xref: /llvm-project/clang/lib/CodeGen/CodeGenFunction.cpp (revision 9905dae5e18cd55ee6bb8678c95fed940ded1ef9)
1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-function state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenFunction.h"
14 #include "CGBlocks.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCleanup.h"
18 #include "CGDebugInfo.h"
19 #include "CGHLSLRuntime.h"
20 #include "CGOpenMPRuntime.h"
21 #include "CodeGenModule.h"
22 #include "CodeGenPGO.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/ASTLambda.h"
26 #include "clang/AST/Attr.h"
27 #include "clang/AST/Decl.h"
28 #include "clang/AST/DeclCXX.h"
29 #include "clang/AST/Expr.h"
30 #include "clang/AST/StmtCXX.h"
31 #include "clang/AST/StmtObjC.h"
32 #include "clang/Basic/Builtins.h"
33 #include "clang/Basic/CodeGenOptions.h"
34 #include "clang/Basic/TargetInfo.h"
35 #include "clang/CodeGen/CGFunctionInfo.h"
36 #include "clang/Frontend/FrontendDiagnostic.h"
37 #include "llvm/ADT/ArrayRef.h"
38 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
39 #include "llvm/IR/DataLayout.h"
40 #include "llvm/IR/Dominators.h"
41 #include "llvm/IR/FPEnv.h"
42 #include "llvm/IR/IntrinsicInst.h"
43 #include "llvm/IR/Intrinsics.h"
44 #include "llvm/IR/MDBuilder.h"
45 #include "llvm/IR/Operator.h"
46 #include "llvm/Support/CRC.h"
47 #include "llvm/Transforms/Scalar/LowerExpectIntrinsic.h"
48 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
49 
50 using namespace clang;
51 using namespace CodeGen;
52 
53 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time
54 /// markers.
55 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts,
56                                       const LangOptions &LangOpts) {
57   if (CGOpts.DisableLifetimeMarkers)
58     return false;
59 
60   // Sanitizers may use markers.
61   if (CGOpts.SanitizeAddressUseAfterScope ||
62       LangOpts.Sanitize.has(SanitizerKind::HWAddress) ||
63       LangOpts.Sanitize.has(SanitizerKind::Memory))
64     return true;
65 
66   // For now, only in optimized builds.
67   return CGOpts.OptimizationLevel != 0;
68 }
69 
70 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
71     : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
72       Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(),
73               CGBuilderInserterTy(this)),
74       SanOpts(CGM.getLangOpts().Sanitize), CurFPFeatures(CGM.getLangOpts()),
75       DebugInfo(CGM.getModuleDebugInfo()), PGO(cgm),
76       ShouldEmitLifetimeMarkers(
77           shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) {
78   if (!suppressNewContext)
79     CGM.getCXXABI().getMangleContext().startNewFunction();
80   EHStack.setCGF(this);
81 
82   SetFastMathFlags(CurFPFeatures);
83 }
84 
85 CodeGenFunction::~CodeGenFunction() {
86   assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
87 
88   if (getLangOpts().OpenMP && CurFn)
89     CGM.getOpenMPRuntime().functionFinished(*this);
90 
91   // If we have an OpenMPIRBuilder we want to finalize functions (incl.
92   // outlining etc) at some point. Doing it once the function codegen is done
93   // seems to be a reasonable spot. We do it here, as opposed to the deletion
94   // time of the CodeGenModule, because we have to ensure the IR has not yet
95   // been "emitted" to the outside, thus, modifications are still sensible.
96   if (CGM.getLangOpts().OpenMPIRBuilder && CurFn)
97     CGM.getOpenMPRuntime().getOMPBuilder().finalize(CurFn);
98 }
99 
100 // Map the LangOption for exception behavior into
101 // the corresponding enum in the IR.
102 llvm::fp::ExceptionBehavior
103 clang::ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind) {
104 
105   switch (Kind) {
106   case LangOptions::FPE_Ignore:  return llvm::fp::ebIgnore;
107   case LangOptions::FPE_MayTrap: return llvm::fp::ebMayTrap;
108   case LangOptions::FPE_Strict:  return llvm::fp::ebStrict;
109   default:
110     llvm_unreachable("Unsupported FP Exception Behavior");
111   }
112 }
113 
114 void CodeGenFunction::SetFastMathFlags(FPOptions FPFeatures) {
115   llvm::FastMathFlags FMF;
116   FMF.setAllowReassoc(FPFeatures.getAllowFPReassociate());
117   FMF.setNoNaNs(FPFeatures.getNoHonorNaNs());
118   FMF.setNoInfs(FPFeatures.getNoHonorInfs());
119   FMF.setNoSignedZeros(FPFeatures.getNoSignedZero());
120   FMF.setAllowReciprocal(FPFeatures.getAllowReciprocal());
121   FMF.setApproxFunc(FPFeatures.getAllowApproxFunc());
122   FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement());
123   Builder.setFastMathFlags(FMF);
124 }
125 
126 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF,
127                                                   const Expr *E)
128     : CGF(CGF) {
129   ConstructorHelper(E->getFPFeaturesInEffect(CGF.getLangOpts()));
130 }
131 
132 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF,
133                                                   FPOptions FPFeatures)
134     : CGF(CGF) {
135   ConstructorHelper(FPFeatures);
136 }
137 
138 void CodeGenFunction::CGFPOptionsRAII::ConstructorHelper(FPOptions FPFeatures) {
139   OldFPFeatures = CGF.CurFPFeatures;
140   CGF.CurFPFeatures = FPFeatures;
141 
142   OldExcept = CGF.Builder.getDefaultConstrainedExcept();
143   OldRounding = CGF.Builder.getDefaultConstrainedRounding();
144 
145   if (OldFPFeatures == FPFeatures)
146     return;
147 
148   FMFGuard.emplace(CGF.Builder);
149 
150   llvm::RoundingMode NewRoundingBehavior = FPFeatures.getRoundingMode();
151   CGF.Builder.setDefaultConstrainedRounding(NewRoundingBehavior);
152   auto NewExceptionBehavior =
153       ToConstrainedExceptMD(static_cast<LangOptions::FPExceptionModeKind>(
154           FPFeatures.getExceptionMode()));
155   CGF.Builder.setDefaultConstrainedExcept(NewExceptionBehavior);
156 
157   CGF.SetFastMathFlags(FPFeatures);
158 
159   assert((CGF.CurFuncDecl == nullptr || CGF.Builder.getIsFPConstrained() ||
160           isa<CXXConstructorDecl>(CGF.CurFuncDecl) ||
161           isa<CXXDestructorDecl>(CGF.CurFuncDecl) ||
162           (NewExceptionBehavior == llvm::fp::ebIgnore &&
163            NewRoundingBehavior == llvm::RoundingMode::NearestTiesToEven)) &&
164          "FPConstrained should be enabled on entire function");
165 
166   auto mergeFnAttrValue = [&](StringRef Name, bool Value) {
167     auto OldValue =
168         CGF.CurFn->getFnAttribute(Name).getValueAsBool();
169     auto NewValue = OldValue & Value;
170     if (OldValue != NewValue)
171       CGF.CurFn->addFnAttr(Name, llvm::toStringRef(NewValue));
172   };
173   mergeFnAttrValue("no-infs-fp-math", FPFeatures.getNoHonorInfs());
174   mergeFnAttrValue("no-nans-fp-math", FPFeatures.getNoHonorNaNs());
175   mergeFnAttrValue("no-signed-zeros-fp-math", FPFeatures.getNoSignedZero());
176   mergeFnAttrValue("unsafe-fp-math", FPFeatures.getAllowFPReassociate() &&
177                                          FPFeatures.getAllowReciprocal() &&
178                                          FPFeatures.getAllowApproxFunc() &&
179                                          FPFeatures.getNoSignedZero());
180 }
181 
182 CodeGenFunction::CGFPOptionsRAII::~CGFPOptionsRAII() {
183   CGF.CurFPFeatures = OldFPFeatures;
184   CGF.Builder.setDefaultConstrainedExcept(OldExcept);
185   CGF.Builder.setDefaultConstrainedRounding(OldRounding);
186 }
187 
188 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
189   LValueBaseInfo BaseInfo;
190   TBAAAccessInfo TBAAInfo;
191   CharUnits Alignment = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo);
192   Address Addr(V, ConvertTypeForMem(T), Alignment);
193   return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, TBAAInfo);
194 }
195 
196 /// Given a value of type T* that may not be to a complete object,
197 /// construct an l-value with the natural pointee alignment of T.
198 LValue
199 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) {
200   LValueBaseInfo BaseInfo;
201   TBAAAccessInfo TBAAInfo;
202   CharUnits Align = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo,
203                                                 /* forPointeeType= */ true);
204   Address Addr(V, ConvertTypeForMem(T), Align);
205   return MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo);
206 }
207 
208 
209 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
210   return CGM.getTypes().ConvertTypeForMem(T);
211 }
212 
213 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
214   return CGM.getTypes().ConvertType(T);
215 }
216 
217 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
218   type = type.getCanonicalType();
219   while (true) {
220     switch (type->getTypeClass()) {
221 #define TYPE(name, parent)
222 #define ABSTRACT_TYPE(name, parent)
223 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
224 #define DEPENDENT_TYPE(name, parent) case Type::name:
225 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
226 #include "clang/AST/TypeNodes.inc"
227       llvm_unreachable("non-canonical or dependent type in IR-generation");
228 
229     case Type::Auto:
230     case Type::DeducedTemplateSpecialization:
231       llvm_unreachable("undeduced type in IR-generation");
232 
233     // Various scalar types.
234     case Type::Builtin:
235     case Type::Pointer:
236     case Type::BlockPointer:
237     case Type::LValueReference:
238     case Type::RValueReference:
239     case Type::MemberPointer:
240     case Type::Vector:
241     case Type::ExtVector:
242     case Type::ConstantMatrix:
243     case Type::FunctionProto:
244     case Type::FunctionNoProto:
245     case Type::Enum:
246     case Type::ObjCObjectPointer:
247     case Type::Pipe:
248     case Type::BitInt:
249       return TEK_Scalar;
250 
251     // Complexes.
252     case Type::Complex:
253       return TEK_Complex;
254 
255     // Arrays, records, and Objective-C objects.
256     case Type::ConstantArray:
257     case Type::IncompleteArray:
258     case Type::VariableArray:
259     case Type::Record:
260     case Type::ObjCObject:
261     case Type::ObjCInterface:
262       return TEK_Aggregate;
263 
264     // We operate on atomic values according to their underlying type.
265     case Type::Atomic:
266       type = cast<AtomicType>(type)->getValueType();
267       continue;
268     }
269     llvm_unreachable("unknown type kind!");
270   }
271 }
272 
273 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() {
274   // For cleanliness, we try to avoid emitting the return block for
275   // simple cases.
276   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
277 
278   if (CurBB) {
279     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
280 
281     // We have a valid insert point, reuse it if it is empty or there are no
282     // explicit jumps to the return block.
283     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
284       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
285       delete ReturnBlock.getBlock();
286       ReturnBlock = JumpDest();
287     } else
288       EmitBlock(ReturnBlock.getBlock());
289     return llvm::DebugLoc();
290   }
291 
292   // Otherwise, if the return block is the target of a single direct
293   // branch then we can just put the code in that block instead. This
294   // cleans up functions which started with a unified return block.
295   if (ReturnBlock.getBlock()->hasOneUse()) {
296     llvm::BranchInst *BI =
297       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin());
298     if (BI && BI->isUnconditional() &&
299         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
300       // Record/return the DebugLoc of the simple 'return' expression to be used
301       // later by the actual 'ret' instruction.
302       llvm::DebugLoc Loc = BI->getDebugLoc();
303       Builder.SetInsertPoint(BI->getParent());
304       BI->eraseFromParent();
305       delete ReturnBlock.getBlock();
306       ReturnBlock = JumpDest();
307       return Loc;
308     }
309   }
310 
311   // FIXME: We are at an unreachable point, there is no reason to emit the block
312   // unless it has uses. However, we still need a place to put the debug
313   // region.end for now.
314 
315   EmitBlock(ReturnBlock.getBlock());
316   return llvm::DebugLoc();
317 }
318 
319 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
320   if (!BB) return;
321   if (!BB->use_empty())
322     return CGF.CurFn->getBasicBlockList().push_back(BB);
323   delete BB;
324 }
325 
326 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
327   assert(BreakContinueStack.empty() &&
328          "mismatched push/pop in break/continue stack!");
329 
330   bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
331     && NumSimpleReturnExprs == NumReturnExprs
332     && ReturnBlock.getBlock()->use_empty();
333   // Usually the return expression is evaluated before the cleanup
334   // code.  If the function contains only a simple return statement,
335   // such as a constant, the location before the cleanup code becomes
336   // the last useful breakpoint in the function, because the simple
337   // return expression will be evaluated after the cleanup code. To be
338   // safe, set the debug location for cleanup code to the location of
339   // the return statement.  Otherwise the cleanup code should be at the
340   // end of the function's lexical scope.
341   //
342   // If there are multiple branches to the return block, the branch
343   // instructions will get the location of the return statements and
344   // all will be fine.
345   if (CGDebugInfo *DI = getDebugInfo()) {
346     if (OnlySimpleReturnStmts)
347       DI->EmitLocation(Builder, LastStopPoint);
348     else
349       DI->EmitLocation(Builder, EndLoc);
350   }
351 
352   // Pop any cleanups that might have been associated with the
353   // parameters.  Do this in whatever block we're currently in; it's
354   // important to do this before we enter the return block or return
355   // edges will be *really* confused.
356   bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth;
357   bool HasOnlyLifetimeMarkers =
358       HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth);
359   bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers;
360   if (HasCleanups) {
361     // Make sure the line table doesn't jump back into the body for
362     // the ret after it's been at EndLoc.
363     Optional<ApplyDebugLocation> AL;
364     if (CGDebugInfo *DI = getDebugInfo()) {
365       if (OnlySimpleReturnStmts)
366         DI->EmitLocation(Builder, EndLoc);
367       else
368         // We may not have a valid end location. Try to apply it anyway, and
369         // fall back to an artificial location if needed.
370         AL = ApplyDebugLocation::CreateDefaultArtificial(*this, EndLoc);
371     }
372 
373     PopCleanupBlocks(PrologueCleanupDepth);
374   }
375 
376   // Emit function epilog (to return).
377   llvm::DebugLoc Loc = EmitReturnBlock();
378 
379   if (ShouldInstrumentFunction()) {
380     if (CGM.getCodeGenOpts().InstrumentFunctions)
381       CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit");
382     if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
383       CurFn->addFnAttr("instrument-function-exit-inlined",
384                        "__cyg_profile_func_exit");
385   }
386 
387   // Emit debug descriptor for function end.
388   if (CGDebugInfo *DI = getDebugInfo())
389     DI->EmitFunctionEnd(Builder, CurFn);
390 
391   // Reset the debug location to that of the simple 'return' expression, if any
392   // rather than that of the end of the function's scope '}'.
393   ApplyDebugLocation AL(*this, Loc);
394   EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
395   EmitEndEHSpec(CurCodeDecl);
396 
397   assert(EHStack.empty() &&
398          "did not remove all scopes from cleanup stack!");
399 
400   // If someone did an indirect goto, emit the indirect goto block at the end of
401   // the function.
402   if (IndirectBranch) {
403     EmitBlock(IndirectBranch->getParent());
404     Builder.ClearInsertionPoint();
405   }
406 
407   // If some of our locals escaped, insert a call to llvm.localescape in the
408   // entry block.
409   if (!EscapedLocals.empty()) {
410     // Invert the map from local to index into a simple vector. There should be
411     // no holes.
412     SmallVector<llvm::Value *, 4> EscapeArgs;
413     EscapeArgs.resize(EscapedLocals.size());
414     for (auto &Pair : EscapedLocals)
415       EscapeArgs[Pair.second] = Pair.first;
416     llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration(
417         &CGM.getModule(), llvm::Intrinsic::localescape);
418     CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs);
419   }
420 
421   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
422   llvm::Instruction *Ptr = AllocaInsertPt;
423   AllocaInsertPt = nullptr;
424   Ptr->eraseFromParent();
425 
426   // PostAllocaInsertPt, if created, was lazily created when it was required,
427   // remove it now since it was just created for our own convenience.
428   if (PostAllocaInsertPt) {
429     llvm::Instruction *PostPtr = PostAllocaInsertPt;
430     PostAllocaInsertPt = nullptr;
431     PostPtr->eraseFromParent();
432   }
433 
434   // If someone took the address of a label but never did an indirect goto, we
435   // made a zero entry PHI node, which is illegal, zap it now.
436   if (IndirectBranch) {
437     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
438     if (PN->getNumIncomingValues() == 0) {
439       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
440       PN->eraseFromParent();
441     }
442   }
443 
444   EmitIfUsed(*this, EHResumeBlock);
445   EmitIfUsed(*this, TerminateLandingPad);
446   EmitIfUsed(*this, TerminateHandler);
447   EmitIfUsed(*this, UnreachableBlock);
448 
449   for (const auto &FuncletAndParent : TerminateFunclets)
450     EmitIfUsed(*this, FuncletAndParent.second);
451 
452   if (CGM.getCodeGenOpts().EmitDeclMetadata)
453     EmitDeclMetadata();
454 
455   for (const auto &R : DeferredReplacements) {
456     if (llvm::Value *Old = R.first) {
457       Old->replaceAllUsesWith(R.second);
458       cast<llvm::Instruction>(Old)->eraseFromParent();
459     }
460   }
461   DeferredReplacements.clear();
462 
463   // Eliminate CleanupDestSlot alloca by replacing it with SSA values and
464   // PHIs if the current function is a coroutine. We don't do it for all
465   // functions as it may result in slight increase in numbers of instructions
466   // if compiled with no optimizations. We do it for coroutine as the lifetime
467   // of CleanupDestSlot alloca make correct coroutine frame building very
468   // difficult.
469   if (NormalCleanupDest.isValid() && isCoroutine()) {
470     llvm::DominatorTree DT(*CurFn);
471     llvm::PromoteMemToReg(
472         cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT);
473     NormalCleanupDest = Address::invalid();
474   }
475 
476   // Scan function arguments for vector width.
477   for (llvm::Argument &A : CurFn->args())
478     if (auto *VT = dyn_cast<llvm::VectorType>(A.getType()))
479       LargestVectorWidth =
480           std::max((uint64_t)LargestVectorWidth,
481                    VT->getPrimitiveSizeInBits().getKnownMinSize());
482 
483   // Update vector width based on return type.
484   if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType()))
485     LargestVectorWidth =
486         std::max((uint64_t)LargestVectorWidth,
487                  VT->getPrimitiveSizeInBits().getKnownMinSize());
488 
489   if (CurFnInfo->getMaxVectorWidth() > LargestVectorWidth)
490     LargestVectorWidth = CurFnInfo->getMaxVectorWidth();
491 
492   // Add the required-vector-width attribute. This contains the max width from:
493   // 1. min-vector-width attribute used in the source program.
494   // 2. Any builtins used that have a vector width specified.
495   // 3. Values passed in and out of inline assembly.
496   // 4. Width of vector arguments and return types for this function.
497   // 5. Width of vector aguments and return types for functions called by this
498   //    function.
499   CurFn->addFnAttr("min-legal-vector-width", llvm::utostr(LargestVectorWidth));
500 
501   // Add vscale_range attribute if appropriate.
502   Optional<std::pair<unsigned, unsigned>> VScaleRange =
503       getContext().getTargetInfo().getVScaleRange(getLangOpts());
504   if (VScaleRange) {
505     CurFn->addFnAttr(llvm::Attribute::getWithVScaleRangeArgs(
506         getLLVMContext(), VScaleRange->first, VScaleRange->second));
507   }
508 
509   // If we generated an unreachable return block, delete it now.
510   if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) {
511     Builder.ClearInsertionPoint();
512     ReturnBlock.getBlock()->eraseFromParent();
513   }
514   if (ReturnValue.isValid()) {
515     auto *RetAlloca = dyn_cast<llvm::AllocaInst>(ReturnValue.getPointer());
516     if (RetAlloca && RetAlloca->use_empty()) {
517       RetAlloca->eraseFromParent();
518       ReturnValue = Address::invalid();
519     }
520   }
521 }
522 
523 /// ShouldInstrumentFunction - Return true if the current function should be
524 /// instrumented with __cyg_profile_func_* calls
525 bool CodeGenFunction::ShouldInstrumentFunction() {
526   if (!CGM.getCodeGenOpts().InstrumentFunctions &&
527       !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining &&
528       !CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
529     return false;
530   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
531     return false;
532   return true;
533 }
534 
535 bool CodeGenFunction::ShouldSkipSanitizerInstrumentation() {
536   if (!CurFuncDecl)
537     return false;
538   return CurFuncDecl->hasAttr<DisableSanitizerInstrumentationAttr>();
539 }
540 
541 /// ShouldXRayInstrument - Return true if the current function should be
542 /// instrumented with XRay nop sleds.
543 bool CodeGenFunction::ShouldXRayInstrumentFunction() const {
544   return CGM.getCodeGenOpts().XRayInstrumentFunctions;
545 }
546 
547 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to
548 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation.
549 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const {
550   return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
551          (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents ||
552           CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
553               XRayInstrKind::Custom);
554 }
555 
556 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const {
557   return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
558          (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents ||
559           CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
560               XRayInstrKind::Typed);
561 }
562 
563 llvm::Value *
564 CodeGenFunction::DecodeAddrUsedInPrologue(llvm::Value *F,
565                                           llvm::Value *EncodedAddr) {
566   // Reconstruct the address of the global.
567   auto *PCRelAsInt = Builder.CreateSExt(EncodedAddr, IntPtrTy);
568   auto *FuncAsInt = Builder.CreatePtrToInt(F, IntPtrTy, "func_addr.int");
569   auto *GOTAsInt = Builder.CreateAdd(PCRelAsInt, FuncAsInt, "global_addr.int");
570   auto *GOTAddr = Builder.CreateIntToPtr(GOTAsInt, Int8PtrPtrTy, "global_addr");
571 
572   // Load the original pointer through the global.
573   return Builder.CreateLoad(Address(GOTAddr, Int8PtrTy, getPointerAlign()),
574                             "decoded_addr");
575 }
576 
577 void CodeGenFunction::EmitKernelMetadata(const FunctionDecl *FD,
578                                          llvm::Function *Fn) {
579   if (!FD->hasAttr<OpenCLKernelAttr>() && !FD->hasAttr<CUDAGlobalAttr>())
580     return;
581 
582   llvm::LLVMContext &Context = getLLVMContext();
583 
584   CGM.GenKernelArgMetadata(Fn, FD, this);
585 
586   if (!getLangOpts().OpenCL)
587     return;
588 
589   if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
590     QualType HintQTy = A->getTypeHint();
591     const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>();
592     bool IsSignedInteger =
593         HintQTy->isSignedIntegerType() ||
594         (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType());
595     llvm::Metadata *AttrMDArgs[] = {
596         llvm::ConstantAsMetadata::get(llvm::UndefValue::get(
597             CGM.getTypes().ConvertType(A->getTypeHint()))),
598         llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
599             llvm::IntegerType::get(Context, 32),
600             llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))};
601     Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs));
602   }
603 
604   if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
605     llvm::Metadata *AttrMDArgs[] = {
606         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
607         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
608         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
609     Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs));
610   }
611 
612   if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
613     llvm::Metadata *AttrMDArgs[] = {
614         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
615         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
616         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
617     Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs));
618   }
619 
620   if (const OpenCLIntelReqdSubGroupSizeAttr *A =
621           FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) {
622     llvm::Metadata *AttrMDArgs[] = {
623         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))};
624     Fn->setMetadata("intel_reqd_sub_group_size",
625                     llvm::MDNode::get(Context, AttrMDArgs));
626   }
627 }
628 
629 /// Determine whether the function F ends with a return stmt.
630 static bool endsWithReturn(const Decl* F) {
631   const Stmt *Body = nullptr;
632   if (auto *FD = dyn_cast_or_null<FunctionDecl>(F))
633     Body = FD->getBody();
634   else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F))
635     Body = OMD->getBody();
636 
637   if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
638     auto LastStmt = CS->body_rbegin();
639     if (LastStmt != CS->body_rend())
640       return isa<ReturnStmt>(*LastStmt);
641   }
642   return false;
643 }
644 
645 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) {
646   if (SanOpts.has(SanitizerKind::Thread)) {
647     Fn->addFnAttr("sanitize_thread_no_checking_at_run_time");
648     Fn->removeFnAttr(llvm::Attribute::SanitizeThread);
649   }
650 }
651 
652 /// Check if the return value of this function requires sanitization.
653 bool CodeGenFunction::requiresReturnValueCheck() const {
654   return requiresReturnValueNullabilityCheck() ||
655          (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && CurCodeDecl &&
656           CurCodeDecl->getAttr<ReturnsNonNullAttr>());
657 }
658 
659 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) {
660   auto *MD = dyn_cast_or_null<CXXMethodDecl>(D);
661   if (!MD || !MD->getDeclName().getAsIdentifierInfo() ||
662       !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") ||
663       (MD->getNumParams() != 1 && MD->getNumParams() != 2))
664     return false;
665 
666   if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType())
667     return false;
668 
669   if (MD->getNumParams() == 2) {
670     auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>();
671     if (!PT || !PT->isVoidPointerType() ||
672         !PT->getPointeeType().isConstQualified())
673       return false;
674   }
675 
676   return true;
677 }
678 
679 /// Return the UBSan prologue signature for \p FD if one is available.
680 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM,
681                                             const FunctionDecl *FD) {
682   if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
683     if (!MD->isStatic())
684       return nullptr;
685   return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM);
686 }
687 
688 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy,
689                                     llvm::Function *Fn,
690                                     const CGFunctionInfo &FnInfo,
691                                     const FunctionArgList &Args,
692                                     SourceLocation Loc,
693                                     SourceLocation StartLoc) {
694   assert(!CurFn &&
695          "Do not use a CodeGenFunction object for more than one function");
696 
697   const Decl *D = GD.getDecl();
698 
699   DidCallStackSave = false;
700   CurCodeDecl = D;
701   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
702   if (FD && FD->usesSEHTry())
703     CurSEHParent = FD;
704   CurFuncDecl = (D ? D->getNonClosureContext() : nullptr);
705   FnRetTy = RetTy;
706   CurFn = Fn;
707   CurFnInfo = &FnInfo;
708   assert(CurFn->isDeclaration() && "Function already has body?");
709 
710   // If this function is ignored for any of the enabled sanitizers,
711   // disable the sanitizer for the function.
712   do {
713 #define SANITIZER(NAME, ID)                                                    \
714   if (SanOpts.empty())                                                         \
715     break;                                                                     \
716   if (SanOpts.has(SanitizerKind::ID))                                          \
717     if (CGM.isInNoSanitizeList(SanitizerKind::ID, Fn, Loc))                    \
718       SanOpts.set(SanitizerKind::ID, false);
719 
720 #include "clang/Basic/Sanitizers.def"
721 #undef SANITIZER
722   } while (false);
723 
724   if (D) {
725     const bool SanitizeBounds = SanOpts.hasOneOf(SanitizerKind::Bounds);
726     bool NoSanitizeCoverage = false;
727 
728     for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) {
729       // Apply the no_sanitize* attributes to SanOpts.
730       SanitizerMask mask = Attr->getMask();
731       SanOpts.Mask &= ~mask;
732       if (mask & SanitizerKind::Address)
733         SanOpts.set(SanitizerKind::KernelAddress, false);
734       if (mask & SanitizerKind::KernelAddress)
735         SanOpts.set(SanitizerKind::Address, false);
736       if (mask & SanitizerKind::HWAddress)
737         SanOpts.set(SanitizerKind::KernelHWAddress, false);
738       if (mask & SanitizerKind::KernelHWAddress)
739         SanOpts.set(SanitizerKind::HWAddress, false);
740 
741       // SanitizeCoverage is not handled by SanOpts.
742       if (Attr->hasCoverage())
743         NoSanitizeCoverage = true;
744     }
745 
746     if (SanitizeBounds && !SanOpts.hasOneOf(SanitizerKind::Bounds))
747       Fn->addFnAttr(llvm::Attribute::NoSanitizeBounds);
748 
749     if (NoSanitizeCoverage && CGM.getCodeGenOpts().hasSanitizeCoverage())
750       Fn->addFnAttr(llvm::Attribute::NoSanitizeCoverage);
751   }
752 
753   if (ShouldSkipSanitizerInstrumentation()) {
754     CurFn->addFnAttr(llvm::Attribute::DisableSanitizerInstrumentation);
755   } else {
756     // Apply sanitizer attributes to the function.
757     if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress))
758       Fn->addFnAttr(llvm::Attribute::SanitizeAddress);
759     if (SanOpts.hasOneOf(SanitizerKind::HWAddress |
760                          SanitizerKind::KernelHWAddress))
761       Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress);
762     if (SanOpts.has(SanitizerKind::MemtagStack))
763       Fn->addFnAttr(llvm::Attribute::SanitizeMemTag);
764     if (SanOpts.has(SanitizerKind::Thread))
765       Fn->addFnAttr(llvm::Attribute::SanitizeThread);
766     if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory))
767       Fn->addFnAttr(llvm::Attribute::SanitizeMemory);
768   }
769   if (SanOpts.has(SanitizerKind::SafeStack))
770     Fn->addFnAttr(llvm::Attribute::SafeStack);
771   if (SanOpts.has(SanitizerKind::ShadowCallStack))
772     Fn->addFnAttr(llvm::Attribute::ShadowCallStack);
773 
774   // Apply fuzzing attribute to the function.
775   if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink))
776     Fn->addFnAttr(llvm::Attribute::OptForFuzzing);
777 
778   // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize,
779   // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time.
780   if (SanOpts.has(SanitizerKind::Thread)) {
781     if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) {
782       IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0);
783       if (OMD->getMethodFamily() == OMF_dealloc ||
784           OMD->getMethodFamily() == OMF_initialize ||
785           (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) {
786         markAsIgnoreThreadCheckingAtRuntime(Fn);
787       }
788     }
789   }
790 
791   // Ignore unrelated casts in STL allocate() since the allocator must cast
792   // from void* to T* before object initialization completes. Don't match on the
793   // namespace because not all allocators are in std::
794   if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
795     if (matchesStlAllocatorFn(D, getContext()))
796       SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast;
797   }
798 
799   // Ignore null checks in coroutine functions since the coroutines passes
800   // are not aware of how to move the extra UBSan instructions across the split
801   // coroutine boundaries.
802   if (D && SanOpts.has(SanitizerKind::Null))
803     if (FD && FD->getBody() &&
804         FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass)
805       SanOpts.Mask &= ~SanitizerKind::Null;
806 
807   // Apply xray attributes to the function (as a string, for now)
808   bool AlwaysXRayAttr = false;
809   if (const auto *XRayAttr = D ? D->getAttr<XRayInstrumentAttr>() : nullptr) {
810     if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
811             XRayInstrKind::FunctionEntry) ||
812         CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
813             XRayInstrKind::FunctionExit)) {
814       if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) {
815         Fn->addFnAttr("function-instrument", "xray-always");
816         AlwaysXRayAttr = true;
817       }
818       if (XRayAttr->neverXRayInstrument())
819         Fn->addFnAttr("function-instrument", "xray-never");
820       if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>())
821         if (ShouldXRayInstrumentFunction())
822           Fn->addFnAttr("xray-log-args",
823                         llvm::utostr(LogArgs->getArgumentCount()));
824     }
825   } else {
826     if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc))
827       Fn->addFnAttr(
828           "xray-instruction-threshold",
829           llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold));
830   }
831 
832   if (ShouldXRayInstrumentFunction()) {
833     if (CGM.getCodeGenOpts().XRayIgnoreLoops)
834       Fn->addFnAttr("xray-ignore-loops");
835 
836     if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
837             XRayInstrKind::FunctionExit))
838       Fn->addFnAttr("xray-skip-exit");
839 
840     if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
841             XRayInstrKind::FunctionEntry))
842       Fn->addFnAttr("xray-skip-entry");
843 
844     auto FuncGroups = CGM.getCodeGenOpts().XRayTotalFunctionGroups;
845     if (FuncGroups > 1) {
846       auto FuncName = llvm::makeArrayRef<uint8_t>(
847           CurFn->getName().bytes_begin(), CurFn->getName().bytes_end());
848       auto Group = crc32(FuncName) % FuncGroups;
849       if (Group != CGM.getCodeGenOpts().XRaySelectedFunctionGroup &&
850           !AlwaysXRayAttr)
851         Fn->addFnAttr("function-instrument", "xray-never");
852     }
853   }
854 
855   if (CGM.getCodeGenOpts().getProfileInstr() != CodeGenOptions::ProfileNone) {
856     switch (CGM.isFunctionBlockedFromProfileInstr(Fn, Loc)) {
857     case ProfileList::Skip:
858       Fn->addFnAttr(llvm::Attribute::SkipProfile);
859       break;
860     case ProfileList::Forbid:
861       Fn->addFnAttr(llvm::Attribute::NoProfile);
862       break;
863     case ProfileList::Allow:
864       break;
865     }
866   }
867 
868   unsigned Count, Offset;
869   if (const auto *Attr =
870           D ? D->getAttr<PatchableFunctionEntryAttr>() : nullptr) {
871     Count = Attr->getCount();
872     Offset = Attr->getOffset();
873   } else {
874     Count = CGM.getCodeGenOpts().PatchableFunctionEntryCount;
875     Offset = CGM.getCodeGenOpts().PatchableFunctionEntryOffset;
876   }
877   if (Count && Offset <= Count) {
878     Fn->addFnAttr("patchable-function-entry", std::to_string(Count - Offset));
879     if (Offset)
880       Fn->addFnAttr("patchable-function-prefix", std::to_string(Offset));
881   }
882   // Instruct that functions for COFF/CodeView targets should start with a
883   // patchable instruction, but only on x86/x64. Don't forward this to ARM/ARM64
884   // backends as they don't need it -- instructions on these architectures are
885   // always atomically patchable at runtime.
886   if (CGM.getCodeGenOpts().HotPatch &&
887       getContext().getTargetInfo().getTriple().isX86())
888     Fn->addFnAttr("patchable-function", "prologue-short-redirect");
889 
890   // Add no-jump-tables value.
891   if (CGM.getCodeGenOpts().NoUseJumpTables)
892     Fn->addFnAttr("no-jump-tables", "true");
893 
894   // Add no-inline-line-tables value.
895   if (CGM.getCodeGenOpts().NoInlineLineTables)
896     Fn->addFnAttr("no-inline-line-tables");
897 
898   // Add profile-sample-accurate value.
899   if (CGM.getCodeGenOpts().ProfileSampleAccurate)
900     Fn->addFnAttr("profile-sample-accurate");
901 
902   if (!CGM.getCodeGenOpts().SampleProfileFile.empty())
903     Fn->addFnAttr("use-sample-profile");
904 
905   if (D && D->hasAttr<CFICanonicalJumpTableAttr>())
906     Fn->addFnAttr("cfi-canonical-jump-table");
907 
908   if (D && D->hasAttr<NoProfileFunctionAttr>())
909     Fn->addFnAttr(llvm::Attribute::NoProfile);
910 
911   if (D) {
912     // Function attributes take precedence over command line flags.
913     if (auto *A = D->getAttr<FunctionReturnThunksAttr>()) {
914       switch (A->getThunkType()) {
915       case FunctionReturnThunksAttr::Kind::Keep:
916         break;
917       case FunctionReturnThunksAttr::Kind::Extern:
918         Fn->addFnAttr(llvm::Attribute::FnRetThunkExtern);
919         break;
920       }
921     } else if (CGM.getCodeGenOpts().FunctionReturnThunks)
922       Fn->addFnAttr(llvm::Attribute::FnRetThunkExtern);
923   }
924 
925   if (FD && (getLangOpts().OpenCL ||
926              (getLangOpts().HIP && getLangOpts().CUDAIsDevice))) {
927     // Add metadata for a kernel function.
928     EmitKernelMetadata(FD, Fn);
929   }
930 
931   // If we are checking function types, emit a function type signature as
932   // prologue data.
933   if (FD && getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) {
934     if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) {
935       // Remove any (C++17) exception specifications, to allow calling e.g. a
936       // noexcept function through a non-noexcept pointer.
937       auto ProtoTy = getContext().getFunctionTypeWithExceptionSpec(
938           FD->getType(), EST_None);
939       llvm::Constant *FTRTTIConst =
940           CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true);
941       llvm::GlobalVariable *FTRTTIProxy =
942           CGM.GetOrCreateRTTIProxyGlobalVariable(FTRTTIConst);
943       llvm::LLVMContext &Ctx = Fn->getContext();
944       llvm::MDBuilder MDB(Ctx);
945       Fn->setMetadata(llvm::LLVMContext::MD_func_sanitize,
946                       MDB.createRTTIPointerPrologue(PrologueSig, FTRTTIProxy));
947       CGM.addCompilerUsedGlobal(FTRTTIProxy);
948     }
949   }
950 
951   // If we're checking nullability, we need to know whether we can check the
952   // return value. Initialize the flag to 'true' and refine it in EmitParmDecl.
953   if (SanOpts.has(SanitizerKind::NullabilityReturn)) {
954     auto Nullability = FnRetTy->getNullability(getContext());
955     if (Nullability && *Nullability == NullabilityKind::NonNull) {
956       if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) &&
957             CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>()))
958         RetValNullabilityPrecondition =
959             llvm::ConstantInt::getTrue(getLLVMContext());
960     }
961   }
962 
963   // If we're in C++ mode and the function name is "main", it is guaranteed
964   // to be norecurse by the standard (3.6.1.3 "The function main shall not be
965   // used within a program").
966   //
967   // OpenCL C 2.0 v2.2-11 s6.9.i:
968   //     Recursion is not supported.
969   //
970   // SYCL v1.2.1 s3.10:
971   //     kernels cannot include RTTI information, exception classes,
972   //     recursive code, virtual functions or make use of C++ libraries that
973   //     are not compiled for the device.
974   if (FD && ((getLangOpts().CPlusPlus && FD->isMain()) ||
975              getLangOpts().OpenCL || getLangOpts().SYCLIsDevice ||
976              (getLangOpts().CUDA && FD->hasAttr<CUDAGlobalAttr>())))
977     Fn->addFnAttr(llvm::Attribute::NoRecurse);
978 
979   llvm::RoundingMode RM = getLangOpts().getDefaultRoundingMode();
980   llvm::fp::ExceptionBehavior FPExceptionBehavior =
981       ToConstrainedExceptMD(getLangOpts().getDefaultExceptionMode());
982   Builder.setDefaultConstrainedRounding(RM);
983   Builder.setDefaultConstrainedExcept(FPExceptionBehavior);
984   if ((FD && (FD->UsesFPIntrin() || FD->hasAttr<StrictFPAttr>())) ||
985       (!FD && (FPExceptionBehavior != llvm::fp::ebIgnore ||
986                RM != llvm::RoundingMode::NearestTiesToEven))) {
987     Builder.setIsFPConstrained(true);
988     Fn->addFnAttr(llvm::Attribute::StrictFP);
989   }
990 
991   // If a custom alignment is used, force realigning to this alignment on
992   // any main function which certainly will need it.
993   if (FD && ((FD->isMain() || FD->isMSVCRTEntryPoint()) &&
994              CGM.getCodeGenOpts().StackAlignment))
995     Fn->addFnAttr("stackrealign");
996 
997   // "main" doesn't need to zero out call-used registers.
998   if (FD && FD->isMain())
999     Fn->removeFnAttr("zero-call-used-regs");
1000 
1001   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
1002 
1003   // Create a marker to make it easy to insert allocas into the entryblock
1004   // later.  Don't create this with the builder, because we don't want it
1005   // folded.
1006   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
1007   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB);
1008 
1009   ReturnBlock = getJumpDestInCurrentScope("return");
1010 
1011   Builder.SetInsertPoint(EntryBB);
1012 
1013   // If we're checking the return value, allocate space for a pointer to a
1014   // precise source location of the checked return statement.
1015   if (requiresReturnValueCheck()) {
1016     ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr");
1017     Builder.CreateStore(llvm::ConstantPointerNull::get(Int8PtrTy),
1018                         ReturnLocation);
1019   }
1020 
1021   // Emit subprogram debug descriptor.
1022   if (CGDebugInfo *DI = getDebugInfo()) {
1023     // Reconstruct the type from the argument list so that implicit parameters,
1024     // such as 'this' and 'vtt', show up in the debug info. Preserve the calling
1025     // convention.
1026     DI->emitFunctionStart(GD, Loc, StartLoc,
1027                           DI->getFunctionType(FD, RetTy, Args), CurFn,
1028                           CurFuncIsThunk);
1029   }
1030 
1031   if (ShouldInstrumentFunction()) {
1032     if (CGM.getCodeGenOpts().InstrumentFunctions)
1033       CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter");
1034     if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
1035       CurFn->addFnAttr("instrument-function-entry-inlined",
1036                        "__cyg_profile_func_enter");
1037     if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
1038       CurFn->addFnAttr("instrument-function-entry-inlined",
1039                        "__cyg_profile_func_enter_bare");
1040   }
1041 
1042   // Since emitting the mcount call here impacts optimizations such as function
1043   // inlining, we just add an attribute to insert a mcount call in backend.
1044   // The attribute "counting-function" is set to mcount function name which is
1045   // architecture dependent.
1046   if (CGM.getCodeGenOpts().InstrumentForProfiling) {
1047     // Calls to fentry/mcount should not be generated if function has
1048     // the no_instrument_function attribute.
1049     if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) {
1050       if (CGM.getCodeGenOpts().CallFEntry)
1051         Fn->addFnAttr("fentry-call", "true");
1052       else {
1053         Fn->addFnAttr("instrument-function-entry-inlined",
1054                       getTarget().getMCountName());
1055       }
1056       if (CGM.getCodeGenOpts().MNopMCount) {
1057         if (!CGM.getCodeGenOpts().CallFEntry)
1058           CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
1059             << "-mnop-mcount" << "-mfentry";
1060         Fn->addFnAttr("mnop-mcount");
1061       }
1062 
1063       if (CGM.getCodeGenOpts().RecordMCount) {
1064         if (!CGM.getCodeGenOpts().CallFEntry)
1065           CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
1066             << "-mrecord-mcount" << "-mfentry";
1067         Fn->addFnAttr("mrecord-mcount");
1068       }
1069     }
1070   }
1071 
1072   if (CGM.getCodeGenOpts().PackedStack) {
1073     if (getContext().getTargetInfo().getTriple().getArch() !=
1074         llvm::Triple::systemz)
1075       CGM.getDiags().Report(diag::err_opt_not_valid_on_target)
1076         << "-mpacked-stack";
1077     Fn->addFnAttr("packed-stack");
1078   }
1079 
1080   if (CGM.getCodeGenOpts().WarnStackSize != UINT_MAX &&
1081       !CGM.getDiags().isIgnored(diag::warn_fe_backend_frame_larger_than, Loc))
1082     Fn->addFnAttr("warn-stack-size",
1083                   std::to_string(CGM.getCodeGenOpts().WarnStackSize));
1084 
1085   if (RetTy->isVoidType()) {
1086     // Void type; nothing to return.
1087     ReturnValue = Address::invalid();
1088 
1089     // Count the implicit return.
1090     if (!endsWithReturn(D))
1091       ++NumReturnExprs;
1092   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) {
1093     // Indirect return; emit returned value directly into sret slot.
1094     // This reduces code size, and affects correctness in C++.
1095     auto AI = CurFn->arg_begin();
1096     if (CurFnInfo->getReturnInfo().isSRetAfterThis())
1097       ++AI;
1098     ReturnValue = Address(&*AI, ConvertType(RetTy),
1099                           CurFnInfo->getReturnInfo().getIndirectAlign());
1100     if (!CurFnInfo->getReturnInfo().getIndirectByVal()) {
1101       ReturnValuePointer =
1102           CreateDefaultAlignTempAlloca(Int8PtrTy, "result.ptr");
1103       Builder.CreateStore(Builder.CreatePointerBitCastOrAddrSpaceCast(
1104                               ReturnValue.getPointer(), Int8PtrTy),
1105                           ReturnValuePointer);
1106     }
1107   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca &&
1108              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
1109     // Load the sret pointer from the argument struct and return into that.
1110     unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex();
1111     llvm::Function::arg_iterator EI = CurFn->arg_end();
1112     --EI;
1113     llvm::Value *Addr = Builder.CreateStructGEP(
1114         CurFnInfo->getArgStruct(), &*EI, Idx);
1115     llvm::Type *Ty =
1116         cast<llvm::GetElementPtrInst>(Addr)->getResultElementType();
1117     ReturnValuePointer = Address(Addr, Ty, getPointerAlign());
1118     Addr = Builder.CreateAlignedLoad(Ty, Addr, getPointerAlign(), "agg.result");
1119     ReturnValue =
1120         Address(Addr, ConvertType(RetTy), CGM.getNaturalTypeAlignment(RetTy));
1121   } else {
1122     ReturnValue = CreateIRTemp(RetTy, "retval");
1123 
1124     // Tell the epilog emitter to autorelease the result.  We do this
1125     // now so that various specialized functions can suppress it
1126     // during their IR-generation.
1127     if (getLangOpts().ObjCAutoRefCount &&
1128         !CurFnInfo->isReturnsRetained() &&
1129         RetTy->isObjCRetainableType())
1130       AutoreleaseResult = true;
1131   }
1132 
1133   EmitStartEHSpec(CurCodeDecl);
1134 
1135   PrologueCleanupDepth = EHStack.stable_begin();
1136 
1137   // Emit OpenMP specific initialization of the device functions.
1138   if (getLangOpts().OpenMP && CurCodeDecl)
1139     CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl);
1140 
1141   // Handle emitting HLSL entry functions.
1142   if (D && D->hasAttr<HLSLShaderAttr>())
1143     CGM.getHLSLRuntime().emitEntryFunction(FD, Fn);
1144 
1145   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
1146 
1147   if (isa_and_nonnull<CXXMethodDecl>(D) &&
1148       cast<CXXMethodDecl>(D)->isInstance()) {
1149     CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
1150     const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
1151     if (MD->getParent()->isLambda() &&
1152         MD->getOverloadedOperator() == OO_Call) {
1153       // We're in a lambda; figure out the captures.
1154       MD->getParent()->getCaptureFields(LambdaCaptureFields,
1155                                         LambdaThisCaptureField);
1156       if (LambdaThisCaptureField) {
1157         // If the lambda captures the object referred to by '*this' - either by
1158         // value or by reference, make sure CXXThisValue points to the correct
1159         // object.
1160 
1161         // Get the lvalue for the field (which is a copy of the enclosing object
1162         // or contains the address of the enclosing object).
1163         LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
1164         if (!LambdaThisCaptureField->getType()->isPointerType()) {
1165           // If the enclosing object was captured by value, just use its address.
1166           CXXThisValue = ThisFieldLValue.getAddress(*this).getPointer();
1167         } else {
1168           // Load the lvalue pointed to by the field, since '*this' was captured
1169           // by reference.
1170           CXXThisValue =
1171               EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal();
1172         }
1173       }
1174       for (auto *FD : MD->getParent()->fields()) {
1175         if (FD->hasCapturedVLAType()) {
1176           auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD),
1177                                            SourceLocation()).getScalarVal();
1178           auto VAT = FD->getCapturedVLAType();
1179           VLASizeMap[VAT->getSizeExpr()] = ExprArg;
1180         }
1181       }
1182     } else {
1183       // Not in a lambda; just use 'this' from the method.
1184       // FIXME: Should we generate a new load for each use of 'this'?  The
1185       // fast register allocator would be happier...
1186       CXXThisValue = CXXABIThisValue;
1187     }
1188 
1189     // Check the 'this' pointer once per function, if it's available.
1190     if (CXXABIThisValue) {
1191       SanitizerSet SkippedChecks;
1192       SkippedChecks.set(SanitizerKind::ObjectSize, true);
1193       QualType ThisTy = MD->getThisType();
1194 
1195       // If this is the call operator of a lambda with no capture-default, it
1196       // may have a static invoker function, which may call this operator with
1197       // a null 'this' pointer.
1198       if (isLambdaCallOperator(MD) &&
1199           MD->getParent()->getLambdaCaptureDefault() == LCD_None)
1200         SkippedChecks.set(SanitizerKind::Null, true);
1201 
1202       EmitTypeCheck(
1203           isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall : TCK_MemberCall,
1204           Loc, CXXABIThisValue, ThisTy, CXXABIThisAlignment, SkippedChecks);
1205     }
1206   }
1207 
1208   // If any of the arguments have a variably modified type, make sure to
1209   // emit the type size, but only if the function is not naked. Naked functions
1210   // have no prolog to run this evaluation.
1211   if (!FD || !FD->hasAttr<NakedAttr>()) {
1212     for (const VarDecl *VD : Args) {
1213       // Dig out the type as written from ParmVarDecls; it's unclear whether
1214       // the standard (C99 6.9.1p10) requires this, but we're following the
1215       // precedent set by gcc.
1216       QualType Ty;
1217       if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
1218         Ty = PVD->getOriginalType();
1219       else
1220         Ty = VD->getType();
1221 
1222       if (Ty->isVariablyModifiedType())
1223         EmitVariablyModifiedType(Ty);
1224     }
1225   }
1226   // Emit a location at the end of the prologue.
1227   if (CGDebugInfo *DI = getDebugInfo())
1228     DI->EmitLocation(Builder, StartLoc);
1229   // TODO: Do we need to handle this in two places like we do with
1230   // target-features/target-cpu?
1231   if (CurFuncDecl)
1232     if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>())
1233       LargestVectorWidth = VecWidth->getVectorWidth();
1234 }
1235 
1236 void CodeGenFunction::EmitFunctionBody(const Stmt *Body) {
1237   incrementProfileCounter(Body);
1238   if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
1239     EmitCompoundStmtWithoutScope(*S);
1240   else
1241     EmitStmt(Body);
1242 
1243   // This is checked after emitting the function body so we know if there
1244   // are any permitted infinite loops.
1245   if (checkIfFunctionMustProgress())
1246     CurFn->addFnAttr(llvm::Attribute::MustProgress);
1247 }
1248 
1249 /// When instrumenting to collect profile data, the counts for some blocks
1250 /// such as switch cases need to not include the fall-through counts, so
1251 /// emit a branch around the instrumentation code. When not instrumenting,
1252 /// this just calls EmitBlock().
1253 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB,
1254                                                const Stmt *S) {
1255   llvm::BasicBlock *SkipCountBB = nullptr;
1256   if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) {
1257     // When instrumenting for profiling, the fallthrough to certain
1258     // statements needs to skip over the instrumentation code so that we
1259     // get an accurate count.
1260     SkipCountBB = createBasicBlock("skipcount");
1261     EmitBranch(SkipCountBB);
1262   }
1263   EmitBlock(BB);
1264   uint64_t CurrentCount = getCurrentProfileCount();
1265   incrementProfileCounter(S);
1266   setCurrentProfileCount(getCurrentProfileCount() + CurrentCount);
1267   if (SkipCountBB)
1268     EmitBlock(SkipCountBB);
1269 }
1270 
1271 /// Tries to mark the given function nounwind based on the
1272 /// non-existence of any throwing calls within it.  We believe this is
1273 /// lightweight enough to do at -O0.
1274 static void TryMarkNoThrow(llvm::Function *F) {
1275   // LLVM treats 'nounwind' on a function as part of the type, so we
1276   // can't do this on functions that can be overwritten.
1277   if (F->isInterposable()) return;
1278 
1279   for (llvm::BasicBlock &BB : *F)
1280     for (llvm::Instruction &I : BB)
1281       if (I.mayThrow())
1282         return;
1283 
1284   F->setDoesNotThrow();
1285 }
1286 
1287 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD,
1288                                                FunctionArgList &Args) {
1289   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1290   QualType ResTy = FD->getReturnType();
1291 
1292   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
1293   if (MD && MD->isInstance()) {
1294     if (CGM.getCXXABI().HasThisReturn(GD))
1295       ResTy = MD->getThisType();
1296     else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
1297       ResTy = CGM.getContext().VoidPtrTy;
1298     CGM.getCXXABI().buildThisParam(*this, Args);
1299   }
1300 
1301   // The base version of an inheriting constructor whose constructed base is a
1302   // virtual base is not passed any arguments (because it doesn't actually call
1303   // the inherited constructor).
1304   bool PassedParams = true;
1305   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
1306     if (auto Inherited = CD->getInheritedConstructor())
1307       PassedParams =
1308           getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType());
1309 
1310   if (PassedParams) {
1311     for (auto *Param : FD->parameters()) {
1312       Args.push_back(Param);
1313       if (!Param->hasAttr<PassObjectSizeAttr>())
1314         continue;
1315 
1316       auto *Implicit = ImplicitParamDecl::Create(
1317           getContext(), Param->getDeclContext(), Param->getLocation(),
1318           /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other);
1319       SizeArguments[Param] = Implicit;
1320       Args.push_back(Implicit);
1321     }
1322   }
1323 
1324   if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
1325     CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args);
1326 
1327   return ResTy;
1328 }
1329 
1330 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1331                                    const CGFunctionInfo &FnInfo) {
1332   assert(Fn && "generating code for null Function");
1333   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1334   CurGD = GD;
1335 
1336   FunctionArgList Args;
1337   QualType ResTy = BuildFunctionArgList(GD, Args);
1338 
1339   if (FD->isInlineBuiltinDeclaration()) {
1340     // When generating code for a builtin with an inline declaration, use a
1341     // mangled name to hold the actual body, while keeping an external
1342     // definition in case the function pointer is referenced somewhere.
1343     std::string FDInlineName = (Fn->getName() + ".inline").str();
1344     llvm::Module *M = Fn->getParent();
1345     llvm::Function *Clone = M->getFunction(FDInlineName);
1346     if (!Clone) {
1347       Clone = llvm::Function::Create(Fn->getFunctionType(),
1348                                      llvm::GlobalValue::InternalLinkage,
1349                                      Fn->getAddressSpace(), FDInlineName, M);
1350       Clone->addFnAttr(llvm::Attribute::AlwaysInline);
1351     }
1352     Fn->setLinkage(llvm::GlobalValue::ExternalLinkage);
1353     Fn = Clone;
1354   } else {
1355     // Detect the unusual situation where an inline version is shadowed by a
1356     // non-inline version. In that case we should pick the external one
1357     // everywhere. That's GCC behavior too. Unfortunately, I cannot find a way
1358     // to detect that situation before we reach codegen, so do some late
1359     // replacement.
1360     for (const FunctionDecl *PD = FD->getPreviousDecl(); PD;
1361          PD = PD->getPreviousDecl()) {
1362       if (LLVM_UNLIKELY(PD->isInlineBuiltinDeclaration())) {
1363         std::string FDInlineName = (Fn->getName() + ".inline").str();
1364         llvm::Module *M = Fn->getParent();
1365         if (llvm::Function *Clone = M->getFunction(FDInlineName)) {
1366           Clone->replaceAllUsesWith(Fn);
1367           Clone->eraseFromParent();
1368         }
1369         break;
1370       }
1371     }
1372   }
1373 
1374   // Check if we should generate debug info for this function.
1375   if (FD->hasAttr<NoDebugAttr>()) {
1376     // Clear non-distinct debug info that was possibly attached to the function
1377     // due to an earlier declaration without the nodebug attribute
1378     Fn->setSubprogram(nullptr);
1379     // Disable debug info indefinitely for this function
1380     DebugInfo = nullptr;
1381   }
1382 
1383   // The function might not have a body if we're generating thunks for a
1384   // function declaration.
1385   SourceRange BodyRange;
1386   if (Stmt *Body = FD->getBody())
1387     BodyRange = Body->getSourceRange();
1388   else
1389     BodyRange = FD->getLocation();
1390   CurEHLocation = BodyRange.getEnd();
1391 
1392   // Use the location of the start of the function to determine where
1393   // the function definition is located. By default use the location
1394   // of the declaration as the location for the subprogram. A function
1395   // may lack a declaration in the source code if it is created by code
1396   // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
1397   SourceLocation Loc = FD->getLocation();
1398 
1399   // If this is a function specialization then use the pattern body
1400   // as the location for the function.
1401   if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern())
1402     if (SpecDecl->hasBody(SpecDecl))
1403       Loc = SpecDecl->getLocation();
1404 
1405   Stmt *Body = FD->getBody();
1406 
1407   if (Body) {
1408     // Coroutines always emit lifetime markers.
1409     if (isa<CoroutineBodyStmt>(Body))
1410       ShouldEmitLifetimeMarkers = true;
1411 
1412     // Initialize helper which will detect jumps which can cause invalid
1413     // lifetime markers.
1414     if (ShouldEmitLifetimeMarkers)
1415       Bypasses.Init(Body);
1416   }
1417 
1418   // Emit the standard function prologue.
1419   StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin());
1420 
1421   // Save parameters for coroutine function.
1422   if (Body && isa_and_nonnull<CoroutineBodyStmt>(Body))
1423     llvm::append_range(FnArgs, FD->parameters());
1424 
1425   // Generate the body of the function.
1426   PGO.assignRegionCounters(GD, CurFn);
1427   if (isa<CXXDestructorDecl>(FD))
1428     EmitDestructorBody(Args);
1429   else if (isa<CXXConstructorDecl>(FD))
1430     EmitConstructorBody(Args);
1431   else if (getLangOpts().CUDA &&
1432            !getLangOpts().CUDAIsDevice &&
1433            FD->hasAttr<CUDAGlobalAttr>())
1434     CGM.getCUDARuntime().emitDeviceStub(*this, Args);
1435   else if (isa<CXXMethodDecl>(FD) &&
1436            cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
1437     // The lambda static invoker function is special, because it forwards or
1438     // clones the body of the function call operator (but is actually static).
1439     EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD));
1440   } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
1441              (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
1442               cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
1443     // Implicit copy-assignment gets the same special treatment as implicit
1444     // copy-constructors.
1445     emitImplicitAssignmentOperatorBody(Args);
1446   } else if (Body) {
1447     EmitFunctionBody(Body);
1448   } else
1449     llvm_unreachable("no definition for emitted function");
1450 
1451   // C++11 [stmt.return]p2:
1452   //   Flowing off the end of a function [...] results in undefined behavior in
1453   //   a value-returning function.
1454   // C11 6.9.1p12:
1455   //   If the '}' that terminates a function is reached, and the value of the
1456   //   function call is used by the caller, the behavior is undefined.
1457   if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock &&
1458       !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) {
1459     bool ShouldEmitUnreachable =
1460         CGM.getCodeGenOpts().StrictReturn ||
1461         !CGM.MayDropFunctionReturn(FD->getASTContext(), FD->getReturnType());
1462     if (SanOpts.has(SanitizerKind::Return)) {
1463       SanitizerScope SanScope(this);
1464       llvm::Value *IsFalse = Builder.getFalse();
1465       EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return),
1466                 SanitizerHandler::MissingReturn,
1467                 EmitCheckSourceLocation(FD->getLocation()), None);
1468     } else if (ShouldEmitUnreachable) {
1469       if (CGM.getCodeGenOpts().OptimizationLevel == 0)
1470         EmitTrapCall(llvm::Intrinsic::trap);
1471     }
1472     if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) {
1473       Builder.CreateUnreachable();
1474       Builder.ClearInsertionPoint();
1475     }
1476   }
1477 
1478   // Emit the standard function epilogue.
1479   FinishFunction(BodyRange.getEnd());
1480 
1481   // If we haven't marked the function nothrow through other means, do
1482   // a quick pass now to see if we can.
1483   if (!CurFn->doesNotThrow())
1484     TryMarkNoThrow(CurFn);
1485 }
1486 
1487 /// ContainsLabel - Return true if the statement contains a label in it.  If
1488 /// this statement is not executed normally, it not containing a label means
1489 /// that we can just remove the code.
1490 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
1491   // Null statement, not a label!
1492   if (!S) return false;
1493 
1494   // If this is a label, we have to emit the code, consider something like:
1495   // if (0) {  ...  foo:  bar(); }  goto foo;
1496   //
1497   // TODO: If anyone cared, we could track __label__'s, since we know that you
1498   // can't jump to one from outside their declared region.
1499   if (isa<LabelStmt>(S))
1500     return true;
1501 
1502   // If this is a case/default statement, and we haven't seen a switch, we have
1503   // to emit the code.
1504   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
1505     return true;
1506 
1507   // If this is a switch statement, we want to ignore cases below it.
1508   if (isa<SwitchStmt>(S))
1509     IgnoreCaseStmts = true;
1510 
1511   // Scan subexpressions for verboten labels.
1512   for (const Stmt *SubStmt : S->children())
1513     if (ContainsLabel(SubStmt, IgnoreCaseStmts))
1514       return true;
1515 
1516   return false;
1517 }
1518 
1519 /// containsBreak - Return true if the statement contains a break out of it.
1520 /// If the statement (recursively) contains a switch or loop with a break
1521 /// inside of it, this is fine.
1522 bool CodeGenFunction::containsBreak(const Stmt *S) {
1523   // Null statement, not a label!
1524   if (!S) return false;
1525 
1526   // If this is a switch or loop that defines its own break scope, then we can
1527   // include it and anything inside of it.
1528   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
1529       isa<ForStmt>(S))
1530     return false;
1531 
1532   if (isa<BreakStmt>(S))
1533     return true;
1534 
1535   // Scan subexpressions for verboten breaks.
1536   for (const Stmt *SubStmt : S->children())
1537     if (containsBreak(SubStmt))
1538       return true;
1539 
1540   return false;
1541 }
1542 
1543 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) {
1544   if (!S) return false;
1545 
1546   // Some statement kinds add a scope and thus never add a decl to the current
1547   // scope. Note, this list is longer than the list of statements that might
1548   // have an unscoped decl nested within them, but this way is conservatively
1549   // correct even if more statement kinds are added.
1550   if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) ||
1551       isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) ||
1552       isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) ||
1553       isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S))
1554     return false;
1555 
1556   if (isa<DeclStmt>(S))
1557     return true;
1558 
1559   for (const Stmt *SubStmt : S->children())
1560     if (mightAddDeclToScope(SubStmt))
1561       return true;
1562 
1563   return false;
1564 }
1565 
1566 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1567 /// to a constant, or if it does but contains a label, return false.  If it
1568 /// constant folds return true and set the boolean result in Result.
1569 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1570                                                    bool &ResultBool,
1571                                                    bool AllowLabels) {
1572   llvm::APSInt ResultInt;
1573   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels))
1574     return false;
1575 
1576   ResultBool = ResultInt.getBoolValue();
1577   return true;
1578 }
1579 
1580 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1581 /// to a constant, or if it does but contains a label, return false.  If it
1582 /// constant folds return true and set the folded value.
1583 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1584                                                    llvm::APSInt &ResultInt,
1585                                                    bool AllowLabels) {
1586   // FIXME: Rename and handle conversion of other evaluatable things
1587   // to bool.
1588   Expr::EvalResult Result;
1589   if (!Cond->EvaluateAsInt(Result, getContext()))
1590     return false;  // Not foldable, not integer or not fully evaluatable.
1591 
1592   llvm::APSInt Int = Result.Val.getInt();
1593   if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond))
1594     return false;  // Contains a label.
1595 
1596   ResultInt = Int;
1597   return true;
1598 }
1599 
1600 /// Determine whether the given condition is an instrumentable condition
1601 /// (i.e. no "&&" or "||").
1602 bool CodeGenFunction::isInstrumentedCondition(const Expr *C) {
1603   // Bypass simplistic logical-NOT operator before determining whether the
1604   // condition contains any other logical operator.
1605   if (const UnaryOperator *UnOp = dyn_cast<UnaryOperator>(C->IgnoreParens()))
1606     if (UnOp->getOpcode() == UO_LNot)
1607       C = UnOp->getSubExpr();
1608 
1609   const BinaryOperator *BOp = dyn_cast<BinaryOperator>(C->IgnoreParens());
1610   return (!BOp || !BOp->isLogicalOp());
1611 }
1612 
1613 /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that
1614 /// increments a profile counter based on the semantics of the given logical
1615 /// operator opcode.  This is used to instrument branch condition coverage for
1616 /// logical operators.
1617 void CodeGenFunction::EmitBranchToCounterBlock(
1618     const Expr *Cond, BinaryOperator::Opcode LOp, llvm::BasicBlock *TrueBlock,
1619     llvm::BasicBlock *FalseBlock, uint64_t TrueCount /* = 0 */,
1620     Stmt::Likelihood LH /* =None */, const Expr *CntrIdx /* = nullptr */) {
1621   // If not instrumenting, just emit a branch.
1622   bool InstrumentRegions = CGM.getCodeGenOpts().hasProfileClangInstr();
1623   if (!InstrumentRegions || !isInstrumentedCondition(Cond))
1624     return EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount, LH);
1625 
1626   llvm::BasicBlock *ThenBlock = nullptr;
1627   llvm::BasicBlock *ElseBlock = nullptr;
1628   llvm::BasicBlock *NextBlock = nullptr;
1629 
1630   // Create the block we'll use to increment the appropriate counter.
1631   llvm::BasicBlock *CounterIncrBlock = createBasicBlock("lop.rhscnt");
1632 
1633   // Set block pointers according to Logical-AND (BO_LAnd) semantics. This
1634   // means we need to evaluate the condition and increment the counter on TRUE:
1635   //
1636   // if (Cond)
1637   //   goto CounterIncrBlock;
1638   // else
1639   //   goto FalseBlock;
1640   //
1641   // CounterIncrBlock:
1642   //   Counter++;
1643   //   goto TrueBlock;
1644 
1645   if (LOp == BO_LAnd) {
1646     ThenBlock = CounterIncrBlock;
1647     ElseBlock = FalseBlock;
1648     NextBlock = TrueBlock;
1649   }
1650 
1651   // Set block pointers according to Logical-OR (BO_LOr) semantics. This means
1652   // we need to evaluate the condition and increment the counter on FALSE:
1653   //
1654   // if (Cond)
1655   //   goto TrueBlock;
1656   // else
1657   //   goto CounterIncrBlock;
1658   //
1659   // CounterIncrBlock:
1660   //   Counter++;
1661   //   goto FalseBlock;
1662 
1663   else if (LOp == BO_LOr) {
1664     ThenBlock = TrueBlock;
1665     ElseBlock = CounterIncrBlock;
1666     NextBlock = FalseBlock;
1667   } else {
1668     llvm_unreachable("Expected Opcode must be that of a Logical Operator");
1669   }
1670 
1671   // Emit Branch based on condition.
1672   EmitBranchOnBoolExpr(Cond, ThenBlock, ElseBlock, TrueCount, LH);
1673 
1674   // Emit the block containing the counter increment(s).
1675   EmitBlock(CounterIncrBlock);
1676 
1677   // Increment corresponding counter; if index not provided, use Cond as index.
1678   incrementProfileCounter(CntrIdx ? CntrIdx : Cond);
1679 
1680   // Go to the next block.
1681   EmitBranch(NextBlock);
1682 }
1683 
1684 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
1685 /// statement) to the specified blocks.  Based on the condition, this might try
1686 /// to simplify the codegen of the conditional based on the branch.
1687 /// \param LH The value of the likelihood attribute on the True branch.
1688 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
1689                                            llvm::BasicBlock *TrueBlock,
1690                                            llvm::BasicBlock *FalseBlock,
1691                                            uint64_t TrueCount,
1692                                            Stmt::Likelihood LH) {
1693   Cond = Cond->IgnoreParens();
1694 
1695   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
1696 
1697     // Handle X && Y in a condition.
1698     if (CondBOp->getOpcode() == BO_LAnd) {
1699       // If we have "1 && X", simplify the code.  "0 && X" would have constant
1700       // folded if the case was simple enough.
1701       bool ConstantBool = false;
1702       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1703           ConstantBool) {
1704         // br(1 && X) -> br(X).
1705         incrementProfileCounter(CondBOp);
1706         return EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock,
1707                                         FalseBlock, TrueCount, LH);
1708       }
1709 
1710       // If we have "X && 1", simplify the code to use an uncond branch.
1711       // "X && 0" would have been constant folded to 0.
1712       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1713           ConstantBool) {
1714         // br(X && 1) -> br(X).
1715         return EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LAnd, TrueBlock,
1716                                         FalseBlock, TrueCount, LH, CondBOp);
1717       }
1718 
1719       // Emit the LHS as a conditional.  If the LHS conditional is false, we
1720       // want to jump to the FalseBlock.
1721       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
1722       // The counter tells us how often we evaluate RHS, and all of TrueCount
1723       // can be propagated to that branch.
1724       uint64_t RHSCount = getProfileCount(CondBOp->getRHS());
1725 
1726       ConditionalEvaluation eval(*this);
1727       {
1728         ApplyDebugLocation DL(*this, Cond);
1729         // Propagate the likelihood attribute like __builtin_expect
1730         // __builtin_expect(X && Y, 1) -> X and Y are likely
1731         // __builtin_expect(X && Y, 0) -> only Y is unlikely
1732         EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount,
1733                              LH == Stmt::LH_Unlikely ? Stmt::LH_None : LH);
1734         EmitBlock(LHSTrue);
1735       }
1736 
1737       incrementProfileCounter(CondBOp);
1738       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1739 
1740       // Any temporaries created here are conditional.
1741       eval.begin(*this);
1742       EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock,
1743                                FalseBlock, TrueCount, LH);
1744       eval.end(*this);
1745 
1746       return;
1747     }
1748 
1749     if (CondBOp->getOpcode() == BO_LOr) {
1750       // If we have "0 || X", simplify the code.  "1 || X" would have constant
1751       // folded if the case was simple enough.
1752       bool ConstantBool = false;
1753       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1754           !ConstantBool) {
1755         // br(0 || X) -> br(X).
1756         incrementProfileCounter(CondBOp);
1757         return EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock,
1758                                         FalseBlock, TrueCount, LH);
1759       }
1760 
1761       // If we have "X || 0", simplify the code to use an uncond branch.
1762       // "X || 1" would have been constant folded to 1.
1763       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1764           !ConstantBool) {
1765         // br(X || 0) -> br(X).
1766         return EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LOr, TrueBlock,
1767                                         FalseBlock, TrueCount, LH, CondBOp);
1768       }
1769 
1770       // Emit the LHS as a conditional.  If the LHS conditional is true, we
1771       // want to jump to the TrueBlock.
1772       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
1773       // We have the count for entry to the RHS and for the whole expression
1774       // being true, so we can divy up True count between the short circuit and
1775       // the RHS.
1776       uint64_t LHSCount =
1777           getCurrentProfileCount() - getProfileCount(CondBOp->getRHS());
1778       uint64_t RHSCount = TrueCount - LHSCount;
1779 
1780       ConditionalEvaluation eval(*this);
1781       {
1782         // Propagate the likelihood attribute like __builtin_expect
1783         // __builtin_expect(X || Y, 1) -> only Y is likely
1784         // __builtin_expect(X || Y, 0) -> both X and Y are unlikely
1785         ApplyDebugLocation DL(*this, Cond);
1786         EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount,
1787                              LH == Stmt::LH_Likely ? Stmt::LH_None : LH);
1788         EmitBlock(LHSFalse);
1789       }
1790 
1791       incrementProfileCounter(CondBOp);
1792       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1793 
1794       // Any temporaries created here are conditional.
1795       eval.begin(*this);
1796       EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, FalseBlock,
1797                                RHSCount, LH);
1798 
1799       eval.end(*this);
1800 
1801       return;
1802     }
1803   }
1804 
1805   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
1806     // br(!x, t, f) -> br(x, f, t)
1807     if (CondUOp->getOpcode() == UO_LNot) {
1808       // Negate the count.
1809       uint64_t FalseCount = getCurrentProfileCount() - TrueCount;
1810       // The values of the enum are chosen to make this negation possible.
1811       LH = static_cast<Stmt::Likelihood>(-LH);
1812       // Negate the condition and swap the destination blocks.
1813       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock,
1814                                   FalseCount, LH);
1815     }
1816   }
1817 
1818   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
1819     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
1820     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
1821     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
1822 
1823     // The ConditionalOperator itself has no likelihood information for its
1824     // true and false branches. This matches the behavior of __builtin_expect.
1825     ConditionalEvaluation cond(*this);
1826     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock,
1827                          getProfileCount(CondOp), Stmt::LH_None);
1828 
1829     // When computing PGO branch weights, we only know the overall count for
1830     // the true block. This code is essentially doing tail duplication of the
1831     // naive code-gen, introducing new edges for which counts are not
1832     // available. Divide the counts proportionally between the LHS and RHS of
1833     // the conditional operator.
1834     uint64_t LHSScaledTrueCount = 0;
1835     if (TrueCount) {
1836       double LHSRatio =
1837           getProfileCount(CondOp) / (double)getCurrentProfileCount();
1838       LHSScaledTrueCount = TrueCount * LHSRatio;
1839     }
1840 
1841     cond.begin(*this);
1842     EmitBlock(LHSBlock);
1843     incrementProfileCounter(CondOp);
1844     {
1845       ApplyDebugLocation DL(*this, Cond);
1846       EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock,
1847                            LHSScaledTrueCount, LH);
1848     }
1849     cond.end(*this);
1850 
1851     cond.begin(*this);
1852     EmitBlock(RHSBlock);
1853     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock,
1854                          TrueCount - LHSScaledTrueCount, LH);
1855     cond.end(*this);
1856 
1857     return;
1858   }
1859 
1860   if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
1861     // Conditional operator handling can give us a throw expression as a
1862     // condition for a case like:
1863     //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
1864     // Fold this to:
1865     //   br(c, throw x, br(y, t, f))
1866     EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
1867     return;
1868   }
1869 
1870   // Emit the code with the fully general case.
1871   llvm::Value *CondV;
1872   {
1873     ApplyDebugLocation DL(*this, Cond);
1874     CondV = EvaluateExprAsBool(Cond);
1875   }
1876 
1877   llvm::MDNode *Weights = nullptr;
1878   llvm::MDNode *Unpredictable = nullptr;
1879 
1880   // If the branch has a condition wrapped by __builtin_unpredictable,
1881   // create metadata that specifies that the branch is unpredictable.
1882   // Don't bother if not optimizing because that metadata would not be used.
1883   auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts());
1884   if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
1885     auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
1886     if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
1887       llvm::MDBuilder MDHelper(getLLVMContext());
1888       Unpredictable = MDHelper.createUnpredictable();
1889     }
1890   }
1891 
1892   // If there is a Likelihood knowledge for the cond, lower it.
1893   // Note that if not optimizing this won't emit anything.
1894   llvm::Value *NewCondV = emitCondLikelihoodViaExpectIntrinsic(CondV, LH);
1895   if (CondV != NewCondV)
1896     CondV = NewCondV;
1897   else {
1898     // Otherwise, lower profile counts. Note that we do this even at -O0.
1899     uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount);
1900     Weights = createProfileWeights(TrueCount, CurrentCount - TrueCount);
1901   }
1902 
1903   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable);
1904 }
1905 
1906 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1907 /// specified stmt yet.
1908 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
1909   CGM.ErrorUnsupported(S, Type);
1910 }
1911 
1912 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
1913 /// variable-length array whose elements have a non-zero bit-pattern.
1914 ///
1915 /// \param baseType the inner-most element type of the array
1916 /// \param src - a char* pointing to the bit-pattern for a single
1917 /// base element of the array
1918 /// \param sizeInChars - the total size of the VLA, in chars
1919 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
1920                                Address dest, Address src,
1921                                llvm::Value *sizeInChars) {
1922   CGBuilderTy &Builder = CGF.Builder;
1923 
1924   CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType);
1925   llvm::Value *baseSizeInChars
1926     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity());
1927 
1928   Address begin =
1929     Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin");
1930   llvm::Value *end = Builder.CreateInBoundsGEP(
1931       begin.getElementType(), begin.getPointer(), sizeInChars, "vla.end");
1932 
1933   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
1934   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
1935   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
1936 
1937   // Make a loop over the VLA.  C99 guarantees that the VLA element
1938   // count must be nonzero.
1939   CGF.EmitBlock(loopBB);
1940 
1941   llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur");
1942   cur->addIncoming(begin.getPointer(), originBB);
1943 
1944   CharUnits curAlign =
1945     dest.getAlignment().alignmentOfArrayElement(baseSize);
1946 
1947   // memcpy the individual element bit-pattern.
1948   Builder.CreateMemCpy(Address(cur, CGF.Int8Ty, curAlign), src, baseSizeInChars,
1949                        /*volatile*/ false);
1950 
1951   // Go to the next element.
1952   llvm::Value *next =
1953     Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next");
1954 
1955   // Leave if that's the end of the VLA.
1956   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
1957   Builder.CreateCondBr(done, contBB, loopBB);
1958   cur->addIncoming(next, loopBB);
1959 
1960   CGF.EmitBlock(contBB);
1961 }
1962 
1963 void
1964 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) {
1965   // Ignore empty classes in C++.
1966   if (getLangOpts().CPlusPlus) {
1967     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1968       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
1969         return;
1970     }
1971   }
1972 
1973   // Cast the dest ptr to the appropriate i8 pointer type.
1974   if (DestPtr.getElementType() != Int8Ty)
1975     DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty);
1976 
1977   // Get size and alignment info for this aggregate.
1978   CharUnits size = getContext().getTypeSizeInChars(Ty);
1979 
1980   llvm::Value *SizeVal;
1981   const VariableArrayType *vla;
1982 
1983   // Don't bother emitting a zero-byte memset.
1984   if (size.isZero()) {
1985     // But note that getTypeInfo returns 0 for a VLA.
1986     if (const VariableArrayType *vlaType =
1987           dyn_cast_or_null<VariableArrayType>(
1988                                           getContext().getAsArrayType(Ty))) {
1989       auto VlaSize = getVLASize(vlaType);
1990       SizeVal = VlaSize.NumElts;
1991       CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type);
1992       if (!eltSize.isOne())
1993         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
1994       vla = vlaType;
1995     } else {
1996       return;
1997     }
1998   } else {
1999     SizeVal = CGM.getSize(size);
2000     vla = nullptr;
2001   }
2002 
2003   // If the type contains a pointer to data member we can't memset it to zero.
2004   // Instead, create a null constant and copy it to the destination.
2005   // TODO: there are other patterns besides zero that we can usefully memset,
2006   // like -1, which happens to be the pattern used by member-pointers.
2007   if (!CGM.getTypes().isZeroInitializable(Ty)) {
2008     // For a VLA, emit a single element, then splat that over the VLA.
2009     if (vla) Ty = getContext().getBaseElementType(vla);
2010 
2011     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
2012 
2013     llvm::GlobalVariable *NullVariable =
2014       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
2015                                /*isConstant=*/true,
2016                                llvm::GlobalVariable::PrivateLinkage,
2017                                NullConstant, Twine());
2018     CharUnits NullAlign = DestPtr.getAlignment();
2019     NullVariable->setAlignment(NullAlign.getAsAlign());
2020     Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()),
2021                    Builder.getInt8Ty(), NullAlign);
2022 
2023     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
2024 
2025     // Get and call the appropriate llvm.memcpy overload.
2026     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false);
2027     return;
2028   }
2029 
2030   // Otherwise, just memset the whole thing to zero.  This is legal
2031   // because in LLVM, all default initializers (other than the ones we just
2032   // handled above) are guaranteed to have a bit pattern of all zeros.
2033   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false);
2034 }
2035 
2036 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
2037   // Make sure that there is a block for the indirect goto.
2038   if (!IndirectBranch)
2039     GetIndirectGotoBlock();
2040 
2041   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
2042 
2043   // Make sure the indirect branch includes all of the address-taken blocks.
2044   IndirectBranch->addDestination(BB);
2045   return llvm::BlockAddress::get(CurFn, BB);
2046 }
2047 
2048 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
2049   // If we already made the indirect branch for indirect goto, return its block.
2050   if (IndirectBranch) return IndirectBranch->getParent();
2051 
2052   CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto"));
2053 
2054   // Create the PHI node that indirect gotos will add entries to.
2055   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
2056                                               "indirect.goto.dest");
2057 
2058   // Create the indirect branch instruction.
2059   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
2060   return IndirectBranch->getParent();
2061 }
2062 
2063 /// Computes the length of an array in elements, as well as the base
2064 /// element type and a properly-typed first element pointer.
2065 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
2066                                               QualType &baseType,
2067                                               Address &addr) {
2068   const ArrayType *arrayType = origArrayType;
2069 
2070   // If it's a VLA, we have to load the stored size.  Note that
2071   // this is the size of the VLA in bytes, not its size in elements.
2072   llvm::Value *numVLAElements = nullptr;
2073   if (isa<VariableArrayType>(arrayType)) {
2074     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts;
2075 
2076     // Walk into all VLAs.  This doesn't require changes to addr,
2077     // which has type T* where T is the first non-VLA element type.
2078     do {
2079       QualType elementType = arrayType->getElementType();
2080       arrayType = getContext().getAsArrayType(elementType);
2081 
2082       // If we only have VLA components, 'addr' requires no adjustment.
2083       if (!arrayType) {
2084         baseType = elementType;
2085         return numVLAElements;
2086       }
2087     } while (isa<VariableArrayType>(arrayType));
2088 
2089     // We get out here only if we find a constant array type
2090     // inside the VLA.
2091   }
2092 
2093   // We have some number of constant-length arrays, so addr should
2094   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
2095   // down to the first element of addr.
2096   SmallVector<llvm::Value*, 8> gepIndices;
2097 
2098   // GEP down to the array type.
2099   llvm::ConstantInt *zero = Builder.getInt32(0);
2100   gepIndices.push_back(zero);
2101 
2102   uint64_t countFromCLAs = 1;
2103   QualType eltType;
2104 
2105   llvm::ArrayType *llvmArrayType =
2106     dyn_cast<llvm::ArrayType>(addr.getElementType());
2107   while (llvmArrayType) {
2108     assert(isa<ConstantArrayType>(arrayType));
2109     assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
2110              == llvmArrayType->getNumElements());
2111 
2112     gepIndices.push_back(zero);
2113     countFromCLAs *= llvmArrayType->getNumElements();
2114     eltType = arrayType->getElementType();
2115 
2116     llvmArrayType =
2117       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
2118     arrayType = getContext().getAsArrayType(arrayType->getElementType());
2119     assert((!llvmArrayType || arrayType) &&
2120            "LLVM and Clang types are out-of-synch");
2121   }
2122 
2123   if (arrayType) {
2124     // From this point onwards, the Clang array type has been emitted
2125     // as some other type (probably a packed struct). Compute the array
2126     // size, and just emit the 'begin' expression as a bitcast.
2127     while (arrayType) {
2128       countFromCLAs *=
2129           cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
2130       eltType = arrayType->getElementType();
2131       arrayType = getContext().getAsArrayType(eltType);
2132     }
2133 
2134     llvm::Type *baseType = ConvertType(eltType);
2135     addr = Builder.CreateElementBitCast(addr, baseType, "array.begin");
2136   } else {
2137     // Create the actual GEP.
2138     addr = Address(Builder.CreateInBoundsGEP(
2139         addr.getElementType(), addr.getPointer(), gepIndices, "array.begin"),
2140         ConvertTypeForMem(eltType),
2141         addr.getAlignment());
2142   }
2143 
2144   baseType = eltType;
2145 
2146   llvm::Value *numElements
2147     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
2148 
2149   // If we had any VLA dimensions, factor them in.
2150   if (numVLAElements)
2151     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
2152 
2153   return numElements;
2154 }
2155 
2156 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) {
2157   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
2158   assert(vla && "type was not a variable array type!");
2159   return getVLASize(vla);
2160 }
2161 
2162 CodeGenFunction::VlaSizePair
2163 CodeGenFunction::getVLASize(const VariableArrayType *type) {
2164   // The number of elements so far; always size_t.
2165   llvm::Value *numElements = nullptr;
2166 
2167   QualType elementType;
2168   do {
2169     elementType = type->getElementType();
2170     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
2171     assert(vlaSize && "no size for VLA!");
2172     assert(vlaSize->getType() == SizeTy);
2173 
2174     if (!numElements) {
2175       numElements = vlaSize;
2176     } else {
2177       // It's undefined behavior if this wraps around, so mark it that way.
2178       // FIXME: Teach -fsanitize=undefined to trap this.
2179       numElements = Builder.CreateNUWMul(numElements, vlaSize);
2180     }
2181   } while ((type = getContext().getAsVariableArrayType(elementType)));
2182 
2183   return { numElements, elementType };
2184 }
2185 
2186 CodeGenFunction::VlaSizePair
2187 CodeGenFunction::getVLAElements1D(QualType type) {
2188   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
2189   assert(vla && "type was not a variable array type!");
2190   return getVLAElements1D(vla);
2191 }
2192 
2193 CodeGenFunction::VlaSizePair
2194 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) {
2195   llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()];
2196   assert(VlaSize && "no size for VLA!");
2197   assert(VlaSize->getType() == SizeTy);
2198   return { VlaSize, Vla->getElementType() };
2199 }
2200 
2201 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
2202   assert(type->isVariablyModifiedType() &&
2203          "Must pass variably modified type to EmitVLASizes!");
2204 
2205   EnsureInsertPoint();
2206 
2207   // We're going to walk down into the type and look for VLA
2208   // expressions.
2209   do {
2210     assert(type->isVariablyModifiedType());
2211 
2212     const Type *ty = type.getTypePtr();
2213     switch (ty->getTypeClass()) {
2214 
2215 #define TYPE(Class, Base)
2216 #define ABSTRACT_TYPE(Class, Base)
2217 #define NON_CANONICAL_TYPE(Class, Base)
2218 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
2219 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
2220 #include "clang/AST/TypeNodes.inc"
2221       llvm_unreachable("unexpected dependent type!");
2222 
2223     // These types are never variably-modified.
2224     case Type::Builtin:
2225     case Type::Complex:
2226     case Type::Vector:
2227     case Type::ExtVector:
2228     case Type::ConstantMatrix:
2229     case Type::Record:
2230     case Type::Enum:
2231     case Type::Using:
2232     case Type::TemplateSpecialization:
2233     case Type::ObjCTypeParam:
2234     case Type::ObjCObject:
2235     case Type::ObjCInterface:
2236     case Type::ObjCObjectPointer:
2237     case Type::BitInt:
2238       llvm_unreachable("type class is never variably-modified!");
2239 
2240     case Type::Elaborated:
2241       type = cast<ElaboratedType>(ty)->getNamedType();
2242       break;
2243 
2244     case Type::Adjusted:
2245       type = cast<AdjustedType>(ty)->getAdjustedType();
2246       break;
2247 
2248     case Type::Decayed:
2249       type = cast<DecayedType>(ty)->getPointeeType();
2250       break;
2251 
2252     case Type::Pointer:
2253       type = cast<PointerType>(ty)->getPointeeType();
2254       break;
2255 
2256     case Type::BlockPointer:
2257       type = cast<BlockPointerType>(ty)->getPointeeType();
2258       break;
2259 
2260     case Type::LValueReference:
2261     case Type::RValueReference:
2262       type = cast<ReferenceType>(ty)->getPointeeType();
2263       break;
2264 
2265     case Type::MemberPointer:
2266       type = cast<MemberPointerType>(ty)->getPointeeType();
2267       break;
2268 
2269     case Type::ConstantArray:
2270     case Type::IncompleteArray:
2271       // Losing element qualification here is fine.
2272       type = cast<ArrayType>(ty)->getElementType();
2273       break;
2274 
2275     case Type::VariableArray: {
2276       // Losing element qualification here is fine.
2277       const VariableArrayType *vat = cast<VariableArrayType>(ty);
2278 
2279       // Unknown size indication requires no size computation.
2280       // Otherwise, evaluate and record it.
2281       if (const Expr *sizeExpr = vat->getSizeExpr()) {
2282         // It's possible that we might have emitted this already,
2283         // e.g. with a typedef and a pointer to it.
2284         llvm::Value *&entry = VLASizeMap[sizeExpr];
2285         if (!entry) {
2286           llvm::Value *size = EmitScalarExpr(sizeExpr);
2287 
2288           // C11 6.7.6.2p5:
2289           //   If the size is an expression that is not an integer constant
2290           //   expression [...] each time it is evaluated it shall have a value
2291           //   greater than zero.
2292           if (SanOpts.has(SanitizerKind::VLABound)) {
2293             SanitizerScope SanScope(this);
2294             llvm::Value *Zero = llvm::Constant::getNullValue(size->getType());
2295             clang::QualType SEType = sizeExpr->getType();
2296             llvm::Value *CheckCondition =
2297                 SEType->isSignedIntegerType()
2298                     ? Builder.CreateICmpSGT(size, Zero)
2299                     : Builder.CreateICmpUGT(size, Zero);
2300             llvm::Constant *StaticArgs[] = {
2301                 EmitCheckSourceLocation(sizeExpr->getBeginLoc()),
2302                 EmitCheckTypeDescriptor(SEType)};
2303             EmitCheck(std::make_pair(CheckCondition, SanitizerKind::VLABound),
2304                       SanitizerHandler::VLABoundNotPositive, StaticArgs, size);
2305           }
2306 
2307           // Always zexting here would be wrong if it weren't
2308           // undefined behavior to have a negative bound.
2309           // FIXME: What about when size's type is larger than size_t?
2310           entry = Builder.CreateIntCast(size, SizeTy, /*signed*/ false);
2311         }
2312       }
2313       type = vat->getElementType();
2314       break;
2315     }
2316 
2317     case Type::FunctionProto:
2318     case Type::FunctionNoProto:
2319       type = cast<FunctionType>(ty)->getReturnType();
2320       break;
2321 
2322     case Type::Paren:
2323     case Type::TypeOf:
2324     case Type::UnaryTransform:
2325     case Type::Attributed:
2326     case Type::BTFTagAttributed:
2327     case Type::SubstTemplateTypeParm:
2328     case Type::MacroQualified:
2329       // Keep walking after single level desugaring.
2330       type = type.getSingleStepDesugaredType(getContext());
2331       break;
2332 
2333     case Type::Typedef:
2334     case Type::Decltype:
2335     case Type::Auto:
2336     case Type::DeducedTemplateSpecialization:
2337       // Stop walking: nothing to do.
2338       return;
2339 
2340     case Type::TypeOfExpr:
2341       // Stop walking: emit typeof expression.
2342       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
2343       return;
2344 
2345     case Type::Atomic:
2346       type = cast<AtomicType>(ty)->getValueType();
2347       break;
2348 
2349     case Type::Pipe:
2350       type = cast<PipeType>(ty)->getElementType();
2351       break;
2352     }
2353   } while (type->isVariablyModifiedType());
2354 }
2355 
2356 Address CodeGenFunction::EmitVAListRef(const Expr* E) {
2357   if (getContext().getBuiltinVaListType()->isArrayType())
2358     return EmitPointerWithAlignment(E);
2359   return EmitLValue(E).getAddress(*this);
2360 }
2361 
2362 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) {
2363   return EmitLValue(E).getAddress(*this);
2364 }
2365 
2366 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
2367                                               const APValue &Init) {
2368   assert(Init.hasValue() && "Invalid DeclRefExpr initializer!");
2369   if (CGDebugInfo *Dbg = getDebugInfo())
2370     if (CGM.getCodeGenOpts().hasReducedDebugInfo())
2371       Dbg->EmitGlobalVariable(E->getDecl(), Init);
2372 }
2373 
2374 CodeGenFunction::PeepholeProtection
2375 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
2376   // At the moment, the only aggressive peephole we do in IR gen
2377   // is trunc(zext) folding, but if we add more, we can easily
2378   // extend this protection.
2379 
2380   if (!rvalue.isScalar()) return PeepholeProtection();
2381   llvm::Value *value = rvalue.getScalarVal();
2382   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
2383 
2384   // Just make an extra bitcast.
2385   assert(HaveInsertPoint());
2386   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
2387                                                   Builder.GetInsertBlock());
2388 
2389   PeepholeProtection protection;
2390   protection.Inst = inst;
2391   return protection;
2392 }
2393 
2394 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
2395   if (!protection.Inst) return;
2396 
2397   // In theory, we could try to duplicate the peepholes now, but whatever.
2398   protection.Inst->eraseFromParent();
2399 }
2400 
2401 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue,
2402                                               QualType Ty, SourceLocation Loc,
2403                                               SourceLocation AssumptionLoc,
2404                                               llvm::Value *Alignment,
2405                                               llvm::Value *OffsetValue) {
2406   if (Alignment->getType() != IntPtrTy)
2407     Alignment =
2408         Builder.CreateIntCast(Alignment, IntPtrTy, false, "casted.align");
2409   if (OffsetValue && OffsetValue->getType() != IntPtrTy)
2410     OffsetValue =
2411         Builder.CreateIntCast(OffsetValue, IntPtrTy, true, "casted.offset");
2412   llvm::Value *TheCheck = nullptr;
2413   if (SanOpts.has(SanitizerKind::Alignment)) {
2414     llvm::Value *PtrIntValue =
2415         Builder.CreatePtrToInt(PtrValue, IntPtrTy, "ptrint");
2416 
2417     if (OffsetValue) {
2418       bool IsOffsetZero = false;
2419       if (const auto *CI = dyn_cast<llvm::ConstantInt>(OffsetValue))
2420         IsOffsetZero = CI->isZero();
2421 
2422       if (!IsOffsetZero)
2423         PtrIntValue = Builder.CreateSub(PtrIntValue, OffsetValue, "offsetptr");
2424     }
2425 
2426     llvm::Value *Zero = llvm::ConstantInt::get(IntPtrTy, 0);
2427     llvm::Value *Mask =
2428         Builder.CreateSub(Alignment, llvm::ConstantInt::get(IntPtrTy, 1));
2429     llvm::Value *MaskedPtr = Builder.CreateAnd(PtrIntValue, Mask, "maskedptr");
2430     TheCheck = Builder.CreateICmpEQ(MaskedPtr, Zero, "maskcond");
2431   }
2432   llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption(
2433       CGM.getDataLayout(), PtrValue, Alignment, OffsetValue);
2434 
2435   if (!SanOpts.has(SanitizerKind::Alignment))
2436     return;
2437   emitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2438                                OffsetValue, TheCheck, Assumption);
2439 }
2440 
2441 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue,
2442                                               const Expr *E,
2443                                               SourceLocation AssumptionLoc,
2444                                               llvm::Value *Alignment,
2445                                               llvm::Value *OffsetValue) {
2446   if (auto *CE = dyn_cast<CastExpr>(E))
2447     E = CE->getSubExprAsWritten();
2448   QualType Ty = E->getType();
2449   SourceLocation Loc = E->getExprLoc();
2450 
2451   emitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2452                           OffsetValue);
2453 }
2454 
2455 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn,
2456                                                  llvm::Value *AnnotatedVal,
2457                                                  StringRef AnnotationStr,
2458                                                  SourceLocation Location,
2459                                                  const AnnotateAttr *Attr) {
2460   SmallVector<llvm::Value *, 5> Args = {
2461       AnnotatedVal,
2462       Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
2463       Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
2464       CGM.EmitAnnotationLineNo(Location),
2465   };
2466   if (Attr)
2467     Args.push_back(CGM.EmitAnnotationArgs(Attr));
2468   return Builder.CreateCall(AnnotationFn, Args);
2469 }
2470 
2471 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
2472   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2473   // FIXME We create a new bitcast for every annotation because that's what
2474   // llvm-gcc was doing.
2475   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2476     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
2477                        Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
2478                        I->getAnnotation(), D->getLocation(), I);
2479 }
2480 
2481 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
2482                                               Address Addr) {
2483   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2484   llvm::Value *V = Addr.getPointer();
2485   llvm::Type *VTy = V->getType();
2486   auto *PTy = dyn_cast<llvm::PointerType>(VTy);
2487   unsigned AS = PTy ? PTy->getAddressSpace() : 0;
2488   llvm::PointerType *IntrinTy =
2489       llvm::PointerType::getWithSamePointeeType(CGM.Int8PtrTy, AS);
2490   llvm::Function *F =
2491       CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, IntrinTy);
2492 
2493   for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
2494     // FIXME Always emit the cast inst so we can differentiate between
2495     // annotation on the first field of a struct and annotation on the struct
2496     // itself.
2497     if (VTy != IntrinTy)
2498       V = Builder.CreateBitCast(V, IntrinTy);
2499     V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation(), I);
2500     V = Builder.CreateBitCast(V, VTy);
2501   }
2502 
2503   return Address(V, Addr.getElementType(), Addr.getAlignment());
2504 }
2505 
2506 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
2507 
2508 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF)
2509     : CGF(CGF) {
2510   assert(!CGF->IsSanitizerScope);
2511   CGF->IsSanitizerScope = true;
2512 }
2513 
2514 CodeGenFunction::SanitizerScope::~SanitizerScope() {
2515   CGF->IsSanitizerScope = false;
2516 }
2517 
2518 void CodeGenFunction::InsertHelper(llvm::Instruction *I,
2519                                    const llvm::Twine &Name,
2520                                    llvm::BasicBlock *BB,
2521                                    llvm::BasicBlock::iterator InsertPt) const {
2522   LoopStack.InsertHelper(I);
2523   if (IsSanitizerScope)
2524     CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I);
2525 }
2526 
2527 void CGBuilderInserter::InsertHelper(
2528     llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB,
2529     llvm::BasicBlock::iterator InsertPt) const {
2530   llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt);
2531   if (CGF)
2532     CGF->InsertHelper(I, Name, BB, InsertPt);
2533 }
2534 
2535 // Emits an error if we don't have a valid set of target features for the
2536 // called function.
2537 void CodeGenFunction::checkTargetFeatures(const CallExpr *E,
2538                                           const FunctionDecl *TargetDecl) {
2539   return checkTargetFeatures(E->getBeginLoc(), TargetDecl);
2540 }
2541 
2542 // Emits an error if we don't have a valid set of target features for the
2543 // called function.
2544 void CodeGenFunction::checkTargetFeatures(SourceLocation Loc,
2545                                           const FunctionDecl *TargetDecl) {
2546   // Early exit if this is an indirect call.
2547   if (!TargetDecl)
2548     return;
2549 
2550   // Get the current enclosing function if it exists. If it doesn't
2551   // we can't check the target features anyhow.
2552   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl);
2553   if (!FD)
2554     return;
2555 
2556   // Grab the required features for the call. For a builtin this is listed in
2557   // the td file with the default cpu, for an always_inline function this is any
2558   // listed cpu and any listed features.
2559   unsigned BuiltinID = TargetDecl->getBuiltinID();
2560   std::string MissingFeature;
2561   llvm::StringMap<bool> CallerFeatureMap;
2562   CGM.getContext().getFunctionFeatureMap(CallerFeatureMap, FD);
2563   if (BuiltinID) {
2564     StringRef FeatureList(CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID));
2565     if (!Builtin::evaluateRequiredTargetFeatures(
2566         FeatureList, CallerFeatureMap)) {
2567       CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature)
2568           << TargetDecl->getDeclName()
2569           << FeatureList;
2570     }
2571   } else if (!TargetDecl->isMultiVersion() &&
2572              TargetDecl->hasAttr<TargetAttr>()) {
2573     // Get the required features for the callee.
2574 
2575     const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>();
2576     ParsedTargetAttr ParsedAttr =
2577         CGM.getContext().filterFunctionTargetAttrs(TD);
2578 
2579     SmallVector<StringRef, 1> ReqFeatures;
2580     llvm::StringMap<bool> CalleeFeatureMap;
2581     CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl);
2582 
2583     for (const auto &F : ParsedAttr.Features) {
2584       if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1)))
2585         ReqFeatures.push_back(StringRef(F).substr(1));
2586     }
2587 
2588     for (const auto &F : CalleeFeatureMap) {
2589       // Only positive features are "required".
2590       if (F.getValue())
2591         ReqFeatures.push_back(F.getKey());
2592     }
2593     if (!llvm::all_of(ReqFeatures, [&](StringRef Feature) {
2594       if (!CallerFeatureMap.lookup(Feature)) {
2595         MissingFeature = Feature.str();
2596         return false;
2597       }
2598       return true;
2599     }))
2600       CGM.getDiags().Report(Loc, diag::err_function_needs_feature)
2601           << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature;
2602   }
2603 }
2604 
2605 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) {
2606   if (!CGM.getCodeGenOpts().SanitizeStats)
2607     return;
2608 
2609   llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint());
2610   IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation());
2611   CGM.getSanStats().create(IRB, SSK);
2612 }
2613 
2614 void CodeGenFunction::EmitKCFIOperandBundle(
2615     const CGCallee &Callee, SmallVectorImpl<llvm::OperandBundleDef> &Bundles) {
2616   const FunctionProtoType *FP =
2617       Callee.getAbstractInfo().getCalleeFunctionProtoType();
2618   if (FP)
2619     Bundles.emplace_back("kcfi", CGM.CreateKCFITypeId(FP->desugar()));
2620 }
2621 
2622 llvm::Value *
2623 CodeGenFunction::FormResolverCondition(const MultiVersionResolverOption &RO) {
2624   llvm::Value *Condition = nullptr;
2625 
2626   if (!RO.Conditions.Architecture.empty())
2627     Condition = EmitX86CpuIs(RO.Conditions.Architecture);
2628 
2629   if (!RO.Conditions.Features.empty()) {
2630     llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features);
2631     Condition =
2632         Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond;
2633   }
2634   return Condition;
2635 }
2636 
2637 static void CreateMultiVersionResolverReturn(CodeGenModule &CGM,
2638                                              llvm::Function *Resolver,
2639                                              CGBuilderTy &Builder,
2640                                              llvm::Function *FuncToReturn,
2641                                              bool SupportsIFunc) {
2642   if (SupportsIFunc) {
2643     Builder.CreateRet(FuncToReturn);
2644     return;
2645   }
2646 
2647   llvm::SmallVector<llvm::Value *, 10> Args(
2648       llvm::make_pointer_range(Resolver->args()));
2649 
2650   llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args);
2651   Result->setTailCallKind(llvm::CallInst::TCK_MustTail);
2652 
2653   if (Resolver->getReturnType()->isVoidTy())
2654     Builder.CreateRetVoid();
2655   else
2656     Builder.CreateRet(Result);
2657 }
2658 
2659 void CodeGenFunction::EmitMultiVersionResolver(
2660     llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) {
2661   assert(getContext().getTargetInfo().getTriple().isX86() &&
2662          "Only implemented for x86 targets");
2663 
2664   bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc();
2665 
2666   // Main function's basic block.
2667   llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver);
2668   Builder.SetInsertPoint(CurBlock);
2669   EmitX86CpuInit();
2670 
2671   for (const MultiVersionResolverOption &RO : Options) {
2672     Builder.SetInsertPoint(CurBlock);
2673     llvm::Value *Condition = FormResolverCondition(RO);
2674 
2675     // The 'default' or 'generic' case.
2676     if (!Condition) {
2677       assert(&RO == Options.end() - 1 &&
2678              "Default or Generic case must be last");
2679       CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function,
2680                                        SupportsIFunc);
2681       return;
2682     }
2683 
2684     llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver);
2685     CGBuilderTy RetBuilder(*this, RetBlock);
2686     CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function,
2687                                      SupportsIFunc);
2688     CurBlock = createBasicBlock("resolver_else", Resolver);
2689     Builder.CreateCondBr(Condition, RetBlock, CurBlock);
2690   }
2691 
2692   // If no generic/default, emit an unreachable.
2693   Builder.SetInsertPoint(CurBlock);
2694   llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
2695   TrapCall->setDoesNotReturn();
2696   TrapCall->setDoesNotThrow();
2697   Builder.CreateUnreachable();
2698   Builder.ClearInsertionPoint();
2699 }
2700 
2701 // Loc - where the diagnostic will point, where in the source code this
2702 //  alignment has failed.
2703 // SecondaryLoc - if present (will be present if sufficiently different from
2704 //  Loc), the diagnostic will additionally point a "Note:" to this location.
2705 //  It should be the location where the __attribute__((assume_aligned))
2706 //  was written e.g.
2707 void CodeGenFunction::emitAlignmentAssumptionCheck(
2708     llvm::Value *Ptr, QualType Ty, SourceLocation Loc,
2709     SourceLocation SecondaryLoc, llvm::Value *Alignment,
2710     llvm::Value *OffsetValue, llvm::Value *TheCheck,
2711     llvm::Instruction *Assumption) {
2712   assert(Assumption && isa<llvm::CallInst>(Assumption) &&
2713          cast<llvm::CallInst>(Assumption)->getCalledOperand() ==
2714              llvm::Intrinsic::getDeclaration(
2715                  Builder.GetInsertBlock()->getParent()->getParent(),
2716                  llvm::Intrinsic::assume) &&
2717          "Assumption should be a call to llvm.assume().");
2718   assert(&(Builder.GetInsertBlock()->back()) == Assumption &&
2719          "Assumption should be the last instruction of the basic block, "
2720          "since the basic block is still being generated.");
2721 
2722   if (!SanOpts.has(SanitizerKind::Alignment))
2723     return;
2724 
2725   // Don't check pointers to volatile data. The behavior here is implementation-
2726   // defined.
2727   if (Ty->getPointeeType().isVolatileQualified())
2728     return;
2729 
2730   // We need to temorairly remove the assumption so we can insert the
2731   // sanitizer check before it, else the check will be dropped by optimizations.
2732   Assumption->removeFromParent();
2733 
2734   {
2735     SanitizerScope SanScope(this);
2736 
2737     if (!OffsetValue)
2738       OffsetValue = Builder.getInt1(false); // no offset.
2739 
2740     llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc),
2741                                     EmitCheckSourceLocation(SecondaryLoc),
2742                                     EmitCheckTypeDescriptor(Ty)};
2743     llvm::Value *DynamicData[] = {EmitCheckValue(Ptr),
2744                                   EmitCheckValue(Alignment),
2745                                   EmitCheckValue(OffsetValue)};
2746     EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)},
2747               SanitizerHandler::AlignmentAssumption, StaticData, DynamicData);
2748   }
2749 
2750   // We are now in the (new, empty) "cont" basic block.
2751   // Reintroduce the assumption.
2752   Builder.Insert(Assumption);
2753   // FIXME: Assumption still has it's original basic block as it's Parent.
2754 }
2755 
2756 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) {
2757   if (CGDebugInfo *DI = getDebugInfo())
2758     return DI->SourceLocToDebugLoc(Location);
2759 
2760   return llvm::DebugLoc();
2761 }
2762 
2763 llvm::Value *
2764 CodeGenFunction::emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond,
2765                                                       Stmt::Likelihood LH) {
2766   switch (LH) {
2767   case Stmt::LH_None:
2768     return Cond;
2769   case Stmt::LH_Likely:
2770   case Stmt::LH_Unlikely:
2771     // Don't generate llvm.expect on -O0 as the backend won't use it for
2772     // anything.
2773     if (CGM.getCodeGenOpts().OptimizationLevel == 0)
2774       return Cond;
2775     llvm::Type *CondTy = Cond->getType();
2776     assert(CondTy->isIntegerTy(1) && "expecting condition to be a boolean");
2777     llvm::Function *FnExpect =
2778         CGM.getIntrinsic(llvm::Intrinsic::expect, CondTy);
2779     llvm::Value *ExpectedValueOfCond =
2780         llvm::ConstantInt::getBool(CondTy, LH == Stmt::LH_Likely);
2781     return Builder.CreateCall(FnExpect, {Cond, ExpectedValueOfCond},
2782                               Cond->getName() + ".expval");
2783   }
2784   llvm_unreachable("Unknown Likelihood");
2785 }
2786 
2787 llvm::Value *CodeGenFunction::emitBoolVecConversion(llvm::Value *SrcVec,
2788                                                     unsigned NumElementsDst,
2789                                                     const llvm::Twine &Name) {
2790   auto *SrcTy = cast<llvm::FixedVectorType>(SrcVec->getType());
2791   unsigned NumElementsSrc = SrcTy->getNumElements();
2792   if (NumElementsSrc == NumElementsDst)
2793     return SrcVec;
2794 
2795   std::vector<int> ShuffleMask(NumElementsDst, -1);
2796   for (unsigned MaskIdx = 0;
2797        MaskIdx < std::min<>(NumElementsDst, NumElementsSrc); ++MaskIdx)
2798     ShuffleMask[MaskIdx] = MaskIdx;
2799 
2800   return Builder.CreateShuffleVector(SrcVec, ShuffleMask, Name);
2801 }
2802