1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-function state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenFunction.h" 14 #include "CGBlocks.h" 15 #include "CGCleanup.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGDebugInfo.h" 19 #include "CGOpenMPRuntime.h" 20 #include "CodeGenModule.h" 21 #include "CodeGenPGO.h" 22 #include "TargetInfo.h" 23 #include "clang/AST/ASTContext.h" 24 #include "clang/AST/ASTLambda.h" 25 #include "clang/AST/Decl.h" 26 #include "clang/AST/DeclCXX.h" 27 #include "clang/AST/StmtCXX.h" 28 #include "clang/AST/StmtObjC.h" 29 #include "clang/Basic/Builtins.h" 30 #include "clang/Basic/CodeGenOptions.h" 31 #include "clang/Basic/TargetInfo.h" 32 #include "clang/CodeGen/CGFunctionInfo.h" 33 #include "clang/Frontend/FrontendDiagnostic.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/Dominators.h" 36 #include "llvm/IR/Intrinsics.h" 37 #include "llvm/IR/MDBuilder.h" 38 #include "llvm/IR/Operator.h" 39 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 40 using namespace clang; 41 using namespace CodeGen; 42 43 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time 44 /// markers. 45 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts, 46 const LangOptions &LangOpts) { 47 if (CGOpts.DisableLifetimeMarkers) 48 return false; 49 50 // Sanitizers may use markers. 51 if (CGOpts.SanitizeAddressUseAfterScope || 52 LangOpts.Sanitize.has(SanitizerKind::Memory)) 53 return true; 54 55 // For now, only in optimized builds. 56 return CGOpts.OptimizationLevel != 0; 57 } 58 59 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 60 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 61 Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(), 62 CGBuilderInserterTy(this)), 63 SanOpts(CGM.getLangOpts().Sanitize), DebugInfo(CGM.getModuleDebugInfo()), 64 PGO(cgm), ShouldEmitLifetimeMarkers(shouldEmitLifetimeMarkers( 65 CGM.getCodeGenOpts(), CGM.getLangOpts())) { 66 if (!suppressNewContext) 67 CGM.getCXXABI().getMangleContext().startNewFunction(); 68 69 llvm::FastMathFlags FMF; 70 if (CGM.getLangOpts().FastMath) 71 FMF.setFast(); 72 if (CGM.getLangOpts().FiniteMathOnly) { 73 FMF.setNoNaNs(); 74 FMF.setNoInfs(); 75 } 76 if (CGM.getCodeGenOpts().NoNaNsFPMath) { 77 FMF.setNoNaNs(); 78 } 79 if (CGM.getCodeGenOpts().NoSignedZeros) { 80 FMF.setNoSignedZeros(); 81 } 82 if (CGM.getCodeGenOpts().ReciprocalMath) { 83 FMF.setAllowReciprocal(); 84 } 85 if (CGM.getCodeGenOpts().Reassociate) { 86 FMF.setAllowReassoc(); 87 } 88 Builder.setFastMathFlags(FMF); 89 } 90 91 CodeGenFunction::~CodeGenFunction() { 92 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 93 94 // If there are any unclaimed block infos, go ahead and destroy them 95 // now. This can happen if IR-gen gets clever and skips evaluating 96 // something. 97 if (FirstBlockInfo) 98 destroyBlockInfos(FirstBlockInfo); 99 100 if (getLangOpts().OpenMP && CurFn) 101 CGM.getOpenMPRuntime().functionFinished(*this); 102 } 103 104 CharUnits CodeGenFunction::getNaturalPointeeTypeAlignment(QualType T, 105 LValueBaseInfo *BaseInfo, 106 TBAAAccessInfo *TBAAInfo) { 107 return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo, 108 /* forPointeeType= */ true); 109 } 110 111 CharUnits CodeGenFunction::getNaturalTypeAlignment(QualType T, 112 LValueBaseInfo *BaseInfo, 113 TBAAAccessInfo *TBAAInfo, 114 bool forPointeeType) { 115 if (TBAAInfo) 116 *TBAAInfo = CGM.getTBAAAccessInfo(T); 117 118 // Honor alignment typedef attributes even on incomplete types. 119 // We also honor them straight for C++ class types, even as pointees; 120 // there's an expressivity gap here. 121 if (auto TT = T->getAs<TypedefType>()) { 122 if (auto Align = TT->getDecl()->getMaxAlignment()) { 123 if (BaseInfo) 124 *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType); 125 return getContext().toCharUnitsFromBits(Align); 126 } 127 } 128 129 if (BaseInfo) 130 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 131 132 CharUnits Alignment; 133 if (T->isIncompleteType()) { 134 Alignment = CharUnits::One(); // Shouldn't be used, but pessimistic is best. 135 } else { 136 // For C++ class pointees, we don't know whether we're pointing at a 137 // base or a complete object, so we generally need to use the 138 // non-virtual alignment. 139 const CXXRecordDecl *RD; 140 if (forPointeeType && (RD = T->getAsCXXRecordDecl())) { 141 Alignment = CGM.getClassPointerAlignment(RD); 142 } else { 143 Alignment = getContext().getTypeAlignInChars(T); 144 if (T.getQualifiers().hasUnaligned()) 145 Alignment = CharUnits::One(); 146 } 147 148 // Cap to the global maximum type alignment unless the alignment 149 // was somehow explicit on the type. 150 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 151 if (Alignment.getQuantity() > MaxAlign && 152 !getContext().isAlignmentRequired(T)) 153 Alignment = CharUnits::fromQuantity(MaxAlign); 154 } 155 } 156 return Alignment; 157 } 158 159 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { 160 LValueBaseInfo BaseInfo; 161 TBAAAccessInfo TBAAInfo; 162 CharUnits Alignment = getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo); 163 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), BaseInfo, 164 TBAAInfo); 165 } 166 167 /// Given a value of type T* that may not be to a complete object, 168 /// construct an l-value with the natural pointee alignment of T. 169 LValue 170 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) { 171 LValueBaseInfo BaseInfo; 172 TBAAAccessInfo TBAAInfo; 173 CharUnits Align = getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo, 174 /* forPointeeType= */ true); 175 return MakeAddrLValue(Address(V, Align), T, BaseInfo, TBAAInfo); 176 } 177 178 179 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 180 return CGM.getTypes().ConvertTypeForMem(T); 181 } 182 183 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 184 return CGM.getTypes().ConvertType(T); 185 } 186 187 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 188 type = type.getCanonicalType(); 189 while (true) { 190 switch (type->getTypeClass()) { 191 #define TYPE(name, parent) 192 #define ABSTRACT_TYPE(name, parent) 193 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 194 #define DEPENDENT_TYPE(name, parent) case Type::name: 195 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 196 #include "clang/AST/TypeNodes.def" 197 llvm_unreachable("non-canonical or dependent type in IR-generation"); 198 199 case Type::Auto: 200 case Type::DeducedTemplateSpecialization: 201 llvm_unreachable("undeduced type in IR-generation"); 202 203 // Various scalar types. 204 case Type::Builtin: 205 case Type::Pointer: 206 case Type::BlockPointer: 207 case Type::LValueReference: 208 case Type::RValueReference: 209 case Type::MemberPointer: 210 case Type::Vector: 211 case Type::ExtVector: 212 case Type::FunctionProto: 213 case Type::FunctionNoProto: 214 case Type::Enum: 215 case Type::ObjCObjectPointer: 216 case Type::Pipe: 217 return TEK_Scalar; 218 219 // Complexes. 220 case Type::Complex: 221 return TEK_Complex; 222 223 // Arrays, records, and Objective-C objects. 224 case Type::ConstantArray: 225 case Type::IncompleteArray: 226 case Type::VariableArray: 227 case Type::Record: 228 case Type::ObjCObject: 229 case Type::ObjCInterface: 230 return TEK_Aggregate; 231 232 // We operate on atomic values according to their underlying type. 233 case Type::Atomic: 234 type = cast<AtomicType>(type)->getValueType(); 235 continue; 236 } 237 llvm_unreachable("unknown type kind!"); 238 } 239 } 240 241 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() { 242 // For cleanliness, we try to avoid emitting the return block for 243 // simple cases. 244 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 245 246 if (CurBB) { 247 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 248 249 // We have a valid insert point, reuse it if it is empty or there are no 250 // explicit jumps to the return block. 251 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 252 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 253 delete ReturnBlock.getBlock(); 254 ReturnBlock = JumpDest(); 255 } else 256 EmitBlock(ReturnBlock.getBlock()); 257 return llvm::DebugLoc(); 258 } 259 260 // Otherwise, if the return block is the target of a single direct 261 // branch then we can just put the code in that block instead. This 262 // cleans up functions which started with a unified return block. 263 if (ReturnBlock.getBlock()->hasOneUse()) { 264 llvm::BranchInst *BI = 265 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin()); 266 if (BI && BI->isUnconditional() && 267 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 268 // Record/return the DebugLoc of the simple 'return' expression to be used 269 // later by the actual 'ret' instruction. 270 llvm::DebugLoc Loc = BI->getDebugLoc(); 271 Builder.SetInsertPoint(BI->getParent()); 272 BI->eraseFromParent(); 273 delete ReturnBlock.getBlock(); 274 ReturnBlock = JumpDest(); 275 return Loc; 276 } 277 } 278 279 // FIXME: We are at an unreachable point, there is no reason to emit the block 280 // unless it has uses. However, we still need a place to put the debug 281 // region.end for now. 282 283 EmitBlock(ReturnBlock.getBlock()); 284 return llvm::DebugLoc(); 285 } 286 287 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 288 if (!BB) return; 289 if (!BB->use_empty()) 290 return CGF.CurFn->getBasicBlockList().push_back(BB); 291 delete BB; 292 } 293 294 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 295 assert(BreakContinueStack.empty() && 296 "mismatched push/pop in break/continue stack!"); 297 298 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 299 && NumSimpleReturnExprs == NumReturnExprs 300 && ReturnBlock.getBlock()->use_empty(); 301 // Usually the return expression is evaluated before the cleanup 302 // code. If the function contains only a simple return statement, 303 // such as a constant, the location before the cleanup code becomes 304 // the last useful breakpoint in the function, because the simple 305 // return expression will be evaluated after the cleanup code. To be 306 // safe, set the debug location for cleanup code to the location of 307 // the return statement. Otherwise the cleanup code should be at the 308 // end of the function's lexical scope. 309 // 310 // If there are multiple branches to the return block, the branch 311 // instructions will get the location of the return statements and 312 // all will be fine. 313 if (CGDebugInfo *DI = getDebugInfo()) { 314 if (OnlySimpleReturnStmts) 315 DI->EmitLocation(Builder, LastStopPoint); 316 else 317 DI->EmitLocation(Builder, EndLoc); 318 } 319 320 // Pop any cleanups that might have been associated with the 321 // parameters. Do this in whatever block we're currently in; it's 322 // important to do this before we enter the return block or return 323 // edges will be *really* confused. 324 bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth; 325 bool HasOnlyLifetimeMarkers = 326 HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth); 327 bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers; 328 if (HasCleanups) { 329 // Make sure the line table doesn't jump back into the body for 330 // the ret after it's been at EndLoc. 331 if (CGDebugInfo *DI = getDebugInfo()) 332 if (OnlySimpleReturnStmts) 333 DI->EmitLocation(Builder, EndLoc); 334 335 PopCleanupBlocks(PrologueCleanupDepth); 336 } 337 338 // Emit function epilog (to return). 339 llvm::DebugLoc Loc = EmitReturnBlock(); 340 341 if (ShouldInstrumentFunction()) { 342 if (CGM.getCodeGenOpts().InstrumentFunctions) 343 CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit"); 344 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 345 CurFn->addFnAttr("instrument-function-exit-inlined", 346 "__cyg_profile_func_exit"); 347 } 348 349 // Emit debug descriptor for function end. 350 if (CGDebugInfo *DI = getDebugInfo()) 351 DI->EmitFunctionEnd(Builder, CurFn); 352 353 // Reset the debug location to that of the simple 'return' expression, if any 354 // rather than that of the end of the function's scope '}'. 355 ApplyDebugLocation AL(*this, Loc); 356 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 357 EmitEndEHSpec(CurCodeDecl); 358 359 assert(EHStack.empty() && 360 "did not remove all scopes from cleanup stack!"); 361 362 // If someone did an indirect goto, emit the indirect goto block at the end of 363 // the function. 364 if (IndirectBranch) { 365 EmitBlock(IndirectBranch->getParent()); 366 Builder.ClearInsertionPoint(); 367 } 368 369 // If some of our locals escaped, insert a call to llvm.localescape in the 370 // entry block. 371 if (!EscapedLocals.empty()) { 372 // Invert the map from local to index into a simple vector. There should be 373 // no holes. 374 SmallVector<llvm::Value *, 4> EscapeArgs; 375 EscapeArgs.resize(EscapedLocals.size()); 376 for (auto &Pair : EscapedLocals) 377 EscapeArgs[Pair.second] = Pair.first; 378 llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration( 379 &CGM.getModule(), llvm::Intrinsic::localescape); 380 CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs); 381 } 382 383 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 384 llvm::Instruction *Ptr = AllocaInsertPt; 385 AllocaInsertPt = nullptr; 386 Ptr->eraseFromParent(); 387 388 // If someone took the address of a label but never did an indirect goto, we 389 // made a zero entry PHI node, which is illegal, zap it now. 390 if (IndirectBranch) { 391 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 392 if (PN->getNumIncomingValues() == 0) { 393 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 394 PN->eraseFromParent(); 395 } 396 } 397 398 EmitIfUsed(*this, EHResumeBlock); 399 EmitIfUsed(*this, TerminateLandingPad); 400 EmitIfUsed(*this, TerminateHandler); 401 EmitIfUsed(*this, UnreachableBlock); 402 403 for (const auto &FuncletAndParent : TerminateFunclets) 404 EmitIfUsed(*this, FuncletAndParent.second); 405 406 if (CGM.getCodeGenOpts().EmitDeclMetadata) 407 EmitDeclMetadata(); 408 409 for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator 410 I = DeferredReplacements.begin(), 411 E = DeferredReplacements.end(); 412 I != E; ++I) { 413 I->first->replaceAllUsesWith(I->second); 414 I->first->eraseFromParent(); 415 } 416 417 // Eliminate CleanupDestSlot alloca by replacing it with SSA values and 418 // PHIs if the current function is a coroutine. We don't do it for all 419 // functions as it may result in slight increase in numbers of instructions 420 // if compiled with no optimizations. We do it for coroutine as the lifetime 421 // of CleanupDestSlot alloca make correct coroutine frame building very 422 // difficult. 423 if (NormalCleanupDest.isValid() && isCoroutine()) { 424 llvm::DominatorTree DT(*CurFn); 425 llvm::PromoteMemToReg( 426 cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT); 427 NormalCleanupDest = Address::invalid(); 428 } 429 430 // Scan function arguments for vector width. 431 for (llvm::Argument &A : CurFn->args()) 432 if (auto *VT = dyn_cast<llvm::VectorType>(A.getType())) 433 LargestVectorWidth = std::max(LargestVectorWidth, 434 VT->getPrimitiveSizeInBits()); 435 436 // Update vector width based on return type. 437 if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType())) 438 LargestVectorWidth = std::max(LargestVectorWidth, 439 VT->getPrimitiveSizeInBits()); 440 441 // Add the required-vector-width attribute. This contains the max width from: 442 // 1. min-vector-width attribute used in the source program. 443 // 2. Any builtins used that have a vector width specified. 444 // 3. Values passed in and out of inline assembly. 445 // 4. Width of vector arguments and return types for this function. 446 // 5. Width of vector aguments and return types for functions called by this 447 // function. 448 CurFn->addFnAttr("min-legal-vector-width", llvm::utostr(LargestVectorWidth)); 449 450 // If we generated an unreachable return block, delete it now. 451 if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) { 452 Builder.ClearInsertionPoint(); 453 ReturnBlock.getBlock()->eraseFromParent(); 454 } 455 if (ReturnValue.isValid()) { 456 auto *RetAlloca = dyn_cast<llvm::AllocaInst>(ReturnValue.getPointer()); 457 if (RetAlloca && RetAlloca->use_empty()) { 458 RetAlloca->eraseFromParent(); 459 ReturnValue = Address::invalid(); 460 } 461 } 462 } 463 464 /// ShouldInstrumentFunction - Return true if the current function should be 465 /// instrumented with __cyg_profile_func_* calls 466 bool CodeGenFunction::ShouldInstrumentFunction() { 467 if (!CGM.getCodeGenOpts().InstrumentFunctions && 468 !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining && 469 !CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 470 return false; 471 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 472 return false; 473 return true; 474 } 475 476 /// ShouldXRayInstrument - Return true if the current function should be 477 /// instrumented with XRay nop sleds. 478 bool CodeGenFunction::ShouldXRayInstrumentFunction() const { 479 return CGM.getCodeGenOpts().XRayInstrumentFunctions; 480 } 481 482 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to 483 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation. 484 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const { 485 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 486 (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents || 487 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 488 XRayInstrKind::Custom); 489 } 490 491 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const { 492 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 493 (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents || 494 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 495 XRayInstrKind::Typed); 496 } 497 498 llvm::Constant * 499 CodeGenFunction::EncodeAddrForUseInPrologue(llvm::Function *F, 500 llvm::Constant *Addr) { 501 // Addresses stored in prologue data can't require run-time fixups and must 502 // be PC-relative. Run-time fixups are undesirable because they necessitate 503 // writable text segments, which are unsafe. And absolute addresses are 504 // undesirable because they break PIE mode. 505 506 // Add a layer of indirection through a private global. Taking its address 507 // won't result in a run-time fixup, even if Addr has linkonce_odr linkage. 508 auto *GV = new llvm::GlobalVariable(CGM.getModule(), Addr->getType(), 509 /*isConstant=*/true, 510 llvm::GlobalValue::PrivateLinkage, Addr); 511 512 // Create a PC-relative address. 513 auto *GOTAsInt = llvm::ConstantExpr::getPtrToInt(GV, IntPtrTy); 514 auto *FuncAsInt = llvm::ConstantExpr::getPtrToInt(F, IntPtrTy); 515 auto *PCRelAsInt = llvm::ConstantExpr::getSub(GOTAsInt, FuncAsInt); 516 return (IntPtrTy == Int32Ty) 517 ? PCRelAsInt 518 : llvm::ConstantExpr::getTrunc(PCRelAsInt, Int32Ty); 519 } 520 521 llvm::Value * 522 CodeGenFunction::DecodeAddrUsedInPrologue(llvm::Value *F, 523 llvm::Value *EncodedAddr) { 524 // Reconstruct the address of the global. 525 auto *PCRelAsInt = Builder.CreateSExt(EncodedAddr, IntPtrTy); 526 auto *FuncAsInt = Builder.CreatePtrToInt(F, IntPtrTy, "func_addr.int"); 527 auto *GOTAsInt = Builder.CreateAdd(PCRelAsInt, FuncAsInt, "global_addr.int"); 528 auto *GOTAddr = Builder.CreateIntToPtr(GOTAsInt, Int8PtrPtrTy, "global_addr"); 529 530 // Load the original pointer through the global. 531 return Builder.CreateLoad(Address(GOTAddr, getPointerAlign()), 532 "decoded_addr"); 533 } 534 535 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 536 llvm::Function *Fn) 537 { 538 if (!FD->hasAttr<OpenCLKernelAttr>()) 539 return; 540 541 llvm::LLVMContext &Context = getLLVMContext(); 542 543 CGM.GenOpenCLArgMetadata(Fn, FD, this); 544 545 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { 546 QualType HintQTy = A->getTypeHint(); 547 const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>(); 548 bool IsSignedInteger = 549 HintQTy->isSignedIntegerType() || 550 (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType()); 551 llvm::Metadata *AttrMDArgs[] = { 552 llvm::ConstantAsMetadata::get(llvm::UndefValue::get( 553 CGM.getTypes().ConvertType(A->getTypeHint()))), 554 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 555 llvm::IntegerType::get(Context, 32), 556 llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))}; 557 Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs)); 558 } 559 560 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { 561 llvm::Metadata *AttrMDArgs[] = { 562 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 563 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 564 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 565 Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs)); 566 } 567 568 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { 569 llvm::Metadata *AttrMDArgs[] = { 570 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 571 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 572 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 573 Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs)); 574 } 575 576 if (const OpenCLIntelReqdSubGroupSizeAttr *A = 577 FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) { 578 llvm::Metadata *AttrMDArgs[] = { 579 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))}; 580 Fn->setMetadata("intel_reqd_sub_group_size", 581 llvm::MDNode::get(Context, AttrMDArgs)); 582 } 583 } 584 585 /// Determine whether the function F ends with a return stmt. 586 static bool endsWithReturn(const Decl* F) { 587 const Stmt *Body = nullptr; 588 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F)) 589 Body = FD->getBody(); 590 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F)) 591 Body = OMD->getBody(); 592 593 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 594 auto LastStmt = CS->body_rbegin(); 595 if (LastStmt != CS->body_rend()) 596 return isa<ReturnStmt>(*LastStmt); 597 } 598 return false; 599 } 600 601 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) { 602 if (SanOpts.has(SanitizerKind::Thread)) { 603 Fn->addFnAttr("sanitize_thread_no_checking_at_run_time"); 604 Fn->removeFnAttr(llvm::Attribute::SanitizeThread); 605 } 606 } 607 608 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) { 609 auto *MD = dyn_cast_or_null<CXXMethodDecl>(D); 610 if (!MD || !MD->getDeclName().getAsIdentifierInfo() || 611 !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") || 612 (MD->getNumParams() != 1 && MD->getNumParams() != 2)) 613 return false; 614 615 if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType()) 616 return false; 617 618 if (MD->getNumParams() == 2) { 619 auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>(); 620 if (!PT || !PT->isVoidPointerType() || 621 !PT->getPointeeType().isConstQualified()) 622 return false; 623 } 624 625 return true; 626 } 627 628 /// Return the UBSan prologue signature for \p FD if one is available. 629 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM, 630 const FunctionDecl *FD) { 631 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 632 if (!MD->isStatic()) 633 return nullptr; 634 return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM); 635 } 636 637 void CodeGenFunction::StartFunction(GlobalDecl GD, 638 QualType RetTy, 639 llvm::Function *Fn, 640 const CGFunctionInfo &FnInfo, 641 const FunctionArgList &Args, 642 SourceLocation Loc, 643 SourceLocation StartLoc) { 644 assert(!CurFn && 645 "Do not use a CodeGenFunction object for more than one function"); 646 647 const Decl *D = GD.getDecl(); 648 649 DidCallStackSave = false; 650 CurCodeDecl = D; 651 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 652 if (FD->usesSEHTry()) 653 CurSEHParent = FD; 654 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr); 655 FnRetTy = RetTy; 656 CurFn = Fn; 657 CurFnInfo = &FnInfo; 658 assert(CurFn->isDeclaration() && "Function already has body?"); 659 660 // If this function has been blacklisted for any of the enabled sanitizers, 661 // disable the sanitizer for the function. 662 do { 663 #define SANITIZER(NAME, ID) \ 664 if (SanOpts.empty()) \ 665 break; \ 666 if (SanOpts.has(SanitizerKind::ID)) \ 667 if (CGM.isInSanitizerBlacklist(SanitizerKind::ID, Fn, Loc)) \ 668 SanOpts.set(SanitizerKind::ID, false); 669 670 #include "clang/Basic/Sanitizers.def" 671 #undef SANITIZER 672 } while (0); 673 674 if (D) { 675 // Apply the no_sanitize* attributes to SanOpts. 676 for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) { 677 SanitizerMask mask = Attr->getMask(); 678 SanOpts.Mask &= ~mask; 679 if (mask & SanitizerKind::Address) 680 SanOpts.set(SanitizerKind::KernelAddress, false); 681 if (mask & SanitizerKind::KernelAddress) 682 SanOpts.set(SanitizerKind::Address, false); 683 if (mask & SanitizerKind::HWAddress) 684 SanOpts.set(SanitizerKind::KernelHWAddress, false); 685 if (mask & SanitizerKind::KernelHWAddress) 686 SanOpts.set(SanitizerKind::HWAddress, false); 687 } 688 } 689 690 // Apply sanitizer attributes to the function. 691 if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress)) 692 Fn->addFnAttr(llvm::Attribute::SanitizeAddress); 693 if (SanOpts.hasOneOf(SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress)) 694 Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress); 695 if (SanOpts.has(SanitizerKind::MemTag)) 696 Fn->addFnAttr(llvm::Attribute::SanitizeMemTag); 697 if (SanOpts.has(SanitizerKind::Thread)) 698 Fn->addFnAttr(llvm::Attribute::SanitizeThread); 699 if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory)) 700 Fn->addFnAttr(llvm::Attribute::SanitizeMemory); 701 if (SanOpts.has(SanitizerKind::SafeStack)) 702 Fn->addFnAttr(llvm::Attribute::SafeStack); 703 if (SanOpts.has(SanitizerKind::ShadowCallStack)) 704 Fn->addFnAttr(llvm::Attribute::ShadowCallStack); 705 706 // Apply fuzzing attribute to the function. 707 if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink)) 708 Fn->addFnAttr(llvm::Attribute::OptForFuzzing); 709 710 // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize, 711 // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time. 712 if (SanOpts.has(SanitizerKind::Thread)) { 713 if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) { 714 IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0); 715 if (OMD->getMethodFamily() == OMF_dealloc || 716 OMD->getMethodFamily() == OMF_initialize || 717 (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) { 718 markAsIgnoreThreadCheckingAtRuntime(Fn); 719 } 720 } 721 } 722 723 // Ignore unrelated casts in STL allocate() since the allocator must cast 724 // from void* to T* before object initialization completes. Don't match on the 725 // namespace because not all allocators are in std:: 726 if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 727 if (matchesStlAllocatorFn(D, getContext())) 728 SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast; 729 } 730 731 // Ignore null checks in coroutine functions since the coroutines passes 732 // are not aware of how to move the extra UBSan instructions across the split 733 // coroutine boundaries. 734 if (D && SanOpts.has(SanitizerKind::Null)) 735 if (const auto *FD = dyn_cast<FunctionDecl>(D)) 736 if (FD->getBody() && 737 FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass) 738 SanOpts.Mask &= ~SanitizerKind::Null; 739 740 // Apply xray attributes to the function (as a string, for now) 741 if (D) { 742 if (const auto *XRayAttr = D->getAttr<XRayInstrumentAttr>()) { 743 if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 744 XRayInstrKind::Function)) { 745 if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) 746 Fn->addFnAttr("function-instrument", "xray-always"); 747 if (XRayAttr->neverXRayInstrument()) 748 Fn->addFnAttr("function-instrument", "xray-never"); 749 if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>()) 750 if (ShouldXRayInstrumentFunction()) 751 Fn->addFnAttr("xray-log-args", 752 llvm::utostr(LogArgs->getArgumentCount())); 753 } 754 } else { 755 if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc)) 756 Fn->addFnAttr( 757 "xray-instruction-threshold", 758 llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold)); 759 } 760 } 761 762 // Add no-jump-tables value. 763 Fn->addFnAttr("no-jump-tables", 764 llvm::toStringRef(CGM.getCodeGenOpts().NoUseJumpTables)); 765 766 // Add profile-sample-accurate value. 767 if (CGM.getCodeGenOpts().ProfileSampleAccurate) 768 Fn->addFnAttr("profile-sample-accurate"); 769 770 if (D && D->hasAttr<CFICanonicalJumpTableAttr>()) 771 Fn->addFnAttr("cfi-canonical-jump-table"); 772 773 if (getLangOpts().OpenCL) { 774 // Add metadata for a kernel function. 775 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 776 EmitOpenCLKernelMetadata(FD, Fn); 777 } 778 779 // If we are checking function types, emit a function type signature as 780 // prologue data. 781 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) { 782 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 783 if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) { 784 // Remove any (C++17) exception specifications, to allow calling e.g. a 785 // noexcept function through a non-noexcept pointer. 786 auto ProtoTy = 787 getContext().getFunctionTypeWithExceptionSpec(FD->getType(), 788 EST_None); 789 llvm::Constant *FTRTTIConst = 790 CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true); 791 llvm::Constant *FTRTTIConstEncoded = 792 EncodeAddrForUseInPrologue(Fn, FTRTTIConst); 793 llvm::Constant *PrologueStructElems[] = {PrologueSig, 794 FTRTTIConstEncoded}; 795 llvm::Constant *PrologueStructConst = 796 llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true); 797 Fn->setPrologueData(PrologueStructConst); 798 } 799 } 800 } 801 802 // If we're checking nullability, we need to know whether we can check the 803 // return value. Initialize the flag to 'true' and refine it in EmitParmDecl. 804 if (SanOpts.has(SanitizerKind::NullabilityReturn)) { 805 auto Nullability = FnRetTy->getNullability(getContext()); 806 if (Nullability && *Nullability == NullabilityKind::NonNull) { 807 if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && 808 CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>())) 809 RetValNullabilityPrecondition = 810 llvm::ConstantInt::getTrue(getLLVMContext()); 811 } 812 } 813 814 // If we're in C++ mode and the function name is "main", it is guaranteed 815 // to be norecurse by the standard (3.6.1.3 "The function main shall not be 816 // used within a program"). 817 if (getLangOpts().CPlusPlus) 818 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 819 if (FD->isMain()) 820 Fn->addFnAttr(llvm::Attribute::NoRecurse); 821 822 // If a custom alignment is used, force realigning to this alignment on 823 // any main function which certainly will need it. 824 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 825 if ((FD->isMain() || FD->isMSVCRTEntryPoint()) && 826 CGM.getCodeGenOpts().StackAlignment) 827 Fn->addFnAttr("stackrealign"); 828 829 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 830 831 // Create a marker to make it easy to insert allocas into the entryblock 832 // later. Don't create this with the builder, because we don't want it 833 // folded. 834 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 835 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB); 836 837 ReturnBlock = getJumpDestInCurrentScope("return"); 838 839 Builder.SetInsertPoint(EntryBB); 840 841 // If we're checking the return value, allocate space for a pointer to a 842 // precise source location of the checked return statement. 843 if (requiresReturnValueCheck()) { 844 ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr"); 845 InitTempAlloca(ReturnLocation, llvm::ConstantPointerNull::get(Int8PtrTy)); 846 } 847 848 // Emit subprogram debug descriptor. 849 if (CGDebugInfo *DI = getDebugInfo()) { 850 // Reconstruct the type from the argument list so that implicit parameters, 851 // such as 'this' and 'vtt', show up in the debug info. Preserve the calling 852 // convention. 853 CallingConv CC = CallingConv::CC_C; 854 if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 855 if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>()) 856 CC = SrcFnTy->getCallConv(); 857 SmallVector<QualType, 16> ArgTypes; 858 for (const VarDecl *VD : Args) 859 ArgTypes.push_back(VD->getType()); 860 QualType FnType = getContext().getFunctionType( 861 RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC)); 862 DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, CurFuncIsThunk, 863 Builder); 864 } 865 866 if (ShouldInstrumentFunction()) { 867 if (CGM.getCodeGenOpts().InstrumentFunctions) 868 CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter"); 869 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 870 CurFn->addFnAttr("instrument-function-entry-inlined", 871 "__cyg_profile_func_enter"); 872 if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 873 CurFn->addFnAttr("instrument-function-entry-inlined", 874 "__cyg_profile_func_enter_bare"); 875 } 876 877 // Since emitting the mcount call here impacts optimizations such as function 878 // inlining, we just add an attribute to insert a mcount call in backend. 879 // The attribute "counting-function" is set to mcount function name which is 880 // architecture dependent. 881 if (CGM.getCodeGenOpts().InstrumentForProfiling) { 882 // Calls to fentry/mcount should not be generated if function has 883 // the no_instrument_function attribute. 884 if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) { 885 if (CGM.getCodeGenOpts().CallFEntry) 886 Fn->addFnAttr("fentry-call", "true"); 887 else { 888 Fn->addFnAttr("instrument-function-entry-inlined", 889 getTarget().getMCountName()); 890 } 891 } 892 } 893 894 if (RetTy->isVoidType()) { 895 // Void type; nothing to return. 896 ReturnValue = Address::invalid(); 897 898 // Count the implicit return. 899 if (!endsWithReturn(D)) 900 ++NumReturnExprs; 901 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) { 902 // Indirect return; emit returned value directly into sret slot. 903 // This reduces code size, and affects correctness in C++. 904 auto AI = CurFn->arg_begin(); 905 if (CurFnInfo->getReturnInfo().isSRetAfterThis()) 906 ++AI; 907 ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign()); 908 if (!CurFnInfo->getReturnInfo().getIndirectByVal()) { 909 ReturnValuePointer = 910 CreateDefaultAlignTempAlloca(Int8PtrTy, "result.ptr"); 911 Builder.CreateStore(Builder.CreatePointerBitCastOrAddrSpaceCast( 912 ReturnValue.getPointer(), Int8PtrTy), 913 ReturnValuePointer); 914 } 915 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && 916 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 917 // Load the sret pointer from the argument struct and return into that. 918 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); 919 llvm::Function::arg_iterator EI = CurFn->arg_end(); 920 --EI; 921 llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx); 922 ReturnValuePointer = Address(Addr, getPointerAlign()); 923 Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result"); 924 ReturnValue = Address(Addr, getNaturalTypeAlignment(RetTy)); 925 } else { 926 ReturnValue = CreateIRTemp(RetTy, "retval"); 927 928 // Tell the epilog emitter to autorelease the result. We do this 929 // now so that various specialized functions can suppress it 930 // during their IR-generation. 931 if (getLangOpts().ObjCAutoRefCount && 932 !CurFnInfo->isReturnsRetained() && 933 RetTy->isObjCRetainableType()) 934 AutoreleaseResult = true; 935 } 936 937 EmitStartEHSpec(CurCodeDecl); 938 939 PrologueCleanupDepth = EHStack.stable_begin(); 940 941 // Emit OpenMP specific initialization of the device functions. 942 if (getLangOpts().OpenMP && CurCodeDecl) 943 CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl); 944 945 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 946 947 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 948 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 949 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 950 if (MD->getParent()->isLambda() && 951 MD->getOverloadedOperator() == OO_Call) { 952 // We're in a lambda; figure out the captures. 953 MD->getParent()->getCaptureFields(LambdaCaptureFields, 954 LambdaThisCaptureField); 955 if (LambdaThisCaptureField) { 956 // If the lambda captures the object referred to by '*this' - either by 957 // value or by reference, make sure CXXThisValue points to the correct 958 // object. 959 960 // Get the lvalue for the field (which is a copy of the enclosing object 961 // or contains the address of the enclosing object). 962 LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 963 if (!LambdaThisCaptureField->getType()->isPointerType()) { 964 // If the enclosing object was captured by value, just use its address. 965 CXXThisValue = ThisFieldLValue.getAddress().getPointer(); 966 } else { 967 // Load the lvalue pointed to by the field, since '*this' was captured 968 // by reference. 969 CXXThisValue = 970 EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal(); 971 } 972 } 973 for (auto *FD : MD->getParent()->fields()) { 974 if (FD->hasCapturedVLAType()) { 975 auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD), 976 SourceLocation()).getScalarVal(); 977 auto VAT = FD->getCapturedVLAType(); 978 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 979 } 980 } 981 } else { 982 // Not in a lambda; just use 'this' from the method. 983 // FIXME: Should we generate a new load for each use of 'this'? The 984 // fast register allocator would be happier... 985 CXXThisValue = CXXABIThisValue; 986 } 987 988 // Check the 'this' pointer once per function, if it's available. 989 if (CXXABIThisValue) { 990 SanitizerSet SkippedChecks; 991 SkippedChecks.set(SanitizerKind::ObjectSize, true); 992 QualType ThisTy = MD->getThisType(); 993 994 // If this is the call operator of a lambda with no capture-default, it 995 // may have a static invoker function, which may call this operator with 996 // a null 'this' pointer. 997 if (isLambdaCallOperator(MD) && 998 MD->getParent()->getLambdaCaptureDefault() == LCD_None) 999 SkippedChecks.set(SanitizerKind::Null, true); 1000 1001 EmitTypeCheck(isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall 1002 : TCK_MemberCall, 1003 Loc, CXXABIThisValue, ThisTy, 1004 getContext().getTypeAlignInChars(ThisTy->getPointeeType()), 1005 SkippedChecks); 1006 } 1007 } 1008 1009 // If any of the arguments have a variably modified type, make sure to 1010 // emit the type size. 1011 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 1012 i != e; ++i) { 1013 const VarDecl *VD = *i; 1014 1015 // Dig out the type as written from ParmVarDecls; it's unclear whether 1016 // the standard (C99 6.9.1p10) requires this, but we're following the 1017 // precedent set by gcc. 1018 QualType Ty; 1019 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 1020 Ty = PVD->getOriginalType(); 1021 else 1022 Ty = VD->getType(); 1023 1024 if (Ty->isVariablyModifiedType()) 1025 EmitVariablyModifiedType(Ty); 1026 } 1027 // Emit a location at the end of the prologue. 1028 if (CGDebugInfo *DI = getDebugInfo()) 1029 DI->EmitLocation(Builder, StartLoc); 1030 1031 // TODO: Do we need to handle this in two places like we do with 1032 // target-features/target-cpu? 1033 if (CurFuncDecl) 1034 if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>()) 1035 LargestVectorWidth = VecWidth->getVectorWidth(); 1036 } 1037 1038 void CodeGenFunction::EmitFunctionBody(const Stmt *Body) { 1039 incrementProfileCounter(Body); 1040 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 1041 EmitCompoundStmtWithoutScope(*S); 1042 else 1043 EmitStmt(Body); 1044 } 1045 1046 /// When instrumenting to collect profile data, the counts for some blocks 1047 /// such as switch cases need to not include the fall-through counts, so 1048 /// emit a branch around the instrumentation code. When not instrumenting, 1049 /// this just calls EmitBlock(). 1050 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, 1051 const Stmt *S) { 1052 llvm::BasicBlock *SkipCountBB = nullptr; 1053 if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) { 1054 // When instrumenting for profiling, the fallthrough to certain 1055 // statements needs to skip over the instrumentation code so that we 1056 // get an accurate count. 1057 SkipCountBB = createBasicBlock("skipcount"); 1058 EmitBranch(SkipCountBB); 1059 } 1060 EmitBlock(BB); 1061 uint64_t CurrentCount = getCurrentProfileCount(); 1062 incrementProfileCounter(S); 1063 setCurrentProfileCount(getCurrentProfileCount() + CurrentCount); 1064 if (SkipCountBB) 1065 EmitBlock(SkipCountBB); 1066 } 1067 1068 /// Tries to mark the given function nounwind based on the 1069 /// non-existence of any throwing calls within it. We believe this is 1070 /// lightweight enough to do at -O0. 1071 static void TryMarkNoThrow(llvm::Function *F) { 1072 // LLVM treats 'nounwind' on a function as part of the type, so we 1073 // can't do this on functions that can be overwritten. 1074 if (F->isInterposable()) return; 1075 1076 for (llvm::BasicBlock &BB : *F) 1077 for (llvm::Instruction &I : BB) 1078 if (I.mayThrow()) 1079 return; 1080 1081 F->setDoesNotThrow(); 1082 } 1083 1084 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD, 1085 FunctionArgList &Args) { 1086 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1087 QualType ResTy = FD->getReturnType(); 1088 1089 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 1090 if (MD && MD->isInstance()) { 1091 if (CGM.getCXXABI().HasThisReturn(GD)) 1092 ResTy = MD->getThisType(); 1093 else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) 1094 ResTy = CGM.getContext().VoidPtrTy; 1095 CGM.getCXXABI().buildThisParam(*this, Args); 1096 } 1097 1098 // The base version of an inheriting constructor whose constructed base is a 1099 // virtual base is not passed any arguments (because it doesn't actually call 1100 // the inherited constructor). 1101 bool PassedParams = true; 1102 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 1103 if (auto Inherited = CD->getInheritedConstructor()) 1104 PassedParams = 1105 getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType()); 1106 1107 if (PassedParams) { 1108 for (auto *Param : FD->parameters()) { 1109 Args.push_back(Param); 1110 if (!Param->hasAttr<PassObjectSizeAttr>()) 1111 continue; 1112 1113 auto *Implicit = ImplicitParamDecl::Create( 1114 getContext(), Param->getDeclContext(), Param->getLocation(), 1115 /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other); 1116 SizeArguments[Param] = Implicit; 1117 Args.push_back(Implicit); 1118 } 1119 } 1120 1121 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 1122 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 1123 1124 return ResTy; 1125 } 1126 1127 static bool 1128 shouldUseUndefinedBehaviorReturnOptimization(const FunctionDecl *FD, 1129 const ASTContext &Context) { 1130 QualType T = FD->getReturnType(); 1131 // Avoid the optimization for functions that return a record type with a 1132 // trivial destructor or another trivially copyable type. 1133 if (const RecordType *RT = T.getCanonicalType()->getAs<RecordType>()) { 1134 if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1135 return !ClassDecl->hasTrivialDestructor(); 1136 } 1137 return !T.isTriviallyCopyableType(Context); 1138 } 1139 1140 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1141 const CGFunctionInfo &FnInfo) { 1142 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1143 CurGD = GD; 1144 1145 FunctionArgList Args; 1146 QualType ResTy = BuildFunctionArgList(GD, Args); 1147 1148 // Check if we should generate debug info for this function. 1149 if (FD->hasAttr<NoDebugAttr>()) 1150 DebugInfo = nullptr; // disable debug info indefinitely for this function 1151 1152 // The function might not have a body if we're generating thunks for a 1153 // function declaration. 1154 SourceRange BodyRange; 1155 if (Stmt *Body = FD->getBody()) 1156 BodyRange = Body->getSourceRange(); 1157 else 1158 BodyRange = FD->getLocation(); 1159 CurEHLocation = BodyRange.getEnd(); 1160 1161 // Use the location of the start of the function to determine where 1162 // the function definition is located. By default use the location 1163 // of the declaration as the location for the subprogram. A function 1164 // may lack a declaration in the source code if it is created by code 1165 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). 1166 SourceLocation Loc = FD->getLocation(); 1167 1168 // If this is a function specialization then use the pattern body 1169 // as the location for the function. 1170 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) 1171 if (SpecDecl->hasBody(SpecDecl)) 1172 Loc = SpecDecl->getLocation(); 1173 1174 Stmt *Body = FD->getBody(); 1175 1176 // Initialize helper which will detect jumps which can cause invalid lifetime 1177 // markers. 1178 if (Body && ShouldEmitLifetimeMarkers) 1179 Bypasses.Init(Body); 1180 1181 // Emit the standard function prologue. 1182 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin()); 1183 1184 // Generate the body of the function. 1185 PGO.assignRegionCounters(GD, CurFn); 1186 if (isa<CXXDestructorDecl>(FD)) 1187 EmitDestructorBody(Args); 1188 else if (isa<CXXConstructorDecl>(FD)) 1189 EmitConstructorBody(Args); 1190 else if (getLangOpts().CUDA && 1191 !getLangOpts().CUDAIsDevice && 1192 FD->hasAttr<CUDAGlobalAttr>()) 1193 CGM.getCUDARuntime().emitDeviceStub(*this, Args); 1194 else if (isa<CXXMethodDecl>(FD) && 1195 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 1196 // The lambda static invoker function is special, because it forwards or 1197 // clones the body of the function call operator (but is actually static). 1198 EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD)); 1199 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 1200 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 1201 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 1202 // Implicit copy-assignment gets the same special treatment as implicit 1203 // copy-constructors. 1204 emitImplicitAssignmentOperatorBody(Args); 1205 } else if (Body) { 1206 EmitFunctionBody(Body); 1207 } else 1208 llvm_unreachable("no definition for emitted function"); 1209 1210 // C++11 [stmt.return]p2: 1211 // Flowing off the end of a function [...] results in undefined behavior in 1212 // a value-returning function. 1213 // C11 6.9.1p12: 1214 // If the '}' that terminates a function is reached, and the value of the 1215 // function call is used by the caller, the behavior is undefined. 1216 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock && 1217 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { 1218 bool ShouldEmitUnreachable = 1219 CGM.getCodeGenOpts().StrictReturn || 1220 shouldUseUndefinedBehaviorReturnOptimization(FD, getContext()); 1221 if (SanOpts.has(SanitizerKind::Return)) { 1222 SanitizerScope SanScope(this); 1223 llvm::Value *IsFalse = Builder.getFalse(); 1224 EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return), 1225 SanitizerHandler::MissingReturn, 1226 EmitCheckSourceLocation(FD->getLocation()), None); 1227 } else if (ShouldEmitUnreachable) { 1228 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 1229 EmitTrapCall(llvm::Intrinsic::trap); 1230 } 1231 if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) { 1232 Builder.CreateUnreachable(); 1233 Builder.ClearInsertionPoint(); 1234 } 1235 } 1236 1237 // Emit the standard function epilogue. 1238 FinishFunction(BodyRange.getEnd()); 1239 1240 // If we haven't marked the function nothrow through other means, do 1241 // a quick pass now to see if we can. 1242 if (!CurFn->doesNotThrow()) 1243 TryMarkNoThrow(CurFn); 1244 } 1245 1246 /// ContainsLabel - Return true if the statement contains a label in it. If 1247 /// this statement is not executed normally, it not containing a label means 1248 /// that we can just remove the code. 1249 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 1250 // Null statement, not a label! 1251 if (!S) return false; 1252 1253 // If this is a label, we have to emit the code, consider something like: 1254 // if (0) { ... foo: bar(); } goto foo; 1255 // 1256 // TODO: If anyone cared, we could track __label__'s, since we know that you 1257 // can't jump to one from outside their declared region. 1258 if (isa<LabelStmt>(S)) 1259 return true; 1260 1261 // If this is a case/default statement, and we haven't seen a switch, we have 1262 // to emit the code. 1263 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 1264 return true; 1265 1266 // If this is a switch statement, we want to ignore cases below it. 1267 if (isa<SwitchStmt>(S)) 1268 IgnoreCaseStmts = true; 1269 1270 // Scan subexpressions for verboten labels. 1271 for (const Stmt *SubStmt : S->children()) 1272 if (ContainsLabel(SubStmt, IgnoreCaseStmts)) 1273 return true; 1274 1275 return false; 1276 } 1277 1278 /// containsBreak - Return true if the statement contains a break out of it. 1279 /// If the statement (recursively) contains a switch or loop with a break 1280 /// inside of it, this is fine. 1281 bool CodeGenFunction::containsBreak(const Stmt *S) { 1282 // Null statement, not a label! 1283 if (!S) return false; 1284 1285 // If this is a switch or loop that defines its own break scope, then we can 1286 // include it and anything inside of it. 1287 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 1288 isa<ForStmt>(S)) 1289 return false; 1290 1291 if (isa<BreakStmt>(S)) 1292 return true; 1293 1294 // Scan subexpressions for verboten breaks. 1295 for (const Stmt *SubStmt : S->children()) 1296 if (containsBreak(SubStmt)) 1297 return true; 1298 1299 return false; 1300 } 1301 1302 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) { 1303 if (!S) return false; 1304 1305 // Some statement kinds add a scope and thus never add a decl to the current 1306 // scope. Note, this list is longer than the list of statements that might 1307 // have an unscoped decl nested within them, but this way is conservatively 1308 // correct even if more statement kinds are added. 1309 if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) || 1310 isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) || 1311 isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) || 1312 isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S)) 1313 return false; 1314 1315 if (isa<DeclStmt>(S)) 1316 return true; 1317 1318 for (const Stmt *SubStmt : S->children()) 1319 if (mightAddDeclToScope(SubStmt)) 1320 return true; 1321 1322 return false; 1323 } 1324 1325 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1326 /// to a constant, or if it does but contains a label, return false. If it 1327 /// constant folds return true and set the boolean result in Result. 1328 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1329 bool &ResultBool, 1330 bool AllowLabels) { 1331 llvm::APSInt ResultInt; 1332 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels)) 1333 return false; 1334 1335 ResultBool = ResultInt.getBoolValue(); 1336 return true; 1337 } 1338 1339 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1340 /// to a constant, or if it does but contains a label, return false. If it 1341 /// constant folds return true and set the folded value. 1342 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1343 llvm::APSInt &ResultInt, 1344 bool AllowLabels) { 1345 // FIXME: Rename and handle conversion of other evaluatable things 1346 // to bool. 1347 Expr::EvalResult Result; 1348 if (!Cond->EvaluateAsInt(Result, getContext())) 1349 return false; // Not foldable, not integer or not fully evaluatable. 1350 1351 llvm::APSInt Int = Result.Val.getInt(); 1352 if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond)) 1353 return false; // Contains a label. 1354 1355 ResultInt = Int; 1356 return true; 1357 } 1358 1359 1360 1361 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 1362 /// statement) to the specified blocks. Based on the condition, this might try 1363 /// to simplify the codegen of the conditional based on the branch. 1364 /// 1365 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 1366 llvm::BasicBlock *TrueBlock, 1367 llvm::BasicBlock *FalseBlock, 1368 uint64_t TrueCount) { 1369 Cond = Cond->IgnoreParens(); 1370 1371 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 1372 1373 // Handle X && Y in a condition. 1374 if (CondBOp->getOpcode() == BO_LAnd) { 1375 // If we have "1 && X", simplify the code. "0 && X" would have constant 1376 // folded if the case was simple enough. 1377 bool ConstantBool = false; 1378 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1379 ConstantBool) { 1380 // br(1 && X) -> br(X). 1381 incrementProfileCounter(CondBOp); 1382 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1383 TrueCount); 1384 } 1385 1386 // If we have "X && 1", simplify the code to use an uncond branch. 1387 // "X && 0" would have been constant folded to 0. 1388 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1389 ConstantBool) { 1390 // br(X && 1) -> br(X). 1391 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1392 TrueCount); 1393 } 1394 1395 // Emit the LHS as a conditional. If the LHS conditional is false, we 1396 // want to jump to the FalseBlock. 1397 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 1398 // The counter tells us how often we evaluate RHS, and all of TrueCount 1399 // can be propagated to that branch. 1400 uint64_t RHSCount = getProfileCount(CondBOp->getRHS()); 1401 1402 ConditionalEvaluation eval(*this); 1403 { 1404 ApplyDebugLocation DL(*this, Cond); 1405 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount); 1406 EmitBlock(LHSTrue); 1407 } 1408 1409 incrementProfileCounter(CondBOp); 1410 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1411 1412 // Any temporaries created here are conditional. 1413 eval.begin(*this); 1414 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount); 1415 eval.end(*this); 1416 1417 return; 1418 } 1419 1420 if (CondBOp->getOpcode() == BO_LOr) { 1421 // If we have "0 || X", simplify the code. "1 || X" would have constant 1422 // folded if the case was simple enough. 1423 bool ConstantBool = false; 1424 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1425 !ConstantBool) { 1426 // br(0 || X) -> br(X). 1427 incrementProfileCounter(CondBOp); 1428 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1429 TrueCount); 1430 } 1431 1432 // If we have "X || 0", simplify the code to use an uncond branch. 1433 // "X || 1" would have been constant folded to 1. 1434 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1435 !ConstantBool) { 1436 // br(X || 0) -> br(X). 1437 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1438 TrueCount); 1439 } 1440 1441 // Emit the LHS as a conditional. If the LHS conditional is true, we 1442 // want to jump to the TrueBlock. 1443 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 1444 // We have the count for entry to the RHS and for the whole expression 1445 // being true, so we can divy up True count between the short circuit and 1446 // the RHS. 1447 uint64_t LHSCount = 1448 getCurrentProfileCount() - getProfileCount(CondBOp->getRHS()); 1449 uint64_t RHSCount = TrueCount - LHSCount; 1450 1451 ConditionalEvaluation eval(*this); 1452 { 1453 ApplyDebugLocation DL(*this, Cond); 1454 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount); 1455 EmitBlock(LHSFalse); 1456 } 1457 1458 incrementProfileCounter(CondBOp); 1459 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1460 1461 // Any temporaries created here are conditional. 1462 eval.begin(*this); 1463 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount); 1464 1465 eval.end(*this); 1466 1467 return; 1468 } 1469 } 1470 1471 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 1472 // br(!x, t, f) -> br(x, f, t) 1473 if (CondUOp->getOpcode() == UO_LNot) { 1474 // Negate the count. 1475 uint64_t FalseCount = getCurrentProfileCount() - TrueCount; 1476 // Negate the condition and swap the destination blocks. 1477 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, 1478 FalseCount); 1479 } 1480 } 1481 1482 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 1483 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 1484 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1485 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1486 1487 ConditionalEvaluation cond(*this); 1488 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, 1489 getProfileCount(CondOp)); 1490 1491 // When computing PGO branch weights, we only know the overall count for 1492 // the true block. This code is essentially doing tail duplication of the 1493 // naive code-gen, introducing new edges for which counts are not 1494 // available. Divide the counts proportionally between the LHS and RHS of 1495 // the conditional operator. 1496 uint64_t LHSScaledTrueCount = 0; 1497 if (TrueCount) { 1498 double LHSRatio = 1499 getProfileCount(CondOp) / (double)getCurrentProfileCount(); 1500 LHSScaledTrueCount = TrueCount * LHSRatio; 1501 } 1502 1503 cond.begin(*this); 1504 EmitBlock(LHSBlock); 1505 incrementProfileCounter(CondOp); 1506 { 1507 ApplyDebugLocation DL(*this, Cond); 1508 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, 1509 LHSScaledTrueCount); 1510 } 1511 cond.end(*this); 1512 1513 cond.begin(*this); 1514 EmitBlock(RHSBlock); 1515 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, 1516 TrueCount - LHSScaledTrueCount); 1517 cond.end(*this); 1518 1519 return; 1520 } 1521 1522 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 1523 // Conditional operator handling can give us a throw expression as a 1524 // condition for a case like: 1525 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 1526 // Fold this to: 1527 // br(c, throw x, br(y, t, f)) 1528 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 1529 return; 1530 } 1531 1532 // If the branch has a condition wrapped by __builtin_unpredictable, 1533 // create metadata that specifies that the branch is unpredictable. 1534 // Don't bother if not optimizing because that metadata would not be used. 1535 llvm::MDNode *Unpredictable = nullptr; 1536 auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts()); 1537 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 1538 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 1539 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 1540 llvm::MDBuilder MDHelper(getLLVMContext()); 1541 Unpredictable = MDHelper.createUnpredictable(); 1542 } 1543 } 1544 1545 // Create branch weights based on the number of times we get here and the 1546 // number of times the condition should be true. 1547 uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount); 1548 llvm::MDNode *Weights = 1549 createProfileWeights(TrueCount, CurrentCount - TrueCount); 1550 1551 // Emit the code with the fully general case. 1552 llvm::Value *CondV; 1553 { 1554 ApplyDebugLocation DL(*this, Cond); 1555 CondV = EvaluateExprAsBool(Cond); 1556 } 1557 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable); 1558 } 1559 1560 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1561 /// specified stmt yet. 1562 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 1563 CGM.ErrorUnsupported(S, Type); 1564 } 1565 1566 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 1567 /// variable-length array whose elements have a non-zero bit-pattern. 1568 /// 1569 /// \param baseType the inner-most element type of the array 1570 /// \param src - a char* pointing to the bit-pattern for a single 1571 /// base element of the array 1572 /// \param sizeInChars - the total size of the VLA, in chars 1573 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 1574 Address dest, Address src, 1575 llvm::Value *sizeInChars) { 1576 CGBuilderTy &Builder = CGF.Builder; 1577 1578 CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType); 1579 llvm::Value *baseSizeInChars 1580 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity()); 1581 1582 Address begin = 1583 Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin"); 1584 llvm::Value *end = 1585 Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end"); 1586 1587 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 1588 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 1589 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 1590 1591 // Make a loop over the VLA. C99 guarantees that the VLA element 1592 // count must be nonzero. 1593 CGF.EmitBlock(loopBB); 1594 1595 llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur"); 1596 cur->addIncoming(begin.getPointer(), originBB); 1597 1598 CharUnits curAlign = 1599 dest.getAlignment().alignmentOfArrayElement(baseSize); 1600 1601 // memcpy the individual element bit-pattern. 1602 Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars, 1603 /*volatile*/ false); 1604 1605 // Go to the next element. 1606 llvm::Value *next = 1607 Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next"); 1608 1609 // Leave if that's the end of the VLA. 1610 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 1611 Builder.CreateCondBr(done, contBB, loopBB); 1612 cur->addIncoming(next, loopBB); 1613 1614 CGF.EmitBlock(contBB); 1615 } 1616 1617 void 1618 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) { 1619 // Ignore empty classes in C++. 1620 if (getLangOpts().CPlusPlus) { 1621 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1622 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 1623 return; 1624 } 1625 } 1626 1627 // Cast the dest ptr to the appropriate i8 pointer type. 1628 if (DestPtr.getElementType() != Int8Ty) 1629 DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty); 1630 1631 // Get size and alignment info for this aggregate. 1632 CharUnits size = getContext().getTypeSizeInChars(Ty); 1633 1634 llvm::Value *SizeVal; 1635 const VariableArrayType *vla; 1636 1637 // Don't bother emitting a zero-byte memset. 1638 if (size.isZero()) { 1639 // But note that getTypeInfo returns 0 for a VLA. 1640 if (const VariableArrayType *vlaType = 1641 dyn_cast_or_null<VariableArrayType>( 1642 getContext().getAsArrayType(Ty))) { 1643 auto VlaSize = getVLASize(vlaType); 1644 SizeVal = VlaSize.NumElts; 1645 CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type); 1646 if (!eltSize.isOne()) 1647 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 1648 vla = vlaType; 1649 } else { 1650 return; 1651 } 1652 } else { 1653 SizeVal = CGM.getSize(size); 1654 vla = nullptr; 1655 } 1656 1657 // If the type contains a pointer to data member we can't memset it to zero. 1658 // Instead, create a null constant and copy it to the destination. 1659 // TODO: there are other patterns besides zero that we can usefully memset, 1660 // like -1, which happens to be the pattern used by member-pointers. 1661 if (!CGM.getTypes().isZeroInitializable(Ty)) { 1662 // For a VLA, emit a single element, then splat that over the VLA. 1663 if (vla) Ty = getContext().getBaseElementType(vla); 1664 1665 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 1666 1667 llvm::GlobalVariable *NullVariable = 1668 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 1669 /*isConstant=*/true, 1670 llvm::GlobalVariable::PrivateLinkage, 1671 NullConstant, Twine()); 1672 CharUnits NullAlign = DestPtr.getAlignment(); 1673 NullVariable->setAlignment(NullAlign.getQuantity()); 1674 Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()), 1675 NullAlign); 1676 1677 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 1678 1679 // Get and call the appropriate llvm.memcpy overload. 1680 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false); 1681 return; 1682 } 1683 1684 // Otherwise, just memset the whole thing to zero. This is legal 1685 // because in LLVM, all default initializers (other than the ones we just 1686 // handled above) are guaranteed to have a bit pattern of all zeros. 1687 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false); 1688 } 1689 1690 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 1691 // Make sure that there is a block for the indirect goto. 1692 if (!IndirectBranch) 1693 GetIndirectGotoBlock(); 1694 1695 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 1696 1697 // Make sure the indirect branch includes all of the address-taken blocks. 1698 IndirectBranch->addDestination(BB); 1699 return llvm::BlockAddress::get(CurFn, BB); 1700 } 1701 1702 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 1703 // If we already made the indirect branch for indirect goto, return its block. 1704 if (IndirectBranch) return IndirectBranch->getParent(); 1705 1706 CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto")); 1707 1708 // Create the PHI node that indirect gotos will add entries to. 1709 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 1710 "indirect.goto.dest"); 1711 1712 // Create the indirect branch instruction. 1713 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 1714 return IndirectBranch->getParent(); 1715 } 1716 1717 /// Computes the length of an array in elements, as well as the base 1718 /// element type and a properly-typed first element pointer. 1719 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 1720 QualType &baseType, 1721 Address &addr) { 1722 const ArrayType *arrayType = origArrayType; 1723 1724 // If it's a VLA, we have to load the stored size. Note that 1725 // this is the size of the VLA in bytes, not its size in elements. 1726 llvm::Value *numVLAElements = nullptr; 1727 if (isa<VariableArrayType>(arrayType)) { 1728 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts; 1729 1730 // Walk into all VLAs. This doesn't require changes to addr, 1731 // which has type T* where T is the first non-VLA element type. 1732 do { 1733 QualType elementType = arrayType->getElementType(); 1734 arrayType = getContext().getAsArrayType(elementType); 1735 1736 // If we only have VLA components, 'addr' requires no adjustment. 1737 if (!arrayType) { 1738 baseType = elementType; 1739 return numVLAElements; 1740 } 1741 } while (isa<VariableArrayType>(arrayType)); 1742 1743 // We get out here only if we find a constant array type 1744 // inside the VLA. 1745 } 1746 1747 // We have some number of constant-length arrays, so addr should 1748 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 1749 // down to the first element of addr. 1750 SmallVector<llvm::Value*, 8> gepIndices; 1751 1752 // GEP down to the array type. 1753 llvm::ConstantInt *zero = Builder.getInt32(0); 1754 gepIndices.push_back(zero); 1755 1756 uint64_t countFromCLAs = 1; 1757 QualType eltType; 1758 1759 llvm::ArrayType *llvmArrayType = 1760 dyn_cast<llvm::ArrayType>(addr.getElementType()); 1761 while (llvmArrayType) { 1762 assert(isa<ConstantArrayType>(arrayType)); 1763 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 1764 == llvmArrayType->getNumElements()); 1765 1766 gepIndices.push_back(zero); 1767 countFromCLAs *= llvmArrayType->getNumElements(); 1768 eltType = arrayType->getElementType(); 1769 1770 llvmArrayType = 1771 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 1772 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 1773 assert((!llvmArrayType || arrayType) && 1774 "LLVM and Clang types are out-of-synch"); 1775 } 1776 1777 if (arrayType) { 1778 // From this point onwards, the Clang array type has been emitted 1779 // as some other type (probably a packed struct). Compute the array 1780 // size, and just emit the 'begin' expression as a bitcast. 1781 while (arrayType) { 1782 countFromCLAs *= 1783 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 1784 eltType = arrayType->getElementType(); 1785 arrayType = getContext().getAsArrayType(eltType); 1786 } 1787 1788 llvm::Type *baseType = ConvertType(eltType); 1789 addr = Builder.CreateElementBitCast(addr, baseType, "array.begin"); 1790 } else { 1791 // Create the actual GEP. 1792 addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(), 1793 gepIndices, "array.begin"), 1794 addr.getAlignment()); 1795 } 1796 1797 baseType = eltType; 1798 1799 llvm::Value *numElements 1800 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 1801 1802 // If we had any VLA dimensions, factor them in. 1803 if (numVLAElements) 1804 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 1805 1806 return numElements; 1807 } 1808 1809 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) { 1810 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1811 assert(vla && "type was not a variable array type!"); 1812 return getVLASize(vla); 1813 } 1814 1815 CodeGenFunction::VlaSizePair 1816 CodeGenFunction::getVLASize(const VariableArrayType *type) { 1817 // The number of elements so far; always size_t. 1818 llvm::Value *numElements = nullptr; 1819 1820 QualType elementType; 1821 do { 1822 elementType = type->getElementType(); 1823 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 1824 assert(vlaSize && "no size for VLA!"); 1825 assert(vlaSize->getType() == SizeTy); 1826 1827 if (!numElements) { 1828 numElements = vlaSize; 1829 } else { 1830 // It's undefined behavior if this wraps around, so mark it that way. 1831 // FIXME: Teach -fsanitize=undefined to trap this. 1832 numElements = Builder.CreateNUWMul(numElements, vlaSize); 1833 } 1834 } while ((type = getContext().getAsVariableArrayType(elementType))); 1835 1836 return { numElements, elementType }; 1837 } 1838 1839 CodeGenFunction::VlaSizePair 1840 CodeGenFunction::getVLAElements1D(QualType type) { 1841 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1842 assert(vla && "type was not a variable array type!"); 1843 return getVLAElements1D(vla); 1844 } 1845 1846 CodeGenFunction::VlaSizePair 1847 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) { 1848 llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()]; 1849 assert(VlaSize && "no size for VLA!"); 1850 assert(VlaSize->getType() == SizeTy); 1851 return { VlaSize, Vla->getElementType() }; 1852 } 1853 1854 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 1855 assert(type->isVariablyModifiedType() && 1856 "Must pass variably modified type to EmitVLASizes!"); 1857 1858 EnsureInsertPoint(); 1859 1860 // We're going to walk down into the type and look for VLA 1861 // expressions. 1862 do { 1863 assert(type->isVariablyModifiedType()); 1864 1865 const Type *ty = type.getTypePtr(); 1866 switch (ty->getTypeClass()) { 1867 1868 #define TYPE(Class, Base) 1869 #define ABSTRACT_TYPE(Class, Base) 1870 #define NON_CANONICAL_TYPE(Class, Base) 1871 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 1872 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 1873 #include "clang/AST/TypeNodes.def" 1874 llvm_unreachable("unexpected dependent type!"); 1875 1876 // These types are never variably-modified. 1877 case Type::Builtin: 1878 case Type::Complex: 1879 case Type::Vector: 1880 case Type::ExtVector: 1881 case Type::Record: 1882 case Type::Enum: 1883 case Type::Elaborated: 1884 case Type::TemplateSpecialization: 1885 case Type::ObjCTypeParam: 1886 case Type::ObjCObject: 1887 case Type::ObjCInterface: 1888 case Type::ObjCObjectPointer: 1889 llvm_unreachable("type class is never variably-modified!"); 1890 1891 case Type::Adjusted: 1892 type = cast<AdjustedType>(ty)->getAdjustedType(); 1893 break; 1894 1895 case Type::Decayed: 1896 type = cast<DecayedType>(ty)->getPointeeType(); 1897 break; 1898 1899 case Type::Pointer: 1900 type = cast<PointerType>(ty)->getPointeeType(); 1901 break; 1902 1903 case Type::BlockPointer: 1904 type = cast<BlockPointerType>(ty)->getPointeeType(); 1905 break; 1906 1907 case Type::LValueReference: 1908 case Type::RValueReference: 1909 type = cast<ReferenceType>(ty)->getPointeeType(); 1910 break; 1911 1912 case Type::MemberPointer: 1913 type = cast<MemberPointerType>(ty)->getPointeeType(); 1914 break; 1915 1916 case Type::ConstantArray: 1917 case Type::IncompleteArray: 1918 // Losing element qualification here is fine. 1919 type = cast<ArrayType>(ty)->getElementType(); 1920 break; 1921 1922 case Type::VariableArray: { 1923 // Losing element qualification here is fine. 1924 const VariableArrayType *vat = cast<VariableArrayType>(ty); 1925 1926 // Unknown size indication requires no size computation. 1927 // Otherwise, evaluate and record it. 1928 if (const Expr *size = vat->getSizeExpr()) { 1929 // It's possible that we might have emitted this already, 1930 // e.g. with a typedef and a pointer to it. 1931 llvm::Value *&entry = VLASizeMap[size]; 1932 if (!entry) { 1933 llvm::Value *Size = EmitScalarExpr(size); 1934 1935 // C11 6.7.6.2p5: 1936 // If the size is an expression that is not an integer constant 1937 // expression [...] each time it is evaluated it shall have a value 1938 // greater than zero. 1939 if (SanOpts.has(SanitizerKind::VLABound) && 1940 size->getType()->isSignedIntegerType()) { 1941 SanitizerScope SanScope(this); 1942 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); 1943 llvm::Constant *StaticArgs[] = { 1944 EmitCheckSourceLocation(size->getBeginLoc()), 1945 EmitCheckTypeDescriptor(size->getType())}; 1946 EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero), 1947 SanitizerKind::VLABound), 1948 SanitizerHandler::VLABoundNotPositive, StaticArgs, Size); 1949 } 1950 1951 // Always zexting here would be wrong if it weren't 1952 // undefined behavior to have a negative bound. 1953 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); 1954 } 1955 } 1956 type = vat->getElementType(); 1957 break; 1958 } 1959 1960 case Type::FunctionProto: 1961 case Type::FunctionNoProto: 1962 type = cast<FunctionType>(ty)->getReturnType(); 1963 break; 1964 1965 case Type::Paren: 1966 case Type::TypeOf: 1967 case Type::UnaryTransform: 1968 case Type::Attributed: 1969 case Type::SubstTemplateTypeParm: 1970 case Type::PackExpansion: 1971 case Type::MacroQualified: 1972 // Keep walking after single level desugaring. 1973 type = type.getSingleStepDesugaredType(getContext()); 1974 break; 1975 1976 case Type::Typedef: 1977 case Type::Decltype: 1978 case Type::Auto: 1979 case Type::DeducedTemplateSpecialization: 1980 // Stop walking: nothing to do. 1981 return; 1982 1983 case Type::TypeOfExpr: 1984 // Stop walking: emit typeof expression. 1985 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 1986 return; 1987 1988 case Type::Atomic: 1989 type = cast<AtomicType>(ty)->getValueType(); 1990 break; 1991 1992 case Type::Pipe: 1993 type = cast<PipeType>(ty)->getElementType(); 1994 break; 1995 } 1996 } while (type->isVariablyModifiedType()); 1997 } 1998 1999 Address CodeGenFunction::EmitVAListRef(const Expr* E) { 2000 if (getContext().getBuiltinVaListType()->isArrayType()) 2001 return EmitPointerWithAlignment(E); 2002 return EmitLValue(E).getAddress(); 2003 } 2004 2005 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) { 2006 return EmitLValue(E).getAddress(); 2007 } 2008 2009 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 2010 const APValue &Init) { 2011 assert(Init.hasValue() && "Invalid DeclRefExpr initializer!"); 2012 if (CGDebugInfo *Dbg = getDebugInfo()) 2013 if (CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 2014 Dbg->EmitGlobalVariable(E->getDecl(), Init); 2015 } 2016 2017 CodeGenFunction::PeepholeProtection 2018 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 2019 // At the moment, the only aggressive peephole we do in IR gen 2020 // is trunc(zext) folding, but if we add more, we can easily 2021 // extend this protection. 2022 2023 if (!rvalue.isScalar()) return PeepholeProtection(); 2024 llvm::Value *value = rvalue.getScalarVal(); 2025 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 2026 2027 // Just make an extra bitcast. 2028 assert(HaveInsertPoint()); 2029 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 2030 Builder.GetInsertBlock()); 2031 2032 PeepholeProtection protection; 2033 protection.Inst = inst; 2034 return protection; 2035 } 2036 2037 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 2038 if (!protection.Inst) return; 2039 2040 // In theory, we could try to duplicate the peepholes now, but whatever. 2041 protection.Inst->eraseFromParent(); 2042 } 2043 2044 void CodeGenFunction::EmitAlignmentAssumption(llvm::Value *PtrValue, 2045 QualType Ty, SourceLocation Loc, 2046 SourceLocation AssumptionLoc, 2047 llvm::Value *Alignment, 2048 llvm::Value *OffsetValue) { 2049 llvm::Value *TheCheck; 2050 llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption( 2051 CGM.getDataLayout(), PtrValue, Alignment, OffsetValue, &TheCheck); 2052 if (SanOpts.has(SanitizerKind::Alignment)) { 2053 EmitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment, 2054 OffsetValue, TheCheck, Assumption); 2055 } 2056 } 2057 2058 void CodeGenFunction::EmitAlignmentAssumption(llvm::Value *PtrValue, 2059 QualType Ty, SourceLocation Loc, 2060 SourceLocation AssumptionLoc, 2061 unsigned Alignment, 2062 llvm::Value *OffsetValue) { 2063 llvm::Value *TheCheck; 2064 llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption( 2065 CGM.getDataLayout(), PtrValue, Alignment, OffsetValue, &TheCheck); 2066 if (SanOpts.has(SanitizerKind::Alignment)) { 2067 llvm::Value *AlignmentVal = llvm::ConstantInt::get(IntPtrTy, Alignment); 2068 EmitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, AlignmentVal, 2069 OffsetValue, TheCheck, Assumption); 2070 } 2071 } 2072 2073 void CodeGenFunction::EmitAlignmentAssumption(llvm::Value *PtrValue, 2074 const Expr *E, 2075 SourceLocation AssumptionLoc, 2076 unsigned Alignment, 2077 llvm::Value *OffsetValue) { 2078 if (auto *CE = dyn_cast<CastExpr>(E)) 2079 E = CE->getSubExprAsWritten(); 2080 QualType Ty = E->getType(); 2081 SourceLocation Loc = E->getExprLoc(); 2082 2083 EmitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment, 2084 OffsetValue); 2085 } 2086 2087 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn, 2088 llvm::Value *AnnotatedVal, 2089 StringRef AnnotationStr, 2090 SourceLocation Location) { 2091 llvm::Value *Args[4] = { 2092 AnnotatedVal, 2093 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 2094 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 2095 CGM.EmitAnnotationLineNo(Location) 2096 }; 2097 return Builder.CreateCall(AnnotationFn, Args); 2098 } 2099 2100 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 2101 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2102 // FIXME We create a new bitcast for every annotation because that's what 2103 // llvm-gcc was doing. 2104 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2105 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 2106 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 2107 I->getAnnotation(), D->getLocation()); 2108 } 2109 2110 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 2111 Address Addr) { 2112 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2113 llvm::Value *V = Addr.getPointer(); 2114 llvm::Type *VTy = V->getType(); 2115 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 2116 CGM.Int8PtrTy); 2117 2118 for (const auto *I : D->specific_attrs<AnnotateAttr>()) { 2119 // FIXME Always emit the cast inst so we can differentiate between 2120 // annotation on the first field of a struct and annotation on the struct 2121 // itself. 2122 if (VTy != CGM.Int8PtrTy) 2123 V = Builder.CreateBitCast(V, CGM.Int8PtrTy); 2124 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation()); 2125 V = Builder.CreateBitCast(V, VTy); 2126 } 2127 2128 return Address(V, Addr.getAlignment()); 2129 } 2130 2131 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 2132 2133 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF) 2134 : CGF(CGF) { 2135 assert(!CGF->IsSanitizerScope); 2136 CGF->IsSanitizerScope = true; 2137 } 2138 2139 CodeGenFunction::SanitizerScope::~SanitizerScope() { 2140 CGF->IsSanitizerScope = false; 2141 } 2142 2143 void CodeGenFunction::InsertHelper(llvm::Instruction *I, 2144 const llvm::Twine &Name, 2145 llvm::BasicBlock *BB, 2146 llvm::BasicBlock::iterator InsertPt) const { 2147 LoopStack.InsertHelper(I); 2148 if (IsSanitizerScope) 2149 CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I); 2150 } 2151 2152 void CGBuilderInserter::InsertHelper( 2153 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, 2154 llvm::BasicBlock::iterator InsertPt) const { 2155 llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt); 2156 if (CGF) 2157 CGF->InsertHelper(I, Name, BB, InsertPt); 2158 } 2159 2160 static bool hasRequiredFeatures(const SmallVectorImpl<StringRef> &ReqFeatures, 2161 CodeGenModule &CGM, const FunctionDecl *FD, 2162 std::string &FirstMissing) { 2163 // If there aren't any required features listed then go ahead and return. 2164 if (ReqFeatures.empty()) 2165 return false; 2166 2167 // Now build up the set of caller features and verify that all the required 2168 // features are there. 2169 llvm::StringMap<bool> CallerFeatureMap; 2170 CGM.getFunctionFeatureMap(CallerFeatureMap, GlobalDecl().getWithDecl(FD)); 2171 2172 // If we have at least one of the features in the feature list return 2173 // true, otherwise return false. 2174 return std::all_of( 2175 ReqFeatures.begin(), ReqFeatures.end(), [&](StringRef Feature) { 2176 SmallVector<StringRef, 1> OrFeatures; 2177 Feature.split(OrFeatures, '|'); 2178 return llvm::any_of(OrFeatures, [&](StringRef Feature) { 2179 if (!CallerFeatureMap.lookup(Feature)) { 2180 FirstMissing = Feature.str(); 2181 return false; 2182 } 2183 return true; 2184 }); 2185 }); 2186 } 2187 2188 // Emits an error if we don't have a valid set of target features for the 2189 // called function. 2190 void CodeGenFunction::checkTargetFeatures(const CallExpr *E, 2191 const FunctionDecl *TargetDecl) { 2192 return checkTargetFeatures(E->getBeginLoc(), TargetDecl); 2193 } 2194 2195 // Emits an error if we don't have a valid set of target features for the 2196 // called function. 2197 void CodeGenFunction::checkTargetFeatures(SourceLocation Loc, 2198 const FunctionDecl *TargetDecl) { 2199 // Early exit if this is an indirect call. 2200 if (!TargetDecl) 2201 return; 2202 2203 // Get the current enclosing function if it exists. If it doesn't 2204 // we can't check the target features anyhow. 2205 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl); 2206 if (!FD) 2207 return; 2208 2209 // Grab the required features for the call. For a builtin this is listed in 2210 // the td file with the default cpu, for an always_inline function this is any 2211 // listed cpu and any listed features. 2212 unsigned BuiltinID = TargetDecl->getBuiltinID(); 2213 std::string MissingFeature; 2214 if (BuiltinID) { 2215 SmallVector<StringRef, 1> ReqFeatures; 2216 const char *FeatureList = 2217 CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 2218 // Return if the builtin doesn't have any required features. 2219 if (!FeatureList || StringRef(FeatureList) == "") 2220 return; 2221 StringRef(FeatureList).split(ReqFeatures, ','); 2222 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 2223 CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature) 2224 << TargetDecl->getDeclName() 2225 << CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 2226 2227 } else if (TargetDecl->hasAttr<TargetAttr>() || 2228 TargetDecl->hasAttr<CPUSpecificAttr>()) { 2229 // Get the required features for the callee. 2230 2231 const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>(); 2232 TargetAttr::ParsedTargetAttr ParsedAttr = CGM.filterFunctionTargetAttrs(TD); 2233 2234 SmallVector<StringRef, 1> ReqFeatures; 2235 llvm::StringMap<bool> CalleeFeatureMap; 2236 CGM.getFunctionFeatureMap(CalleeFeatureMap, TargetDecl); 2237 2238 for (const auto &F : ParsedAttr.Features) { 2239 if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1))) 2240 ReqFeatures.push_back(StringRef(F).substr(1)); 2241 } 2242 2243 for (const auto &F : CalleeFeatureMap) { 2244 // Only positive features are "required". 2245 if (F.getValue()) 2246 ReqFeatures.push_back(F.getKey()); 2247 } 2248 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 2249 CGM.getDiags().Report(Loc, diag::err_function_needs_feature) 2250 << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature; 2251 } 2252 } 2253 2254 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) { 2255 if (!CGM.getCodeGenOpts().SanitizeStats) 2256 return; 2257 2258 llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint()); 2259 IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation()); 2260 CGM.getSanStats().create(IRB, SSK); 2261 } 2262 2263 llvm::Value * 2264 CodeGenFunction::FormResolverCondition(const MultiVersionResolverOption &RO) { 2265 llvm::Value *Condition = nullptr; 2266 2267 if (!RO.Conditions.Architecture.empty()) 2268 Condition = EmitX86CpuIs(RO.Conditions.Architecture); 2269 2270 if (!RO.Conditions.Features.empty()) { 2271 llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features); 2272 Condition = 2273 Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond; 2274 } 2275 return Condition; 2276 } 2277 2278 static void CreateMultiVersionResolverReturn(CodeGenModule &CGM, 2279 llvm::Function *Resolver, 2280 CGBuilderTy &Builder, 2281 llvm::Function *FuncToReturn, 2282 bool SupportsIFunc) { 2283 if (SupportsIFunc) { 2284 Builder.CreateRet(FuncToReturn); 2285 return; 2286 } 2287 2288 llvm::SmallVector<llvm::Value *, 10> Args; 2289 llvm::for_each(Resolver->args(), 2290 [&](llvm::Argument &Arg) { Args.push_back(&Arg); }); 2291 2292 llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args); 2293 Result->setTailCallKind(llvm::CallInst::TCK_MustTail); 2294 2295 if (Resolver->getReturnType()->isVoidTy()) 2296 Builder.CreateRetVoid(); 2297 else 2298 Builder.CreateRet(Result); 2299 } 2300 2301 void CodeGenFunction::EmitMultiVersionResolver( 2302 llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) { 2303 assert((getContext().getTargetInfo().getTriple().getArch() == 2304 llvm::Triple::x86 || 2305 getContext().getTargetInfo().getTriple().getArch() == 2306 llvm::Triple::x86_64) && 2307 "Only implemented for x86 targets"); 2308 2309 bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc(); 2310 2311 // Main function's basic block. 2312 llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver); 2313 Builder.SetInsertPoint(CurBlock); 2314 EmitX86CpuInit(); 2315 2316 for (const MultiVersionResolverOption &RO : Options) { 2317 Builder.SetInsertPoint(CurBlock); 2318 llvm::Value *Condition = FormResolverCondition(RO); 2319 2320 // The 'default' or 'generic' case. 2321 if (!Condition) { 2322 assert(&RO == Options.end() - 1 && 2323 "Default or Generic case must be last"); 2324 CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function, 2325 SupportsIFunc); 2326 return; 2327 } 2328 2329 llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver); 2330 CGBuilderTy RetBuilder(*this, RetBlock); 2331 CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function, 2332 SupportsIFunc); 2333 CurBlock = createBasicBlock("resolver_else", Resolver); 2334 Builder.CreateCondBr(Condition, RetBlock, CurBlock); 2335 } 2336 2337 // If no generic/default, emit an unreachable. 2338 Builder.SetInsertPoint(CurBlock); 2339 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 2340 TrapCall->setDoesNotReturn(); 2341 TrapCall->setDoesNotThrow(); 2342 Builder.CreateUnreachable(); 2343 Builder.ClearInsertionPoint(); 2344 } 2345 2346 // Loc - where the diagnostic will point, where in the source code this 2347 // alignment has failed. 2348 // SecondaryLoc - if present (will be present if sufficiently different from 2349 // Loc), the diagnostic will additionally point a "Note:" to this location. 2350 // It should be the location where the __attribute__((assume_aligned)) 2351 // was written e.g. 2352 void CodeGenFunction::EmitAlignmentAssumptionCheck( 2353 llvm::Value *Ptr, QualType Ty, SourceLocation Loc, 2354 SourceLocation SecondaryLoc, llvm::Value *Alignment, 2355 llvm::Value *OffsetValue, llvm::Value *TheCheck, 2356 llvm::Instruction *Assumption) { 2357 assert(Assumption && isa<llvm::CallInst>(Assumption) && 2358 cast<llvm::CallInst>(Assumption)->getCalledValue() == 2359 llvm::Intrinsic::getDeclaration( 2360 Builder.GetInsertBlock()->getParent()->getParent(), 2361 llvm::Intrinsic::assume) && 2362 "Assumption should be a call to llvm.assume()."); 2363 assert(&(Builder.GetInsertBlock()->back()) == Assumption && 2364 "Assumption should be the last instruction of the basic block, " 2365 "since the basic block is still being generated."); 2366 2367 if (!SanOpts.has(SanitizerKind::Alignment)) 2368 return; 2369 2370 // Don't check pointers to volatile data. The behavior here is implementation- 2371 // defined. 2372 if (Ty->getPointeeType().isVolatileQualified()) 2373 return; 2374 2375 // We need to temorairly remove the assumption so we can insert the 2376 // sanitizer check before it, else the check will be dropped by optimizations. 2377 Assumption->removeFromParent(); 2378 2379 { 2380 SanitizerScope SanScope(this); 2381 2382 if (!OffsetValue) 2383 OffsetValue = Builder.getInt1(0); // no offset. 2384 2385 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc), 2386 EmitCheckSourceLocation(SecondaryLoc), 2387 EmitCheckTypeDescriptor(Ty)}; 2388 llvm::Value *DynamicData[] = {EmitCheckValue(Ptr), 2389 EmitCheckValue(Alignment), 2390 EmitCheckValue(OffsetValue)}; 2391 EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)}, 2392 SanitizerHandler::AlignmentAssumption, StaticData, DynamicData); 2393 } 2394 2395 // We are now in the (new, empty) "cont" basic block. 2396 // Reintroduce the assumption. 2397 Builder.Insert(Assumption); 2398 // FIXME: Assumption still has it's original basic block as it's Parent. 2399 } 2400 2401 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) { 2402 if (CGDebugInfo *DI = getDebugInfo()) 2403 return DI->SourceLocToDebugLoc(Location); 2404 2405 return llvm::DebugLoc(); 2406 } 2407