xref: /llvm-project/clang/lib/CodeGen/CodeGenFunction.cpp (revision d39d53b0d1a55370a46c6f121e11b5c43a0396db)
1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-function state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGBlocks.h"
16 #include "CGCleanup.h"
17 #include "CGCUDARuntime.h"
18 #include "CGCXXABI.h"
19 #include "CGDebugInfo.h"
20 #include "CGOpenMPRuntime.h"
21 #include "CodeGenModule.h"
22 #include "CodeGenPGO.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/ASTLambda.h"
26 #include "clang/AST/Decl.h"
27 #include "clang/AST/DeclCXX.h"
28 #include "clang/AST/StmtCXX.h"
29 #include "clang/AST/StmtObjC.h"
30 #include "clang/Basic/Builtins.h"
31 #include "clang/Basic/TargetInfo.h"
32 #include "clang/CodeGen/CGFunctionInfo.h"
33 #include "clang/Frontend/CodeGenOptions.h"
34 #include "clang/Sema/SemaDiagnostic.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/Dominators.h"
37 #include "llvm/IR/Intrinsics.h"
38 #include "llvm/IR/MDBuilder.h"
39 #include "llvm/IR/Operator.h"
40 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
41 using namespace clang;
42 using namespace CodeGen;
43 
44 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time
45 /// markers.
46 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts,
47                                       const LangOptions &LangOpts) {
48   if (CGOpts.DisableLifetimeMarkers)
49     return false;
50 
51   // Disable lifetime markers in msan builds.
52   // FIXME: Remove this when msan works with lifetime markers.
53   if (LangOpts.Sanitize.has(SanitizerKind::Memory))
54     return false;
55 
56   // Asan uses markers for use-after-scope checks.
57   if (CGOpts.SanitizeAddressUseAfterScope)
58     return true;
59 
60   // For now, only in optimized builds.
61   return CGOpts.OptimizationLevel != 0;
62 }
63 
64 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
65     : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
66       Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(),
67               CGBuilderInserterTy(this)),
68       SanOpts(CGM.getLangOpts().Sanitize), DebugInfo(CGM.getModuleDebugInfo()),
69       PGO(cgm), ShouldEmitLifetimeMarkers(shouldEmitLifetimeMarkers(
70                     CGM.getCodeGenOpts(), CGM.getLangOpts())) {
71   if (!suppressNewContext)
72     CGM.getCXXABI().getMangleContext().startNewFunction();
73 
74   llvm::FastMathFlags FMF;
75   if (CGM.getLangOpts().FastMath)
76     FMF.setFast();
77   if (CGM.getLangOpts().FiniteMathOnly) {
78     FMF.setNoNaNs();
79     FMF.setNoInfs();
80   }
81   if (CGM.getCodeGenOpts().NoNaNsFPMath) {
82     FMF.setNoNaNs();
83   }
84   if (CGM.getCodeGenOpts().NoSignedZeros) {
85     FMF.setNoSignedZeros();
86   }
87   if (CGM.getCodeGenOpts().ReciprocalMath) {
88     FMF.setAllowReciprocal();
89   }
90   if (CGM.getCodeGenOpts().Reassociate) {
91     FMF.setAllowReassoc();
92   }
93   Builder.setFastMathFlags(FMF);
94 }
95 
96 CodeGenFunction::~CodeGenFunction() {
97   assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
98 
99   // If there are any unclaimed block infos, go ahead and destroy them
100   // now.  This can happen if IR-gen gets clever and skips evaluating
101   // something.
102   if (FirstBlockInfo)
103     destroyBlockInfos(FirstBlockInfo);
104 
105   if (getLangOpts().OpenMP && CurFn)
106     CGM.getOpenMPRuntime().functionFinished(*this);
107 }
108 
109 CharUnits CodeGenFunction::getNaturalPointeeTypeAlignment(QualType T,
110                                                     LValueBaseInfo *BaseInfo,
111                                                     TBAAAccessInfo *TBAAInfo) {
112   return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
113                                  /* forPointeeType= */ true);
114 }
115 
116 CharUnits CodeGenFunction::getNaturalTypeAlignment(QualType T,
117                                                    LValueBaseInfo *BaseInfo,
118                                                    TBAAAccessInfo *TBAAInfo,
119                                                    bool forPointeeType) {
120   if (TBAAInfo)
121     *TBAAInfo = CGM.getTBAAAccessInfo(T);
122 
123   // Honor alignment typedef attributes even on incomplete types.
124   // We also honor them straight for C++ class types, even as pointees;
125   // there's an expressivity gap here.
126   if (auto TT = T->getAs<TypedefType>()) {
127     if (auto Align = TT->getDecl()->getMaxAlignment()) {
128       if (BaseInfo)
129         *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
130       return getContext().toCharUnitsFromBits(Align);
131     }
132   }
133 
134   if (BaseInfo)
135     *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
136 
137   CharUnits Alignment;
138   if (T->isIncompleteType()) {
139     Alignment = CharUnits::One(); // Shouldn't be used, but pessimistic is best.
140   } else {
141     // For C++ class pointees, we don't know whether we're pointing at a
142     // base or a complete object, so we generally need to use the
143     // non-virtual alignment.
144     const CXXRecordDecl *RD;
145     if (forPointeeType && (RD = T->getAsCXXRecordDecl())) {
146       Alignment = CGM.getClassPointerAlignment(RD);
147     } else {
148       Alignment = getContext().getTypeAlignInChars(T);
149       if (T.getQualifiers().hasUnaligned())
150         Alignment = CharUnits::One();
151     }
152 
153     // Cap to the global maximum type alignment unless the alignment
154     // was somehow explicit on the type.
155     if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
156       if (Alignment.getQuantity() > MaxAlign &&
157           !getContext().isAlignmentRequired(T))
158         Alignment = CharUnits::fromQuantity(MaxAlign);
159     }
160   }
161   return Alignment;
162 }
163 
164 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
165   LValueBaseInfo BaseInfo;
166   TBAAAccessInfo TBAAInfo;
167   CharUnits Alignment = getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo);
168   return LValue::MakeAddr(Address(V, Alignment), T, getContext(), BaseInfo,
169                           TBAAInfo);
170 }
171 
172 /// Given a value of type T* that may not be to a complete object,
173 /// construct an l-value with the natural pointee alignment of T.
174 LValue
175 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) {
176   LValueBaseInfo BaseInfo;
177   TBAAAccessInfo TBAAInfo;
178   CharUnits Align = getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo,
179                                             /* forPointeeType= */ true);
180   return MakeAddrLValue(Address(V, Align), T, BaseInfo, TBAAInfo);
181 }
182 
183 
184 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
185   return CGM.getTypes().ConvertTypeForMem(T);
186 }
187 
188 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
189   return CGM.getTypes().ConvertType(T);
190 }
191 
192 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
193   type = type.getCanonicalType();
194   while (true) {
195     switch (type->getTypeClass()) {
196 #define TYPE(name, parent)
197 #define ABSTRACT_TYPE(name, parent)
198 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
199 #define DEPENDENT_TYPE(name, parent) case Type::name:
200 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
201 #include "clang/AST/TypeNodes.def"
202       llvm_unreachable("non-canonical or dependent type in IR-generation");
203 
204     case Type::Auto:
205     case Type::DeducedTemplateSpecialization:
206       llvm_unreachable("undeduced type in IR-generation");
207 
208     // Various scalar types.
209     case Type::Builtin:
210     case Type::Pointer:
211     case Type::BlockPointer:
212     case Type::LValueReference:
213     case Type::RValueReference:
214     case Type::MemberPointer:
215     case Type::Vector:
216     case Type::ExtVector:
217     case Type::FunctionProto:
218     case Type::FunctionNoProto:
219     case Type::Enum:
220     case Type::ObjCObjectPointer:
221     case Type::Pipe:
222       return TEK_Scalar;
223 
224     // Complexes.
225     case Type::Complex:
226       return TEK_Complex;
227 
228     // Arrays, records, and Objective-C objects.
229     case Type::ConstantArray:
230     case Type::IncompleteArray:
231     case Type::VariableArray:
232     case Type::Record:
233     case Type::ObjCObject:
234     case Type::ObjCInterface:
235       return TEK_Aggregate;
236 
237     // We operate on atomic values according to their underlying type.
238     case Type::Atomic:
239       type = cast<AtomicType>(type)->getValueType();
240       continue;
241     }
242     llvm_unreachable("unknown type kind!");
243   }
244 }
245 
246 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() {
247   // For cleanliness, we try to avoid emitting the return block for
248   // simple cases.
249   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
250 
251   if (CurBB) {
252     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
253 
254     // We have a valid insert point, reuse it if it is empty or there are no
255     // explicit jumps to the return block.
256     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
257       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
258       delete ReturnBlock.getBlock();
259     } else
260       EmitBlock(ReturnBlock.getBlock());
261     return llvm::DebugLoc();
262   }
263 
264   // Otherwise, if the return block is the target of a single direct
265   // branch then we can just put the code in that block instead. This
266   // cleans up functions which started with a unified return block.
267   if (ReturnBlock.getBlock()->hasOneUse()) {
268     llvm::BranchInst *BI =
269       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin());
270     if (BI && BI->isUnconditional() &&
271         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
272       // Record/return the DebugLoc of the simple 'return' expression to be used
273       // later by the actual 'ret' instruction.
274       llvm::DebugLoc Loc = BI->getDebugLoc();
275       Builder.SetInsertPoint(BI->getParent());
276       BI->eraseFromParent();
277       delete ReturnBlock.getBlock();
278       return Loc;
279     }
280   }
281 
282   // FIXME: We are at an unreachable point, there is no reason to emit the block
283   // unless it has uses. However, we still need a place to put the debug
284   // region.end for now.
285 
286   EmitBlock(ReturnBlock.getBlock());
287   return llvm::DebugLoc();
288 }
289 
290 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
291   if (!BB) return;
292   if (!BB->use_empty())
293     return CGF.CurFn->getBasicBlockList().push_back(BB);
294   delete BB;
295 }
296 
297 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
298   assert(BreakContinueStack.empty() &&
299          "mismatched push/pop in break/continue stack!");
300 
301   bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
302     && NumSimpleReturnExprs == NumReturnExprs
303     && ReturnBlock.getBlock()->use_empty();
304   // Usually the return expression is evaluated before the cleanup
305   // code.  If the function contains only a simple return statement,
306   // such as a constant, the location before the cleanup code becomes
307   // the last useful breakpoint in the function, because the simple
308   // return expression will be evaluated after the cleanup code. To be
309   // safe, set the debug location for cleanup code to the location of
310   // the return statement.  Otherwise the cleanup code should be at the
311   // end of the function's lexical scope.
312   //
313   // If there are multiple branches to the return block, the branch
314   // instructions will get the location of the return statements and
315   // all will be fine.
316   if (CGDebugInfo *DI = getDebugInfo()) {
317     if (OnlySimpleReturnStmts)
318       DI->EmitLocation(Builder, LastStopPoint);
319     else
320       DI->EmitLocation(Builder, EndLoc);
321   }
322 
323   // Pop any cleanups that might have been associated with the
324   // parameters.  Do this in whatever block we're currently in; it's
325   // important to do this before we enter the return block or return
326   // edges will be *really* confused.
327   bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth;
328   bool HasOnlyLifetimeMarkers =
329       HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth);
330   bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers;
331   if (HasCleanups) {
332     // Make sure the line table doesn't jump back into the body for
333     // the ret after it's been at EndLoc.
334     if (CGDebugInfo *DI = getDebugInfo())
335       if (OnlySimpleReturnStmts)
336         DI->EmitLocation(Builder, EndLoc);
337 
338     PopCleanupBlocks(PrologueCleanupDepth);
339   }
340 
341   // Emit function epilog (to return).
342   llvm::DebugLoc Loc = EmitReturnBlock();
343 
344   if (ShouldInstrumentFunction()) {
345     if (CGM.getCodeGenOpts().InstrumentFunctions)
346       CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit");
347     if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
348       CurFn->addFnAttr("instrument-function-exit-inlined",
349                        "__cyg_profile_func_exit");
350   }
351 
352   // Emit debug descriptor for function end.
353   if (CGDebugInfo *DI = getDebugInfo())
354     DI->EmitFunctionEnd(Builder, CurFn);
355 
356   // Reset the debug location to that of the simple 'return' expression, if any
357   // rather than that of the end of the function's scope '}'.
358   ApplyDebugLocation AL(*this, Loc);
359   EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
360   EmitEndEHSpec(CurCodeDecl);
361 
362   assert(EHStack.empty() &&
363          "did not remove all scopes from cleanup stack!");
364 
365   // If someone did an indirect goto, emit the indirect goto block at the end of
366   // the function.
367   if (IndirectBranch) {
368     EmitBlock(IndirectBranch->getParent());
369     Builder.ClearInsertionPoint();
370   }
371 
372   // If some of our locals escaped, insert a call to llvm.localescape in the
373   // entry block.
374   if (!EscapedLocals.empty()) {
375     // Invert the map from local to index into a simple vector. There should be
376     // no holes.
377     SmallVector<llvm::Value *, 4> EscapeArgs;
378     EscapeArgs.resize(EscapedLocals.size());
379     for (auto &Pair : EscapedLocals)
380       EscapeArgs[Pair.second] = Pair.first;
381     llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration(
382         &CGM.getModule(), llvm::Intrinsic::localescape);
383     CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs);
384   }
385 
386   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
387   llvm::Instruction *Ptr = AllocaInsertPt;
388   AllocaInsertPt = nullptr;
389   Ptr->eraseFromParent();
390 
391   // If someone took the address of a label but never did an indirect goto, we
392   // made a zero entry PHI node, which is illegal, zap it now.
393   if (IndirectBranch) {
394     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
395     if (PN->getNumIncomingValues() == 0) {
396       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
397       PN->eraseFromParent();
398     }
399   }
400 
401   EmitIfUsed(*this, EHResumeBlock);
402   EmitIfUsed(*this, TerminateLandingPad);
403   EmitIfUsed(*this, TerminateHandler);
404   EmitIfUsed(*this, UnreachableBlock);
405 
406   for (const auto &FuncletAndParent : TerminateFunclets)
407     EmitIfUsed(*this, FuncletAndParent.second);
408 
409   if (CGM.getCodeGenOpts().EmitDeclMetadata)
410     EmitDeclMetadata();
411 
412   for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator
413            I = DeferredReplacements.begin(),
414            E = DeferredReplacements.end();
415        I != E; ++I) {
416     I->first->replaceAllUsesWith(I->second);
417     I->first->eraseFromParent();
418   }
419 
420   // Eliminate CleanupDestSlot alloca by replacing it with SSA values and
421   // PHIs if the current function is a coroutine. We don't do it for all
422   // functions as it may result in slight increase in numbers of instructions
423   // if compiled with no optimizations. We do it for coroutine as the lifetime
424   // of CleanupDestSlot alloca make correct coroutine frame building very
425   // difficult.
426   if (NormalCleanupDest.isValid() && isCoroutine()) {
427     llvm::DominatorTree DT(*CurFn);
428     llvm::PromoteMemToReg(
429         cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT);
430     NormalCleanupDest = Address::invalid();
431   }
432 
433   // Add the required-vector-width attribute.
434   if (LargestVectorWidth != 0)
435     CurFn->addFnAttr("min-legal-vector-width",
436                      llvm::utostr(LargestVectorWidth));
437 }
438 
439 /// ShouldInstrumentFunction - Return true if the current function should be
440 /// instrumented with __cyg_profile_func_* calls
441 bool CodeGenFunction::ShouldInstrumentFunction() {
442   if (!CGM.getCodeGenOpts().InstrumentFunctions &&
443       !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining &&
444       !CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
445     return false;
446   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
447     return false;
448   return true;
449 }
450 
451 /// ShouldXRayInstrument - Return true if the current function should be
452 /// instrumented with XRay nop sleds.
453 bool CodeGenFunction::ShouldXRayInstrumentFunction() const {
454   return CGM.getCodeGenOpts().XRayInstrumentFunctions;
455 }
456 
457 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to
458 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation.
459 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const {
460   return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
461          (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents ||
462           CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
463               XRayInstrKind::Custom);
464 }
465 
466 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const {
467   return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
468          (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents ||
469           CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
470               XRayInstrKind::Typed);
471 }
472 
473 llvm::Constant *
474 CodeGenFunction::EncodeAddrForUseInPrologue(llvm::Function *F,
475                                             llvm::Constant *Addr) {
476   // Addresses stored in prologue data can't require run-time fixups and must
477   // be PC-relative. Run-time fixups are undesirable because they necessitate
478   // writable text segments, which are unsafe. And absolute addresses are
479   // undesirable because they break PIE mode.
480 
481   // Add a layer of indirection through a private global. Taking its address
482   // won't result in a run-time fixup, even if Addr has linkonce_odr linkage.
483   auto *GV = new llvm::GlobalVariable(CGM.getModule(), Addr->getType(),
484                                       /*isConstant=*/true,
485                                       llvm::GlobalValue::PrivateLinkage, Addr);
486 
487   // Create a PC-relative address.
488   auto *GOTAsInt = llvm::ConstantExpr::getPtrToInt(GV, IntPtrTy);
489   auto *FuncAsInt = llvm::ConstantExpr::getPtrToInt(F, IntPtrTy);
490   auto *PCRelAsInt = llvm::ConstantExpr::getSub(GOTAsInt, FuncAsInt);
491   return (IntPtrTy == Int32Ty)
492              ? PCRelAsInt
493              : llvm::ConstantExpr::getTrunc(PCRelAsInt, Int32Ty);
494 }
495 
496 llvm::Value *
497 CodeGenFunction::DecodeAddrUsedInPrologue(llvm::Value *F,
498                                           llvm::Value *EncodedAddr) {
499   // Reconstruct the address of the global.
500   auto *PCRelAsInt = Builder.CreateSExt(EncodedAddr, IntPtrTy);
501   auto *FuncAsInt = Builder.CreatePtrToInt(F, IntPtrTy, "func_addr.int");
502   auto *GOTAsInt = Builder.CreateAdd(PCRelAsInt, FuncAsInt, "global_addr.int");
503   auto *GOTAddr = Builder.CreateIntToPtr(GOTAsInt, Int8PtrPtrTy, "global_addr");
504 
505   // Load the original pointer through the global.
506   return Builder.CreateLoad(Address(GOTAddr, getPointerAlign()),
507                             "decoded_addr");
508 }
509 
510 static void removeImageAccessQualifier(std::string& TyName) {
511   std::string ReadOnlyQual("__read_only");
512   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
513   if (ReadOnlyPos != std::string::npos)
514     // "+ 1" for the space after access qualifier.
515     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
516   else {
517     std::string WriteOnlyQual("__write_only");
518     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
519     if (WriteOnlyPos != std::string::npos)
520       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
521     else {
522       std::string ReadWriteQual("__read_write");
523       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
524       if (ReadWritePos != std::string::npos)
525         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
526     }
527   }
528 }
529 
530 // Returns the address space id that should be produced to the
531 // kernel_arg_addr_space metadata. This is always fixed to the ids
532 // as specified in the SPIR 2.0 specification in order to differentiate
533 // for example in clGetKernelArgInfo() implementation between the address
534 // spaces with targets without unique mapping to the OpenCL address spaces
535 // (basically all single AS CPUs).
536 static unsigned ArgInfoAddressSpace(LangAS AS) {
537   switch (AS) {
538   case LangAS::opencl_global:   return 1;
539   case LangAS::opencl_constant: return 2;
540   case LangAS::opencl_local:    return 3;
541   case LangAS::opencl_generic:  return 4; // Not in SPIR 2.0 specs.
542   default:
543     return 0; // Assume private.
544   }
545 }
546 
547 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument
548 // information in the program executable. The argument information stored
549 // includes the argument name, its type, the address and access qualifiers used.
550 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn,
551                                  CodeGenModule &CGM, llvm::LLVMContext &Context,
552                                  CGBuilderTy &Builder, ASTContext &ASTCtx) {
553   // Create MDNodes that represent the kernel arg metadata.
554   // Each MDNode is a list in the form of "key", N number of values which is
555   // the same number of values as their are kernel arguments.
556 
557   const PrintingPolicy &Policy = ASTCtx.getPrintingPolicy();
558 
559   // MDNode for the kernel argument address space qualifiers.
560   SmallVector<llvm::Metadata *, 8> addressQuals;
561 
562   // MDNode for the kernel argument access qualifiers (images only).
563   SmallVector<llvm::Metadata *, 8> accessQuals;
564 
565   // MDNode for the kernel argument type names.
566   SmallVector<llvm::Metadata *, 8> argTypeNames;
567 
568   // MDNode for the kernel argument base type names.
569   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
570 
571   // MDNode for the kernel argument type qualifiers.
572   SmallVector<llvm::Metadata *, 8> argTypeQuals;
573 
574   // MDNode for the kernel argument names.
575   SmallVector<llvm::Metadata *, 8> argNames;
576 
577   for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
578     const ParmVarDecl *parm = FD->getParamDecl(i);
579     QualType ty = parm->getType();
580     std::string typeQuals;
581 
582     if (ty->isPointerType()) {
583       QualType pointeeTy = ty->getPointeeType();
584 
585       // Get address qualifier.
586       addressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(
587         ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
588 
589       // Get argument type name.
590       std::string typeName =
591           pointeeTy.getUnqualifiedType().getAsString(Policy) + "*";
592 
593       // Turn "unsigned type" to "utype"
594       std::string::size_type pos = typeName.find("unsigned");
595       if (pointeeTy.isCanonical() && pos != std::string::npos)
596         typeName.erase(pos+1, 8);
597 
598       argTypeNames.push_back(llvm::MDString::get(Context, typeName));
599 
600       std::string baseTypeName =
601           pointeeTy.getUnqualifiedType().getCanonicalType().getAsString(
602               Policy) +
603           "*";
604 
605       // Turn "unsigned type" to "utype"
606       pos = baseTypeName.find("unsigned");
607       if (pos != std::string::npos)
608         baseTypeName.erase(pos+1, 8);
609 
610       argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName));
611 
612       // Get argument type qualifiers:
613       if (ty.isRestrictQualified())
614         typeQuals = "restrict";
615       if (pointeeTy.isConstQualified() ||
616           (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
617         typeQuals += typeQuals.empty() ? "const" : " const";
618       if (pointeeTy.isVolatileQualified())
619         typeQuals += typeQuals.empty() ? "volatile" : " volatile";
620     } else {
621       uint32_t AddrSpc = 0;
622       bool isPipe = ty->isPipeType();
623       if (ty->isImageType() || isPipe)
624         AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
625 
626       addressQuals.push_back(
627           llvm::ConstantAsMetadata::get(Builder.getInt32(AddrSpc)));
628 
629       // Get argument type name.
630       std::string typeName;
631       if (isPipe)
632         typeName = ty.getCanonicalType()->getAs<PipeType>()->getElementType()
633                      .getAsString(Policy);
634       else
635         typeName = ty.getUnqualifiedType().getAsString(Policy);
636 
637       // Turn "unsigned type" to "utype"
638       std::string::size_type pos = typeName.find("unsigned");
639       if (ty.isCanonical() && pos != std::string::npos)
640         typeName.erase(pos+1, 8);
641 
642       std::string baseTypeName;
643       if (isPipe)
644         baseTypeName = ty.getCanonicalType()->getAs<PipeType>()
645                           ->getElementType().getCanonicalType()
646                           .getAsString(Policy);
647       else
648         baseTypeName =
649           ty.getUnqualifiedType().getCanonicalType().getAsString(Policy);
650 
651       // Remove access qualifiers on images
652       // (as they are inseparable from type in clang implementation,
653       // but OpenCL spec provides a special query to get access qualifier
654       // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
655       if (ty->isImageType()) {
656         removeImageAccessQualifier(typeName);
657         removeImageAccessQualifier(baseTypeName);
658       }
659 
660       argTypeNames.push_back(llvm::MDString::get(Context, typeName));
661 
662       // Turn "unsigned type" to "utype"
663       pos = baseTypeName.find("unsigned");
664       if (pos != std::string::npos)
665         baseTypeName.erase(pos+1, 8);
666 
667       argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName));
668 
669       if (isPipe)
670         typeQuals = "pipe";
671     }
672 
673     argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals));
674 
675     // Get image and pipe access qualifier:
676     if (ty->isImageType()|| ty->isPipeType()) {
677       const Decl *PDecl = parm;
678       if (auto *TD = dyn_cast<TypedefType>(ty))
679         PDecl = TD->getDecl();
680       const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
681       if (A && A->isWriteOnly())
682         accessQuals.push_back(llvm::MDString::get(Context, "write_only"));
683       else if (A && A->isReadWrite())
684         accessQuals.push_back(llvm::MDString::get(Context, "read_write"));
685       else
686         accessQuals.push_back(llvm::MDString::get(Context, "read_only"));
687     } else
688       accessQuals.push_back(llvm::MDString::get(Context, "none"));
689 
690     // Get argument name.
691     argNames.push_back(llvm::MDString::get(Context, parm->getName()));
692   }
693 
694   Fn->setMetadata("kernel_arg_addr_space",
695                   llvm::MDNode::get(Context, addressQuals));
696   Fn->setMetadata("kernel_arg_access_qual",
697                   llvm::MDNode::get(Context, accessQuals));
698   Fn->setMetadata("kernel_arg_type",
699                   llvm::MDNode::get(Context, argTypeNames));
700   Fn->setMetadata("kernel_arg_base_type",
701                   llvm::MDNode::get(Context, argBaseTypeNames));
702   Fn->setMetadata("kernel_arg_type_qual",
703                   llvm::MDNode::get(Context, argTypeQuals));
704   if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
705     Fn->setMetadata("kernel_arg_name",
706                     llvm::MDNode::get(Context, argNames));
707 }
708 
709 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD,
710                                                llvm::Function *Fn)
711 {
712   if (!FD->hasAttr<OpenCLKernelAttr>())
713     return;
714 
715   llvm::LLVMContext &Context = getLLVMContext();
716 
717   GenOpenCLArgMetadata(FD, Fn, CGM, Context, Builder, getContext());
718 
719   if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
720     QualType HintQTy = A->getTypeHint();
721     const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>();
722     bool IsSignedInteger =
723         HintQTy->isSignedIntegerType() ||
724         (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType());
725     llvm::Metadata *AttrMDArgs[] = {
726         llvm::ConstantAsMetadata::get(llvm::UndefValue::get(
727             CGM.getTypes().ConvertType(A->getTypeHint()))),
728         llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
729             llvm::IntegerType::get(Context, 32),
730             llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))};
731     Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs));
732   }
733 
734   if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
735     llvm::Metadata *AttrMDArgs[] = {
736         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
737         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
738         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
739     Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs));
740   }
741 
742   if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
743     llvm::Metadata *AttrMDArgs[] = {
744         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
745         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
746         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
747     Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs));
748   }
749 
750   if (const OpenCLIntelReqdSubGroupSizeAttr *A =
751           FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) {
752     llvm::Metadata *AttrMDArgs[] = {
753         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))};
754     Fn->setMetadata("intel_reqd_sub_group_size",
755                     llvm::MDNode::get(Context, AttrMDArgs));
756   }
757 }
758 
759 /// Determine whether the function F ends with a return stmt.
760 static bool endsWithReturn(const Decl* F) {
761   const Stmt *Body = nullptr;
762   if (auto *FD = dyn_cast_or_null<FunctionDecl>(F))
763     Body = FD->getBody();
764   else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F))
765     Body = OMD->getBody();
766 
767   if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
768     auto LastStmt = CS->body_rbegin();
769     if (LastStmt != CS->body_rend())
770       return isa<ReturnStmt>(*LastStmt);
771   }
772   return false;
773 }
774 
775 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) {
776   if (SanOpts.has(SanitizerKind::Thread)) {
777     Fn->addFnAttr("sanitize_thread_no_checking_at_run_time");
778     Fn->removeFnAttr(llvm::Attribute::SanitizeThread);
779   }
780 }
781 
782 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) {
783   auto *MD = dyn_cast_or_null<CXXMethodDecl>(D);
784   if (!MD || !MD->getDeclName().getAsIdentifierInfo() ||
785       !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") ||
786       (MD->getNumParams() != 1 && MD->getNumParams() != 2))
787     return false;
788 
789   if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType())
790     return false;
791 
792   if (MD->getNumParams() == 2) {
793     auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>();
794     if (!PT || !PT->isVoidPointerType() ||
795         !PT->getPointeeType().isConstQualified())
796       return false;
797   }
798 
799   return true;
800 }
801 
802 /// Return the UBSan prologue signature for \p FD if one is available.
803 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM,
804                                             const FunctionDecl *FD) {
805   if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
806     if (!MD->isStatic())
807       return nullptr;
808   return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM);
809 }
810 
811 void CodeGenFunction::StartFunction(GlobalDecl GD,
812                                     QualType RetTy,
813                                     llvm::Function *Fn,
814                                     const CGFunctionInfo &FnInfo,
815                                     const FunctionArgList &Args,
816                                     SourceLocation Loc,
817                                     SourceLocation StartLoc) {
818   assert(!CurFn &&
819          "Do not use a CodeGenFunction object for more than one function");
820 
821   const Decl *D = GD.getDecl();
822 
823   DidCallStackSave = false;
824   CurCodeDecl = D;
825   if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D))
826     if (FD->usesSEHTry())
827       CurSEHParent = FD;
828   CurFuncDecl = (D ? D->getNonClosureContext() : nullptr);
829   FnRetTy = RetTy;
830   CurFn = Fn;
831   CurFnInfo = &FnInfo;
832   assert(CurFn->isDeclaration() && "Function already has body?");
833 
834   // If this function has been blacklisted for any of the enabled sanitizers,
835   // disable the sanitizer for the function.
836   do {
837 #define SANITIZER(NAME, ID)                                                    \
838   if (SanOpts.empty())                                                         \
839     break;                                                                     \
840   if (SanOpts.has(SanitizerKind::ID))                                          \
841     if (CGM.isInSanitizerBlacklist(SanitizerKind::ID, Fn, Loc))                \
842       SanOpts.set(SanitizerKind::ID, false);
843 
844 #include "clang/Basic/Sanitizers.def"
845 #undef SANITIZER
846   } while (0);
847 
848   if (D) {
849     // Apply the no_sanitize* attributes to SanOpts.
850     for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) {
851       SanitizerMask mask = Attr->getMask();
852       SanOpts.Mask &= ~mask;
853       if (mask & SanitizerKind::Address)
854         SanOpts.set(SanitizerKind::KernelAddress, false);
855       if (mask & SanitizerKind::KernelAddress)
856         SanOpts.set(SanitizerKind::Address, false);
857       if (mask & SanitizerKind::HWAddress)
858         SanOpts.set(SanitizerKind::KernelHWAddress, false);
859       if (mask & SanitizerKind::KernelHWAddress)
860         SanOpts.set(SanitizerKind::HWAddress, false);
861     }
862   }
863 
864   // Apply sanitizer attributes to the function.
865   if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress))
866     Fn->addFnAttr(llvm::Attribute::SanitizeAddress);
867   if (SanOpts.hasOneOf(SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress))
868     Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress);
869   if (SanOpts.has(SanitizerKind::Thread))
870     Fn->addFnAttr(llvm::Attribute::SanitizeThread);
871   if (SanOpts.has(SanitizerKind::Memory))
872     Fn->addFnAttr(llvm::Attribute::SanitizeMemory);
873   if (SanOpts.has(SanitizerKind::SafeStack))
874     Fn->addFnAttr(llvm::Attribute::SafeStack);
875   if (SanOpts.has(SanitizerKind::ShadowCallStack))
876     Fn->addFnAttr(llvm::Attribute::ShadowCallStack);
877 
878   // Apply fuzzing attribute to the function.
879   if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink))
880     Fn->addFnAttr(llvm::Attribute::OptForFuzzing);
881 
882   // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize,
883   // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time.
884   if (SanOpts.has(SanitizerKind::Thread)) {
885     if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) {
886       IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0);
887       if (OMD->getMethodFamily() == OMF_dealloc ||
888           OMD->getMethodFamily() == OMF_initialize ||
889           (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) {
890         markAsIgnoreThreadCheckingAtRuntime(Fn);
891       }
892     }
893   }
894 
895   // Ignore unrelated casts in STL allocate() since the allocator must cast
896   // from void* to T* before object initialization completes. Don't match on the
897   // namespace because not all allocators are in std::
898   if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
899     if (matchesStlAllocatorFn(D, getContext()))
900       SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast;
901   }
902 
903   // Apply xray attributes to the function (as a string, for now)
904   bool InstrumentXray = ShouldXRayInstrumentFunction() &&
905                         CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
906                             XRayInstrKind::Function);
907   if (D && InstrumentXray) {
908     if (const auto *XRayAttr = D->getAttr<XRayInstrumentAttr>()) {
909       if (XRayAttr->alwaysXRayInstrument())
910         Fn->addFnAttr("function-instrument", "xray-always");
911       if (XRayAttr->neverXRayInstrument())
912         Fn->addFnAttr("function-instrument", "xray-never");
913       if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>()) {
914         Fn->addFnAttr("xray-log-args",
915                       llvm::utostr(LogArgs->getArgumentCount()));
916       }
917     } else {
918       if (!CGM.imbueXRayAttrs(Fn, Loc))
919         Fn->addFnAttr(
920             "xray-instruction-threshold",
921             llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold));
922     }
923   }
924 
925   // Add no-jump-tables value.
926   Fn->addFnAttr("no-jump-tables",
927                 llvm::toStringRef(CGM.getCodeGenOpts().NoUseJumpTables));
928 
929   // Add profile-sample-accurate value.
930   if (CGM.getCodeGenOpts().ProfileSampleAccurate)
931     Fn->addFnAttr("profile-sample-accurate");
932 
933   if (getLangOpts().OpenCL) {
934     // Add metadata for a kernel function.
935     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
936       EmitOpenCLKernelMetadata(FD, Fn);
937   }
938 
939   // If we are checking function types, emit a function type signature as
940   // prologue data.
941   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) {
942     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
943       if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) {
944         // Remove any (C++17) exception specifications, to allow calling e.g. a
945         // noexcept function through a non-noexcept pointer.
946         auto ProtoTy =
947           getContext().getFunctionTypeWithExceptionSpec(FD->getType(),
948                                                         EST_None);
949         llvm::Constant *FTRTTIConst =
950             CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true);
951         llvm::Constant *FTRTTIConstEncoded =
952             EncodeAddrForUseInPrologue(Fn, FTRTTIConst);
953         llvm::Constant *PrologueStructElems[] = {PrologueSig,
954                                                  FTRTTIConstEncoded};
955         llvm::Constant *PrologueStructConst =
956             llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true);
957         Fn->setPrologueData(PrologueStructConst);
958       }
959     }
960   }
961 
962   // If we're checking nullability, we need to know whether we can check the
963   // return value. Initialize the flag to 'true' and refine it in EmitParmDecl.
964   if (SanOpts.has(SanitizerKind::NullabilityReturn)) {
965     auto Nullability = FnRetTy->getNullability(getContext());
966     if (Nullability && *Nullability == NullabilityKind::NonNull) {
967       if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) &&
968             CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>()))
969         RetValNullabilityPrecondition =
970             llvm::ConstantInt::getTrue(getLLVMContext());
971     }
972   }
973 
974   // If we're in C++ mode and the function name is "main", it is guaranteed
975   // to be norecurse by the standard (3.6.1.3 "The function main shall not be
976   // used within a program").
977   if (getLangOpts().CPlusPlus)
978     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
979       if (FD->isMain())
980         Fn->addFnAttr(llvm::Attribute::NoRecurse);
981 
982   // If a custom alignment is used, force realigning to this alignment on
983   // any main function which certainly will need it.
984   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
985     if ((FD->isMain() || FD->isMSVCRTEntryPoint()) &&
986         CGM.getCodeGenOpts().StackAlignment)
987       Fn->addFnAttr("stackrealign");
988 
989   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
990 
991   // Create a marker to make it easy to insert allocas into the entryblock
992   // later.  Don't create this with the builder, because we don't want it
993   // folded.
994   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
995   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB);
996 
997   ReturnBlock = getJumpDestInCurrentScope("return");
998 
999   Builder.SetInsertPoint(EntryBB);
1000 
1001   // If we're checking the return value, allocate space for a pointer to a
1002   // precise source location of the checked return statement.
1003   if (requiresReturnValueCheck()) {
1004     ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr");
1005     InitTempAlloca(ReturnLocation, llvm::ConstantPointerNull::get(Int8PtrTy));
1006   }
1007 
1008   // Emit subprogram debug descriptor.
1009   if (CGDebugInfo *DI = getDebugInfo()) {
1010     // Reconstruct the type from the argument list so that implicit parameters,
1011     // such as 'this' and 'vtt', show up in the debug info. Preserve the calling
1012     // convention.
1013     CallingConv CC = CallingConv::CC_C;
1014     if (auto *FD = dyn_cast_or_null<FunctionDecl>(D))
1015       if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>())
1016         CC = SrcFnTy->getCallConv();
1017     SmallVector<QualType, 16> ArgTypes;
1018     for (const VarDecl *VD : Args)
1019       ArgTypes.push_back(VD->getType());
1020     QualType FnType = getContext().getFunctionType(
1021         RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC));
1022     DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, CurFuncIsThunk,
1023                           Builder);
1024   }
1025 
1026   if (ShouldInstrumentFunction()) {
1027     if (CGM.getCodeGenOpts().InstrumentFunctions)
1028       CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter");
1029     if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
1030       CurFn->addFnAttr("instrument-function-entry-inlined",
1031                        "__cyg_profile_func_enter");
1032     if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
1033       CurFn->addFnAttr("instrument-function-entry-inlined",
1034                        "__cyg_profile_func_enter_bare");
1035   }
1036 
1037   // Since emitting the mcount call here impacts optimizations such as function
1038   // inlining, we just add an attribute to insert a mcount call in backend.
1039   // The attribute "counting-function" is set to mcount function name which is
1040   // architecture dependent.
1041   if (CGM.getCodeGenOpts().InstrumentForProfiling) {
1042     // Calls to fentry/mcount should not be generated if function has
1043     // the no_instrument_function attribute.
1044     if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) {
1045       if (CGM.getCodeGenOpts().CallFEntry)
1046         Fn->addFnAttr("fentry-call", "true");
1047       else {
1048         Fn->addFnAttr("instrument-function-entry-inlined",
1049                       getTarget().getMCountName());
1050       }
1051     }
1052   }
1053 
1054   if (RetTy->isVoidType()) {
1055     // Void type; nothing to return.
1056     ReturnValue = Address::invalid();
1057 
1058     // Count the implicit return.
1059     if (!endsWithReturn(D))
1060       ++NumReturnExprs;
1061   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
1062              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
1063     // Indirect aggregate return; emit returned value directly into sret slot.
1064     // This reduces code size, and affects correctness in C++.
1065     auto AI = CurFn->arg_begin();
1066     if (CurFnInfo->getReturnInfo().isSRetAfterThis())
1067       ++AI;
1068     ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign());
1069   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca &&
1070              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
1071     // Load the sret pointer from the argument struct and return into that.
1072     unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex();
1073     llvm::Function::arg_iterator EI = CurFn->arg_end();
1074     --EI;
1075     llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx);
1076     Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result");
1077     ReturnValue = Address(Addr, getNaturalTypeAlignment(RetTy));
1078   } else {
1079     ReturnValue = CreateIRTemp(RetTy, "retval");
1080 
1081     // Tell the epilog emitter to autorelease the result.  We do this
1082     // now so that various specialized functions can suppress it
1083     // during their IR-generation.
1084     if (getLangOpts().ObjCAutoRefCount &&
1085         !CurFnInfo->isReturnsRetained() &&
1086         RetTy->isObjCRetainableType())
1087       AutoreleaseResult = true;
1088   }
1089 
1090   EmitStartEHSpec(CurCodeDecl);
1091 
1092   PrologueCleanupDepth = EHStack.stable_begin();
1093 
1094   // Emit OpenMP specific initialization of the device functions.
1095   if (getLangOpts().OpenMP && CurCodeDecl)
1096     CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl);
1097 
1098   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
1099 
1100   if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
1101     CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
1102     const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
1103     if (MD->getParent()->isLambda() &&
1104         MD->getOverloadedOperator() == OO_Call) {
1105       // We're in a lambda; figure out the captures.
1106       MD->getParent()->getCaptureFields(LambdaCaptureFields,
1107                                         LambdaThisCaptureField);
1108       if (LambdaThisCaptureField) {
1109         // If the lambda captures the object referred to by '*this' - either by
1110         // value or by reference, make sure CXXThisValue points to the correct
1111         // object.
1112 
1113         // Get the lvalue for the field (which is a copy of the enclosing object
1114         // or contains the address of the enclosing object).
1115         LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
1116         if (!LambdaThisCaptureField->getType()->isPointerType()) {
1117           // If the enclosing object was captured by value, just use its address.
1118           CXXThisValue = ThisFieldLValue.getAddress().getPointer();
1119         } else {
1120           // Load the lvalue pointed to by the field, since '*this' was captured
1121           // by reference.
1122           CXXThisValue =
1123               EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal();
1124         }
1125       }
1126       for (auto *FD : MD->getParent()->fields()) {
1127         if (FD->hasCapturedVLAType()) {
1128           auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD),
1129                                            SourceLocation()).getScalarVal();
1130           auto VAT = FD->getCapturedVLAType();
1131           VLASizeMap[VAT->getSizeExpr()] = ExprArg;
1132         }
1133       }
1134     } else {
1135       // Not in a lambda; just use 'this' from the method.
1136       // FIXME: Should we generate a new load for each use of 'this'?  The
1137       // fast register allocator would be happier...
1138       CXXThisValue = CXXABIThisValue;
1139     }
1140 
1141     // Check the 'this' pointer once per function, if it's available.
1142     if (CXXABIThisValue) {
1143       SanitizerSet SkippedChecks;
1144       SkippedChecks.set(SanitizerKind::ObjectSize, true);
1145       QualType ThisTy = MD->getThisType(getContext());
1146 
1147       // If this is the call operator of a lambda with no capture-default, it
1148       // may have a static invoker function, which may call this operator with
1149       // a null 'this' pointer.
1150       if (isLambdaCallOperator(MD) &&
1151           MD->getParent()->getLambdaCaptureDefault() == LCD_None)
1152         SkippedChecks.set(SanitizerKind::Null, true);
1153 
1154       EmitTypeCheck(isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall
1155                                                 : TCK_MemberCall,
1156                     Loc, CXXABIThisValue, ThisTy,
1157                     getContext().getTypeAlignInChars(ThisTy->getPointeeType()),
1158                     SkippedChecks);
1159     }
1160   }
1161 
1162   // If any of the arguments have a variably modified type, make sure to
1163   // emit the type size.
1164   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
1165        i != e; ++i) {
1166     const VarDecl *VD = *i;
1167 
1168     // Dig out the type as written from ParmVarDecls; it's unclear whether
1169     // the standard (C99 6.9.1p10) requires this, but we're following the
1170     // precedent set by gcc.
1171     QualType Ty;
1172     if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
1173       Ty = PVD->getOriginalType();
1174     else
1175       Ty = VD->getType();
1176 
1177     if (Ty->isVariablyModifiedType())
1178       EmitVariablyModifiedType(Ty);
1179   }
1180   // Emit a location at the end of the prologue.
1181   if (CGDebugInfo *DI = getDebugInfo())
1182     DI->EmitLocation(Builder, StartLoc);
1183 
1184   // TODO: Do we need to handle this in two places like we do with
1185   // target-features/target-cpu?
1186   if (CurFuncDecl)
1187     if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>())
1188       LargestVectorWidth = VecWidth->getVectorWidth();
1189 }
1190 
1191 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args,
1192                                        const Stmt *Body) {
1193   incrementProfileCounter(Body);
1194   if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
1195     EmitCompoundStmtWithoutScope(*S);
1196   else
1197     EmitStmt(Body);
1198 }
1199 
1200 /// When instrumenting to collect profile data, the counts for some blocks
1201 /// such as switch cases need to not include the fall-through counts, so
1202 /// emit a branch around the instrumentation code. When not instrumenting,
1203 /// this just calls EmitBlock().
1204 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB,
1205                                                const Stmt *S) {
1206   llvm::BasicBlock *SkipCountBB = nullptr;
1207   if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) {
1208     // When instrumenting for profiling, the fallthrough to certain
1209     // statements needs to skip over the instrumentation code so that we
1210     // get an accurate count.
1211     SkipCountBB = createBasicBlock("skipcount");
1212     EmitBranch(SkipCountBB);
1213   }
1214   EmitBlock(BB);
1215   uint64_t CurrentCount = getCurrentProfileCount();
1216   incrementProfileCounter(S);
1217   setCurrentProfileCount(getCurrentProfileCount() + CurrentCount);
1218   if (SkipCountBB)
1219     EmitBlock(SkipCountBB);
1220 }
1221 
1222 /// Tries to mark the given function nounwind based on the
1223 /// non-existence of any throwing calls within it.  We believe this is
1224 /// lightweight enough to do at -O0.
1225 static void TryMarkNoThrow(llvm::Function *F) {
1226   // LLVM treats 'nounwind' on a function as part of the type, so we
1227   // can't do this on functions that can be overwritten.
1228   if (F->isInterposable()) return;
1229 
1230   for (llvm::BasicBlock &BB : *F)
1231     for (llvm::Instruction &I : BB)
1232       if (I.mayThrow())
1233         return;
1234 
1235   F->setDoesNotThrow();
1236 }
1237 
1238 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD,
1239                                                FunctionArgList &Args) {
1240   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1241   QualType ResTy = FD->getReturnType();
1242 
1243   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
1244   if (MD && MD->isInstance()) {
1245     if (CGM.getCXXABI().HasThisReturn(GD))
1246       ResTy = MD->getThisType(getContext());
1247     else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
1248       ResTy = CGM.getContext().VoidPtrTy;
1249     CGM.getCXXABI().buildThisParam(*this, Args);
1250   }
1251 
1252   // The base version of an inheriting constructor whose constructed base is a
1253   // virtual base is not passed any arguments (because it doesn't actually call
1254   // the inherited constructor).
1255   bool PassedParams = true;
1256   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
1257     if (auto Inherited = CD->getInheritedConstructor())
1258       PassedParams =
1259           getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType());
1260 
1261   if (PassedParams) {
1262     for (auto *Param : FD->parameters()) {
1263       Args.push_back(Param);
1264       if (!Param->hasAttr<PassObjectSizeAttr>())
1265         continue;
1266 
1267       auto *Implicit = ImplicitParamDecl::Create(
1268           getContext(), Param->getDeclContext(), Param->getLocation(),
1269           /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other);
1270       SizeArguments[Param] = Implicit;
1271       Args.push_back(Implicit);
1272     }
1273   }
1274 
1275   if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
1276     CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args);
1277 
1278   return ResTy;
1279 }
1280 
1281 static bool
1282 shouldUseUndefinedBehaviorReturnOptimization(const FunctionDecl *FD,
1283                                              const ASTContext &Context) {
1284   QualType T = FD->getReturnType();
1285   // Avoid the optimization for functions that return a record type with a
1286   // trivial destructor or another trivially copyable type.
1287   if (const RecordType *RT = T.getCanonicalType()->getAs<RecordType>()) {
1288     if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1289       return !ClassDecl->hasTrivialDestructor();
1290   }
1291   return !T.isTriviallyCopyableType(Context);
1292 }
1293 
1294 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1295                                    const CGFunctionInfo &FnInfo) {
1296   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1297   CurGD = GD;
1298 
1299   FunctionArgList Args;
1300   QualType ResTy = BuildFunctionArgList(GD, Args);
1301 
1302   // Check if we should generate debug info for this function.
1303   if (FD->hasAttr<NoDebugAttr>())
1304     DebugInfo = nullptr; // disable debug info indefinitely for this function
1305 
1306   // The function might not have a body if we're generating thunks for a
1307   // function declaration.
1308   SourceRange BodyRange;
1309   if (Stmt *Body = FD->getBody())
1310     BodyRange = Body->getSourceRange();
1311   else
1312     BodyRange = FD->getLocation();
1313   CurEHLocation = BodyRange.getEnd();
1314 
1315   // Use the location of the start of the function to determine where
1316   // the function definition is located. By default use the location
1317   // of the declaration as the location for the subprogram. A function
1318   // may lack a declaration in the source code if it is created by code
1319   // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
1320   SourceLocation Loc = FD->getLocation();
1321 
1322   // If this is a function specialization then use the pattern body
1323   // as the location for the function.
1324   if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern())
1325     if (SpecDecl->hasBody(SpecDecl))
1326       Loc = SpecDecl->getLocation();
1327 
1328   Stmt *Body = FD->getBody();
1329 
1330   // Initialize helper which will detect jumps which can cause invalid lifetime
1331   // markers.
1332   if (Body && ShouldEmitLifetimeMarkers)
1333     Bypasses.Init(Body);
1334 
1335   // Emit the standard function prologue.
1336   StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin());
1337 
1338   // Generate the body of the function.
1339   PGO.assignRegionCounters(GD, CurFn);
1340   if (isa<CXXDestructorDecl>(FD))
1341     EmitDestructorBody(Args);
1342   else if (isa<CXXConstructorDecl>(FD))
1343     EmitConstructorBody(Args);
1344   else if (getLangOpts().CUDA &&
1345            !getLangOpts().CUDAIsDevice &&
1346            FD->hasAttr<CUDAGlobalAttr>())
1347     CGM.getCUDARuntime().emitDeviceStub(*this, Args);
1348   else if (isa<CXXMethodDecl>(FD) &&
1349            cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
1350     // The lambda static invoker function is special, because it forwards or
1351     // clones the body of the function call operator (but is actually static).
1352     EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD));
1353   } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
1354              (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
1355               cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
1356     // Implicit copy-assignment gets the same special treatment as implicit
1357     // copy-constructors.
1358     emitImplicitAssignmentOperatorBody(Args);
1359   } else if (Body) {
1360     EmitFunctionBody(Args, Body);
1361   } else
1362     llvm_unreachable("no definition for emitted function");
1363 
1364   // C++11 [stmt.return]p2:
1365   //   Flowing off the end of a function [...] results in undefined behavior in
1366   //   a value-returning function.
1367   // C11 6.9.1p12:
1368   //   If the '}' that terminates a function is reached, and the value of the
1369   //   function call is used by the caller, the behavior is undefined.
1370   if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock &&
1371       !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) {
1372     bool ShouldEmitUnreachable =
1373         CGM.getCodeGenOpts().StrictReturn ||
1374         shouldUseUndefinedBehaviorReturnOptimization(FD, getContext());
1375     if (SanOpts.has(SanitizerKind::Return)) {
1376       SanitizerScope SanScope(this);
1377       llvm::Value *IsFalse = Builder.getFalse();
1378       EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return),
1379                 SanitizerHandler::MissingReturn,
1380                 EmitCheckSourceLocation(FD->getLocation()), None);
1381     } else if (ShouldEmitUnreachable) {
1382       if (CGM.getCodeGenOpts().OptimizationLevel == 0)
1383         EmitTrapCall(llvm::Intrinsic::trap);
1384     }
1385     if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) {
1386       Builder.CreateUnreachable();
1387       Builder.ClearInsertionPoint();
1388     }
1389   }
1390 
1391   // Emit the standard function epilogue.
1392   FinishFunction(BodyRange.getEnd());
1393 
1394   // If we haven't marked the function nothrow through other means, do
1395   // a quick pass now to see if we can.
1396   if (!CurFn->doesNotThrow())
1397     TryMarkNoThrow(CurFn);
1398 }
1399 
1400 /// ContainsLabel - Return true if the statement contains a label in it.  If
1401 /// this statement is not executed normally, it not containing a label means
1402 /// that we can just remove the code.
1403 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
1404   // Null statement, not a label!
1405   if (!S) return false;
1406 
1407   // If this is a label, we have to emit the code, consider something like:
1408   // if (0) {  ...  foo:  bar(); }  goto foo;
1409   //
1410   // TODO: If anyone cared, we could track __label__'s, since we know that you
1411   // can't jump to one from outside their declared region.
1412   if (isa<LabelStmt>(S))
1413     return true;
1414 
1415   // If this is a case/default statement, and we haven't seen a switch, we have
1416   // to emit the code.
1417   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
1418     return true;
1419 
1420   // If this is a switch statement, we want to ignore cases below it.
1421   if (isa<SwitchStmt>(S))
1422     IgnoreCaseStmts = true;
1423 
1424   // Scan subexpressions for verboten labels.
1425   for (const Stmt *SubStmt : S->children())
1426     if (ContainsLabel(SubStmt, IgnoreCaseStmts))
1427       return true;
1428 
1429   return false;
1430 }
1431 
1432 /// containsBreak - Return true if the statement contains a break out of it.
1433 /// If the statement (recursively) contains a switch or loop with a break
1434 /// inside of it, this is fine.
1435 bool CodeGenFunction::containsBreak(const Stmt *S) {
1436   // Null statement, not a label!
1437   if (!S) return false;
1438 
1439   // If this is a switch or loop that defines its own break scope, then we can
1440   // include it and anything inside of it.
1441   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
1442       isa<ForStmt>(S))
1443     return false;
1444 
1445   if (isa<BreakStmt>(S))
1446     return true;
1447 
1448   // Scan subexpressions for verboten breaks.
1449   for (const Stmt *SubStmt : S->children())
1450     if (containsBreak(SubStmt))
1451       return true;
1452 
1453   return false;
1454 }
1455 
1456 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) {
1457   if (!S) return false;
1458 
1459   // Some statement kinds add a scope and thus never add a decl to the current
1460   // scope. Note, this list is longer than the list of statements that might
1461   // have an unscoped decl nested within them, but this way is conservatively
1462   // correct even if more statement kinds are added.
1463   if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) ||
1464       isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) ||
1465       isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) ||
1466       isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S))
1467     return false;
1468 
1469   if (isa<DeclStmt>(S))
1470     return true;
1471 
1472   for (const Stmt *SubStmt : S->children())
1473     if (mightAddDeclToScope(SubStmt))
1474       return true;
1475 
1476   return false;
1477 }
1478 
1479 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1480 /// to a constant, or if it does but contains a label, return false.  If it
1481 /// constant folds return true and set the boolean result in Result.
1482 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1483                                                    bool &ResultBool,
1484                                                    bool AllowLabels) {
1485   llvm::APSInt ResultInt;
1486   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels))
1487     return false;
1488 
1489   ResultBool = ResultInt.getBoolValue();
1490   return true;
1491 }
1492 
1493 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1494 /// to a constant, or if it does but contains a label, return false.  If it
1495 /// constant folds return true and set the folded value.
1496 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1497                                                    llvm::APSInt &ResultInt,
1498                                                    bool AllowLabels) {
1499   // FIXME: Rename and handle conversion of other evaluatable things
1500   // to bool.
1501   llvm::APSInt Int;
1502   if (!Cond->EvaluateAsInt(Int, getContext()))
1503     return false;  // Not foldable, not integer or not fully evaluatable.
1504 
1505   if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond))
1506     return false;  // Contains a label.
1507 
1508   ResultInt = Int;
1509   return true;
1510 }
1511 
1512 
1513 
1514 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
1515 /// statement) to the specified blocks.  Based on the condition, this might try
1516 /// to simplify the codegen of the conditional based on the branch.
1517 ///
1518 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
1519                                            llvm::BasicBlock *TrueBlock,
1520                                            llvm::BasicBlock *FalseBlock,
1521                                            uint64_t TrueCount) {
1522   Cond = Cond->IgnoreParens();
1523 
1524   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
1525 
1526     // Handle X && Y in a condition.
1527     if (CondBOp->getOpcode() == BO_LAnd) {
1528       // If we have "1 && X", simplify the code.  "0 && X" would have constant
1529       // folded if the case was simple enough.
1530       bool ConstantBool = false;
1531       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1532           ConstantBool) {
1533         // br(1 && X) -> br(X).
1534         incrementProfileCounter(CondBOp);
1535         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1536                                     TrueCount);
1537       }
1538 
1539       // If we have "X && 1", simplify the code to use an uncond branch.
1540       // "X && 0" would have been constant folded to 0.
1541       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1542           ConstantBool) {
1543         // br(X && 1) -> br(X).
1544         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1545                                     TrueCount);
1546       }
1547 
1548       // Emit the LHS as a conditional.  If the LHS conditional is false, we
1549       // want to jump to the FalseBlock.
1550       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
1551       // The counter tells us how often we evaluate RHS, and all of TrueCount
1552       // can be propagated to that branch.
1553       uint64_t RHSCount = getProfileCount(CondBOp->getRHS());
1554 
1555       ConditionalEvaluation eval(*this);
1556       {
1557         ApplyDebugLocation DL(*this, Cond);
1558         EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount);
1559         EmitBlock(LHSTrue);
1560       }
1561 
1562       incrementProfileCounter(CondBOp);
1563       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1564 
1565       // Any temporaries created here are conditional.
1566       eval.begin(*this);
1567       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount);
1568       eval.end(*this);
1569 
1570       return;
1571     }
1572 
1573     if (CondBOp->getOpcode() == BO_LOr) {
1574       // If we have "0 || X", simplify the code.  "1 || X" would have constant
1575       // folded if the case was simple enough.
1576       bool ConstantBool = false;
1577       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1578           !ConstantBool) {
1579         // br(0 || X) -> br(X).
1580         incrementProfileCounter(CondBOp);
1581         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1582                                     TrueCount);
1583       }
1584 
1585       // If we have "X || 0", simplify the code to use an uncond branch.
1586       // "X || 1" would have been constant folded to 1.
1587       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1588           !ConstantBool) {
1589         // br(X || 0) -> br(X).
1590         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1591                                     TrueCount);
1592       }
1593 
1594       // Emit the LHS as a conditional.  If the LHS conditional is true, we
1595       // want to jump to the TrueBlock.
1596       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
1597       // We have the count for entry to the RHS and for the whole expression
1598       // being true, so we can divy up True count between the short circuit and
1599       // the RHS.
1600       uint64_t LHSCount =
1601           getCurrentProfileCount() - getProfileCount(CondBOp->getRHS());
1602       uint64_t RHSCount = TrueCount - LHSCount;
1603 
1604       ConditionalEvaluation eval(*this);
1605       {
1606         ApplyDebugLocation DL(*this, Cond);
1607         EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount);
1608         EmitBlock(LHSFalse);
1609       }
1610 
1611       incrementProfileCounter(CondBOp);
1612       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1613 
1614       // Any temporaries created here are conditional.
1615       eval.begin(*this);
1616       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount);
1617 
1618       eval.end(*this);
1619 
1620       return;
1621     }
1622   }
1623 
1624   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
1625     // br(!x, t, f) -> br(x, f, t)
1626     if (CondUOp->getOpcode() == UO_LNot) {
1627       // Negate the count.
1628       uint64_t FalseCount = getCurrentProfileCount() - TrueCount;
1629       // Negate the condition and swap the destination blocks.
1630       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock,
1631                                   FalseCount);
1632     }
1633   }
1634 
1635   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
1636     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
1637     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
1638     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
1639 
1640     ConditionalEvaluation cond(*this);
1641     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock,
1642                          getProfileCount(CondOp));
1643 
1644     // When computing PGO branch weights, we only know the overall count for
1645     // the true block. This code is essentially doing tail duplication of the
1646     // naive code-gen, introducing new edges for which counts are not
1647     // available. Divide the counts proportionally between the LHS and RHS of
1648     // the conditional operator.
1649     uint64_t LHSScaledTrueCount = 0;
1650     if (TrueCount) {
1651       double LHSRatio =
1652           getProfileCount(CondOp) / (double)getCurrentProfileCount();
1653       LHSScaledTrueCount = TrueCount * LHSRatio;
1654     }
1655 
1656     cond.begin(*this);
1657     EmitBlock(LHSBlock);
1658     incrementProfileCounter(CondOp);
1659     {
1660       ApplyDebugLocation DL(*this, Cond);
1661       EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock,
1662                            LHSScaledTrueCount);
1663     }
1664     cond.end(*this);
1665 
1666     cond.begin(*this);
1667     EmitBlock(RHSBlock);
1668     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock,
1669                          TrueCount - LHSScaledTrueCount);
1670     cond.end(*this);
1671 
1672     return;
1673   }
1674 
1675   if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
1676     // Conditional operator handling can give us a throw expression as a
1677     // condition for a case like:
1678     //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
1679     // Fold this to:
1680     //   br(c, throw x, br(y, t, f))
1681     EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
1682     return;
1683   }
1684 
1685   // If the branch has a condition wrapped by __builtin_unpredictable,
1686   // create metadata that specifies that the branch is unpredictable.
1687   // Don't bother if not optimizing because that metadata would not be used.
1688   llvm::MDNode *Unpredictable = nullptr;
1689   auto *Call = dyn_cast<CallExpr>(Cond);
1690   if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
1691     auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
1692     if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
1693       llvm::MDBuilder MDHelper(getLLVMContext());
1694       Unpredictable = MDHelper.createUnpredictable();
1695     }
1696   }
1697 
1698   // Create branch weights based on the number of times we get here and the
1699   // number of times the condition should be true.
1700   uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount);
1701   llvm::MDNode *Weights =
1702       createProfileWeights(TrueCount, CurrentCount - TrueCount);
1703 
1704   // Emit the code with the fully general case.
1705   llvm::Value *CondV;
1706   {
1707     ApplyDebugLocation DL(*this, Cond);
1708     CondV = EvaluateExprAsBool(Cond);
1709   }
1710   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable);
1711 }
1712 
1713 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1714 /// specified stmt yet.
1715 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
1716   CGM.ErrorUnsupported(S, Type);
1717 }
1718 
1719 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
1720 /// variable-length array whose elements have a non-zero bit-pattern.
1721 ///
1722 /// \param baseType the inner-most element type of the array
1723 /// \param src - a char* pointing to the bit-pattern for a single
1724 /// base element of the array
1725 /// \param sizeInChars - the total size of the VLA, in chars
1726 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
1727                                Address dest, Address src,
1728                                llvm::Value *sizeInChars) {
1729   CGBuilderTy &Builder = CGF.Builder;
1730 
1731   CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType);
1732   llvm::Value *baseSizeInChars
1733     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity());
1734 
1735   Address begin =
1736     Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin");
1737   llvm::Value *end =
1738     Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end");
1739 
1740   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
1741   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
1742   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
1743 
1744   // Make a loop over the VLA.  C99 guarantees that the VLA element
1745   // count must be nonzero.
1746   CGF.EmitBlock(loopBB);
1747 
1748   llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur");
1749   cur->addIncoming(begin.getPointer(), originBB);
1750 
1751   CharUnits curAlign =
1752     dest.getAlignment().alignmentOfArrayElement(baseSize);
1753 
1754   // memcpy the individual element bit-pattern.
1755   Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars,
1756                        /*volatile*/ false);
1757 
1758   // Go to the next element.
1759   llvm::Value *next =
1760     Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next");
1761 
1762   // Leave if that's the end of the VLA.
1763   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
1764   Builder.CreateCondBr(done, contBB, loopBB);
1765   cur->addIncoming(next, loopBB);
1766 
1767   CGF.EmitBlock(contBB);
1768 }
1769 
1770 void
1771 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) {
1772   // Ignore empty classes in C++.
1773   if (getLangOpts().CPlusPlus) {
1774     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1775       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
1776         return;
1777     }
1778   }
1779 
1780   // Cast the dest ptr to the appropriate i8 pointer type.
1781   if (DestPtr.getElementType() != Int8Ty)
1782     DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty);
1783 
1784   // Get size and alignment info for this aggregate.
1785   CharUnits size = getContext().getTypeSizeInChars(Ty);
1786 
1787   llvm::Value *SizeVal;
1788   const VariableArrayType *vla;
1789 
1790   // Don't bother emitting a zero-byte memset.
1791   if (size.isZero()) {
1792     // But note that getTypeInfo returns 0 for a VLA.
1793     if (const VariableArrayType *vlaType =
1794           dyn_cast_or_null<VariableArrayType>(
1795                                           getContext().getAsArrayType(Ty))) {
1796       auto VlaSize = getVLASize(vlaType);
1797       SizeVal = VlaSize.NumElts;
1798       CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type);
1799       if (!eltSize.isOne())
1800         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
1801       vla = vlaType;
1802     } else {
1803       return;
1804     }
1805   } else {
1806     SizeVal = CGM.getSize(size);
1807     vla = nullptr;
1808   }
1809 
1810   // If the type contains a pointer to data member we can't memset it to zero.
1811   // Instead, create a null constant and copy it to the destination.
1812   // TODO: there are other patterns besides zero that we can usefully memset,
1813   // like -1, which happens to be the pattern used by member-pointers.
1814   if (!CGM.getTypes().isZeroInitializable(Ty)) {
1815     // For a VLA, emit a single element, then splat that over the VLA.
1816     if (vla) Ty = getContext().getBaseElementType(vla);
1817 
1818     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
1819 
1820     llvm::GlobalVariable *NullVariable =
1821       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
1822                                /*isConstant=*/true,
1823                                llvm::GlobalVariable::PrivateLinkage,
1824                                NullConstant, Twine());
1825     CharUnits NullAlign = DestPtr.getAlignment();
1826     NullVariable->setAlignment(NullAlign.getQuantity());
1827     Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()),
1828                    NullAlign);
1829 
1830     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
1831 
1832     // Get and call the appropriate llvm.memcpy overload.
1833     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false);
1834     return;
1835   }
1836 
1837   // Otherwise, just memset the whole thing to zero.  This is legal
1838   // because in LLVM, all default initializers (other than the ones we just
1839   // handled above) are guaranteed to have a bit pattern of all zeros.
1840   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false);
1841 }
1842 
1843 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
1844   // Make sure that there is a block for the indirect goto.
1845   if (!IndirectBranch)
1846     GetIndirectGotoBlock();
1847 
1848   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
1849 
1850   // Make sure the indirect branch includes all of the address-taken blocks.
1851   IndirectBranch->addDestination(BB);
1852   return llvm::BlockAddress::get(CurFn, BB);
1853 }
1854 
1855 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
1856   // If we already made the indirect branch for indirect goto, return its block.
1857   if (IndirectBranch) return IndirectBranch->getParent();
1858 
1859   CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto"));
1860 
1861   // Create the PHI node that indirect gotos will add entries to.
1862   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
1863                                               "indirect.goto.dest");
1864 
1865   // Create the indirect branch instruction.
1866   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
1867   return IndirectBranch->getParent();
1868 }
1869 
1870 /// Computes the length of an array in elements, as well as the base
1871 /// element type and a properly-typed first element pointer.
1872 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
1873                                               QualType &baseType,
1874                                               Address &addr) {
1875   const ArrayType *arrayType = origArrayType;
1876 
1877   // If it's a VLA, we have to load the stored size.  Note that
1878   // this is the size of the VLA in bytes, not its size in elements.
1879   llvm::Value *numVLAElements = nullptr;
1880   if (isa<VariableArrayType>(arrayType)) {
1881     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts;
1882 
1883     // Walk into all VLAs.  This doesn't require changes to addr,
1884     // which has type T* where T is the first non-VLA element type.
1885     do {
1886       QualType elementType = arrayType->getElementType();
1887       arrayType = getContext().getAsArrayType(elementType);
1888 
1889       // If we only have VLA components, 'addr' requires no adjustment.
1890       if (!arrayType) {
1891         baseType = elementType;
1892         return numVLAElements;
1893       }
1894     } while (isa<VariableArrayType>(arrayType));
1895 
1896     // We get out here only if we find a constant array type
1897     // inside the VLA.
1898   }
1899 
1900   // We have some number of constant-length arrays, so addr should
1901   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
1902   // down to the first element of addr.
1903   SmallVector<llvm::Value*, 8> gepIndices;
1904 
1905   // GEP down to the array type.
1906   llvm::ConstantInt *zero = Builder.getInt32(0);
1907   gepIndices.push_back(zero);
1908 
1909   uint64_t countFromCLAs = 1;
1910   QualType eltType;
1911 
1912   llvm::ArrayType *llvmArrayType =
1913     dyn_cast<llvm::ArrayType>(addr.getElementType());
1914   while (llvmArrayType) {
1915     assert(isa<ConstantArrayType>(arrayType));
1916     assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
1917              == llvmArrayType->getNumElements());
1918 
1919     gepIndices.push_back(zero);
1920     countFromCLAs *= llvmArrayType->getNumElements();
1921     eltType = arrayType->getElementType();
1922 
1923     llvmArrayType =
1924       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
1925     arrayType = getContext().getAsArrayType(arrayType->getElementType());
1926     assert((!llvmArrayType || arrayType) &&
1927            "LLVM and Clang types are out-of-synch");
1928   }
1929 
1930   if (arrayType) {
1931     // From this point onwards, the Clang array type has been emitted
1932     // as some other type (probably a packed struct). Compute the array
1933     // size, and just emit the 'begin' expression as a bitcast.
1934     while (arrayType) {
1935       countFromCLAs *=
1936           cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
1937       eltType = arrayType->getElementType();
1938       arrayType = getContext().getAsArrayType(eltType);
1939     }
1940 
1941     llvm::Type *baseType = ConvertType(eltType);
1942     addr = Builder.CreateElementBitCast(addr, baseType, "array.begin");
1943   } else {
1944     // Create the actual GEP.
1945     addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(),
1946                                              gepIndices, "array.begin"),
1947                    addr.getAlignment());
1948   }
1949 
1950   baseType = eltType;
1951 
1952   llvm::Value *numElements
1953     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
1954 
1955   // If we had any VLA dimensions, factor them in.
1956   if (numVLAElements)
1957     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
1958 
1959   return numElements;
1960 }
1961 
1962 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) {
1963   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
1964   assert(vla && "type was not a variable array type!");
1965   return getVLASize(vla);
1966 }
1967 
1968 CodeGenFunction::VlaSizePair
1969 CodeGenFunction::getVLASize(const VariableArrayType *type) {
1970   // The number of elements so far; always size_t.
1971   llvm::Value *numElements = nullptr;
1972 
1973   QualType elementType;
1974   do {
1975     elementType = type->getElementType();
1976     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
1977     assert(vlaSize && "no size for VLA!");
1978     assert(vlaSize->getType() == SizeTy);
1979 
1980     if (!numElements) {
1981       numElements = vlaSize;
1982     } else {
1983       // It's undefined behavior if this wraps around, so mark it that way.
1984       // FIXME: Teach -fsanitize=undefined to trap this.
1985       numElements = Builder.CreateNUWMul(numElements, vlaSize);
1986     }
1987   } while ((type = getContext().getAsVariableArrayType(elementType)));
1988 
1989   return { numElements, elementType };
1990 }
1991 
1992 CodeGenFunction::VlaSizePair
1993 CodeGenFunction::getVLAElements1D(QualType type) {
1994   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
1995   assert(vla && "type was not a variable array type!");
1996   return getVLAElements1D(vla);
1997 }
1998 
1999 CodeGenFunction::VlaSizePair
2000 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) {
2001   llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()];
2002   assert(VlaSize && "no size for VLA!");
2003   assert(VlaSize->getType() == SizeTy);
2004   return { VlaSize, Vla->getElementType() };
2005 }
2006 
2007 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
2008   assert(type->isVariablyModifiedType() &&
2009          "Must pass variably modified type to EmitVLASizes!");
2010 
2011   EnsureInsertPoint();
2012 
2013   // We're going to walk down into the type and look for VLA
2014   // expressions.
2015   do {
2016     assert(type->isVariablyModifiedType());
2017 
2018     const Type *ty = type.getTypePtr();
2019     switch (ty->getTypeClass()) {
2020 
2021 #define TYPE(Class, Base)
2022 #define ABSTRACT_TYPE(Class, Base)
2023 #define NON_CANONICAL_TYPE(Class, Base)
2024 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
2025 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
2026 #include "clang/AST/TypeNodes.def"
2027       llvm_unreachable("unexpected dependent type!");
2028 
2029     // These types are never variably-modified.
2030     case Type::Builtin:
2031     case Type::Complex:
2032     case Type::Vector:
2033     case Type::ExtVector:
2034     case Type::Record:
2035     case Type::Enum:
2036     case Type::Elaborated:
2037     case Type::TemplateSpecialization:
2038     case Type::ObjCTypeParam:
2039     case Type::ObjCObject:
2040     case Type::ObjCInterface:
2041     case Type::ObjCObjectPointer:
2042       llvm_unreachable("type class is never variably-modified!");
2043 
2044     case Type::Adjusted:
2045       type = cast<AdjustedType>(ty)->getAdjustedType();
2046       break;
2047 
2048     case Type::Decayed:
2049       type = cast<DecayedType>(ty)->getPointeeType();
2050       break;
2051 
2052     case Type::Pointer:
2053       type = cast<PointerType>(ty)->getPointeeType();
2054       break;
2055 
2056     case Type::BlockPointer:
2057       type = cast<BlockPointerType>(ty)->getPointeeType();
2058       break;
2059 
2060     case Type::LValueReference:
2061     case Type::RValueReference:
2062       type = cast<ReferenceType>(ty)->getPointeeType();
2063       break;
2064 
2065     case Type::MemberPointer:
2066       type = cast<MemberPointerType>(ty)->getPointeeType();
2067       break;
2068 
2069     case Type::ConstantArray:
2070     case Type::IncompleteArray:
2071       // Losing element qualification here is fine.
2072       type = cast<ArrayType>(ty)->getElementType();
2073       break;
2074 
2075     case Type::VariableArray: {
2076       // Losing element qualification here is fine.
2077       const VariableArrayType *vat = cast<VariableArrayType>(ty);
2078 
2079       // Unknown size indication requires no size computation.
2080       // Otherwise, evaluate and record it.
2081       if (const Expr *size = vat->getSizeExpr()) {
2082         // It's possible that we might have emitted this already,
2083         // e.g. with a typedef and a pointer to it.
2084         llvm::Value *&entry = VLASizeMap[size];
2085         if (!entry) {
2086           llvm::Value *Size = EmitScalarExpr(size);
2087 
2088           // C11 6.7.6.2p5:
2089           //   If the size is an expression that is not an integer constant
2090           //   expression [...] each time it is evaluated it shall have a value
2091           //   greater than zero.
2092           if (SanOpts.has(SanitizerKind::VLABound) &&
2093               size->getType()->isSignedIntegerType()) {
2094             SanitizerScope SanScope(this);
2095             llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType());
2096             llvm::Constant *StaticArgs[] = {
2097                 EmitCheckSourceLocation(size->getBeginLoc()),
2098                 EmitCheckTypeDescriptor(size->getType())};
2099             EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero),
2100                                      SanitizerKind::VLABound),
2101                       SanitizerHandler::VLABoundNotPositive, StaticArgs, Size);
2102           }
2103 
2104           // Always zexting here would be wrong if it weren't
2105           // undefined behavior to have a negative bound.
2106           entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false);
2107         }
2108       }
2109       type = vat->getElementType();
2110       break;
2111     }
2112 
2113     case Type::FunctionProto:
2114     case Type::FunctionNoProto:
2115       type = cast<FunctionType>(ty)->getReturnType();
2116       break;
2117 
2118     case Type::Paren:
2119     case Type::TypeOf:
2120     case Type::UnaryTransform:
2121     case Type::Attributed:
2122     case Type::SubstTemplateTypeParm:
2123     case Type::PackExpansion:
2124       // Keep walking after single level desugaring.
2125       type = type.getSingleStepDesugaredType(getContext());
2126       break;
2127 
2128     case Type::Typedef:
2129     case Type::Decltype:
2130     case Type::Auto:
2131     case Type::DeducedTemplateSpecialization:
2132       // Stop walking: nothing to do.
2133       return;
2134 
2135     case Type::TypeOfExpr:
2136       // Stop walking: emit typeof expression.
2137       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
2138       return;
2139 
2140     case Type::Atomic:
2141       type = cast<AtomicType>(ty)->getValueType();
2142       break;
2143 
2144     case Type::Pipe:
2145       type = cast<PipeType>(ty)->getElementType();
2146       break;
2147     }
2148   } while (type->isVariablyModifiedType());
2149 }
2150 
2151 Address CodeGenFunction::EmitVAListRef(const Expr* E) {
2152   if (getContext().getBuiltinVaListType()->isArrayType())
2153     return EmitPointerWithAlignment(E);
2154   return EmitLValue(E).getAddress();
2155 }
2156 
2157 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) {
2158   return EmitLValue(E).getAddress();
2159 }
2160 
2161 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
2162                                               const APValue &Init) {
2163   assert(!Init.isUninit() && "Invalid DeclRefExpr initializer!");
2164   if (CGDebugInfo *Dbg = getDebugInfo())
2165     if (CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
2166       Dbg->EmitGlobalVariable(E->getDecl(), Init);
2167 }
2168 
2169 CodeGenFunction::PeepholeProtection
2170 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
2171   // At the moment, the only aggressive peephole we do in IR gen
2172   // is trunc(zext) folding, but if we add more, we can easily
2173   // extend this protection.
2174 
2175   if (!rvalue.isScalar()) return PeepholeProtection();
2176   llvm::Value *value = rvalue.getScalarVal();
2177   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
2178 
2179   // Just make an extra bitcast.
2180   assert(HaveInsertPoint());
2181   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
2182                                                   Builder.GetInsertBlock());
2183 
2184   PeepholeProtection protection;
2185   protection.Inst = inst;
2186   return protection;
2187 }
2188 
2189 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
2190   if (!protection.Inst) return;
2191 
2192   // In theory, we could try to duplicate the peepholes now, but whatever.
2193   protection.Inst->eraseFromParent();
2194 }
2195 
2196 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn,
2197                                                  llvm::Value *AnnotatedVal,
2198                                                  StringRef AnnotationStr,
2199                                                  SourceLocation Location) {
2200   llvm::Value *Args[4] = {
2201     AnnotatedVal,
2202     Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
2203     Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
2204     CGM.EmitAnnotationLineNo(Location)
2205   };
2206   return Builder.CreateCall(AnnotationFn, Args);
2207 }
2208 
2209 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
2210   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2211   // FIXME We create a new bitcast for every annotation because that's what
2212   // llvm-gcc was doing.
2213   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2214     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
2215                        Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
2216                        I->getAnnotation(), D->getLocation());
2217 }
2218 
2219 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
2220                                               Address Addr) {
2221   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2222   llvm::Value *V = Addr.getPointer();
2223   llvm::Type *VTy = V->getType();
2224   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
2225                                     CGM.Int8PtrTy);
2226 
2227   for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
2228     // FIXME Always emit the cast inst so we can differentiate between
2229     // annotation on the first field of a struct and annotation on the struct
2230     // itself.
2231     if (VTy != CGM.Int8PtrTy)
2232       V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy));
2233     V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation());
2234     V = Builder.CreateBitCast(V, VTy);
2235   }
2236 
2237   return Address(V, Addr.getAlignment());
2238 }
2239 
2240 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
2241 
2242 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF)
2243     : CGF(CGF) {
2244   assert(!CGF->IsSanitizerScope);
2245   CGF->IsSanitizerScope = true;
2246 }
2247 
2248 CodeGenFunction::SanitizerScope::~SanitizerScope() {
2249   CGF->IsSanitizerScope = false;
2250 }
2251 
2252 void CodeGenFunction::InsertHelper(llvm::Instruction *I,
2253                                    const llvm::Twine &Name,
2254                                    llvm::BasicBlock *BB,
2255                                    llvm::BasicBlock::iterator InsertPt) const {
2256   LoopStack.InsertHelper(I);
2257   if (IsSanitizerScope)
2258     CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I);
2259 }
2260 
2261 void CGBuilderInserter::InsertHelper(
2262     llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB,
2263     llvm::BasicBlock::iterator InsertPt) const {
2264   llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt);
2265   if (CGF)
2266     CGF->InsertHelper(I, Name, BB, InsertPt);
2267 }
2268 
2269 static bool hasRequiredFeatures(const SmallVectorImpl<StringRef> &ReqFeatures,
2270                                 CodeGenModule &CGM, const FunctionDecl *FD,
2271                                 std::string &FirstMissing) {
2272   // If there aren't any required features listed then go ahead and return.
2273   if (ReqFeatures.empty())
2274     return false;
2275 
2276   // Now build up the set of caller features and verify that all the required
2277   // features are there.
2278   llvm::StringMap<bool> CallerFeatureMap;
2279   CGM.getFunctionFeatureMap(CallerFeatureMap, FD);
2280 
2281   // If we have at least one of the features in the feature list return
2282   // true, otherwise return false.
2283   return std::all_of(
2284       ReqFeatures.begin(), ReqFeatures.end(), [&](StringRef Feature) {
2285         SmallVector<StringRef, 1> OrFeatures;
2286         Feature.split(OrFeatures, '|');
2287         return std::any_of(OrFeatures.begin(), OrFeatures.end(),
2288                            [&](StringRef Feature) {
2289                              if (!CallerFeatureMap.lookup(Feature)) {
2290                                FirstMissing = Feature.str();
2291                                return false;
2292                              }
2293                              return true;
2294                            });
2295       });
2296 }
2297 
2298 // Emits an error if we don't have a valid set of target features for the
2299 // called function.
2300 void CodeGenFunction::checkTargetFeatures(const CallExpr *E,
2301                                           const FunctionDecl *TargetDecl) {
2302   // Early exit if this is an indirect call.
2303   if (!TargetDecl)
2304     return;
2305 
2306   // Get the current enclosing function if it exists. If it doesn't
2307   // we can't check the target features anyhow.
2308   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl);
2309   if (!FD)
2310     return;
2311 
2312   // Grab the required features for the call. For a builtin this is listed in
2313   // the td file with the default cpu, for an always_inline function this is any
2314   // listed cpu and any listed features.
2315   unsigned BuiltinID = TargetDecl->getBuiltinID();
2316   std::string MissingFeature;
2317   if (BuiltinID) {
2318     SmallVector<StringRef, 1> ReqFeatures;
2319     const char *FeatureList =
2320         CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID);
2321     // Return if the builtin doesn't have any required features.
2322     if (!FeatureList || StringRef(FeatureList) == "")
2323       return;
2324     StringRef(FeatureList).split(ReqFeatures, ',');
2325     if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature))
2326       CGM.getDiags().Report(E->getBeginLoc(), diag::err_builtin_needs_feature)
2327           << TargetDecl->getDeclName()
2328           << CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID);
2329 
2330   } else if (TargetDecl->hasAttr<TargetAttr>() ||
2331              TargetDecl->hasAttr<CPUSpecificAttr>()) {
2332     // Get the required features for the callee.
2333 
2334     const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>();
2335     TargetAttr::ParsedTargetAttr ParsedAttr = CGM.filterFunctionTargetAttrs(TD);
2336 
2337     SmallVector<StringRef, 1> ReqFeatures;
2338     llvm::StringMap<bool> CalleeFeatureMap;
2339     CGM.getFunctionFeatureMap(CalleeFeatureMap, TargetDecl);
2340 
2341     for (const auto &F : ParsedAttr.Features) {
2342       if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1)))
2343         ReqFeatures.push_back(StringRef(F).substr(1));
2344     }
2345 
2346     for (const auto &F : CalleeFeatureMap) {
2347       // Only positive features are "required".
2348       if (F.getValue())
2349         ReqFeatures.push_back(F.getKey());
2350     }
2351     if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature))
2352       CGM.getDiags().Report(E->getBeginLoc(), diag::err_function_needs_feature)
2353           << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature;
2354   }
2355 }
2356 
2357 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) {
2358   if (!CGM.getCodeGenOpts().SanitizeStats)
2359     return;
2360 
2361   llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint());
2362   IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation());
2363   CGM.getSanStats().create(IRB, SSK);
2364 }
2365 
2366 llvm::Value *CodeGenFunction::FormResolverCondition(
2367     const TargetMultiVersionResolverOption &RO) {
2368   llvm::Value *TrueCondition = nullptr;
2369   if (!RO.ParsedAttribute.Architecture.empty())
2370     TrueCondition = EmitX86CpuIs(RO.ParsedAttribute.Architecture);
2371 
2372   if (!RO.ParsedAttribute.Features.empty()) {
2373     SmallVector<StringRef, 8> FeatureList;
2374     llvm::for_each(RO.ParsedAttribute.Features,
2375                    [&FeatureList](const std::string &Feature) {
2376                      FeatureList.push_back(StringRef{Feature}.substr(1));
2377                    });
2378     llvm::Value *FeatureCmp = EmitX86CpuSupports(FeatureList);
2379     TrueCondition = TrueCondition ? Builder.CreateAnd(TrueCondition, FeatureCmp)
2380                                   : FeatureCmp;
2381   }
2382   return TrueCondition;
2383 }
2384 
2385 void CodeGenFunction::EmitTargetMultiVersionResolver(
2386     llvm::Function *Resolver,
2387     ArrayRef<TargetMultiVersionResolverOption> Options) {
2388   assert((getContext().getTargetInfo().getTriple().getArch() ==
2389               llvm::Triple::x86 ||
2390           getContext().getTargetInfo().getTriple().getArch() ==
2391               llvm::Triple::x86_64) &&
2392          "Only implemented for x86 targets");
2393 
2394   // Main function's basic block.
2395   llvm::BasicBlock *CurBlock = createBasicBlock("entry", Resolver);
2396   Builder.SetInsertPoint(CurBlock);
2397   EmitX86CpuInit();
2398 
2399   llvm::Function *DefaultFunc = nullptr;
2400   for (const TargetMultiVersionResolverOption &RO : Options) {
2401     Builder.SetInsertPoint(CurBlock);
2402     llvm::Value *TrueCondition = FormResolverCondition(RO);
2403 
2404     if (!TrueCondition) {
2405       DefaultFunc = RO.Function;
2406     } else {
2407       llvm::BasicBlock *RetBlock = createBasicBlock("ro_ret", Resolver);
2408       llvm::IRBuilder<> RetBuilder(RetBlock);
2409       RetBuilder.CreateRet(RO.Function);
2410       CurBlock = createBasicBlock("ro_else", Resolver);
2411       Builder.CreateCondBr(TrueCondition, RetBlock, CurBlock);
2412     }
2413   }
2414 
2415   assert(DefaultFunc && "No default version?");
2416   // Emit return from the 'else-ist' block.
2417   Builder.SetInsertPoint(CurBlock);
2418   Builder.CreateRet(DefaultFunc);
2419 }
2420 
2421 void CodeGenFunction::EmitCPUDispatchMultiVersionResolver(
2422     llvm::Function *Resolver,
2423     ArrayRef<CPUDispatchMultiVersionResolverOption> Options) {
2424   assert((getContext().getTargetInfo().getTriple().getArch() ==
2425               llvm::Triple::x86 ||
2426           getContext().getTargetInfo().getTriple().getArch() ==
2427               llvm::Triple::x86_64) &&
2428          "Only implemented for x86 targets");
2429 
2430   // Main function's basic block.
2431   llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver);
2432   Builder.SetInsertPoint(CurBlock);
2433   EmitX86CpuInit();
2434 
2435   for (const CPUDispatchMultiVersionResolverOption &RO : Options) {
2436     Builder.SetInsertPoint(CurBlock);
2437 
2438     // "generic" case should catch-all.
2439     if (RO.FeatureMask == 0) {
2440       Builder.CreateRet(RO.Function);
2441       return;
2442     }
2443     llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver);
2444     llvm::IRBuilder<> RetBuilder(RetBlock);
2445     RetBuilder.CreateRet(RO.Function);
2446     CurBlock = createBasicBlock("resolver_else", Resolver);
2447     llvm::Value *TrueCondition = EmitX86CpuSupports(RO.FeatureMask);
2448     Builder.CreateCondBr(TrueCondition, RetBlock, CurBlock);
2449   }
2450 
2451   Builder.SetInsertPoint(CurBlock);
2452   llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
2453   TrapCall->setDoesNotReturn();
2454   TrapCall->setDoesNotThrow();
2455   Builder.CreateUnreachable();
2456   Builder.ClearInsertionPoint();
2457 }
2458 
2459 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) {
2460   if (CGDebugInfo *DI = getDebugInfo())
2461     return DI->SourceLocToDebugLoc(Location);
2462 
2463   return llvm::DebugLoc();
2464 }
2465