xref: /llvm-project/clang/lib/CodeGen/CodeGenFunction.cpp (revision c8e01705787c984838a16e66e2f9af017f5602a5)
1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-function state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGDebugInfo.h"
18 #include "CodeGenModule.h"
19 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/Decl.h"
21 #include "clang/AST/DeclCXX.h"
22 #include "clang/AST/StmtCXX.h"
23 #include "clang/Basic/OpenCL.h"
24 #include "clang/Basic/TargetInfo.h"
25 #include "clang/Frontend/CodeGenOptions.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/Intrinsics.h"
28 #include "llvm/IR/MDBuilder.h"
29 #include "llvm/IR/Operator.h"
30 using namespace clang;
31 using namespace CodeGen;
32 
33 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
34   : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
35     Builder(cgm.getModule().getContext()),
36     SanitizePerformTypeCheck(CGM.getSanOpts().Null |
37                              CGM.getSanOpts().Alignment |
38                              CGM.getSanOpts().ObjectSize |
39                              CGM.getSanOpts().Vptr),
40     SanOpts(&CGM.getSanOpts()),
41     AutoreleaseResult(false), BlockInfo(0), BlockPointer(0),
42     LambdaThisCaptureField(0), NormalCleanupDest(0), NextCleanupDestIndex(1),
43     FirstBlockInfo(0), EHResumeBlock(0), ExceptionSlot(0), EHSelectorSlot(0),
44     DebugInfo(0), DisableDebugInfo(false), CalleeWithThisReturn(0),
45     DidCallStackSave(false),
46     IndirectBranch(0), SwitchInsn(0), CaseRangeBlock(0), UnreachableBlock(0),
47     CXXABIThisDecl(0), CXXABIThisValue(0), CXXThisValue(0),
48     CXXStructorImplicitParamDecl(0), CXXStructorImplicitParamValue(0),
49     OutermostConditional(0), CurLexicalScope(0), TerminateLandingPad(0),
50     TerminateHandler(0), TrapBB(0) {
51   if (!suppressNewContext)
52     CGM.getCXXABI().getMangleContext().startNewFunction();
53 
54   llvm::FastMathFlags FMF;
55   if (CGM.getLangOpts().FastMath)
56     FMF.setUnsafeAlgebra();
57   if (CGM.getLangOpts().FiniteMathOnly) {
58     FMF.setNoNaNs();
59     FMF.setNoInfs();
60   }
61   Builder.SetFastMathFlags(FMF);
62 }
63 
64 CodeGenFunction::~CodeGenFunction() {
65   // If there are any unclaimed block infos, go ahead and destroy them
66   // now.  This can happen if IR-gen gets clever and skips evaluating
67   // something.
68   if (FirstBlockInfo)
69     destroyBlockInfos(FirstBlockInfo);
70 }
71 
72 
73 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
74   return CGM.getTypes().ConvertTypeForMem(T);
75 }
76 
77 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
78   return CGM.getTypes().ConvertType(T);
79 }
80 
81 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
82   type = type.getCanonicalType();
83   while (true) {
84     switch (type->getTypeClass()) {
85 #define TYPE(name, parent)
86 #define ABSTRACT_TYPE(name, parent)
87 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
88 #define DEPENDENT_TYPE(name, parent) case Type::name:
89 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
90 #include "clang/AST/TypeNodes.def"
91       llvm_unreachable("non-canonical or dependent type in IR-generation");
92 
93     // Various scalar types.
94     case Type::Builtin:
95     case Type::Pointer:
96     case Type::BlockPointer:
97     case Type::LValueReference:
98     case Type::RValueReference:
99     case Type::MemberPointer:
100     case Type::Vector:
101     case Type::ExtVector:
102     case Type::FunctionProto:
103     case Type::FunctionNoProto:
104     case Type::Enum:
105     case Type::ObjCObjectPointer:
106       return TEK_Scalar;
107 
108     // Complexes.
109     case Type::Complex:
110       return TEK_Complex;
111 
112     // Arrays, records, and Objective-C objects.
113     case Type::ConstantArray:
114     case Type::IncompleteArray:
115     case Type::VariableArray:
116     case Type::Record:
117     case Type::ObjCObject:
118     case Type::ObjCInterface:
119       return TEK_Aggregate;
120 
121     // We operate on atomic values according to their underlying type.
122     case Type::Atomic:
123       type = cast<AtomicType>(type)->getValueType();
124       continue;
125     }
126     llvm_unreachable("unknown type kind!");
127   }
128 }
129 
130 void CodeGenFunction::EmitReturnBlock() {
131   // For cleanliness, we try to avoid emitting the return block for
132   // simple cases.
133   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
134 
135   if (CurBB) {
136     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
137 
138     // We have a valid insert point, reuse it if it is empty or there are no
139     // explicit jumps to the return block.
140     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
141       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
142       delete ReturnBlock.getBlock();
143     } else
144       EmitBlock(ReturnBlock.getBlock());
145     return;
146   }
147 
148   // Otherwise, if the return block is the target of a single direct
149   // branch then we can just put the code in that block instead. This
150   // cleans up functions which started with a unified return block.
151   if (ReturnBlock.getBlock()->hasOneUse()) {
152     llvm::BranchInst *BI =
153       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->use_begin());
154     if (BI && BI->isUnconditional() &&
155         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
156       // Reset insertion point, including debug location, and delete the
157       // branch.  This is really subtle and only works because the next change
158       // in location will hit the caching in CGDebugInfo::EmitLocation and not
159       // override this.
160       Builder.SetCurrentDebugLocation(BI->getDebugLoc());
161       Builder.SetInsertPoint(BI->getParent());
162       BI->eraseFromParent();
163       delete ReturnBlock.getBlock();
164       return;
165     }
166   }
167 
168   // FIXME: We are at an unreachable point, there is no reason to emit the block
169   // unless it has uses. However, we still need a place to put the debug
170   // region.end for now.
171 
172   EmitBlock(ReturnBlock.getBlock());
173 }
174 
175 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
176   if (!BB) return;
177   if (!BB->use_empty())
178     return CGF.CurFn->getBasicBlockList().push_back(BB);
179   delete BB;
180 }
181 
182 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
183   assert(BreakContinueStack.empty() &&
184          "mismatched push/pop in break/continue stack!");
185 
186   if (CGDebugInfo *DI = getDebugInfo())
187     DI->EmitLocation(Builder, EndLoc);
188 
189   // Pop any cleanups that might have been associated with the
190   // parameters.  Do this in whatever block we're currently in; it's
191   // important to do this before we enter the return block or return
192   // edges will be *really* confused.
193   if (EHStack.stable_begin() != PrologueCleanupDepth)
194     PopCleanupBlocks(PrologueCleanupDepth);
195 
196   // Emit function epilog (to return).
197   EmitReturnBlock();
198 
199   if (ShouldInstrumentFunction())
200     EmitFunctionInstrumentation("__cyg_profile_func_exit");
201 
202   // Emit debug descriptor for function end.
203   if (CGDebugInfo *DI = getDebugInfo()) {
204     DI->EmitFunctionEnd(Builder);
205   }
206 
207   EmitFunctionEpilog(*CurFnInfo);
208   EmitEndEHSpec(CurCodeDecl);
209 
210   assert(EHStack.empty() &&
211          "did not remove all scopes from cleanup stack!");
212 
213   // If someone did an indirect goto, emit the indirect goto block at the end of
214   // the function.
215   if (IndirectBranch) {
216     EmitBlock(IndirectBranch->getParent());
217     Builder.ClearInsertionPoint();
218   }
219 
220   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
221   llvm::Instruction *Ptr = AllocaInsertPt;
222   AllocaInsertPt = 0;
223   Ptr->eraseFromParent();
224 
225   // If someone took the address of a label but never did an indirect goto, we
226   // made a zero entry PHI node, which is illegal, zap it now.
227   if (IndirectBranch) {
228     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
229     if (PN->getNumIncomingValues() == 0) {
230       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
231       PN->eraseFromParent();
232     }
233   }
234 
235   EmitIfUsed(*this, EHResumeBlock);
236   EmitIfUsed(*this, TerminateLandingPad);
237   EmitIfUsed(*this, TerminateHandler);
238   EmitIfUsed(*this, UnreachableBlock);
239 
240   if (CGM.getCodeGenOpts().EmitDeclMetadata)
241     EmitDeclMetadata();
242 }
243 
244 /// ShouldInstrumentFunction - Return true if the current function should be
245 /// instrumented with __cyg_profile_func_* calls
246 bool CodeGenFunction::ShouldInstrumentFunction() {
247   if (!CGM.getCodeGenOpts().InstrumentFunctions)
248     return false;
249   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
250     return false;
251   return true;
252 }
253 
254 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
255 /// instrumentation function with the current function and the call site, if
256 /// function instrumentation is enabled.
257 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) {
258   // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site);
259   llvm::PointerType *PointerTy = Int8PtrTy;
260   llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy };
261   llvm::FunctionType *FunctionTy =
262     llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false);
263 
264   llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn);
265   llvm::CallInst *CallSite = Builder.CreateCall(
266     CGM.getIntrinsic(llvm::Intrinsic::returnaddress),
267     llvm::ConstantInt::get(Int32Ty, 0),
268     "callsite");
269 
270   llvm::Value *args[] = {
271     llvm::ConstantExpr::getBitCast(CurFn, PointerTy),
272     CallSite
273   };
274 
275   EmitNounwindRuntimeCall(F, args);
276 }
277 
278 void CodeGenFunction::EmitMCountInstrumentation() {
279   llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false);
280 
281   llvm::Constant *MCountFn =
282     CGM.CreateRuntimeFunction(FTy, getTarget().getMCountName());
283   EmitNounwindRuntimeCall(MCountFn);
284 }
285 
286 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument
287 // information in the program executable. The argument information stored
288 // includes the argument name, its type, the address and access qualifiers used.
289 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn,
290                                  CodeGenModule &CGM,llvm::LLVMContext &Context,
291                                  SmallVector <llvm::Value*, 5> &kernelMDArgs,
292                                  CGBuilderTy& Builder, ASTContext &ASTCtx) {
293   // Create MDNodes that represent the kernel arg metadata.
294   // Each MDNode is a list in the form of "key", N number of values which is
295   // the same number of values as their are kernel arguments.
296 
297   // MDNode for the kernel argument address space qualifiers.
298   SmallVector<llvm::Value*, 8> addressQuals;
299   addressQuals.push_back(llvm::MDString::get(Context, "kernel_arg_addr_space"));
300 
301   // MDNode for the kernel argument access qualifiers (images only).
302   SmallVector<llvm::Value*, 8> accessQuals;
303   accessQuals.push_back(llvm::MDString::get(Context, "kernel_arg_access_qual"));
304 
305   // MDNode for the kernel argument type names.
306   SmallVector<llvm::Value*, 8> argTypeNames;
307   argTypeNames.push_back(llvm::MDString::get(Context, "kernel_arg_type"));
308 
309   // MDNode for the kernel argument type qualifiers.
310   SmallVector<llvm::Value*, 8> argTypeQuals;
311   argTypeQuals.push_back(llvm::MDString::get(Context, "kernel_arg_type_qual"));
312 
313   // MDNode for the kernel argument names.
314   SmallVector<llvm::Value*, 8> argNames;
315   argNames.push_back(llvm::MDString::get(Context, "kernel_arg_name"));
316 
317   for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
318     const ParmVarDecl *parm = FD->getParamDecl(i);
319     QualType ty = parm->getType();
320     std::string typeQuals;
321 
322     if (ty->isPointerType()) {
323       QualType pointeeTy = ty->getPointeeType();
324 
325       // Get address qualifier.
326       addressQuals.push_back(Builder.getInt32(ASTCtx.getTargetAddressSpace(
327         pointeeTy.getAddressSpace())));
328 
329       // Get argument type name.
330       std::string typeName = pointeeTy.getUnqualifiedType().getAsString() + "*";
331 
332       // Turn "unsigned type" to "utype"
333       std::string::size_type pos = typeName.find("unsigned");
334       if (pos != std::string::npos)
335         typeName.erase(pos+1, 8);
336 
337       argTypeNames.push_back(llvm::MDString::get(Context, typeName));
338 
339       // Get argument type qualifiers:
340       if (ty.isRestrictQualified())
341         typeQuals = "restrict";
342       if (pointeeTy.isConstQualified() ||
343           (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
344         typeQuals += typeQuals.empty() ? "const" : " const";
345       if (pointeeTy.isVolatileQualified())
346         typeQuals += typeQuals.empty() ? "volatile" : " volatile";
347     } else {
348       addressQuals.push_back(Builder.getInt32(0));
349 
350       // Get argument type name.
351       std::string typeName = ty.getUnqualifiedType().getAsString();
352 
353       // Turn "unsigned type" to "utype"
354       std::string::size_type pos = typeName.find("unsigned");
355       if (pos != std::string::npos)
356         typeName.erase(pos+1, 8);
357 
358       argTypeNames.push_back(llvm::MDString::get(Context, typeName));
359 
360       // Get argument type qualifiers:
361       if (ty.isConstQualified())
362         typeQuals = "const";
363       if (ty.isVolatileQualified())
364         typeQuals += typeQuals.empty() ? "volatile" : " volatile";
365     }
366 
367     argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals));
368 
369     // Get image access qualifier:
370     if (ty->isImageType()) {
371       if (parm->hasAttr<OpenCLImageAccessAttr>() &&
372           parm->getAttr<OpenCLImageAccessAttr>()->getAccess() == CLIA_write_only)
373         accessQuals.push_back(llvm::MDString::get(Context, "write_only"));
374       else
375         accessQuals.push_back(llvm::MDString::get(Context, "read_only"));
376     } else
377       accessQuals.push_back(llvm::MDString::get(Context, "none"));
378 
379     // Get argument name.
380     argNames.push_back(llvm::MDString::get(Context, parm->getName()));
381   }
382 
383   kernelMDArgs.push_back(llvm::MDNode::get(Context, addressQuals));
384   kernelMDArgs.push_back(llvm::MDNode::get(Context, accessQuals));
385   kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeNames));
386   kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeQuals));
387   kernelMDArgs.push_back(llvm::MDNode::get(Context, argNames));
388 }
389 
390 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD,
391                                                llvm::Function *Fn)
392 {
393   if (!FD->hasAttr<OpenCLKernelAttr>())
394     return;
395 
396   llvm::LLVMContext &Context = getLLVMContext();
397 
398   SmallVector <llvm::Value*, 5> kernelMDArgs;
399   kernelMDArgs.push_back(Fn);
400 
401   if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
402     GenOpenCLArgMetadata(FD, Fn, CGM, Context, kernelMDArgs,
403                          Builder, getContext());
404 
405   if (FD->hasAttr<VecTypeHintAttr>()) {
406     VecTypeHintAttr *attr = FD->getAttr<VecTypeHintAttr>();
407     QualType hintQTy = attr->getTypeHint();
408     const ExtVectorType *hintEltQTy = hintQTy->getAs<ExtVectorType>();
409     bool isSignedInteger =
410         hintQTy->isSignedIntegerType() ||
411         (hintEltQTy && hintEltQTy->getElementType()->isSignedIntegerType());
412     llvm::Value *attrMDArgs[] = {
413       llvm::MDString::get(Context, "vec_type_hint"),
414       llvm::UndefValue::get(CGM.getTypes().ConvertType(attr->getTypeHint())),
415       llvm::ConstantInt::get(
416           llvm::IntegerType::get(Context, 32),
417           llvm::APInt(32, (uint64_t)(isSignedInteger ? 1 : 0)))
418     };
419     kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
420   }
421 
422   if (FD->hasAttr<WorkGroupSizeHintAttr>()) {
423     WorkGroupSizeHintAttr *attr = FD->getAttr<WorkGroupSizeHintAttr>();
424     llvm::Value *attrMDArgs[] = {
425       llvm::MDString::get(Context, "work_group_size_hint"),
426       Builder.getInt32(attr->getXDim()),
427       Builder.getInt32(attr->getYDim()),
428       Builder.getInt32(attr->getZDim())
429     };
430     kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
431   }
432 
433   if (FD->hasAttr<ReqdWorkGroupSizeAttr>()) {
434     ReqdWorkGroupSizeAttr *attr = FD->getAttr<ReqdWorkGroupSizeAttr>();
435     llvm::Value *attrMDArgs[] = {
436       llvm::MDString::get(Context, "reqd_work_group_size"),
437       Builder.getInt32(attr->getXDim()),
438       Builder.getInt32(attr->getYDim()),
439       Builder.getInt32(attr->getZDim())
440     };
441     kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
442   }
443 
444   llvm::MDNode *kernelMDNode = llvm::MDNode::get(Context, kernelMDArgs);
445   llvm::NamedMDNode *OpenCLKernelMetadata =
446     CGM.getModule().getOrInsertNamedMetadata("opencl.kernels");
447   OpenCLKernelMetadata->addOperand(kernelMDNode);
448 }
449 
450 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy,
451                                     llvm::Function *Fn,
452                                     const CGFunctionInfo &FnInfo,
453                                     const FunctionArgList &Args,
454                                     SourceLocation StartLoc) {
455   const Decl *D = GD.getDecl();
456 
457   DidCallStackSave = false;
458   CurCodeDecl = CurFuncDecl = D;
459   FnRetTy = RetTy;
460   CurFn = Fn;
461   CurFnInfo = &FnInfo;
462   assert(CurFn->isDeclaration() && "Function already has body?");
463 
464   if (CGM.getSanitizerBlacklist().isIn(*Fn)) {
465     SanOpts = &SanitizerOptions::Disabled;
466     SanitizePerformTypeCheck = false;
467   }
468 
469   // Pass inline keyword to optimizer if it appears explicitly on any
470   // declaration.
471   if (!CGM.getCodeGenOpts().NoInline)
472     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
473       for (FunctionDecl::redecl_iterator RI = FD->redecls_begin(),
474              RE = FD->redecls_end(); RI != RE; ++RI)
475         if (RI->isInlineSpecified()) {
476           Fn->addFnAttr(llvm::Attribute::InlineHint);
477           break;
478         }
479 
480   if (getLangOpts().OpenCL) {
481     // Add metadata for a kernel function.
482     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
483       EmitOpenCLKernelMetadata(FD, Fn);
484   }
485 
486   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
487 
488   // Create a marker to make it easy to insert allocas into the entryblock
489   // later.  Don't create this with the builder, because we don't want it
490   // folded.
491   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
492   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB);
493   if (Builder.isNamePreserving())
494     AllocaInsertPt->setName("allocapt");
495 
496   ReturnBlock = getJumpDestInCurrentScope("return");
497 
498   Builder.SetInsertPoint(EntryBB);
499 
500   // Emit subprogram debug descriptor.
501   if (CGDebugInfo *DI = getDebugInfo()) {
502     SmallVector<QualType, 16> ArgTypes;
503     for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
504 	 i != e; ++i) {
505       ArgTypes.push_back((*i)->getType());
506     }
507 
508     QualType FnType =
509       getContext().getFunctionType(RetTy, ArgTypes,
510                                    FunctionProtoType::ExtProtoInfo());
511 
512     DI->setLocation(StartLoc);
513     DI->EmitFunctionStart(GD, FnType, CurFn, Builder);
514   }
515 
516   if (ShouldInstrumentFunction())
517     EmitFunctionInstrumentation("__cyg_profile_func_enter");
518 
519   if (CGM.getCodeGenOpts().InstrumentForProfiling)
520     EmitMCountInstrumentation();
521 
522   if (RetTy->isVoidType()) {
523     // Void type; nothing to return.
524     ReturnValue = 0;
525   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
526              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
527     // Indirect aggregate return; emit returned value directly into sret slot.
528     // This reduces code size, and affects correctness in C++.
529     ReturnValue = CurFn->arg_begin();
530   } else {
531     ReturnValue = CreateIRTemp(RetTy, "retval");
532 
533     // Tell the epilog emitter to autorelease the result.  We do this
534     // now so that various specialized functions can suppress it
535     // during their IR-generation.
536     if (getLangOpts().ObjCAutoRefCount &&
537         !CurFnInfo->isReturnsRetained() &&
538         RetTy->isObjCRetainableType())
539       AutoreleaseResult = true;
540   }
541 
542   EmitStartEHSpec(CurCodeDecl);
543 
544   PrologueCleanupDepth = EHStack.stable_begin();
545   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
546 
547   if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
548     CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
549     const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
550     if (MD->getParent()->isLambda() &&
551         MD->getOverloadedOperator() == OO_Call) {
552       // We're in a lambda; figure out the captures.
553       MD->getParent()->getCaptureFields(LambdaCaptureFields,
554                                         LambdaThisCaptureField);
555       if (LambdaThisCaptureField) {
556         // If this lambda captures this, load it.
557         QualType LambdaTagType =
558             getContext().getTagDeclType(LambdaThisCaptureField->getParent());
559         LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue,
560                                                      LambdaTagType);
561         LValue ThisLValue = EmitLValueForField(LambdaLV,
562                                                LambdaThisCaptureField);
563         CXXThisValue = EmitLoadOfLValue(ThisLValue).getScalarVal();
564       }
565     } else {
566       // Not in a lambda; just use 'this' from the method.
567       // FIXME: Should we generate a new load for each use of 'this'?  The
568       // fast register allocator would be happier...
569       CXXThisValue = CXXABIThisValue;
570     }
571   }
572 
573   // If any of the arguments have a variably modified type, make sure to
574   // emit the type size.
575   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
576        i != e; ++i) {
577     const VarDecl *VD = *i;
578 
579     // Dig out the type as written from ParmVarDecls; it's unclear whether
580     // the standard (C99 6.9.1p10) requires this, but we're following the
581     // precedent set by gcc.
582     QualType Ty;
583     if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
584       Ty = PVD->getOriginalType();
585     else
586       Ty = VD->getType();
587 
588     if (Ty->isVariablyModifiedType())
589       EmitVariablyModifiedType(Ty);
590   }
591   // Emit a location at the end of the prologue.
592   if (CGDebugInfo *DI = getDebugInfo())
593     DI->EmitLocation(Builder, StartLoc);
594 }
595 
596 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args) {
597   const FunctionDecl *FD = cast<FunctionDecl>(CurGD.getDecl());
598   assert(FD->getBody());
599   if (const CompoundStmt *S = dyn_cast<CompoundStmt>(FD->getBody()))
600     EmitCompoundStmtWithoutScope(*S);
601   else
602     EmitStmt(FD->getBody());
603 }
604 
605 /// Tries to mark the given function nounwind based on the
606 /// non-existence of any throwing calls within it.  We believe this is
607 /// lightweight enough to do at -O0.
608 static void TryMarkNoThrow(llvm::Function *F) {
609   // LLVM treats 'nounwind' on a function as part of the type, so we
610   // can't do this on functions that can be overwritten.
611   if (F->mayBeOverridden()) return;
612 
613   for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI)
614     for (llvm::BasicBlock::iterator
615            BI = FI->begin(), BE = FI->end(); BI != BE; ++BI)
616       if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI)) {
617         if (!Call->doesNotThrow())
618           return;
619       } else if (isa<llvm::ResumeInst>(&*BI)) {
620         return;
621       }
622   F->setDoesNotThrow();
623 }
624 
625 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
626                                    const CGFunctionInfo &FnInfo) {
627   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
628 
629   // Check if we should generate debug info for this function.
630   if (!FD->hasAttr<NoDebugAttr>())
631     maybeInitializeDebugInfo();
632 
633   FunctionArgList Args;
634   QualType ResTy = FD->getResultType();
635 
636   CurGD = GD;
637   if (isa<CXXMethodDecl>(FD) && cast<CXXMethodDecl>(FD)->isInstance())
638     CGM.getCXXABI().BuildInstanceFunctionParams(*this, ResTy, Args);
639 
640   for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i)
641     Args.push_back(FD->getParamDecl(i));
642 
643   SourceRange BodyRange;
644   if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange();
645 
646   // CalleeWithThisReturn keeps track of the last callee inside this function
647   // that returns 'this'. Before starting the function, we set it to null.
648   CalleeWithThisReturn = 0;
649 
650   // Emit the standard function prologue.
651   StartFunction(GD, ResTy, Fn, FnInfo, Args, BodyRange.getBegin());
652 
653   // Generate the body of the function.
654   if (isa<CXXDestructorDecl>(FD))
655     EmitDestructorBody(Args);
656   else if (isa<CXXConstructorDecl>(FD))
657     EmitConstructorBody(Args);
658   else if (getLangOpts().CUDA &&
659            !CGM.getCodeGenOpts().CUDAIsDevice &&
660            FD->hasAttr<CUDAGlobalAttr>())
661     CGM.getCUDARuntime().EmitDeviceStubBody(*this, Args);
662   else if (isa<CXXConversionDecl>(FD) &&
663            cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) {
664     // The lambda conversion to block pointer is special; the semantics can't be
665     // expressed in the AST, so IRGen needs to special-case it.
666     EmitLambdaToBlockPointerBody(Args);
667   } else if (isa<CXXMethodDecl>(FD) &&
668              cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
669     // The lambda "__invoke" function is special, because it forwards or
670     // clones the body of the function call operator (but is actually static).
671     EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD));
672   } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
673              cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator()) {
674     // Implicit copy-assignment gets the same special treatment as implicit
675     // copy-constructors.
676     emitImplicitAssignmentOperatorBody(Args);
677   }
678   else
679     EmitFunctionBody(Args);
680 
681   // C++11 [stmt.return]p2:
682   //   Flowing off the end of a function [...] results in undefined behavior in
683   //   a value-returning function.
684   // C11 6.9.1p12:
685   //   If the '}' that terminates a function is reached, and the value of the
686   //   function call is used by the caller, the behavior is undefined.
687   if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() &&
688       !FD->getResultType()->isVoidType() && Builder.GetInsertBlock()) {
689     if (SanOpts->Return)
690       EmitCheck(Builder.getFalse(), "missing_return",
691                 EmitCheckSourceLocation(FD->getLocation()),
692                 ArrayRef<llvm::Value *>(), CRK_Unrecoverable);
693     else if (CGM.getCodeGenOpts().OptimizationLevel == 0)
694       Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::trap));
695     Builder.CreateUnreachable();
696     Builder.ClearInsertionPoint();
697   }
698 
699   // Emit the standard function epilogue.
700   FinishFunction(BodyRange.getEnd());
701   // CalleeWithThisReturn keeps track of the last callee inside this function
702   // that returns 'this'. After finishing the function, we set it to null.
703   CalleeWithThisReturn = 0;
704 
705   // If we haven't marked the function nothrow through other means, do
706   // a quick pass now to see if we can.
707   if (!CurFn->doesNotThrow())
708     TryMarkNoThrow(CurFn);
709 }
710 
711 /// ContainsLabel - Return true if the statement contains a label in it.  If
712 /// this statement is not executed normally, it not containing a label means
713 /// that we can just remove the code.
714 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
715   // Null statement, not a label!
716   if (S == 0) return false;
717 
718   // If this is a label, we have to emit the code, consider something like:
719   // if (0) {  ...  foo:  bar(); }  goto foo;
720   //
721   // TODO: If anyone cared, we could track __label__'s, since we know that you
722   // can't jump to one from outside their declared region.
723   if (isa<LabelStmt>(S))
724     return true;
725 
726   // If this is a case/default statement, and we haven't seen a switch, we have
727   // to emit the code.
728   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
729     return true;
730 
731   // If this is a switch statement, we want to ignore cases below it.
732   if (isa<SwitchStmt>(S))
733     IgnoreCaseStmts = true;
734 
735   // Scan subexpressions for verboten labels.
736   for (Stmt::const_child_range I = S->children(); I; ++I)
737     if (ContainsLabel(*I, IgnoreCaseStmts))
738       return true;
739 
740   return false;
741 }
742 
743 /// containsBreak - Return true if the statement contains a break out of it.
744 /// If the statement (recursively) contains a switch or loop with a break
745 /// inside of it, this is fine.
746 bool CodeGenFunction::containsBreak(const Stmt *S) {
747   // Null statement, not a label!
748   if (S == 0) return false;
749 
750   // If this is a switch or loop that defines its own break scope, then we can
751   // include it and anything inside of it.
752   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
753       isa<ForStmt>(S))
754     return false;
755 
756   if (isa<BreakStmt>(S))
757     return true;
758 
759   // Scan subexpressions for verboten breaks.
760   for (Stmt::const_child_range I = S->children(); I; ++I)
761     if (containsBreak(*I))
762       return true;
763 
764   return false;
765 }
766 
767 
768 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
769 /// to a constant, or if it does but contains a label, return false.  If it
770 /// constant folds return true and set the boolean result in Result.
771 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
772                                                    bool &ResultBool) {
773   llvm::APSInt ResultInt;
774   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt))
775     return false;
776 
777   ResultBool = ResultInt.getBoolValue();
778   return true;
779 }
780 
781 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
782 /// to a constant, or if it does but contains a label, return false.  If it
783 /// constant folds return true and set the folded value.
784 bool CodeGenFunction::
785 ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &ResultInt) {
786   // FIXME: Rename and handle conversion of other evaluatable things
787   // to bool.
788   llvm::APSInt Int;
789   if (!Cond->EvaluateAsInt(Int, getContext()))
790     return false;  // Not foldable, not integer or not fully evaluatable.
791 
792   if (CodeGenFunction::ContainsLabel(Cond))
793     return false;  // Contains a label.
794 
795   ResultInt = Int;
796   return true;
797 }
798 
799 
800 
801 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
802 /// statement) to the specified blocks.  Based on the condition, this might try
803 /// to simplify the codegen of the conditional based on the branch.
804 ///
805 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
806                                            llvm::BasicBlock *TrueBlock,
807                                            llvm::BasicBlock *FalseBlock) {
808   Cond = Cond->IgnoreParens();
809 
810   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
811     // Handle X && Y in a condition.
812     if (CondBOp->getOpcode() == BO_LAnd) {
813       // If we have "1 && X", simplify the code.  "0 && X" would have constant
814       // folded if the case was simple enough.
815       bool ConstantBool = false;
816       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
817           ConstantBool) {
818         // br(1 && X) -> br(X).
819         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
820       }
821 
822       // If we have "X && 1", simplify the code to use an uncond branch.
823       // "X && 0" would have been constant folded to 0.
824       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
825           ConstantBool) {
826         // br(X && 1) -> br(X).
827         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock);
828       }
829 
830       // Emit the LHS as a conditional.  If the LHS conditional is false, we
831       // want to jump to the FalseBlock.
832       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
833 
834       ConditionalEvaluation eval(*this);
835       EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock);
836       EmitBlock(LHSTrue);
837 
838       // Any temporaries created here are conditional.
839       eval.begin(*this);
840       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
841       eval.end(*this);
842 
843       return;
844     }
845 
846     if (CondBOp->getOpcode() == BO_LOr) {
847       // If we have "0 || X", simplify the code.  "1 || X" would have constant
848       // folded if the case was simple enough.
849       bool ConstantBool = false;
850       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
851           !ConstantBool) {
852         // br(0 || X) -> br(X).
853         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
854       }
855 
856       // If we have "X || 0", simplify the code to use an uncond branch.
857       // "X || 1" would have been constant folded to 1.
858       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
859           !ConstantBool) {
860         // br(X || 0) -> br(X).
861         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock);
862       }
863 
864       // Emit the LHS as a conditional.  If the LHS conditional is true, we
865       // want to jump to the TrueBlock.
866       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
867 
868       ConditionalEvaluation eval(*this);
869       EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse);
870       EmitBlock(LHSFalse);
871 
872       // Any temporaries created here are conditional.
873       eval.begin(*this);
874       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
875       eval.end(*this);
876 
877       return;
878     }
879   }
880 
881   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
882     // br(!x, t, f) -> br(x, f, t)
883     if (CondUOp->getOpcode() == UO_LNot)
884       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock);
885   }
886 
887   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
888     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
889     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
890     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
891 
892     ConditionalEvaluation cond(*this);
893     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock);
894 
895     cond.begin(*this);
896     EmitBlock(LHSBlock);
897     EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock);
898     cond.end(*this);
899 
900     cond.begin(*this);
901     EmitBlock(RHSBlock);
902     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock);
903     cond.end(*this);
904 
905     return;
906   }
907 
908   // Emit the code with the fully general case.
909   llvm::Value *CondV = EvaluateExprAsBool(Cond);
910   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock);
911 }
912 
913 /// ErrorUnsupported - Print out an error that codegen doesn't support the
914 /// specified stmt yet.
915 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type,
916                                        bool OmitOnError) {
917   CGM.ErrorUnsupported(S, Type, OmitOnError);
918 }
919 
920 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
921 /// variable-length array whose elements have a non-zero bit-pattern.
922 ///
923 /// \param baseType the inner-most element type of the array
924 /// \param src - a char* pointing to the bit-pattern for a single
925 /// base element of the array
926 /// \param sizeInChars - the total size of the VLA, in chars
927 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
928                                llvm::Value *dest, llvm::Value *src,
929                                llvm::Value *sizeInChars) {
930   std::pair<CharUnits,CharUnits> baseSizeAndAlign
931     = CGF.getContext().getTypeInfoInChars(baseType);
932 
933   CGBuilderTy &Builder = CGF.Builder;
934 
935   llvm::Value *baseSizeInChars
936     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSizeAndAlign.first.getQuantity());
937 
938   llvm::Type *i8p = Builder.getInt8PtrTy();
939 
940   llvm::Value *begin = Builder.CreateBitCast(dest, i8p, "vla.begin");
941   llvm::Value *end = Builder.CreateInBoundsGEP(dest, sizeInChars, "vla.end");
942 
943   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
944   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
945   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
946 
947   // Make a loop over the VLA.  C99 guarantees that the VLA element
948   // count must be nonzero.
949   CGF.EmitBlock(loopBB);
950 
951   llvm::PHINode *cur = Builder.CreatePHI(i8p, 2, "vla.cur");
952   cur->addIncoming(begin, originBB);
953 
954   // memcpy the individual element bit-pattern.
955   Builder.CreateMemCpy(cur, src, baseSizeInChars,
956                        baseSizeAndAlign.second.getQuantity(),
957                        /*volatile*/ false);
958 
959   // Go to the next element.
960   llvm::Value *next = Builder.CreateConstInBoundsGEP1_32(cur, 1, "vla.next");
961 
962   // Leave if that's the end of the VLA.
963   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
964   Builder.CreateCondBr(done, contBB, loopBB);
965   cur->addIncoming(next, loopBB);
966 
967   CGF.EmitBlock(contBB);
968 }
969 
970 void
971 CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) {
972   // Ignore empty classes in C++.
973   if (getLangOpts().CPlusPlus) {
974     if (const RecordType *RT = Ty->getAs<RecordType>()) {
975       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
976         return;
977     }
978   }
979 
980   // Cast the dest ptr to the appropriate i8 pointer type.
981   unsigned DestAS =
982     cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace();
983   llvm::Type *BP = Builder.getInt8PtrTy(DestAS);
984   if (DestPtr->getType() != BP)
985     DestPtr = Builder.CreateBitCast(DestPtr, BP);
986 
987   // Get size and alignment info for this aggregate.
988   std::pair<CharUnits, CharUnits> TypeInfo =
989     getContext().getTypeInfoInChars(Ty);
990   CharUnits Size = TypeInfo.first;
991   CharUnits Align = TypeInfo.second;
992 
993   llvm::Value *SizeVal;
994   const VariableArrayType *vla;
995 
996   // Don't bother emitting a zero-byte memset.
997   if (Size.isZero()) {
998     // But note that getTypeInfo returns 0 for a VLA.
999     if (const VariableArrayType *vlaType =
1000           dyn_cast_or_null<VariableArrayType>(
1001                                           getContext().getAsArrayType(Ty))) {
1002       QualType eltType;
1003       llvm::Value *numElts;
1004       llvm::tie(numElts, eltType) = getVLASize(vlaType);
1005 
1006       SizeVal = numElts;
1007       CharUnits eltSize = getContext().getTypeSizeInChars(eltType);
1008       if (!eltSize.isOne())
1009         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
1010       vla = vlaType;
1011     } else {
1012       return;
1013     }
1014   } else {
1015     SizeVal = CGM.getSize(Size);
1016     vla = 0;
1017   }
1018 
1019   // If the type contains a pointer to data member we can't memset it to zero.
1020   // Instead, create a null constant and copy it to the destination.
1021   // TODO: there are other patterns besides zero that we can usefully memset,
1022   // like -1, which happens to be the pattern used by member-pointers.
1023   if (!CGM.getTypes().isZeroInitializable(Ty)) {
1024     // For a VLA, emit a single element, then splat that over the VLA.
1025     if (vla) Ty = getContext().getBaseElementType(vla);
1026 
1027     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
1028 
1029     llvm::GlobalVariable *NullVariable =
1030       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
1031                                /*isConstant=*/true,
1032                                llvm::GlobalVariable::PrivateLinkage,
1033                                NullConstant, Twine());
1034     llvm::Value *SrcPtr =
1035       Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy());
1036 
1037     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
1038 
1039     // Get and call the appropriate llvm.memcpy overload.
1040     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity(), false);
1041     return;
1042   }
1043 
1044   // Otherwise, just memset the whole thing to zero.  This is legal
1045   // because in LLVM, all default initializers (other than the ones we just
1046   // handled above) are guaranteed to have a bit pattern of all zeros.
1047   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal,
1048                        Align.getQuantity(), false);
1049 }
1050 
1051 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
1052   // Make sure that there is a block for the indirect goto.
1053   if (IndirectBranch == 0)
1054     GetIndirectGotoBlock();
1055 
1056   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
1057 
1058   // Make sure the indirect branch includes all of the address-taken blocks.
1059   IndirectBranch->addDestination(BB);
1060   return llvm::BlockAddress::get(CurFn, BB);
1061 }
1062 
1063 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
1064   // If we already made the indirect branch for indirect goto, return its block.
1065   if (IndirectBranch) return IndirectBranch->getParent();
1066 
1067   CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto"));
1068 
1069   // Create the PHI node that indirect gotos will add entries to.
1070   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
1071                                               "indirect.goto.dest");
1072 
1073   // Create the indirect branch instruction.
1074   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
1075   return IndirectBranch->getParent();
1076 }
1077 
1078 /// Computes the length of an array in elements, as well as the base
1079 /// element type and a properly-typed first element pointer.
1080 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
1081                                               QualType &baseType,
1082                                               llvm::Value *&addr) {
1083   const ArrayType *arrayType = origArrayType;
1084 
1085   // If it's a VLA, we have to load the stored size.  Note that
1086   // this is the size of the VLA in bytes, not its size in elements.
1087   llvm::Value *numVLAElements = 0;
1088   if (isa<VariableArrayType>(arrayType)) {
1089     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first;
1090 
1091     // Walk into all VLAs.  This doesn't require changes to addr,
1092     // which has type T* where T is the first non-VLA element type.
1093     do {
1094       QualType elementType = arrayType->getElementType();
1095       arrayType = getContext().getAsArrayType(elementType);
1096 
1097       // If we only have VLA components, 'addr' requires no adjustment.
1098       if (!arrayType) {
1099         baseType = elementType;
1100         return numVLAElements;
1101       }
1102     } while (isa<VariableArrayType>(arrayType));
1103 
1104     // We get out here only if we find a constant array type
1105     // inside the VLA.
1106   }
1107 
1108   // We have some number of constant-length arrays, so addr should
1109   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
1110   // down to the first element of addr.
1111   SmallVector<llvm::Value*, 8> gepIndices;
1112 
1113   // GEP down to the array type.
1114   llvm::ConstantInt *zero = Builder.getInt32(0);
1115   gepIndices.push_back(zero);
1116 
1117   uint64_t countFromCLAs = 1;
1118   QualType eltType;
1119 
1120   llvm::ArrayType *llvmArrayType =
1121     dyn_cast<llvm::ArrayType>(
1122       cast<llvm::PointerType>(addr->getType())->getElementType());
1123   while (llvmArrayType) {
1124     assert(isa<ConstantArrayType>(arrayType));
1125     assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
1126              == llvmArrayType->getNumElements());
1127 
1128     gepIndices.push_back(zero);
1129     countFromCLAs *= llvmArrayType->getNumElements();
1130     eltType = arrayType->getElementType();
1131 
1132     llvmArrayType =
1133       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
1134     arrayType = getContext().getAsArrayType(arrayType->getElementType());
1135     assert((!llvmArrayType || arrayType) &&
1136            "LLVM and Clang types are out-of-synch");
1137   }
1138 
1139   if (arrayType) {
1140     // From this point onwards, the Clang array type has been emitted
1141     // as some other type (probably a packed struct). Compute the array
1142     // size, and just emit the 'begin' expression as a bitcast.
1143     while (arrayType) {
1144       countFromCLAs *=
1145           cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
1146       eltType = arrayType->getElementType();
1147       arrayType = getContext().getAsArrayType(eltType);
1148     }
1149 
1150     unsigned AddressSpace = addr->getType()->getPointerAddressSpace();
1151     llvm::Type *BaseType = ConvertType(eltType)->getPointerTo(AddressSpace);
1152     addr = Builder.CreateBitCast(addr, BaseType, "array.begin");
1153   } else {
1154     // Create the actual GEP.
1155     addr = Builder.CreateInBoundsGEP(addr, gepIndices, "array.begin");
1156   }
1157 
1158   baseType = eltType;
1159 
1160   llvm::Value *numElements
1161     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
1162 
1163   // If we had any VLA dimensions, factor them in.
1164   if (numVLAElements)
1165     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
1166 
1167   return numElements;
1168 }
1169 
1170 std::pair<llvm::Value*, QualType>
1171 CodeGenFunction::getVLASize(QualType type) {
1172   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
1173   assert(vla && "type was not a variable array type!");
1174   return getVLASize(vla);
1175 }
1176 
1177 std::pair<llvm::Value*, QualType>
1178 CodeGenFunction::getVLASize(const VariableArrayType *type) {
1179   // The number of elements so far; always size_t.
1180   llvm::Value *numElements = 0;
1181 
1182   QualType elementType;
1183   do {
1184     elementType = type->getElementType();
1185     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
1186     assert(vlaSize && "no size for VLA!");
1187     assert(vlaSize->getType() == SizeTy);
1188 
1189     if (!numElements) {
1190       numElements = vlaSize;
1191     } else {
1192       // It's undefined behavior if this wraps around, so mark it that way.
1193       // FIXME: Teach -fcatch-undefined-behavior to trap this.
1194       numElements = Builder.CreateNUWMul(numElements, vlaSize);
1195     }
1196   } while ((type = getContext().getAsVariableArrayType(elementType)));
1197 
1198   return std::pair<llvm::Value*,QualType>(numElements, elementType);
1199 }
1200 
1201 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
1202   assert(type->isVariablyModifiedType() &&
1203          "Must pass variably modified type to EmitVLASizes!");
1204 
1205   EnsureInsertPoint();
1206 
1207   // We're going to walk down into the type and look for VLA
1208   // expressions.
1209   do {
1210     assert(type->isVariablyModifiedType());
1211 
1212     const Type *ty = type.getTypePtr();
1213     switch (ty->getTypeClass()) {
1214 
1215 #define TYPE(Class, Base)
1216 #define ABSTRACT_TYPE(Class, Base)
1217 #define NON_CANONICAL_TYPE(Class, Base)
1218 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
1219 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
1220 #include "clang/AST/TypeNodes.def"
1221       llvm_unreachable("unexpected dependent type!");
1222 
1223     // These types are never variably-modified.
1224     case Type::Builtin:
1225     case Type::Complex:
1226     case Type::Vector:
1227     case Type::ExtVector:
1228     case Type::Record:
1229     case Type::Enum:
1230     case Type::Elaborated:
1231     case Type::TemplateSpecialization:
1232     case Type::ObjCObject:
1233     case Type::ObjCInterface:
1234     case Type::ObjCObjectPointer:
1235       llvm_unreachable("type class is never variably-modified!");
1236 
1237     case Type::Pointer:
1238       type = cast<PointerType>(ty)->getPointeeType();
1239       break;
1240 
1241     case Type::BlockPointer:
1242       type = cast<BlockPointerType>(ty)->getPointeeType();
1243       break;
1244 
1245     case Type::LValueReference:
1246     case Type::RValueReference:
1247       type = cast<ReferenceType>(ty)->getPointeeType();
1248       break;
1249 
1250     case Type::MemberPointer:
1251       type = cast<MemberPointerType>(ty)->getPointeeType();
1252       break;
1253 
1254     case Type::ConstantArray:
1255     case Type::IncompleteArray:
1256       // Losing element qualification here is fine.
1257       type = cast<ArrayType>(ty)->getElementType();
1258       break;
1259 
1260     case Type::VariableArray: {
1261       // Losing element qualification here is fine.
1262       const VariableArrayType *vat = cast<VariableArrayType>(ty);
1263 
1264       // Unknown size indication requires no size computation.
1265       // Otherwise, evaluate and record it.
1266       if (const Expr *size = vat->getSizeExpr()) {
1267         // It's possible that we might have emitted this already,
1268         // e.g. with a typedef and a pointer to it.
1269         llvm::Value *&entry = VLASizeMap[size];
1270         if (!entry) {
1271           llvm::Value *Size = EmitScalarExpr(size);
1272 
1273           // C11 6.7.6.2p5:
1274           //   If the size is an expression that is not an integer constant
1275           //   expression [...] each time it is evaluated it shall have a value
1276           //   greater than zero.
1277           if (SanOpts->VLABound &&
1278               size->getType()->isSignedIntegerType()) {
1279             llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType());
1280             llvm::Constant *StaticArgs[] = {
1281               EmitCheckSourceLocation(size->getLocStart()),
1282               EmitCheckTypeDescriptor(size->getType())
1283             };
1284             EmitCheck(Builder.CreateICmpSGT(Size, Zero),
1285                       "vla_bound_not_positive", StaticArgs, Size,
1286                       CRK_Recoverable);
1287           }
1288 
1289           // Always zexting here would be wrong if it weren't
1290           // undefined behavior to have a negative bound.
1291           entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false);
1292         }
1293       }
1294       type = vat->getElementType();
1295       break;
1296     }
1297 
1298     case Type::FunctionProto:
1299     case Type::FunctionNoProto:
1300       type = cast<FunctionType>(ty)->getResultType();
1301       break;
1302 
1303     case Type::Paren:
1304     case Type::TypeOf:
1305     case Type::UnaryTransform:
1306     case Type::Attributed:
1307     case Type::SubstTemplateTypeParm:
1308       // Keep walking after single level desugaring.
1309       type = type.getSingleStepDesugaredType(getContext());
1310       break;
1311 
1312     case Type::Typedef:
1313     case Type::Decltype:
1314     case Type::Auto:
1315       // Stop walking: nothing to do.
1316       return;
1317 
1318     case Type::TypeOfExpr:
1319       // Stop walking: emit typeof expression.
1320       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
1321       return;
1322 
1323     case Type::Atomic:
1324       type = cast<AtomicType>(ty)->getValueType();
1325       break;
1326     }
1327   } while (type->isVariablyModifiedType());
1328 }
1329 
1330 llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) {
1331   if (getContext().getBuiltinVaListType()->isArrayType())
1332     return EmitScalarExpr(E);
1333   return EmitLValue(E).getAddress();
1334 }
1335 
1336 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
1337                                               llvm::Constant *Init) {
1338   assert (Init && "Invalid DeclRefExpr initializer!");
1339   if (CGDebugInfo *Dbg = getDebugInfo())
1340     if (CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
1341       Dbg->EmitGlobalVariable(E->getDecl(), Init);
1342 }
1343 
1344 CodeGenFunction::PeepholeProtection
1345 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
1346   // At the moment, the only aggressive peephole we do in IR gen
1347   // is trunc(zext) folding, but if we add more, we can easily
1348   // extend this protection.
1349 
1350   if (!rvalue.isScalar()) return PeepholeProtection();
1351   llvm::Value *value = rvalue.getScalarVal();
1352   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
1353 
1354   // Just make an extra bitcast.
1355   assert(HaveInsertPoint());
1356   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
1357                                                   Builder.GetInsertBlock());
1358 
1359   PeepholeProtection protection;
1360   protection.Inst = inst;
1361   return protection;
1362 }
1363 
1364 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
1365   if (!protection.Inst) return;
1366 
1367   // In theory, we could try to duplicate the peepholes now, but whatever.
1368   protection.Inst->eraseFromParent();
1369 }
1370 
1371 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn,
1372                                                  llvm::Value *AnnotatedVal,
1373                                                  StringRef AnnotationStr,
1374                                                  SourceLocation Location) {
1375   llvm::Value *Args[4] = {
1376     AnnotatedVal,
1377     Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
1378     Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
1379     CGM.EmitAnnotationLineNo(Location)
1380   };
1381   return Builder.CreateCall(AnnotationFn, Args);
1382 }
1383 
1384 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
1385   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1386   // FIXME We create a new bitcast for every annotation because that's what
1387   // llvm-gcc was doing.
1388   for (specific_attr_iterator<AnnotateAttr>
1389        ai = D->specific_attr_begin<AnnotateAttr>(),
1390        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai)
1391     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
1392                        Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
1393                        (*ai)->getAnnotation(), D->getLocation());
1394 }
1395 
1396 llvm::Value *CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
1397                                                    llvm::Value *V) {
1398   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1399   llvm::Type *VTy = V->getType();
1400   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
1401                                     CGM.Int8PtrTy);
1402 
1403   for (specific_attr_iterator<AnnotateAttr>
1404        ai = D->specific_attr_begin<AnnotateAttr>(),
1405        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) {
1406     // FIXME Always emit the cast inst so we can differentiate between
1407     // annotation on the first field of a struct and annotation on the struct
1408     // itself.
1409     if (VTy != CGM.Int8PtrTy)
1410       V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy));
1411     V = EmitAnnotationCall(F, V, (*ai)->getAnnotation(), D->getLocation());
1412     V = Builder.CreateBitCast(V, VTy);
1413   }
1414 
1415   return V;
1416 }
1417