1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-function state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CodeGenModule.h" 16 #include "CGDebugInfo.h" 17 #include "clang/Basic/TargetInfo.h" 18 #include "clang/AST/APValue.h" 19 #include "clang/AST/ASTContext.h" 20 #include "clang/AST/Decl.h" 21 #include "clang/AST/DeclCXX.h" 22 #include "llvm/Target/TargetData.h" 23 using namespace clang; 24 using namespace CodeGen; 25 26 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm) 27 : BlockFunction(cgm, *this, Builder), CGM(cgm), 28 Target(CGM.getContext().Target), 29 Builder(cgm.getModule().getContext()), 30 DebugInfo(0), SwitchInsn(0), CaseRangeBlock(0), InvokeDest(0), 31 CXXThisDecl(0) { 32 LLVMIntTy = ConvertType(getContext().IntTy); 33 LLVMPointerWidth = Target.getPointerWidth(0); 34 } 35 36 ASTContext &CodeGenFunction::getContext() const { 37 return CGM.getContext(); 38 } 39 40 41 llvm::BasicBlock *CodeGenFunction::getBasicBlockForLabel(const LabelStmt *S) { 42 llvm::BasicBlock *&BB = LabelMap[S]; 43 if (BB) return BB; 44 45 // Create, but don't insert, the new block. 46 return BB = createBasicBlock(S->getName()); 47 } 48 49 llvm::Value *CodeGenFunction::GetAddrOfLocalVar(const VarDecl *VD) { 50 llvm::Value *Res = LocalDeclMap[VD]; 51 assert(Res && "Invalid argument to GetAddrOfLocalVar(), no decl!"); 52 return Res; 53 } 54 55 llvm::Constant * 56 CodeGenFunction::GetAddrOfStaticLocalVar(const VarDecl *BVD) { 57 return cast<llvm::Constant>(GetAddrOfLocalVar(BVD)); 58 } 59 60 const llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 61 return CGM.getTypes().ConvertTypeForMem(T); 62 } 63 64 const llvm::Type *CodeGenFunction::ConvertType(QualType T) { 65 return CGM.getTypes().ConvertType(T); 66 } 67 68 bool CodeGenFunction::hasAggregateLLVMType(QualType T) { 69 // FIXME: Use positive checks instead of negative ones to be more robust in 70 // the face of extension. 71 return !T->hasPointerRepresentation() &&!T->isRealType() && 72 !T->isVoidType() && !T->isVectorType() && !T->isFunctionType() && 73 !T->isBlockPointerType(); 74 } 75 76 void CodeGenFunction::EmitReturnBlock() { 77 // For cleanliness, we try to avoid emitting the return block for 78 // simple cases. 79 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 80 81 if (CurBB) { 82 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 83 84 // We have a valid insert point, reuse it if it is empty or there are no 85 // explicit jumps to the return block. 86 if (CurBB->empty() || ReturnBlock->use_empty()) { 87 ReturnBlock->replaceAllUsesWith(CurBB); 88 delete ReturnBlock; 89 } else 90 EmitBlock(ReturnBlock); 91 return; 92 } 93 94 // Otherwise, if the return block is the target of a single direct 95 // branch then we can just put the code in that block instead. This 96 // cleans up functions which started with a unified return block. 97 if (ReturnBlock->hasOneUse()) { 98 llvm::BranchInst *BI = 99 dyn_cast<llvm::BranchInst>(*ReturnBlock->use_begin()); 100 if (BI && BI->isUnconditional() && BI->getSuccessor(0) == ReturnBlock) { 101 // Reset insertion point and delete the branch. 102 Builder.SetInsertPoint(BI->getParent()); 103 BI->eraseFromParent(); 104 delete ReturnBlock; 105 return; 106 } 107 } 108 109 // FIXME: We are at an unreachable point, there is no reason to emit the block 110 // unless it has uses. However, we still need a place to put the debug 111 // region.end for now. 112 113 EmitBlock(ReturnBlock); 114 } 115 116 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 117 // Finish emission of indirect switches. 118 EmitIndirectSwitches(); 119 120 assert(BreakContinueStack.empty() && 121 "mismatched push/pop in break/continue stack!"); 122 assert(BlockScopes.empty() && 123 "did not remove all blocks from block scope map!"); 124 assert(CleanupEntries.empty() && 125 "mismatched push/pop in cleanup stack!"); 126 127 // Emit function epilog (to return). 128 EmitReturnBlock(); 129 130 // Emit debug descriptor for function end. 131 if (CGDebugInfo *DI = getDebugInfo()) { 132 DI->setLocation(EndLoc); 133 DI->EmitRegionEnd(CurFn, Builder); 134 } 135 136 EmitFunctionEpilog(*CurFnInfo, ReturnValue); 137 138 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 139 llvm::Instruction *Ptr = AllocaInsertPt; 140 AllocaInsertPt = 0; 141 Ptr->eraseFromParent(); 142 } 143 144 void CodeGenFunction::StartFunction(const Decl *D, QualType RetTy, 145 llvm::Function *Fn, 146 const FunctionArgList &Args, 147 SourceLocation StartLoc) { 148 DidCallStackSave = false; 149 CurCodeDecl = CurFuncDecl = D; 150 FnRetTy = RetTy; 151 CurFn = Fn; 152 assert(CurFn->isDeclaration() && "Function already has body?"); 153 154 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 155 156 // Create a marker to make it easy to insert allocas into the entryblock 157 // later. Don't create this with the builder, because we don't want it 158 // folded. 159 llvm::Value *Undef = VMContext.getUndef(llvm::Type::Int32Ty); 160 AllocaInsertPt = new llvm::BitCastInst(Undef, llvm::Type::Int32Ty, "", 161 EntryBB); 162 if (Builder.isNamePreserving()) 163 AllocaInsertPt->setName("allocapt"); 164 165 ReturnBlock = createBasicBlock("return"); 166 ReturnValue = 0; 167 if (!RetTy->isVoidType()) 168 ReturnValue = CreateTempAlloca(ConvertType(RetTy), "retval"); 169 170 Builder.SetInsertPoint(EntryBB); 171 172 // Emit subprogram debug descriptor. 173 // FIXME: The cast here is a huge hack. 174 if (CGDebugInfo *DI = getDebugInfo()) { 175 DI->setLocation(StartLoc); 176 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 177 DI->EmitFunctionStart(CGM.getMangledName(FD), RetTy, CurFn, Builder); 178 } else { 179 // Just use LLVM function name. 180 DI->EmitFunctionStart(Fn->getName().c_str(), 181 RetTy, CurFn, Builder); 182 } 183 } 184 185 // FIXME: Leaked. 186 CurFnInfo = &CGM.getTypes().getFunctionInfo(FnRetTy, Args); 187 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 188 189 // If any of the arguments have a variably modified type, make sure to 190 // emit the type size. 191 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 192 i != e; ++i) { 193 QualType Ty = i->second; 194 195 if (Ty->isVariablyModifiedType()) 196 EmitVLASize(Ty); 197 } 198 } 199 200 void CodeGenFunction::GenerateCode(const FunctionDecl *FD, 201 llvm::Function *Fn) { 202 // Check if we should generate debug info for this function. 203 if (CGM.getDebugInfo() && !FD->hasAttr<NodebugAttr>()) 204 DebugInfo = CGM.getDebugInfo(); 205 206 FunctionArgList Args; 207 208 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 209 if (MD->isInstance()) { 210 // Create the implicit 'this' decl. 211 // FIXME: I'm not entirely sure I like using a fake decl just for code 212 // generation. Maybe we can come up with a better way? 213 CXXThisDecl = ImplicitParamDecl::Create(getContext(), 0, SourceLocation(), 214 &getContext().Idents.get("this"), 215 MD->getThisType(getContext())); 216 Args.push_back(std::make_pair(CXXThisDecl, CXXThisDecl->getType())); 217 } 218 } 219 220 if (FD->getNumParams()) { 221 const FunctionProtoType* FProto = FD->getType()->getAsFunctionProtoType(); 222 assert(FProto && "Function def must have prototype!"); 223 224 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) 225 Args.push_back(std::make_pair(FD->getParamDecl(i), 226 FProto->getArgType(i))); 227 } 228 229 // FIXME: Support CXXTryStmt here, too. 230 if (const CompoundStmt *S = FD->getCompoundBody()) { 231 StartFunction(FD, FD->getResultType(), Fn, Args, S->getLBracLoc()); 232 EmitStmt(S); 233 FinishFunction(S->getRBracLoc()); 234 } 235 236 // Destroy the 'this' declaration. 237 if (CXXThisDecl) 238 CXXThisDecl->Destroy(getContext()); 239 } 240 241 /// ContainsLabel - Return true if the statement contains a label in it. If 242 /// this statement is not executed normally, it not containing a label means 243 /// that we can just remove the code. 244 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 245 // Null statement, not a label! 246 if (S == 0) return false; 247 248 // If this is a label, we have to emit the code, consider something like: 249 // if (0) { ... foo: bar(); } goto foo; 250 if (isa<LabelStmt>(S)) 251 return true; 252 253 // If this is a case/default statement, and we haven't seen a switch, we have 254 // to emit the code. 255 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 256 return true; 257 258 // If this is a switch statement, we want to ignore cases below it. 259 if (isa<SwitchStmt>(S)) 260 IgnoreCaseStmts = true; 261 262 // Scan subexpressions for verboten labels. 263 for (Stmt::const_child_iterator I = S->child_begin(), E = S->child_end(); 264 I != E; ++I) 265 if (ContainsLabel(*I, IgnoreCaseStmts)) 266 return true; 267 268 return false; 269 } 270 271 272 /// ConstantFoldsToSimpleInteger - If the sepcified expression does not fold to 273 /// a constant, or if it does but contains a label, return 0. If it constant 274 /// folds to 'true' and does not contain a label, return 1, if it constant folds 275 /// to 'false' and does not contain a label, return -1. 276 int CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond) { 277 // FIXME: Rename and handle conversion of other evaluatable things 278 // to bool. 279 Expr::EvalResult Result; 280 if (!Cond->Evaluate(Result, getContext()) || !Result.Val.isInt() || 281 Result.HasSideEffects) 282 return 0; // Not foldable, not integer or not fully evaluatable. 283 284 if (CodeGenFunction::ContainsLabel(Cond)) 285 return 0; // Contains a label. 286 287 return Result.Val.getInt().getBoolValue() ? 1 : -1; 288 } 289 290 291 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 292 /// statement) to the specified blocks. Based on the condition, this might try 293 /// to simplify the codegen of the conditional based on the branch. 294 /// 295 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 296 llvm::BasicBlock *TrueBlock, 297 llvm::BasicBlock *FalseBlock) { 298 if (const ParenExpr *PE = dyn_cast<ParenExpr>(Cond)) 299 return EmitBranchOnBoolExpr(PE->getSubExpr(), TrueBlock, FalseBlock); 300 301 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 302 // Handle X && Y in a condition. 303 if (CondBOp->getOpcode() == BinaryOperator::LAnd) { 304 // If we have "1 && X", simplify the code. "0 && X" would have constant 305 // folded if the case was simple enough. 306 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS()) == 1) { 307 // br(1 && X) -> br(X). 308 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 309 } 310 311 // If we have "X && 1", simplify the code to use an uncond branch. 312 // "X && 0" would have been constant folded to 0. 313 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS()) == 1) { 314 // br(X && 1) -> br(X). 315 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock); 316 } 317 318 // Emit the LHS as a conditional. If the LHS conditional is false, we 319 // want to jump to the FalseBlock. 320 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 321 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock); 322 EmitBlock(LHSTrue); 323 324 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 325 return; 326 } else if (CondBOp->getOpcode() == BinaryOperator::LOr) { 327 // If we have "0 || X", simplify the code. "1 || X" would have constant 328 // folded if the case was simple enough. 329 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS()) == -1) { 330 // br(0 || X) -> br(X). 331 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 332 } 333 334 // If we have "X || 0", simplify the code to use an uncond branch. 335 // "X || 1" would have been constant folded to 1. 336 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS()) == -1) { 337 // br(X || 0) -> br(X). 338 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock); 339 } 340 341 // Emit the LHS as a conditional. If the LHS conditional is true, we 342 // want to jump to the TrueBlock. 343 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 344 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse); 345 EmitBlock(LHSFalse); 346 347 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 348 return; 349 } 350 } 351 352 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 353 // br(!x, t, f) -> br(x, f, t) 354 if (CondUOp->getOpcode() == UnaryOperator::LNot) 355 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock); 356 } 357 358 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 359 // Handle ?: operator. 360 361 // Just ignore GNU ?: extension. 362 if (CondOp->getLHS()) { 363 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 364 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 365 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 366 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock); 367 EmitBlock(LHSBlock); 368 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock); 369 EmitBlock(RHSBlock); 370 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock); 371 return; 372 } 373 } 374 375 // Emit the code with the fully general case. 376 llvm::Value *CondV = EvaluateExprAsBool(Cond); 377 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock); 378 } 379 380 /// getCGRecordLayout - Return record layout info. 381 const CGRecordLayout *CodeGenFunction::getCGRecordLayout(CodeGenTypes &CGT, 382 QualType Ty) { 383 const RecordType *RTy = Ty->getAsRecordType(); 384 assert (RTy && "Unexpected type. RecordType expected here."); 385 386 return CGT.getCGRecordLayout(RTy->getDecl()); 387 } 388 389 /// ErrorUnsupported - Print out an error that codegen doesn't support the 390 /// specified stmt yet. 391 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type, 392 bool OmitOnError) { 393 CGM.ErrorUnsupported(S, Type, OmitOnError); 394 } 395 396 unsigned CodeGenFunction::GetIDForAddrOfLabel(const LabelStmt *L) { 397 // Use LabelIDs.size() as the new ID if one hasn't been assigned. 398 return LabelIDs.insert(std::make_pair(L, LabelIDs.size())).first->second; 399 } 400 401 void CodeGenFunction::EmitMemSetToZero(llvm::Value *DestPtr, QualType Ty) { 402 const llvm::Type *BP = VMContext.getPointerTypeUnqual(llvm::Type::Int8Ty); 403 if (DestPtr->getType() != BP) 404 DestPtr = Builder.CreateBitCast(DestPtr, BP, "tmp"); 405 406 // Get size and alignment info for this aggregate. 407 std::pair<uint64_t, unsigned> TypeInfo = getContext().getTypeInfo(Ty); 408 409 // Don't bother emitting a zero-byte memset. 410 if (TypeInfo.first == 0) 411 return; 412 413 // FIXME: Handle variable sized types. 414 const llvm::Type *IntPtr = VMContext.getIntegerType(LLVMPointerWidth); 415 416 Builder.CreateCall4(CGM.getMemSetFn(), DestPtr, 417 getLLVMContext().getNullValue(llvm::Type::Int8Ty), 418 // TypeInfo.first describes size in bits. 419 VMContext.getConstantInt(IntPtr, TypeInfo.first/8), 420 VMContext.getConstantInt(llvm::Type::Int32Ty, 421 TypeInfo.second/8)); 422 } 423 424 void CodeGenFunction::EmitIndirectSwitches() { 425 llvm::BasicBlock *Default; 426 427 if (IndirectSwitches.empty()) 428 return; 429 430 if (!LabelIDs.empty()) { 431 Default = getBasicBlockForLabel(LabelIDs.begin()->first); 432 } else { 433 // No possible targets for indirect goto, just emit an infinite 434 // loop. 435 Default = createBasicBlock("indirectgoto.loop", CurFn); 436 llvm::BranchInst::Create(Default, Default); 437 } 438 439 for (std::vector<llvm::SwitchInst*>::iterator i = IndirectSwitches.begin(), 440 e = IndirectSwitches.end(); i != e; ++i) { 441 llvm::SwitchInst *I = *i; 442 443 I->setSuccessor(0, Default); 444 for (std::map<const LabelStmt*,unsigned>::iterator LI = LabelIDs.begin(), 445 LE = LabelIDs.end(); LI != LE; ++LI) { 446 I->addCase(VMContext.getConstantInt(llvm::Type::Int32Ty, 447 LI->second), 448 getBasicBlockForLabel(LI->first)); 449 } 450 } 451 } 452 453 llvm::Value *CodeGenFunction::GetVLASize(const VariableArrayType *VAT) { 454 llvm::Value *&SizeEntry = VLASizeMap[VAT]; 455 456 assert(SizeEntry && "Did not emit size for type"); 457 return SizeEntry; 458 } 459 460 llvm::Value *CodeGenFunction::EmitVLASize(QualType Ty) { 461 assert(Ty->isVariablyModifiedType() && 462 "Must pass variably modified type to EmitVLASizes!"); 463 464 EnsureInsertPoint(); 465 466 if (const VariableArrayType *VAT = getContext().getAsVariableArrayType(Ty)) { 467 llvm::Value *&SizeEntry = VLASizeMap[VAT]; 468 469 if (!SizeEntry) { 470 // Get the element size; 471 llvm::Value *ElemSize; 472 473 QualType ElemTy = VAT->getElementType(); 474 475 const llvm::Type *SizeTy = ConvertType(getContext().getSizeType()); 476 477 if (ElemTy->isVariableArrayType()) 478 ElemSize = EmitVLASize(ElemTy); 479 else { 480 ElemSize = VMContext.getConstantInt(SizeTy, 481 getContext().getTypeSize(ElemTy) / 8); 482 } 483 484 llvm::Value *NumElements = EmitScalarExpr(VAT->getSizeExpr()); 485 NumElements = Builder.CreateIntCast(NumElements, SizeTy, false, "tmp"); 486 487 SizeEntry = Builder.CreateMul(ElemSize, NumElements); 488 } 489 490 return SizeEntry; 491 } else if (const ArrayType *AT = dyn_cast<ArrayType>(Ty)) { 492 EmitVLASize(AT->getElementType()); 493 } else if (const PointerType *PT = Ty->getAsPointerType()) 494 EmitVLASize(PT->getPointeeType()); 495 else { 496 assert(0 && "unknown VM type!"); 497 } 498 499 return 0; 500 } 501 502 llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) { 503 if (CGM.getContext().getBuiltinVaListType()->isArrayType()) { 504 return EmitScalarExpr(E); 505 } 506 return EmitLValue(E).getAddress(); 507 } 508 509 void CodeGenFunction::PushCleanupBlock(llvm::BasicBlock *CleanupBlock) 510 { 511 CleanupEntries.push_back(CleanupEntry(CleanupBlock)); 512 } 513 514 void CodeGenFunction::EmitCleanupBlocks(size_t OldCleanupStackSize) 515 { 516 assert(CleanupEntries.size() >= OldCleanupStackSize && 517 "Cleanup stack mismatch!"); 518 519 while (CleanupEntries.size() > OldCleanupStackSize) 520 EmitCleanupBlock(); 521 } 522 523 CodeGenFunction::CleanupBlockInfo CodeGenFunction::PopCleanupBlock() 524 { 525 CleanupEntry &CE = CleanupEntries.back(); 526 527 llvm::BasicBlock *CleanupBlock = CE.CleanupBlock; 528 529 std::vector<llvm::BasicBlock *> Blocks; 530 std::swap(Blocks, CE.Blocks); 531 532 std::vector<llvm::BranchInst *> BranchFixups; 533 std::swap(BranchFixups, CE.BranchFixups); 534 535 CleanupEntries.pop_back(); 536 537 // Check if any branch fixups pointed to the scope we just popped. If so, 538 // we can remove them. 539 for (size_t i = 0, e = BranchFixups.size(); i != e; ++i) { 540 llvm::BasicBlock *Dest = BranchFixups[i]->getSuccessor(0); 541 BlockScopeMap::iterator I = BlockScopes.find(Dest); 542 543 if (I == BlockScopes.end()) 544 continue; 545 546 assert(I->second <= CleanupEntries.size() && "Invalid branch fixup!"); 547 548 if (I->second == CleanupEntries.size()) { 549 // We don't need to do this branch fixup. 550 BranchFixups[i] = BranchFixups.back(); 551 BranchFixups.pop_back(); 552 i--; 553 e--; 554 continue; 555 } 556 } 557 558 llvm::BasicBlock *SwitchBlock = 0; 559 llvm::BasicBlock *EndBlock = 0; 560 if (!BranchFixups.empty()) { 561 SwitchBlock = createBasicBlock("cleanup.switch"); 562 EndBlock = createBasicBlock("cleanup.end"); 563 564 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 565 566 Builder.SetInsertPoint(SwitchBlock); 567 568 llvm::Value *DestCodePtr = CreateTempAlloca(llvm::Type::Int32Ty, 569 "cleanup.dst"); 570 llvm::Value *DestCode = Builder.CreateLoad(DestCodePtr, "tmp"); 571 572 // Create a switch instruction to determine where to jump next. 573 llvm::SwitchInst *SI = Builder.CreateSwitch(DestCode, EndBlock, 574 BranchFixups.size()); 575 576 // Restore the current basic block (if any) 577 if (CurBB) { 578 Builder.SetInsertPoint(CurBB); 579 580 // If we had a current basic block, we also need to emit an instruction 581 // to initialize the cleanup destination. 582 Builder.CreateStore(getLLVMContext().getNullValue(llvm::Type::Int32Ty), 583 DestCodePtr); 584 } else 585 Builder.ClearInsertionPoint(); 586 587 for (size_t i = 0, e = BranchFixups.size(); i != e; ++i) { 588 llvm::BranchInst *BI = BranchFixups[i]; 589 llvm::BasicBlock *Dest = BI->getSuccessor(0); 590 591 // Fixup the branch instruction to point to the cleanup block. 592 BI->setSuccessor(0, CleanupBlock); 593 594 if (CleanupEntries.empty()) { 595 llvm::ConstantInt *ID; 596 597 // Check if we already have a destination for this block. 598 if (Dest == SI->getDefaultDest()) 599 ID = VMContext.getConstantInt(llvm::Type::Int32Ty, 0); 600 else { 601 ID = SI->findCaseDest(Dest); 602 if (!ID) { 603 // No code found, get a new unique one by using the number of 604 // switch successors. 605 ID = VMContext.getConstantInt(llvm::Type::Int32Ty, 606 SI->getNumSuccessors()); 607 SI->addCase(ID, Dest); 608 } 609 } 610 611 // Store the jump destination before the branch instruction. 612 new llvm::StoreInst(ID, DestCodePtr, BI); 613 } else { 614 // We need to jump through another cleanup block. Create a pad block 615 // with a branch instruction that jumps to the final destination and 616 // add it as a branch fixup to the current cleanup scope. 617 618 // Create the pad block. 619 llvm::BasicBlock *CleanupPad = createBasicBlock("cleanup.pad", CurFn); 620 621 // Create a unique case ID. 622 llvm::ConstantInt *ID = VMContext.getConstantInt(llvm::Type::Int32Ty, 623 SI->getNumSuccessors()); 624 625 // Store the jump destination before the branch instruction. 626 new llvm::StoreInst(ID, DestCodePtr, BI); 627 628 // Add it as the destination. 629 SI->addCase(ID, CleanupPad); 630 631 // Create the branch to the final destination. 632 llvm::BranchInst *BI = llvm::BranchInst::Create(Dest); 633 CleanupPad->getInstList().push_back(BI); 634 635 // And add it as a branch fixup. 636 CleanupEntries.back().BranchFixups.push_back(BI); 637 } 638 } 639 } 640 641 // Remove all blocks from the block scope map. 642 for (size_t i = 0, e = Blocks.size(); i != e; ++i) { 643 assert(BlockScopes.count(Blocks[i]) && 644 "Did not find block in scope map!"); 645 646 BlockScopes.erase(Blocks[i]); 647 } 648 649 return CleanupBlockInfo(CleanupBlock, SwitchBlock, EndBlock); 650 } 651 652 void CodeGenFunction::EmitCleanupBlock() 653 { 654 CleanupBlockInfo Info = PopCleanupBlock(); 655 656 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 657 if (CurBB && !CurBB->getTerminator() && 658 Info.CleanupBlock->getNumUses() == 0) { 659 CurBB->getInstList().splice(CurBB->end(), Info.CleanupBlock->getInstList()); 660 delete Info.CleanupBlock; 661 } else 662 EmitBlock(Info.CleanupBlock); 663 664 if (Info.SwitchBlock) 665 EmitBlock(Info.SwitchBlock); 666 if (Info.EndBlock) 667 EmitBlock(Info.EndBlock); 668 } 669 670 void CodeGenFunction::AddBranchFixup(llvm::BranchInst *BI) 671 { 672 assert(!CleanupEntries.empty() && 673 "Trying to add branch fixup without cleanup block!"); 674 675 // FIXME: We could be more clever here and check if there's already a branch 676 // fixup for this destination and recycle it. 677 CleanupEntries.back().BranchFixups.push_back(BI); 678 } 679 680 void CodeGenFunction::EmitBranchThroughCleanup(llvm::BasicBlock *Dest) 681 { 682 if (!HaveInsertPoint()) 683 return; 684 685 llvm::BranchInst* BI = Builder.CreateBr(Dest); 686 687 Builder.ClearInsertionPoint(); 688 689 // The stack is empty, no need to do any cleanup. 690 if (CleanupEntries.empty()) 691 return; 692 693 if (!Dest->getParent()) { 694 // We are trying to branch to a block that hasn't been inserted yet. 695 AddBranchFixup(BI); 696 return; 697 } 698 699 BlockScopeMap::iterator I = BlockScopes.find(Dest); 700 if (I == BlockScopes.end()) { 701 // We are trying to jump to a block that is outside of any cleanup scope. 702 AddBranchFixup(BI); 703 return; 704 } 705 706 assert(I->second < CleanupEntries.size() && 707 "Trying to branch into cleanup region"); 708 709 if (I->second == CleanupEntries.size() - 1) { 710 // We have a branch to a block in the same scope. 711 return; 712 } 713 714 AddBranchFixup(BI); 715 } 716