name. 447 std::string typeName = ty.getUnqualifiedType().getAsString(Policy); 448 449 // Turn "unsigned type" to "utype" 450 std::string::size_type pos = typeName.find("unsigned"); 451 if (ty.isCanonical() && pos != std::string::npos) 452 typeName.erase(pos+1, 8); 453 454 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 455 456 std::string baseTypeName = 457 ty.getUnqualifiedType().getCanonicalType().getAsString(Policy); 458 459 // Turn "unsigned type" to "utype" 460 pos = baseTypeName.find("unsigned"); 461 if (pos != std::string::npos) 462 baseTypeName.erase(pos+1, 8); 463 464 argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName)); 465 466 // Get argument type qualifiers: 467 if (ty.isConstQualified()) 468 typeQuals = "const"; 469 if (ty.isVolatileQualified()) 470 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 471 } 472 473 argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals)); 474 475 // Get image access qualifier: 476 if (ty->isImageType()) { 477 const OpenCLImageAccessAttr *A = parm->getAttr<OpenCLImageAccessAttr>(); 478 if (A && A->isWriteOnly()) 479 accessQuals.push_back(llvm::MDString::get(Context, "write_only")); 480 else 481 accessQuals.push_back(llvm::MDString::get(Context, "read_only")); 482 // FIXME: what about read_write? 483 } else 484 accessQuals.push_back(llvm::MDString::get(Context, "none")); 485 486 // Get argument name. 487 argNames.push_back(llvm::MDString::get(Context, parm->getName())); 488 } 489 490 kernelMDArgs.push_back(llvm::MDNode::get(Context, addressQuals)); 491 kernelMDArgs.push_back(llvm::MDNode::get(Context, accessQuals)); 492 kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeNames)); 493 kernelMDArgs.push_back(llvm::MDNode::get(Context, argBaseTypeNames)); 494 kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeQuals)); 495 if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 496 kernelMDArgs.push_back(llvm::MDNode::get(Context, argNames)); 497 } 498 499 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 500 llvm::Function *Fn) 501 { 502 if (!FD->hasAttr<OpenCLKernelAttr>()) 503 return; 504 505 llvm::LLVMContext &Context = getLLVMContext(); 506 507 SmallVector<llvm::Metadata *, 5> kernelMDArgs; 508 kernelMDArgs.push_back(llvm::ConstantAsMetadata::get(Fn)); 509 510 GenOpenCLArgMetadata(FD, Fn, CGM, Context, kernelMDArgs, Builder, 511 getContext()); 512 513 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { 514 QualType hintQTy = A->getTypeHint(); 515 const ExtVectorType *hintEltQTy = hintQTy->getAs<ExtVectorType>(); 516 bool isSignedInteger = 517 hintQTy->isSignedIntegerType() || 518 (hintEltQTy && hintEltQTy->getElementType()->isSignedIntegerType()); 519 llvm::Metadata *attrMDArgs[] = { 520 llvm::MDString::get(Context, "vec_type_hint"), 521 llvm::ConstantAsMetadata::get(llvm::UndefValue::get( 522 CGM.getTypes().ConvertType(A->getTypeHint()))), 523 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 524 llvm::IntegerType::get(Context, 32), 525 llvm::APInt(32, (uint64_t)(isSignedInteger ? 1 : 0))))}; 526 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 527 } 528 529 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { 530 llvm::Metadata *attrMDArgs[] = { 531 llvm::MDString::get(Context, "work_group_size_hint"), 532 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 533 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 534 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 535 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 536 } 537 538 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { 539 llvm::Metadata *attrMDArgs[] = { 540 llvm::MDString::get(Context, "reqd_work_group_size"), 541 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 542 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 543 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 544 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 545 } 546 547 llvm::MDNode *kernelMDNode = llvm::MDNode::get(Context, kernelMDArgs); 548 llvm::NamedMDNode *OpenCLKernelMetadata = 549 CGM.getModule().getOrInsertNamedMetadata("opencl.kernels"); 550 OpenCLKernelMetadata->addOperand(kernelMDNode); 551 } 552 553 /// Determine whether the function F ends with a return stmt. 554 static bool endsWithReturn(const Decl* F) { 555 const Stmt *Body = nullptr; 556 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F)) 557 Body = FD->getBody(); 558 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F)) 559 Body = OMD->getBody(); 560 561 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 562 auto LastStmt = CS->body_rbegin(); 563 if (LastStmt != CS->body_rend()) 564 return isa<ReturnStmt>(*LastStmt); 565 } 566 return false; 567 } 568 569 void CodeGenFunction::StartFunction(GlobalDecl GD, 570 QualType RetTy, 571 llvm::Function *Fn, 572 const CGFunctionInfo &FnInfo, 573 const FunctionArgList &Args, 574 SourceLocation Loc, 575 SourceLocation StartLoc) { 576 assert(!CurFn && 577 "Do not use a CodeGenFunction object for more than one function"); 578 579 const Decl *D = GD.getDecl(); 580 581 DidCallStackSave = false; 582 CurCodeDecl = D; 583 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr); 584 FnRetTy = RetTy; 585 CurFn = Fn; 586 CurFnInfo = &FnInfo; 587 assert(CurFn->isDeclaration() && "Function already has body?"); 588 589 if (CGM.isInSanitizerBlacklist(Fn, Loc)) 590 SanOpts.clear(); 591 592 // Pass inline keyword to optimizer if it appears explicitly on any 593 // declaration. Also, in the case of -fno-inline attach NoInline 594 // attribute to all function that are not marked AlwaysInline. 595 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 596 if (!CGM.getCodeGenOpts().NoInline) { 597 for (auto RI : FD->redecls()) 598 if (RI->isInlineSpecified()) { 599 Fn->addFnAttr(llvm::Attribute::InlineHint); 600 break; 601 } 602 } else if (!FD->hasAttr<AlwaysInlineAttr>()) 603 Fn->addFnAttr(llvm::Attribute::NoInline); 604 } 605 606 if (getLangOpts().OpenCL) { 607 // Add metadata for a kernel function. 608 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 609 EmitOpenCLKernelMetadata(FD, Fn); 610 } 611 612 // If we are checking function types, emit a function type signature as 613 // prologue data. 614 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) { 615 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 616 if (llvm::Constant *PrologueSig = 617 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { 618 llvm::Constant *FTRTTIConst = 619 CGM.GetAddrOfRTTIDescriptor(FD->getType(), /*ForEH=*/true); 620 llvm::Constant *PrologueStructElems[] = { PrologueSig, FTRTTIConst }; 621 llvm::Constant *PrologueStructConst = 622 llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true); 623 Fn->setPrologueData(PrologueStructConst); 624 } 625 } 626 } 627 628 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 629 630 // Create a marker to make it easy to insert allocas into the entryblock 631 // later. Don't create this with the builder, because we don't want it 632 // folded. 633 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 634 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB); 635 if (Builder.isNamePreserving()) 636 AllocaInsertPt->setName("allocapt"); 637 638 ReturnBlock = getJumpDestInCurrentScope("return"); 639 640 Builder.SetInsertPoint(EntryBB); 641 642 // Emit subprogram debug descriptor. 643 if (CGDebugInfo *DI = getDebugInfo()) { 644 SmallVector<QualType, 16> ArgTypes; 645 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 646 i != e; ++i) { 647 ArgTypes.push_back((*i)->getType()); 648 } 649 650 QualType FnType = 651 getContext().getFunctionType(RetTy, ArgTypes, 652 FunctionProtoType::ExtProtoInfo()); 653 DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, Builder); 654 } 655 656 if (ShouldInstrumentFunction()) 657 EmitFunctionInstrumentation("__cyg_profile_func_enter"); 658 659 if (CGM.getCodeGenOpts().InstrumentForProfiling) 660 EmitMCountInstrumentation(); 661 662 if (RetTy->isVoidType()) { 663 // Void type; nothing to return. 664 ReturnValue = nullptr; 665 666 // Count the implicit return. 667 if (!endsWithReturn(D)) 668 ++NumReturnExprs; 669 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect && 670 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 671 // Indirect aggregate return; emit returned value directly into sret slot. 672 // This reduces code size, and affects correctness in C++. 673 auto AI = CurFn->arg_begin(); 674 if (CurFnInfo->getReturnInfo().isSRetAfterThis()) 675 ++AI; 676 ReturnValue = AI; 677 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && 678 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 679 // Load the sret pointer from the argument struct and return into that. 680 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); 681 llvm::Function::arg_iterator EI = CurFn->arg_end(); 682 --EI; 683 llvm::Value *Addr = Builder.CreateStructGEP(EI, Idx); 684 ReturnValue = Builder.CreateLoad(Addr, "agg.result"); 685 } else { 686 ReturnValue = CreateIRTemp(RetTy, "retval"); 687 688 // Tell the epilog emitter to autorelease the result. We do this 689 // now so that various specialized functions can suppress it 690 // during their IR-generation. 691 if (getLangOpts().ObjCAutoRefCount && 692 !CurFnInfo->isReturnsRetained() && 693 RetTy->isObjCRetainableType()) 694 AutoreleaseResult = true; 695 } 696 697 EmitStartEHSpec(CurCodeDecl); 698 699 PrologueCleanupDepth = EHStack.stable_begin(); 700 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 701 702 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 703 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 704 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 705 if (MD->getParent()->isLambda() && 706 MD->getOverloadedOperator() == OO_Call) { 707 // We're in a lambda; figure out the captures. 708 MD->getParent()->getCaptureFields(LambdaCaptureFields, 709 LambdaThisCaptureField); 710 if (LambdaThisCaptureField) { 711 // If this lambda captures this, load it. 712 LValue ThisLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 713 CXXThisValue = EmitLoadOfLValue(ThisLValue, 714 SourceLocation()).getScalarVal(); 715 } 716 for (auto *FD : MD->getParent()->fields()) { 717 if (FD->hasCapturedVLAType()) { 718 auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD), 719 SourceLocation()).getScalarVal(); 720 auto VAT = FD->getCapturedVLAType(); 721 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 722 } 723 } 724 } else { 725 // Not in a lambda; just use 'this' from the method. 726 // FIXME: Should we generate a new load for each use of 'this'? The 727 // fast register allocator would be happier... 728 CXXThisValue = CXXABIThisValue; 729 } 730 } 731 732 // If any of the arguments have a variably modified type, make sure to 733 // emit the type size. 734 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 735 i != e; ++i) { 736 const VarDecl *VD = *i; 737 738 // Dig out the type as written from ParmVarDecls; it's unclear whether 739 // the standard (C99 6.9.1p10) requires this, but we're following the 740 // precedent set by gcc. 741 QualType Ty; 742 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 743 Ty = PVD->getOriginalType(); 744 else 745 Ty = VD->getType(); 746 747 if (Ty->isVariablyModifiedType()) 748 EmitVariablyModifiedType(Ty); 749 } 750 // Emit a location at the end of the prologue. 751 if (CGDebugInfo *DI = getDebugInfo()) 752 DI->EmitLocation(Builder, StartLoc); 753 } 754 755 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args, 756 const Stmt *Body) { 757 RegionCounter Cnt = getPGORegionCounter(Body); 758 Cnt.beginRegion(Builder); 759 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 760 EmitCompoundStmtWithoutScope(*S); 761 else 762 EmitStmt(Body); 763 } 764 765 /// When instrumenting to collect profile data, the counts for some blocks 766 /// such as switch cases need to not include the fall-through counts, so 767 /// emit a branch around the instrumentation code. When not instrumenting, 768 /// this just calls EmitBlock(). 769 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, 770 RegionCounter &Cnt) { 771 llvm::BasicBlock *SkipCountBB = nullptr; 772 if (HaveInsertPoint() && CGM.getCodeGenOpts().ProfileInstrGenerate) { 773 // When instrumenting for profiling, the fallthrough to certain 774 // statements needs to skip over the instrumentation code so that we 775 // get an accurate count. 776 SkipCountBB = createBasicBlock("skipcount"); 777 EmitBranch(SkipCountBB); 778 } 779 EmitBlock(BB); 780 Cnt.beginRegion(Builder, /*AddIncomingFallThrough=*/true); 781 if (SkipCountBB) 782 EmitBlock(SkipCountBB); 783 } 784 785 /// Tries to mark the given function nounwind based on the 786 /// non-existence of any throwing calls within it. We believe this is 787 /// lightweight enough to do at -O0. 788 static void TryMarkNoThrow(llvm::Function *F) { 789 // LLVM treats 'nounwind' on a function as part of the type, so we 790 // can't do this on functions that can be overwritten. 791 if (F->mayBeOverridden()) return; 792 793 for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI) 794 for (llvm::BasicBlock::iterator 795 BI = FI->begin(), BE = FI->end(); BI != BE; ++BI) 796 if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI)) { 797 if (!Call->doesNotThrow()) 798 return; 799 } else if (isa<llvm::ResumeInst>(&*BI)) { 800 return; 801 } 802 F->setDoesNotThrow(); 803 } 804 805 static void EmitSizedDeallocationFunction(CodeGenFunction &CGF, 806 const FunctionDecl *UnsizedDealloc) { 807 // This is a weak discardable definition of the sized deallocation function. 808 CGF.CurFn->setLinkage(llvm::Function::LinkOnceAnyLinkage); 809 810 // Call the unsized deallocation function and forward the first argument 811 // unchanged. 812 llvm::Constant *Unsized = CGF.CGM.GetAddrOfFunction(UnsizedDealloc); 813 CGF.Builder.CreateCall(Unsized, &*CGF.CurFn->arg_begin()); 814 } 815 816 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 817 const CGFunctionInfo &FnInfo) { 818 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 819 820 // Check if we should generate debug info for this function. 821 if (FD->hasAttr<NoDebugAttr>()) 822 DebugInfo = nullptr; // disable debug info indefinitely for this function 823 824 FunctionArgList Args; 825 QualType ResTy = FD->getReturnType(); 826 827 CurGD = GD; 828 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 829 if (MD && MD->isInstance()) { 830 if (CGM.getCXXABI().HasThisReturn(GD)) 831 ResTy = MD->getThisType(getContext()); 832 else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) 833 ResTy = CGM.getContext().VoidPtrTy; 834 CGM.getCXXABI().buildThisParam(*this, Args); 835 } 836 837 Args.append(FD->param_begin(), FD->param_end()); 838 839 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 840 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 841 842 SourceRange BodyRange; 843 if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange(); 844 CurEHLocation = BodyRange.getEnd(); 845 846 // Use the location of the start of the function to determine where 847 // the function definition is located. By default use the location 848 // of the declaration as the location for the subprogram. A function 849 // may lack a declaration in the source code if it is created by code 850 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). 851 SourceLocation Loc = FD->getLocation(); 852 853 // If this is a function specialization then use the pattern body 854 // as the location for the function. 855 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) 856 if (SpecDecl->hasBody(SpecDecl)) 857 Loc = SpecDecl->getLocation(); 858 859 // Emit the standard function prologue. 860 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin()); 861 862 // Generate the body of the function. 863 PGO.checkGlobalDecl(GD); 864 PGO.assignRegionCounters(GD.getDecl(), CurFn); 865 if (isa<CXXDestructorDecl>(FD)) 866 EmitDestructorBody(Args); 867 else if (isa<CXXConstructorDecl>(FD)) 868 EmitConstructorBody(Args); 869 else if (getLangOpts().CUDA && 870 !CGM.getCodeGenOpts().CUDAIsDevice && 871 FD->hasAttr<CUDAGlobalAttr>()) 872 CGM.getCUDARuntime().EmitDeviceStubBody(*this, Args); 873 else if (isa<CXXConversionDecl>(FD) && 874 cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) { 875 // The lambda conversion to block pointer is special; the semantics can't be 876 // expressed in the AST, so IRGen needs to special-case it. 877 EmitLambdaToBlockPointerBody(Args); 878 } else if (isa<CXXMethodDecl>(FD) && 879 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 880 // The lambda static invoker function is special, because it forwards or 881 // clones the body of the function call operator (but is actually static). 882 EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD)); 883 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 884 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 885 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 886 // Implicit copy-assignment gets the same special treatment as implicit 887 // copy-constructors. 888 emitImplicitAssignmentOperatorBody(Args); 889 } else if (Stmt *Body = FD->getBody()) { 890 EmitFunctionBody(Args, Body); 891 } else if (FunctionDecl *UnsizedDealloc = 892 FD->getCorrespondingUnsizedGlobalDeallocationFunction()) { 893 // Global sized deallocation functions get an implicit weak definition if 894 // they don't have an explicit definition, if allowed. 895 assert(getLangOpts().DefineSizedDeallocation && 896 "Can't emit unallowed definition."); 897 EmitSizedDeallocationFunction(*this, UnsizedDealloc); 898 899 } else 900 llvm_unreachable("no definition for emitted function"); 901 902 // C++11 [stmt.return]p2: 903 // Flowing off the end of a function [...] results in undefined behavior in 904 // a value-returning function. 905 // C11 6.9.1p12: 906 // If the '}' that terminates a function is reached, and the value of the 907 // function call is used by the caller, the behavior is undefined. 908 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock && 909 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { 910 if (SanOpts.has(SanitizerKind::Return)) { 911 SanitizerScope SanScope(this); 912 llvm::Value *IsFalse = Builder.getFalse(); 913 EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return), 914 "missing_return", EmitCheckSourceLocation(FD->getLocation()), 915 None); 916 } else if (CGM.getCodeGenOpts().OptimizationLevel == 0) 917 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::trap)); 918 Builder.CreateUnreachable(); 919 Builder.ClearInsertionPoint(); 920 } 921 922 // Emit the standard function epilogue. 923 FinishFunction(BodyRange.getEnd()); 924 925 // If we haven't marked the function nothrow through other means, do 926 // a quick pass now to see if we can. 927 if (!CurFn->doesNotThrow()) 928 TryMarkNoThrow(CurFn); 929 } 930 931 /// ContainsLabel - Return true if the statement contains a label in it. If 932 /// this statement is not executed normally, it not containing a label means 933 /// that we can just remove the code. 934 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 935 // Null statement, not a label! 936 if (!S) return false; 937 938 // If this is a label, we have to emit the code, consider something like: 939 // if (0) { ... foo: bar(); } goto foo; 940 // 941 // TODO: If anyone cared, we could track __label__'s, since we know that you 942 // can't jump to one from outside their declared region. 943 if (isa<LabelStmt>(S)) 944 return true; 945 946 // If this is a case/default statement, and we haven't seen a switch, we have 947 // to emit the code. 948 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 949 return true; 950 951 // If this is a switch statement, we want to ignore cases below it. 952 if (isa<SwitchStmt>(S)) 953 IgnoreCaseStmts = true; 954 955 // Scan subexpressions for verboten labels. 956 for (Stmt::const_child_range I = S->children(); I; ++I) 957 if (ContainsLabel(*I, IgnoreCaseStmts)) 958 return true; 959 960 return false; 961 } 962 963 /// containsBreak - Return true if the statement contains a break out of it. 964 /// If the statement (recursively) contains a switch or loop with a break 965 /// inside of it, this is fine. 966 bool CodeGenFunction::containsBreak(const Stmt *S) { 967 // Null statement, not a label! 968 if (!S) return false; 969 970 // If this is a switch or loop that defines its own break scope, then we can 971 // include it and anything inside of it. 972 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 973 isa<ForStmt>(S)) 974 return false; 975 976 if (isa<BreakStmt>(S)) 977 return true; 978 979 // Scan subexpressions for verboten breaks. 980 for (Stmt::const_child_range I = S->children(); I; ++I) 981 if (containsBreak(*I)) 982 return true; 983 984 return false; 985 } 986 987 988 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 989 /// to a constant, or if it does but contains a label, return false. If it 990 /// constant folds return true and set the boolean result in Result. 991 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 992 bool &ResultBool) { 993 llvm::APSInt ResultInt; 994 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt)) 995 return false; 996 997 ResultBool = ResultInt.getBoolValue(); 998 return true; 999 } 1000 1001 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1002 /// to a constant, or if it does but contains a label, return false. If it 1003 /// constant folds return true and set the folded value. 1004 bool CodeGenFunction:: 1005 ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &ResultInt) { 1006 // FIXME: Rename and handle conversion of other evaluatable things 1007 // to bool. 1008 llvm::APSInt Int; 1009 if (!Cond->EvaluateAsInt(Int, getContext())) 1010 return false; // Not foldable, not integer or not fully evaluatable. 1011 1012 if (CodeGenFunction::ContainsLabel(Cond)) 1013 return false; // Contains a label. 1014 1015 ResultInt = Int; 1016 return true; 1017 } 1018 1019 1020 1021 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 1022 /// statement) to the specified blocks. Based on the condition, this might try 1023 /// to simplify the codegen of the conditional based on the branch. 1024 /// 1025 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 1026 llvm::BasicBlock *TrueBlock, 1027 llvm::BasicBlock *FalseBlock, 1028 uint64_t TrueCount) { 1029 Cond = Cond->IgnoreParens(); 1030 1031 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 1032 1033 // Handle X && Y in a condition. 1034 if (CondBOp->getOpcode() == BO_LAnd) { 1035 RegionCounter Cnt = getPGORegionCounter(CondBOp); 1036 1037 // If we have "1 && X", simplify the code. "0 && X" would have constant 1038 // folded if the case was simple enough. 1039 bool ConstantBool = false; 1040 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1041 ConstantBool) { 1042 // br(1 && X) -> br(X). 1043 Cnt.beginRegion(Builder); 1044 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1045 TrueCount); 1046 } 1047 1048 // If we have "X && 1", simplify the code to use an uncond branch. 1049 // "X && 0" would have been constant folded to 0. 1050 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1051 ConstantBool) { 1052 // br(X && 1) -> br(X). 1053 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1054 TrueCount); 1055 } 1056 1057 // Emit the LHS as a conditional. If the LHS conditional is false, we 1058 // want to jump to the FalseBlock. 1059 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 1060 // The counter tells us how often we evaluate RHS, and all of TrueCount 1061 // can be propagated to that branch. 1062 uint64_t RHSCount = Cnt.getCount(); 1063 1064 ConditionalEvaluation eval(*this); 1065 { 1066 ApplyDebugLocation DL(*this, Cond); 1067 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount); 1068 EmitBlock(LHSTrue); 1069 } 1070 1071 // Any temporaries created here are conditional. 1072 Cnt.beginRegion(Builder); 1073 eval.begin(*this); 1074 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount); 1075 eval.end(*this); 1076 1077 return; 1078 } 1079 1080 if (CondBOp->getOpcode() == BO_LOr) { 1081 RegionCounter Cnt = getPGORegionCounter(CondBOp); 1082 1083 // If we have "0 || X", simplify the code. "1 || X" would have constant 1084 // folded if the case was simple enough. 1085 bool ConstantBool = false; 1086 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1087 !ConstantBool) { 1088 // br(0 || X) -> br(X). 1089 Cnt.beginRegion(Builder); 1090 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1091 TrueCount); 1092 } 1093 1094 // If we have "X || 0", simplify the code to use an uncond branch. 1095 // "X || 1" would have been constant folded to 1. 1096 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1097 !ConstantBool) { 1098 // br(X || 0) -> br(X). 1099 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1100 TrueCount); 1101 } 1102 1103 // Emit the LHS as a conditional. If the LHS conditional is true, we 1104 // want to jump to the TrueBlock. 1105 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 1106 // We have the count for entry to the RHS and for the whole expression 1107 // being true, so we can divy up True count between the short circuit and 1108 // the RHS. 1109 uint64_t LHSCount = Cnt.getParentCount() - Cnt.getCount(); 1110 uint64_t RHSCount = TrueCount - LHSCount; 1111 1112 ConditionalEvaluation eval(*this); 1113 { 1114 ApplyDebugLocation DL(*this, Cond); 1115 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount); 1116 EmitBlock(LHSFalse); 1117 } 1118 1119 // Any temporaries created here are conditional. 1120 Cnt.beginRegion(Builder); 1121 eval.begin(*this); 1122 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount); 1123 1124 eval.end(*this); 1125 1126 return; 1127 } 1128 } 1129 1130 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 1131 // br(!x, t, f) -> br(x, f, t) 1132 if (CondUOp->getOpcode() == UO_LNot) { 1133 // Negate the count. 1134 uint64_t FalseCount = PGO.getCurrentRegionCount() - TrueCount; 1135 // Negate the condition and swap the destination blocks. 1136 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, 1137 FalseCount); 1138 } 1139 } 1140 1141 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 1142 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 1143 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1144 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1145 1146 RegionCounter Cnt = getPGORegionCounter(CondOp); 1147 ConditionalEvaluation cond(*this); 1148 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, Cnt.getCount()); 1149 1150 // When computing PGO branch weights, we only know the overall count for 1151 // the true block. This code is essentially doing tail duplication of the 1152 // naive code-gen, introducing new edges for which counts are not 1153 // available. Divide the counts proportionally between the LHS and RHS of 1154 // the conditional operator. 1155 uint64_t LHSScaledTrueCount = 0; 1156 if (TrueCount) { 1157 double LHSRatio = Cnt.getCount() / (double) Cnt.getParentCount(); 1158 LHSScaledTrueCount = TrueCount * LHSRatio; 1159 } 1160 1161 cond.begin(*this); 1162 EmitBlock(LHSBlock); 1163 Cnt.beginRegion(Builder); 1164 { 1165 ApplyDebugLocation DL(*this, Cond); 1166 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, 1167 LHSScaledTrueCount); 1168 } 1169 cond.end(*this); 1170 1171 cond.begin(*this); 1172 EmitBlock(RHSBlock); 1173 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, 1174 TrueCount - LHSScaledTrueCount); 1175 cond.end(*this); 1176 1177 return; 1178 } 1179 1180 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 1181 // Conditional operator handling can give us a throw expression as a 1182 // condition for a case like: 1183 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 1184 // Fold this to: 1185 // br(c, throw x, br(y, t, f)) 1186 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 1187 return; 1188 } 1189 1190 // Create branch weights based on the number of times we get here and the 1191 // number of times the condition should be true. 1192 uint64_t CurrentCount = std::max(PGO.getCurrentRegionCount(), TrueCount); 1193 llvm::MDNode *Weights = PGO.createBranchWeights(TrueCount, 1194 CurrentCount - TrueCount); 1195 1196 // Emit the code with the fully general case. 1197 llvm::Value *CondV; 1198 { 1199 ApplyDebugLocation DL(*this, Cond); 1200 CondV = EvaluateExprAsBool(Cond); 1201 } 1202 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights); 1203 } 1204 1205 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1206 /// specified stmt yet. 1207 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 1208 CGM.ErrorUnsupported(S, Type); 1209 } 1210 1211 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 1212 /// variable-length array whose elements have a non-zero bit-pattern. 1213 /// 1214 /// \param baseType the inner-most element type of the array 1215 /// \param src - a char* pointing to the bit-pattern for a single 1216 /// base element of the array 1217 /// \param sizeInChars - the total size of the VLA, in chars 1218 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 1219 llvm::Value *dest, llvm::Value *src, 1220 llvm::Value *sizeInChars) { 1221 std::pair<CharUnits,CharUnits> baseSizeAndAlign 1222 = CGF.getContext().getTypeInfoInChars(baseType); 1223 1224 CGBuilderTy &Builder = CGF.Builder; 1225 1226 llvm::Value *baseSizeInChars 1227 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSizeAndAlign.first.getQuantity()); 1228 1229 llvm::Type *i8p = Builder.getInt8PtrTy(); 1230 1231 llvm::Value *begin = Builder.CreateBitCast(dest, i8p, "vla.begin"); 1232 llvm::Value *end = Builder.CreateInBoundsGEP(dest, sizeInChars, "vla.end"); 1233 1234 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 1235 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 1236 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 1237 1238 // Make a loop over the VLA. C99 guarantees that the VLA element 1239 // count must be nonzero. 1240 CGF.EmitBlock(loopBB); 1241 1242 llvm::PHINode *cur = Builder.CreatePHI(i8p, 2, "vla.cur"); 1243 cur->addIncoming(begin, originBB); 1244 1245 // memcpy the individual element bit-pattern. 1246 Builder.CreateMemCpy(cur, src, baseSizeInChars, 1247 baseSizeAndAlign.second.getQuantity(), 1248 /*volatile*/ false); 1249 1250 // Go to the next element. 1251 llvm::Value *next = Builder.CreateConstInBoundsGEP1_32(cur, 1, "vla.next"); 1252 1253 // Leave if that's the end of the VLA. 1254 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 1255 Builder.CreateCondBr(done, contBB, loopBB); 1256 cur->addIncoming(next, loopBB); 1257 1258 CGF.EmitBlock(contBB); 1259 } 1260 1261 void 1262 CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) { 1263 // Ignore empty classes in C++. 1264 if (getLangOpts().CPlusPlus) { 1265 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1266 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 1267 return; 1268 } 1269 } 1270 1271 // Cast the dest ptr to the appropriate i8 pointer type. 1272 unsigned DestAS = 1273 cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace(); 1274 llvm::Type *BP = Builder.getInt8PtrTy(DestAS); 1275 if (DestPtr->getType() != BP) 1276 DestPtr = Builder.CreateBitCast(DestPtr, BP); 1277 1278 // Get size and alignment info for this aggregate. 1279 std::pair<CharUnits, CharUnits> TypeInfo = 1280 getContext().getTypeInfoInChars(Ty); 1281 CharUnits Size = TypeInfo.first; 1282 CharUnits Align = TypeInfo.second; 1283 1284 llvm::Value *SizeVal; 1285 const VariableArrayType *vla; 1286 1287 // Don't bother emitting a zero-byte memset. 1288 if (Size.isZero()) { 1289 // But note that getTypeInfo returns 0 for a VLA. 1290 if (const VariableArrayType *vlaType = 1291 dyn_cast_or_null<VariableArrayType>( 1292 getContext().getAsArrayType(Ty))) { 1293 QualType eltType; 1294 llvm::Value *numElts; 1295 std::tie(numElts, eltType) = getVLASize(vlaType); 1296 1297 SizeVal = numElts; 1298 CharUnits eltSize = getContext().getTypeSizeInChars(eltType); 1299 if (!eltSize.isOne()) 1300 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 1301 vla = vlaType; 1302 } else { 1303 return; 1304 } 1305 } else { 1306 SizeVal = CGM.getSize(Size); 1307 vla = nullptr; 1308 } 1309 1310 // If the type contains a pointer to data member we can't memset it to zero. 1311 // Instead, create a null constant and copy it to the destination. 1312 // TODO: there are other patterns besides zero that we can usefully memset, 1313 // like -1, which happens to be the pattern used by member-pointers. 1314 if (!CGM.getTypes().isZeroInitializable(Ty)) { 1315 // For a VLA, emit a single element, then splat that over the VLA. 1316 if (vla) Ty = getContext().getBaseElementType(vla); 1317 1318 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 1319 1320 llvm::GlobalVariable *NullVariable = 1321 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 1322 /*isConstant=*/true, 1323 llvm::GlobalVariable::PrivateLinkage, 1324 NullConstant, Twine()); 1325 llvm::Value *SrcPtr = 1326 Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()); 1327 1328 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 1329 1330 // Get and call the appropriate llvm.memcpy overload. 1331 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity(), false); 1332 return; 1333 } 1334 1335 // Otherwise, just memset the whole thing to zero. This is legal 1336 // because in LLVM, all default initializers (other than the ones we just 1337 // handled above) are guaranteed to have a bit pattern of all zeros. 1338 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, 1339 Align.getQuantity(), false); 1340 } 1341 1342 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 1343 // Make sure that there is a block for the indirect goto. 1344 if (!IndirectBranch) 1345 GetIndirectGotoBlock(); 1346 1347 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 1348 1349 // Make sure the indirect branch includes all of the address-taken blocks. 1350 IndirectBranch->addDestination(BB); 1351 return llvm::BlockAddress::get(CurFn, BB); 1352 } 1353 1354 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 1355 // If we already made the indirect branch for indirect goto, return its block. 1356 if (IndirectBranch) return IndirectBranch->getParent(); 1357 1358 CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto")); 1359 1360 // Create the PHI node that indirect gotos will add entries to. 1361 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 1362 "indirect.goto.dest"); 1363 1364 // Create the indirect branch instruction. 1365 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 1366 return IndirectBranch->getParent(); 1367 } 1368 1369 /// Computes the length of an array in elements, as well as the base 1370 /// element type and a properly-typed first element pointer. 1371 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 1372 QualType &baseType, 1373 llvm::Value *&addr) { 1374 const ArrayType *arrayType = origArrayType; 1375 1376 // If it's a VLA, we have to load the stored size. Note that 1377 // this is the size of the VLA in bytes, not its size in elements. 1378 llvm::Value *numVLAElements = nullptr; 1379 if (isa<VariableArrayType>(arrayType)) { 1380 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first; 1381 1382 // Walk into all VLAs. This doesn't require changes to addr, 1383 // which has type T* where T is the first non-VLA element type. 1384 do { 1385 QualType elementType = arrayType->getElementType(); 1386 arrayType = getContext().getAsArrayType(elementType); 1387 1388 // If we only have VLA components, 'addr' requires no adjustment. 1389 if (!arrayType) { 1390 baseType = elementType; 1391 return numVLAElements; 1392 } 1393 } while (isa<VariableArrayType>(arrayType)); 1394 1395 // We get out here only if we find a constant array type 1396 // inside the VLA. 1397 } 1398 1399 // We have some number of constant-length arrays, so addr should 1400 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 1401 // down to the first element of addr. 1402 SmallVector<llvm::Value*, 8> gepIndices; 1403 1404 // GEP down to the array type. 1405 llvm::ConstantInt *zero = Builder.getInt32(0); 1406 gepIndices.push_back(zero); 1407 1408 uint64_t countFromCLAs = 1; 1409 QualType eltType; 1410 1411 llvm::ArrayType *llvmArrayType = 1412 dyn_cast<llvm::ArrayType>( 1413 cast<llvm::PointerType>(addr->getType())->getElementType()); 1414 while (llvmArrayType) { 1415 assert(isa<ConstantArrayType>(arrayType)); 1416 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 1417 == llvmArrayType->getNumElements()); 1418 1419 gepIndices.push_back(zero); 1420 countFromCLAs *= llvmArrayType->getNumElements(); 1421 eltType = arrayType->getElementType(); 1422 1423 llvmArrayType = 1424 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 1425 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 1426 assert((!llvmArrayType || arrayType) && 1427 "LLVM and Clang types are out-of-synch"); 1428 } 1429 1430 if (arrayType) { 1431 // From this point onwards, the Clang array type has been emitted 1432 // as some other type (probably a packed struct). Compute the array 1433 // size, and just emit the 'begin' expression as a bitcast. 1434 while (arrayType) { 1435 countFromCLAs *= 1436 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 1437 eltType = arrayType->getElementType(); 1438 arrayType = getContext().getAsArrayType(eltType); 1439 } 1440 1441 unsigned AddressSpace = addr->getType()->getPointerAddressSpace(); 1442 llvm::Type *BaseType = ConvertType(eltType)->getPointerTo(AddressSpace); 1443 addr = Builder.CreateBitCast(addr, BaseType, "array.begin"); 1444 } else { 1445 // Create the actual GEP. 1446 addr = Builder.CreateInBoundsGEP(addr, gepIndices, "array.begin"); 1447 } 1448 1449 baseType = eltType; 1450 1451 llvm::Value *numElements 1452 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 1453 1454 // If we had any VLA dimensions, factor them in. 1455 if (numVLAElements) 1456 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 1457 1458 return numElements; 1459 } 1460 1461 std::pair<llvm::Value*, QualType> 1462 CodeGenFunction::getVLASize(QualType type) { 1463 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1464 assert(vla && "type was not a variable array type!"); 1465 return getVLASize(vla); 1466 } 1467 1468 std::pair<llvm::Value*, QualType> 1469 CodeGenFunction::getVLASize(const VariableArrayType *type) { 1470 // The number of elements so far; always size_t. 1471 llvm::Value *numElements = nullptr; 1472 1473 QualType elementType; 1474 do { 1475 elementType = type->getElementType(); 1476 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 1477 assert(vlaSize && "no size for VLA!"); 1478 assert(vlaSize->getType() == SizeTy); 1479 1480 if (!numElements) { 1481 numElements = vlaSize; 1482 } else { 1483 // It's undefined behavior if this wraps around, so mark it that way. 1484 // FIXME: Teach -fsanitize=undefined to trap this. 1485 numElements = Builder.CreateNUWMul(numElements, vlaSize); 1486 } 1487 } while ((type = getContext().getAsVariableArrayType(elementType))); 1488 1489 return std::pair<llvm::Value*,QualType>(numElements, elementType); 1490 } 1491 1492 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 1493 assert(type->isVariablyModifiedType() && 1494 "Must pass variably modified type to EmitVLASizes!"); 1495 1496 EnsureInsertPoint(); 1497 1498 // We're going to walk down into the type and look for VLA 1499 // expressions. 1500 do { 1501 assert(type->isVariablyModifiedType()); 1502 1503 const Type *ty = type.getTypePtr(); 1504 switch (ty->getTypeClass()) { 1505 1506 #define TYPE(Class, Base) 1507 #define ABSTRACT_TYPE(Class, Base) 1508 #define NON_CANONICAL_TYPE(Class, Base) 1509 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 1510 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 1511 #include "clang/AST/TypeNodes.def" 1512 llvm_unreachable("unexpected dependent type!"); 1513 1514 // These types are never variably-modified. 1515 case Type::Builtin: 1516 case Type::Complex: 1517 case Type::Vector: 1518 case Type::ExtVector: 1519 case Type::Record: 1520 case Type::Enum: 1521 case Type::Elaborated: 1522 case Type::TemplateSpecialization: 1523 case Type::ObjCObject: 1524 case Type::ObjCInterface: 1525 case Type::ObjCObjectPointer: 1526 llvm_unreachable("type class is never variably-modified!"); 1527 1528 case Type::Adjusted: 1529 type = cast<AdjustedType>(ty)->getAdjustedType(); 1530 break; 1531 1532 case Type::Decayed: 1533 type = cast<DecayedType>(ty)->getPointeeType(); 1534 break; 1535 1536 case Type::Pointer: 1537 type = cast<PointerType>(ty)->getPointeeType(); 1538 break; 1539 1540 case Type::BlockPointer: 1541 type = cast<BlockPointerType>(ty)->getPointeeType(); 1542 break; 1543 1544 case Type::LValueReference: 1545 case Type::RValueReference: 1546 type = cast<ReferenceType>(ty)->getPointeeType(); 1547 break; 1548 1549 case Type::MemberPointer: 1550 type = cast<MemberPointerType>(ty)->getPointeeType(); 1551 break; 1552 1553 case Type::ConstantArray: 1554 case Type::IncompleteArray: 1555 // Losing element qualification here is fine. 1556 type = cast<ArrayType>(ty)->getElementType(); 1557 break; 1558 1559 case Type::VariableArray: { 1560 // Losing element qualification here is fine. 1561 const VariableArrayType *vat = cast<VariableArrayType>(ty); 1562 1563 // Unknown size indication requires no size computation. 1564 // Otherwise, evaluate and record it. 1565 if (const Expr *size = vat->getSizeExpr()) { 1566 // It's possible that we might have emitted this already, 1567 // e.g. with a typedef and a pointer to it. 1568 llvm::Value *&entry = VLASizeMap[size]; 1569 if (!entry) { 1570 llvm::Value *Size = EmitScalarExpr(size); 1571 1572 // C11 6.7.6.2p5: 1573 // If the size is an expression that is not an integer constant 1574 // expression [...] each time it is evaluated it shall have a value 1575 // greater than zero. 1576 if (SanOpts.has(SanitizerKind::VLABound) && 1577 size->getType()->isSignedIntegerType()) { 1578 SanitizerScope SanScope(this); 1579 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); 1580 llvm::Constant *StaticArgs[] = { 1581 EmitCheckSourceLocation(size->getLocStart()), 1582 EmitCheckTypeDescriptor(size->getType()) 1583 }; 1584 EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero), 1585 SanitizerKind::VLABound), 1586 "vla_bound_not_positive", StaticArgs, Size); 1587 } 1588 1589 // Always zexting here would be wrong if it weren't 1590 // undefined behavior to have a negative bound. 1591 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); 1592 } 1593 } 1594 type = vat->getElementType(); 1595 break; 1596 } 1597 1598 case Type::FunctionProto: 1599 case Type::FunctionNoProto: 1600 type = cast<FunctionType>(ty)->getReturnType(); 1601 break; 1602 1603 case Type::Paren: 1604 case Type::TypeOf: 1605 case Type::UnaryTransform: 1606 case Type::Attributed: 1607 case Type::SubstTemplateTypeParm: 1608 case Type::PackExpansion: 1609 // Keep walking after single level desugaring. 1610 type = type.getSingleStepDesugaredType(getContext()); 1611 break; 1612 1613 case Type::Typedef: 1614 case Type::Decltype: 1615 case Type::Auto: 1616 // Stop walking: nothing to do. 1617 return; 1618 1619 case Type::TypeOfExpr: 1620 // Stop walking: emit typeof expression. 1621 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 1622 return; 1623 1624 case Type::Atomic: 1625 type = cast<AtomicType>(ty)->getValueType(); 1626 break; 1627 } 1628 } while (type->isVariablyModifiedType()); 1629 } 1630 1631 llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) { 1632 if (getContext().getBuiltinVaListType()->isArrayType()) 1633 return EmitScalarExpr(E); 1634 return EmitLValue(E).getAddress(); 1635 } 1636 1637 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 1638 llvm::Constant *Init) { 1639 assert (Init && "Invalid DeclRefExpr initializer!"); 1640 if (CGDebugInfo *Dbg = getDebugInfo()) 1641 if (CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 1642 Dbg->EmitGlobalVariable(E->getDecl(), Init); 1643 } 1644 1645 CodeGenFunction::PeepholeProtection 1646 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 1647 // At the moment, the only aggressive peephole we do in IR gen 1648 // is trunc(zext) folding, but if we add more, we can easily 1649 // extend this protection. 1650 1651 if (!rvalue.isScalar()) return PeepholeProtection(); 1652 llvm::Value *value = rvalue.getScalarVal(); 1653 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 1654 1655 // Just make an extra bitcast. 1656 assert(HaveInsertPoint()); 1657 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 1658 Builder.GetInsertBlock()); 1659 1660 PeepholeProtection protection; 1661 protection.Inst = inst; 1662 return protection; 1663 } 1664 1665 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 1666 if (!protection.Inst) return; 1667 1668 // In theory, we could try to duplicate the peepholes now, but whatever. 1669 protection.Inst->eraseFromParent(); 1670 } 1671 1672 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn, 1673 llvm::Value *AnnotatedVal, 1674 StringRef AnnotationStr, 1675 SourceLocation Location) { 1676 llvm::Value *Args[4] = { 1677 AnnotatedVal, 1678 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 1679 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 1680 CGM.EmitAnnotationLineNo(Location) 1681 }; 1682 return Builder.CreateCall(AnnotationFn, Args); 1683 } 1684 1685 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 1686 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1687 // FIXME We create a new bitcast for every annotation because that's what 1688 // llvm-gcc was doing. 1689 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1690 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 1691 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 1692 I->getAnnotation(), D->getLocation()); 1693 } 1694 1695 llvm::Value *CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 1696 llvm::Value *V) { 1697 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1698 llvm::Type *VTy = V->getType(); 1699 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 1700 CGM.Int8PtrTy); 1701 1702 for (const auto *I : D->specific_attrs<AnnotateAttr>()) { 1703 // FIXME Always emit the cast inst so we can differentiate between 1704 // annotation on the first field of a struct and annotation on the struct 1705 // itself. 1706 if (VTy != CGM.Int8PtrTy) 1707 V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy)); 1708 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation()); 1709 V = Builder.CreateBitCast(V, VTy); 1710 } 1711 1712 return V; 1713 } 1714 1715 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 1716 1717 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF) 1718 : CGF(CGF) { 1719 assert(!CGF->IsSanitizerScope); 1720 CGF->IsSanitizerScope = true; 1721 } 1722 1723 CodeGenFunction::SanitizerScope::~SanitizerScope() { 1724 CGF->IsSanitizerScope = false; 1725 } 1726 1727 void CodeGenFunction::InsertHelper(llvm::Instruction *I, 1728 const llvm::Twine &Name, 1729 llvm::BasicBlock *BB, 1730 llvm::BasicBlock::iterator InsertPt) const { 1731 LoopStack.InsertHelper(I); 1732 if (IsSanitizerScope) 1733 CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I); 1734 } 1735 1736 template <bool PreserveNames> 1737 void CGBuilderInserter<PreserveNames>::InsertHelper( 1738 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, 1739 llvm::BasicBlock::iterator InsertPt) const { 1740 llvm::IRBuilderDefaultInserter<PreserveNames>::InsertHelper(I, Name, BB, 1741 InsertPt); 1742 if (CGF) 1743 CGF->InsertHelper(I, Name, BB, InsertPt); 1744 } 1745 1746 #ifdef NDEBUG 1747 #define PreserveNames false 1748 #else 1749 #define PreserveNames true 1750 #endif 1751 template void CGBuilderInserter<PreserveNames>::InsertHelper( 1752 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, 1753 llvm::BasicBlock::iterator InsertPt) const; 1754 #undef PreserveNames 1755