xref: /llvm-project/clang/lib/CodeGen/CodeGenFunction.cpp (revision bc5b5ea037dbadd281c59248ae9d2742b51c69ed)
1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-function state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenFunction.h"
14 #include "CGBlocks.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCleanup.h"
18 #include "CGDebugInfo.h"
19 #include "CGOpenMPRuntime.h"
20 #include "CodeGenModule.h"
21 #include "CodeGenPGO.h"
22 #include "TargetInfo.h"
23 #include "clang/AST/ASTContext.h"
24 #include "clang/AST/ASTLambda.h"
25 #include "clang/AST/Attr.h"
26 #include "clang/AST/Decl.h"
27 #include "clang/AST/DeclCXX.h"
28 #include "clang/AST/Expr.h"
29 #include "clang/AST/StmtCXX.h"
30 #include "clang/AST/StmtObjC.h"
31 #include "clang/Basic/Builtins.h"
32 #include "clang/Basic/CodeGenOptions.h"
33 #include "clang/Basic/TargetInfo.h"
34 #include "clang/CodeGen/CGFunctionInfo.h"
35 #include "clang/Frontend/FrontendDiagnostic.h"
36 #include "llvm/ADT/ArrayRef.h"
37 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
38 #include "llvm/IR/DataLayout.h"
39 #include "llvm/IR/Dominators.h"
40 #include "llvm/IR/FPEnv.h"
41 #include "llvm/IR/IntrinsicInst.h"
42 #include "llvm/IR/Intrinsics.h"
43 #include "llvm/IR/MDBuilder.h"
44 #include "llvm/IR/Operator.h"
45 #include "llvm/Support/CRC.h"
46 #include "llvm/Transforms/Scalar/LowerExpectIntrinsic.h"
47 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
48 using namespace clang;
49 using namespace CodeGen;
50 
51 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time
52 /// markers.
53 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts,
54                                       const LangOptions &LangOpts) {
55   if (CGOpts.DisableLifetimeMarkers)
56     return false;
57 
58   // Sanitizers may use markers.
59   if (CGOpts.SanitizeAddressUseAfterScope ||
60       LangOpts.Sanitize.has(SanitizerKind::HWAddress) ||
61       LangOpts.Sanitize.has(SanitizerKind::Memory))
62     return true;
63 
64   // For now, only in optimized builds.
65   return CGOpts.OptimizationLevel != 0;
66 }
67 
68 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
69     : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
70       Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(),
71               CGBuilderInserterTy(this)),
72       SanOpts(CGM.getLangOpts().Sanitize), CurFPFeatures(CGM.getLangOpts()),
73       DebugInfo(CGM.getModuleDebugInfo()), PGO(cgm),
74       ShouldEmitLifetimeMarkers(
75           shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) {
76   if (!suppressNewContext)
77     CGM.getCXXABI().getMangleContext().startNewFunction();
78   EHStack.setCGF(this);
79 
80   SetFastMathFlags(CurFPFeatures);
81 }
82 
83 CodeGenFunction::~CodeGenFunction() {
84   assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
85 
86   if (getLangOpts().OpenMP && CurFn)
87     CGM.getOpenMPRuntime().functionFinished(*this);
88 
89   // If we have an OpenMPIRBuilder we want to finalize functions (incl.
90   // outlining etc) at some point. Doing it once the function codegen is done
91   // seems to be a reasonable spot. We do it here, as opposed to the deletion
92   // time of the CodeGenModule, because we have to ensure the IR has not yet
93   // been "emitted" to the outside, thus, modifications are still sensible.
94   if (CGM.getLangOpts().OpenMPIRBuilder && CurFn)
95     CGM.getOpenMPRuntime().getOMPBuilder().finalize(CurFn);
96 }
97 
98 // Map the LangOption for exception behavior into
99 // the corresponding enum in the IR.
100 llvm::fp::ExceptionBehavior
101 clang::ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind) {
102 
103   switch (Kind) {
104   case LangOptions::FPE_Ignore:  return llvm::fp::ebIgnore;
105   case LangOptions::FPE_MayTrap: return llvm::fp::ebMayTrap;
106   case LangOptions::FPE_Strict:  return llvm::fp::ebStrict;
107   }
108   llvm_unreachable("Unsupported FP Exception Behavior");
109 }
110 
111 void CodeGenFunction::SetFastMathFlags(FPOptions FPFeatures) {
112   llvm::FastMathFlags FMF;
113   FMF.setAllowReassoc(FPFeatures.getAllowFPReassociate());
114   FMF.setNoNaNs(FPFeatures.getNoHonorNaNs());
115   FMF.setNoInfs(FPFeatures.getNoHonorInfs());
116   FMF.setNoSignedZeros(FPFeatures.getNoSignedZero());
117   FMF.setAllowReciprocal(FPFeatures.getAllowReciprocal());
118   FMF.setApproxFunc(FPFeatures.getAllowApproxFunc());
119   FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement());
120   Builder.setFastMathFlags(FMF);
121 }
122 
123 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF,
124                                                   const Expr *E)
125     : CGF(CGF) {
126   ConstructorHelper(E->getFPFeaturesInEffect(CGF.getLangOpts()));
127 }
128 
129 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF,
130                                                   FPOptions FPFeatures)
131     : CGF(CGF) {
132   ConstructorHelper(FPFeatures);
133 }
134 
135 void CodeGenFunction::CGFPOptionsRAII::ConstructorHelper(FPOptions FPFeatures) {
136   OldFPFeatures = CGF.CurFPFeatures;
137   CGF.CurFPFeatures = FPFeatures;
138 
139   OldExcept = CGF.Builder.getDefaultConstrainedExcept();
140   OldRounding = CGF.Builder.getDefaultConstrainedRounding();
141 
142   if (OldFPFeatures == FPFeatures)
143     return;
144 
145   FMFGuard.emplace(CGF.Builder);
146 
147   llvm::RoundingMode NewRoundingBehavior =
148       static_cast<llvm::RoundingMode>(FPFeatures.getRoundingMode());
149   CGF.Builder.setDefaultConstrainedRounding(NewRoundingBehavior);
150   auto NewExceptionBehavior =
151       ToConstrainedExceptMD(static_cast<LangOptions::FPExceptionModeKind>(
152           FPFeatures.getFPExceptionMode()));
153   CGF.Builder.setDefaultConstrainedExcept(NewExceptionBehavior);
154 
155   CGF.SetFastMathFlags(FPFeatures);
156 
157   assert((CGF.CurFuncDecl == nullptr || CGF.Builder.getIsFPConstrained() ||
158           isa<CXXConstructorDecl>(CGF.CurFuncDecl) ||
159           isa<CXXDestructorDecl>(CGF.CurFuncDecl) ||
160           (NewExceptionBehavior == llvm::fp::ebIgnore &&
161            NewRoundingBehavior == llvm::RoundingMode::NearestTiesToEven)) &&
162          "FPConstrained should be enabled on entire function");
163 
164   auto mergeFnAttrValue = [&](StringRef Name, bool Value) {
165     auto OldValue =
166         CGF.CurFn->getFnAttribute(Name).getValueAsBool();
167     auto NewValue = OldValue & Value;
168     if (OldValue != NewValue)
169       CGF.CurFn->addFnAttr(Name, llvm::toStringRef(NewValue));
170   };
171   mergeFnAttrValue("no-infs-fp-math", FPFeatures.getNoHonorInfs());
172   mergeFnAttrValue("no-nans-fp-math", FPFeatures.getNoHonorNaNs());
173   mergeFnAttrValue("no-signed-zeros-fp-math", FPFeatures.getNoSignedZero());
174   mergeFnAttrValue("unsafe-fp-math", FPFeatures.getAllowFPReassociate() &&
175                                          FPFeatures.getAllowReciprocal() &&
176                                          FPFeatures.getAllowApproxFunc() &&
177                                          FPFeatures.getNoSignedZero());
178 }
179 
180 CodeGenFunction::CGFPOptionsRAII::~CGFPOptionsRAII() {
181   CGF.CurFPFeatures = OldFPFeatures;
182   CGF.Builder.setDefaultConstrainedExcept(OldExcept);
183   CGF.Builder.setDefaultConstrainedRounding(OldRounding);
184 }
185 
186 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
187   LValueBaseInfo BaseInfo;
188   TBAAAccessInfo TBAAInfo;
189   CharUnits Alignment = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo);
190   return LValue::MakeAddr(Address(V, Alignment), T, getContext(), BaseInfo,
191                           TBAAInfo);
192 }
193 
194 /// Given a value of type T* that may not be to a complete object,
195 /// construct an l-value with the natural pointee alignment of T.
196 LValue
197 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) {
198   LValueBaseInfo BaseInfo;
199   TBAAAccessInfo TBAAInfo;
200   CharUnits Align = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo,
201                                                 /* forPointeeType= */ true);
202   return MakeAddrLValue(Address(V, Align), T, BaseInfo, TBAAInfo);
203 }
204 
205 
206 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
207   return CGM.getTypes().ConvertTypeForMem(T);
208 }
209 
210 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
211   return CGM.getTypes().ConvertType(T);
212 }
213 
214 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
215   type = type.getCanonicalType();
216   while (true) {
217     switch (type->getTypeClass()) {
218 #define TYPE(name, parent)
219 #define ABSTRACT_TYPE(name, parent)
220 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
221 #define DEPENDENT_TYPE(name, parent) case Type::name:
222 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
223 #include "clang/AST/TypeNodes.inc"
224       llvm_unreachable("non-canonical or dependent type in IR-generation");
225 
226     case Type::Auto:
227     case Type::DeducedTemplateSpecialization:
228       llvm_unreachable("undeduced type in IR-generation");
229 
230     // Various scalar types.
231     case Type::Builtin:
232     case Type::Pointer:
233     case Type::BlockPointer:
234     case Type::LValueReference:
235     case Type::RValueReference:
236     case Type::MemberPointer:
237     case Type::Vector:
238     case Type::ExtVector:
239     case Type::ConstantMatrix:
240     case Type::FunctionProto:
241     case Type::FunctionNoProto:
242     case Type::Enum:
243     case Type::ObjCObjectPointer:
244     case Type::Pipe:
245     case Type::ExtInt:
246       return TEK_Scalar;
247 
248     // Complexes.
249     case Type::Complex:
250       return TEK_Complex;
251 
252     // Arrays, records, and Objective-C objects.
253     case Type::ConstantArray:
254     case Type::IncompleteArray:
255     case Type::VariableArray:
256     case Type::Record:
257     case Type::ObjCObject:
258     case Type::ObjCInterface:
259       return TEK_Aggregate;
260 
261     // We operate on atomic values according to their underlying type.
262     case Type::Atomic:
263       type = cast<AtomicType>(type)->getValueType();
264       continue;
265     }
266     llvm_unreachable("unknown type kind!");
267   }
268 }
269 
270 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() {
271   // For cleanliness, we try to avoid emitting the return block for
272   // simple cases.
273   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
274 
275   if (CurBB) {
276     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
277 
278     // We have a valid insert point, reuse it if it is empty or there are no
279     // explicit jumps to the return block.
280     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
281       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
282       delete ReturnBlock.getBlock();
283       ReturnBlock = JumpDest();
284     } else
285       EmitBlock(ReturnBlock.getBlock());
286     return llvm::DebugLoc();
287   }
288 
289   // Otherwise, if the return block is the target of a single direct
290   // branch then we can just put the code in that block instead. This
291   // cleans up functions which started with a unified return block.
292   if (ReturnBlock.getBlock()->hasOneUse()) {
293     llvm::BranchInst *BI =
294       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin());
295     if (BI && BI->isUnconditional() &&
296         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
297       // Record/return the DebugLoc of the simple 'return' expression to be used
298       // later by the actual 'ret' instruction.
299       llvm::DebugLoc Loc = BI->getDebugLoc();
300       Builder.SetInsertPoint(BI->getParent());
301       BI->eraseFromParent();
302       delete ReturnBlock.getBlock();
303       ReturnBlock = JumpDest();
304       return Loc;
305     }
306   }
307 
308   // FIXME: We are at an unreachable point, there is no reason to emit the block
309   // unless it has uses. However, we still need a place to put the debug
310   // region.end for now.
311 
312   EmitBlock(ReturnBlock.getBlock());
313   return llvm::DebugLoc();
314 }
315 
316 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
317   if (!BB) return;
318   if (!BB->use_empty())
319     return CGF.CurFn->getBasicBlockList().push_back(BB);
320   delete BB;
321 }
322 
323 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
324   assert(BreakContinueStack.empty() &&
325          "mismatched push/pop in break/continue stack!");
326 
327   bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
328     && NumSimpleReturnExprs == NumReturnExprs
329     && ReturnBlock.getBlock()->use_empty();
330   // Usually the return expression is evaluated before the cleanup
331   // code.  If the function contains only a simple return statement,
332   // such as a constant, the location before the cleanup code becomes
333   // the last useful breakpoint in the function, because the simple
334   // return expression will be evaluated after the cleanup code. To be
335   // safe, set the debug location for cleanup code to the location of
336   // the return statement.  Otherwise the cleanup code should be at the
337   // end of the function's lexical scope.
338   //
339   // If there are multiple branches to the return block, the branch
340   // instructions will get the location of the return statements and
341   // all will be fine.
342   if (CGDebugInfo *DI = getDebugInfo()) {
343     if (OnlySimpleReturnStmts)
344       DI->EmitLocation(Builder, LastStopPoint);
345     else
346       DI->EmitLocation(Builder, EndLoc);
347   }
348 
349   // Pop any cleanups that might have been associated with the
350   // parameters.  Do this in whatever block we're currently in; it's
351   // important to do this before we enter the return block or return
352   // edges will be *really* confused.
353   bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth;
354   bool HasOnlyLifetimeMarkers =
355       HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth);
356   bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers;
357   if (HasCleanups) {
358     // Make sure the line table doesn't jump back into the body for
359     // the ret after it's been at EndLoc.
360     Optional<ApplyDebugLocation> AL;
361     if (CGDebugInfo *DI = getDebugInfo()) {
362       if (OnlySimpleReturnStmts)
363         DI->EmitLocation(Builder, EndLoc);
364       else
365         // We may not have a valid end location. Try to apply it anyway, and
366         // fall back to an artificial location if needed.
367         AL = ApplyDebugLocation::CreateDefaultArtificial(*this, EndLoc);
368     }
369 
370     PopCleanupBlocks(PrologueCleanupDepth);
371   }
372 
373   // Emit function epilog (to return).
374   llvm::DebugLoc Loc = EmitReturnBlock();
375 
376   if (ShouldInstrumentFunction()) {
377     if (CGM.getCodeGenOpts().InstrumentFunctions)
378       CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit");
379     if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
380       CurFn->addFnAttr("instrument-function-exit-inlined",
381                        "__cyg_profile_func_exit");
382   }
383 
384   // Emit debug descriptor for function end.
385   if (CGDebugInfo *DI = getDebugInfo())
386     DI->EmitFunctionEnd(Builder, CurFn);
387 
388   // Reset the debug location to that of the simple 'return' expression, if any
389   // rather than that of the end of the function's scope '}'.
390   ApplyDebugLocation AL(*this, Loc);
391   EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
392   EmitEndEHSpec(CurCodeDecl);
393 
394   assert(EHStack.empty() &&
395          "did not remove all scopes from cleanup stack!");
396 
397   // If someone did an indirect goto, emit the indirect goto block at the end of
398   // the function.
399   if (IndirectBranch) {
400     EmitBlock(IndirectBranch->getParent());
401     Builder.ClearInsertionPoint();
402   }
403 
404   // If some of our locals escaped, insert a call to llvm.localescape in the
405   // entry block.
406   if (!EscapedLocals.empty()) {
407     // Invert the map from local to index into a simple vector. There should be
408     // no holes.
409     SmallVector<llvm::Value *, 4> EscapeArgs;
410     EscapeArgs.resize(EscapedLocals.size());
411     for (auto &Pair : EscapedLocals)
412       EscapeArgs[Pair.second] = Pair.first;
413     llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration(
414         &CGM.getModule(), llvm::Intrinsic::localescape);
415     CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs);
416   }
417 
418   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
419   llvm::Instruction *Ptr = AllocaInsertPt;
420   AllocaInsertPt = nullptr;
421   Ptr->eraseFromParent();
422 
423   // If someone took the address of a label but never did an indirect goto, we
424   // made a zero entry PHI node, which is illegal, zap it now.
425   if (IndirectBranch) {
426     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
427     if (PN->getNumIncomingValues() == 0) {
428       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
429       PN->eraseFromParent();
430     }
431   }
432 
433   EmitIfUsed(*this, EHResumeBlock);
434   EmitIfUsed(*this, TerminateLandingPad);
435   EmitIfUsed(*this, TerminateHandler);
436   EmitIfUsed(*this, UnreachableBlock);
437 
438   for (const auto &FuncletAndParent : TerminateFunclets)
439     EmitIfUsed(*this, FuncletAndParent.second);
440 
441   if (CGM.getCodeGenOpts().EmitDeclMetadata)
442     EmitDeclMetadata();
443 
444   for (const auto &R : DeferredReplacements) {
445     if (llvm::Value *Old = R.first) {
446       Old->replaceAllUsesWith(R.second);
447       cast<llvm::Instruction>(Old)->eraseFromParent();
448     }
449   }
450   DeferredReplacements.clear();
451 
452   // Eliminate CleanupDestSlot alloca by replacing it with SSA values and
453   // PHIs if the current function is a coroutine. We don't do it for all
454   // functions as it may result in slight increase in numbers of instructions
455   // if compiled with no optimizations. We do it for coroutine as the lifetime
456   // of CleanupDestSlot alloca make correct coroutine frame building very
457   // difficult.
458   if (NormalCleanupDest.isValid() && isCoroutine()) {
459     llvm::DominatorTree DT(*CurFn);
460     llvm::PromoteMemToReg(
461         cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT);
462     NormalCleanupDest = Address::invalid();
463   }
464 
465   // Scan function arguments for vector width.
466   for (llvm::Argument &A : CurFn->args())
467     if (auto *VT = dyn_cast<llvm::VectorType>(A.getType()))
468       LargestVectorWidth =
469           std::max((uint64_t)LargestVectorWidth,
470                    VT->getPrimitiveSizeInBits().getKnownMinSize());
471 
472   // Update vector width based on return type.
473   if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType()))
474     LargestVectorWidth =
475         std::max((uint64_t)LargestVectorWidth,
476                  VT->getPrimitiveSizeInBits().getKnownMinSize());
477 
478   // Add the required-vector-width attribute. This contains the max width from:
479   // 1. min-vector-width attribute used in the source program.
480   // 2. Any builtins used that have a vector width specified.
481   // 3. Values passed in and out of inline assembly.
482   // 4. Width of vector arguments and return types for this function.
483   // 5. Width of vector aguments and return types for functions called by this
484   //    function.
485   CurFn->addFnAttr("min-legal-vector-width", llvm::utostr(LargestVectorWidth));
486 
487   // Add vscale attribute if appropriate.
488   if (getLangOpts().ArmSveVectorBits) {
489     unsigned VScale = getLangOpts().ArmSveVectorBits / 128;
490     CurFn->addFnAttr(llvm::Attribute::getWithVScaleRangeArgs(getLLVMContext(),
491                                                              VScale, VScale));
492   }
493 
494   // If we generated an unreachable return block, delete it now.
495   if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) {
496     Builder.ClearInsertionPoint();
497     ReturnBlock.getBlock()->eraseFromParent();
498   }
499   if (ReturnValue.isValid()) {
500     auto *RetAlloca = dyn_cast<llvm::AllocaInst>(ReturnValue.getPointer());
501     if (RetAlloca && RetAlloca->use_empty()) {
502       RetAlloca->eraseFromParent();
503       ReturnValue = Address::invalid();
504     }
505   }
506 }
507 
508 /// ShouldInstrumentFunction - Return true if the current function should be
509 /// instrumented with __cyg_profile_func_* calls
510 bool CodeGenFunction::ShouldInstrumentFunction() {
511   if (!CGM.getCodeGenOpts().InstrumentFunctions &&
512       !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining &&
513       !CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
514     return false;
515   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
516     return false;
517   return true;
518 }
519 
520 /// ShouldXRayInstrument - Return true if the current function should be
521 /// instrumented with XRay nop sleds.
522 bool CodeGenFunction::ShouldXRayInstrumentFunction() const {
523   return CGM.getCodeGenOpts().XRayInstrumentFunctions;
524 }
525 
526 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to
527 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation.
528 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const {
529   return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
530          (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents ||
531           CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
532               XRayInstrKind::Custom);
533 }
534 
535 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const {
536   return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
537          (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents ||
538           CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
539               XRayInstrKind::Typed);
540 }
541 
542 llvm::Constant *
543 CodeGenFunction::EncodeAddrForUseInPrologue(llvm::Function *F,
544                                             llvm::Constant *Addr) {
545   // Addresses stored in prologue data can't require run-time fixups and must
546   // be PC-relative. Run-time fixups are undesirable because they necessitate
547   // writable text segments, which are unsafe. And absolute addresses are
548   // undesirable because they break PIE mode.
549 
550   // Add a layer of indirection through a private global. Taking its address
551   // won't result in a run-time fixup, even if Addr has linkonce_odr linkage.
552   auto *GV = new llvm::GlobalVariable(CGM.getModule(), Addr->getType(),
553                                       /*isConstant=*/true,
554                                       llvm::GlobalValue::PrivateLinkage, Addr);
555 
556   // Create a PC-relative address.
557   auto *GOTAsInt = llvm::ConstantExpr::getPtrToInt(GV, IntPtrTy);
558   auto *FuncAsInt = llvm::ConstantExpr::getPtrToInt(F, IntPtrTy);
559   auto *PCRelAsInt = llvm::ConstantExpr::getSub(GOTAsInt, FuncAsInt);
560   return (IntPtrTy == Int32Ty)
561              ? PCRelAsInt
562              : llvm::ConstantExpr::getTrunc(PCRelAsInt, Int32Ty);
563 }
564 
565 llvm::Value *
566 CodeGenFunction::DecodeAddrUsedInPrologue(llvm::Value *F,
567                                           llvm::Value *EncodedAddr) {
568   // Reconstruct the address of the global.
569   auto *PCRelAsInt = Builder.CreateSExt(EncodedAddr, IntPtrTy);
570   auto *FuncAsInt = Builder.CreatePtrToInt(F, IntPtrTy, "func_addr.int");
571   auto *GOTAsInt = Builder.CreateAdd(PCRelAsInt, FuncAsInt, "global_addr.int");
572   auto *GOTAddr = Builder.CreateIntToPtr(GOTAsInt, Int8PtrPtrTy, "global_addr");
573 
574   // Load the original pointer through the global.
575   return Builder.CreateLoad(Address(GOTAddr, getPointerAlign()),
576                             "decoded_addr");
577 }
578 
579 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD,
580                                                llvm::Function *Fn)
581 {
582   if (!FD->hasAttr<OpenCLKernelAttr>())
583     return;
584 
585   llvm::LLVMContext &Context = getLLVMContext();
586 
587   CGM.GenOpenCLArgMetadata(Fn, FD, this);
588 
589   if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
590     QualType HintQTy = A->getTypeHint();
591     const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>();
592     bool IsSignedInteger =
593         HintQTy->isSignedIntegerType() ||
594         (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType());
595     llvm::Metadata *AttrMDArgs[] = {
596         llvm::ConstantAsMetadata::get(llvm::UndefValue::get(
597             CGM.getTypes().ConvertType(A->getTypeHint()))),
598         llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
599             llvm::IntegerType::get(Context, 32),
600             llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))};
601     Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs));
602   }
603 
604   if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
605     llvm::Metadata *AttrMDArgs[] = {
606         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
607         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
608         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
609     Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs));
610   }
611 
612   if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
613     llvm::Metadata *AttrMDArgs[] = {
614         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
615         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
616         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
617     Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs));
618   }
619 
620   if (const OpenCLIntelReqdSubGroupSizeAttr *A =
621           FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) {
622     llvm::Metadata *AttrMDArgs[] = {
623         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))};
624     Fn->setMetadata("intel_reqd_sub_group_size",
625                     llvm::MDNode::get(Context, AttrMDArgs));
626   }
627 }
628 
629 /// Determine whether the function F ends with a return stmt.
630 static bool endsWithReturn(const Decl* F) {
631   const Stmt *Body = nullptr;
632   if (auto *FD = dyn_cast_or_null<FunctionDecl>(F))
633     Body = FD->getBody();
634   else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F))
635     Body = OMD->getBody();
636 
637   if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
638     auto LastStmt = CS->body_rbegin();
639     if (LastStmt != CS->body_rend())
640       return isa<ReturnStmt>(*LastStmt);
641   }
642   return false;
643 }
644 
645 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) {
646   if (SanOpts.has(SanitizerKind::Thread)) {
647     Fn->addFnAttr("sanitize_thread_no_checking_at_run_time");
648     Fn->removeFnAttr(llvm::Attribute::SanitizeThread);
649   }
650 }
651 
652 /// Check if the return value of this function requires sanitization.
653 bool CodeGenFunction::requiresReturnValueCheck() const {
654   return requiresReturnValueNullabilityCheck() ||
655          (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && CurCodeDecl &&
656           CurCodeDecl->getAttr<ReturnsNonNullAttr>());
657 }
658 
659 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) {
660   auto *MD = dyn_cast_or_null<CXXMethodDecl>(D);
661   if (!MD || !MD->getDeclName().getAsIdentifierInfo() ||
662       !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") ||
663       (MD->getNumParams() != 1 && MD->getNumParams() != 2))
664     return false;
665 
666   if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType())
667     return false;
668 
669   if (MD->getNumParams() == 2) {
670     auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>();
671     if (!PT || !PT->isVoidPointerType() ||
672         !PT->getPointeeType().isConstQualified())
673       return false;
674   }
675 
676   return true;
677 }
678 
679 /// Return the UBSan prologue signature for \p FD if one is available.
680 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM,
681                                             const FunctionDecl *FD) {
682   if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
683     if (!MD->isStatic())
684       return nullptr;
685   return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM);
686 }
687 
688 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy,
689                                     llvm::Function *Fn,
690                                     const CGFunctionInfo &FnInfo,
691                                     const FunctionArgList &Args,
692                                     SourceLocation Loc,
693                                     SourceLocation StartLoc) {
694   assert(!CurFn &&
695          "Do not use a CodeGenFunction object for more than one function");
696 
697   const Decl *D = GD.getDecl();
698 
699   DidCallStackSave = false;
700   CurCodeDecl = D;
701   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
702   if (FD && FD->usesSEHTry())
703     CurSEHParent = FD;
704   CurFuncDecl = (D ? D->getNonClosureContext() : nullptr);
705   FnRetTy = RetTy;
706   CurFn = Fn;
707   CurFnInfo = &FnInfo;
708   assert(CurFn->isDeclaration() && "Function already has body?");
709 
710   // If this function is ignored for any of the enabled sanitizers,
711   // disable the sanitizer for the function.
712   do {
713 #define SANITIZER(NAME, ID)                                                    \
714   if (SanOpts.empty())                                                         \
715     break;                                                                     \
716   if (SanOpts.has(SanitizerKind::ID))                                          \
717     if (CGM.isInNoSanitizeList(SanitizerKind::ID, Fn, Loc))                    \
718       SanOpts.set(SanitizerKind::ID, false);
719 
720 #include "clang/Basic/Sanitizers.def"
721 #undef SANITIZER
722   } while (0);
723 
724   if (D) {
725     bool NoSanitizeCoverage = false;
726 
727     for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) {
728       // Apply the no_sanitize* attributes to SanOpts.
729       SanitizerMask mask = Attr->getMask();
730       SanOpts.Mask &= ~mask;
731       if (mask & SanitizerKind::Address)
732         SanOpts.set(SanitizerKind::KernelAddress, false);
733       if (mask & SanitizerKind::KernelAddress)
734         SanOpts.set(SanitizerKind::Address, false);
735       if (mask & SanitizerKind::HWAddress)
736         SanOpts.set(SanitizerKind::KernelHWAddress, false);
737       if (mask & SanitizerKind::KernelHWAddress)
738         SanOpts.set(SanitizerKind::HWAddress, false);
739 
740       // SanitizeCoverage is not handled by SanOpts.
741       if (Attr->hasCoverage())
742         NoSanitizeCoverage = true;
743     }
744 
745     if (NoSanitizeCoverage && CGM.getCodeGenOpts().hasSanitizeCoverage())
746       Fn->addFnAttr(llvm::Attribute::NoSanitizeCoverage);
747   }
748 
749   // Apply sanitizer attributes to the function.
750   if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress))
751     Fn->addFnAttr(llvm::Attribute::SanitizeAddress);
752   if (SanOpts.hasOneOf(SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress))
753     Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress);
754   if (SanOpts.has(SanitizerKind::MemTag))
755     Fn->addFnAttr(llvm::Attribute::SanitizeMemTag);
756   if (SanOpts.has(SanitizerKind::Thread))
757     Fn->addFnAttr(llvm::Attribute::SanitizeThread);
758   if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory))
759     Fn->addFnAttr(llvm::Attribute::SanitizeMemory);
760   if (SanOpts.has(SanitizerKind::SafeStack))
761     Fn->addFnAttr(llvm::Attribute::SafeStack);
762   if (SanOpts.has(SanitizerKind::ShadowCallStack))
763     Fn->addFnAttr(llvm::Attribute::ShadowCallStack);
764 
765   // Apply fuzzing attribute to the function.
766   if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink))
767     Fn->addFnAttr(llvm::Attribute::OptForFuzzing);
768 
769   // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize,
770   // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time.
771   if (SanOpts.has(SanitizerKind::Thread)) {
772     if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) {
773       IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0);
774       if (OMD->getMethodFamily() == OMF_dealloc ||
775           OMD->getMethodFamily() == OMF_initialize ||
776           (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) {
777         markAsIgnoreThreadCheckingAtRuntime(Fn);
778       }
779     }
780   }
781 
782   // Ignore unrelated casts in STL allocate() since the allocator must cast
783   // from void* to T* before object initialization completes. Don't match on the
784   // namespace because not all allocators are in std::
785   if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
786     if (matchesStlAllocatorFn(D, getContext()))
787       SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast;
788   }
789 
790   // Ignore null checks in coroutine functions since the coroutines passes
791   // are not aware of how to move the extra UBSan instructions across the split
792   // coroutine boundaries.
793   if (D && SanOpts.has(SanitizerKind::Null))
794     if (FD && FD->getBody() &&
795         FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass)
796       SanOpts.Mask &= ~SanitizerKind::Null;
797 
798   // Apply xray attributes to the function (as a string, for now)
799   bool AlwaysXRayAttr = false;
800   if (const auto *XRayAttr = D ? D->getAttr<XRayInstrumentAttr>() : nullptr) {
801     if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
802             XRayInstrKind::FunctionEntry) ||
803         CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
804             XRayInstrKind::FunctionExit)) {
805       if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) {
806         Fn->addFnAttr("function-instrument", "xray-always");
807         AlwaysXRayAttr = true;
808       }
809       if (XRayAttr->neverXRayInstrument())
810         Fn->addFnAttr("function-instrument", "xray-never");
811       if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>())
812         if (ShouldXRayInstrumentFunction())
813           Fn->addFnAttr("xray-log-args",
814                         llvm::utostr(LogArgs->getArgumentCount()));
815     }
816   } else {
817     if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc))
818       Fn->addFnAttr(
819           "xray-instruction-threshold",
820           llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold));
821   }
822 
823   if (ShouldXRayInstrumentFunction()) {
824     if (CGM.getCodeGenOpts().XRayIgnoreLoops)
825       Fn->addFnAttr("xray-ignore-loops");
826 
827     if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
828             XRayInstrKind::FunctionExit))
829       Fn->addFnAttr("xray-skip-exit");
830 
831     if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
832             XRayInstrKind::FunctionEntry))
833       Fn->addFnAttr("xray-skip-entry");
834 
835     auto FuncGroups = CGM.getCodeGenOpts().XRayTotalFunctionGroups;
836     if (FuncGroups > 1) {
837       auto FuncName = llvm::makeArrayRef<uint8_t>(
838           CurFn->getName().bytes_begin(), CurFn->getName().bytes_end());
839       auto Group = crc32(FuncName) % FuncGroups;
840       if (Group != CGM.getCodeGenOpts().XRaySelectedFunctionGroup &&
841           !AlwaysXRayAttr)
842         Fn->addFnAttr("function-instrument", "xray-never");
843     }
844   }
845 
846   if (CGM.getCodeGenOpts().getProfileInstr() != CodeGenOptions::ProfileNone)
847     if (CGM.isProfileInstrExcluded(Fn, Loc))
848       Fn->addFnAttr(llvm::Attribute::NoProfile);
849 
850   unsigned Count, Offset;
851   if (const auto *Attr =
852           D ? D->getAttr<PatchableFunctionEntryAttr>() : nullptr) {
853     Count = Attr->getCount();
854     Offset = Attr->getOffset();
855   } else {
856     Count = CGM.getCodeGenOpts().PatchableFunctionEntryCount;
857     Offset = CGM.getCodeGenOpts().PatchableFunctionEntryOffset;
858   }
859   if (Count && Offset <= Count) {
860     Fn->addFnAttr("patchable-function-entry", std::to_string(Count - Offset));
861     if (Offset)
862       Fn->addFnAttr("patchable-function-prefix", std::to_string(Offset));
863   }
864 
865   // Add no-jump-tables value.
866   if (CGM.getCodeGenOpts().NoUseJumpTables)
867     Fn->addFnAttr("no-jump-tables", "true");
868 
869   // Add no-inline-line-tables value.
870   if (CGM.getCodeGenOpts().NoInlineLineTables)
871     Fn->addFnAttr("no-inline-line-tables");
872 
873   // Add profile-sample-accurate value.
874   if (CGM.getCodeGenOpts().ProfileSampleAccurate)
875     Fn->addFnAttr("profile-sample-accurate");
876 
877   if (!CGM.getCodeGenOpts().SampleProfileFile.empty())
878     Fn->addFnAttr("use-sample-profile");
879 
880   if (D && D->hasAttr<CFICanonicalJumpTableAttr>())
881     Fn->addFnAttr("cfi-canonical-jump-table");
882 
883   if (D && D->hasAttr<NoProfileFunctionAttr>())
884     Fn->addFnAttr(llvm::Attribute::NoProfile);
885 
886   if (FD && getLangOpts().OpenCL) {
887     // Add metadata for a kernel function.
888     EmitOpenCLKernelMetadata(FD, Fn);
889   }
890 
891   // If we are checking function types, emit a function type signature as
892   // prologue data.
893   if (FD && getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) {
894     if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) {
895       // Remove any (C++17) exception specifications, to allow calling e.g. a
896       // noexcept function through a non-noexcept pointer.
897       auto ProtoTy = getContext().getFunctionTypeWithExceptionSpec(
898           FD->getType(), EST_None);
899       llvm::Constant *FTRTTIConst =
900           CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true);
901       llvm::Constant *FTRTTIConstEncoded =
902           EncodeAddrForUseInPrologue(Fn, FTRTTIConst);
903       llvm::Constant *PrologueStructElems[] = {PrologueSig, FTRTTIConstEncoded};
904       llvm::Constant *PrologueStructConst =
905           llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true);
906       Fn->setPrologueData(PrologueStructConst);
907     }
908   }
909 
910   // If we're checking nullability, we need to know whether we can check the
911   // return value. Initialize the flag to 'true' and refine it in EmitParmDecl.
912   if (SanOpts.has(SanitizerKind::NullabilityReturn)) {
913     auto Nullability = FnRetTy->getNullability(getContext());
914     if (Nullability && *Nullability == NullabilityKind::NonNull) {
915       if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) &&
916             CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>()))
917         RetValNullabilityPrecondition =
918             llvm::ConstantInt::getTrue(getLLVMContext());
919     }
920   }
921 
922   // If we're in C++ mode and the function name is "main", it is guaranteed
923   // to be norecurse by the standard (3.6.1.3 "The function main shall not be
924   // used within a program").
925   //
926   // OpenCL C 2.0 v2.2-11 s6.9.i:
927   //     Recursion is not supported.
928   //
929   // SYCL v1.2.1 s3.10:
930   //     kernels cannot include RTTI information, exception classes,
931   //     recursive code, virtual functions or make use of C++ libraries that
932   //     are not compiled for the device.
933   if (FD && ((getLangOpts().CPlusPlus && FD->isMain()) ||
934              getLangOpts().OpenCL || getLangOpts().SYCLIsDevice ||
935              (getLangOpts().CUDA && FD->hasAttr<CUDAGlobalAttr>())))
936     Fn->addFnAttr(llvm::Attribute::NoRecurse);
937 
938   llvm::RoundingMode RM = getLangOpts().getFPRoundingMode();
939   llvm::fp::ExceptionBehavior FPExceptionBehavior =
940       ToConstrainedExceptMD(getLangOpts().getFPExceptionMode());
941   Builder.setDefaultConstrainedRounding(RM);
942   Builder.setDefaultConstrainedExcept(FPExceptionBehavior);
943   if ((FD && (FD->UsesFPIntrin() || FD->hasAttr<StrictFPAttr>())) ||
944       (!FD && (FPExceptionBehavior != llvm::fp::ebIgnore ||
945                RM != llvm::RoundingMode::NearestTiesToEven))) {
946     Builder.setIsFPConstrained(true);
947     Fn->addFnAttr(llvm::Attribute::StrictFP);
948   }
949 
950   // If a custom alignment is used, force realigning to this alignment on
951   // any main function which certainly will need it.
952   if (FD && ((FD->isMain() || FD->isMSVCRTEntryPoint()) &&
953              CGM.getCodeGenOpts().StackAlignment))
954     Fn->addFnAttr("stackrealign");
955 
956   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
957 
958   // Create a marker to make it easy to insert allocas into the entryblock
959   // later.  Don't create this with the builder, because we don't want it
960   // folded.
961   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
962   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB);
963 
964   ReturnBlock = getJumpDestInCurrentScope("return");
965 
966   Builder.SetInsertPoint(EntryBB);
967 
968   // If we're checking the return value, allocate space for a pointer to a
969   // precise source location of the checked return statement.
970   if (requiresReturnValueCheck()) {
971     ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr");
972     InitTempAlloca(ReturnLocation, llvm::ConstantPointerNull::get(Int8PtrTy));
973   }
974 
975   // Emit subprogram debug descriptor.
976   if (CGDebugInfo *DI = getDebugInfo()) {
977     // Reconstruct the type from the argument list so that implicit parameters,
978     // such as 'this' and 'vtt', show up in the debug info. Preserve the calling
979     // convention.
980     CallingConv CC = CallingConv::CC_C;
981     if (FD)
982       if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>())
983         CC = SrcFnTy->getCallConv();
984     SmallVector<QualType, 16> ArgTypes;
985     for (const VarDecl *VD : Args)
986       ArgTypes.push_back(VD->getType());
987     QualType FnType = getContext().getFunctionType(
988         RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC));
989     DI->emitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, CurFuncIsThunk);
990   }
991 
992   if (ShouldInstrumentFunction()) {
993     if (CGM.getCodeGenOpts().InstrumentFunctions)
994       CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter");
995     if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
996       CurFn->addFnAttr("instrument-function-entry-inlined",
997                        "__cyg_profile_func_enter");
998     if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
999       CurFn->addFnAttr("instrument-function-entry-inlined",
1000                        "__cyg_profile_func_enter_bare");
1001   }
1002 
1003   // Since emitting the mcount call here impacts optimizations such as function
1004   // inlining, we just add an attribute to insert a mcount call in backend.
1005   // The attribute "counting-function" is set to mcount function name which is
1006   // architecture dependent.
1007   if (CGM.getCodeGenOpts().InstrumentForProfiling) {
1008     // Calls to fentry/mcount should not be generated if function has
1009     // the no_instrument_function attribute.
1010     if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) {
1011       if (CGM.getCodeGenOpts().CallFEntry)
1012         Fn->addFnAttr("fentry-call", "true");
1013       else {
1014         Fn->addFnAttr("instrument-function-entry-inlined",
1015                       getTarget().getMCountName());
1016       }
1017       if (CGM.getCodeGenOpts().MNopMCount) {
1018         if (!CGM.getCodeGenOpts().CallFEntry)
1019           CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
1020             << "-mnop-mcount" << "-mfentry";
1021         Fn->addFnAttr("mnop-mcount");
1022       }
1023 
1024       if (CGM.getCodeGenOpts().RecordMCount) {
1025         if (!CGM.getCodeGenOpts().CallFEntry)
1026           CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
1027             << "-mrecord-mcount" << "-mfentry";
1028         Fn->addFnAttr("mrecord-mcount");
1029       }
1030     }
1031   }
1032 
1033   if (CGM.getCodeGenOpts().PackedStack) {
1034     if (getContext().getTargetInfo().getTriple().getArch() !=
1035         llvm::Triple::systemz)
1036       CGM.getDiags().Report(diag::err_opt_not_valid_on_target)
1037         << "-mpacked-stack";
1038     Fn->addFnAttr("packed-stack");
1039   }
1040 
1041   if (CGM.getCodeGenOpts().WarnStackSize != UINT_MAX)
1042     Fn->addFnAttr("warn-stack-size",
1043                   std::to_string(CGM.getCodeGenOpts().WarnStackSize));
1044 
1045   if (RetTy->isVoidType()) {
1046     // Void type; nothing to return.
1047     ReturnValue = Address::invalid();
1048 
1049     // Count the implicit return.
1050     if (!endsWithReturn(D))
1051       ++NumReturnExprs;
1052   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) {
1053     // Indirect return; emit returned value directly into sret slot.
1054     // This reduces code size, and affects correctness in C++.
1055     auto AI = CurFn->arg_begin();
1056     if (CurFnInfo->getReturnInfo().isSRetAfterThis())
1057       ++AI;
1058     ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign());
1059     if (!CurFnInfo->getReturnInfo().getIndirectByVal()) {
1060       ReturnValuePointer =
1061           CreateDefaultAlignTempAlloca(Int8PtrTy, "result.ptr");
1062       Builder.CreateStore(Builder.CreatePointerBitCastOrAddrSpaceCast(
1063                               ReturnValue.getPointer(), Int8PtrTy),
1064                           ReturnValuePointer);
1065     }
1066   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca &&
1067              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
1068     // Load the sret pointer from the argument struct and return into that.
1069     unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex();
1070     llvm::Function::arg_iterator EI = CurFn->arg_end();
1071     --EI;
1072     llvm::Value *Addr = Builder.CreateStructGEP(
1073         EI->getType()->getPointerElementType(), &*EI, Idx);
1074     llvm::Type *Ty =
1075         cast<llvm::GetElementPtrInst>(Addr)->getResultElementType();
1076     ReturnValuePointer = Address(Addr, getPointerAlign());
1077     Addr = Builder.CreateAlignedLoad(Ty, Addr, getPointerAlign(), "agg.result");
1078     ReturnValue = Address(Addr, CGM.getNaturalTypeAlignment(RetTy));
1079   } else {
1080     ReturnValue = CreateIRTemp(RetTy, "retval");
1081 
1082     // Tell the epilog emitter to autorelease the result.  We do this
1083     // now so that various specialized functions can suppress it
1084     // during their IR-generation.
1085     if (getLangOpts().ObjCAutoRefCount &&
1086         !CurFnInfo->isReturnsRetained() &&
1087         RetTy->isObjCRetainableType())
1088       AutoreleaseResult = true;
1089   }
1090 
1091   EmitStartEHSpec(CurCodeDecl);
1092 
1093   PrologueCleanupDepth = EHStack.stable_begin();
1094 
1095   // Emit OpenMP specific initialization of the device functions.
1096   if (getLangOpts().OpenMP && CurCodeDecl)
1097     CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl);
1098 
1099   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
1100 
1101   if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
1102     CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
1103     const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
1104     if (MD->getParent()->isLambda() &&
1105         MD->getOverloadedOperator() == OO_Call) {
1106       // We're in a lambda; figure out the captures.
1107       MD->getParent()->getCaptureFields(LambdaCaptureFields,
1108                                         LambdaThisCaptureField);
1109       if (LambdaThisCaptureField) {
1110         // If the lambda captures the object referred to by '*this' - either by
1111         // value or by reference, make sure CXXThisValue points to the correct
1112         // object.
1113 
1114         // Get the lvalue for the field (which is a copy of the enclosing object
1115         // or contains the address of the enclosing object).
1116         LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
1117         if (!LambdaThisCaptureField->getType()->isPointerType()) {
1118           // If the enclosing object was captured by value, just use its address.
1119           CXXThisValue = ThisFieldLValue.getAddress(*this).getPointer();
1120         } else {
1121           // Load the lvalue pointed to by the field, since '*this' was captured
1122           // by reference.
1123           CXXThisValue =
1124               EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal();
1125         }
1126       }
1127       for (auto *FD : MD->getParent()->fields()) {
1128         if (FD->hasCapturedVLAType()) {
1129           auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD),
1130                                            SourceLocation()).getScalarVal();
1131           auto VAT = FD->getCapturedVLAType();
1132           VLASizeMap[VAT->getSizeExpr()] = ExprArg;
1133         }
1134       }
1135     } else {
1136       // Not in a lambda; just use 'this' from the method.
1137       // FIXME: Should we generate a new load for each use of 'this'?  The
1138       // fast register allocator would be happier...
1139       CXXThisValue = CXXABIThisValue;
1140     }
1141 
1142     // Check the 'this' pointer once per function, if it's available.
1143     if (CXXABIThisValue) {
1144       SanitizerSet SkippedChecks;
1145       SkippedChecks.set(SanitizerKind::ObjectSize, true);
1146       QualType ThisTy = MD->getThisType();
1147 
1148       // If this is the call operator of a lambda with no capture-default, it
1149       // may have a static invoker function, which may call this operator with
1150       // a null 'this' pointer.
1151       if (isLambdaCallOperator(MD) &&
1152           MD->getParent()->getLambdaCaptureDefault() == LCD_None)
1153         SkippedChecks.set(SanitizerKind::Null, true);
1154 
1155       EmitTypeCheck(
1156           isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall : TCK_MemberCall,
1157           Loc, CXXABIThisValue, ThisTy, CXXABIThisAlignment, SkippedChecks);
1158     }
1159   }
1160 
1161   // If any of the arguments have a variably modified type, make sure to
1162   // emit the type size.
1163   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
1164        i != e; ++i) {
1165     const VarDecl *VD = *i;
1166 
1167     // Dig out the type as written from ParmVarDecls; it's unclear whether
1168     // the standard (C99 6.9.1p10) requires this, but we're following the
1169     // precedent set by gcc.
1170     QualType Ty;
1171     if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
1172       Ty = PVD->getOriginalType();
1173     else
1174       Ty = VD->getType();
1175 
1176     if (Ty->isVariablyModifiedType())
1177       EmitVariablyModifiedType(Ty);
1178   }
1179   // Emit a location at the end of the prologue.
1180   if (CGDebugInfo *DI = getDebugInfo())
1181     DI->EmitLocation(Builder, StartLoc);
1182 
1183   // TODO: Do we need to handle this in two places like we do with
1184   // target-features/target-cpu?
1185   if (CurFuncDecl)
1186     if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>())
1187       LargestVectorWidth = VecWidth->getVectorWidth();
1188 }
1189 
1190 void CodeGenFunction::EmitFunctionBody(const Stmt *Body) {
1191   incrementProfileCounter(Body);
1192   if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
1193     EmitCompoundStmtWithoutScope(*S);
1194   else
1195     EmitStmt(Body);
1196 
1197   // This is checked after emitting the function body so we know if there
1198   // are any permitted infinite loops.
1199   if (checkIfFunctionMustProgress())
1200     CurFn->addFnAttr(llvm::Attribute::MustProgress);
1201 }
1202 
1203 /// When instrumenting to collect profile data, the counts for some blocks
1204 /// such as switch cases need to not include the fall-through counts, so
1205 /// emit a branch around the instrumentation code. When not instrumenting,
1206 /// this just calls EmitBlock().
1207 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB,
1208                                                const Stmt *S) {
1209   llvm::BasicBlock *SkipCountBB = nullptr;
1210   if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) {
1211     // When instrumenting for profiling, the fallthrough to certain
1212     // statements needs to skip over the instrumentation code so that we
1213     // get an accurate count.
1214     SkipCountBB = createBasicBlock("skipcount");
1215     EmitBranch(SkipCountBB);
1216   }
1217   EmitBlock(BB);
1218   uint64_t CurrentCount = getCurrentProfileCount();
1219   incrementProfileCounter(S);
1220   setCurrentProfileCount(getCurrentProfileCount() + CurrentCount);
1221   if (SkipCountBB)
1222     EmitBlock(SkipCountBB);
1223 }
1224 
1225 /// Tries to mark the given function nounwind based on the
1226 /// non-existence of any throwing calls within it.  We believe this is
1227 /// lightweight enough to do at -O0.
1228 static void TryMarkNoThrow(llvm::Function *F) {
1229   // LLVM treats 'nounwind' on a function as part of the type, so we
1230   // can't do this on functions that can be overwritten.
1231   if (F->isInterposable()) return;
1232 
1233   for (llvm::BasicBlock &BB : *F)
1234     for (llvm::Instruction &I : BB)
1235       if (I.mayThrow())
1236         return;
1237 
1238   F->setDoesNotThrow();
1239 }
1240 
1241 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD,
1242                                                FunctionArgList &Args) {
1243   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1244   QualType ResTy = FD->getReturnType();
1245 
1246   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
1247   if (MD && MD->isInstance()) {
1248     if (CGM.getCXXABI().HasThisReturn(GD))
1249       ResTy = MD->getThisType();
1250     else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
1251       ResTy = CGM.getContext().VoidPtrTy;
1252     CGM.getCXXABI().buildThisParam(*this, Args);
1253   }
1254 
1255   // The base version of an inheriting constructor whose constructed base is a
1256   // virtual base is not passed any arguments (because it doesn't actually call
1257   // the inherited constructor).
1258   bool PassedParams = true;
1259   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
1260     if (auto Inherited = CD->getInheritedConstructor())
1261       PassedParams =
1262           getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType());
1263 
1264   if (PassedParams) {
1265     for (auto *Param : FD->parameters()) {
1266       Args.push_back(Param);
1267       if (!Param->hasAttr<PassObjectSizeAttr>())
1268         continue;
1269 
1270       auto *Implicit = ImplicitParamDecl::Create(
1271           getContext(), Param->getDeclContext(), Param->getLocation(),
1272           /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other);
1273       SizeArguments[Param] = Implicit;
1274       Args.push_back(Implicit);
1275     }
1276   }
1277 
1278   if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
1279     CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args);
1280 
1281   return ResTy;
1282 }
1283 
1284 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1285                                    const CGFunctionInfo &FnInfo) {
1286   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1287   CurGD = GD;
1288 
1289   FunctionArgList Args;
1290   QualType ResTy = BuildFunctionArgList(GD, Args);
1291 
1292   // Check if we should generate debug info for this function.
1293   if (FD->hasAttr<NoDebugAttr>()) {
1294     // Clear non-distinct debug info that was possibly attached to the function
1295     // due to an earlier declaration without the nodebug attribute
1296     if (Fn)
1297       Fn->setSubprogram(nullptr);
1298     // Disable debug info indefinitely for this function
1299     DebugInfo = nullptr;
1300   }
1301 
1302   // The function might not have a body if we're generating thunks for a
1303   // function declaration.
1304   SourceRange BodyRange;
1305   if (Stmt *Body = FD->getBody())
1306     BodyRange = Body->getSourceRange();
1307   else
1308     BodyRange = FD->getLocation();
1309   CurEHLocation = BodyRange.getEnd();
1310 
1311   // Use the location of the start of the function to determine where
1312   // the function definition is located. By default use the location
1313   // of the declaration as the location for the subprogram. A function
1314   // may lack a declaration in the source code if it is created by code
1315   // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
1316   SourceLocation Loc = FD->getLocation();
1317 
1318   // If this is a function specialization then use the pattern body
1319   // as the location for the function.
1320   if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern())
1321     if (SpecDecl->hasBody(SpecDecl))
1322       Loc = SpecDecl->getLocation();
1323 
1324   Stmt *Body = FD->getBody();
1325 
1326   if (Body) {
1327     // Coroutines always emit lifetime markers.
1328     if (isa<CoroutineBodyStmt>(Body))
1329       ShouldEmitLifetimeMarkers = true;
1330 
1331     // Initialize helper which will detect jumps which can cause invalid
1332     // lifetime markers.
1333     if (ShouldEmitLifetimeMarkers)
1334       Bypasses.Init(Body);
1335   }
1336 
1337   // Emit the standard function prologue.
1338   StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin());
1339 
1340   // Save parameters for coroutine function.
1341   if (Body && isa_and_nonnull<CoroutineBodyStmt>(Body))
1342     for (const auto *ParamDecl : FD->parameters())
1343       FnArgs.push_back(ParamDecl);
1344 
1345   // Generate the body of the function.
1346   PGO.assignRegionCounters(GD, CurFn);
1347   if (isa<CXXDestructorDecl>(FD))
1348     EmitDestructorBody(Args);
1349   else if (isa<CXXConstructorDecl>(FD))
1350     EmitConstructorBody(Args);
1351   else if (getLangOpts().CUDA &&
1352            !getLangOpts().CUDAIsDevice &&
1353            FD->hasAttr<CUDAGlobalAttr>())
1354     CGM.getCUDARuntime().emitDeviceStub(*this, Args);
1355   else if (isa<CXXMethodDecl>(FD) &&
1356            cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
1357     // The lambda static invoker function is special, because it forwards or
1358     // clones the body of the function call operator (but is actually static).
1359     EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD));
1360   } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
1361              (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
1362               cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
1363     // Implicit copy-assignment gets the same special treatment as implicit
1364     // copy-constructors.
1365     emitImplicitAssignmentOperatorBody(Args);
1366   } else if (Body) {
1367     EmitFunctionBody(Body);
1368   } else
1369     llvm_unreachable("no definition for emitted function");
1370 
1371   // C++11 [stmt.return]p2:
1372   //   Flowing off the end of a function [...] results in undefined behavior in
1373   //   a value-returning function.
1374   // C11 6.9.1p12:
1375   //   If the '}' that terminates a function is reached, and the value of the
1376   //   function call is used by the caller, the behavior is undefined.
1377   if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock &&
1378       !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) {
1379     bool ShouldEmitUnreachable =
1380         CGM.getCodeGenOpts().StrictReturn ||
1381         !CGM.MayDropFunctionReturn(FD->getASTContext(), FD->getReturnType());
1382     if (SanOpts.has(SanitizerKind::Return)) {
1383       SanitizerScope SanScope(this);
1384       llvm::Value *IsFalse = Builder.getFalse();
1385       EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return),
1386                 SanitizerHandler::MissingReturn,
1387                 EmitCheckSourceLocation(FD->getLocation()), None);
1388     } else if (ShouldEmitUnreachable) {
1389       if (CGM.getCodeGenOpts().OptimizationLevel == 0)
1390         EmitTrapCall(llvm::Intrinsic::trap);
1391     }
1392     if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) {
1393       Builder.CreateUnreachable();
1394       Builder.ClearInsertionPoint();
1395     }
1396   }
1397 
1398   // Emit the standard function epilogue.
1399   FinishFunction(BodyRange.getEnd());
1400 
1401   // If we haven't marked the function nothrow through other means, do
1402   // a quick pass now to see if we can.
1403   if (!CurFn->doesNotThrow())
1404     TryMarkNoThrow(CurFn);
1405 }
1406 
1407 /// ContainsLabel - Return true if the statement contains a label in it.  If
1408 /// this statement is not executed normally, it not containing a label means
1409 /// that we can just remove the code.
1410 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
1411   // Null statement, not a label!
1412   if (!S) return false;
1413 
1414   // If this is a label, we have to emit the code, consider something like:
1415   // if (0) {  ...  foo:  bar(); }  goto foo;
1416   //
1417   // TODO: If anyone cared, we could track __label__'s, since we know that you
1418   // can't jump to one from outside their declared region.
1419   if (isa<LabelStmt>(S))
1420     return true;
1421 
1422   // If this is a case/default statement, and we haven't seen a switch, we have
1423   // to emit the code.
1424   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
1425     return true;
1426 
1427   // If this is a switch statement, we want to ignore cases below it.
1428   if (isa<SwitchStmt>(S))
1429     IgnoreCaseStmts = true;
1430 
1431   // Scan subexpressions for verboten labels.
1432   for (const Stmt *SubStmt : S->children())
1433     if (ContainsLabel(SubStmt, IgnoreCaseStmts))
1434       return true;
1435 
1436   return false;
1437 }
1438 
1439 /// containsBreak - Return true if the statement contains a break out of it.
1440 /// If the statement (recursively) contains a switch or loop with a break
1441 /// inside of it, this is fine.
1442 bool CodeGenFunction::containsBreak(const Stmt *S) {
1443   // Null statement, not a label!
1444   if (!S) return false;
1445 
1446   // If this is a switch or loop that defines its own break scope, then we can
1447   // include it and anything inside of it.
1448   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
1449       isa<ForStmt>(S))
1450     return false;
1451 
1452   if (isa<BreakStmt>(S))
1453     return true;
1454 
1455   // Scan subexpressions for verboten breaks.
1456   for (const Stmt *SubStmt : S->children())
1457     if (containsBreak(SubStmt))
1458       return true;
1459 
1460   return false;
1461 }
1462 
1463 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) {
1464   if (!S) return false;
1465 
1466   // Some statement kinds add a scope and thus never add a decl to the current
1467   // scope. Note, this list is longer than the list of statements that might
1468   // have an unscoped decl nested within them, but this way is conservatively
1469   // correct even if more statement kinds are added.
1470   if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) ||
1471       isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) ||
1472       isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) ||
1473       isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S))
1474     return false;
1475 
1476   if (isa<DeclStmt>(S))
1477     return true;
1478 
1479   for (const Stmt *SubStmt : S->children())
1480     if (mightAddDeclToScope(SubStmt))
1481       return true;
1482 
1483   return false;
1484 }
1485 
1486 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1487 /// to a constant, or if it does but contains a label, return false.  If it
1488 /// constant folds return true and set the boolean result in Result.
1489 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1490                                                    bool &ResultBool,
1491                                                    bool AllowLabels) {
1492   llvm::APSInt ResultInt;
1493   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels))
1494     return false;
1495 
1496   ResultBool = ResultInt.getBoolValue();
1497   return true;
1498 }
1499 
1500 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1501 /// to a constant, or if it does but contains a label, return false.  If it
1502 /// constant folds return true and set the folded value.
1503 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1504                                                    llvm::APSInt &ResultInt,
1505                                                    bool AllowLabels) {
1506   // FIXME: Rename and handle conversion of other evaluatable things
1507   // to bool.
1508   Expr::EvalResult Result;
1509   if (!Cond->EvaluateAsInt(Result, getContext()))
1510     return false;  // Not foldable, not integer or not fully evaluatable.
1511 
1512   llvm::APSInt Int = Result.Val.getInt();
1513   if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond))
1514     return false;  // Contains a label.
1515 
1516   ResultInt = Int;
1517   return true;
1518 }
1519 
1520 /// Determine whether the given condition is an instrumentable condition
1521 /// (i.e. no "&&" or "||").
1522 bool CodeGenFunction::isInstrumentedCondition(const Expr *C) {
1523   // Bypass simplistic logical-NOT operator before determining whether the
1524   // condition contains any other logical operator.
1525   if (const UnaryOperator *UnOp = dyn_cast<UnaryOperator>(C->IgnoreParens()))
1526     if (UnOp->getOpcode() == UO_LNot)
1527       C = UnOp->getSubExpr();
1528 
1529   const BinaryOperator *BOp = dyn_cast<BinaryOperator>(C->IgnoreParens());
1530   return (!BOp || !BOp->isLogicalOp());
1531 }
1532 
1533 /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that
1534 /// increments a profile counter based on the semantics of the given logical
1535 /// operator opcode.  This is used to instrument branch condition coverage for
1536 /// logical operators.
1537 void CodeGenFunction::EmitBranchToCounterBlock(
1538     const Expr *Cond, BinaryOperator::Opcode LOp, llvm::BasicBlock *TrueBlock,
1539     llvm::BasicBlock *FalseBlock, uint64_t TrueCount /* = 0 */,
1540     Stmt::Likelihood LH /* =None */, const Expr *CntrIdx /* = nullptr */) {
1541   // If not instrumenting, just emit a branch.
1542   bool InstrumentRegions = CGM.getCodeGenOpts().hasProfileClangInstr();
1543   if (!InstrumentRegions || !isInstrumentedCondition(Cond))
1544     return EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount, LH);
1545 
1546   llvm::BasicBlock *ThenBlock = NULL;
1547   llvm::BasicBlock *ElseBlock = NULL;
1548   llvm::BasicBlock *NextBlock = NULL;
1549 
1550   // Create the block we'll use to increment the appropriate counter.
1551   llvm::BasicBlock *CounterIncrBlock = createBasicBlock("lop.rhscnt");
1552 
1553   // Set block pointers according to Logical-AND (BO_LAnd) semantics. This
1554   // means we need to evaluate the condition and increment the counter on TRUE:
1555   //
1556   // if (Cond)
1557   //   goto CounterIncrBlock;
1558   // else
1559   //   goto FalseBlock;
1560   //
1561   // CounterIncrBlock:
1562   //   Counter++;
1563   //   goto TrueBlock;
1564 
1565   if (LOp == BO_LAnd) {
1566     ThenBlock = CounterIncrBlock;
1567     ElseBlock = FalseBlock;
1568     NextBlock = TrueBlock;
1569   }
1570 
1571   // Set block pointers according to Logical-OR (BO_LOr) semantics. This means
1572   // we need to evaluate the condition and increment the counter on FALSE:
1573   //
1574   // if (Cond)
1575   //   goto TrueBlock;
1576   // else
1577   //   goto CounterIncrBlock;
1578   //
1579   // CounterIncrBlock:
1580   //   Counter++;
1581   //   goto FalseBlock;
1582 
1583   else if (LOp == BO_LOr) {
1584     ThenBlock = TrueBlock;
1585     ElseBlock = CounterIncrBlock;
1586     NextBlock = FalseBlock;
1587   } else {
1588     llvm_unreachable("Expected Opcode must be that of a Logical Operator");
1589   }
1590 
1591   // Emit Branch based on condition.
1592   EmitBranchOnBoolExpr(Cond, ThenBlock, ElseBlock, TrueCount, LH);
1593 
1594   // Emit the block containing the counter increment(s).
1595   EmitBlock(CounterIncrBlock);
1596 
1597   // Increment corresponding counter; if index not provided, use Cond as index.
1598   incrementProfileCounter(CntrIdx ? CntrIdx : Cond);
1599 
1600   // Go to the next block.
1601   EmitBranch(NextBlock);
1602 }
1603 
1604 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
1605 /// statement) to the specified blocks.  Based on the condition, this might try
1606 /// to simplify the codegen of the conditional based on the branch.
1607 /// \param LH The value of the likelihood attribute on the True branch.
1608 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
1609                                            llvm::BasicBlock *TrueBlock,
1610                                            llvm::BasicBlock *FalseBlock,
1611                                            uint64_t TrueCount,
1612                                            Stmt::Likelihood LH) {
1613   Cond = Cond->IgnoreParens();
1614 
1615   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
1616 
1617     // Handle X && Y in a condition.
1618     if (CondBOp->getOpcode() == BO_LAnd) {
1619       // If we have "1 && X", simplify the code.  "0 && X" would have constant
1620       // folded if the case was simple enough.
1621       bool ConstantBool = false;
1622       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1623           ConstantBool) {
1624         // br(1 && X) -> br(X).
1625         incrementProfileCounter(CondBOp);
1626         return EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock,
1627                                         FalseBlock, TrueCount, LH);
1628       }
1629 
1630       // If we have "X && 1", simplify the code to use an uncond branch.
1631       // "X && 0" would have been constant folded to 0.
1632       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1633           ConstantBool) {
1634         // br(X && 1) -> br(X).
1635         return EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LAnd, TrueBlock,
1636                                         FalseBlock, TrueCount, LH, CondBOp);
1637       }
1638 
1639       // Emit the LHS as a conditional.  If the LHS conditional is false, we
1640       // want to jump to the FalseBlock.
1641       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
1642       // The counter tells us how often we evaluate RHS, and all of TrueCount
1643       // can be propagated to that branch.
1644       uint64_t RHSCount = getProfileCount(CondBOp->getRHS());
1645 
1646       ConditionalEvaluation eval(*this);
1647       {
1648         ApplyDebugLocation DL(*this, Cond);
1649         // Propagate the likelihood attribute like __builtin_expect
1650         // __builtin_expect(X && Y, 1) -> X and Y are likely
1651         // __builtin_expect(X && Y, 0) -> only Y is unlikely
1652         EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount,
1653                              LH == Stmt::LH_Unlikely ? Stmt::LH_None : LH);
1654         EmitBlock(LHSTrue);
1655       }
1656 
1657       incrementProfileCounter(CondBOp);
1658       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1659 
1660       // Any temporaries created here are conditional.
1661       eval.begin(*this);
1662       EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock,
1663                                FalseBlock, TrueCount, LH);
1664       eval.end(*this);
1665 
1666       return;
1667     }
1668 
1669     if (CondBOp->getOpcode() == BO_LOr) {
1670       // If we have "0 || X", simplify the code.  "1 || X" would have constant
1671       // folded if the case was simple enough.
1672       bool ConstantBool = false;
1673       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1674           !ConstantBool) {
1675         // br(0 || X) -> br(X).
1676         incrementProfileCounter(CondBOp);
1677         return EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock,
1678                                         FalseBlock, TrueCount, LH);
1679       }
1680 
1681       // If we have "X || 0", simplify the code to use an uncond branch.
1682       // "X || 1" would have been constant folded to 1.
1683       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1684           !ConstantBool) {
1685         // br(X || 0) -> br(X).
1686         return EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LOr, TrueBlock,
1687                                         FalseBlock, TrueCount, LH, CondBOp);
1688       }
1689 
1690       // Emit the LHS as a conditional.  If the LHS conditional is true, we
1691       // want to jump to the TrueBlock.
1692       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
1693       // We have the count for entry to the RHS and for the whole expression
1694       // being true, so we can divy up True count between the short circuit and
1695       // the RHS.
1696       uint64_t LHSCount =
1697           getCurrentProfileCount() - getProfileCount(CondBOp->getRHS());
1698       uint64_t RHSCount = TrueCount - LHSCount;
1699 
1700       ConditionalEvaluation eval(*this);
1701       {
1702         // Propagate the likelihood attribute like __builtin_expect
1703         // __builtin_expect(X || Y, 1) -> only Y is likely
1704         // __builtin_expect(X || Y, 0) -> both X and Y are unlikely
1705         ApplyDebugLocation DL(*this, Cond);
1706         EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount,
1707                              LH == Stmt::LH_Likely ? Stmt::LH_None : LH);
1708         EmitBlock(LHSFalse);
1709       }
1710 
1711       incrementProfileCounter(CondBOp);
1712       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1713 
1714       // Any temporaries created here are conditional.
1715       eval.begin(*this);
1716       EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, FalseBlock,
1717                                RHSCount, LH);
1718 
1719       eval.end(*this);
1720 
1721       return;
1722     }
1723   }
1724 
1725   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
1726     // br(!x, t, f) -> br(x, f, t)
1727     if (CondUOp->getOpcode() == UO_LNot) {
1728       // Negate the count.
1729       uint64_t FalseCount = getCurrentProfileCount() - TrueCount;
1730       // The values of the enum are chosen to make this negation possible.
1731       LH = static_cast<Stmt::Likelihood>(-LH);
1732       // Negate the condition and swap the destination blocks.
1733       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock,
1734                                   FalseCount, LH);
1735     }
1736   }
1737 
1738   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
1739     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
1740     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
1741     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
1742 
1743     // The ConditionalOperator itself has no likelihood information for its
1744     // true and false branches. This matches the behavior of __builtin_expect.
1745     ConditionalEvaluation cond(*this);
1746     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock,
1747                          getProfileCount(CondOp), Stmt::LH_None);
1748 
1749     // When computing PGO branch weights, we only know the overall count for
1750     // the true block. This code is essentially doing tail duplication of the
1751     // naive code-gen, introducing new edges for which counts are not
1752     // available. Divide the counts proportionally between the LHS and RHS of
1753     // the conditional operator.
1754     uint64_t LHSScaledTrueCount = 0;
1755     if (TrueCount) {
1756       double LHSRatio =
1757           getProfileCount(CondOp) / (double)getCurrentProfileCount();
1758       LHSScaledTrueCount = TrueCount * LHSRatio;
1759     }
1760 
1761     cond.begin(*this);
1762     EmitBlock(LHSBlock);
1763     incrementProfileCounter(CondOp);
1764     {
1765       ApplyDebugLocation DL(*this, Cond);
1766       EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock,
1767                            LHSScaledTrueCount, LH);
1768     }
1769     cond.end(*this);
1770 
1771     cond.begin(*this);
1772     EmitBlock(RHSBlock);
1773     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock,
1774                          TrueCount - LHSScaledTrueCount, LH);
1775     cond.end(*this);
1776 
1777     return;
1778   }
1779 
1780   if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
1781     // Conditional operator handling can give us a throw expression as a
1782     // condition for a case like:
1783     //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
1784     // Fold this to:
1785     //   br(c, throw x, br(y, t, f))
1786     EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
1787     return;
1788   }
1789 
1790   // Emit the code with the fully general case.
1791   llvm::Value *CondV;
1792   {
1793     ApplyDebugLocation DL(*this, Cond);
1794     CondV = EvaluateExprAsBool(Cond);
1795   }
1796 
1797   llvm::MDNode *Weights = nullptr;
1798   llvm::MDNode *Unpredictable = nullptr;
1799 
1800   // If the branch has a condition wrapped by __builtin_unpredictable,
1801   // create metadata that specifies that the branch is unpredictable.
1802   // Don't bother if not optimizing because that metadata would not be used.
1803   auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts());
1804   if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
1805     auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
1806     if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
1807       llvm::MDBuilder MDHelper(getLLVMContext());
1808       Unpredictable = MDHelper.createUnpredictable();
1809     }
1810   }
1811 
1812   // If there is a Likelihood knowledge for the cond, lower it.
1813   // Note that if not optimizing this won't emit anything.
1814   llvm::Value *NewCondV = emitCondLikelihoodViaExpectIntrinsic(CondV, LH);
1815   if (CondV != NewCondV)
1816     CondV = NewCondV;
1817   else {
1818     // Otherwise, lower profile counts. Note that we do this even at -O0.
1819     uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount);
1820     Weights = createProfileWeights(TrueCount, CurrentCount - TrueCount);
1821   }
1822 
1823   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable);
1824 }
1825 
1826 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1827 /// specified stmt yet.
1828 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
1829   CGM.ErrorUnsupported(S, Type);
1830 }
1831 
1832 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
1833 /// variable-length array whose elements have a non-zero bit-pattern.
1834 ///
1835 /// \param baseType the inner-most element type of the array
1836 /// \param src - a char* pointing to the bit-pattern for a single
1837 /// base element of the array
1838 /// \param sizeInChars - the total size of the VLA, in chars
1839 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
1840                                Address dest, Address src,
1841                                llvm::Value *sizeInChars) {
1842   CGBuilderTy &Builder = CGF.Builder;
1843 
1844   CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType);
1845   llvm::Value *baseSizeInChars
1846     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity());
1847 
1848   Address begin =
1849     Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin");
1850   llvm::Value *end = Builder.CreateInBoundsGEP(
1851       begin.getElementType(), begin.getPointer(), sizeInChars, "vla.end");
1852 
1853   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
1854   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
1855   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
1856 
1857   // Make a loop over the VLA.  C99 guarantees that the VLA element
1858   // count must be nonzero.
1859   CGF.EmitBlock(loopBB);
1860 
1861   llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur");
1862   cur->addIncoming(begin.getPointer(), originBB);
1863 
1864   CharUnits curAlign =
1865     dest.getAlignment().alignmentOfArrayElement(baseSize);
1866 
1867   // memcpy the individual element bit-pattern.
1868   Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars,
1869                        /*volatile*/ false);
1870 
1871   // Go to the next element.
1872   llvm::Value *next =
1873     Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next");
1874 
1875   // Leave if that's the end of the VLA.
1876   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
1877   Builder.CreateCondBr(done, contBB, loopBB);
1878   cur->addIncoming(next, loopBB);
1879 
1880   CGF.EmitBlock(contBB);
1881 }
1882 
1883 void
1884 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) {
1885   // Ignore empty classes in C++.
1886   if (getLangOpts().CPlusPlus) {
1887     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1888       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
1889         return;
1890     }
1891   }
1892 
1893   // Cast the dest ptr to the appropriate i8 pointer type.
1894   if (DestPtr.getElementType() != Int8Ty)
1895     DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty);
1896 
1897   // Get size and alignment info for this aggregate.
1898   CharUnits size = getContext().getTypeSizeInChars(Ty);
1899 
1900   llvm::Value *SizeVal;
1901   const VariableArrayType *vla;
1902 
1903   // Don't bother emitting a zero-byte memset.
1904   if (size.isZero()) {
1905     // But note that getTypeInfo returns 0 for a VLA.
1906     if (const VariableArrayType *vlaType =
1907           dyn_cast_or_null<VariableArrayType>(
1908                                           getContext().getAsArrayType(Ty))) {
1909       auto VlaSize = getVLASize(vlaType);
1910       SizeVal = VlaSize.NumElts;
1911       CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type);
1912       if (!eltSize.isOne())
1913         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
1914       vla = vlaType;
1915     } else {
1916       return;
1917     }
1918   } else {
1919     SizeVal = CGM.getSize(size);
1920     vla = nullptr;
1921   }
1922 
1923   // If the type contains a pointer to data member we can't memset it to zero.
1924   // Instead, create a null constant and copy it to the destination.
1925   // TODO: there are other patterns besides zero that we can usefully memset,
1926   // like -1, which happens to be the pattern used by member-pointers.
1927   if (!CGM.getTypes().isZeroInitializable(Ty)) {
1928     // For a VLA, emit a single element, then splat that over the VLA.
1929     if (vla) Ty = getContext().getBaseElementType(vla);
1930 
1931     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
1932 
1933     llvm::GlobalVariable *NullVariable =
1934       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
1935                                /*isConstant=*/true,
1936                                llvm::GlobalVariable::PrivateLinkage,
1937                                NullConstant, Twine());
1938     CharUnits NullAlign = DestPtr.getAlignment();
1939     NullVariable->setAlignment(NullAlign.getAsAlign());
1940     Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()),
1941                    NullAlign);
1942 
1943     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
1944 
1945     // Get and call the appropriate llvm.memcpy overload.
1946     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false);
1947     return;
1948   }
1949 
1950   // Otherwise, just memset the whole thing to zero.  This is legal
1951   // because in LLVM, all default initializers (other than the ones we just
1952   // handled above) are guaranteed to have a bit pattern of all zeros.
1953   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false);
1954 }
1955 
1956 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
1957   // Make sure that there is a block for the indirect goto.
1958   if (!IndirectBranch)
1959     GetIndirectGotoBlock();
1960 
1961   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
1962 
1963   // Make sure the indirect branch includes all of the address-taken blocks.
1964   IndirectBranch->addDestination(BB);
1965   return llvm::BlockAddress::get(CurFn, BB);
1966 }
1967 
1968 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
1969   // If we already made the indirect branch for indirect goto, return its block.
1970   if (IndirectBranch) return IndirectBranch->getParent();
1971 
1972   CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto"));
1973 
1974   // Create the PHI node that indirect gotos will add entries to.
1975   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
1976                                               "indirect.goto.dest");
1977 
1978   // Create the indirect branch instruction.
1979   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
1980   return IndirectBranch->getParent();
1981 }
1982 
1983 /// Computes the length of an array in elements, as well as the base
1984 /// element type and a properly-typed first element pointer.
1985 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
1986                                               QualType &baseType,
1987                                               Address &addr) {
1988   const ArrayType *arrayType = origArrayType;
1989 
1990   // If it's a VLA, we have to load the stored size.  Note that
1991   // this is the size of the VLA in bytes, not its size in elements.
1992   llvm::Value *numVLAElements = nullptr;
1993   if (isa<VariableArrayType>(arrayType)) {
1994     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts;
1995 
1996     // Walk into all VLAs.  This doesn't require changes to addr,
1997     // which has type T* where T is the first non-VLA element type.
1998     do {
1999       QualType elementType = arrayType->getElementType();
2000       arrayType = getContext().getAsArrayType(elementType);
2001 
2002       // If we only have VLA components, 'addr' requires no adjustment.
2003       if (!arrayType) {
2004         baseType = elementType;
2005         return numVLAElements;
2006       }
2007     } while (isa<VariableArrayType>(arrayType));
2008 
2009     // We get out here only if we find a constant array type
2010     // inside the VLA.
2011   }
2012 
2013   // We have some number of constant-length arrays, so addr should
2014   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
2015   // down to the first element of addr.
2016   SmallVector<llvm::Value*, 8> gepIndices;
2017 
2018   // GEP down to the array type.
2019   llvm::ConstantInt *zero = Builder.getInt32(0);
2020   gepIndices.push_back(zero);
2021 
2022   uint64_t countFromCLAs = 1;
2023   QualType eltType;
2024 
2025   llvm::ArrayType *llvmArrayType =
2026     dyn_cast<llvm::ArrayType>(addr.getElementType());
2027   while (llvmArrayType) {
2028     assert(isa<ConstantArrayType>(arrayType));
2029     assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
2030              == llvmArrayType->getNumElements());
2031 
2032     gepIndices.push_back(zero);
2033     countFromCLAs *= llvmArrayType->getNumElements();
2034     eltType = arrayType->getElementType();
2035 
2036     llvmArrayType =
2037       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
2038     arrayType = getContext().getAsArrayType(arrayType->getElementType());
2039     assert((!llvmArrayType || arrayType) &&
2040            "LLVM and Clang types are out-of-synch");
2041   }
2042 
2043   if (arrayType) {
2044     // From this point onwards, the Clang array type has been emitted
2045     // as some other type (probably a packed struct). Compute the array
2046     // size, and just emit the 'begin' expression as a bitcast.
2047     while (arrayType) {
2048       countFromCLAs *=
2049           cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
2050       eltType = arrayType->getElementType();
2051       arrayType = getContext().getAsArrayType(eltType);
2052     }
2053 
2054     llvm::Type *baseType = ConvertType(eltType);
2055     addr = Builder.CreateElementBitCast(addr, baseType, "array.begin");
2056   } else {
2057     // Create the actual GEP.
2058     addr = Address(Builder.CreateInBoundsGEP(
2059         addr.getElementType(), addr.getPointer(), gepIndices, "array.begin"),
2060         addr.getAlignment());
2061   }
2062 
2063   baseType = eltType;
2064 
2065   llvm::Value *numElements
2066     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
2067 
2068   // If we had any VLA dimensions, factor them in.
2069   if (numVLAElements)
2070     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
2071 
2072   return numElements;
2073 }
2074 
2075 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) {
2076   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
2077   assert(vla && "type was not a variable array type!");
2078   return getVLASize(vla);
2079 }
2080 
2081 CodeGenFunction::VlaSizePair
2082 CodeGenFunction::getVLASize(const VariableArrayType *type) {
2083   // The number of elements so far; always size_t.
2084   llvm::Value *numElements = nullptr;
2085 
2086   QualType elementType;
2087   do {
2088     elementType = type->getElementType();
2089     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
2090     assert(vlaSize && "no size for VLA!");
2091     assert(vlaSize->getType() == SizeTy);
2092 
2093     if (!numElements) {
2094       numElements = vlaSize;
2095     } else {
2096       // It's undefined behavior if this wraps around, so mark it that way.
2097       // FIXME: Teach -fsanitize=undefined to trap this.
2098       numElements = Builder.CreateNUWMul(numElements, vlaSize);
2099     }
2100   } while ((type = getContext().getAsVariableArrayType(elementType)));
2101 
2102   return { numElements, elementType };
2103 }
2104 
2105 CodeGenFunction::VlaSizePair
2106 CodeGenFunction::getVLAElements1D(QualType type) {
2107   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
2108   assert(vla && "type was not a variable array type!");
2109   return getVLAElements1D(vla);
2110 }
2111 
2112 CodeGenFunction::VlaSizePair
2113 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) {
2114   llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()];
2115   assert(VlaSize && "no size for VLA!");
2116   assert(VlaSize->getType() == SizeTy);
2117   return { VlaSize, Vla->getElementType() };
2118 }
2119 
2120 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
2121   assert(type->isVariablyModifiedType() &&
2122          "Must pass variably modified type to EmitVLASizes!");
2123 
2124   EnsureInsertPoint();
2125 
2126   // We're going to walk down into the type and look for VLA
2127   // expressions.
2128   do {
2129     assert(type->isVariablyModifiedType());
2130 
2131     const Type *ty = type.getTypePtr();
2132     switch (ty->getTypeClass()) {
2133 
2134 #define TYPE(Class, Base)
2135 #define ABSTRACT_TYPE(Class, Base)
2136 #define NON_CANONICAL_TYPE(Class, Base)
2137 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
2138 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
2139 #include "clang/AST/TypeNodes.inc"
2140       llvm_unreachable("unexpected dependent type!");
2141 
2142     // These types are never variably-modified.
2143     case Type::Builtin:
2144     case Type::Complex:
2145     case Type::Vector:
2146     case Type::ExtVector:
2147     case Type::ConstantMatrix:
2148     case Type::Record:
2149     case Type::Enum:
2150     case Type::Elaborated:
2151     case Type::TemplateSpecialization:
2152     case Type::ObjCTypeParam:
2153     case Type::ObjCObject:
2154     case Type::ObjCInterface:
2155     case Type::ObjCObjectPointer:
2156     case Type::ExtInt:
2157       llvm_unreachable("type class is never variably-modified!");
2158 
2159     case Type::Adjusted:
2160       type = cast<AdjustedType>(ty)->getAdjustedType();
2161       break;
2162 
2163     case Type::Decayed:
2164       type = cast<DecayedType>(ty)->getPointeeType();
2165       break;
2166 
2167     case Type::Pointer:
2168       type = cast<PointerType>(ty)->getPointeeType();
2169       break;
2170 
2171     case Type::BlockPointer:
2172       type = cast<BlockPointerType>(ty)->getPointeeType();
2173       break;
2174 
2175     case Type::LValueReference:
2176     case Type::RValueReference:
2177       type = cast<ReferenceType>(ty)->getPointeeType();
2178       break;
2179 
2180     case Type::MemberPointer:
2181       type = cast<MemberPointerType>(ty)->getPointeeType();
2182       break;
2183 
2184     case Type::ConstantArray:
2185     case Type::IncompleteArray:
2186       // Losing element qualification here is fine.
2187       type = cast<ArrayType>(ty)->getElementType();
2188       break;
2189 
2190     case Type::VariableArray: {
2191       // Losing element qualification here is fine.
2192       const VariableArrayType *vat = cast<VariableArrayType>(ty);
2193 
2194       // Unknown size indication requires no size computation.
2195       // Otherwise, evaluate and record it.
2196       if (const Expr *size = vat->getSizeExpr()) {
2197         // It's possible that we might have emitted this already,
2198         // e.g. with a typedef and a pointer to it.
2199         llvm::Value *&entry = VLASizeMap[size];
2200         if (!entry) {
2201           llvm::Value *Size = EmitScalarExpr(size);
2202 
2203           // C11 6.7.6.2p5:
2204           //   If the size is an expression that is not an integer constant
2205           //   expression [...] each time it is evaluated it shall have a value
2206           //   greater than zero.
2207           if (SanOpts.has(SanitizerKind::VLABound) &&
2208               size->getType()->isSignedIntegerType()) {
2209             SanitizerScope SanScope(this);
2210             llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType());
2211             llvm::Constant *StaticArgs[] = {
2212                 EmitCheckSourceLocation(size->getBeginLoc()),
2213                 EmitCheckTypeDescriptor(size->getType())};
2214             EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero),
2215                                      SanitizerKind::VLABound),
2216                       SanitizerHandler::VLABoundNotPositive, StaticArgs, Size);
2217           }
2218 
2219           // Always zexting here would be wrong if it weren't
2220           // undefined behavior to have a negative bound.
2221           entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false);
2222         }
2223       }
2224       type = vat->getElementType();
2225       break;
2226     }
2227 
2228     case Type::FunctionProto:
2229     case Type::FunctionNoProto:
2230       type = cast<FunctionType>(ty)->getReturnType();
2231       break;
2232 
2233     case Type::Paren:
2234     case Type::TypeOf:
2235     case Type::UnaryTransform:
2236     case Type::Attributed:
2237     case Type::SubstTemplateTypeParm:
2238     case Type::MacroQualified:
2239       // Keep walking after single level desugaring.
2240       type = type.getSingleStepDesugaredType(getContext());
2241       break;
2242 
2243     case Type::Typedef:
2244     case Type::Decltype:
2245     case Type::Auto:
2246     case Type::DeducedTemplateSpecialization:
2247       // Stop walking: nothing to do.
2248       return;
2249 
2250     case Type::TypeOfExpr:
2251       // Stop walking: emit typeof expression.
2252       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
2253       return;
2254 
2255     case Type::Atomic:
2256       type = cast<AtomicType>(ty)->getValueType();
2257       break;
2258 
2259     case Type::Pipe:
2260       type = cast<PipeType>(ty)->getElementType();
2261       break;
2262     }
2263   } while (type->isVariablyModifiedType());
2264 }
2265 
2266 Address CodeGenFunction::EmitVAListRef(const Expr* E) {
2267   if (getContext().getBuiltinVaListType()->isArrayType())
2268     return EmitPointerWithAlignment(E);
2269   return EmitLValue(E).getAddress(*this);
2270 }
2271 
2272 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) {
2273   return EmitLValue(E).getAddress(*this);
2274 }
2275 
2276 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
2277                                               const APValue &Init) {
2278   assert(Init.hasValue() && "Invalid DeclRefExpr initializer!");
2279   if (CGDebugInfo *Dbg = getDebugInfo())
2280     if (CGM.getCodeGenOpts().hasReducedDebugInfo())
2281       Dbg->EmitGlobalVariable(E->getDecl(), Init);
2282 }
2283 
2284 CodeGenFunction::PeepholeProtection
2285 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
2286   // At the moment, the only aggressive peephole we do in IR gen
2287   // is trunc(zext) folding, but if we add more, we can easily
2288   // extend this protection.
2289 
2290   if (!rvalue.isScalar()) return PeepholeProtection();
2291   llvm::Value *value = rvalue.getScalarVal();
2292   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
2293 
2294   // Just make an extra bitcast.
2295   assert(HaveInsertPoint());
2296   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
2297                                                   Builder.GetInsertBlock());
2298 
2299   PeepholeProtection protection;
2300   protection.Inst = inst;
2301   return protection;
2302 }
2303 
2304 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
2305   if (!protection.Inst) return;
2306 
2307   // In theory, we could try to duplicate the peepholes now, but whatever.
2308   protection.Inst->eraseFromParent();
2309 }
2310 
2311 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue,
2312                                               QualType Ty, SourceLocation Loc,
2313                                               SourceLocation AssumptionLoc,
2314                                               llvm::Value *Alignment,
2315                                               llvm::Value *OffsetValue) {
2316   if (Alignment->getType() != IntPtrTy)
2317     Alignment =
2318         Builder.CreateIntCast(Alignment, IntPtrTy, false, "casted.align");
2319   if (OffsetValue && OffsetValue->getType() != IntPtrTy)
2320     OffsetValue =
2321         Builder.CreateIntCast(OffsetValue, IntPtrTy, true, "casted.offset");
2322   llvm::Value *TheCheck = nullptr;
2323   if (SanOpts.has(SanitizerKind::Alignment)) {
2324     llvm::Value *PtrIntValue =
2325         Builder.CreatePtrToInt(PtrValue, IntPtrTy, "ptrint");
2326 
2327     if (OffsetValue) {
2328       bool IsOffsetZero = false;
2329       if (const auto *CI = dyn_cast<llvm::ConstantInt>(OffsetValue))
2330         IsOffsetZero = CI->isZero();
2331 
2332       if (!IsOffsetZero)
2333         PtrIntValue = Builder.CreateSub(PtrIntValue, OffsetValue, "offsetptr");
2334     }
2335 
2336     llvm::Value *Zero = llvm::ConstantInt::get(IntPtrTy, 0);
2337     llvm::Value *Mask =
2338         Builder.CreateSub(Alignment, llvm::ConstantInt::get(IntPtrTy, 1));
2339     llvm::Value *MaskedPtr = Builder.CreateAnd(PtrIntValue, Mask, "maskedptr");
2340     TheCheck = Builder.CreateICmpEQ(MaskedPtr, Zero, "maskcond");
2341   }
2342   llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption(
2343       CGM.getDataLayout(), PtrValue, Alignment, OffsetValue);
2344 
2345   if (!SanOpts.has(SanitizerKind::Alignment))
2346     return;
2347   emitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2348                                OffsetValue, TheCheck, Assumption);
2349 }
2350 
2351 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue,
2352                                               const Expr *E,
2353                                               SourceLocation AssumptionLoc,
2354                                               llvm::Value *Alignment,
2355                                               llvm::Value *OffsetValue) {
2356   if (auto *CE = dyn_cast<CastExpr>(E))
2357     E = CE->getSubExprAsWritten();
2358   QualType Ty = E->getType();
2359   SourceLocation Loc = E->getExprLoc();
2360 
2361   emitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2362                           OffsetValue);
2363 }
2364 
2365 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn,
2366                                                  llvm::Value *AnnotatedVal,
2367                                                  StringRef AnnotationStr,
2368                                                  SourceLocation Location,
2369                                                  const AnnotateAttr *Attr) {
2370   SmallVector<llvm::Value *, 5> Args = {
2371       AnnotatedVal,
2372       Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
2373       Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
2374       CGM.EmitAnnotationLineNo(Location),
2375   };
2376   if (Attr)
2377     Args.push_back(CGM.EmitAnnotationArgs(Attr));
2378   return Builder.CreateCall(AnnotationFn, Args);
2379 }
2380 
2381 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
2382   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2383   // FIXME We create a new bitcast for every annotation because that's what
2384   // llvm-gcc was doing.
2385   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2386     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
2387                        Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
2388                        I->getAnnotation(), D->getLocation(), I);
2389 }
2390 
2391 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
2392                                               Address Addr) {
2393   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2394   llvm::Value *V = Addr.getPointer();
2395   llvm::Type *VTy = V->getType();
2396   llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
2397                                     CGM.Int8PtrTy);
2398 
2399   for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
2400     // FIXME Always emit the cast inst so we can differentiate between
2401     // annotation on the first field of a struct and annotation on the struct
2402     // itself.
2403     if (VTy != CGM.Int8PtrTy)
2404       V = Builder.CreateBitCast(V, CGM.Int8PtrTy);
2405     V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation(), I);
2406     V = Builder.CreateBitCast(V, VTy);
2407   }
2408 
2409   return Address(V, Addr.getAlignment());
2410 }
2411 
2412 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
2413 
2414 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF)
2415     : CGF(CGF) {
2416   assert(!CGF->IsSanitizerScope);
2417   CGF->IsSanitizerScope = true;
2418 }
2419 
2420 CodeGenFunction::SanitizerScope::~SanitizerScope() {
2421   CGF->IsSanitizerScope = false;
2422 }
2423 
2424 void CodeGenFunction::InsertHelper(llvm::Instruction *I,
2425                                    const llvm::Twine &Name,
2426                                    llvm::BasicBlock *BB,
2427                                    llvm::BasicBlock::iterator InsertPt) const {
2428   LoopStack.InsertHelper(I);
2429   if (IsSanitizerScope)
2430     CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I);
2431 }
2432 
2433 void CGBuilderInserter::InsertHelper(
2434     llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB,
2435     llvm::BasicBlock::iterator InsertPt) const {
2436   llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt);
2437   if (CGF)
2438     CGF->InsertHelper(I, Name, BB, InsertPt);
2439 }
2440 
2441 // Emits an error if we don't have a valid set of target features for the
2442 // called function.
2443 void CodeGenFunction::checkTargetFeatures(const CallExpr *E,
2444                                           const FunctionDecl *TargetDecl) {
2445   return checkTargetFeatures(E->getBeginLoc(), TargetDecl);
2446 }
2447 
2448 // Emits an error if we don't have a valid set of target features for the
2449 // called function.
2450 void CodeGenFunction::checkTargetFeatures(SourceLocation Loc,
2451                                           const FunctionDecl *TargetDecl) {
2452   // Early exit if this is an indirect call.
2453   if (!TargetDecl)
2454     return;
2455 
2456   // Get the current enclosing function if it exists. If it doesn't
2457   // we can't check the target features anyhow.
2458   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl);
2459   if (!FD)
2460     return;
2461 
2462   // Grab the required features for the call. For a builtin this is listed in
2463   // the td file with the default cpu, for an always_inline function this is any
2464   // listed cpu and any listed features.
2465   unsigned BuiltinID = TargetDecl->getBuiltinID();
2466   std::string MissingFeature;
2467   llvm::StringMap<bool> CallerFeatureMap;
2468   CGM.getContext().getFunctionFeatureMap(CallerFeatureMap, FD);
2469   if (BuiltinID) {
2470     StringRef FeatureList(
2471         CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID));
2472     // Return if the builtin doesn't have any required features.
2473     if (FeatureList.empty())
2474       return;
2475     assert(FeatureList.find(' ') == StringRef::npos &&
2476            "Space in feature list");
2477     TargetFeatures TF(CallerFeatureMap);
2478     if (!TF.hasRequiredFeatures(FeatureList))
2479       CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature)
2480           << TargetDecl->getDeclName() << FeatureList;
2481   } else if (!TargetDecl->isMultiVersion() &&
2482              TargetDecl->hasAttr<TargetAttr>()) {
2483     // Get the required features for the callee.
2484 
2485     const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>();
2486     ParsedTargetAttr ParsedAttr =
2487         CGM.getContext().filterFunctionTargetAttrs(TD);
2488 
2489     SmallVector<StringRef, 1> ReqFeatures;
2490     llvm::StringMap<bool> CalleeFeatureMap;
2491     CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl);
2492 
2493     for (const auto &F : ParsedAttr.Features) {
2494       if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1)))
2495         ReqFeatures.push_back(StringRef(F).substr(1));
2496     }
2497 
2498     for (const auto &F : CalleeFeatureMap) {
2499       // Only positive features are "required".
2500       if (F.getValue())
2501         ReqFeatures.push_back(F.getKey());
2502     }
2503     if (!llvm::all_of(ReqFeatures, [&](StringRef Feature) {
2504       if (!CallerFeatureMap.lookup(Feature)) {
2505         MissingFeature = Feature.str();
2506         return false;
2507       }
2508       return true;
2509     }))
2510       CGM.getDiags().Report(Loc, diag::err_function_needs_feature)
2511           << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature;
2512   }
2513 }
2514 
2515 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) {
2516   if (!CGM.getCodeGenOpts().SanitizeStats)
2517     return;
2518 
2519   llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint());
2520   IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation());
2521   CGM.getSanStats().create(IRB, SSK);
2522 }
2523 
2524 llvm::Value *
2525 CodeGenFunction::FormResolverCondition(const MultiVersionResolverOption &RO) {
2526   llvm::Value *Condition = nullptr;
2527 
2528   if (!RO.Conditions.Architecture.empty())
2529     Condition = EmitX86CpuIs(RO.Conditions.Architecture);
2530 
2531   if (!RO.Conditions.Features.empty()) {
2532     llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features);
2533     Condition =
2534         Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond;
2535   }
2536   return Condition;
2537 }
2538 
2539 static void CreateMultiVersionResolverReturn(CodeGenModule &CGM,
2540                                              llvm::Function *Resolver,
2541                                              CGBuilderTy &Builder,
2542                                              llvm::Function *FuncToReturn,
2543                                              bool SupportsIFunc) {
2544   if (SupportsIFunc) {
2545     Builder.CreateRet(FuncToReturn);
2546     return;
2547   }
2548 
2549   llvm::SmallVector<llvm::Value *, 10> Args;
2550   llvm::for_each(Resolver->args(),
2551                  [&](llvm::Argument &Arg) { Args.push_back(&Arg); });
2552 
2553   llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args);
2554   Result->setTailCallKind(llvm::CallInst::TCK_MustTail);
2555 
2556   if (Resolver->getReturnType()->isVoidTy())
2557     Builder.CreateRetVoid();
2558   else
2559     Builder.CreateRet(Result);
2560 }
2561 
2562 void CodeGenFunction::EmitMultiVersionResolver(
2563     llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) {
2564   assert(getContext().getTargetInfo().getTriple().isX86() &&
2565          "Only implemented for x86 targets");
2566 
2567   bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc();
2568 
2569   // Main function's basic block.
2570   llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver);
2571   Builder.SetInsertPoint(CurBlock);
2572   EmitX86CpuInit();
2573 
2574   for (const MultiVersionResolverOption &RO : Options) {
2575     Builder.SetInsertPoint(CurBlock);
2576     llvm::Value *Condition = FormResolverCondition(RO);
2577 
2578     // The 'default' or 'generic' case.
2579     if (!Condition) {
2580       assert(&RO == Options.end() - 1 &&
2581              "Default or Generic case must be last");
2582       CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function,
2583                                        SupportsIFunc);
2584       return;
2585     }
2586 
2587     llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver);
2588     CGBuilderTy RetBuilder(*this, RetBlock);
2589     CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function,
2590                                      SupportsIFunc);
2591     CurBlock = createBasicBlock("resolver_else", Resolver);
2592     Builder.CreateCondBr(Condition, RetBlock, CurBlock);
2593   }
2594 
2595   // If no generic/default, emit an unreachable.
2596   Builder.SetInsertPoint(CurBlock);
2597   llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
2598   TrapCall->setDoesNotReturn();
2599   TrapCall->setDoesNotThrow();
2600   Builder.CreateUnreachable();
2601   Builder.ClearInsertionPoint();
2602 }
2603 
2604 // Loc - where the diagnostic will point, where in the source code this
2605 //  alignment has failed.
2606 // SecondaryLoc - if present (will be present if sufficiently different from
2607 //  Loc), the diagnostic will additionally point a "Note:" to this location.
2608 //  It should be the location where the __attribute__((assume_aligned))
2609 //  was written e.g.
2610 void CodeGenFunction::emitAlignmentAssumptionCheck(
2611     llvm::Value *Ptr, QualType Ty, SourceLocation Loc,
2612     SourceLocation SecondaryLoc, llvm::Value *Alignment,
2613     llvm::Value *OffsetValue, llvm::Value *TheCheck,
2614     llvm::Instruction *Assumption) {
2615   assert(Assumption && isa<llvm::CallInst>(Assumption) &&
2616          cast<llvm::CallInst>(Assumption)->getCalledOperand() ==
2617              llvm::Intrinsic::getDeclaration(
2618                  Builder.GetInsertBlock()->getParent()->getParent(),
2619                  llvm::Intrinsic::assume) &&
2620          "Assumption should be a call to llvm.assume().");
2621   assert(&(Builder.GetInsertBlock()->back()) == Assumption &&
2622          "Assumption should be the last instruction of the basic block, "
2623          "since the basic block is still being generated.");
2624 
2625   if (!SanOpts.has(SanitizerKind::Alignment))
2626     return;
2627 
2628   // Don't check pointers to volatile data. The behavior here is implementation-
2629   // defined.
2630   if (Ty->getPointeeType().isVolatileQualified())
2631     return;
2632 
2633   // We need to temorairly remove the assumption so we can insert the
2634   // sanitizer check before it, else the check will be dropped by optimizations.
2635   Assumption->removeFromParent();
2636 
2637   {
2638     SanitizerScope SanScope(this);
2639 
2640     if (!OffsetValue)
2641       OffsetValue = Builder.getInt1(0); // no offset.
2642 
2643     llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc),
2644                                     EmitCheckSourceLocation(SecondaryLoc),
2645                                     EmitCheckTypeDescriptor(Ty)};
2646     llvm::Value *DynamicData[] = {EmitCheckValue(Ptr),
2647                                   EmitCheckValue(Alignment),
2648                                   EmitCheckValue(OffsetValue)};
2649     EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)},
2650               SanitizerHandler::AlignmentAssumption, StaticData, DynamicData);
2651   }
2652 
2653   // We are now in the (new, empty) "cont" basic block.
2654   // Reintroduce the assumption.
2655   Builder.Insert(Assumption);
2656   // FIXME: Assumption still has it's original basic block as it's Parent.
2657 }
2658 
2659 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) {
2660   if (CGDebugInfo *DI = getDebugInfo())
2661     return DI->SourceLocToDebugLoc(Location);
2662 
2663   return llvm::DebugLoc();
2664 }
2665 
2666 llvm::Value *
2667 CodeGenFunction::emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond,
2668                                                       Stmt::Likelihood LH) {
2669   switch (LH) {
2670   case Stmt::LH_None:
2671     return Cond;
2672   case Stmt::LH_Likely:
2673   case Stmt::LH_Unlikely:
2674     // Don't generate llvm.expect on -O0 as the backend won't use it for
2675     // anything.
2676     if (CGM.getCodeGenOpts().OptimizationLevel == 0)
2677       return Cond;
2678     llvm::Type *CondTy = Cond->getType();
2679     assert(CondTy->isIntegerTy(1) && "expecting condition to be a boolean");
2680     llvm::Function *FnExpect =
2681         CGM.getIntrinsic(llvm::Intrinsic::expect, CondTy);
2682     llvm::Value *ExpectedValueOfCond =
2683         llvm::ConstantInt::getBool(CondTy, LH == Stmt::LH_Likely);
2684     return Builder.CreateCall(FnExpect, {Cond, ExpectedValueOfCond},
2685                               Cond->getName() + ".expval");
2686   }
2687   llvm_unreachable("Unknown Likelihood");
2688 }
2689