1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-function state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenFunction.h" 14 #include "CGBlocks.h" 15 #include "CGCleanup.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGDebugInfo.h" 19 #include "CGOpenMPRuntime.h" 20 #include "CodeGenModule.h" 21 #include "CodeGenPGO.h" 22 #include "TargetInfo.h" 23 #include "clang/AST/ASTContext.h" 24 #include "clang/AST/ASTLambda.h" 25 #include "clang/AST/Decl.h" 26 #include "clang/AST/DeclCXX.h" 27 #include "clang/AST/StmtCXX.h" 28 #include "clang/AST/StmtObjC.h" 29 #include "clang/Basic/Builtins.h" 30 #include "clang/Basic/CodeGenOptions.h" 31 #include "clang/Basic/TargetInfo.h" 32 #include "clang/CodeGen/CGFunctionInfo.h" 33 #include "clang/Frontend/FrontendDiagnostic.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/Dominators.h" 36 #include "llvm/IR/Intrinsics.h" 37 #include "llvm/IR/MDBuilder.h" 38 #include "llvm/IR/Operator.h" 39 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 40 using namespace clang; 41 using namespace CodeGen; 42 43 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time 44 /// markers. 45 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts, 46 const LangOptions &LangOpts) { 47 if (CGOpts.DisableLifetimeMarkers) 48 return false; 49 50 // Sanitizers may use markers. 51 if (CGOpts.SanitizeAddressUseAfterScope || 52 LangOpts.Sanitize.has(SanitizerKind::HWAddress) || 53 LangOpts.Sanitize.has(SanitizerKind::Memory)) 54 return true; 55 56 // For now, only in optimized builds. 57 return CGOpts.OptimizationLevel != 0; 58 } 59 60 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 61 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 62 Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(), 63 CGBuilderInserterTy(this)), 64 SanOpts(CGM.getLangOpts().Sanitize), DebugInfo(CGM.getModuleDebugInfo()), 65 PGO(cgm), ShouldEmitLifetimeMarkers(shouldEmitLifetimeMarkers( 66 CGM.getCodeGenOpts(), CGM.getLangOpts())) { 67 if (!suppressNewContext) 68 CGM.getCXXABI().getMangleContext().startNewFunction(); 69 70 llvm::FastMathFlags FMF; 71 if (CGM.getLangOpts().FastMath) 72 FMF.setFast(); 73 if (CGM.getLangOpts().FiniteMathOnly) { 74 FMF.setNoNaNs(); 75 FMF.setNoInfs(); 76 } 77 if (CGM.getCodeGenOpts().NoNaNsFPMath) { 78 FMF.setNoNaNs(); 79 } 80 if (CGM.getCodeGenOpts().NoSignedZeros) { 81 FMF.setNoSignedZeros(); 82 } 83 if (CGM.getCodeGenOpts().ReciprocalMath) { 84 FMF.setAllowReciprocal(); 85 } 86 if (CGM.getCodeGenOpts().Reassociate) { 87 FMF.setAllowReassoc(); 88 } 89 Builder.setFastMathFlags(FMF); 90 } 91 92 CodeGenFunction::~CodeGenFunction() { 93 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 94 95 // If there are any unclaimed block infos, go ahead and destroy them 96 // now. This can happen if IR-gen gets clever and skips evaluating 97 // something. 98 if (FirstBlockInfo) 99 destroyBlockInfos(FirstBlockInfo); 100 101 if (getLangOpts().OpenMP && CurFn) 102 CGM.getOpenMPRuntime().functionFinished(*this); 103 } 104 105 CharUnits CodeGenFunction::getNaturalPointeeTypeAlignment(QualType T, 106 LValueBaseInfo *BaseInfo, 107 TBAAAccessInfo *TBAAInfo) { 108 return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo, 109 /* forPointeeType= */ true); 110 } 111 112 CharUnits CodeGenFunction::getNaturalTypeAlignment(QualType T, 113 LValueBaseInfo *BaseInfo, 114 TBAAAccessInfo *TBAAInfo, 115 bool forPointeeType) { 116 if (TBAAInfo) 117 *TBAAInfo = CGM.getTBAAAccessInfo(T); 118 119 // Honor alignment typedef attributes even on incomplete types. 120 // We also honor them straight for C++ class types, even as pointees; 121 // there's an expressivity gap here. 122 if (auto TT = T->getAs<TypedefType>()) { 123 if (auto Align = TT->getDecl()->getMaxAlignment()) { 124 if (BaseInfo) 125 *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType); 126 return getContext().toCharUnitsFromBits(Align); 127 } 128 } 129 130 if (BaseInfo) 131 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 132 133 CharUnits Alignment; 134 if (T->isIncompleteType()) { 135 Alignment = CharUnits::One(); // Shouldn't be used, but pessimistic is best. 136 } else { 137 // For C++ class pointees, we don't know whether we're pointing at a 138 // base or a complete object, so we generally need to use the 139 // non-virtual alignment. 140 const CXXRecordDecl *RD; 141 if (forPointeeType && (RD = T->getAsCXXRecordDecl())) { 142 Alignment = CGM.getClassPointerAlignment(RD); 143 } else { 144 Alignment = getContext().getTypeAlignInChars(T); 145 if (T.getQualifiers().hasUnaligned()) 146 Alignment = CharUnits::One(); 147 } 148 149 // Cap to the global maximum type alignment unless the alignment 150 // was somehow explicit on the type. 151 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 152 if (Alignment.getQuantity() > MaxAlign && 153 !getContext().isAlignmentRequired(T)) 154 Alignment = CharUnits::fromQuantity(MaxAlign); 155 } 156 } 157 return Alignment; 158 } 159 160 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { 161 LValueBaseInfo BaseInfo; 162 TBAAAccessInfo TBAAInfo; 163 CharUnits Alignment = getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo); 164 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), BaseInfo, 165 TBAAInfo); 166 } 167 168 /// Given a value of type T* that may not be to a complete object, 169 /// construct an l-value with the natural pointee alignment of T. 170 LValue 171 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) { 172 LValueBaseInfo BaseInfo; 173 TBAAAccessInfo TBAAInfo; 174 CharUnits Align = getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo, 175 /* forPointeeType= */ true); 176 return MakeAddrLValue(Address(V, Align), T, BaseInfo, TBAAInfo); 177 } 178 179 180 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 181 return CGM.getTypes().ConvertTypeForMem(T); 182 } 183 184 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 185 return CGM.getTypes().ConvertType(T); 186 } 187 188 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 189 type = type.getCanonicalType(); 190 while (true) { 191 switch (type->getTypeClass()) { 192 #define TYPE(name, parent) 193 #define ABSTRACT_TYPE(name, parent) 194 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 195 #define DEPENDENT_TYPE(name, parent) case Type::name: 196 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 197 #include "clang/AST/TypeNodes.inc" 198 llvm_unreachable("non-canonical or dependent type in IR-generation"); 199 200 case Type::Auto: 201 case Type::DeducedTemplateSpecialization: 202 llvm_unreachable("undeduced type in IR-generation"); 203 204 // Various scalar types. 205 case Type::Builtin: 206 case Type::Pointer: 207 case Type::BlockPointer: 208 case Type::LValueReference: 209 case Type::RValueReference: 210 case Type::MemberPointer: 211 case Type::Vector: 212 case Type::ExtVector: 213 case Type::FunctionProto: 214 case Type::FunctionNoProto: 215 case Type::Enum: 216 case Type::ObjCObjectPointer: 217 case Type::Pipe: 218 return TEK_Scalar; 219 220 // Complexes. 221 case Type::Complex: 222 return TEK_Complex; 223 224 // Arrays, records, and Objective-C objects. 225 case Type::ConstantArray: 226 case Type::IncompleteArray: 227 case Type::VariableArray: 228 case Type::Record: 229 case Type::ObjCObject: 230 case Type::ObjCInterface: 231 return TEK_Aggregate; 232 233 // We operate on atomic values according to their underlying type. 234 case Type::Atomic: 235 type = cast<AtomicType>(type)->getValueType(); 236 continue; 237 } 238 llvm_unreachable("unknown type kind!"); 239 } 240 } 241 242 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() { 243 // For cleanliness, we try to avoid emitting the return block for 244 // simple cases. 245 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 246 247 if (CurBB) { 248 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 249 250 // We have a valid insert point, reuse it if it is empty or there are no 251 // explicit jumps to the return block. 252 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 253 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 254 delete ReturnBlock.getBlock(); 255 ReturnBlock = JumpDest(); 256 } else 257 EmitBlock(ReturnBlock.getBlock()); 258 return llvm::DebugLoc(); 259 } 260 261 // Otherwise, if the return block is the target of a single direct 262 // branch then we can just put the code in that block instead. This 263 // cleans up functions which started with a unified return block. 264 if (ReturnBlock.getBlock()->hasOneUse()) { 265 llvm::BranchInst *BI = 266 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin()); 267 if (BI && BI->isUnconditional() && 268 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 269 // Record/return the DebugLoc of the simple 'return' expression to be used 270 // later by the actual 'ret' instruction. 271 llvm::DebugLoc Loc = BI->getDebugLoc(); 272 Builder.SetInsertPoint(BI->getParent()); 273 BI->eraseFromParent(); 274 delete ReturnBlock.getBlock(); 275 ReturnBlock = JumpDest(); 276 return Loc; 277 } 278 } 279 280 // FIXME: We are at an unreachable point, there is no reason to emit the block 281 // unless it has uses. However, we still need a place to put the debug 282 // region.end for now. 283 284 EmitBlock(ReturnBlock.getBlock()); 285 return llvm::DebugLoc(); 286 } 287 288 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 289 if (!BB) return; 290 if (!BB->use_empty()) 291 return CGF.CurFn->getBasicBlockList().push_back(BB); 292 delete BB; 293 } 294 295 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 296 assert(BreakContinueStack.empty() && 297 "mismatched push/pop in break/continue stack!"); 298 299 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 300 && NumSimpleReturnExprs == NumReturnExprs 301 && ReturnBlock.getBlock()->use_empty(); 302 // Usually the return expression is evaluated before the cleanup 303 // code. If the function contains only a simple return statement, 304 // such as a constant, the location before the cleanup code becomes 305 // the last useful breakpoint in the function, because the simple 306 // return expression will be evaluated after the cleanup code. To be 307 // safe, set the debug location for cleanup code to the location of 308 // the return statement. Otherwise the cleanup code should be at the 309 // end of the function's lexical scope. 310 // 311 // If there are multiple branches to the return block, the branch 312 // instructions will get the location of the return statements and 313 // all will be fine. 314 if (CGDebugInfo *DI = getDebugInfo()) { 315 if (OnlySimpleReturnStmts) 316 DI->EmitLocation(Builder, LastStopPoint); 317 else 318 DI->EmitLocation(Builder, EndLoc); 319 } 320 321 // Pop any cleanups that might have been associated with the 322 // parameters. Do this in whatever block we're currently in; it's 323 // important to do this before we enter the return block or return 324 // edges will be *really* confused. 325 bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth; 326 bool HasOnlyLifetimeMarkers = 327 HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth); 328 bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers; 329 if (HasCleanups) { 330 // Make sure the line table doesn't jump back into the body for 331 // the ret after it's been at EndLoc. 332 if (CGDebugInfo *DI = getDebugInfo()) 333 if (OnlySimpleReturnStmts) 334 DI->EmitLocation(Builder, EndLoc); 335 336 PopCleanupBlocks(PrologueCleanupDepth); 337 } 338 339 // Emit function epilog (to return). 340 llvm::DebugLoc Loc = EmitReturnBlock(); 341 342 if (ShouldInstrumentFunction()) { 343 if (CGM.getCodeGenOpts().InstrumentFunctions) 344 CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit"); 345 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 346 CurFn->addFnAttr("instrument-function-exit-inlined", 347 "__cyg_profile_func_exit"); 348 } 349 350 // Emit debug descriptor for function end. 351 if (CGDebugInfo *DI = getDebugInfo()) 352 DI->EmitFunctionEnd(Builder, CurFn); 353 354 // Reset the debug location to that of the simple 'return' expression, if any 355 // rather than that of the end of the function's scope '}'. 356 ApplyDebugLocation AL(*this, Loc); 357 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 358 EmitEndEHSpec(CurCodeDecl); 359 360 assert(EHStack.empty() && 361 "did not remove all scopes from cleanup stack!"); 362 363 // If someone did an indirect goto, emit the indirect goto block at the end of 364 // the function. 365 if (IndirectBranch) { 366 EmitBlock(IndirectBranch->getParent()); 367 Builder.ClearInsertionPoint(); 368 } 369 370 // If some of our locals escaped, insert a call to llvm.localescape in the 371 // entry block. 372 if (!EscapedLocals.empty()) { 373 // Invert the map from local to index into a simple vector. There should be 374 // no holes. 375 SmallVector<llvm::Value *, 4> EscapeArgs; 376 EscapeArgs.resize(EscapedLocals.size()); 377 for (auto &Pair : EscapedLocals) 378 EscapeArgs[Pair.second] = Pair.first; 379 llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration( 380 &CGM.getModule(), llvm::Intrinsic::localescape); 381 CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs); 382 } 383 384 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 385 llvm::Instruction *Ptr = AllocaInsertPt; 386 AllocaInsertPt = nullptr; 387 Ptr->eraseFromParent(); 388 389 // If someone took the address of a label but never did an indirect goto, we 390 // made a zero entry PHI node, which is illegal, zap it now. 391 if (IndirectBranch) { 392 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 393 if (PN->getNumIncomingValues() == 0) { 394 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 395 PN->eraseFromParent(); 396 } 397 } 398 399 EmitIfUsed(*this, EHResumeBlock); 400 EmitIfUsed(*this, TerminateLandingPad); 401 EmitIfUsed(*this, TerminateHandler); 402 EmitIfUsed(*this, UnreachableBlock); 403 404 for (const auto &FuncletAndParent : TerminateFunclets) 405 EmitIfUsed(*this, FuncletAndParent.second); 406 407 if (CGM.getCodeGenOpts().EmitDeclMetadata) 408 EmitDeclMetadata(); 409 410 for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator 411 I = DeferredReplacements.begin(), 412 E = DeferredReplacements.end(); 413 I != E; ++I) { 414 I->first->replaceAllUsesWith(I->second); 415 I->first->eraseFromParent(); 416 } 417 418 // Eliminate CleanupDestSlot alloca by replacing it with SSA values and 419 // PHIs if the current function is a coroutine. We don't do it for all 420 // functions as it may result in slight increase in numbers of instructions 421 // if compiled with no optimizations. We do it for coroutine as the lifetime 422 // of CleanupDestSlot alloca make correct coroutine frame building very 423 // difficult. 424 if (NormalCleanupDest.isValid() && isCoroutine()) { 425 llvm::DominatorTree DT(*CurFn); 426 llvm::PromoteMemToReg( 427 cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT); 428 NormalCleanupDest = Address::invalid(); 429 } 430 431 // Scan function arguments for vector width. 432 for (llvm::Argument &A : CurFn->args()) 433 if (auto *VT = dyn_cast<llvm::VectorType>(A.getType())) 434 LargestVectorWidth = std::max((uint64_t)LargestVectorWidth, 435 VT->getPrimitiveSizeInBits().getFixedSize()); 436 437 // Update vector width based on return type. 438 if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType())) 439 LargestVectorWidth = std::max((uint64_t)LargestVectorWidth, 440 VT->getPrimitiveSizeInBits().getFixedSize()); 441 442 // Add the required-vector-width attribute. This contains the max width from: 443 // 1. min-vector-width attribute used in the source program. 444 // 2. Any builtins used that have a vector width specified. 445 // 3. Values passed in and out of inline assembly. 446 // 4. Width of vector arguments and return types for this function. 447 // 5. Width of vector aguments and return types for functions called by this 448 // function. 449 CurFn->addFnAttr("min-legal-vector-width", llvm::utostr(LargestVectorWidth)); 450 451 // If we generated an unreachable return block, delete it now. 452 if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) { 453 Builder.ClearInsertionPoint(); 454 ReturnBlock.getBlock()->eraseFromParent(); 455 } 456 if (ReturnValue.isValid()) { 457 auto *RetAlloca = dyn_cast<llvm::AllocaInst>(ReturnValue.getPointer()); 458 if (RetAlloca && RetAlloca->use_empty()) { 459 RetAlloca->eraseFromParent(); 460 ReturnValue = Address::invalid(); 461 } 462 } 463 } 464 465 /// ShouldInstrumentFunction - Return true if the current function should be 466 /// instrumented with __cyg_profile_func_* calls 467 bool CodeGenFunction::ShouldInstrumentFunction() { 468 if (!CGM.getCodeGenOpts().InstrumentFunctions && 469 !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining && 470 !CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 471 return false; 472 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 473 return false; 474 return true; 475 } 476 477 /// ShouldXRayInstrument - Return true if the current function should be 478 /// instrumented with XRay nop sleds. 479 bool CodeGenFunction::ShouldXRayInstrumentFunction() const { 480 return CGM.getCodeGenOpts().XRayInstrumentFunctions; 481 } 482 483 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to 484 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation. 485 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const { 486 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 487 (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents || 488 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 489 XRayInstrKind::Custom); 490 } 491 492 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const { 493 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 494 (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents || 495 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 496 XRayInstrKind::Typed); 497 } 498 499 llvm::Constant * 500 CodeGenFunction::EncodeAddrForUseInPrologue(llvm::Function *F, 501 llvm::Constant *Addr) { 502 // Addresses stored in prologue data can't require run-time fixups and must 503 // be PC-relative. Run-time fixups are undesirable because they necessitate 504 // writable text segments, which are unsafe. And absolute addresses are 505 // undesirable because they break PIE mode. 506 507 // Add a layer of indirection through a private global. Taking its address 508 // won't result in a run-time fixup, even if Addr has linkonce_odr linkage. 509 auto *GV = new llvm::GlobalVariable(CGM.getModule(), Addr->getType(), 510 /*isConstant=*/true, 511 llvm::GlobalValue::PrivateLinkage, Addr); 512 513 // Create a PC-relative address. 514 auto *GOTAsInt = llvm::ConstantExpr::getPtrToInt(GV, IntPtrTy); 515 auto *FuncAsInt = llvm::ConstantExpr::getPtrToInt(F, IntPtrTy); 516 auto *PCRelAsInt = llvm::ConstantExpr::getSub(GOTAsInt, FuncAsInt); 517 return (IntPtrTy == Int32Ty) 518 ? PCRelAsInt 519 : llvm::ConstantExpr::getTrunc(PCRelAsInt, Int32Ty); 520 } 521 522 llvm::Value * 523 CodeGenFunction::DecodeAddrUsedInPrologue(llvm::Value *F, 524 llvm::Value *EncodedAddr) { 525 // Reconstruct the address of the global. 526 auto *PCRelAsInt = Builder.CreateSExt(EncodedAddr, IntPtrTy); 527 auto *FuncAsInt = Builder.CreatePtrToInt(F, IntPtrTy, "func_addr.int"); 528 auto *GOTAsInt = Builder.CreateAdd(PCRelAsInt, FuncAsInt, "global_addr.int"); 529 auto *GOTAddr = Builder.CreateIntToPtr(GOTAsInt, Int8PtrPtrTy, "global_addr"); 530 531 // Load the original pointer through the global. 532 return Builder.CreateLoad(Address(GOTAddr, getPointerAlign()), 533 "decoded_addr"); 534 } 535 536 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 537 llvm::Function *Fn) 538 { 539 if (!FD->hasAttr<OpenCLKernelAttr>()) 540 return; 541 542 llvm::LLVMContext &Context = getLLVMContext(); 543 544 CGM.GenOpenCLArgMetadata(Fn, FD, this); 545 546 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { 547 QualType HintQTy = A->getTypeHint(); 548 const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>(); 549 bool IsSignedInteger = 550 HintQTy->isSignedIntegerType() || 551 (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType()); 552 llvm::Metadata *AttrMDArgs[] = { 553 llvm::ConstantAsMetadata::get(llvm::UndefValue::get( 554 CGM.getTypes().ConvertType(A->getTypeHint()))), 555 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 556 llvm::IntegerType::get(Context, 32), 557 llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))}; 558 Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs)); 559 } 560 561 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { 562 llvm::Metadata *AttrMDArgs[] = { 563 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 564 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 565 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 566 Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs)); 567 } 568 569 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { 570 llvm::Metadata *AttrMDArgs[] = { 571 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 572 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 573 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 574 Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs)); 575 } 576 577 if (const OpenCLIntelReqdSubGroupSizeAttr *A = 578 FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) { 579 llvm::Metadata *AttrMDArgs[] = { 580 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))}; 581 Fn->setMetadata("intel_reqd_sub_group_size", 582 llvm::MDNode::get(Context, AttrMDArgs)); 583 } 584 } 585 586 /// Determine whether the function F ends with a return stmt. 587 static bool endsWithReturn(const Decl* F) { 588 const Stmt *Body = nullptr; 589 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F)) 590 Body = FD->getBody(); 591 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F)) 592 Body = OMD->getBody(); 593 594 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 595 auto LastStmt = CS->body_rbegin(); 596 if (LastStmt != CS->body_rend()) 597 return isa<ReturnStmt>(*LastStmt); 598 } 599 return false; 600 } 601 602 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) { 603 if (SanOpts.has(SanitizerKind::Thread)) { 604 Fn->addFnAttr("sanitize_thread_no_checking_at_run_time"); 605 Fn->removeFnAttr(llvm::Attribute::SanitizeThread); 606 } 607 } 608 609 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) { 610 auto *MD = dyn_cast_or_null<CXXMethodDecl>(D); 611 if (!MD || !MD->getDeclName().getAsIdentifierInfo() || 612 !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") || 613 (MD->getNumParams() != 1 && MD->getNumParams() != 2)) 614 return false; 615 616 if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType()) 617 return false; 618 619 if (MD->getNumParams() == 2) { 620 auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>(); 621 if (!PT || !PT->isVoidPointerType() || 622 !PT->getPointeeType().isConstQualified()) 623 return false; 624 } 625 626 return true; 627 } 628 629 /// Return the UBSan prologue signature for \p FD if one is available. 630 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM, 631 const FunctionDecl *FD) { 632 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 633 if (!MD->isStatic()) 634 return nullptr; 635 return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM); 636 } 637 638 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy, 639 llvm::Function *Fn, 640 const CGFunctionInfo &FnInfo, 641 const FunctionArgList &Args, 642 SourceLocation Loc, 643 SourceLocation StartLoc) { 644 assert(!CurFn && 645 "Do not use a CodeGenFunction object for more than one function"); 646 647 const Decl *D = GD.getDecl(); 648 649 DidCallStackSave = false; 650 CurCodeDecl = D; 651 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 652 if (FD->usesSEHTry()) 653 CurSEHParent = FD; 654 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr); 655 FnRetTy = RetTy; 656 CurFn = Fn; 657 CurFnInfo = &FnInfo; 658 assert(CurFn->isDeclaration() && "Function already has body?"); 659 660 // If this function has been blacklisted for any of the enabled sanitizers, 661 // disable the sanitizer for the function. 662 do { 663 #define SANITIZER(NAME, ID) \ 664 if (SanOpts.empty()) \ 665 break; \ 666 if (SanOpts.has(SanitizerKind::ID)) \ 667 if (CGM.isInSanitizerBlacklist(SanitizerKind::ID, Fn, Loc)) \ 668 SanOpts.set(SanitizerKind::ID, false); 669 670 #include "clang/Basic/Sanitizers.def" 671 #undef SANITIZER 672 } while (0); 673 674 if (D) { 675 // Apply the no_sanitize* attributes to SanOpts. 676 for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) { 677 SanitizerMask mask = Attr->getMask(); 678 SanOpts.Mask &= ~mask; 679 if (mask & SanitizerKind::Address) 680 SanOpts.set(SanitizerKind::KernelAddress, false); 681 if (mask & SanitizerKind::KernelAddress) 682 SanOpts.set(SanitizerKind::Address, false); 683 if (mask & SanitizerKind::HWAddress) 684 SanOpts.set(SanitizerKind::KernelHWAddress, false); 685 if (mask & SanitizerKind::KernelHWAddress) 686 SanOpts.set(SanitizerKind::HWAddress, false); 687 } 688 } 689 690 // Apply sanitizer attributes to the function. 691 if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress)) 692 Fn->addFnAttr(llvm::Attribute::SanitizeAddress); 693 if (SanOpts.hasOneOf(SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress)) 694 Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress); 695 if (SanOpts.has(SanitizerKind::MemTag)) 696 Fn->addFnAttr(llvm::Attribute::SanitizeMemTag); 697 if (SanOpts.has(SanitizerKind::Thread)) 698 Fn->addFnAttr(llvm::Attribute::SanitizeThread); 699 if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory)) 700 Fn->addFnAttr(llvm::Attribute::SanitizeMemory); 701 if (SanOpts.has(SanitizerKind::SafeStack)) 702 Fn->addFnAttr(llvm::Attribute::SafeStack); 703 if (SanOpts.has(SanitizerKind::ShadowCallStack)) 704 Fn->addFnAttr(llvm::Attribute::ShadowCallStack); 705 706 // Apply fuzzing attribute to the function. 707 if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink)) 708 Fn->addFnAttr(llvm::Attribute::OptForFuzzing); 709 710 // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize, 711 // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time. 712 if (SanOpts.has(SanitizerKind::Thread)) { 713 if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) { 714 IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0); 715 if (OMD->getMethodFamily() == OMF_dealloc || 716 OMD->getMethodFamily() == OMF_initialize || 717 (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) { 718 markAsIgnoreThreadCheckingAtRuntime(Fn); 719 } 720 } 721 } 722 723 // Ignore unrelated casts in STL allocate() since the allocator must cast 724 // from void* to T* before object initialization completes. Don't match on the 725 // namespace because not all allocators are in std:: 726 if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 727 if (matchesStlAllocatorFn(D, getContext())) 728 SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast; 729 } 730 731 // Ignore null checks in coroutine functions since the coroutines passes 732 // are not aware of how to move the extra UBSan instructions across the split 733 // coroutine boundaries. 734 if (D && SanOpts.has(SanitizerKind::Null)) 735 if (const auto *FD = dyn_cast<FunctionDecl>(D)) 736 if (FD->getBody() && 737 FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass) 738 SanOpts.Mask &= ~SanitizerKind::Null; 739 740 // Apply xray attributes to the function (as a string, for now) 741 if (D) { 742 if (const auto *XRayAttr = D->getAttr<XRayInstrumentAttr>()) { 743 if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 744 XRayInstrKind::Function)) { 745 if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) 746 Fn->addFnAttr("function-instrument", "xray-always"); 747 if (XRayAttr->neverXRayInstrument()) 748 Fn->addFnAttr("function-instrument", "xray-never"); 749 if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>()) 750 if (ShouldXRayInstrumentFunction()) 751 Fn->addFnAttr("xray-log-args", 752 llvm::utostr(LogArgs->getArgumentCount())); 753 } 754 } else { 755 if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc)) 756 Fn->addFnAttr( 757 "xray-instruction-threshold", 758 llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold)); 759 } 760 } 761 762 // Add no-jump-tables value. 763 Fn->addFnAttr("no-jump-tables", 764 llvm::toStringRef(CGM.getCodeGenOpts().NoUseJumpTables)); 765 766 // Add no-inline-line-tables value. 767 if (CGM.getCodeGenOpts().NoInlineLineTables) 768 Fn->addFnAttr("no-inline-line-tables"); 769 770 // Add profile-sample-accurate value. 771 if (CGM.getCodeGenOpts().ProfileSampleAccurate) 772 Fn->addFnAttr("profile-sample-accurate"); 773 774 if (D && D->hasAttr<CFICanonicalJumpTableAttr>()) 775 Fn->addFnAttr("cfi-canonical-jump-table"); 776 777 if (getLangOpts().OpenCL) { 778 // Add metadata for a kernel function. 779 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 780 EmitOpenCLKernelMetadata(FD, Fn); 781 } 782 783 // If we are checking function types, emit a function type signature as 784 // prologue data. 785 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) { 786 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 787 if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) { 788 // Remove any (C++17) exception specifications, to allow calling e.g. a 789 // noexcept function through a non-noexcept pointer. 790 auto ProtoTy = 791 getContext().getFunctionTypeWithExceptionSpec(FD->getType(), 792 EST_None); 793 llvm::Constant *FTRTTIConst = 794 CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true); 795 llvm::Constant *FTRTTIConstEncoded = 796 EncodeAddrForUseInPrologue(Fn, FTRTTIConst); 797 llvm::Constant *PrologueStructElems[] = {PrologueSig, 798 FTRTTIConstEncoded}; 799 llvm::Constant *PrologueStructConst = 800 llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true); 801 Fn->setPrologueData(PrologueStructConst); 802 } 803 } 804 } 805 806 // If we're checking nullability, we need to know whether we can check the 807 // return value. Initialize the flag to 'true' and refine it in EmitParmDecl. 808 if (SanOpts.has(SanitizerKind::NullabilityReturn)) { 809 auto Nullability = FnRetTy->getNullability(getContext()); 810 if (Nullability && *Nullability == NullabilityKind::NonNull) { 811 if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && 812 CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>())) 813 RetValNullabilityPrecondition = 814 llvm::ConstantInt::getTrue(getLLVMContext()); 815 } 816 } 817 818 // If we're in C++ mode and the function name is "main", it is guaranteed 819 // to be norecurse by the standard (3.6.1.3 "The function main shall not be 820 // used within a program"). 821 if (getLangOpts().CPlusPlus) 822 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 823 if (FD->isMain()) 824 Fn->addFnAttr(llvm::Attribute::NoRecurse); 825 826 // If a custom alignment is used, force realigning to this alignment on 827 // any main function which certainly will need it. 828 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 829 if ((FD->isMain() || FD->isMSVCRTEntryPoint()) && 830 CGM.getCodeGenOpts().StackAlignment) 831 Fn->addFnAttr("stackrealign"); 832 833 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 834 835 // Create a marker to make it easy to insert allocas into the entryblock 836 // later. Don't create this with the builder, because we don't want it 837 // folded. 838 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 839 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB); 840 841 ReturnBlock = getJumpDestInCurrentScope("return"); 842 843 Builder.SetInsertPoint(EntryBB); 844 845 // If we're checking the return value, allocate space for a pointer to a 846 // precise source location of the checked return statement. 847 if (requiresReturnValueCheck()) { 848 ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr"); 849 InitTempAlloca(ReturnLocation, llvm::ConstantPointerNull::get(Int8PtrTy)); 850 } 851 852 // Emit subprogram debug descriptor. 853 if (CGDebugInfo *DI = getDebugInfo()) { 854 // Reconstruct the type from the argument list so that implicit parameters, 855 // such as 'this' and 'vtt', show up in the debug info. Preserve the calling 856 // convention. 857 CallingConv CC = CallingConv::CC_C; 858 if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 859 if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>()) 860 CC = SrcFnTy->getCallConv(); 861 SmallVector<QualType, 16> ArgTypes; 862 for (const VarDecl *VD : Args) 863 ArgTypes.push_back(VD->getType()); 864 QualType FnType = getContext().getFunctionType( 865 RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC)); 866 DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, CurFuncIsThunk, 867 Builder); 868 } 869 870 if (ShouldInstrumentFunction()) { 871 if (CGM.getCodeGenOpts().InstrumentFunctions) 872 CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter"); 873 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 874 CurFn->addFnAttr("instrument-function-entry-inlined", 875 "__cyg_profile_func_enter"); 876 if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 877 CurFn->addFnAttr("instrument-function-entry-inlined", 878 "__cyg_profile_func_enter_bare"); 879 } 880 881 // Since emitting the mcount call here impacts optimizations such as function 882 // inlining, we just add an attribute to insert a mcount call in backend. 883 // The attribute "counting-function" is set to mcount function name which is 884 // architecture dependent. 885 if (CGM.getCodeGenOpts().InstrumentForProfiling) { 886 // Calls to fentry/mcount should not be generated if function has 887 // the no_instrument_function attribute. 888 if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) { 889 if (CGM.getCodeGenOpts().CallFEntry) 890 Fn->addFnAttr("fentry-call", "true"); 891 else { 892 Fn->addFnAttr("instrument-function-entry-inlined", 893 getTarget().getMCountName()); 894 } 895 if (CGM.getCodeGenOpts().MNopMCount) { 896 if (getContext().getTargetInfo().getTriple().getArch() != 897 llvm::Triple::systemz) 898 CGM.getDiags().Report(diag::err_opt_not_valid_on_target) 899 << "-mnop-mcount"; 900 if (!CGM.getCodeGenOpts().CallFEntry) 901 CGM.getDiags().Report(diag::err_opt_not_valid_without_opt) 902 << "-mnop-mcount" << "-mfentry"; 903 Fn->addFnAttr("mnop-mcount", "true"); 904 } 905 } 906 } 907 908 if (RetTy->isVoidType()) { 909 // Void type; nothing to return. 910 ReturnValue = Address::invalid(); 911 912 // Count the implicit return. 913 if (!endsWithReturn(D)) 914 ++NumReturnExprs; 915 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) { 916 // Indirect return; emit returned value directly into sret slot. 917 // This reduces code size, and affects correctness in C++. 918 auto AI = CurFn->arg_begin(); 919 if (CurFnInfo->getReturnInfo().isSRetAfterThis()) 920 ++AI; 921 ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign()); 922 if (!CurFnInfo->getReturnInfo().getIndirectByVal()) { 923 ReturnValuePointer = 924 CreateDefaultAlignTempAlloca(Int8PtrTy, "result.ptr"); 925 Builder.CreateStore(Builder.CreatePointerBitCastOrAddrSpaceCast( 926 ReturnValue.getPointer(), Int8PtrTy), 927 ReturnValuePointer); 928 } 929 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && 930 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 931 // Load the sret pointer from the argument struct and return into that. 932 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); 933 llvm::Function::arg_iterator EI = CurFn->arg_end(); 934 --EI; 935 llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx); 936 ReturnValuePointer = Address(Addr, getPointerAlign()); 937 Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result"); 938 ReturnValue = Address(Addr, getNaturalTypeAlignment(RetTy)); 939 } else { 940 ReturnValue = CreateIRTemp(RetTy, "retval"); 941 942 // Tell the epilog emitter to autorelease the result. We do this 943 // now so that various specialized functions can suppress it 944 // during their IR-generation. 945 if (getLangOpts().ObjCAutoRefCount && 946 !CurFnInfo->isReturnsRetained() && 947 RetTy->isObjCRetainableType()) 948 AutoreleaseResult = true; 949 } 950 951 EmitStartEHSpec(CurCodeDecl); 952 953 PrologueCleanupDepth = EHStack.stable_begin(); 954 955 // Emit OpenMP specific initialization of the device functions. 956 if (getLangOpts().OpenMP && CurCodeDecl) 957 CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl); 958 959 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 960 961 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 962 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 963 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 964 if (MD->getParent()->isLambda() && 965 MD->getOverloadedOperator() == OO_Call) { 966 // We're in a lambda; figure out the captures. 967 MD->getParent()->getCaptureFields(LambdaCaptureFields, 968 LambdaThisCaptureField); 969 if (LambdaThisCaptureField) { 970 // If the lambda captures the object referred to by '*this' - either by 971 // value or by reference, make sure CXXThisValue points to the correct 972 // object. 973 974 // Get the lvalue for the field (which is a copy of the enclosing object 975 // or contains the address of the enclosing object). 976 LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 977 if (!LambdaThisCaptureField->getType()->isPointerType()) { 978 // If the enclosing object was captured by value, just use its address. 979 CXXThisValue = ThisFieldLValue.getAddress().getPointer(); 980 } else { 981 // Load the lvalue pointed to by the field, since '*this' was captured 982 // by reference. 983 CXXThisValue = 984 EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal(); 985 } 986 } 987 for (auto *FD : MD->getParent()->fields()) { 988 if (FD->hasCapturedVLAType()) { 989 auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD), 990 SourceLocation()).getScalarVal(); 991 auto VAT = FD->getCapturedVLAType(); 992 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 993 } 994 } 995 } else { 996 // Not in a lambda; just use 'this' from the method. 997 // FIXME: Should we generate a new load for each use of 'this'? The 998 // fast register allocator would be happier... 999 CXXThisValue = CXXABIThisValue; 1000 } 1001 1002 // Check the 'this' pointer once per function, if it's available. 1003 if (CXXABIThisValue) { 1004 SanitizerSet SkippedChecks; 1005 SkippedChecks.set(SanitizerKind::ObjectSize, true); 1006 QualType ThisTy = MD->getThisType(); 1007 1008 // If this is the call operator of a lambda with no capture-default, it 1009 // may have a static invoker function, which may call this operator with 1010 // a null 'this' pointer. 1011 if (isLambdaCallOperator(MD) && 1012 MD->getParent()->getLambdaCaptureDefault() == LCD_None) 1013 SkippedChecks.set(SanitizerKind::Null, true); 1014 1015 EmitTypeCheck(isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall 1016 : TCK_MemberCall, 1017 Loc, CXXABIThisValue, ThisTy, 1018 getContext().getTypeAlignInChars(ThisTy->getPointeeType()), 1019 SkippedChecks); 1020 } 1021 } 1022 1023 // If any of the arguments have a variably modified type, make sure to 1024 // emit the type size. 1025 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 1026 i != e; ++i) { 1027 const VarDecl *VD = *i; 1028 1029 // Dig out the type as written from ParmVarDecls; it's unclear whether 1030 // the standard (C99 6.9.1p10) requires this, but we're following the 1031 // precedent set by gcc. 1032 QualType Ty; 1033 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 1034 Ty = PVD->getOriginalType(); 1035 else 1036 Ty = VD->getType(); 1037 1038 if (Ty->isVariablyModifiedType()) 1039 EmitVariablyModifiedType(Ty); 1040 } 1041 // Emit a location at the end of the prologue. 1042 if (CGDebugInfo *DI = getDebugInfo()) 1043 DI->EmitLocation(Builder, StartLoc); 1044 1045 // TODO: Do we need to handle this in two places like we do with 1046 // target-features/target-cpu? 1047 if (CurFuncDecl) 1048 if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>()) 1049 LargestVectorWidth = VecWidth->getVectorWidth(); 1050 } 1051 1052 void CodeGenFunction::EmitFunctionBody(const Stmt *Body) { 1053 incrementProfileCounter(Body); 1054 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 1055 EmitCompoundStmtWithoutScope(*S); 1056 else 1057 EmitStmt(Body); 1058 } 1059 1060 /// When instrumenting to collect profile data, the counts for some blocks 1061 /// such as switch cases need to not include the fall-through counts, so 1062 /// emit a branch around the instrumentation code. When not instrumenting, 1063 /// this just calls EmitBlock(). 1064 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, 1065 const Stmt *S) { 1066 llvm::BasicBlock *SkipCountBB = nullptr; 1067 if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) { 1068 // When instrumenting for profiling, the fallthrough to certain 1069 // statements needs to skip over the instrumentation code so that we 1070 // get an accurate count. 1071 SkipCountBB = createBasicBlock("skipcount"); 1072 EmitBranch(SkipCountBB); 1073 } 1074 EmitBlock(BB); 1075 uint64_t CurrentCount = getCurrentProfileCount(); 1076 incrementProfileCounter(S); 1077 setCurrentProfileCount(getCurrentProfileCount() + CurrentCount); 1078 if (SkipCountBB) 1079 EmitBlock(SkipCountBB); 1080 } 1081 1082 /// Tries to mark the given function nounwind based on the 1083 /// non-existence of any throwing calls within it. We believe this is 1084 /// lightweight enough to do at -O0. 1085 static void TryMarkNoThrow(llvm::Function *F) { 1086 // LLVM treats 'nounwind' on a function as part of the type, so we 1087 // can't do this on functions that can be overwritten. 1088 if (F->isInterposable()) return; 1089 1090 for (llvm::BasicBlock &BB : *F) 1091 for (llvm::Instruction &I : BB) 1092 if (I.mayThrow()) 1093 return; 1094 1095 F->setDoesNotThrow(); 1096 } 1097 1098 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD, 1099 FunctionArgList &Args) { 1100 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1101 QualType ResTy = FD->getReturnType(); 1102 1103 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 1104 if (MD && MD->isInstance()) { 1105 if (CGM.getCXXABI().HasThisReturn(GD)) 1106 ResTy = MD->getThisType(); 1107 else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) 1108 ResTy = CGM.getContext().VoidPtrTy; 1109 CGM.getCXXABI().buildThisParam(*this, Args); 1110 } 1111 1112 // The base version of an inheriting constructor whose constructed base is a 1113 // virtual base is not passed any arguments (because it doesn't actually call 1114 // the inherited constructor). 1115 bool PassedParams = true; 1116 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 1117 if (auto Inherited = CD->getInheritedConstructor()) 1118 PassedParams = 1119 getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType()); 1120 1121 if (PassedParams) { 1122 for (auto *Param : FD->parameters()) { 1123 Args.push_back(Param); 1124 if (!Param->hasAttr<PassObjectSizeAttr>()) 1125 continue; 1126 1127 auto *Implicit = ImplicitParamDecl::Create( 1128 getContext(), Param->getDeclContext(), Param->getLocation(), 1129 /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other); 1130 SizeArguments[Param] = Implicit; 1131 Args.push_back(Implicit); 1132 } 1133 } 1134 1135 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 1136 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 1137 1138 return ResTy; 1139 } 1140 1141 static bool 1142 shouldUseUndefinedBehaviorReturnOptimization(const FunctionDecl *FD, 1143 const ASTContext &Context) { 1144 QualType T = FD->getReturnType(); 1145 // Avoid the optimization for functions that return a record type with a 1146 // trivial destructor or another trivially copyable type. 1147 if (const RecordType *RT = T.getCanonicalType()->getAs<RecordType>()) { 1148 if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1149 return !ClassDecl->hasTrivialDestructor(); 1150 } 1151 return !T.isTriviallyCopyableType(Context); 1152 } 1153 1154 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1155 const CGFunctionInfo &FnInfo) { 1156 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1157 CurGD = GD; 1158 1159 FunctionArgList Args; 1160 QualType ResTy = BuildFunctionArgList(GD, Args); 1161 1162 // Check if we should generate debug info for this function. 1163 if (FD->hasAttr<NoDebugAttr>()) 1164 DebugInfo = nullptr; // disable debug info indefinitely for this function 1165 1166 // The function might not have a body if we're generating thunks for a 1167 // function declaration. 1168 SourceRange BodyRange; 1169 if (Stmt *Body = FD->getBody()) 1170 BodyRange = Body->getSourceRange(); 1171 else 1172 BodyRange = FD->getLocation(); 1173 CurEHLocation = BodyRange.getEnd(); 1174 1175 // Use the location of the start of the function to determine where 1176 // the function definition is located. By default use the location 1177 // of the declaration as the location for the subprogram. A function 1178 // may lack a declaration in the source code if it is created by code 1179 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). 1180 SourceLocation Loc = FD->getLocation(); 1181 1182 // If this is a function specialization then use the pattern body 1183 // as the location for the function. 1184 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) 1185 if (SpecDecl->hasBody(SpecDecl)) 1186 Loc = SpecDecl->getLocation(); 1187 1188 Stmt *Body = FD->getBody(); 1189 1190 // Initialize helper which will detect jumps which can cause invalid lifetime 1191 // markers. 1192 if (Body && ShouldEmitLifetimeMarkers) 1193 Bypasses.Init(Body); 1194 1195 // Emit the standard function prologue. 1196 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin()); 1197 1198 // Generate the body of the function. 1199 PGO.assignRegionCounters(GD, CurFn); 1200 if (isa<CXXDestructorDecl>(FD)) 1201 EmitDestructorBody(Args); 1202 else if (isa<CXXConstructorDecl>(FD)) 1203 EmitConstructorBody(Args); 1204 else if (getLangOpts().CUDA && 1205 !getLangOpts().CUDAIsDevice && 1206 FD->hasAttr<CUDAGlobalAttr>()) 1207 CGM.getCUDARuntime().emitDeviceStub(*this, Args); 1208 else if (isa<CXXMethodDecl>(FD) && 1209 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 1210 // The lambda static invoker function is special, because it forwards or 1211 // clones the body of the function call operator (but is actually static). 1212 EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD)); 1213 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 1214 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 1215 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 1216 // Implicit copy-assignment gets the same special treatment as implicit 1217 // copy-constructors. 1218 emitImplicitAssignmentOperatorBody(Args); 1219 } else if (Body) { 1220 EmitFunctionBody(Body); 1221 } else 1222 llvm_unreachable("no definition for emitted function"); 1223 1224 // C++11 [stmt.return]p2: 1225 // Flowing off the end of a function [...] results in undefined behavior in 1226 // a value-returning function. 1227 // C11 6.9.1p12: 1228 // If the '}' that terminates a function is reached, and the value of the 1229 // function call is used by the caller, the behavior is undefined. 1230 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock && 1231 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { 1232 bool ShouldEmitUnreachable = 1233 CGM.getCodeGenOpts().StrictReturn || 1234 shouldUseUndefinedBehaviorReturnOptimization(FD, getContext()); 1235 if (SanOpts.has(SanitizerKind::Return)) { 1236 SanitizerScope SanScope(this); 1237 llvm::Value *IsFalse = Builder.getFalse(); 1238 EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return), 1239 SanitizerHandler::MissingReturn, 1240 EmitCheckSourceLocation(FD->getLocation()), None); 1241 } else if (ShouldEmitUnreachable) { 1242 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 1243 EmitTrapCall(llvm::Intrinsic::trap); 1244 } 1245 if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) { 1246 Builder.CreateUnreachable(); 1247 Builder.ClearInsertionPoint(); 1248 } 1249 } 1250 1251 // Emit the standard function epilogue. 1252 FinishFunction(BodyRange.getEnd()); 1253 1254 // If we haven't marked the function nothrow through other means, do 1255 // a quick pass now to see if we can. 1256 if (!CurFn->doesNotThrow()) 1257 TryMarkNoThrow(CurFn); 1258 } 1259 1260 /// ContainsLabel - Return true if the statement contains a label in it. If 1261 /// this statement is not executed normally, it not containing a label means 1262 /// that we can just remove the code. 1263 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 1264 // Null statement, not a label! 1265 if (!S) return false; 1266 1267 // If this is a label, we have to emit the code, consider something like: 1268 // if (0) { ... foo: bar(); } goto foo; 1269 // 1270 // TODO: If anyone cared, we could track __label__'s, since we know that you 1271 // can't jump to one from outside their declared region. 1272 if (isa<LabelStmt>(S)) 1273 return true; 1274 1275 // If this is a case/default statement, and we haven't seen a switch, we have 1276 // to emit the code. 1277 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 1278 return true; 1279 1280 // If this is a switch statement, we want to ignore cases below it. 1281 if (isa<SwitchStmt>(S)) 1282 IgnoreCaseStmts = true; 1283 1284 // Scan subexpressions for verboten labels. 1285 for (const Stmt *SubStmt : S->children()) 1286 if (ContainsLabel(SubStmt, IgnoreCaseStmts)) 1287 return true; 1288 1289 return false; 1290 } 1291 1292 /// containsBreak - Return true if the statement contains a break out of it. 1293 /// If the statement (recursively) contains a switch or loop with a break 1294 /// inside of it, this is fine. 1295 bool CodeGenFunction::containsBreak(const Stmt *S) { 1296 // Null statement, not a label! 1297 if (!S) return false; 1298 1299 // If this is a switch or loop that defines its own break scope, then we can 1300 // include it and anything inside of it. 1301 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 1302 isa<ForStmt>(S)) 1303 return false; 1304 1305 if (isa<BreakStmt>(S)) 1306 return true; 1307 1308 // Scan subexpressions for verboten breaks. 1309 for (const Stmt *SubStmt : S->children()) 1310 if (containsBreak(SubStmt)) 1311 return true; 1312 1313 return false; 1314 } 1315 1316 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) { 1317 if (!S) return false; 1318 1319 // Some statement kinds add a scope and thus never add a decl to the current 1320 // scope. Note, this list is longer than the list of statements that might 1321 // have an unscoped decl nested within them, but this way is conservatively 1322 // correct even if more statement kinds are added. 1323 if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) || 1324 isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) || 1325 isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) || 1326 isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S)) 1327 return false; 1328 1329 if (isa<DeclStmt>(S)) 1330 return true; 1331 1332 for (const Stmt *SubStmt : S->children()) 1333 if (mightAddDeclToScope(SubStmt)) 1334 return true; 1335 1336 return false; 1337 } 1338 1339 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1340 /// to a constant, or if it does but contains a label, return false. If it 1341 /// constant folds return true and set the boolean result in Result. 1342 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1343 bool &ResultBool, 1344 bool AllowLabels) { 1345 llvm::APSInt ResultInt; 1346 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels)) 1347 return false; 1348 1349 ResultBool = ResultInt.getBoolValue(); 1350 return true; 1351 } 1352 1353 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1354 /// to a constant, or if it does but contains a label, return false. If it 1355 /// constant folds return true and set the folded value. 1356 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1357 llvm::APSInt &ResultInt, 1358 bool AllowLabels) { 1359 // FIXME: Rename and handle conversion of other evaluatable things 1360 // to bool. 1361 Expr::EvalResult Result; 1362 if (!Cond->EvaluateAsInt(Result, getContext())) 1363 return false; // Not foldable, not integer or not fully evaluatable. 1364 1365 llvm::APSInt Int = Result.Val.getInt(); 1366 if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond)) 1367 return false; // Contains a label. 1368 1369 ResultInt = Int; 1370 return true; 1371 } 1372 1373 1374 1375 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 1376 /// statement) to the specified blocks. Based on the condition, this might try 1377 /// to simplify the codegen of the conditional based on the branch. 1378 /// 1379 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 1380 llvm::BasicBlock *TrueBlock, 1381 llvm::BasicBlock *FalseBlock, 1382 uint64_t TrueCount) { 1383 Cond = Cond->IgnoreParens(); 1384 1385 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 1386 1387 // Handle X && Y in a condition. 1388 if (CondBOp->getOpcode() == BO_LAnd) { 1389 // If we have "1 && X", simplify the code. "0 && X" would have constant 1390 // folded if the case was simple enough. 1391 bool ConstantBool = false; 1392 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1393 ConstantBool) { 1394 // br(1 && X) -> br(X). 1395 incrementProfileCounter(CondBOp); 1396 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1397 TrueCount); 1398 } 1399 1400 // If we have "X && 1", simplify the code to use an uncond branch. 1401 // "X && 0" would have been constant folded to 0. 1402 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1403 ConstantBool) { 1404 // br(X && 1) -> br(X). 1405 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1406 TrueCount); 1407 } 1408 1409 // Emit the LHS as a conditional. If the LHS conditional is false, we 1410 // want to jump to the FalseBlock. 1411 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 1412 // The counter tells us how often we evaluate RHS, and all of TrueCount 1413 // can be propagated to that branch. 1414 uint64_t RHSCount = getProfileCount(CondBOp->getRHS()); 1415 1416 ConditionalEvaluation eval(*this); 1417 { 1418 ApplyDebugLocation DL(*this, Cond); 1419 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount); 1420 EmitBlock(LHSTrue); 1421 } 1422 1423 incrementProfileCounter(CondBOp); 1424 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1425 1426 // Any temporaries created here are conditional. 1427 eval.begin(*this); 1428 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount); 1429 eval.end(*this); 1430 1431 return; 1432 } 1433 1434 if (CondBOp->getOpcode() == BO_LOr) { 1435 // If we have "0 || X", simplify the code. "1 || X" would have constant 1436 // folded if the case was simple enough. 1437 bool ConstantBool = false; 1438 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1439 !ConstantBool) { 1440 // br(0 || X) -> br(X). 1441 incrementProfileCounter(CondBOp); 1442 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1443 TrueCount); 1444 } 1445 1446 // If we have "X || 0", simplify the code to use an uncond branch. 1447 // "X || 1" would have been constant folded to 1. 1448 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1449 !ConstantBool) { 1450 // br(X || 0) -> br(X). 1451 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1452 TrueCount); 1453 } 1454 1455 // Emit the LHS as a conditional. If the LHS conditional is true, we 1456 // want to jump to the TrueBlock. 1457 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 1458 // We have the count for entry to the RHS and for the whole expression 1459 // being true, so we can divy up True count between the short circuit and 1460 // the RHS. 1461 uint64_t LHSCount = 1462 getCurrentProfileCount() - getProfileCount(CondBOp->getRHS()); 1463 uint64_t RHSCount = TrueCount - LHSCount; 1464 1465 ConditionalEvaluation eval(*this); 1466 { 1467 ApplyDebugLocation DL(*this, Cond); 1468 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount); 1469 EmitBlock(LHSFalse); 1470 } 1471 1472 incrementProfileCounter(CondBOp); 1473 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1474 1475 // Any temporaries created here are conditional. 1476 eval.begin(*this); 1477 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount); 1478 1479 eval.end(*this); 1480 1481 return; 1482 } 1483 } 1484 1485 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 1486 // br(!x, t, f) -> br(x, f, t) 1487 if (CondUOp->getOpcode() == UO_LNot) { 1488 // Negate the count. 1489 uint64_t FalseCount = getCurrentProfileCount() - TrueCount; 1490 // Negate the condition and swap the destination blocks. 1491 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, 1492 FalseCount); 1493 } 1494 } 1495 1496 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 1497 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 1498 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1499 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1500 1501 ConditionalEvaluation cond(*this); 1502 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, 1503 getProfileCount(CondOp)); 1504 1505 // When computing PGO branch weights, we only know the overall count for 1506 // the true block. This code is essentially doing tail duplication of the 1507 // naive code-gen, introducing new edges for which counts are not 1508 // available. Divide the counts proportionally between the LHS and RHS of 1509 // the conditional operator. 1510 uint64_t LHSScaledTrueCount = 0; 1511 if (TrueCount) { 1512 double LHSRatio = 1513 getProfileCount(CondOp) / (double)getCurrentProfileCount(); 1514 LHSScaledTrueCount = TrueCount * LHSRatio; 1515 } 1516 1517 cond.begin(*this); 1518 EmitBlock(LHSBlock); 1519 incrementProfileCounter(CondOp); 1520 { 1521 ApplyDebugLocation DL(*this, Cond); 1522 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, 1523 LHSScaledTrueCount); 1524 } 1525 cond.end(*this); 1526 1527 cond.begin(*this); 1528 EmitBlock(RHSBlock); 1529 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, 1530 TrueCount - LHSScaledTrueCount); 1531 cond.end(*this); 1532 1533 return; 1534 } 1535 1536 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 1537 // Conditional operator handling can give us a throw expression as a 1538 // condition for a case like: 1539 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 1540 // Fold this to: 1541 // br(c, throw x, br(y, t, f)) 1542 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 1543 return; 1544 } 1545 1546 // If the branch has a condition wrapped by __builtin_unpredictable, 1547 // create metadata that specifies that the branch is unpredictable. 1548 // Don't bother if not optimizing because that metadata would not be used. 1549 llvm::MDNode *Unpredictable = nullptr; 1550 auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts()); 1551 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 1552 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 1553 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 1554 llvm::MDBuilder MDHelper(getLLVMContext()); 1555 Unpredictable = MDHelper.createUnpredictable(); 1556 } 1557 } 1558 1559 // Create branch weights based on the number of times we get here and the 1560 // number of times the condition should be true. 1561 uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount); 1562 llvm::MDNode *Weights = 1563 createProfileWeights(TrueCount, CurrentCount - TrueCount); 1564 1565 // Emit the code with the fully general case. 1566 llvm::Value *CondV; 1567 { 1568 ApplyDebugLocation DL(*this, Cond); 1569 CondV = EvaluateExprAsBool(Cond); 1570 } 1571 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable); 1572 } 1573 1574 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1575 /// specified stmt yet. 1576 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 1577 CGM.ErrorUnsupported(S, Type); 1578 } 1579 1580 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 1581 /// variable-length array whose elements have a non-zero bit-pattern. 1582 /// 1583 /// \param baseType the inner-most element type of the array 1584 /// \param src - a char* pointing to the bit-pattern for a single 1585 /// base element of the array 1586 /// \param sizeInChars - the total size of the VLA, in chars 1587 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 1588 Address dest, Address src, 1589 llvm::Value *sizeInChars) { 1590 CGBuilderTy &Builder = CGF.Builder; 1591 1592 CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType); 1593 llvm::Value *baseSizeInChars 1594 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity()); 1595 1596 Address begin = 1597 Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin"); 1598 llvm::Value *end = 1599 Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end"); 1600 1601 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 1602 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 1603 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 1604 1605 // Make a loop over the VLA. C99 guarantees that the VLA element 1606 // count must be nonzero. 1607 CGF.EmitBlock(loopBB); 1608 1609 llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur"); 1610 cur->addIncoming(begin.getPointer(), originBB); 1611 1612 CharUnits curAlign = 1613 dest.getAlignment().alignmentOfArrayElement(baseSize); 1614 1615 // memcpy the individual element bit-pattern. 1616 Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars, 1617 /*volatile*/ false); 1618 1619 // Go to the next element. 1620 llvm::Value *next = 1621 Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next"); 1622 1623 // Leave if that's the end of the VLA. 1624 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 1625 Builder.CreateCondBr(done, contBB, loopBB); 1626 cur->addIncoming(next, loopBB); 1627 1628 CGF.EmitBlock(contBB); 1629 } 1630 1631 void 1632 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) { 1633 // Ignore empty classes in C++. 1634 if (getLangOpts().CPlusPlus) { 1635 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1636 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 1637 return; 1638 } 1639 } 1640 1641 // Cast the dest ptr to the appropriate i8 pointer type. 1642 if (DestPtr.getElementType() != Int8Ty) 1643 DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty); 1644 1645 // Get size and alignment info for this aggregate. 1646 CharUnits size = getContext().getTypeSizeInChars(Ty); 1647 1648 llvm::Value *SizeVal; 1649 const VariableArrayType *vla; 1650 1651 // Don't bother emitting a zero-byte memset. 1652 if (size.isZero()) { 1653 // But note that getTypeInfo returns 0 for a VLA. 1654 if (const VariableArrayType *vlaType = 1655 dyn_cast_or_null<VariableArrayType>( 1656 getContext().getAsArrayType(Ty))) { 1657 auto VlaSize = getVLASize(vlaType); 1658 SizeVal = VlaSize.NumElts; 1659 CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type); 1660 if (!eltSize.isOne()) 1661 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 1662 vla = vlaType; 1663 } else { 1664 return; 1665 } 1666 } else { 1667 SizeVal = CGM.getSize(size); 1668 vla = nullptr; 1669 } 1670 1671 // If the type contains a pointer to data member we can't memset it to zero. 1672 // Instead, create a null constant and copy it to the destination. 1673 // TODO: there are other patterns besides zero that we can usefully memset, 1674 // like -1, which happens to be the pattern used by member-pointers. 1675 if (!CGM.getTypes().isZeroInitializable(Ty)) { 1676 // For a VLA, emit a single element, then splat that over the VLA. 1677 if (vla) Ty = getContext().getBaseElementType(vla); 1678 1679 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 1680 1681 llvm::GlobalVariable *NullVariable = 1682 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 1683 /*isConstant=*/true, 1684 llvm::GlobalVariable::PrivateLinkage, 1685 NullConstant, Twine()); 1686 CharUnits NullAlign = DestPtr.getAlignment(); 1687 NullVariable->setAlignment(NullAlign.getAsAlign()); 1688 Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()), 1689 NullAlign); 1690 1691 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 1692 1693 // Get and call the appropriate llvm.memcpy overload. 1694 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false); 1695 return; 1696 } 1697 1698 // Otherwise, just memset the whole thing to zero. This is legal 1699 // because in LLVM, all default initializers (other than the ones we just 1700 // handled above) are guaranteed to have a bit pattern of all zeros. 1701 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false); 1702 } 1703 1704 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 1705 // Make sure that there is a block for the indirect goto. 1706 if (!IndirectBranch) 1707 GetIndirectGotoBlock(); 1708 1709 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 1710 1711 // Make sure the indirect branch includes all of the address-taken blocks. 1712 IndirectBranch->addDestination(BB); 1713 return llvm::BlockAddress::get(CurFn, BB); 1714 } 1715 1716 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 1717 // If we already made the indirect branch for indirect goto, return its block. 1718 if (IndirectBranch) return IndirectBranch->getParent(); 1719 1720 CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto")); 1721 1722 // Create the PHI node that indirect gotos will add entries to. 1723 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 1724 "indirect.goto.dest"); 1725 1726 // Create the indirect branch instruction. 1727 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 1728 return IndirectBranch->getParent(); 1729 } 1730 1731 /// Computes the length of an array in elements, as well as the base 1732 /// element type and a properly-typed first element pointer. 1733 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 1734 QualType &baseType, 1735 Address &addr) { 1736 const ArrayType *arrayType = origArrayType; 1737 1738 // If it's a VLA, we have to load the stored size. Note that 1739 // this is the size of the VLA in bytes, not its size in elements. 1740 llvm::Value *numVLAElements = nullptr; 1741 if (isa<VariableArrayType>(arrayType)) { 1742 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts; 1743 1744 // Walk into all VLAs. This doesn't require changes to addr, 1745 // which has type T* where T is the first non-VLA element type. 1746 do { 1747 QualType elementType = arrayType->getElementType(); 1748 arrayType = getContext().getAsArrayType(elementType); 1749 1750 // If we only have VLA components, 'addr' requires no adjustment. 1751 if (!arrayType) { 1752 baseType = elementType; 1753 return numVLAElements; 1754 } 1755 } while (isa<VariableArrayType>(arrayType)); 1756 1757 // We get out here only if we find a constant array type 1758 // inside the VLA. 1759 } 1760 1761 // We have some number of constant-length arrays, so addr should 1762 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 1763 // down to the first element of addr. 1764 SmallVector<llvm::Value*, 8> gepIndices; 1765 1766 // GEP down to the array type. 1767 llvm::ConstantInt *zero = Builder.getInt32(0); 1768 gepIndices.push_back(zero); 1769 1770 uint64_t countFromCLAs = 1; 1771 QualType eltType; 1772 1773 llvm::ArrayType *llvmArrayType = 1774 dyn_cast<llvm::ArrayType>(addr.getElementType()); 1775 while (llvmArrayType) { 1776 assert(isa<ConstantArrayType>(arrayType)); 1777 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 1778 == llvmArrayType->getNumElements()); 1779 1780 gepIndices.push_back(zero); 1781 countFromCLAs *= llvmArrayType->getNumElements(); 1782 eltType = arrayType->getElementType(); 1783 1784 llvmArrayType = 1785 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 1786 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 1787 assert((!llvmArrayType || arrayType) && 1788 "LLVM and Clang types are out-of-synch"); 1789 } 1790 1791 if (arrayType) { 1792 // From this point onwards, the Clang array type has been emitted 1793 // as some other type (probably a packed struct). Compute the array 1794 // size, and just emit the 'begin' expression as a bitcast. 1795 while (arrayType) { 1796 countFromCLAs *= 1797 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 1798 eltType = arrayType->getElementType(); 1799 arrayType = getContext().getAsArrayType(eltType); 1800 } 1801 1802 llvm::Type *baseType = ConvertType(eltType); 1803 addr = Builder.CreateElementBitCast(addr, baseType, "array.begin"); 1804 } else { 1805 // Create the actual GEP. 1806 addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(), 1807 gepIndices, "array.begin"), 1808 addr.getAlignment()); 1809 } 1810 1811 baseType = eltType; 1812 1813 llvm::Value *numElements 1814 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 1815 1816 // If we had any VLA dimensions, factor them in. 1817 if (numVLAElements) 1818 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 1819 1820 return numElements; 1821 } 1822 1823 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) { 1824 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1825 assert(vla && "type was not a variable array type!"); 1826 return getVLASize(vla); 1827 } 1828 1829 CodeGenFunction::VlaSizePair 1830 CodeGenFunction::getVLASize(const VariableArrayType *type) { 1831 // The number of elements so far; always size_t. 1832 llvm::Value *numElements = nullptr; 1833 1834 QualType elementType; 1835 do { 1836 elementType = type->getElementType(); 1837 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 1838 assert(vlaSize && "no size for VLA!"); 1839 assert(vlaSize->getType() == SizeTy); 1840 1841 if (!numElements) { 1842 numElements = vlaSize; 1843 } else { 1844 // It's undefined behavior if this wraps around, so mark it that way. 1845 // FIXME: Teach -fsanitize=undefined to trap this. 1846 numElements = Builder.CreateNUWMul(numElements, vlaSize); 1847 } 1848 } while ((type = getContext().getAsVariableArrayType(elementType))); 1849 1850 return { numElements, elementType }; 1851 } 1852 1853 CodeGenFunction::VlaSizePair 1854 CodeGenFunction::getVLAElements1D(QualType type) { 1855 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1856 assert(vla && "type was not a variable array type!"); 1857 return getVLAElements1D(vla); 1858 } 1859 1860 CodeGenFunction::VlaSizePair 1861 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) { 1862 llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()]; 1863 assert(VlaSize && "no size for VLA!"); 1864 assert(VlaSize->getType() == SizeTy); 1865 return { VlaSize, Vla->getElementType() }; 1866 } 1867 1868 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 1869 assert(type->isVariablyModifiedType() && 1870 "Must pass variably modified type to EmitVLASizes!"); 1871 1872 EnsureInsertPoint(); 1873 1874 // We're going to walk down into the type and look for VLA 1875 // expressions. 1876 do { 1877 assert(type->isVariablyModifiedType()); 1878 1879 const Type *ty = type.getTypePtr(); 1880 switch (ty->getTypeClass()) { 1881 1882 #define TYPE(Class, Base) 1883 #define ABSTRACT_TYPE(Class, Base) 1884 #define NON_CANONICAL_TYPE(Class, Base) 1885 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 1886 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 1887 #include "clang/AST/TypeNodes.inc" 1888 llvm_unreachable("unexpected dependent type!"); 1889 1890 // These types are never variably-modified. 1891 case Type::Builtin: 1892 case Type::Complex: 1893 case Type::Vector: 1894 case Type::ExtVector: 1895 case Type::Record: 1896 case Type::Enum: 1897 case Type::Elaborated: 1898 case Type::TemplateSpecialization: 1899 case Type::ObjCTypeParam: 1900 case Type::ObjCObject: 1901 case Type::ObjCInterface: 1902 case Type::ObjCObjectPointer: 1903 llvm_unreachable("type class is never variably-modified!"); 1904 1905 case Type::Adjusted: 1906 type = cast<AdjustedType>(ty)->getAdjustedType(); 1907 break; 1908 1909 case Type::Decayed: 1910 type = cast<DecayedType>(ty)->getPointeeType(); 1911 break; 1912 1913 case Type::Pointer: 1914 type = cast<PointerType>(ty)->getPointeeType(); 1915 break; 1916 1917 case Type::BlockPointer: 1918 type = cast<BlockPointerType>(ty)->getPointeeType(); 1919 break; 1920 1921 case Type::LValueReference: 1922 case Type::RValueReference: 1923 type = cast<ReferenceType>(ty)->getPointeeType(); 1924 break; 1925 1926 case Type::MemberPointer: 1927 type = cast<MemberPointerType>(ty)->getPointeeType(); 1928 break; 1929 1930 case Type::ConstantArray: 1931 case Type::IncompleteArray: 1932 // Losing element qualification here is fine. 1933 type = cast<ArrayType>(ty)->getElementType(); 1934 break; 1935 1936 case Type::VariableArray: { 1937 // Losing element qualification here is fine. 1938 const VariableArrayType *vat = cast<VariableArrayType>(ty); 1939 1940 // Unknown size indication requires no size computation. 1941 // Otherwise, evaluate and record it. 1942 if (const Expr *size = vat->getSizeExpr()) { 1943 // It's possible that we might have emitted this already, 1944 // e.g. with a typedef and a pointer to it. 1945 llvm::Value *&entry = VLASizeMap[size]; 1946 if (!entry) { 1947 llvm::Value *Size = EmitScalarExpr(size); 1948 1949 // C11 6.7.6.2p5: 1950 // If the size is an expression that is not an integer constant 1951 // expression [...] each time it is evaluated it shall have a value 1952 // greater than zero. 1953 if (SanOpts.has(SanitizerKind::VLABound) && 1954 size->getType()->isSignedIntegerType()) { 1955 SanitizerScope SanScope(this); 1956 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); 1957 llvm::Constant *StaticArgs[] = { 1958 EmitCheckSourceLocation(size->getBeginLoc()), 1959 EmitCheckTypeDescriptor(size->getType())}; 1960 EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero), 1961 SanitizerKind::VLABound), 1962 SanitizerHandler::VLABoundNotPositive, StaticArgs, Size); 1963 } 1964 1965 // Always zexting here would be wrong if it weren't 1966 // undefined behavior to have a negative bound. 1967 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); 1968 } 1969 } 1970 type = vat->getElementType(); 1971 break; 1972 } 1973 1974 case Type::FunctionProto: 1975 case Type::FunctionNoProto: 1976 type = cast<FunctionType>(ty)->getReturnType(); 1977 break; 1978 1979 case Type::Paren: 1980 case Type::TypeOf: 1981 case Type::UnaryTransform: 1982 case Type::Attributed: 1983 case Type::SubstTemplateTypeParm: 1984 case Type::PackExpansion: 1985 case Type::MacroQualified: 1986 // Keep walking after single level desugaring. 1987 type = type.getSingleStepDesugaredType(getContext()); 1988 break; 1989 1990 case Type::Typedef: 1991 case Type::Decltype: 1992 case Type::Auto: 1993 case Type::DeducedTemplateSpecialization: 1994 // Stop walking: nothing to do. 1995 return; 1996 1997 case Type::TypeOfExpr: 1998 // Stop walking: emit typeof expression. 1999 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 2000 return; 2001 2002 case Type::Atomic: 2003 type = cast<AtomicType>(ty)->getValueType(); 2004 break; 2005 2006 case Type::Pipe: 2007 type = cast<PipeType>(ty)->getElementType(); 2008 break; 2009 } 2010 } while (type->isVariablyModifiedType()); 2011 } 2012 2013 Address CodeGenFunction::EmitVAListRef(const Expr* E) { 2014 if (getContext().getBuiltinVaListType()->isArrayType()) 2015 return EmitPointerWithAlignment(E); 2016 return EmitLValue(E).getAddress(); 2017 } 2018 2019 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) { 2020 return EmitLValue(E).getAddress(); 2021 } 2022 2023 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 2024 const APValue &Init) { 2025 assert(Init.hasValue() && "Invalid DeclRefExpr initializer!"); 2026 if (CGDebugInfo *Dbg = getDebugInfo()) 2027 if (CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 2028 Dbg->EmitGlobalVariable(E->getDecl(), Init); 2029 } 2030 2031 CodeGenFunction::PeepholeProtection 2032 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 2033 // At the moment, the only aggressive peephole we do in IR gen 2034 // is trunc(zext) folding, but if we add more, we can easily 2035 // extend this protection. 2036 2037 if (!rvalue.isScalar()) return PeepholeProtection(); 2038 llvm::Value *value = rvalue.getScalarVal(); 2039 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 2040 2041 // Just make an extra bitcast. 2042 assert(HaveInsertPoint()); 2043 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 2044 Builder.GetInsertBlock()); 2045 2046 PeepholeProtection protection; 2047 protection.Inst = inst; 2048 return protection; 2049 } 2050 2051 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 2052 if (!protection.Inst) return; 2053 2054 // In theory, we could try to duplicate the peepholes now, but whatever. 2055 protection.Inst->eraseFromParent(); 2056 } 2057 2058 void CodeGenFunction::EmitAlignmentAssumption(llvm::Value *PtrValue, 2059 QualType Ty, SourceLocation Loc, 2060 SourceLocation AssumptionLoc, 2061 llvm::Value *Alignment, 2062 llvm::Value *OffsetValue) { 2063 llvm::Value *TheCheck; 2064 llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption( 2065 CGM.getDataLayout(), PtrValue, Alignment, OffsetValue, &TheCheck); 2066 if (SanOpts.has(SanitizerKind::Alignment)) { 2067 EmitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment, 2068 OffsetValue, TheCheck, Assumption); 2069 } 2070 } 2071 2072 void CodeGenFunction::EmitAlignmentAssumption(llvm::Value *PtrValue, 2073 const Expr *E, 2074 SourceLocation AssumptionLoc, 2075 llvm::Value *Alignment, 2076 llvm::Value *OffsetValue) { 2077 if (auto *CE = dyn_cast<CastExpr>(E)) 2078 E = CE->getSubExprAsWritten(); 2079 QualType Ty = E->getType(); 2080 SourceLocation Loc = E->getExprLoc(); 2081 2082 EmitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment, 2083 OffsetValue); 2084 } 2085 2086 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn, 2087 llvm::Value *AnnotatedVal, 2088 StringRef AnnotationStr, 2089 SourceLocation Location) { 2090 llvm::Value *Args[4] = { 2091 AnnotatedVal, 2092 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 2093 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 2094 CGM.EmitAnnotationLineNo(Location) 2095 }; 2096 return Builder.CreateCall(AnnotationFn, Args); 2097 } 2098 2099 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 2100 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2101 // FIXME We create a new bitcast for every annotation because that's what 2102 // llvm-gcc was doing. 2103 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2104 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 2105 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 2106 I->getAnnotation(), D->getLocation()); 2107 } 2108 2109 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 2110 Address Addr) { 2111 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2112 llvm::Value *V = Addr.getPointer(); 2113 llvm::Type *VTy = V->getType(); 2114 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 2115 CGM.Int8PtrTy); 2116 2117 for (const auto *I : D->specific_attrs<AnnotateAttr>()) { 2118 // FIXME Always emit the cast inst so we can differentiate between 2119 // annotation on the first field of a struct and annotation on the struct 2120 // itself. 2121 if (VTy != CGM.Int8PtrTy) 2122 V = Builder.CreateBitCast(V, CGM.Int8PtrTy); 2123 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation()); 2124 V = Builder.CreateBitCast(V, VTy); 2125 } 2126 2127 return Address(V, Addr.getAlignment()); 2128 } 2129 2130 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 2131 2132 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF) 2133 : CGF(CGF) { 2134 assert(!CGF->IsSanitizerScope); 2135 CGF->IsSanitizerScope = true; 2136 } 2137 2138 CodeGenFunction::SanitizerScope::~SanitizerScope() { 2139 CGF->IsSanitizerScope = false; 2140 } 2141 2142 void CodeGenFunction::InsertHelper(llvm::Instruction *I, 2143 const llvm::Twine &Name, 2144 llvm::BasicBlock *BB, 2145 llvm::BasicBlock::iterator InsertPt) const { 2146 LoopStack.InsertHelper(I); 2147 if (IsSanitizerScope) 2148 CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I); 2149 } 2150 2151 void CGBuilderInserter::InsertHelper( 2152 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, 2153 llvm::BasicBlock::iterator InsertPt) const { 2154 llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt); 2155 if (CGF) 2156 CGF->InsertHelper(I, Name, BB, InsertPt); 2157 } 2158 2159 static bool hasRequiredFeatures(const SmallVectorImpl<StringRef> &ReqFeatures, 2160 CodeGenModule &CGM, const FunctionDecl *FD, 2161 std::string &FirstMissing) { 2162 // If there aren't any required features listed then go ahead and return. 2163 if (ReqFeatures.empty()) 2164 return false; 2165 2166 // Now build up the set of caller features and verify that all the required 2167 // features are there. 2168 llvm::StringMap<bool> CallerFeatureMap; 2169 CGM.getFunctionFeatureMap(CallerFeatureMap, GlobalDecl().getWithDecl(FD)); 2170 2171 // If we have at least one of the features in the feature list return 2172 // true, otherwise return false. 2173 return std::all_of( 2174 ReqFeatures.begin(), ReqFeatures.end(), [&](StringRef Feature) { 2175 SmallVector<StringRef, 1> OrFeatures; 2176 Feature.split(OrFeatures, '|'); 2177 return llvm::any_of(OrFeatures, [&](StringRef Feature) { 2178 if (!CallerFeatureMap.lookup(Feature)) { 2179 FirstMissing = Feature.str(); 2180 return false; 2181 } 2182 return true; 2183 }); 2184 }); 2185 } 2186 2187 // Emits an error if we don't have a valid set of target features for the 2188 // called function. 2189 void CodeGenFunction::checkTargetFeatures(const CallExpr *E, 2190 const FunctionDecl *TargetDecl) { 2191 return checkTargetFeatures(E->getBeginLoc(), TargetDecl); 2192 } 2193 2194 // Emits an error if we don't have a valid set of target features for the 2195 // called function. 2196 void CodeGenFunction::checkTargetFeatures(SourceLocation Loc, 2197 const FunctionDecl *TargetDecl) { 2198 // Early exit if this is an indirect call. 2199 if (!TargetDecl) 2200 return; 2201 2202 // Get the current enclosing function if it exists. If it doesn't 2203 // we can't check the target features anyhow. 2204 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl); 2205 if (!FD) 2206 return; 2207 2208 // Grab the required features for the call. For a builtin this is listed in 2209 // the td file with the default cpu, for an always_inline function this is any 2210 // listed cpu and any listed features. 2211 unsigned BuiltinID = TargetDecl->getBuiltinID(); 2212 std::string MissingFeature; 2213 if (BuiltinID) { 2214 SmallVector<StringRef, 1> ReqFeatures; 2215 const char *FeatureList = 2216 CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 2217 // Return if the builtin doesn't have any required features. 2218 if (!FeatureList || StringRef(FeatureList) == "") 2219 return; 2220 StringRef(FeatureList).split(ReqFeatures, ','); 2221 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 2222 CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature) 2223 << TargetDecl->getDeclName() 2224 << CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 2225 2226 } else if (!TargetDecl->isMultiVersion() && 2227 TargetDecl->hasAttr<TargetAttr>()) { 2228 // Get the required features for the callee. 2229 2230 const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>(); 2231 TargetAttr::ParsedTargetAttr ParsedAttr = CGM.filterFunctionTargetAttrs(TD); 2232 2233 SmallVector<StringRef, 1> ReqFeatures; 2234 llvm::StringMap<bool> CalleeFeatureMap; 2235 CGM.getFunctionFeatureMap(CalleeFeatureMap, TargetDecl); 2236 2237 for (const auto &F : ParsedAttr.Features) { 2238 if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1))) 2239 ReqFeatures.push_back(StringRef(F).substr(1)); 2240 } 2241 2242 for (const auto &F : CalleeFeatureMap) { 2243 // Only positive features are "required". 2244 if (F.getValue()) 2245 ReqFeatures.push_back(F.getKey()); 2246 } 2247 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 2248 CGM.getDiags().Report(Loc, diag::err_function_needs_feature) 2249 << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature; 2250 } 2251 } 2252 2253 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) { 2254 if (!CGM.getCodeGenOpts().SanitizeStats) 2255 return; 2256 2257 llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint()); 2258 IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation()); 2259 CGM.getSanStats().create(IRB, SSK); 2260 } 2261 2262 llvm::Value * 2263 CodeGenFunction::FormResolverCondition(const MultiVersionResolverOption &RO) { 2264 llvm::Value *Condition = nullptr; 2265 2266 if (!RO.Conditions.Architecture.empty()) 2267 Condition = EmitX86CpuIs(RO.Conditions.Architecture); 2268 2269 if (!RO.Conditions.Features.empty()) { 2270 llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features); 2271 Condition = 2272 Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond; 2273 } 2274 return Condition; 2275 } 2276 2277 static void CreateMultiVersionResolverReturn(CodeGenModule &CGM, 2278 llvm::Function *Resolver, 2279 CGBuilderTy &Builder, 2280 llvm::Function *FuncToReturn, 2281 bool SupportsIFunc) { 2282 if (SupportsIFunc) { 2283 Builder.CreateRet(FuncToReturn); 2284 return; 2285 } 2286 2287 llvm::SmallVector<llvm::Value *, 10> Args; 2288 llvm::for_each(Resolver->args(), 2289 [&](llvm::Argument &Arg) { Args.push_back(&Arg); }); 2290 2291 llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args); 2292 Result->setTailCallKind(llvm::CallInst::TCK_MustTail); 2293 2294 if (Resolver->getReturnType()->isVoidTy()) 2295 Builder.CreateRetVoid(); 2296 else 2297 Builder.CreateRet(Result); 2298 } 2299 2300 void CodeGenFunction::EmitMultiVersionResolver( 2301 llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) { 2302 assert((getContext().getTargetInfo().getTriple().getArch() == 2303 llvm::Triple::x86 || 2304 getContext().getTargetInfo().getTriple().getArch() == 2305 llvm::Triple::x86_64) && 2306 "Only implemented for x86 targets"); 2307 2308 bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc(); 2309 2310 // Main function's basic block. 2311 llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver); 2312 Builder.SetInsertPoint(CurBlock); 2313 EmitX86CpuInit(); 2314 2315 for (const MultiVersionResolverOption &RO : Options) { 2316 Builder.SetInsertPoint(CurBlock); 2317 llvm::Value *Condition = FormResolverCondition(RO); 2318 2319 // The 'default' or 'generic' case. 2320 if (!Condition) { 2321 assert(&RO == Options.end() - 1 && 2322 "Default or Generic case must be last"); 2323 CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function, 2324 SupportsIFunc); 2325 return; 2326 } 2327 2328 llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver); 2329 CGBuilderTy RetBuilder(*this, RetBlock); 2330 CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function, 2331 SupportsIFunc); 2332 CurBlock = createBasicBlock("resolver_else", Resolver); 2333 Builder.CreateCondBr(Condition, RetBlock, CurBlock); 2334 } 2335 2336 // If no generic/default, emit an unreachable. 2337 Builder.SetInsertPoint(CurBlock); 2338 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 2339 TrapCall->setDoesNotReturn(); 2340 TrapCall->setDoesNotThrow(); 2341 Builder.CreateUnreachable(); 2342 Builder.ClearInsertionPoint(); 2343 } 2344 2345 // Loc - where the diagnostic will point, where in the source code this 2346 // alignment has failed. 2347 // SecondaryLoc - if present (will be present if sufficiently different from 2348 // Loc), the diagnostic will additionally point a "Note:" to this location. 2349 // It should be the location where the __attribute__((assume_aligned)) 2350 // was written e.g. 2351 void CodeGenFunction::EmitAlignmentAssumptionCheck( 2352 llvm::Value *Ptr, QualType Ty, SourceLocation Loc, 2353 SourceLocation SecondaryLoc, llvm::Value *Alignment, 2354 llvm::Value *OffsetValue, llvm::Value *TheCheck, 2355 llvm::Instruction *Assumption) { 2356 assert(Assumption && isa<llvm::CallInst>(Assumption) && 2357 cast<llvm::CallInst>(Assumption)->getCalledValue() == 2358 llvm::Intrinsic::getDeclaration( 2359 Builder.GetInsertBlock()->getParent()->getParent(), 2360 llvm::Intrinsic::assume) && 2361 "Assumption should be a call to llvm.assume()."); 2362 assert(&(Builder.GetInsertBlock()->back()) == Assumption && 2363 "Assumption should be the last instruction of the basic block, " 2364 "since the basic block is still being generated."); 2365 2366 if (!SanOpts.has(SanitizerKind::Alignment)) 2367 return; 2368 2369 // Don't check pointers to volatile data. The behavior here is implementation- 2370 // defined. 2371 if (Ty->getPointeeType().isVolatileQualified()) 2372 return; 2373 2374 // We need to temorairly remove the assumption so we can insert the 2375 // sanitizer check before it, else the check will be dropped by optimizations. 2376 Assumption->removeFromParent(); 2377 2378 { 2379 SanitizerScope SanScope(this); 2380 2381 if (!OffsetValue) 2382 OffsetValue = Builder.getInt1(0); // no offset. 2383 2384 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc), 2385 EmitCheckSourceLocation(SecondaryLoc), 2386 EmitCheckTypeDescriptor(Ty)}; 2387 llvm::Value *DynamicData[] = {EmitCheckValue(Ptr), 2388 EmitCheckValue(Alignment), 2389 EmitCheckValue(OffsetValue)}; 2390 EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)}, 2391 SanitizerHandler::AlignmentAssumption, StaticData, DynamicData); 2392 } 2393 2394 // We are now in the (new, empty) "cont" basic block. 2395 // Reintroduce the assumption. 2396 Builder.Insert(Assumption); 2397 // FIXME: Assumption still has it's original basic block as it's Parent. 2398 } 2399 2400 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) { 2401 if (CGDebugInfo *DI = getDebugInfo()) 2402 return DI->SourceLocToDebugLoc(Location); 2403 2404 return llvm::DebugLoc(); 2405 } 2406