xref: /llvm-project/clang/lib/CodeGen/CodeGenFunction.cpp (revision 9f37c0e703c095e6bee20dd3a64a5087dca967a8)
1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-function state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenFunction.h"
14 #include "CGBlocks.h"
15 #include "CGCleanup.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGDebugInfo.h"
19 #include "CGOpenMPRuntime.h"
20 #include "CodeGenModule.h"
21 #include "CodeGenPGO.h"
22 #include "TargetInfo.h"
23 #include "clang/AST/ASTContext.h"
24 #include "clang/AST/ASTLambda.h"
25 #include "clang/AST/Decl.h"
26 #include "clang/AST/DeclCXX.h"
27 #include "clang/AST/StmtCXX.h"
28 #include "clang/AST/StmtObjC.h"
29 #include "clang/Basic/Builtins.h"
30 #include "clang/Basic/CodeGenOptions.h"
31 #include "clang/Basic/TargetInfo.h"
32 #include "clang/CodeGen/CGFunctionInfo.h"
33 #include "clang/Frontend/FrontendDiagnostic.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/Dominators.h"
36 #include "llvm/IR/Intrinsics.h"
37 #include "llvm/IR/MDBuilder.h"
38 #include "llvm/IR/Operator.h"
39 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
40 using namespace clang;
41 using namespace CodeGen;
42 
43 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time
44 /// markers.
45 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts,
46                                       const LangOptions &LangOpts) {
47   if (CGOpts.DisableLifetimeMarkers)
48     return false;
49 
50   // Sanitizers may use markers.
51   if (CGOpts.SanitizeAddressUseAfterScope ||
52       LangOpts.Sanitize.has(SanitizerKind::HWAddress) ||
53       LangOpts.Sanitize.has(SanitizerKind::Memory))
54     return true;
55 
56   // For now, only in optimized builds.
57   return CGOpts.OptimizationLevel != 0;
58 }
59 
60 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
61     : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
62       Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(),
63               CGBuilderInserterTy(this)),
64       SanOpts(CGM.getLangOpts().Sanitize), DebugInfo(CGM.getModuleDebugInfo()),
65       PGO(cgm), ShouldEmitLifetimeMarkers(shouldEmitLifetimeMarkers(
66                     CGM.getCodeGenOpts(), CGM.getLangOpts())) {
67   if (!suppressNewContext)
68     CGM.getCXXABI().getMangleContext().startNewFunction();
69 
70   llvm::FastMathFlags FMF;
71   if (CGM.getLangOpts().FastMath)
72     FMF.setFast();
73   if (CGM.getLangOpts().FiniteMathOnly) {
74     FMF.setNoNaNs();
75     FMF.setNoInfs();
76   }
77   if (CGM.getCodeGenOpts().NoNaNsFPMath) {
78     FMF.setNoNaNs();
79   }
80   if (CGM.getCodeGenOpts().NoSignedZeros) {
81     FMF.setNoSignedZeros();
82   }
83   if (CGM.getCodeGenOpts().ReciprocalMath) {
84     FMF.setAllowReciprocal();
85   }
86   if (CGM.getCodeGenOpts().Reassociate) {
87     FMF.setAllowReassoc();
88   }
89   Builder.setFastMathFlags(FMF);
90 }
91 
92 CodeGenFunction::~CodeGenFunction() {
93   assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
94 
95   // If there are any unclaimed block infos, go ahead and destroy them
96   // now.  This can happen if IR-gen gets clever and skips evaluating
97   // something.
98   if (FirstBlockInfo)
99     destroyBlockInfos(FirstBlockInfo);
100 
101   if (getLangOpts().OpenMP && CurFn)
102     CGM.getOpenMPRuntime().functionFinished(*this);
103 }
104 
105 CharUnits CodeGenFunction::getNaturalPointeeTypeAlignment(QualType T,
106                                                     LValueBaseInfo *BaseInfo,
107                                                     TBAAAccessInfo *TBAAInfo) {
108   return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
109                                  /* forPointeeType= */ true);
110 }
111 
112 CharUnits CodeGenFunction::getNaturalTypeAlignment(QualType T,
113                                                    LValueBaseInfo *BaseInfo,
114                                                    TBAAAccessInfo *TBAAInfo,
115                                                    bool forPointeeType) {
116   if (TBAAInfo)
117     *TBAAInfo = CGM.getTBAAAccessInfo(T);
118 
119   // Honor alignment typedef attributes even on incomplete types.
120   // We also honor them straight for C++ class types, even as pointees;
121   // there's an expressivity gap here.
122   if (auto TT = T->getAs<TypedefType>()) {
123     if (auto Align = TT->getDecl()->getMaxAlignment()) {
124       if (BaseInfo)
125         *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
126       return getContext().toCharUnitsFromBits(Align);
127     }
128   }
129 
130   if (BaseInfo)
131     *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
132 
133   CharUnits Alignment;
134   if (T->isIncompleteType()) {
135     Alignment = CharUnits::One(); // Shouldn't be used, but pessimistic is best.
136   } else {
137     // For C++ class pointees, we don't know whether we're pointing at a
138     // base or a complete object, so we generally need to use the
139     // non-virtual alignment.
140     const CXXRecordDecl *RD;
141     if (forPointeeType && (RD = T->getAsCXXRecordDecl())) {
142       Alignment = CGM.getClassPointerAlignment(RD);
143     } else {
144       Alignment = getContext().getTypeAlignInChars(T);
145       if (T.getQualifiers().hasUnaligned())
146         Alignment = CharUnits::One();
147     }
148 
149     // Cap to the global maximum type alignment unless the alignment
150     // was somehow explicit on the type.
151     if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
152       if (Alignment.getQuantity() > MaxAlign &&
153           !getContext().isAlignmentRequired(T))
154         Alignment = CharUnits::fromQuantity(MaxAlign);
155     }
156   }
157   return Alignment;
158 }
159 
160 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
161   LValueBaseInfo BaseInfo;
162   TBAAAccessInfo TBAAInfo;
163   CharUnits Alignment = getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo);
164   return LValue::MakeAddr(Address(V, Alignment), T, getContext(), BaseInfo,
165                           TBAAInfo);
166 }
167 
168 /// Given a value of type T* that may not be to a complete object,
169 /// construct an l-value with the natural pointee alignment of T.
170 LValue
171 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) {
172   LValueBaseInfo BaseInfo;
173   TBAAAccessInfo TBAAInfo;
174   CharUnits Align = getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo,
175                                             /* forPointeeType= */ true);
176   return MakeAddrLValue(Address(V, Align), T, BaseInfo, TBAAInfo);
177 }
178 
179 
180 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
181   return CGM.getTypes().ConvertTypeForMem(T);
182 }
183 
184 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
185   return CGM.getTypes().ConvertType(T);
186 }
187 
188 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
189   type = type.getCanonicalType();
190   while (true) {
191     switch (type->getTypeClass()) {
192 #define TYPE(name, parent)
193 #define ABSTRACT_TYPE(name, parent)
194 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
195 #define DEPENDENT_TYPE(name, parent) case Type::name:
196 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
197 #include "clang/AST/TypeNodes.inc"
198       llvm_unreachable("non-canonical or dependent type in IR-generation");
199 
200     case Type::Auto:
201     case Type::DeducedTemplateSpecialization:
202       llvm_unreachable("undeduced type in IR-generation");
203 
204     // Various scalar types.
205     case Type::Builtin:
206     case Type::Pointer:
207     case Type::BlockPointer:
208     case Type::LValueReference:
209     case Type::RValueReference:
210     case Type::MemberPointer:
211     case Type::Vector:
212     case Type::ExtVector:
213     case Type::FunctionProto:
214     case Type::FunctionNoProto:
215     case Type::Enum:
216     case Type::ObjCObjectPointer:
217     case Type::Pipe:
218       return TEK_Scalar;
219 
220     // Complexes.
221     case Type::Complex:
222       return TEK_Complex;
223 
224     // Arrays, records, and Objective-C objects.
225     case Type::ConstantArray:
226     case Type::IncompleteArray:
227     case Type::VariableArray:
228     case Type::Record:
229     case Type::ObjCObject:
230     case Type::ObjCInterface:
231       return TEK_Aggregate;
232 
233     // We operate on atomic values according to their underlying type.
234     case Type::Atomic:
235       type = cast<AtomicType>(type)->getValueType();
236       continue;
237     }
238     llvm_unreachable("unknown type kind!");
239   }
240 }
241 
242 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() {
243   // For cleanliness, we try to avoid emitting the return block for
244   // simple cases.
245   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
246 
247   if (CurBB) {
248     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
249 
250     // We have a valid insert point, reuse it if it is empty or there are no
251     // explicit jumps to the return block.
252     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
253       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
254       delete ReturnBlock.getBlock();
255       ReturnBlock = JumpDest();
256     } else
257       EmitBlock(ReturnBlock.getBlock());
258     return llvm::DebugLoc();
259   }
260 
261   // Otherwise, if the return block is the target of a single direct
262   // branch then we can just put the code in that block instead. This
263   // cleans up functions which started with a unified return block.
264   if (ReturnBlock.getBlock()->hasOneUse()) {
265     llvm::BranchInst *BI =
266       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin());
267     if (BI && BI->isUnconditional() &&
268         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
269       // Record/return the DebugLoc of the simple 'return' expression to be used
270       // later by the actual 'ret' instruction.
271       llvm::DebugLoc Loc = BI->getDebugLoc();
272       Builder.SetInsertPoint(BI->getParent());
273       BI->eraseFromParent();
274       delete ReturnBlock.getBlock();
275       ReturnBlock = JumpDest();
276       return Loc;
277     }
278   }
279 
280   // FIXME: We are at an unreachable point, there is no reason to emit the block
281   // unless it has uses. However, we still need a place to put the debug
282   // region.end for now.
283 
284   EmitBlock(ReturnBlock.getBlock());
285   return llvm::DebugLoc();
286 }
287 
288 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
289   if (!BB) return;
290   if (!BB->use_empty())
291     return CGF.CurFn->getBasicBlockList().push_back(BB);
292   delete BB;
293 }
294 
295 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
296   assert(BreakContinueStack.empty() &&
297          "mismatched push/pop in break/continue stack!");
298 
299   bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
300     && NumSimpleReturnExprs == NumReturnExprs
301     && ReturnBlock.getBlock()->use_empty();
302   // Usually the return expression is evaluated before the cleanup
303   // code.  If the function contains only a simple return statement,
304   // such as a constant, the location before the cleanup code becomes
305   // the last useful breakpoint in the function, because the simple
306   // return expression will be evaluated after the cleanup code. To be
307   // safe, set the debug location for cleanup code to the location of
308   // the return statement.  Otherwise the cleanup code should be at the
309   // end of the function's lexical scope.
310   //
311   // If there are multiple branches to the return block, the branch
312   // instructions will get the location of the return statements and
313   // all will be fine.
314   if (CGDebugInfo *DI = getDebugInfo()) {
315     if (OnlySimpleReturnStmts)
316       DI->EmitLocation(Builder, LastStopPoint);
317     else
318       DI->EmitLocation(Builder, EndLoc);
319   }
320 
321   // Pop any cleanups that might have been associated with the
322   // parameters.  Do this in whatever block we're currently in; it's
323   // important to do this before we enter the return block or return
324   // edges will be *really* confused.
325   bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth;
326   bool HasOnlyLifetimeMarkers =
327       HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth);
328   bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers;
329   if (HasCleanups) {
330     // Make sure the line table doesn't jump back into the body for
331     // the ret after it's been at EndLoc.
332     if (CGDebugInfo *DI = getDebugInfo())
333       if (OnlySimpleReturnStmts)
334         DI->EmitLocation(Builder, EndLoc);
335 
336     PopCleanupBlocks(PrologueCleanupDepth);
337   }
338 
339   // Emit function epilog (to return).
340   llvm::DebugLoc Loc = EmitReturnBlock();
341 
342   if (ShouldInstrumentFunction()) {
343     if (CGM.getCodeGenOpts().InstrumentFunctions)
344       CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit");
345     if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
346       CurFn->addFnAttr("instrument-function-exit-inlined",
347                        "__cyg_profile_func_exit");
348   }
349 
350   // Emit debug descriptor for function end.
351   if (CGDebugInfo *DI = getDebugInfo())
352     DI->EmitFunctionEnd(Builder, CurFn);
353 
354   // Reset the debug location to that of the simple 'return' expression, if any
355   // rather than that of the end of the function's scope '}'.
356   ApplyDebugLocation AL(*this, Loc);
357   EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
358   EmitEndEHSpec(CurCodeDecl);
359 
360   assert(EHStack.empty() &&
361          "did not remove all scopes from cleanup stack!");
362 
363   // If someone did an indirect goto, emit the indirect goto block at the end of
364   // the function.
365   if (IndirectBranch) {
366     EmitBlock(IndirectBranch->getParent());
367     Builder.ClearInsertionPoint();
368   }
369 
370   // If some of our locals escaped, insert a call to llvm.localescape in the
371   // entry block.
372   if (!EscapedLocals.empty()) {
373     // Invert the map from local to index into a simple vector. There should be
374     // no holes.
375     SmallVector<llvm::Value *, 4> EscapeArgs;
376     EscapeArgs.resize(EscapedLocals.size());
377     for (auto &Pair : EscapedLocals)
378       EscapeArgs[Pair.second] = Pair.first;
379     llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration(
380         &CGM.getModule(), llvm::Intrinsic::localescape);
381     CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs);
382   }
383 
384   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
385   llvm::Instruction *Ptr = AllocaInsertPt;
386   AllocaInsertPt = nullptr;
387   Ptr->eraseFromParent();
388 
389   // If someone took the address of a label but never did an indirect goto, we
390   // made a zero entry PHI node, which is illegal, zap it now.
391   if (IndirectBranch) {
392     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
393     if (PN->getNumIncomingValues() == 0) {
394       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
395       PN->eraseFromParent();
396     }
397   }
398 
399   EmitIfUsed(*this, EHResumeBlock);
400   EmitIfUsed(*this, TerminateLandingPad);
401   EmitIfUsed(*this, TerminateHandler);
402   EmitIfUsed(*this, UnreachableBlock);
403 
404   for (const auto &FuncletAndParent : TerminateFunclets)
405     EmitIfUsed(*this, FuncletAndParent.second);
406 
407   if (CGM.getCodeGenOpts().EmitDeclMetadata)
408     EmitDeclMetadata();
409 
410   for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator
411            I = DeferredReplacements.begin(),
412            E = DeferredReplacements.end();
413        I != E; ++I) {
414     I->first->replaceAllUsesWith(I->second);
415     I->first->eraseFromParent();
416   }
417 
418   // Eliminate CleanupDestSlot alloca by replacing it with SSA values and
419   // PHIs if the current function is a coroutine. We don't do it for all
420   // functions as it may result in slight increase in numbers of instructions
421   // if compiled with no optimizations. We do it for coroutine as the lifetime
422   // of CleanupDestSlot alloca make correct coroutine frame building very
423   // difficult.
424   if (NormalCleanupDest.isValid() && isCoroutine()) {
425     llvm::DominatorTree DT(*CurFn);
426     llvm::PromoteMemToReg(
427         cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT);
428     NormalCleanupDest = Address::invalid();
429   }
430 
431   // Scan function arguments for vector width.
432   for (llvm::Argument &A : CurFn->args())
433     if (auto *VT = dyn_cast<llvm::VectorType>(A.getType()))
434       LargestVectorWidth = std::max((uint64_t)LargestVectorWidth,
435                                    VT->getPrimitiveSizeInBits().getFixedSize());
436 
437   // Update vector width based on return type.
438   if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType()))
439     LargestVectorWidth = std::max((uint64_t)LargestVectorWidth,
440                                   VT->getPrimitiveSizeInBits().getFixedSize());
441 
442   // Add the required-vector-width attribute. This contains the max width from:
443   // 1. min-vector-width attribute used in the source program.
444   // 2. Any builtins used that have a vector width specified.
445   // 3. Values passed in and out of inline assembly.
446   // 4. Width of vector arguments and return types for this function.
447   // 5. Width of vector aguments and return types for functions called by this
448   //    function.
449   CurFn->addFnAttr("min-legal-vector-width", llvm::utostr(LargestVectorWidth));
450 
451   // If we generated an unreachable return block, delete it now.
452   if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) {
453     Builder.ClearInsertionPoint();
454     ReturnBlock.getBlock()->eraseFromParent();
455   }
456   if (ReturnValue.isValid()) {
457     auto *RetAlloca = dyn_cast<llvm::AllocaInst>(ReturnValue.getPointer());
458     if (RetAlloca && RetAlloca->use_empty()) {
459       RetAlloca->eraseFromParent();
460       ReturnValue = Address::invalid();
461     }
462   }
463 }
464 
465 /// ShouldInstrumentFunction - Return true if the current function should be
466 /// instrumented with __cyg_profile_func_* calls
467 bool CodeGenFunction::ShouldInstrumentFunction() {
468   if (!CGM.getCodeGenOpts().InstrumentFunctions &&
469       !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining &&
470       !CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
471     return false;
472   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
473     return false;
474   return true;
475 }
476 
477 /// ShouldXRayInstrument - Return true if the current function should be
478 /// instrumented with XRay nop sleds.
479 bool CodeGenFunction::ShouldXRayInstrumentFunction() const {
480   return CGM.getCodeGenOpts().XRayInstrumentFunctions;
481 }
482 
483 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to
484 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation.
485 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const {
486   return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
487          (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents ||
488           CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
489               XRayInstrKind::Custom);
490 }
491 
492 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const {
493   return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
494          (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents ||
495           CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
496               XRayInstrKind::Typed);
497 }
498 
499 llvm::Constant *
500 CodeGenFunction::EncodeAddrForUseInPrologue(llvm::Function *F,
501                                             llvm::Constant *Addr) {
502   // Addresses stored in prologue data can't require run-time fixups and must
503   // be PC-relative. Run-time fixups are undesirable because they necessitate
504   // writable text segments, which are unsafe. And absolute addresses are
505   // undesirable because they break PIE mode.
506 
507   // Add a layer of indirection through a private global. Taking its address
508   // won't result in a run-time fixup, even if Addr has linkonce_odr linkage.
509   auto *GV = new llvm::GlobalVariable(CGM.getModule(), Addr->getType(),
510                                       /*isConstant=*/true,
511                                       llvm::GlobalValue::PrivateLinkage, Addr);
512 
513   // Create a PC-relative address.
514   auto *GOTAsInt = llvm::ConstantExpr::getPtrToInt(GV, IntPtrTy);
515   auto *FuncAsInt = llvm::ConstantExpr::getPtrToInt(F, IntPtrTy);
516   auto *PCRelAsInt = llvm::ConstantExpr::getSub(GOTAsInt, FuncAsInt);
517   return (IntPtrTy == Int32Ty)
518              ? PCRelAsInt
519              : llvm::ConstantExpr::getTrunc(PCRelAsInt, Int32Ty);
520 }
521 
522 llvm::Value *
523 CodeGenFunction::DecodeAddrUsedInPrologue(llvm::Value *F,
524                                           llvm::Value *EncodedAddr) {
525   // Reconstruct the address of the global.
526   auto *PCRelAsInt = Builder.CreateSExt(EncodedAddr, IntPtrTy);
527   auto *FuncAsInt = Builder.CreatePtrToInt(F, IntPtrTy, "func_addr.int");
528   auto *GOTAsInt = Builder.CreateAdd(PCRelAsInt, FuncAsInt, "global_addr.int");
529   auto *GOTAddr = Builder.CreateIntToPtr(GOTAsInt, Int8PtrPtrTy, "global_addr");
530 
531   // Load the original pointer through the global.
532   return Builder.CreateLoad(Address(GOTAddr, getPointerAlign()),
533                             "decoded_addr");
534 }
535 
536 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD,
537                                                llvm::Function *Fn)
538 {
539   if (!FD->hasAttr<OpenCLKernelAttr>())
540     return;
541 
542   llvm::LLVMContext &Context = getLLVMContext();
543 
544   CGM.GenOpenCLArgMetadata(Fn, FD, this);
545 
546   if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
547     QualType HintQTy = A->getTypeHint();
548     const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>();
549     bool IsSignedInteger =
550         HintQTy->isSignedIntegerType() ||
551         (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType());
552     llvm::Metadata *AttrMDArgs[] = {
553         llvm::ConstantAsMetadata::get(llvm::UndefValue::get(
554             CGM.getTypes().ConvertType(A->getTypeHint()))),
555         llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
556             llvm::IntegerType::get(Context, 32),
557             llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))};
558     Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs));
559   }
560 
561   if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
562     llvm::Metadata *AttrMDArgs[] = {
563         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
564         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
565         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
566     Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs));
567   }
568 
569   if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
570     llvm::Metadata *AttrMDArgs[] = {
571         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
572         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
573         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
574     Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs));
575   }
576 
577   if (const OpenCLIntelReqdSubGroupSizeAttr *A =
578           FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) {
579     llvm::Metadata *AttrMDArgs[] = {
580         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))};
581     Fn->setMetadata("intel_reqd_sub_group_size",
582                     llvm::MDNode::get(Context, AttrMDArgs));
583   }
584 }
585 
586 /// Determine whether the function F ends with a return stmt.
587 static bool endsWithReturn(const Decl* F) {
588   const Stmt *Body = nullptr;
589   if (auto *FD = dyn_cast_or_null<FunctionDecl>(F))
590     Body = FD->getBody();
591   else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F))
592     Body = OMD->getBody();
593 
594   if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
595     auto LastStmt = CS->body_rbegin();
596     if (LastStmt != CS->body_rend())
597       return isa<ReturnStmt>(*LastStmt);
598   }
599   return false;
600 }
601 
602 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) {
603   if (SanOpts.has(SanitizerKind::Thread)) {
604     Fn->addFnAttr("sanitize_thread_no_checking_at_run_time");
605     Fn->removeFnAttr(llvm::Attribute::SanitizeThread);
606   }
607 }
608 
609 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) {
610   auto *MD = dyn_cast_or_null<CXXMethodDecl>(D);
611   if (!MD || !MD->getDeclName().getAsIdentifierInfo() ||
612       !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") ||
613       (MD->getNumParams() != 1 && MD->getNumParams() != 2))
614     return false;
615 
616   if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType())
617     return false;
618 
619   if (MD->getNumParams() == 2) {
620     auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>();
621     if (!PT || !PT->isVoidPointerType() ||
622         !PT->getPointeeType().isConstQualified())
623       return false;
624   }
625 
626   return true;
627 }
628 
629 /// Return the UBSan prologue signature for \p FD if one is available.
630 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM,
631                                             const FunctionDecl *FD) {
632   if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
633     if (!MD->isStatic())
634       return nullptr;
635   return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM);
636 }
637 
638 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy,
639                                     llvm::Function *Fn,
640                                     const CGFunctionInfo &FnInfo,
641                                     const FunctionArgList &Args,
642                                     SourceLocation Loc,
643                                     SourceLocation StartLoc) {
644   assert(!CurFn &&
645          "Do not use a CodeGenFunction object for more than one function");
646 
647   const Decl *D = GD.getDecl();
648 
649   DidCallStackSave = false;
650   CurCodeDecl = D;
651   if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D))
652     if (FD->usesSEHTry())
653       CurSEHParent = FD;
654   CurFuncDecl = (D ? D->getNonClosureContext() : nullptr);
655   FnRetTy = RetTy;
656   CurFn = Fn;
657   CurFnInfo = &FnInfo;
658   assert(CurFn->isDeclaration() && "Function already has body?");
659 
660   // If this function has been blacklisted for any of the enabled sanitizers,
661   // disable the sanitizer for the function.
662   do {
663 #define SANITIZER(NAME, ID)                                                    \
664   if (SanOpts.empty())                                                         \
665     break;                                                                     \
666   if (SanOpts.has(SanitizerKind::ID))                                          \
667     if (CGM.isInSanitizerBlacklist(SanitizerKind::ID, Fn, Loc))                \
668       SanOpts.set(SanitizerKind::ID, false);
669 
670 #include "clang/Basic/Sanitizers.def"
671 #undef SANITIZER
672   } while (0);
673 
674   if (D) {
675     // Apply the no_sanitize* attributes to SanOpts.
676     for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) {
677       SanitizerMask mask = Attr->getMask();
678       SanOpts.Mask &= ~mask;
679       if (mask & SanitizerKind::Address)
680         SanOpts.set(SanitizerKind::KernelAddress, false);
681       if (mask & SanitizerKind::KernelAddress)
682         SanOpts.set(SanitizerKind::Address, false);
683       if (mask & SanitizerKind::HWAddress)
684         SanOpts.set(SanitizerKind::KernelHWAddress, false);
685       if (mask & SanitizerKind::KernelHWAddress)
686         SanOpts.set(SanitizerKind::HWAddress, false);
687     }
688   }
689 
690   // Apply sanitizer attributes to the function.
691   if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress))
692     Fn->addFnAttr(llvm::Attribute::SanitizeAddress);
693   if (SanOpts.hasOneOf(SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress))
694     Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress);
695   if (SanOpts.has(SanitizerKind::MemTag))
696     Fn->addFnAttr(llvm::Attribute::SanitizeMemTag);
697   if (SanOpts.has(SanitizerKind::Thread))
698     Fn->addFnAttr(llvm::Attribute::SanitizeThread);
699   if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory))
700     Fn->addFnAttr(llvm::Attribute::SanitizeMemory);
701   if (SanOpts.has(SanitizerKind::SafeStack))
702     Fn->addFnAttr(llvm::Attribute::SafeStack);
703   if (SanOpts.has(SanitizerKind::ShadowCallStack))
704     Fn->addFnAttr(llvm::Attribute::ShadowCallStack);
705 
706   // Apply fuzzing attribute to the function.
707   if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink))
708     Fn->addFnAttr(llvm::Attribute::OptForFuzzing);
709 
710   // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize,
711   // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time.
712   if (SanOpts.has(SanitizerKind::Thread)) {
713     if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) {
714       IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0);
715       if (OMD->getMethodFamily() == OMF_dealloc ||
716           OMD->getMethodFamily() == OMF_initialize ||
717           (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) {
718         markAsIgnoreThreadCheckingAtRuntime(Fn);
719       }
720     }
721   }
722 
723   // Ignore unrelated casts in STL allocate() since the allocator must cast
724   // from void* to T* before object initialization completes. Don't match on the
725   // namespace because not all allocators are in std::
726   if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
727     if (matchesStlAllocatorFn(D, getContext()))
728       SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast;
729   }
730 
731   // Ignore null checks in coroutine functions since the coroutines passes
732   // are not aware of how to move the extra UBSan instructions across the split
733   // coroutine boundaries.
734   if (D && SanOpts.has(SanitizerKind::Null))
735     if (const auto *FD = dyn_cast<FunctionDecl>(D))
736       if (FD->getBody() &&
737           FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass)
738         SanOpts.Mask &= ~SanitizerKind::Null;
739 
740   // Apply xray attributes to the function (as a string, for now)
741   if (D) {
742     if (const auto *XRayAttr = D->getAttr<XRayInstrumentAttr>()) {
743       if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
744               XRayInstrKind::Function)) {
745         if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction())
746           Fn->addFnAttr("function-instrument", "xray-always");
747         if (XRayAttr->neverXRayInstrument())
748           Fn->addFnAttr("function-instrument", "xray-never");
749         if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>())
750           if (ShouldXRayInstrumentFunction())
751             Fn->addFnAttr("xray-log-args",
752                           llvm::utostr(LogArgs->getArgumentCount()));
753       }
754     } else {
755       if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc))
756         Fn->addFnAttr(
757             "xray-instruction-threshold",
758             llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold));
759     }
760   }
761 
762   // Add no-jump-tables value.
763   Fn->addFnAttr("no-jump-tables",
764                 llvm::toStringRef(CGM.getCodeGenOpts().NoUseJumpTables));
765 
766   // Add no-inline-line-tables value.
767   if (CGM.getCodeGenOpts().NoInlineLineTables)
768     Fn->addFnAttr("no-inline-line-tables");
769 
770   // Add profile-sample-accurate value.
771   if (CGM.getCodeGenOpts().ProfileSampleAccurate)
772     Fn->addFnAttr("profile-sample-accurate");
773 
774   if (D && D->hasAttr<CFICanonicalJumpTableAttr>())
775     Fn->addFnAttr("cfi-canonical-jump-table");
776 
777   if (getLangOpts().OpenCL) {
778     // Add metadata for a kernel function.
779     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
780       EmitOpenCLKernelMetadata(FD, Fn);
781   }
782 
783   // If we are checking function types, emit a function type signature as
784   // prologue data.
785   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) {
786     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
787       if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) {
788         // Remove any (C++17) exception specifications, to allow calling e.g. a
789         // noexcept function through a non-noexcept pointer.
790         auto ProtoTy =
791           getContext().getFunctionTypeWithExceptionSpec(FD->getType(),
792                                                         EST_None);
793         llvm::Constant *FTRTTIConst =
794             CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true);
795         llvm::Constant *FTRTTIConstEncoded =
796             EncodeAddrForUseInPrologue(Fn, FTRTTIConst);
797         llvm::Constant *PrologueStructElems[] = {PrologueSig,
798                                                  FTRTTIConstEncoded};
799         llvm::Constant *PrologueStructConst =
800             llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true);
801         Fn->setPrologueData(PrologueStructConst);
802       }
803     }
804   }
805 
806   // If we're checking nullability, we need to know whether we can check the
807   // return value. Initialize the flag to 'true' and refine it in EmitParmDecl.
808   if (SanOpts.has(SanitizerKind::NullabilityReturn)) {
809     auto Nullability = FnRetTy->getNullability(getContext());
810     if (Nullability && *Nullability == NullabilityKind::NonNull) {
811       if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) &&
812             CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>()))
813         RetValNullabilityPrecondition =
814             llvm::ConstantInt::getTrue(getLLVMContext());
815     }
816   }
817 
818   // If we're in C++ mode and the function name is "main", it is guaranteed
819   // to be norecurse by the standard (3.6.1.3 "The function main shall not be
820   // used within a program").
821   if (getLangOpts().CPlusPlus)
822     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
823       if (FD->isMain())
824         Fn->addFnAttr(llvm::Attribute::NoRecurse);
825 
826   // If a custom alignment is used, force realigning to this alignment on
827   // any main function which certainly will need it.
828   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
829     if ((FD->isMain() || FD->isMSVCRTEntryPoint()) &&
830         CGM.getCodeGenOpts().StackAlignment)
831       Fn->addFnAttr("stackrealign");
832 
833   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
834 
835   // Create a marker to make it easy to insert allocas into the entryblock
836   // later.  Don't create this with the builder, because we don't want it
837   // folded.
838   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
839   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB);
840 
841   ReturnBlock = getJumpDestInCurrentScope("return");
842 
843   Builder.SetInsertPoint(EntryBB);
844 
845   // If we're checking the return value, allocate space for a pointer to a
846   // precise source location of the checked return statement.
847   if (requiresReturnValueCheck()) {
848     ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr");
849     InitTempAlloca(ReturnLocation, llvm::ConstantPointerNull::get(Int8PtrTy));
850   }
851 
852   // Emit subprogram debug descriptor.
853   if (CGDebugInfo *DI = getDebugInfo()) {
854     // Reconstruct the type from the argument list so that implicit parameters,
855     // such as 'this' and 'vtt', show up in the debug info. Preserve the calling
856     // convention.
857     CallingConv CC = CallingConv::CC_C;
858     if (auto *FD = dyn_cast_or_null<FunctionDecl>(D))
859       if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>())
860         CC = SrcFnTy->getCallConv();
861     SmallVector<QualType, 16> ArgTypes;
862     for (const VarDecl *VD : Args)
863       ArgTypes.push_back(VD->getType());
864     QualType FnType = getContext().getFunctionType(
865         RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC));
866     DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, CurFuncIsThunk,
867                           Builder);
868   }
869 
870   if (ShouldInstrumentFunction()) {
871     if (CGM.getCodeGenOpts().InstrumentFunctions)
872       CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter");
873     if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
874       CurFn->addFnAttr("instrument-function-entry-inlined",
875                        "__cyg_profile_func_enter");
876     if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
877       CurFn->addFnAttr("instrument-function-entry-inlined",
878                        "__cyg_profile_func_enter_bare");
879   }
880 
881   // Since emitting the mcount call here impacts optimizations such as function
882   // inlining, we just add an attribute to insert a mcount call in backend.
883   // The attribute "counting-function" is set to mcount function name which is
884   // architecture dependent.
885   if (CGM.getCodeGenOpts().InstrumentForProfiling) {
886     // Calls to fentry/mcount should not be generated if function has
887     // the no_instrument_function attribute.
888     if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) {
889       if (CGM.getCodeGenOpts().CallFEntry)
890         Fn->addFnAttr("fentry-call", "true");
891       else {
892         Fn->addFnAttr("instrument-function-entry-inlined",
893                       getTarget().getMCountName());
894       }
895       if (CGM.getCodeGenOpts().MNopMCount) {
896         if (getContext().getTargetInfo().getTriple().getArch() !=
897             llvm::Triple::systemz)
898           CGM.getDiags().Report(diag::err_opt_not_valid_on_target)
899             << "-mnop-mcount";
900         if (!CGM.getCodeGenOpts().CallFEntry)
901           CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
902             << "-mnop-mcount" << "-mfentry";
903         Fn->addFnAttr("mnop-mcount", "true");
904       }
905     }
906   }
907 
908   if (RetTy->isVoidType()) {
909     // Void type; nothing to return.
910     ReturnValue = Address::invalid();
911 
912     // Count the implicit return.
913     if (!endsWithReturn(D))
914       ++NumReturnExprs;
915   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) {
916     // Indirect return; emit returned value directly into sret slot.
917     // This reduces code size, and affects correctness in C++.
918     auto AI = CurFn->arg_begin();
919     if (CurFnInfo->getReturnInfo().isSRetAfterThis())
920       ++AI;
921     ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign());
922     if (!CurFnInfo->getReturnInfo().getIndirectByVal()) {
923       ReturnValuePointer =
924           CreateDefaultAlignTempAlloca(Int8PtrTy, "result.ptr");
925       Builder.CreateStore(Builder.CreatePointerBitCastOrAddrSpaceCast(
926                               ReturnValue.getPointer(), Int8PtrTy),
927                           ReturnValuePointer);
928     }
929   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca &&
930              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
931     // Load the sret pointer from the argument struct and return into that.
932     unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex();
933     llvm::Function::arg_iterator EI = CurFn->arg_end();
934     --EI;
935     llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx);
936     ReturnValuePointer = Address(Addr, getPointerAlign());
937     Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result");
938     ReturnValue = Address(Addr, getNaturalTypeAlignment(RetTy));
939   } else {
940     ReturnValue = CreateIRTemp(RetTy, "retval");
941 
942     // Tell the epilog emitter to autorelease the result.  We do this
943     // now so that various specialized functions can suppress it
944     // during their IR-generation.
945     if (getLangOpts().ObjCAutoRefCount &&
946         !CurFnInfo->isReturnsRetained() &&
947         RetTy->isObjCRetainableType())
948       AutoreleaseResult = true;
949   }
950 
951   EmitStartEHSpec(CurCodeDecl);
952 
953   PrologueCleanupDepth = EHStack.stable_begin();
954 
955   // Emit OpenMP specific initialization of the device functions.
956   if (getLangOpts().OpenMP && CurCodeDecl)
957     CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl);
958 
959   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
960 
961   if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
962     CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
963     const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
964     if (MD->getParent()->isLambda() &&
965         MD->getOverloadedOperator() == OO_Call) {
966       // We're in a lambda; figure out the captures.
967       MD->getParent()->getCaptureFields(LambdaCaptureFields,
968                                         LambdaThisCaptureField);
969       if (LambdaThisCaptureField) {
970         // If the lambda captures the object referred to by '*this' - either by
971         // value or by reference, make sure CXXThisValue points to the correct
972         // object.
973 
974         // Get the lvalue for the field (which is a copy of the enclosing object
975         // or contains the address of the enclosing object).
976         LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
977         if (!LambdaThisCaptureField->getType()->isPointerType()) {
978           // If the enclosing object was captured by value, just use its address.
979           CXXThisValue = ThisFieldLValue.getAddress().getPointer();
980         } else {
981           // Load the lvalue pointed to by the field, since '*this' was captured
982           // by reference.
983           CXXThisValue =
984               EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal();
985         }
986       }
987       for (auto *FD : MD->getParent()->fields()) {
988         if (FD->hasCapturedVLAType()) {
989           auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD),
990                                            SourceLocation()).getScalarVal();
991           auto VAT = FD->getCapturedVLAType();
992           VLASizeMap[VAT->getSizeExpr()] = ExprArg;
993         }
994       }
995     } else {
996       // Not in a lambda; just use 'this' from the method.
997       // FIXME: Should we generate a new load for each use of 'this'?  The
998       // fast register allocator would be happier...
999       CXXThisValue = CXXABIThisValue;
1000     }
1001 
1002     // Check the 'this' pointer once per function, if it's available.
1003     if (CXXABIThisValue) {
1004       SanitizerSet SkippedChecks;
1005       SkippedChecks.set(SanitizerKind::ObjectSize, true);
1006       QualType ThisTy = MD->getThisType();
1007 
1008       // If this is the call operator of a lambda with no capture-default, it
1009       // may have a static invoker function, which may call this operator with
1010       // a null 'this' pointer.
1011       if (isLambdaCallOperator(MD) &&
1012           MD->getParent()->getLambdaCaptureDefault() == LCD_None)
1013         SkippedChecks.set(SanitizerKind::Null, true);
1014 
1015       EmitTypeCheck(isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall
1016                                                 : TCK_MemberCall,
1017                     Loc, CXXABIThisValue, ThisTy,
1018                     getContext().getTypeAlignInChars(ThisTy->getPointeeType()),
1019                     SkippedChecks);
1020     }
1021   }
1022 
1023   // If any of the arguments have a variably modified type, make sure to
1024   // emit the type size.
1025   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
1026        i != e; ++i) {
1027     const VarDecl *VD = *i;
1028 
1029     // Dig out the type as written from ParmVarDecls; it's unclear whether
1030     // the standard (C99 6.9.1p10) requires this, but we're following the
1031     // precedent set by gcc.
1032     QualType Ty;
1033     if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
1034       Ty = PVD->getOriginalType();
1035     else
1036       Ty = VD->getType();
1037 
1038     if (Ty->isVariablyModifiedType())
1039       EmitVariablyModifiedType(Ty);
1040   }
1041   // Emit a location at the end of the prologue.
1042   if (CGDebugInfo *DI = getDebugInfo())
1043     DI->EmitLocation(Builder, StartLoc);
1044 
1045   // TODO: Do we need to handle this in two places like we do with
1046   // target-features/target-cpu?
1047   if (CurFuncDecl)
1048     if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>())
1049       LargestVectorWidth = VecWidth->getVectorWidth();
1050 }
1051 
1052 void CodeGenFunction::EmitFunctionBody(const Stmt *Body) {
1053   incrementProfileCounter(Body);
1054   if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
1055     EmitCompoundStmtWithoutScope(*S);
1056   else
1057     EmitStmt(Body);
1058 }
1059 
1060 /// When instrumenting to collect profile data, the counts for some blocks
1061 /// such as switch cases need to not include the fall-through counts, so
1062 /// emit a branch around the instrumentation code. When not instrumenting,
1063 /// this just calls EmitBlock().
1064 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB,
1065                                                const Stmt *S) {
1066   llvm::BasicBlock *SkipCountBB = nullptr;
1067   if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) {
1068     // When instrumenting for profiling, the fallthrough to certain
1069     // statements needs to skip over the instrumentation code so that we
1070     // get an accurate count.
1071     SkipCountBB = createBasicBlock("skipcount");
1072     EmitBranch(SkipCountBB);
1073   }
1074   EmitBlock(BB);
1075   uint64_t CurrentCount = getCurrentProfileCount();
1076   incrementProfileCounter(S);
1077   setCurrentProfileCount(getCurrentProfileCount() + CurrentCount);
1078   if (SkipCountBB)
1079     EmitBlock(SkipCountBB);
1080 }
1081 
1082 /// Tries to mark the given function nounwind based on the
1083 /// non-existence of any throwing calls within it.  We believe this is
1084 /// lightweight enough to do at -O0.
1085 static void TryMarkNoThrow(llvm::Function *F) {
1086   // LLVM treats 'nounwind' on a function as part of the type, so we
1087   // can't do this on functions that can be overwritten.
1088   if (F->isInterposable()) return;
1089 
1090   for (llvm::BasicBlock &BB : *F)
1091     for (llvm::Instruction &I : BB)
1092       if (I.mayThrow())
1093         return;
1094 
1095   F->setDoesNotThrow();
1096 }
1097 
1098 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD,
1099                                                FunctionArgList &Args) {
1100   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1101   QualType ResTy = FD->getReturnType();
1102 
1103   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
1104   if (MD && MD->isInstance()) {
1105     if (CGM.getCXXABI().HasThisReturn(GD))
1106       ResTy = MD->getThisType();
1107     else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
1108       ResTy = CGM.getContext().VoidPtrTy;
1109     CGM.getCXXABI().buildThisParam(*this, Args);
1110   }
1111 
1112   // The base version of an inheriting constructor whose constructed base is a
1113   // virtual base is not passed any arguments (because it doesn't actually call
1114   // the inherited constructor).
1115   bool PassedParams = true;
1116   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
1117     if (auto Inherited = CD->getInheritedConstructor())
1118       PassedParams =
1119           getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType());
1120 
1121   if (PassedParams) {
1122     for (auto *Param : FD->parameters()) {
1123       Args.push_back(Param);
1124       if (!Param->hasAttr<PassObjectSizeAttr>())
1125         continue;
1126 
1127       auto *Implicit = ImplicitParamDecl::Create(
1128           getContext(), Param->getDeclContext(), Param->getLocation(),
1129           /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other);
1130       SizeArguments[Param] = Implicit;
1131       Args.push_back(Implicit);
1132     }
1133   }
1134 
1135   if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
1136     CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args);
1137 
1138   return ResTy;
1139 }
1140 
1141 static bool
1142 shouldUseUndefinedBehaviorReturnOptimization(const FunctionDecl *FD,
1143                                              const ASTContext &Context) {
1144   QualType T = FD->getReturnType();
1145   // Avoid the optimization for functions that return a record type with a
1146   // trivial destructor or another trivially copyable type.
1147   if (const RecordType *RT = T.getCanonicalType()->getAs<RecordType>()) {
1148     if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1149       return !ClassDecl->hasTrivialDestructor();
1150   }
1151   return !T.isTriviallyCopyableType(Context);
1152 }
1153 
1154 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1155                                    const CGFunctionInfo &FnInfo) {
1156   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1157   CurGD = GD;
1158 
1159   FunctionArgList Args;
1160   QualType ResTy = BuildFunctionArgList(GD, Args);
1161 
1162   // Check if we should generate debug info for this function.
1163   if (FD->hasAttr<NoDebugAttr>())
1164     DebugInfo = nullptr; // disable debug info indefinitely for this function
1165 
1166   // The function might not have a body if we're generating thunks for a
1167   // function declaration.
1168   SourceRange BodyRange;
1169   if (Stmt *Body = FD->getBody())
1170     BodyRange = Body->getSourceRange();
1171   else
1172     BodyRange = FD->getLocation();
1173   CurEHLocation = BodyRange.getEnd();
1174 
1175   // Use the location of the start of the function to determine where
1176   // the function definition is located. By default use the location
1177   // of the declaration as the location for the subprogram. A function
1178   // may lack a declaration in the source code if it is created by code
1179   // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
1180   SourceLocation Loc = FD->getLocation();
1181 
1182   // If this is a function specialization then use the pattern body
1183   // as the location for the function.
1184   if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern())
1185     if (SpecDecl->hasBody(SpecDecl))
1186       Loc = SpecDecl->getLocation();
1187 
1188   Stmt *Body = FD->getBody();
1189 
1190   // Initialize helper which will detect jumps which can cause invalid lifetime
1191   // markers.
1192   if (Body && ShouldEmitLifetimeMarkers)
1193     Bypasses.Init(Body);
1194 
1195   // Emit the standard function prologue.
1196   StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin());
1197 
1198   // Generate the body of the function.
1199   PGO.assignRegionCounters(GD, CurFn);
1200   if (isa<CXXDestructorDecl>(FD))
1201     EmitDestructorBody(Args);
1202   else if (isa<CXXConstructorDecl>(FD))
1203     EmitConstructorBody(Args);
1204   else if (getLangOpts().CUDA &&
1205            !getLangOpts().CUDAIsDevice &&
1206            FD->hasAttr<CUDAGlobalAttr>())
1207     CGM.getCUDARuntime().emitDeviceStub(*this, Args);
1208   else if (isa<CXXMethodDecl>(FD) &&
1209            cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
1210     // The lambda static invoker function is special, because it forwards or
1211     // clones the body of the function call operator (but is actually static).
1212     EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD));
1213   } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
1214              (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
1215               cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
1216     // Implicit copy-assignment gets the same special treatment as implicit
1217     // copy-constructors.
1218     emitImplicitAssignmentOperatorBody(Args);
1219   } else if (Body) {
1220     EmitFunctionBody(Body);
1221   } else
1222     llvm_unreachable("no definition for emitted function");
1223 
1224   // C++11 [stmt.return]p2:
1225   //   Flowing off the end of a function [...] results in undefined behavior in
1226   //   a value-returning function.
1227   // C11 6.9.1p12:
1228   //   If the '}' that terminates a function is reached, and the value of the
1229   //   function call is used by the caller, the behavior is undefined.
1230   if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock &&
1231       !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) {
1232     bool ShouldEmitUnreachable =
1233         CGM.getCodeGenOpts().StrictReturn ||
1234         shouldUseUndefinedBehaviorReturnOptimization(FD, getContext());
1235     if (SanOpts.has(SanitizerKind::Return)) {
1236       SanitizerScope SanScope(this);
1237       llvm::Value *IsFalse = Builder.getFalse();
1238       EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return),
1239                 SanitizerHandler::MissingReturn,
1240                 EmitCheckSourceLocation(FD->getLocation()), None);
1241     } else if (ShouldEmitUnreachable) {
1242       if (CGM.getCodeGenOpts().OptimizationLevel == 0)
1243         EmitTrapCall(llvm::Intrinsic::trap);
1244     }
1245     if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) {
1246       Builder.CreateUnreachable();
1247       Builder.ClearInsertionPoint();
1248     }
1249   }
1250 
1251   // Emit the standard function epilogue.
1252   FinishFunction(BodyRange.getEnd());
1253 
1254   // If we haven't marked the function nothrow through other means, do
1255   // a quick pass now to see if we can.
1256   if (!CurFn->doesNotThrow())
1257     TryMarkNoThrow(CurFn);
1258 }
1259 
1260 /// ContainsLabel - Return true if the statement contains a label in it.  If
1261 /// this statement is not executed normally, it not containing a label means
1262 /// that we can just remove the code.
1263 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
1264   // Null statement, not a label!
1265   if (!S) return false;
1266 
1267   // If this is a label, we have to emit the code, consider something like:
1268   // if (0) {  ...  foo:  bar(); }  goto foo;
1269   //
1270   // TODO: If anyone cared, we could track __label__'s, since we know that you
1271   // can't jump to one from outside their declared region.
1272   if (isa<LabelStmt>(S))
1273     return true;
1274 
1275   // If this is a case/default statement, and we haven't seen a switch, we have
1276   // to emit the code.
1277   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
1278     return true;
1279 
1280   // If this is a switch statement, we want to ignore cases below it.
1281   if (isa<SwitchStmt>(S))
1282     IgnoreCaseStmts = true;
1283 
1284   // Scan subexpressions for verboten labels.
1285   for (const Stmt *SubStmt : S->children())
1286     if (ContainsLabel(SubStmt, IgnoreCaseStmts))
1287       return true;
1288 
1289   return false;
1290 }
1291 
1292 /// containsBreak - Return true if the statement contains a break out of it.
1293 /// If the statement (recursively) contains a switch or loop with a break
1294 /// inside of it, this is fine.
1295 bool CodeGenFunction::containsBreak(const Stmt *S) {
1296   // Null statement, not a label!
1297   if (!S) return false;
1298 
1299   // If this is a switch or loop that defines its own break scope, then we can
1300   // include it and anything inside of it.
1301   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
1302       isa<ForStmt>(S))
1303     return false;
1304 
1305   if (isa<BreakStmt>(S))
1306     return true;
1307 
1308   // Scan subexpressions for verboten breaks.
1309   for (const Stmt *SubStmt : S->children())
1310     if (containsBreak(SubStmt))
1311       return true;
1312 
1313   return false;
1314 }
1315 
1316 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) {
1317   if (!S) return false;
1318 
1319   // Some statement kinds add a scope and thus never add a decl to the current
1320   // scope. Note, this list is longer than the list of statements that might
1321   // have an unscoped decl nested within them, but this way is conservatively
1322   // correct even if more statement kinds are added.
1323   if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) ||
1324       isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) ||
1325       isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) ||
1326       isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S))
1327     return false;
1328 
1329   if (isa<DeclStmt>(S))
1330     return true;
1331 
1332   for (const Stmt *SubStmt : S->children())
1333     if (mightAddDeclToScope(SubStmt))
1334       return true;
1335 
1336   return false;
1337 }
1338 
1339 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1340 /// to a constant, or if it does but contains a label, return false.  If it
1341 /// constant folds return true and set the boolean result in Result.
1342 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1343                                                    bool &ResultBool,
1344                                                    bool AllowLabels) {
1345   llvm::APSInt ResultInt;
1346   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels))
1347     return false;
1348 
1349   ResultBool = ResultInt.getBoolValue();
1350   return true;
1351 }
1352 
1353 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1354 /// to a constant, or if it does but contains a label, return false.  If it
1355 /// constant folds return true and set the folded value.
1356 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1357                                                    llvm::APSInt &ResultInt,
1358                                                    bool AllowLabels) {
1359   // FIXME: Rename and handle conversion of other evaluatable things
1360   // to bool.
1361   Expr::EvalResult Result;
1362   if (!Cond->EvaluateAsInt(Result, getContext()))
1363     return false;  // Not foldable, not integer or not fully evaluatable.
1364 
1365   llvm::APSInt Int = Result.Val.getInt();
1366   if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond))
1367     return false;  // Contains a label.
1368 
1369   ResultInt = Int;
1370   return true;
1371 }
1372 
1373 
1374 
1375 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
1376 /// statement) to the specified blocks.  Based on the condition, this might try
1377 /// to simplify the codegen of the conditional based on the branch.
1378 ///
1379 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
1380                                            llvm::BasicBlock *TrueBlock,
1381                                            llvm::BasicBlock *FalseBlock,
1382                                            uint64_t TrueCount) {
1383   Cond = Cond->IgnoreParens();
1384 
1385   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
1386 
1387     // Handle X && Y in a condition.
1388     if (CondBOp->getOpcode() == BO_LAnd) {
1389       // If we have "1 && X", simplify the code.  "0 && X" would have constant
1390       // folded if the case was simple enough.
1391       bool ConstantBool = false;
1392       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1393           ConstantBool) {
1394         // br(1 && X) -> br(X).
1395         incrementProfileCounter(CondBOp);
1396         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1397                                     TrueCount);
1398       }
1399 
1400       // If we have "X && 1", simplify the code to use an uncond branch.
1401       // "X && 0" would have been constant folded to 0.
1402       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1403           ConstantBool) {
1404         // br(X && 1) -> br(X).
1405         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1406                                     TrueCount);
1407       }
1408 
1409       // Emit the LHS as a conditional.  If the LHS conditional is false, we
1410       // want to jump to the FalseBlock.
1411       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
1412       // The counter tells us how often we evaluate RHS, and all of TrueCount
1413       // can be propagated to that branch.
1414       uint64_t RHSCount = getProfileCount(CondBOp->getRHS());
1415 
1416       ConditionalEvaluation eval(*this);
1417       {
1418         ApplyDebugLocation DL(*this, Cond);
1419         EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount);
1420         EmitBlock(LHSTrue);
1421       }
1422 
1423       incrementProfileCounter(CondBOp);
1424       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1425 
1426       // Any temporaries created here are conditional.
1427       eval.begin(*this);
1428       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount);
1429       eval.end(*this);
1430 
1431       return;
1432     }
1433 
1434     if (CondBOp->getOpcode() == BO_LOr) {
1435       // If we have "0 || X", simplify the code.  "1 || X" would have constant
1436       // folded if the case was simple enough.
1437       bool ConstantBool = false;
1438       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1439           !ConstantBool) {
1440         // br(0 || X) -> br(X).
1441         incrementProfileCounter(CondBOp);
1442         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1443                                     TrueCount);
1444       }
1445 
1446       // If we have "X || 0", simplify the code to use an uncond branch.
1447       // "X || 1" would have been constant folded to 1.
1448       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1449           !ConstantBool) {
1450         // br(X || 0) -> br(X).
1451         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1452                                     TrueCount);
1453       }
1454 
1455       // Emit the LHS as a conditional.  If the LHS conditional is true, we
1456       // want to jump to the TrueBlock.
1457       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
1458       // We have the count for entry to the RHS and for the whole expression
1459       // being true, so we can divy up True count between the short circuit and
1460       // the RHS.
1461       uint64_t LHSCount =
1462           getCurrentProfileCount() - getProfileCount(CondBOp->getRHS());
1463       uint64_t RHSCount = TrueCount - LHSCount;
1464 
1465       ConditionalEvaluation eval(*this);
1466       {
1467         ApplyDebugLocation DL(*this, Cond);
1468         EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount);
1469         EmitBlock(LHSFalse);
1470       }
1471 
1472       incrementProfileCounter(CondBOp);
1473       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1474 
1475       // Any temporaries created here are conditional.
1476       eval.begin(*this);
1477       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount);
1478 
1479       eval.end(*this);
1480 
1481       return;
1482     }
1483   }
1484 
1485   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
1486     // br(!x, t, f) -> br(x, f, t)
1487     if (CondUOp->getOpcode() == UO_LNot) {
1488       // Negate the count.
1489       uint64_t FalseCount = getCurrentProfileCount() - TrueCount;
1490       // Negate the condition and swap the destination blocks.
1491       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock,
1492                                   FalseCount);
1493     }
1494   }
1495 
1496   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
1497     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
1498     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
1499     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
1500 
1501     ConditionalEvaluation cond(*this);
1502     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock,
1503                          getProfileCount(CondOp));
1504 
1505     // When computing PGO branch weights, we only know the overall count for
1506     // the true block. This code is essentially doing tail duplication of the
1507     // naive code-gen, introducing new edges for which counts are not
1508     // available. Divide the counts proportionally between the LHS and RHS of
1509     // the conditional operator.
1510     uint64_t LHSScaledTrueCount = 0;
1511     if (TrueCount) {
1512       double LHSRatio =
1513           getProfileCount(CondOp) / (double)getCurrentProfileCount();
1514       LHSScaledTrueCount = TrueCount * LHSRatio;
1515     }
1516 
1517     cond.begin(*this);
1518     EmitBlock(LHSBlock);
1519     incrementProfileCounter(CondOp);
1520     {
1521       ApplyDebugLocation DL(*this, Cond);
1522       EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock,
1523                            LHSScaledTrueCount);
1524     }
1525     cond.end(*this);
1526 
1527     cond.begin(*this);
1528     EmitBlock(RHSBlock);
1529     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock,
1530                          TrueCount - LHSScaledTrueCount);
1531     cond.end(*this);
1532 
1533     return;
1534   }
1535 
1536   if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
1537     // Conditional operator handling can give us a throw expression as a
1538     // condition for a case like:
1539     //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
1540     // Fold this to:
1541     //   br(c, throw x, br(y, t, f))
1542     EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
1543     return;
1544   }
1545 
1546   // If the branch has a condition wrapped by __builtin_unpredictable,
1547   // create metadata that specifies that the branch is unpredictable.
1548   // Don't bother if not optimizing because that metadata would not be used.
1549   llvm::MDNode *Unpredictable = nullptr;
1550   auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts());
1551   if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
1552     auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
1553     if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
1554       llvm::MDBuilder MDHelper(getLLVMContext());
1555       Unpredictable = MDHelper.createUnpredictable();
1556     }
1557   }
1558 
1559   // Create branch weights based on the number of times we get here and the
1560   // number of times the condition should be true.
1561   uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount);
1562   llvm::MDNode *Weights =
1563       createProfileWeights(TrueCount, CurrentCount - TrueCount);
1564 
1565   // Emit the code with the fully general case.
1566   llvm::Value *CondV;
1567   {
1568     ApplyDebugLocation DL(*this, Cond);
1569     CondV = EvaluateExprAsBool(Cond);
1570   }
1571   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable);
1572 }
1573 
1574 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1575 /// specified stmt yet.
1576 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
1577   CGM.ErrorUnsupported(S, Type);
1578 }
1579 
1580 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
1581 /// variable-length array whose elements have a non-zero bit-pattern.
1582 ///
1583 /// \param baseType the inner-most element type of the array
1584 /// \param src - a char* pointing to the bit-pattern for a single
1585 /// base element of the array
1586 /// \param sizeInChars - the total size of the VLA, in chars
1587 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
1588                                Address dest, Address src,
1589                                llvm::Value *sizeInChars) {
1590   CGBuilderTy &Builder = CGF.Builder;
1591 
1592   CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType);
1593   llvm::Value *baseSizeInChars
1594     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity());
1595 
1596   Address begin =
1597     Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin");
1598   llvm::Value *end =
1599     Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end");
1600 
1601   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
1602   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
1603   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
1604 
1605   // Make a loop over the VLA.  C99 guarantees that the VLA element
1606   // count must be nonzero.
1607   CGF.EmitBlock(loopBB);
1608 
1609   llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur");
1610   cur->addIncoming(begin.getPointer(), originBB);
1611 
1612   CharUnits curAlign =
1613     dest.getAlignment().alignmentOfArrayElement(baseSize);
1614 
1615   // memcpy the individual element bit-pattern.
1616   Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars,
1617                        /*volatile*/ false);
1618 
1619   // Go to the next element.
1620   llvm::Value *next =
1621     Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next");
1622 
1623   // Leave if that's the end of the VLA.
1624   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
1625   Builder.CreateCondBr(done, contBB, loopBB);
1626   cur->addIncoming(next, loopBB);
1627 
1628   CGF.EmitBlock(contBB);
1629 }
1630 
1631 void
1632 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) {
1633   // Ignore empty classes in C++.
1634   if (getLangOpts().CPlusPlus) {
1635     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1636       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
1637         return;
1638     }
1639   }
1640 
1641   // Cast the dest ptr to the appropriate i8 pointer type.
1642   if (DestPtr.getElementType() != Int8Ty)
1643     DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty);
1644 
1645   // Get size and alignment info for this aggregate.
1646   CharUnits size = getContext().getTypeSizeInChars(Ty);
1647 
1648   llvm::Value *SizeVal;
1649   const VariableArrayType *vla;
1650 
1651   // Don't bother emitting a zero-byte memset.
1652   if (size.isZero()) {
1653     // But note that getTypeInfo returns 0 for a VLA.
1654     if (const VariableArrayType *vlaType =
1655           dyn_cast_or_null<VariableArrayType>(
1656                                           getContext().getAsArrayType(Ty))) {
1657       auto VlaSize = getVLASize(vlaType);
1658       SizeVal = VlaSize.NumElts;
1659       CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type);
1660       if (!eltSize.isOne())
1661         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
1662       vla = vlaType;
1663     } else {
1664       return;
1665     }
1666   } else {
1667     SizeVal = CGM.getSize(size);
1668     vla = nullptr;
1669   }
1670 
1671   // If the type contains a pointer to data member we can't memset it to zero.
1672   // Instead, create a null constant and copy it to the destination.
1673   // TODO: there are other patterns besides zero that we can usefully memset,
1674   // like -1, which happens to be the pattern used by member-pointers.
1675   if (!CGM.getTypes().isZeroInitializable(Ty)) {
1676     // For a VLA, emit a single element, then splat that over the VLA.
1677     if (vla) Ty = getContext().getBaseElementType(vla);
1678 
1679     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
1680 
1681     llvm::GlobalVariable *NullVariable =
1682       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
1683                                /*isConstant=*/true,
1684                                llvm::GlobalVariable::PrivateLinkage,
1685                                NullConstant, Twine());
1686     CharUnits NullAlign = DestPtr.getAlignment();
1687     NullVariable->setAlignment(NullAlign.getAsAlign());
1688     Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()),
1689                    NullAlign);
1690 
1691     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
1692 
1693     // Get and call the appropriate llvm.memcpy overload.
1694     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false);
1695     return;
1696   }
1697 
1698   // Otherwise, just memset the whole thing to zero.  This is legal
1699   // because in LLVM, all default initializers (other than the ones we just
1700   // handled above) are guaranteed to have a bit pattern of all zeros.
1701   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false);
1702 }
1703 
1704 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
1705   // Make sure that there is a block for the indirect goto.
1706   if (!IndirectBranch)
1707     GetIndirectGotoBlock();
1708 
1709   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
1710 
1711   // Make sure the indirect branch includes all of the address-taken blocks.
1712   IndirectBranch->addDestination(BB);
1713   return llvm::BlockAddress::get(CurFn, BB);
1714 }
1715 
1716 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
1717   // If we already made the indirect branch for indirect goto, return its block.
1718   if (IndirectBranch) return IndirectBranch->getParent();
1719 
1720   CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto"));
1721 
1722   // Create the PHI node that indirect gotos will add entries to.
1723   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
1724                                               "indirect.goto.dest");
1725 
1726   // Create the indirect branch instruction.
1727   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
1728   return IndirectBranch->getParent();
1729 }
1730 
1731 /// Computes the length of an array in elements, as well as the base
1732 /// element type and a properly-typed first element pointer.
1733 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
1734                                               QualType &baseType,
1735                                               Address &addr) {
1736   const ArrayType *arrayType = origArrayType;
1737 
1738   // If it's a VLA, we have to load the stored size.  Note that
1739   // this is the size of the VLA in bytes, not its size in elements.
1740   llvm::Value *numVLAElements = nullptr;
1741   if (isa<VariableArrayType>(arrayType)) {
1742     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts;
1743 
1744     // Walk into all VLAs.  This doesn't require changes to addr,
1745     // which has type T* where T is the first non-VLA element type.
1746     do {
1747       QualType elementType = arrayType->getElementType();
1748       arrayType = getContext().getAsArrayType(elementType);
1749 
1750       // If we only have VLA components, 'addr' requires no adjustment.
1751       if (!arrayType) {
1752         baseType = elementType;
1753         return numVLAElements;
1754       }
1755     } while (isa<VariableArrayType>(arrayType));
1756 
1757     // We get out here only if we find a constant array type
1758     // inside the VLA.
1759   }
1760 
1761   // We have some number of constant-length arrays, so addr should
1762   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
1763   // down to the first element of addr.
1764   SmallVector<llvm::Value*, 8> gepIndices;
1765 
1766   // GEP down to the array type.
1767   llvm::ConstantInt *zero = Builder.getInt32(0);
1768   gepIndices.push_back(zero);
1769 
1770   uint64_t countFromCLAs = 1;
1771   QualType eltType;
1772 
1773   llvm::ArrayType *llvmArrayType =
1774     dyn_cast<llvm::ArrayType>(addr.getElementType());
1775   while (llvmArrayType) {
1776     assert(isa<ConstantArrayType>(arrayType));
1777     assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
1778              == llvmArrayType->getNumElements());
1779 
1780     gepIndices.push_back(zero);
1781     countFromCLAs *= llvmArrayType->getNumElements();
1782     eltType = arrayType->getElementType();
1783 
1784     llvmArrayType =
1785       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
1786     arrayType = getContext().getAsArrayType(arrayType->getElementType());
1787     assert((!llvmArrayType || arrayType) &&
1788            "LLVM and Clang types are out-of-synch");
1789   }
1790 
1791   if (arrayType) {
1792     // From this point onwards, the Clang array type has been emitted
1793     // as some other type (probably a packed struct). Compute the array
1794     // size, and just emit the 'begin' expression as a bitcast.
1795     while (arrayType) {
1796       countFromCLAs *=
1797           cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
1798       eltType = arrayType->getElementType();
1799       arrayType = getContext().getAsArrayType(eltType);
1800     }
1801 
1802     llvm::Type *baseType = ConvertType(eltType);
1803     addr = Builder.CreateElementBitCast(addr, baseType, "array.begin");
1804   } else {
1805     // Create the actual GEP.
1806     addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(),
1807                                              gepIndices, "array.begin"),
1808                    addr.getAlignment());
1809   }
1810 
1811   baseType = eltType;
1812 
1813   llvm::Value *numElements
1814     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
1815 
1816   // If we had any VLA dimensions, factor them in.
1817   if (numVLAElements)
1818     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
1819 
1820   return numElements;
1821 }
1822 
1823 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) {
1824   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
1825   assert(vla && "type was not a variable array type!");
1826   return getVLASize(vla);
1827 }
1828 
1829 CodeGenFunction::VlaSizePair
1830 CodeGenFunction::getVLASize(const VariableArrayType *type) {
1831   // The number of elements so far; always size_t.
1832   llvm::Value *numElements = nullptr;
1833 
1834   QualType elementType;
1835   do {
1836     elementType = type->getElementType();
1837     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
1838     assert(vlaSize && "no size for VLA!");
1839     assert(vlaSize->getType() == SizeTy);
1840 
1841     if (!numElements) {
1842       numElements = vlaSize;
1843     } else {
1844       // It's undefined behavior if this wraps around, so mark it that way.
1845       // FIXME: Teach -fsanitize=undefined to trap this.
1846       numElements = Builder.CreateNUWMul(numElements, vlaSize);
1847     }
1848   } while ((type = getContext().getAsVariableArrayType(elementType)));
1849 
1850   return { numElements, elementType };
1851 }
1852 
1853 CodeGenFunction::VlaSizePair
1854 CodeGenFunction::getVLAElements1D(QualType type) {
1855   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
1856   assert(vla && "type was not a variable array type!");
1857   return getVLAElements1D(vla);
1858 }
1859 
1860 CodeGenFunction::VlaSizePair
1861 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) {
1862   llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()];
1863   assert(VlaSize && "no size for VLA!");
1864   assert(VlaSize->getType() == SizeTy);
1865   return { VlaSize, Vla->getElementType() };
1866 }
1867 
1868 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
1869   assert(type->isVariablyModifiedType() &&
1870          "Must pass variably modified type to EmitVLASizes!");
1871 
1872   EnsureInsertPoint();
1873 
1874   // We're going to walk down into the type and look for VLA
1875   // expressions.
1876   do {
1877     assert(type->isVariablyModifiedType());
1878 
1879     const Type *ty = type.getTypePtr();
1880     switch (ty->getTypeClass()) {
1881 
1882 #define TYPE(Class, Base)
1883 #define ABSTRACT_TYPE(Class, Base)
1884 #define NON_CANONICAL_TYPE(Class, Base)
1885 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
1886 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
1887 #include "clang/AST/TypeNodes.inc"
1888       llvm_unreachable("unexpected dependent type!");
1889 
1890     // These types are never variably-modified.
1891     case Type::Builtin:
1892     case Type::Complex:
1893     case Type::Vector:
1894     case Type::ExtVector:
1895     case Type::Record:
1896     case Type::Enum:
1897     case Type::Elaborated:
1898     case Type::TemplateSpecialization:
1899     case Type::ObjCTypeParam:
1900     case Type::ObjCObject:
1901     case Type::ObjCInterface:
1902     case Type::ObjCObjectPointer:
1903       llvm_unreachable("type class is never variably-modified!");
1904 
1905     case Type::Adjusted:
1906       type = cast<AdjustedType>(ty)->getAdjustedType();
1907       break;
1908 
1909     case Type::Decayed:
1910       type = cast<DecayedType>(ty)->getPointeeType();
1911       break;
1912 
1913     case Type::Pointer:
1914       type = cast<PointerType>(ty)->getPointeeType();
1915       break;
1916 
1917     case Type::BlockPointer:
1918       type = cast<BlockPointerType>(ty)->getPointeeType();
1919       break;
1920 
1921     case Type::LValueReference:
1922     case Type::RValueReference:
1923       type = cast<ReferenceType>(ty)->getPointeeType();
1924       break;
1925 
1926     case Type::MemberPointer:
1927       type = cast<MemberPointerType>(ty)->getPointeeType();
1928       break;
1929 
1930     case Type::ConstantArray:
1931     case Type::IncompleteArray:
1932       // Losing element qualification here is fine.
1933       type = cast<ArrayType>(ty)->getElementType();
1934       break;
1935 
1936     case Type::VariableArray: {
1937       // Losing element qualification here is fine.
1938       const VariableArrayType *vat = cast<VariableArrayType>(ty);
1939 
1940       // Unknown size indication requires no size computation.
1941       // Otherwise, evaluate and record it.
1942       if (const Expr *size = vat->getSizeExpr()) {
1943         // It's possible that we might have emitted this already,
1944         // e.g. with a typedef and a pointer to it.
1945         llvm::Value *&entry = VLASizeMap[size];
1946         if (!entry) {
1947           llvm::Value *Size = EmitScalarExpr(size);
1948 
1949           // C11 6.7.6.2p5:
1950           //   If the size is an expression that is not an integer constant
1951           //   expression [...] each time it is evaluated it shall have a value
1952           //   greater than zero.
1953           if (SanOpts.has(SanitizerKind::VLABound) &&
1954               size->getType()->isSignedIntegerType()) {
1955             SanitizerScope SanScope(this);
1956             llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType());
1957             llvm::Constant *StaticArgs[] = {
1958                 EmitCheckSourceLocation(size->getBeginLoc()),
1959                 EmitCheckTypeDescriptor(size->getType())};
1960             EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero),
1961                                      SanitizerKind::VLABound),
1962                       SanitizerHandler::VLABoundNotPositive, StaticArgs, Size);
1963           }
1964 
1965           // Always zexting here would be wrong if it weren't
1966           // undefined behavior to have a negative bound.
1967           entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false);
1968         }
1969       }
1970       type = vat->getElementType();
1971       break;
1972     }
1973 
1974     case Type::FunctionProto:
1975     case Type::FunctionNoProto:
1976       type = cast<FunctionType>(ty)->getReturnType();
1977       break;
1978 
1979     case Type::Paren:
1980     case Type::TypeOf:
1981     case Type::UnaryTransform:
1982     case Type::Attributed:
1983     case Type::SubstTemplateTypeParm:
1984     case Type::PackExpansion:
1985     case Type::MacroQualified:
1986       // Keep walking after single level desugaring.
1987       type = type.getSingleStepDesugaredType(getContext());
1988       break;
1989 
1990     case Type::Typedef:
1991     case Type::Decltype:
1992     case Type::Auto:
1993     case Type::DeducedTemplateSpecialization:
1994       // Stop walking: nothing to do.
1995       return;
1996 
1997     case Type::TypeOfExpr:
1998       // Stop walking: emit typeof expression.
1999       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
2000       return;
2001 
2002     case Type::Atomic:
2003       type = cast<AtomicType>(ty)->getValueType();
2004       break;
2005 
2006     case Type::Pipe:
2007       type = cast<PipeType>(ty)->getElementType();
2008       break;
2009     }
2010   } while (type->isVariablyModifiedType());
2011 }
2012 
2013 Address CodeGenFunction::EmitVAListRef(const Expr* E) {
2014   if (getContext().getBuiltinVaListType()->isArrayType())
2015     return EmitPointerWithAlignment(E);
2016   return EmitLValue(E).getAddress();
2017 }
2018 
2019 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) {
2020   return EmitLValue(E).getAddress();
2021 }
2022 
2023 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
2024                                               const APValue &Init) {
2025   assert(Init.hasValue() && "Invalid DeclRefExpr initializer!");
2026   if (CGDebugInfo *Dbg = getDebugInfo())
2027     if (CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
2028       Dbg->EmitGlobalVariable(E->getDecl(), Init);
2029 }
2030 
2031 CodeGenFunction::PeepholeProtection
2032 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
2033   // At the moment, the only aggressive peephole we do in IR gen
2034   // is trunc(zext) folding, but if we add more, we can easily
2035   // extend this protection.
2036 
2037   if (!rvalue.isScalar()) return PeepholeProtection();
2038   llvm::Value *value = rvalue.getScalarVal();
2039   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
2040 
2041   // Just make an extra bitcast.
2042   assert(HaveInsertPoint());
2043   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
2044                                                   Builder.GetInsertBlock());
2045 
2046   PeepholeProtection protection;
2047   protection.Inst = inst;
2048   return protection;
2049 }
2050 
2051 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
2052   if (!protection.Inst) return;
2053 
2054   // In theory, we could try to duplicate the peepholes now, but whatever.
2055   protection.Inst->eraseFromParent();
2056 }
2057 
2058 void CodeGenFunction::EmitAlignmentAssumption(llvm::Value *PtrValue,
2059                                               QualType Ty, SourceLocation Loc,
2060                                               SourceLocation AssumptionLoc,
2061                                               llvm::Value *Alignment,
2062                                               llvm::Value *OffsetValue) {
2063   llvm::Value *TheCheck;
2064   llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption(
2065       CGM.getDataLayout(), PtrValue, Alignment, OffsetValue, &TheCheck);
2066   if (SanOpts.has(SanitizerKind::Alignment)) {
2067     EmitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2068                                  OffsetValue, TheCheck, Assumption);
2069   }
2070 }
2071 
2072 void CodeGenFunction::EmitAlignmentAssumption(llvm::Value *PtrValue,
2073                                               const Expr *E,
2074                                               SourceLocation AssumptionLoc,
2075                                               llvm::Value *Alignment,
2076                                               llvm::Value *OffsetValue) {
2077   if (auto *CE = dyn_cast<CastExpr>(E))
2078     E = CE->getSubExprAsWritten();
2079   QualType Ty = E->getType();
2080   SourceLocation Loc = E->getExprLoc();
2081 
2082   EmitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2083                           OffsetValue);
2084 }
2085 
2086 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn,
2087                                                  llvm::Value *AnnotatedVal,
2088                                                  StringRef AnnotationStr,
2089                                                  SourceLocation Location) {
2090   llvm::Value *Args[4] = {
2091     AnnotatedVal,
2092     Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
2093     Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
2094     CGM.EmitAnnotationLineNo(Location)
2095   };
2096   return Builder.CreateCall(AnnotationFn, Args);
2097 }
2098 
2099 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
2100   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2101   // FIXME We create a new bitcast for every annotation because that's what
2102   // llvm-gcc was doing.
2103   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2104     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
2105                        Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
2106                        I->getAnnotation(), D->getLocation());
2107 }
2108 
2109 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
2110                                               Address Addr) {
2111   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2112   llvm::Value *V = Addr.getPointer();
2113   llvm::Type *VTy = V->getType();
2114   llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
2115                                     CGM.Int8PtrTy);
2116 
2117   for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
2118     // FIXME Always emit the cast inst so we can differentiate between
2119     // annotation on the first field of a struct and annotation on the struct
2120     // itself.
2121     if (VTy != CGM.Int8PtrTy)
2122       V = Builder.CreateBitCast(V, CGM.Int8PtrTy);
2123     V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation());
2124     V = Builder.CreateBitCast(V, VTy);
2125   }
2126 
2127   return Address(V, Addr.getAlignment());
2128 }
2129 
2130 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
2131 
2132 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF)
2133     : CGF(CGF) {
2134   assert(!CGF->IsSanitizerScope);
2135   CGF->IsSanitizerScope = true;
2136 }
2137 
2138 CodeGenFunction::SanitizerScope::~SanitizerScope() {
2139   CGF->IsSanitizerScope = false;
2140 }
2141 
2142 void CodeGenFunction::InsertHelper(llvm::Instruction *I,
2143                                    const llvm::Twine &Name,
2144                                    llvm::BasicBlock *BB,
2145                                    llvm::BasicBlock::iterator InsertPt) const {
2146   LoopStack.InsertHelper(I);
2147   if (IsSanitizerScope)
2148     CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I);
2149 }
2150 
2151 void CGBuilderInserter::InsertHelper(
2152     llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB,
2153     llvm::BasicBlock::iterator InsertPt) const {
2154   llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt);
2155   if (CGF)
2156     CGF->InsertHelper(I, Name, BB, InsertPt);
2157 }
2158 
2159 static bool hasRequiredFeatures(const SmallVectorImpl<StringRef> &ReqFeatures,
2160                                 CodeGenModule &CGM, const FunctionDecl *FD,
2161                                 std::string &FirstMissing) {
2162   // If there aren't any required features listed then go ahead and return.
2163   if (ReqFeatures.empty())
2164     return false;
2165 
2166   // Now build up the set of caller features and verify that all the required
2167   // features are there.
2168   llvm::StringMap<bool> CallerFeatureMap;
2169   CGM.getFunctionFeatureMap(CallerFeatureMap, GlobalDecl().getWithDecl(FD));
2170 
2171   // If we have at least one of the features in the feature list return
2172   // true, otherwise return false.
2173   return std::all_of(
2174       ReqFeatures.begin(), ReqFeatures.end(), [&](StringRef Feature) {
2175         SmallVector<StringRef, 1> OrFeatures;
2176         Feature.split(OrFeatures, '|');
2177         return llvm::any_of(OrFeatures, [&](StringRef Feature) {
2178           if (!CallerFeatureMap.lookup(Feature)) {
2179             FirstMissing = Feature.str();
2180             return false;
2181           }
2182           return true;
2183         });
2184       });
2185 }
2186 
2187 // Emits an error if we don't have a valid set of target features for the
2188 // called function.
2189 void CodeGenFunction::checkTargetFeatures(const CallExpr *E,
2190                                           const FunctionDecl *TargetDecl) {
2191   return checkTargetFeatures(E->getBeginLoc(), TargetDecl);
2192 }
2193 
2194 // Emits an error if we don't have a valid set of target features for the
2195 // called function.
2196 void CodeGenFunction::checkTargetFeatures(SourceLocation Loc,
2197                                           const FunctionDecl *TargetDecl) {
2198   // Early exit if this is an indirect call.
2199   if (!TargetDecl)
2200     return;
2201 
2202   // Get the current enclosing function if it exists. If it doesn't
2203   // we can't check the target features anyhow.
2204   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl);
2205   if (!FD)
2206     return;
2207 
2208   // Grab the required features for the call. For a builtin this is listed in
2209   // the td file with the default cpu, for an always_inline function this is any
2210   // listed cpu and any listed features.
2211   unsigned BuiltinID = TargetDecl->getBuiltinID();
2212   std::string MissingFeature;
2213   if (BuiltinID) {
2214     SmallVector<StringRef, 1> ReqFeatures;
2215     const char *FeatureList =
2216         CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID);
2217     // Return if the builtin doesn't have any required features.
2218     if (!FeatureList || StringRef(FeatureList) == "")
2219       return;
2220     StringRef(FeatureList).split(ReqFeatures, ',');
2221     if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature))
2222       CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature)
2223           << TargetDecl->getDeclName()
2224           << CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID);
2225 
2226   } else if (!TargetDecl->isMultiVersion() &&
2227              TargetDecl->hasAttr<TargetAttr>()) {
2228     // Get the required features for the callee.
2229 
2230     const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>();
2231     TargetAttr::ParsedTargetAttr ParsedAttr = CGM.filterFunctionTargetAttrs(TD);
2232 
2233     SmallVector<StringRef, 1> ReqFeatures;
2234     llvm::StringMap<bool> CalleeFeatureMap;
2235     CGM.getFunctionFeatureMap(CalleeFeatureMap, TargetDecl);
2236 
2237     for (const auto &F : ParsedAttr.Features) {
2238       if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1)))
2239         ReqFeatures.push_back(StringRef(F).substr(1));
2240     }
2241 
2242     for (const auto &F : CalleeFeatureMap) {
2243       // Only positive features are "required".
2244       if (F.getValue())
2245         ReqFeatures.push_back(F.getKey());
2246     }
2247     if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature))
2248       CGM.getDiags().Report(Loc, diag::err_function_needs_feature)
2249           << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature;
2250   }
2251 }
2252 
2253 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) {
2254   if (!CGM.getCodeGenOpts().SanitizeStats)
2255     return;
2256 
2257   llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint());
2258   IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation());
2259   CGM.getSanStats().create(IRB, SSK);
2260 }
2261 
2262 llvm::Value *
2263 CodeGenFunction::FormResolverCondition(const MultiVersionResolverOption &RO) {
2264   llvm::Value *Condition = nullptr;
2265 
2266   if (!RO.Conditions.Architecture.empty())
2267     Condition = EmitX86CpuIs(RO.Conditions.Architecture);
2268 
2269   if (!RO.Conditions.Features.empty()) {
2270     llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features);
2271     Condition =
2272         Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond;
2273   }
2274   return Condition;
2275 }
2276 
2277 static void CreateMultiVersionResolverReturn(CodeGenModule &CGM,
2278                                              llvm::Function *Resolver,
2279                                              CGBuilderTy &Builder,
2280                                              llvm::Function *FuncToReturn,
2281                                              bool SupportsIFunc) {
2282   if (SupportsIFunc) {
2283     Builder.CreateRet(FuncToReturn);
2284     return;
2285   }
2286 
2287   llvm::SmallVector<llvm::Value *, 10> Args;
2288   llvm::for_each(Resolver->args(),
2289                  [&](llvm::Argument &Arg) { Args.push_back(&Arg); });
2290 
2291   llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args);
2292   Result->setTailCallKind(llvm::CallInst::TCK_MustTail);
2293 
2294   if (Resolver->getReturnType()->isVoidTy())
2295     Builder.CreateRetVoid();
2296   else
2297     Builder.CreateRet(Result);
2298 }
2299 
2300 void CodeGenFunction::EmitMultiVersionResolver(
2301     llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) {
2302   assert((getContext().getTargetInfo().getTriple().getArch() ==
2303               llvm::Triple::x86 ||
2304           getContext().getTargetInfo().getTriple().getArch() ==
2305               llvm::Triple::x86_64) &&
2306          "Only implemented for x86 targets");
2307 
2308   bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc();
2309 
2310   // Main function's basic block.
2311   llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver);
2312   Builder.SetInsertPoint(CurBlock);
2313   EmitX86CpuInit();
2314 
2315   for (const MultiVersionResolverOption &RO : Options) {
2316     Builder.SetInsertPoint(CurBlock);
2317     llvm::Value *Condition = FormResolverCondition(RO);
2318 
2319     // The 'default' or 'generic' case.
2320     if (!Condition) {
2321       assert(&RO == Options.end() - 1 &&
2322              "Default or Generic case must be last");
2323       CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function,
2324                                        SupportsIFunc);
2325       return;
2326     }
2327 
2328     llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver);
2329     CGBuilderTy RetBuilder(*this, RetBlock);
2330     CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function,
2331                                      SupportsIFunc);
2332     CurBlock = createBasicBlock("resolver_else", Resolver);
2333     Builder.CreateCondBr(Condition, RetBlock, CurBlock);
2334   }
2335 
2336   // If no generic/default, emit an unreachable.
2337   Builder.SetInsertPoint(CurBlock);
2338   llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
2339   TrapCall->setDoesNotReturn();
2340   TrapCall->setDoesNotThrow();
2341   Builder.CreateUnreachable();
2342   Builder.ClearInsertionPoint();
2343 }
2344 
2345 // Loc - where the diagnostic will point, where in the source code this
2346 //  alignment has failed.
2347 // SecondaryLoc - if present (will be present if sufficiently different from
2348 //  Loc), the diagnostic will additionally point a "Note:" to this location.
2349 //  It should be the location where the __attribute__((assume_aligned))
2350 //  was written e.g.
2351 void CodeGenFunction::EmitAlignmentAssumptionCheck(
2352     llvm::Value *Ptr, QualType Ty, SourceLocation Loc,
2353     SourceLocation SecondaryLoc, llvm::Value *Alignment,
2354     llvm::Value *OffsetValue, llvm::Value *TheCheck,
2355     llvm::Instruction *Assumption) {
2356   assert(Assumption && isa<llvm::CallInst>(Assumption) &&
2357          cast<llvm::CallInst>(Assumption)->getCalledValue() ==
2358              llvm::Intrinsic::getDeclaration(
2359                  Builder.GetInsertBlock()->getParent()->getParent(),
2360                  llvm::Intrinsic::assume) &&
2361          "Assumption should be a call to llvm.assume().");
2362   assert(&(Builder.GetInsertBlock()->back()) == Assumption &&
2363          "Assumption should be the last instruction of the basic block, "
2364          "since the basic block is still being generated.");
2365 
2366   if (!SanOpts.has(SanitizerKind::Alignment))
2367     return;
2368 
2369   // Don't check pointers to volatile data. The behavior here is implementation-
2370   // defined.
2371   if (Ty->getPointeeType().isVolatileQualified())
2372     return;
2373 
2374   // We need to temorairly remove the assumption so we can insert the
2375   // sanitizer check before it, else the check will be dropped by optimizations.
2376   Assumption->removeFromParent();
2377 
2378   {
2379     SanitizerScope SanScope(this);
2380 
2381     if (!OffsetValue)
2382       OffsetValue = Builder.getInt1(0); // no offset.
2383 
2384     llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc),
2385                                     EmitCheckSourceLocation(SecondaryLoc),
2386                                     EmitCheckTypeDescriptor(Ty)};
2387     llvm::Value *DynamicData[] = {EmitCheckValue(Ptr),
2388                                   EmitCheckValue(Alignment),
2389                                   EmitCheckValue(OffsetValue)};
2390     EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)},
2391               SanitizerHandler::AlignmentAssumption, StaticData, DynamicData);
2392   }
2393 
2394   // We are now in the (new, empty) "cont" basic block.
2395   // Reintroduce the assumption.
2396   Builder.Insert(Assumption);
2397   // FIXME: Assumption still has it's original basic block as it's Parent.
2398 }
2399 
2400 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) {
2401   if (CGDebugInfo *DI = getDebugInfo())
2402     return DI->SourceLocToDebugLoc(Location);
2403 
2404   return llvm::DebugLoc();
2405 }
2406