1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-function state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGDebugInfo.h" 18 #include "CodeGenModule.h" 19 #include "clang/AST/ASTContext.h" 20 #include "clang/AST/Decl.h" 21 #include "clang/AST/DeclCXX.h" 22 #include "clang/AST/StmtCXX.h" 23 #include "clang/Basic/OpenCL.h" 24 #include "clang/Basic/TargetInfo.h" 25 #include "clang/Frontend/CodeGenOptions.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/Intrinsics.h" 28 #include "llvm/IR/MDBuilder.h" 29 #include "llvm/IR/Operator.h" 30 using namespace clang; 31 using namespace CodeGen; 32 33 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 34 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 35 Builder(cgm.getModule().getContext()), 36 SanitizePerformTypeCheck(CGM.getSanOpts().Null | 37 CGM.getSanOpts().Alignment | 38 CGM.getSanOpts().ObjectSize | 39 CGM.getSanOpts().Vptr), 40 SanOpts(&CGM.getSanOpts()), 41 AutoreleaseResult(false), BlockInfo(0), BlockPointer(0), 42 LambdaThisCaptureField(0), NormalCleanupDest(0), NextCleanupDestIndex(1), 43 FirstBlockInfo(0), EHResumeBlock(0), ExceptionSlot(0), EHSelectorSlot(0), 44 DebugInfo(0), DisableDebugInfo(false), CalleeWithThisReturn(0), 45 DidCallStackSave(false), 46 IndirectBranch(0), SwitchInsn(0), CaseRangeBlock(0), UnreachableBlock(0), 47 CXXABIThisDecl(0), CXXABIThisValue(0), CXXThisValue(0), 48 CXXStructorImplicitParamDecl(0), CXXStructorImplicitParamValue(0), 49 OutermostConditional(0), CurLexicalScope(0), TerminateLandingPad(0), 50 TerminateHandler(0), TrapBB(0) { 51 if (!suppressNewContext) 52 CGM.getCXXABI().getMangleContext().startNewFunction(); 53 54 llvm::FastMathFlags FMF; 55 if (CGM.getLangOpts().FastMath) 56 FMF.setUnsafeAlgebra(); 57 if (CGM.getLangOpts().FiniteMathOnly) { 58 FMF.setNoNaNs(); 59 FMF.setNoInfs(); 60 } 61 Builder.SetFastMathFlags(FMF); 62 } 63 64 CodeGenFunction::~CodeGenFunction() { 65 // If there are any unclaimed block infos, go ahead and destroy them 66 // now. This can happen if IR-gen gets clever and skips evaluating 67 // something. 68 if (FirstBlockInfo) 69 destroyBlockInfos(FirstBlockInfo); 70 } 71 72 73 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 74 return CGM.getTypes().ConvertTypeForMem(T); 75 } 76 77 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 78 return CGM.getTypes().ConvertType(T); 79 } 80 81 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 82 type = type.getCanonicalType(); 83 while (true) { 84 switch (type->getTypeClass()) { 85 #define TYPE(name, parent) 86 #define ABSTRACT_TYPE(name, parent) 87 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 88 #define DEPENDENT_TYPE(name, parent) case Type::name: 89 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 90 #include "clang/AST/TypeNodes.def" 91 llvm_unreachable("non-canonical or dependent type in IR-generation"); 92 93 // Various scalar types. 94 case Type::Builtin: 95 case Type::Pointer: 96 case Type::BlockPointer: 97 case Type::LValueReference: 98 case Type::RValueReference: 99 case Type::MemberPointer: 100 case Type::Vector: 101 case Type::ExtVector: 102 case Type::FunctionProto: 103 case Type::FunctionNoProto: 104 case Type::Enum: 105 case Type::ObjCObjectPointer: 106 return TEK_Scalar; 107 108 // Complexes. 109 case Type::Complex: 110 return TEK_Complex; 111 112 // Arrays, records, and Objective-C objects. 113 case Type::ConstantArray: 114 case Type::IncompleteArray: 115 case Type::VariableArray: 116 case Type::Record: 117 case Type::ObjCObject: 118 case Type::ObjCInterface: 119 return TEK_Aggregate; 120 121 // We operate on atomic values according to their underlying type. 122 case Type::Atomic: 123 type = cast<AtomicType>(type)->getValueType(); 124 continue; 125 } 126 llvm_unreachable("unknown type kind!"); 127 } 128 } 129 130 void CodeGenFunction::EmitReturnBlock() { 131 // For cleanliness, we try to avoid emitting the return block for 132 // simple cases. 133 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 134 135 if (CurBB) { 136 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 137 138 // We have a valid insert point, reuse it if it is empty or there are no 139 // explicit jumps to the return block. 140 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 141 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 142 delete ReturnBlock.getBlock(); 143 } else 144 EmitBlock(ReturnBlock.getBlock()); 145 return; 146 } 147 148 // Otherwise, if the return block is the target of a single direct 149 // branch then we can just put the code in that block instead. This 150 // cleans up functions which started with a unified return block. 151 if (ReturnBlock.getBlock()->hasOneUse()) { 152 llvm::BranchInst *BI = 153 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->use_begin()); 154 if (BI && BI->isUnconditional() && 155 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 156 // Reset insertion point, including debug location, and delete the 157 // branch. This is really subtle and only works because the next change 158 // in location will hit the caching in CGDebugInfo::EmitLocation and not 159 // override this. 160 Builder.SetCurrentDebugLocation(BI->getDebugLoc()); 161 Builder.SetInsertPoint(BI->getParent()); 162 BI->eraseFromParent(); 163 delete ReturnBlock.getBlock(); 164 return; 165 } 166 } 167 168 // FIXME: We are at an unreachable point, there is no reason to emit the block 169 // unless it has uses. However, we still need a place to put the debug 170 // region.end for now. 171 172 EmitBlock(ReturnBlock.getBlock()); 173 } 174 175 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 176 if (!BB) return; 177 if (!BB->use_empty()) 178 return CGF.CurFn->getBasicBlockList().push_back(BB); 179 delete BB; 180 } 181 182 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 183 assert(BreakContinueStack.empty() && 184 "mismatched push/pop in break/continue stack!"); 185 186 if (CGDebugInfo *DI = getDebugInfo()) 187 DI->EmitLocation(Builder, EndLoc); 188 189 // Pop any cleanups that might have been associated with the 190 // parameters. Do this in whatever block we're currently in; it's 191 // important to do this before we enter the return block or return 192 // edges will be *really* confused. 193 if (EHStack.stable_begin() != PrologueCleanupDepth) 194 PopCleanupBlocks(PrologueCleanupDepth); 195 196 // Emit function epilog (to return). 197 EmitReturnBlock(); 198 199 if (ShouldInstrumentFunction()) 200 EmitFunctionInstrumentation("__cyg_profile_func_exit"); 201 202 // Emit debug descriptor for function end. 203 if (CGDebugInfo *DI = getDebugInfo()) { 204 DI->EmitFunctionEnd(Builder); 205 } 206 207 EmitFunctionEpilog(*CurFnInfo); 208 EmitEndEHSpec(CurCodeDecl); 209 210 assert(EHStack.empty() && 211 "did not remove all scopes from cleanup stack!"); 212 213 // If someone did an indirect goto, emit the indirect goto block at the end of 214 // the function. 215 if (IndirectBranch) { 216 EmitBlock(IndirectBranch->getParent()); 217 Builder.ClearInsertionPoint(); 218 } 219 220 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 221 llvm::Instruction *Ptr = AllocaInsertPt; 222 AllocaInsertPt = 0; 223 Ptr->eraseFromParent(); 224 225 // If someone took the address of a label but never did an indirect goto, we 226 // made a zero entry PHI node, which is illegal, zap it now. 227 if (IndirectBranch) { 228 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 229 if (PN->getNumIncomingValues() == 0) { 230 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 231 PN->eraseFromParent(); 232 } 233 } 234 235 EmitIfUsed(*this, EHResumeBlock); 236 EmitIfUsed(*this, TerminateLandingPad); 237 EmitIfUsed(*this, TerminateHandler); 238 EmitIfUsed(*this, UnreachableBlock); 239 240 if (CGM.getCodeGenOpts().EmitDeclMetadata) 241 EmitDeclMetadata(); 242 } 243 244 /// ShouldInstrumentFunction - Return true if the current function should be 245 /// instrumented with __cyg_profile_func_* calls 246 bool CodeGenFunction::ShouldInstrumentFunction() { 247 if (!CGM.getCodeGenOpts().InstrumentFunctions) 248 return false; 249 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 250 return false; 251 return true; 252 } 253 254 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 255 /// instrumentation function with the current function and the call site, if 256 /// function instrumentation is enabled. 257 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) { 258 // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site); 259 llvm::PointerType *PointerTy = Int8PtrTy; 260 llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy }; 261 llvm::FunctionType *FunctionTy = 262 llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false); 263 264 llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn); 265 llvm::CallInst *CallSite = Builder.CreateCall( 266 CGM.getIntrinsic(llvm::Intrinsic::returnaddress), 267 llvm::ConstantInt::get(Int32Ty, 0), 268 "callsite"); 269 270 llvm::Value *args[] = { 271 llvm::ConstantExpr::getBitCast(CurFn, PointerTy), 272 CallSite 273 }; 274 275 EmitNounwindRuntimeCall(F, args); 276 } 277 278 void CodeGenFunction::EmitMCountInstrumentation() { 279 llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false); 280 281 llvm::Constant *MCountFn = 282 CGM.CreateRuntimeFunction(FTy, getTarget().getMCountName()); 283 EmitNounwindRuntimeCall(MCountFn); 284 } 285 286 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument 287 // information in the program executable. The argument information stored 288 // includes the argument name, its type, the address and access qualifiers used. 289 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn, 290 CodeGenModule &CGM,llvm::LLVMContext &Context, 291 SmallVector <llvm::Value*, 5> &kernelMDArgs, 292 CGBuilderTy& Builder, ASTContext &ASTCtx) { 293 // Create MDNodes that represent the kernel arg metadata. 294 // Each MDNode is a list in the form of "key", N number of values which is 295 // the same number of values as their are kernel arguments. 296 297 // MDNode for the kernel argument address space qualifiers. 298 SmallVector<llvm::Value*, 8> addressQuals; 299 addressQuals.push_back(llvm::MDString::get(Context, "kernel_arg_addr_space")); 300 301 // MDNode for the kernel argument access qualifiers (images only). 302 SmallVector<llvm::Value*, 8> accessQuals; 303 accessQuals.push_back(llvm::MDString::get(Context, "kernel_arg_access_qual")); 304 305 // MDNode for the kernel argument type names. 306 SmallVector<llvm::Value*, 8> argTypeNames; 307 argTypeNames.push_back(llvm::MDString::get(Context, "kernel_arg_type")); 308 309 // MDNode for the kernel argument type qualifiers. 310 SmallVector<llvm::Value*, 8> argTypeQuals; 311 argTypeQuals.push_back(llvm::MDString::get(Context, "kernel_arg_type_qual")); 312 313 // MDNode for the kernel argument names. 314 SmallVector<llvm::Value*, 8> argNames; 315 argNames.push_back(llvm::MDString::get(Context, "kernel_arg_name")); 316 317 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 318 const ParmVarDecl *parm = FD->getParamDecl(i); 319 QualType ty = parm->getType(); 320 std::string typeQuals; 321 322 if (ty->isPointerType()) { 323 QualType pointeeTy = ty->getPointeeType(); 324 325 // Get address qualifier. 326 addressQuals.push_back(Builder.getInt32(ASTCtx.getTargetAddressSpace( 327 pointeeTy.getAddressSpace()))); 328 329 // Get argument type name. 330 std::string typeName = pointeeTy.getUnqualifiedType().getAsString() + "*"; 331 332 // Turn "unsigned type" to "utype" 333 std::string::size_type pos = typeName.find("unsigned"); 334 if (pos != std::string::npos) 335 typeName.erase(pos+1, 8); 336 337 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 338 339 // Get argument type qualifiers: 340 if (ty.isRestrictQualified()) 341 typeQuals = "restrict"; 342 if (pointeeTy.isConstQualified() || 343 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 344 typeQuals += typeQuals.empty() ? "const" : " const"; 345 if (pointeeTy.isVolatileQualified()) 346 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 347 } else { 348 addressQuals.push_back(Builder.getInt32(0)); 349 350 // Get argument type name. 351 std::string typeName = ty.getUnqualifiedType().getAsString(); 352 353 // Turn "unsigned type" to "utype" 354 std::string::size_type pos = typeName.find("unsigned"); 355 if (pos != std::string::npos) 356 typeName.erase(pos+1, 8); 357 358 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 359 360 // Get argument type qualifiers: 361 if (ty.isConstQualified()) 362 typeQuals = "const"; 363 if (ty.isVolatileQualified()) 364 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 365 } 366 367 argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals)); 368 369 // Get image access qualifier: 370 if (ty->isImageType()) { 371 if (parm->hasAttr<OpenCLImageAccessAttr>() && 372 parm->getAttr<OpenCLImageAccessAttr>()->getAccess() == CLIA_write_only) 373 accessQuals.push_back(llvm::MDString::get(Context, "write_only")); 374 else 375 accessQuals.push_back(llvm::MDString::get(Context, "read_only")); 376 } else 377 accessQuals.push_back(llvm::MDString::get(Context, "none")); 378 379 // Get argument name. 380 argNames.push_back(llvm::MDString::get(Context, parm->getName())); 381 } 382 383 kernelMDArgs.push_back(llvm::MDNode::get(Context, addressQuals)); 384 kernelMDArgs.push_back(llvm::MDNode::get(Context, accessQuals)); 385 kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeNames)); 386 kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeQuals)); 387 kernelMDArgs.push_back(llvm::MDNode::get(Context, argNames)); 388 } 389 390 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 391 llvm::Function *Fn) 392 { 393 if (!FD->hasAttr<OpenCLKernelAttr>()) 394 return; 395 396 llvm::LLVMContext &Context = getLLVMContext(); 397 398 SmallVector <llvm::Value*, 5> kernelMDArgs; 399 kernelMDArgs.push_back(Fn); 400 401 if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 402 GenOpenCLArgMetadata(FD, Fn, CGM, Context, kernelMDArgs, 403 Builder, getContext()); 404 405 if (FD->hasAttr<VecTypeHintAttr>()) { 406 VecTypeHintAttr *attr = FD->getAttr<VecTypeHintAttr>(); 407 QualType hintQTy = attr->getTypeHint(); 408 const ExtVectorType *hintEltQTy = hintQTy->getAs<ExtVectorType>(); 409 bool isSignedInteger = 410 hintQTy->isSignedIntegerType() || 411 (hintEltQTy && hintEltQTy->getElementType()->isSignedIntegerType()); 412 llvm::Value *attrMDArgs[] = { 413 llvm::MDString::get(Context, "vec_type_hint"), 414 llvm::UndefValue::get(CGM.getTypes().ConvertType(attr->getTypeHint())), 415 llvm::ConstantInt::get( 416 llvm::IntegerType::get(Context, 32), 417 llvm::APInt(32, (uint64_t)(isSignedInteger ? 1 : 0))) 418 }; 419 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 420 } 421 422 if (FD->hasAttr<WorkGroupSizeHintAttr>()) { 423 WorkGroupSizeHintAttr *attr = FD->getAttr<WorkGroupSizeHintAttr>(); 424 llvm::Value *attrMDArgs[] = { 425 llvm::MDString::get(Context, "work_group_size_hint"), 426 Builder.getInt32(attr->getXDim()), 427 Builder.getInt32(attr->getYDim()), 428 Builder.getInt32(attr->getZDim()) 429 }; 430 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 431 } 432 433 if (FD->hasAttr<ReqdWorkGroupSizeAttr>()) { 434 ReqdWorkGroupSizeAttr *attr = FD->getAttr<ReqdWorkGroupSizeAttr>(); 435 llvm::Value *attrMDArgs[] = { 436 llvm::MDString::get(Context, "reqd_work_group_size"), 437 Builder.getInt32(attr->getXDim()), 438 Builder.getInt32(attr->getYDim()), 439 Builder.getInt32(attr->getZDim()) 440 }; 441 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 442 } 443 444 llvm::MDNode *kernelMDNode = llvm::MDNode::get(Context, kernelMDArgs); 445 llvm::NamedMDNode *OpenCLKernelMetadata = 446 CGM.getModule().getOrInsertNamedMetadata("opencl.kernels"); 447 OpenCLKernelMetadata->addOperand(kernelMDNode); 448 } 449 450 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy, 451 llvm::Function *Fn, 452 const CGFunctionInfo &FnInfo, 453 const FunctionArgList &Args, 454 SourceLocation StartLoc) { 455 const Decl *D = GD.getDecl(); 456 457 DidCallStackSave = false; 458 CurCodeDecl = CurFuncDecl = D; 459 FnRetTy = RetTy; 460 CurFn = Fn; 461 CurFnInfo = &FnInfo; 462 assert(CurFn->isDeclaration() && "Function already has body?"); 463 464 if (CGM.getSanitizerBlacklist().isIn(*Fn)) { 465 SanOpts = &SanitizerOptions::Disabled; 466 SanitizePerformTypeCheck = false; 467 } 468 469 // Pass inline keyword to optimizer if it appears explicitly on any 470 // declaration. 471 if (!CGM.getCodeGenOpts().NoInline) 472 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 473 for (FunctionDecl::redecl_iterator RI = FD->redecls_begin(), 474 RE = FD->redecls_end(); RI != RE; ++RI) 475 if (RI->isInlineSpecified()) { 476 Fn->addFnAttr(llvm::Attribute::InlineHint); 477 break; 478 } 479 480 if (getLangOpts().OpenCL) { 481 // Add metadata for a kernel function. 482 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 483 EmitOpenCLKernelMetadata(FD, Fn); 484 } 485 486 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 487 488 // Create a marker to make it easy to insert allocas into the entryblock 489 // later. Don't create this with the builder, because we don't want it 490 // folded. 491 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 492 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB); 493 if (Builder.isNamePreserving()) 494 AllocaInsertPt->setName("allocapt"); 495 496 ReturnBlock = getJumpDestInCurrentScope("return"); 497 498 Builder.SetInsertPoint(EntryBB); 499 500 // Emit subprogram debug descriptor. 501 if (CGDebugInfo *DI = getDebugInfo()) { 502 SmallVector<QualType, 16> ArgTypes; 503 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 504 i != e; ++i) { 505 ArgTypes.push_back((*i)->getType()); 506 } 507 508 QualType FnType = 509 getContext().getFunctionType(RetTy, ArgTypes, 510 FunctionProtoType::ExtProtoInfo()); 511 512 DI->setLocation(StartLoc); 513 DI->EmitFunctionStart(GD, FnType, CurFn, Builder); 514 } 515 516 if (ShouldInstrumentFunction()) 517 EmitFunctionInstrumentation("__cyg_profile_func_enter"); 518 519 if (CGM.getCodeGenOpts().InstrumentForProfiling) 520 EmitMCountInstrumentation(); 521 522 if (RetTy->isVoidType()) { 523 // Void type; nothing to return. 524 ReturnValue = 0; 525 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect && 526 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 527 // Indirect aggregate return; emit returned value directly into sret slot. 528 // This reduces code size, and affects correctness in C++. 529 ReturnValue = CurFn->arg_begin(); 530 } else { 531 ReturnValue = CreateIRTemp(RetTy, "retval"); 532 533 // Tell the epilog emitter to autorelease the result. We do this 534 // now so that various specialized functions can suppress it 535 // during their IR-generation. 536 if (getLangOpts().ObjCAutoRefCount && 537 !CurFnInfo->isReturnsRetained() && 538 RetTy->isObjCRetainableType()) 539 AutoreleaseResult = true; 540 } 541 542 EmitStartEHSpec(CurCodeDecl); 543 544 PrologueCleanupDepth = EHStack.stable_begin(); 545 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 546 547 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 548 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 549 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 550 if (MD->getParent()->isLambda() && 551 MD->getOverloadedOperator() == OO_Call) { 552 // We're in a lambda; figure out the captures. 553 MD->getParent()->getCaptureFields(LambdaCaptureFields, 554 LambdaThisCaptureField); 555 if (LambdaThisCaptureField) { 556 // If this lambda captures this, load it. 557 QualType LambdaTagType = 558 getContext().getTagDeclType(LambdaThisCaptureField->getParent()); 559 LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, 560 LambdaTagType); 561 LValue ThisLValue = EmitLValueForField(LambdaLV, 562 LambdaThisCaptureField); 563 CXXThisValue = EmitLoadOfLValue(ThisLValue).getScalarVal(); 564 } 565 } else { 566 // Not in a lambda; just use 'this' from the method. 567 // FIXME: Should we generate a new load for each use of 'this'? The 568 // fast register allocator would be happier... 569 CXXThisValue = CXXABIThisValue; 570 } 571 } 572 573 // If any of the arguments have a variably modified type, make sure to 574 // emit the type size. 575 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 576 i != e; ++i) { 577 const VarDecl *VD = *i; 578 579 // Dig out the type as written from ParmVarDecls; it's unclear whether 580 // the standard (C99 6.9.1p10) requires this, but we're following the 581 // precedent set by gcc. 582 QualType Ty; 583 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 584 Ty = PVD->getOriginalType(); 585 else 586 Ty = VD->getType(); 587 588 if (Ty->isVariablyModifiedType()) 589 EmitVariablyModifiedType(Ty); 590 } 591 // Emit a location at the end of the prologue. 592 if (CGDebugInfo *DI = getDebugInfo()) 593 DI->EmitLocation(Builder, StartLoc); 594 } 595 596 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args) { 597 const FunctionDecl *FD = cast<FunctionDecl>(CurGD.getDecl()); 598 assert(FD->getBody()); 599 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(FD->getBody())) 600 EmitCompoundStmtWithoutScope(*S); 601 else 602 EmitStmt(FD->getBody()); 603 } 604 605 /// Tries to mark the given function nounwind based on the 606 /// non-existence of any throwing calls within it. We believe this is 607 /// lightweight enough to do at -O0. 608 static void TryMarkNoThrow(llvm::Function *F) { 609 // LLVM treats 'nounwind' on a function as part of the type, so we 610 // can't do this on functions that can be overwritten. 611 if (F->mayBeOverridden()) return; 612 613 for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI) 614 for (llvm::BasicBlock::iterator 615 BI = FI->begin(), BE = FI->end(); BI != BE; ++BI) 616 if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI)) { 617 if (!Call->doesNotThrow()) 618 return; 619 } else if (isa<llvm::ResumeInst>(&*BI)) { 620 return; 621 } 622 F->setDoesNotThrow(); 623 } 624 625 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 626 const CGFunctionInfo &FnInfo) { 627 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 628 629 // Check if we should generate debug info for this function. 630 if (!FD->hasAttr<NoDebugAttr>()) 631 maybeInitializeDebugInfo(); 632 633 FunctionArgList Args; 634 QualType ResTy = FD->getResultType(); 635 636 CurGD = GD; 637 if (isa<CXXMethodDecl>(FD) && cast<CXXMethodDecl>(FD)->isInstance()) 638 CGM.getCXXABI().BuildInstanceFunctionParams(*this, ResTy, Args); 639 640 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) 641 Args.push_back(FD->getParamDecl(i)); 642 643 SourceRange BodyRange; 644 if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange(); 645 646 // CalleeWithThisReturn keeps track of the last callee inside this function 647 // that returns 'this'. Before starting the function, we set it to null. 648 CalleeWithThisReturn = 0; 649 650 // Emit the standard function prologue. 651 StartFunction(GD, ResTy, Fn, FnInfo, Args, BodyRange.getBegin()); 652 653 // Generate the body of the function. 654 if (isa<CXXDestructorDecl>(FD)) 655 EmitDestructorBody(Args); 656 else if (isa<CXXConstructorDecl>(FD)) 657 EmitConstructorBody(Args); 658 else if (getLangOpts().CUDA && 659 !CGM.getCodeGenOpts().CUDAIsDevice && 660 FD->hasAttr<CUDAGlobalAttr>()) 661 CGM.getCUDARuntime().EmitDeviceStubBody(*this, Args); 662 else if (isa<CXXConversionDecl>(FD) && 663 cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) { 664 // The lambda conversion to block pointer is special; the semantics can't be 665 // expressed in the AST, so IRGen needs to special-case it. 666 EmitLambdaToBlockPointerBody(Args); 667 } else if (isa<CXXMethodDecl>(FD) && 668 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 669 // The lambda "__invoke" function is special, because it forwards or 670 // clones the body of the function call operator (but is actually static). 671 EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD)); 672 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 673 cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator()) { 674 // Implicit copy-assignment gets the same special treatment as implicit 675 // copy-constructors. 676 emitImplicitAssignmentOperatorBody(Args); 677 } 678 else 679 EmitFunctionBody(Args); 680 681 // C++11 [stmt.return]p2: 682 // Flowing off the end of a function [...] results in undefined behavior in 683 // a value-returning function. 684 // C11 6.9.1p12: 685 // If the '}' that terminates a function is reached, and the value of the 686 // function call is used by the caller, the behavior is undefined. 687 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && 688 !FD->getResultType()->isVoidType() && Builder.GetInsertBlock()) { 689 if (SanOpts->Return) 690 EmitCheck(Builder.getFalse(), "missing_return", 691 EmitCheckSourceLocation(FD->getLocation()), 692 ArrayRef<llvm::Value *>(), CRK_Unrecoverable); 693 else if (CGM.getCodeGenOpts().OptimizationLevel == 0) 694 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::trap)); 695 Builder.CreateUnreachable(); 696 Builder.ClearInsertionPoint(); 697 } 698 699 // Emit the standard function epilogue. 700 FinishFunction(BodyRange.getEnd()); 701 // CalleeWithThisReturn keeps track of the last callee inside this function 702 // that returns 'this'. After finishing the function, we set it to null. 703 CalleeWithThisReturn = 0; 704 705 // If we haven't marked the function nothrow through other means, do 706 // a quick pass now to see if we can. 707 if (!CurFn->doesNotThrow()) 708 TryMarkNoThrow(CurFn); 709 } 710 711 /// ContainsLabel - Return true if the statement contains a label in it. If 712 /// this statement is not executed normally, it not containing a label means 713 /// that we can just remove the code. 714 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 715 // Null statement, not a label! 716 if (S == 0) return false; 717 718 // If this is a label, we have to emit the code, consider something like: 719 // if (0) { ... foo: bar(); } goto foo; 720 // 721 // TODO: If anyone cared, we could track __label__'s, since we know that you 722 // can't jump to one from outside their declared region. 723 if (isa<LabelStmt>(S)) 724 return true; 725 726 // If this is a case/default statement, and we haven't seen a switch, we have 727 // to emit the code. 728 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 729 return true; 730 731 // If this is a switch statement, we want to ignore cases below it. 732 if (isa<SwitchStmt>(S)) 733 IgnoreCaseStmts = true; 734 735 // Scan subexpressions for verboten labels. 736 for (Stmt::const_child_range I = S->children(); I; ++I) 737 if (ContainsLabel(*I, IgnoreCaseStmts)) 738 return true; 739 740 return false; 741 } 742 743 /// containsBreak - Return true if the statement contains a break out of it. 744 /// If the statement (recursively) contains a switch or loop with a break 745 /// inside of it, this is fine. 746 bool CodeGenFunction::containsBreak(const Stmt *S) { 747 // Null statement, not a label! 748 if (S == 0) return false; 749 750 // If this is a switch or loop that defines its own break scope, then we can 751 // include it and anything inside of it. 752 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 753 isa<ForStmt>(S)) 754 return false; 755 756 if (isa<BreakStmt>(S)) 757 return true; 758 759 // Scan subexpressions for verboten breaks. 760 for (Stmt::const_child_range I = S->children(); I; ++I) 761 if (containsBreak(*I)) 762 return true; 763 764 return false; 765 } 766 767 768 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 769 /// to a constant, or if it does but contains a label, return false. If it 770 /// constant folds return true and set the boolean result in Result. 771 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 772 bool &ResultBool) { 773 llvm::APSInt ResultInt; 774 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt)) 775 return false; 776 777 ResultBool = ResultInt.getBoolValue(); 778 return true; 779 } 780 781 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 782 /// to a constant, or if it does but contains a label, return false. If it 783 /// constant folds return true and set the folded value. 784 bool CodeGenFunction:: 785 ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &ResultInt) { 786 // FIXME: Rename and handle conversion of other evaluatable things 787 // to bool. 788 llvm::APSInt Int; 789 if (!Cond->EvaluateAsInt(Int, getContext())) 790 return false; // Not foldable, not integer or not fully evaluatable. 791 792 if (CodeGenFunction::ContainsLabel(Cond)) 793 return false; // Contains a label. 794 795 ResultInt = Int; 796 return true; 797 } 798 799 800 801 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 802 /// statement) to the specified blocks. Based on the condition, this might try 803 /// to simplify the codegen of the conditional based on the branch. 804 /// 805 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 806 llvm::BasicBlock *TrueBlock, 807 llvm::BasicBlock *FalseBlock) { 808 Cond = Cond->IgnoreParens(); 809 810 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 811 // Handle X && Y in a condition. 812 if (CondBOp->getOpcode() == BO_LAnd) { 813 // If we have "1 && X", simplify the code. "0 && X" would have constant 814 // folded if the case was simple enough. 815 bool ConstantBool = false; 816 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 817 ConstantBool) { 818 // br(1 && X) -> br(X). 819 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 820 } 821 822 // If we have "X && 1", simplify the code to use an uncond branch. 823 // "X && 0" would have been constant folded to 0. 824 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 825 ConstantBool) { 826 // br(X && 1) -> br(X). 827 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock); 828 } 829 830 // Emit the LHS as a conditional. If the LHS conditional is false, we 831 // want to jump to the FalseBlock. 832 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 833 834 ConditionalEvaluation eval(*this); 835 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock); 836 EmitBlock(LHSTrue); 837 838 // Any temporaries created here are conditional. 839 eval.begin(*this); 840 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 841 eval.end(*this); 842 843 return; 844 } 845 846 if (CondBOp->getOpcode() == BO_LOr) { 847 // If we have "0 || X", simplify the code. "1 || X" would have constant 848 // folded if the case was simple enough. 849 bool ConstantBool = false; 850 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 851 !ConstantBool) { 852 // br(0 || X) -> br(X). 853 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 854 } 855 856 // If we have "X || 0", simplify the code to use an uncond branch. 857 // "X || 1" would have been constant folded to 1. 858 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 859 !ConstantBool) { 860 // br(X || 0) -> br(X). 861 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock); 862 } 863 864 // Emit the LHS as a conditional. If the LHS conditional is true, we 865 // want to jump to the TrueBlock. 866 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 867 868 ConditionalEvaluation eval(*this); 869 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse); 870 EmitBlock(LHSFalse); 871 872 // Any temporaries created here are conditional. 873 eval.begin(*this); 874 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 875 eval.end(*this); 876 877 return; 878 } 879 } 880 881 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 882 // br(!x, t, f) -> br(x, f, t) 883 if (CondUOp->getOpcode() == UO_LNot) 884 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock); 885 } 886 887 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 888 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 889 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 890 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 891 892 ConditionalEvaluation cond(*this); 893 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock); 894 895 cond.begin(*this); 896 EmitBlock(LHSBlock); 897 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock); 898 cond.end(*this); 899 900 cond.begin(*this); 901 EmitBlock(RHSBlock); 902 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock); 903 cond.end(*this); 904 905 return; 906 } 907 908 // Emit the code with the fully general case. 909 llvm::Value *CondV = EvaluateExprAsBool(Cond); 910 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock); 911 } 912 913 /// ErrorUnsupported - Print out an error that codegen doesn't support the 914 /// specified stmt yet. 915 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type, 916 bool OmitOnError) { 917 CGM.ErrorUnsupported(S, Type, OmitOnError); 918 } 919 920 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 921 /// variable-length array whose elements have a non-zero bit-pattern. 922 /// 923 /// \param baseType the inner-most element type of the array 924 /// \param src - a char* pointing to the bit-pattern for a single 925 /// base element of the array 926 /// \param sizeInChars - the total size of the VLA, in chars 927 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 928 llvm::Value *dest, llvm::Value *src, 929 llvm::Value *sizeInChars) { 930 std::pair<CharUnits,CharUnits> baseSizeAndAlign 931 = CGF.getContext().getTypeInfoInChars(baseType); 932 933 CGBuilderTy &Builder = CGF.Builder; 934 935 llvm::Value *baseSizeInChars 936 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSizeAndAlign.first.getQuantity()); 937 938 llvm::Type *i8p = Builder.getInt8PtrTy(); 939 940 llvm::Value *begin = Builder.CreateBitCast(dest, i8p, "vla.begin"); 941 llvm::Value *end = Builder.CreateInBoundsGEP(dest, sizeInChars, "vla.end"); 942 943 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 944 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 945 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 946 947 // Make a loop over the VLA. C99 guarantees that the VLA element 948 // count must be nonzero. 949 CGF.EmitBlock(loopBB); 950 951 llvm::PHINode *cur = Builder.CreatePHI(i8p, 2, "vla.cur"); 952 cur->addIncoming(begin, originBB); 953 954 // memcpy the individual element bit-pattern. 955 Builder.CreateMemCpy(cur, src, baseSizeInChars, 956 baseSizeAndAlign.second.getQuantity(), 957 /*volatile*/ false); 958 959 // Go to the next element. 960 llvm::Value *next = Builder.CreateConstInBoundsGEP1_32(cur, 1, "vla.next"); 961 962 // Leave if that's the end of the VLA. 963 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 964 Builder.CreateCondBr(done, contBB, loopBB); 965 cur->addIncoming(next, loopBB); 966 967 CGF.EmitBlock(contBB); 968 } 969 970 void 971 CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) { 972 // Ignore empty classes in C++. 973 if (getLangOpts().CPlusPlus) { 974 if (const RecordType *RT = Ty->getAs<RecordType>()) { 975 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 976 return; 977 } 978 } 979 980 // Cast the dest ptr to the appropriate i8 pointer type. 981 unsigned DestAS = 982 cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace(); 983 llvm::Type *BP = Builder.getInt8PtrTy(DestAS); 984 if (DestPtr->getType() != BP) 985 DestPtr = Builder.CreateBitCast(DestPtr, BP); 986 987 // Get size and alignment info for this aggregate. 988 std::pair<CharUnits, CharUnits> TypeInfo = 989 getContext().getTypeInfoInChars(Ty); 990 CharUnits Size = TypeInfo.first; 991 CharUnits Align = TypeInfo.second; 992 993 llvm::Value *SizeVal; 994 const VariableArrayType *vla; 995 996 // Don't bother emitting a zero-byte memset. 997 if (Size.isZero()) { 998 // But note that getTypeInfo returns 0 for a VLA. 999 if (const VariableArrayType *vlaType = 1000 dyn_cast_or_null<VariableArrayType>( 1001 getContext().getAsArrayType(Ty))) { 1002 QualType eltType; 1003 llvm::Value *numElts; 1004 llvm::tie(numElts, eltType) = getVLASize(vlaType); 1005 1006 SizeVal = numElts; 1007 CharUnits eltSize = getContext().getTypeSizeInChars(eltType); 1008 if (!eltSize.isOne()) 1009 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 1010 vla = vlaType; 1011 } else { 1012 return; 1013 } 1014 } else { 1015 SizeVal = CGM.getSize(Size); 1016 vla = 0; 1017 } 1018 1019 // If the type contains a pointer to data member we can't memset it to zero. 1020 // Instead, create a null constant and copy it to the destination. 1021 // TODO: there are other patterns besides zero that we can usefully memset, 1022 // like -1, which happens to be the pattern used by member-pointers. 1023 if (!CGM.getTypes().isZeroInitializable(Ty)) { 1024 // For a VLA, emit a single element, then splat that over the VLA. 1025 if (vla) Ty = getContext().getBaseElementType(vla); 1026 1027 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 1028 1029 llvm::GlobalVariable *NullVariable = 1030 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 1031 /*isConstant=*/true, 1032 llvm::GlobalVariable::PrivateLinkage, 1033 NullConstant, Twine()); 1034 llvm::Value *SrcPtr = 1035 Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()); 1036 1037 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 1038 1039 // Get and call the appropriate llvm.memcpy overload. 1040 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity(), false); 1041 return; 1042 } 1043 1044 // Otherwise, just memset the whole thing to zero. This is legal 1045 // because in LLVM, all default initializers (other than the ones we just 1046 // handled above) are guaranteed to have a bit pattern of all zeros. 1047 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, 1048 Align.getQuantity(), false); 1049 } 1050 1051 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 1052 // Make sure that there is a block for the indirect goto. 1053 if (IndirectBranch == 0) 1054 GetIndirectGotoBlock(); 1055 1056 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 1057 1058 // Make sure the indirect branch includes all of the address-taken blocks. 1059 IndirectBranch->addDestination(BB); 1060 return llvm::BlockAddress::get(CurFn, BB); 1061 } 1062 1063 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 1064 // If we already made the indirect branch for indirect goto, return its block. 1065 if (IndirectBranch) return IndirectBranch->getParent(); 1066 1067 CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto")); 1068 1069 // Create the PHI node that indirect gotos will add entries to. 1070 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 1071 "indirect.goto.dest"); 1072 1073 // Create the indirect branch instruction. 1074 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 1075 return IndirectBranch->getParent(); 1076 } 1077 1078 /// Computes the length of an array in elements, as well as the base 1079 /// element type and a properly-typed first element pointer. 1080 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 1081 QualType &baseType, 1082 llvm::Value *&addr) { 1083 const ArrayType *arrayType = origArrayType; 1084 1085 // If it's a VLA, we have to load the stored size. Note that 1086 // this is the size of the VLA in bytes, not its size in elements. 1087 llvm::Value *numVLAElements = 0; 1088 if (isa<VariableArrayType>(arrayType)) { 1089 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first; 1090 1091 // Walk into all VLAs. This doesn't require changes to addr, 1092 // which has type T* where T is the first non-VLA element type. 1093 do { 1094 QualType elementType = arrayType->getElementType(); 1095 arrayType = getContext().getAsArrayType(elementType); 1096 1097 // If we only have VLA components, 'addr' requires no adjustment. 1098 if (!arrayType) { 1099 baseType = elementType; 1100 return numVLAElements; 1101 } 1102 } while (isa<VariableArrayType>(arrayType)); 1103 1104 // We get out here only if we find a constant array type 1105 // inside the VLA. 1106 } 1107 1108 // We have some number of constant-length arrays, so addr should 1109 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 1110 // down to the first element of addr. 1111 SmallVector<llvm::Value*, 8> gepIndices; 1112 1113 // GEP down to the array type. 1114 llvm::ConstantInt *zero = Builder.getInt32(0); 1115 gepIndices.push_back(zero); 1116 1117 uint64_t countFromCLAs = 1; 1118 QualType eltType; 1119 1120 llvm::ArrayType *llvmArrayType = 1121 dyn_cast<llvm::ArrayType>( 1122 cast<llvm::PointerType>(addr->getType())->getElementType()); 1123 while (llvmArrayType) { 1124 assert(isa<ConstantArrayType>(arrayType)); 1125 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 1126 == llvmArrayType->getNumElements()); 1127 1128 gepIndices.push_back(zero); 1129 countFromCLAs *= llvmArrayType->getNumElements(); 1130 eltType = arrayType->getElementType(); 1131 1132 llvmArrayType = 1133 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 1134 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 1135 assert((!llvmArrayType || arrayType) && 1136 "LLVM and Clang types are out-of-synch"); 1137 } 1138 1139 if (arrayType) { 1140 // From this point onwards, the Clang array type has been emitted 1141 // as some other type (probably a packed struct). Compute the array 1142 // size, and just emit the 'begin' expression as a bitcast. 1143 while (arrayType) { 1144 countFromCLAs *= 1145 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 1146 eltType = arrayType->getElementType(); 1147 arrayType = getContext().getAsArrayType(eltType); 1148 } 1149 1150 unsigned AddressSpace = addr->getType()->getPointerAddressSpace(); 1151 llvm::Type *BaseType = ConvertType(eltType)->getPointerTo(AddressSpace); 1152 addr = Builder.CreateBitCast(addr, BaseType, "array.begin"); 1153 } else { 1154 // Create the actual GEP. 1155 addr = Builder.CreateInBoundsGEP(addr, gepIndices, "array.begin"); 1156 } 1157 1158 baseType = eltType; 1159 1160 llvm::Value *numElements 1161 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 1162 1163 // If we had any VLA dimensions, factor them in. 1164 if (numVLAElements) 1165 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 1166 1167 return numElements; 1168 } 1169 1170 std::pair<llvm::Value*, QualType> 1171 CodeGenFunction::getVLASize(QualType type) { 1172 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1173 assert(vla && "type was not a variable array type!"); 1174 return getVLASize(vla); 1175 } 1176 1177 std::pair<llvm::Value*, QualType> 1178 CodeGenFunction::getVLASize(const VariableArrayType *type) { 1179 // The number of elements so far; always size_t. 1180 llvm::Value *numElements = 0; 1181 1182 QualType elementType; 1183 do { 1184 elementType = type->getElementType(); 1185 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 1186 assert(vlaSize && "no size for VLA!"); 1187 assert(vlaSize->getType() == SizeTy); 1188 1189 if (!numElements) { 1190 numElements = vlaSize; 1191 } else { 1192 // It's undefined behavior if this wraps around, so mark it that way. 1193 // FIXME: Teach -fcatch-undefined-behavior to trap this. 1194 numElements = Builder.CreateNUWMul(numElements, vlaSize); 1195 } 1196 } while ((type = getContext().getAsVariableArrayType(elementType))); 1197 1198 return std::pair<llvm::Value*,QualType>(numElements, elementType); 1199 } 1200 1201 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 1202 assert(type->isVariablyModifiedType() && 1203 "Must pass variably modified type to EmitVLASizes!"); 1204 1205 EnsureInsertPoint(); 1206 1207 // We're going to walk down into the type and look for VLA 1208 // expressions. 1209 do { 1210 assert(type->isVariablyModifiedType()); 1211 1212 const Type *ty = type.getTypePtr(); 1213 switch (ty->getTypeClass()) { 1214 1215 #define TYPE(Class, Base) 1216 #define ABSTRACT_TYPE(Class, Base) 1217 #define NON_CANONICAL_TYPE(Class, Base) 1218 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 1219 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 1220 #include "clang/AST/TypeNodes.def" 1221 llvm_unreachable("unexpected dependent type!"); 1222 1223 // These types are never variably-modified. 1224 case Type::Builtin: 1225 case Type::Complex: 1226 case Type::Vector: 1227 case Type::ExtVector: 1228 case Type::Record: 1229 case Type::Enum: 1230 case Type::Elaborated: 1231 case Type::TemplateSpecialization: 1232 case Type::ObjCObject: 1233 case Type::ObjCInterface: 1234 case Type::ObjCObjectPointer: 1235 llvm_unreachable("type class is never variably-modified!"); 1236 1237 case Type::Pointer: 1238 type = cast<PointerType>(ty)->getPointeeType(); 1239 break; 1240 1241 case Type::BlockPointer: 1242 type = cast<BlockPointerType>(ty)->getPointeeType(); 1243 break; 1244 1245 case Type::LValueReference: 1246 case Type::RValueReference: 1247 type = cast<ReferenceType>(ty)->getPointeeType(); 1248 break; 1249 1250 case Type::MemberPointer: 1251 type = cast<MemberPointerType>(ty)->getPointeeType(); 1252 break; 1253 1254 case Type::ConstantArray: 1255 case Type::IncompleteArray: 1256 // Losing element qualification here is fine. 1257 type = cast<ArrayType>(ty)->getElementType(); 1258 break; 1259 1260 case Type::VariableArray: { 1261 // Losing element qualification here is fine. 1262 const VariableArrayType *vat = cast<VariableArrayType>(ty); 1263 1264 // Unknown size indication requires no size computation. 1265 // Otherwise, evaluate and record it. 1266 if (const Expr *size = vat->getSizeExpr()) { 1267 // It's possible that we might have emitted this already, 1268 // e.g. with a typedef and a pointer to it. 1269 llvm::Value *&entry = VLASizeMap[size]; 1270 if (!entry) { 1271 llvm::Value *Size = EmitScalarExpr(size); 1272 1273 // C11 6.7.6.2p5: 1274 // If the size is an expression that is not an integer constant 1275 // expression [...] each time it is evaluated it shall have a value 1276 // greater than zero. 1277 if (SanOpts->VLABound && 1278 size->getType()->isSignedIntegerType()) { 1279 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); 1280 llvm::Constant *StaticArgs[] = { 1281 EmitCheckSourceLocation(size->getLocStart()), 1282 EmitCheckTypeDescriptor(size->getType()) 1283 }; 1284 EmitCheck(Builder.CreateICmpSGT(Size, Zero), 1285 "vla_bound_not_positive", StaticArgs, Size, 1286 CRK_Recoverable); 1287 } 1288 1289 // Always zexting here would be wrong if it weren't 1290 // undefined behavior to have a negative bound. 1291 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); 1292 } 1293 } 1294 type = vat->getElementType(); 1295 break; 1296 } 1297 1298 case Type::FunctionProto: 1299 case Type::FunctionNoProto: 1300 type = cast<FunctionType>(ty)->getResultType(); 1301 break; 1302 1303 case Type::Paren: 1304 case Type::TypeOf: 1305 case Type::UnaryTransform: 1306 case Type::Attributed: 1307 case Type::SubstTemplateTypeParm: 1308 // Keep walking after single level desugaring. 1309 type = type.getSingleStepDesugaredType(getContext()); 1310 break; 1311 1312 case Type::Typedef: 1313 case Type::Decltype: 1314 case Type::Auto: 1315 // Stop walking: nothing to do. 1316 return; 1317 1318 case Type::TypeOfExpr: 1319 // Stop walking: emit typeof expression. 1320 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 1321 return; 1322 1323 case Type::Atomic: 1324 type = cast<AtomicType>(ty)->getValueType(); 1325 break; 1326 } 1327 } while (type->isVariablyModifiedType()); 1328 } 1329 1330 llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) { 1331 if (getContext().getBuiltinVaListType()->isArrayType()) 1332 return EmitScalarExpr(E); 1333 return EmitLValue(E).getAddress(); 1334 } 1335 1336 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 1337 llvm::Constant *Init) { 1338 assert (Init && "Invalid DeclRefExpr initializer!"); 1339 if (CGDebugInfo *Dbg = getDebugInfo()) 1340 if (CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 1341 Dbg->EmitGlobalVariable(E->getDecl(), Init); 1342 } 1343 1344 CodeGenFunction::PeepholeProtection 1345 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 1346 // At the moment, the only aggressive peephole we do in IR gen 1347 // is trunc(zext) folding, but if we add more, we can easily 1348 // extend this protection. 1349 1350 if (!rvalue.isScalar()) return PeepholeProtection(); 1351 llvm::Value *value = rvalue.getScalarVal(); 1352 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 1353 1354 // Just make an extra bitcast. 1355 assert(HaveInsertPoint()); 1356 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 1357 Builder.GetInsertBlock()); 1358 1359 PeepholeProtection protection; 1360 protection.Inst = inst; 1361 return protection; 1362 } 1363 1364 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 1365 if (!protection.Inst) return; 1366 1367 // In theory, we could try to duplicate the peepholes now, but whatever. 1368 protection.Inst->eraseFromParent(); 1369 } 1370 1371 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn, 1372 llvm::Value *AnnotatedVal, 1373 StringRef AnnotationStr, 1374 SourceLocation Location) { 1375 llvm::Value *Args[4] = { 1376 AnnotatedVal, 1377 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 1378 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 1379 CGM.EmitAnnotationLineNo(Location) 1380 }; 1381 return Builder.CreateCall(AnnotationFn, Args); 1382 } 1383 1384 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 1385 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1386 // FIXME We create a new bitcast for every annotation because that's what 1387 // llvm-gcc was doing. 1388 for (specific_attr_iterator<AnnotateAttr> 1389 ai = D->specific_attr_begin<AnnotateAttr>(), 1390 ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) 1391 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 1392 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 1393 (*ai)->getAnnotation(), D->getLocation()); 1394 } 1395 1396 llvm::Value *CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 1397 llvm::Value *V) { 1398 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1399 llvm::Type *VTy = V->getType(); 1400 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 1401 CGM.Int8PtrTy); 1402 1403 for (specific_attr_iterator<AnnotateAttr> 1404 ai = D->specific_attr_begin<AnnotateAttr>(), 1405 ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) { 1406 // FIXME Always emit the cast inst so we can differentiate between 1407 // annotation on the first field of a struct and annotation on the struct 1408 // itself. 1409 if (VTy != CGM.Int8PtrTy) 1410 V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy)); 1411 V = EmitAnnotationCall(F, V, (*ai)->getAnnotation(), D->getLocation()); 1412 V = Builder.CreateBitCast(V, VTy); 1413 } 1414 1415 return V; 1416 } 1417