1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-function state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGBlocks.h" 16 #include "CGCleanup.h" 17 #include "CGCUDARuntime.h" 18 #include "CGCXXABI.h" 19 #include "CGDebugInfo.h" 20 #include "CGOpenMPRuntime.h" 21 #include "CodeGenModule.h" 22 #include "CodeGenPGO.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/ASTLambda.h" 26 #include "clang/AST/Decl.h" 27 #include "clang/AST/DeclCXX.h" 28 #include "clang/AST/StmtCXX.h" 29 #include "clang/AST/StmtObjC.h" 30 #include "clang/Basic/Builtins.h" 31 #include "clang/Basic/TargetInfo.h" 32 #include "clang/CodeGen/CGFunctionInfo.h" 33 #include "clang/Frontend/CodeGenOptions.h" 34 #include "clang/Sema/SemaDiagnostic.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/Dominators.h" 37 #include "llvm/IR/Intrinsics.h" 38 #include "llvm/IR/MDBuilder.h" 39 #include "llvm/IR/Operator.h" 40 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 41 using namespace clang; 42 using namespace CodeGen; 43 44 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time 45 /// markers. 46 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts, 47 const LangOptions &LangOpts) { 48 if (CGOpts.DisableLifetimeMarkers) 49 return false; 50 51 // Disable lifetime markers in msan builds. 52 // FIXME: Remove this when msan works with lifetime markers. 53 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) 54 return false; 55 56 // Asan uses markers for use-after-scope checks. 57 if (CGOpts.SanitizeAddressUseAfterScope) 58 return true; 59 60 // For now, only in optimized builds. 61 return CGOpts.OptimizationLevel != 0; 62 } 63 64 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 65 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 66 Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(), 67 CGBuilderInserterTy(this)), 68 SanOpts(CGM.getLangOpts().Sanitize), DebugInfo(CGM.getModuleDebugInfo()), 69 PGO(cgm), ShouldEmitLifetimeMarkers(shouldEmitLifetimeMarkers( 70 CGM.getCodeGenOpts(), CGM.getLangOpts())) { 71 if (!suppressNewContext) 72 CGM.getCXXABI().getMangleContext().startNewFunction(); 73 74 llvm::FastMathFlags FMF; 75 if (CGM.getLangOpts().FastMath) 76 FMF.setFast(); 77 if (CGM.getLangOpts().FiniteMathOnly) { 78 FMF.setNoNaNs(); 79 FMF.setNoInfs(); 80 } 81 if (CGM.getCodeGenOpts().NoNaNsFPMath) { 82 FMF.setNoNaNs(); 83 } 84 if (CGM.getCodeGenOpts().NoSignedZeros) { 85 FMF.setNoSignedZeros(); 86 } 87 if (CGM.getCodeGenOpts().ReciprocalMath) { 88 FMF.setAllowReciprocal(); 89 } 90 if (CGM.getCodeGenOpts().Reassociate) { 91 FMF.setAllowReassoc(); 92 } 93 Builder.setFastMathFlags(FMF); 94 } 95 96 CodeGenFunction::~CodeGenFunction() { 97 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 98 99 // If there are any unclaimed block infos, go ahead and destroy them 100 // now. This can happen if IR-gen gets clever and skips evaluating 101 // something. 102 if (FirstBlockInfo) 103 destroyBlockInfos(FirstBlockInfo); 104 105 if (getLangOpts().OpenMP && CurFn) 106 CGM.getOpenMPRuntime().functionFinished(*this); 107 } 108 109 CharUnits CodeGenFunction::getNaturalPointeeTypeAlignment(QualType T, 110 LValueBaseInfo *BaseInfo, 111 TBAAAccessInfo *TBAAInfo) { 112 return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo, 113 /* forPointeeType= */ true); 114 } 115 116 CharUnits CodeGenFunction::getNaturalTypeAlignment(QualType T, 117 LValueBaseInfo *BaseInfo, 118 TBAAAccessInfo *TBAAInfo, 119 bool forPointeeType) { 120 if (TBAAInfo) 121 *TBAAInfo = CGM.getTBAAAccessInfo(T); 122 123 // Honor alignment typedef attributes even on incomplete types. 124 // We also honor them straight for C++ class types, even as pointees; 125 // there's an expressivity gap here. 126 if (auto TT = T->getAs<TypedefType>()) { 127 if (auto Align = TT->getDecl()->getMaxAlignment()) { 128 if (BaseInfo) 129 *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType); 130 return getContext().toCharUnitsFromBits(Align); 131 } 132 } 133 134 if (BaseInfo) 135 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 136 137 CharUnits Alignment; 138 if (T->isIncompleteType()) { 139 Alignment = CharUnits::One(); // Shouldn't be used, but pessimistic is best. 140 } else { 141 // For C++ class pointees, we don't know whether we're pointing at a 142 // base or a complete object, so we generally need to use the 143 // non-virtual alignment. 144 const CXXRecordDecl *RD; 145 if (forPointeeType && (RD = T->getAsCXXRecordDecl())) { 146 Alignment = CGM.getClassPointerAlignment(RD); 147 } else { 148 Alignment = getContext().getTypeAlignInChars(T); 149 if (T.getQualifiers().hasUnaligned()) 150 Alignment = CharUnits::One(); 151 } 152 153 // Cap to the global maximum type alignment unless the alignment 154 // was somehow explicit on the type. 155 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 156 if (Alignment.getQuantity() > MaxAlign && 157 !getContext().isAlignmentRequired(T)) 158 Alignment = CharUnits::fromQuantity(MaxAlign); 159 } 160 } 161 return Alignment; 162 } 163 164 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { 165 LValueBaseInfo BaseInfo; 166 TBAAAccessInfo TBAAInfo; 167 CharUnits Alignment = getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo); 168 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), BaseInfo, 169 TBAAInfo); 170 } 171 172 /// Given a value of type T* that may not be to a complete object, 173 /// construct an l-value with the natural pointee alignment of T. 174 LValue 175 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) { 176 LValueBaseInfo BaseInfo; 177 TBAAAccessInfo TBAAInfo; 178 CharUnits Align = getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo, 179 /* forPointeeType= */ true); 180 return MakeAddrLValue(Address(V, Align), T, BaseInfo, TBAAInfo); 181 } 182 183 184 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 185 return CGM.getTypes().ConvertTypeForMem(T); 186 } 187 188 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 189 return CGM.getTypes().ConvertType(T); 190 } 191 192 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 193 type = type.getCanonicalType(); 194 while (true) { 195 switch (type->getTypeClass()) { 196 #define TYPE(name, parent) 197 #define ABSTRACT_TYPE(name, parent) 198 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 199 #define DEPENDENT_TYPE(name, parent) case Type::name: 200 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 201 #include "clang/AST/TypeNodes.def" 202 llvm_unreachable("non-canonical or dependent type in IR-generation"); 203 204 case Type::Auto: 205 case Type::DeducedTemplateSpecialization: 206 llvm_unreachable("undeduced type in IR-generation"); 207 208 // Various scalar types. 209 case Type::Builtin: 210 case Type::Pointer: 211 case Type::BlockPointer: 212 case Type::LValueReference: 213 case Type::RValueReference: 214 case Type::MemberPointer: 215 case Type::Vector: 216 case Type::ExtVector: 217 case Type::FunctionProto: 218 case Type::FunctionNoProto: 219 case Type::Enum: 220 case Type::ObjCObjectPointer: 221 case Type::Pipe: 222 return TEK_Scalar; 223 224 // Complexes. 225 case Type::Complex: 226 return TEK_Complex; 227 228 // Arrays, records, and Objective-C objects. 229 case Type::ConstantArray: 230 case Type::IncompleteArray: 231 case Type::VariableArray: 232 case Type::Record: 233 case Type::ObjCObject: 234 case Type::ObjCInterface: 235 return TEK_Aggregate; 236 237 // We operate on atomic values according to their underlying type. 238 case Type::Atomic: 239 type = cast<AtomicType>(type)->getValueType(); 240 continue; 241 } 242 llvm_unreachable("unknown type kind!"); 243 } 244 } 245 246 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() { 247 // For cleanliness, we try to avoid emitting the return block for 248 // simple cases. 249 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 250 251 if (CurBB) { 252 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 253 254 // We have a valid insert point, reuse it if it is empty or there are no 255 // explicit jumps to the return block. 256 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 257 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 258 delete ReturnBlock.getBlock(); 259 } else 260 EmitBlock(ReturnBlock.getBlock()); 261 return llvm::DebugLoc(); 262 } 263 264 // Otherwise, if the return block is the target of a single direct 265 // branch then we can just put the code in that block instead. This 266 // cleans up functions which started with a unified return block. 267 if (ReturnBlock.getBlock()->hasOneUse()) { 268 llvm::BranchInst *BI = 269 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin()); 270 if (BI && BI->isUnconditional() && 271 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 272 // Record/return the DebugLoc of the simple 'return' expression to be used 273 // later by the actual 'ret' instruction. 274 llvm::DebugLoc Loc = BI->getDebugLoc(); 275 Builder.SetInsertPoint(BI->getParent()); 276 BI->eraseFromParent(); 277 delete ReturnBlock.getBlock(); 278 return Loc; 279 } 280 } 281 282 // FIXME: We are at an unreachable point, there is no reason to emit the block 283 // unless it has uses. However, we still need a place to put the debug 284 // region.end for now. 285 286 EmitBlock(ReturnBlock.getBlock()); 287 return llvm::DebugLoc(); 288 } 289 290 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 291 if (!BB) return; 292 if (!BB->use_empty()) 293 return CGF.CurFn->getBasicBlockList().push_back(BB); 294 delete BB; 295 } 296 297 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 298 assert(BreakContinueStack.empty() && 299 "mismatched push/pop in break/continue stack!"); 300 301 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 302 && NumSimpleReturnExprs == NumReturnExprs 303 && ReturnBlock.getBlock()->use_empty(); 304 // Usually the return expression is evaluated before the cleanup 305 // code. If the function contains only a simple return statement, 306 // such as a constant, the location before the cleanup code becomes 307 // the last useful breakpoint in the function, because the simple 308 // return expression will be evaluated after the cleanup code. To be 309 // safe, set the debug location for cleanup code to the location of 310 // the return statement. Otherwise the cleanup code should be at the 311 // end of the function's lexical scope. 312 // 313 // If there are multiple branches to the return block, the branch 314 // instructions will get the location of the return statements and 315 // all will be fine. 316 if (CGDebugInfo *DI = getDebugInfo()) { 317 if (OnlySimpleReturnStmts) 318 DI->EmitLocation(Builder, LastStopPoint); 319 else 320 DI->EmitLocation(Builder, EndLoc); 321 } 322 323 // Pop any cleanups that might have been associated with the 324 // parameters. Do this in whatever block we're currently in; it's 325 // important to do this before we enter the return block or return 326 // edges will be *really* confused. 327 bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth; 328 bool HasOnlyLifetimeMarkers = 329 HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth); 330 bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers; 331 if (HasCleanups) { 332 // Make sure the line table doesn't jump back into the body for 333 // the ret after it's been at EndLoc. 334 if (CGDebugInfo *DI = getDebugInfo()) 335 if (OnlySimpleReturnStmts) 336 DI->EmitLocation(Builder, EndLoc); 337 338 PopCleanupBlocks(PrologueCleanupDepth); 339 } 340 341 // Emit function epilog (to return). 342 llvm::DebugLoc Loc = EmitReturnBlock(); 343 344 if (ShouldInstrumentFunction()) { 345 if (CGM.getCodeGenOpts().InstrumentFunctions) 346 CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit"); 347 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 348 CurFn->addFnAttr("instrument-function-exit-inlined", 349 "__cyg_profile_func_exit"); 350 } 351 352 // Emit debug descriptor for function end. 353 if (CGDebugInfo *DI = getDebugInfo()) 354 DI->EmitFunctionEnd(Builder, CurFn); 355 356 // Reset the debug location to that of the simple 'return' expression, if any 357 // rather than that of the end of the function's scope '}'. 358 ApplyDebugLocation AL(*this, Loc); 359 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 360 EmitEndEHSpec(CurCodeDecl); 361 362 assert(EHStack.empty() && 363 "did not remove all scopes from cleanup stack!"); 364 365 // If someone did an indirect goto, emit the indirect goto block at the end of 366 // the function. 367 if (IndirectBranch) { 368 EmitBlock(IndirectBranch->getParent()); 369 Builder.ClearInsertionPoint(); 370 } 371 372 // If some of our locals escaped, insert a call to llvm.localescape in the 373 // entry block. 374 if (!EscapedLocals.empty()) { 375 // Invert the map from local to index into a simple vector. There should be 376 // no holes. 377 SmallVector<llvm::Value *, 4> EscapeArgs; 378 EscapeArgs.resize(EscapedLocals.size()); 379 for (auto &Pair : EscapedLocals) 380 EscapeArgs[Pair.second] = Pair.first; 381 llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration( 382 &CGM.getModule(), llvm::Intrinsic::localescape); 383 CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs); 384 } 385 386 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 387 llvm::Instruction *Ptr = AllocaInsertPt; 388 AllocaInsertPt = nullptr; 389 Ptr->eraseFromParent(); 390 391 // If someone took the address of a label but never did an indirect goto, we 392 // made a zero entry PHI node, which is illegal, zap it now. 393 if (IndirectBranch) { 394 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 395 if (PN->getNumIncomingValues() == 0) { 396 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 397 PN->eraseFromParent(); 398 } 399 } 400 401 EmitIfUsed(*this, EHResumeBlock); 402 EmitIfUsed(*this, TerminateLandingPad); 403 EmitIfUsed(*this, TerminateHandler); 404 EmitIfUsed(*this, UnreachableBlock); 405 406 for (const auto &FuncletAndParent : TerminateFunclets) 407 EmitIfUsed(*this, FuncletAndParent.second); 408 409 if (CGM.getCodeGenOpts().EmitDeclMetadata) 410 EmitDeclMetadata(); 411 412 for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator 413 I = DeferredReplacements.begin(), 414 E = DeferredReplacements.end(); 415 I != E; ++I) { 416 I->first->replaceAllUsesWith(I->second); 417 I->first->eraseFromParent(); 418 } 419 420 // Eliminate CleanupDestSlot alloca by replacing it with SSA values and 421 // PHIs if the current function is a coroutine. We don't do it for all 422 // functions as it may result in slight increase in numbers of instructions 423 // if compiled with no optimizations. We do it for coroutine as the lifetime 424 // of CleanupDestSlot alloca make correct coroutine frame building very 425 // difficult. 426 if (NormalCleanupDest.isValid() && isCoroutine()) { 427 llvm::DominatorTree DT(*CurFn); 428 llvm::PromoteMemToReg( 429 cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT); 430 NormalCleanupDest = Address::invalid(); 431 } 432 433 // Scan function arguments for vector width. 434 for (llvm::Argument &A : CurFn->args()) 435 if (auto *VT = dyn_cast<llvm::VectorType>(A.getType())) 436 LargestVectorWidth = std::max(LargestVectorWidth, 437 VT->getPrimitiveSizeInBits()); 438 439 // Update vector width based on return type. 440 if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType())) 441 LargestVectorWidth = std::max(LargestVectorWidth, 442 VT->getPrimitiveSizeInBits()); 443 444 // Add the required-vector-width attribute. This contains the max width from: 445 // 1. min-vector-width attribute used in the source program. 446 // 2. Any builtins used that have a vector width specified. 447 // 3. Values passed in and out of inline assembly. 448 // 4. Width of vector arguments and return types for this function. 449 // 5. Width of vector aguments and return types for functions called by this 450 // function. 451 CurFn->addFnAttr("min-legal-vector-width", llvm::utostr(LargestVectorWidth)); 452 } 453 454 /// ShouldInstrumentFunction - Return true if the current function should be 455 /// instrumented with __cyg_profile_func_* calls 456 bool CodeGenFunction::ShouldInstrumentFunction() { 457 if (!CGM.getCodeGenOpts().InstrumentFunctions && 458 !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining && 459 !CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 460 return false; 461 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 462 return false; 463 return true; 464 } 465 466 /// ShouldXRayInstrument - Return true if the current function should be 467 /// instrumented with XRay nop sleds. 468 bool CodeGenFunction::ShouldXRayInstrumentFunction() const { 469 return CGM.getCodeGenOpts().XRayInstrumentFunctions; 470 } 471 472 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to 473 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation. 474 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const { 475 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 476 (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents || 477 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 478 XRayInstrKind::Custom); 479 } 480 481 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const { 482 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 483 (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents || 484 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 485 XRayInstrKind::Typed); 486 } 487 488 llvm::Constant * 489 CodeGenFunction::EncodeAddrForUseInPrologue(llvm::Function *F, 490 llvm::Constant *Addr) { 491 // Addresses stored in prologue data can't require run-time fixups and must 492 // be PC-relative. Run-time fixups are undesirable because they necessitate 493 // writable text segments, which are unsafe. And absolute addresses are 494 // undesirable because they break PIE mode. 495 496 // Add a layer of indirection through a private global. Taking its address 497 // won't result in a run-time fixup, even if Addr has linkonce_odr linkage. 498 auto *GV = new llvm::GlobalVariable(CGM.getModule(), Addr->getType(), 499 /*isConstant=*/true, 500 llvm::GlobalValue::PrivateLinkage, Addr); 501 502 // Create a PC-relative address. 503 auto *GOTAsInt = llvm::ConstantExpr::getPtrToInt(GV, IntPtrTy); 504 auto *FuncAsInt = llvm::ConstantExpr::getPtrToInt(F, IntPtrTy); 505 auto *PCRelAsInt = llvm::ConstantExpr::getSub(GOTAsInt, FuncAsInt); 506 return (IntPtrTy == Int32Ty) 507 ? PCRelAsInt 508 : llvm::ConstantExpr::getTrunc(PCRelAsInt, Int32Ty); 509 } 510 511 llvm::Value * 512 CodeGenFunction::DecodeAddrUsedInPrologue(llvm::Value *F, 513 llvm::Value *EncodedAddr) { 514 // Reconstruct the address of the global. 515 auto *PCRelAsInt = Builder.CreateSExt(EncodedAddr, IntPtrTy); 516 auto *FuncAsInt = Builder.CreatePtrToInt(F, IntPtrTy, "func_addr.int"); 517 auto *GOTAsInt = Builder.CreateAdd(PCRelAsInt, FuncAsInt, "global_addr.int"); 518 auto *GOTAddr = Builder.CreateIntToPtr(GOTAsInt, Int8PtrPtrTy, "global_addr"); 519 520 // Load the original pointer through the global. 521 return Builder.CreateLoad(Address(GOTAddr, getPointerAlign()), 522 "decoded_addr"); 523 } 524 525 static void removeImageAccessQualifier(std::string& TyName) { 526 std::string ReadOnlyQual("__read_only"); 527 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 528 if (ReadOnlyPos != std::string::npos) 529 // "+ 1" for the space after access qualifier. 530 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 531 else { 532 std::string WriteOnlyQual("__write_only"); 533 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 534 if (WriteOnlyPos != std::string::npos) 535 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 536 else { 537 std::string ReadWriteQual("__read_write"); 538 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 539 if (ReadWritePos != std::string::npos) 540 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 541 } 542 } 543 } 544 545 // Returns the address space id that should be produced to the 546 // kernel_arg_addr_space metadata. This is always fixed to the ids 547 // as specified in the SPIR 2.0 specification in order to differentiate 548 // for example in clGetKernelArgInfo() implementation between the address 549 // spaces with targets without unique mapping to the OpenCL address spaces 550 // (basically all single AS CPUs). 551 static unsigned ArgInfoAddressSpace(LangAS AS) { 552 switch (AS) { 553 case LangAS::opencl_global: return 1; 554 case LangAS::opencl_constant: return 2; 555 case LangAS::opencl_local: return 3; 556 case LangAS::opencl_generic: return 4; // Not in SPIR 2.0 specs. 557 default: 558 return 0; // Assume private. 559 } 560 } 561 562 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument 563 // information in the program executable. The argument information stored 564 // includes the argument name, its type, the address and access qualifiers used. 565 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn, 566 CodeGenModule &CGM, llvm::LLVMContext &Context, 567 CGBuilderTy &Builder, ASTContext &ASTCtx) { 568 // Create MDNodes that represent the kernel arg metadata. 569 // Each MDNode is a list in the form of "key", N number of values which is 570 // the same number of values as their are kernel arguments. 571 572 const PrintingPolicy &Policy = ASTCtx.getPrintingPolicy(); 573 574 // MDNode for the kernel argument address space qualifiers. 575 SmallVector<llvm::Metadata *, 8> addressQuals; 576 577 // MDNode for the kernel argument access qualifiers (images only). 578 SmallVector<llvm::Metadata *, 8> accessQuals; 579 580 // MDNode for the kernel argument type names. 581 SmallVector<llvm::Metadata *, 8> argTypeNames; 582 583 // MDNode for the kernel argument base type names. 584 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 585 586 // MDNode for the kernel argument type qualifiers. 587 SmallVector<llvm::Metadata *, 8> argTypeQuals; 588 589 // MDNode for the kernel argument names. 590 SmallVector<llvm::Metadata *, 8> argNames; 591 592 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 593 const ParmVarDecl *parm = FD->getParamDecl(i); 594 QualType ty = parm->getType(); 595 std::string typeQuals; 596 597 if (ty->isPointerType()) { 598 QualType pointeeTy = ty->getPointeeType(); 599 600 // Get address qualifier. 601 addressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32( 602 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 603 604 // Get argument type name. 605 std::string typeName = 606 pointeeTy.getUnqualifiedType().getAsString(Policy) + "*"; 607 608 // Turn "unsigned type" to "utype" 609 std::string::size_type pos = typeName.find("unsigned"); 610 if (pointeeTy.isCanonical() && pos != std::string::npos) 611 typeName.erase(pos+1, 8); 612 613 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 614 615 std::string baseTypeName = 616 pointeeTy.getUnqualifiedType().getCanonicalType().getAsString( 617 Policy) + 618 "*"; 619 620 // Turn "unsigned type" to "utype" 621 pos = baseTypeName.find("unsigned"); 622 if (pos != std::string::npos) 623 baseTypeName.erase(pos+1, 8); 624 625 argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName)); 626 627 // Get argument type qualifiers: 628 if (ty.isRestrictQualified()) 629 typeQuals = "restrict"; 630 if (pointeeTy.isConstQualified() || 631 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 632 typeQuals += typeQuals.empty() ? "const" : " const"; 633 if (pointeeTy.isVolatileQualified()) 634 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 635 } else { 636 uint32_t AddrSpc = 0; 637 bool isPipe = ty->isPipeType(); 638 if (ty->isImageType() || isPipe) 639 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 640 641 addressQuals.push_back( 642 llvm::ConstantAsMetadata::get(Builder.getInt32(AddrSpc))); 643 644 // Get argument type name. 645 std::string typeName; 646 if (isPipe) 647 typeName = ty.getCanonicalType()->getAs<PipeType>()->getElementType() 648 .getAsString(Policy); 649 else 650 typeName = ty.getUnqualifiedType().getAsString(Policy); 651 652 // Turn "unsigned type" to "utype" 653 std::string::size_type pos = typeName.find("unsigned"); 654 if (ty.isCanonical() && pos != std::string::npos) 655 typeName.erase(pos+1, 8); 656 657 std::string baseTypeName; 658 if (isPipe) 659 baseTypeName = ty.getCanonicalType()->getAs<PipeType>() 660 ->getElementType().getCanonicalType() 661 .getAsString(Policy); 662 else 663 baseTypeName = 664 ty.getUnqualifiedType().getCanonicalType().getAsString(Policy); 665 666 // Remove access qualifiers on images 667 // (as they are inseparable from type in clang implementation, 668 // but OpenCL spec provides a special query to get access qualifier 669 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 670 if (ty->isImageType()) { 671 removeImageAccessQualifier(typeName); 672 removeImageAccessQualifier(baseTypeName); 673 } 674 675 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 676 677 // Turn "unsigned type" to "utype" 678 pos = baseTypeName.find("unsigned"); 679 if (pos != std::string::npos) 680 baseTypeName.erase(pos+1, 8); 681 682 argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName)); 683 684 if (isPipe) 685 typeQuals = "pipe"; 686 } 687 688 argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals)); 689 690 // Get image and pipe access qualifier: 691 if (ty->isImageType()|| ty->isPipeType()) { 692 const Decl *PDecl = parm; 693 if (auto *TD = dyn_cast<TypedefType>(ty)) 694 PDecl = TD->getDecl(); 695 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>(); 696 if (A && A->isWriteOnly()) 697 accessQuals.push_back(llvm::MDString::get(Context, "write_only")); 698 else if (A && A->isReadWrite()) 699 accessQuals.push_back(llvm::MDString::get(Context, "read_write")); 700 else 701 accessQuals.push_back(llvm::MDString::get(Context, "read_only")); 702 } else 703 accessQuals.push_back(llvm::MDString::get(Context, "none")); 704 705 // Get argument name. 706 argNames.push_back(llvm::MDString::get(Context, parm->getName())); 707 } 708 709 Fn->setMetadata("kernel_arg_addr_space", 710 llvm::MDNode::get(Context, addressQuals)); 711 Fn->setMetadata("kernel_arg_access_qual", 712 llvm::MDNode::get(Context, accessQuals)); 713 Fn->setMetadata("kernel_arg_type", 714 llvm::MDNode::get(Context, argTypeNames)); 715 Fn->setMetadata("kernel_arg_base_type", 716 llvm::MDNode::get(Context, argBaseTypeNames)); 717 Fn->setMetadata("kernel_arg_type_qual", 718 llvm::MDNode::get(Context, argTypeQuals)); 719 if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 720 Fn->setMetadata("kernel_arg_name", 721 llvm::MDNode::get(Context, argNames)); 722 } 723 724 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 725 llvm::Function *Fn) 726 { 727 if (!FD->hasAttr<OpenCLKernelAttr>()) 728 return; 729 730 llvm::LLVMContext &Context = getLLVMContext(); 731 732 GenOpenCLArgMetadata(FD, Fn, CGM, Context, Builder, getContext()); 733 734 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { 735 QualType HintQTy = A->getTypeHint(); 736 const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>(); 737 bool IsSignedInteger = 738 HintQTy->isSignedIntegerType() || 739 (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType()); 740 llvm::Metadata *AttrMDArgs[] = { 741 llvm::ConstantAsMetadata::get(llvm::UndefValue::get( 742 CGM.getTypes().ConvertType(A->getTypeHint()))), 743 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 744 llvm::IntegerType::get(Context, 32), 745 llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))}; 746 Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs)); 747 } 748 749 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { 750 llvm::Metadata *AttrMDArgs[] = { 751 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 752 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 753 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 754 Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs)); 755 } 756 757 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { 758 llvm::Metadata *AttrMDArgs[] = { 759 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 760 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 761 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 762 Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs)); 763 } 764 765 if (const OpenCLIntelReqdSubGroupSizeAttr *A = 766 FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) { 767 llvm::Metadata *AttrMDArgs[] = { 768 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))}; 769 Fn->setMetadata("intel_reqd_sub_group_size", 770 llvm::MDNode::get(Context, AttrMDArgs)); 771 } 772 } 773 774 /// Determine whether the function F ends with a return stmt. 775 static bool endsWithReturn(const Decl* F) { 776 const Stmt *Body = nullptr; 777 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F)) 778 Body = FD->getBody(); 779 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F)) 780 Body = OMD->getBody(); 781 782 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 783 auto LastStmt = CS->body_rbegin(); 784 if (LastStmt != CS->body_rend()) 785 return isa<ReturnStmt>(*LastStmt); 786 } 787 return false; 788 } 789 790 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) { 791 if (SanOpts.has(SanitizerKind::Thread)) { 792 Fn->addFnAttr("sanitize_thread_no_checking_at_run_time"); 793 Fn->removeFnAttr(llvm::Attribute::SanitizeThread); 794 } 795 } 796 797 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) { 798 auto *MD = dyn_cast_or_null<CXXMethodDecl>(D); 799 if (!MD || !MD->getDeclName().getAsIdentifierInfo() || 800 !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") || 801 (MD->getNumParams() != 1 && MD->getNumParams() != 2)) 802 return false; 803 804 if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType()) 805 return false; 806 807 if (MD->getNumParams() == 2) { 808 auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>(); 809 if (!PT || !PT->isVoidPointerType() || 810 !PT->getPointeeType().isConstQualified()) 811 return false; 812 } 813 814 return true; 815 } 816 817 /// Return the UBSan prologue signature for \p FD if one is available. 818 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM, 819 const FunctionDecl *FD) { 820 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 821 if (!MD->isStatic()) 822 return nullptr; 823 return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM); 824 } 825 826 void CodeGenFunction::StartFunction(GlobalDecl GD, 827 QualType RetTy, 828 llvm::Function *Fn, 829 const CGFunctionInfo &FnInfo, 830 const FunctionArgList &Args, 831 SourceLocation Loc, 832 SourceLocation StartLoc) { 833 assert(!CurFn && 834 "Do not use a CodeGenFunction object for more than one function"); 835 836 const Decl *D = GD.getDecl(); 837 838 DidCallStackSave = false; 839 CurCodeDecl = D; 840 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 841 if (FD->usesSEHTry()) 842 CurSEHParent = FD; 843 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr); 844 FnRetTy = RetTy; 845 CurFn = Fn; 846 CurFnInfo = &FnInfo; 847 assert(CurFn->isDeclaration() && "Function already has body?"); 848 849 // If this function has been blacklisted for any of the enabled sanitizers, 850 // disable the sanitizer for the function. 851 do { 852 #define SANITIZER(NAME, ID) \ 853 if (SanOpts.empty()) \ 854 break; \ 855 if (SanOpts.has(SanitizerKind::ID)) \ 856 if (CGM.isInSanitizerBlacklist(SanitizerKind::ID, Fn, Loc)) \ 857 SanOpts.set(SanitizerKind::ID, false); 858 859 #include "clang/Basic/Sanitizers.def" 860 #undef SANITIZER 861 } while (0); 862 863 if (D) { 864 // Apply the no_sanitize* attributes to SanOpts. 865 for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) { 866 SanitizerMask mask = Attr->getMask(); 867 SanOpts.Mask &= ~mask; 868 if (mask & SanitizerKind::Address) 869 SanOpts.set(SanitizerKind::KernelAddress, false); 870 if (mask & SanitizerKind::KernelAddress) 871 SanOpts.set(SanitizerKind::Address, false); 872 if (mask & SanitizerKind::HWAddress) 873 SanOpts.set(SanitizerKind::KernelHWAddress, false); 874 if (mask & SanitizerKind::KernelHWAddress) 875 SanOpts.set(SanitizerKind::HWAddress, false); 876 } 877 } 878 879 // Apply sanitizer attributes to the function. 880 if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress)) 881 Fn->addFnAttr(llvm::Attribute::SanitizeAddress); 882 if (SanOpts.hasOneOf(SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress)) 883 Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress); 884 if (SanOpts.has(SanitizerKind::Thread)) 885 Fn->addFnAttr(llvm::Attribute::SanitizeThread); 886 if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory)) 887 Fn->addFnAttr(llvm::Attribute::SanitizeMemory); 888 if (SanOpts.has(SanitizerKind::SafeStack)) 889 Fn->addFnAttr(llvm::Attribute::SafeStack); 890 if (SanOpts.has(SanitizerKind::ShadowCallStack)) 891 Fn->addFnAttr(llvm::Attribute::ShadowCallStack); 892 893 // Apply fuzzing attribute to the function. 894 if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink)) 895 Fn->addFnAttr(llvm::Attribute::OptForFuzzing); 896 897 // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize, 898 // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time. 899 if (SanOpts.has(SanitizerKind::Thread)) { 900 if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) { 901 IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0); 902 if (OMD->getMethodFamily() == OMF_dealloc || 903 OMD->getMethodFamily() == OMF_initialize || 904 (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) { 905 markAsIgnoreThreadCheckingAtRuntime(Fn); 906 } 907 } 908 } 909 910 // Ignore unrelated casts in STL allocate() since the allocator must cast 911 // from void* to T* before object initialization completes. Don't match on the 912 // namespace because not all allocators are in std:: 913 if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 914 if (matchesStlAllocatorFn(D, getContext())) 915 SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast; 916 } 917 918 // Apply xray attributes to the function (as a string, for now) 919 if (D) { 920 if (const auto *XRayAttr = D->getAttr<XRayInstrumentAttr>()) { 921 if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 922 XRayInstrKind::Function)) { 923 if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) 924 Fn->addFnAttr("function-instrument", "xray-always"); 925 if (XRayAttr->neverXRayInstrument()) 926 Fn->addFnAttr("function-instrument", "xray-never"); 927 if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>()) 928 if (ShouldXRayInstrumentFunction()) 929 Fn->addFnAttr("xray-log-args", 930 llvm::utostr(LogArgs->getArgumentCount())); 931 } 932 } else { 933 if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc)) 934 Fn->addFnAttr( 935 "xray-instruction-threshold", 936 llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold)); 937 } 938 } 939 940 // Add no-jump-tables value. 941 Fn->addFnAttr("no-jump-tables", 942 llvm::toStringRef(CGM.getCodeGenOpts().NoUseJumpTables)); 943 944 // Add profile-sample-accurate value. 945 if (CGM.getCodeGenOpts().ProfileSampleAccurate) 946 Fn->addFnAttr("profile-sample-accurate"); 947 948 if (getLangOpts().OpenCL) { 949 // Add metadata for a kernel function. 950 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 951 EmitOpenCLKernelMetadata(FD, Fn); 952 } 953 954 // If we are checking function types, emit a function type signature as 955 // prologue data. 956 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) { 957 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 958 if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) { 959 // Remove any (C++17) exception specifications, to allow calling e.g. a 960 // noexcept function through a non-noexcept pointer. 961 auto ProtoTy = 962 getContext().getFunctionTypeWithExceptionSpec(FD->getType(), 963 EST_None); 964 llvm::Constant *FTRTTIConst = 965 CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true); 966 llvm::Constant *FTRTTIConstEncoded = 967 EncodeAddrForUseInPrologue(Fn, FTRTTIConst); 968 llvm::Constant *PrologueStructElems[] = {PrologueSig, 969 FTRTTIConstEncoded}; 970 llvm::Constant *PrologueStructConst = 971 llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true); 972 Fn->setPrologueData(PrologueStructConst); 973 } 974 } 975 } 976 977 // If we're checking nullability, we need to know whether we can check the 978 // return value. Initialize the flag to 'true' and refine it in EmitParmDecl. 979 if (SanOpts.has(SanitizerKind::NullabilityReturn)) { 980 auto Nullability = FnRetTy->getNullability(getContext()); 981 if (Nullability && *Nullability == NullabilityKind::NonNull) { 982 if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && 983 CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>())) 984 RetValNullabilityPrecondition = 985 llvm::ConstantInt::getTrue(getLLVMContext()); 986 } 987 } 988 989 // If we're in C++ mode and the function name is "main", it is guaranteed 990 // to be norecurse by the standard (3.6.1.3 "The function main shall not be 991 // used within a program"). 992 if (getLangOpts().CPlusPlus) 993 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 994 if (FD->isMain()) 995 Fn->addFnAttr(llvm::Attribute::NoRecurse); 996 997 // If a custom alignment is used, force realigning to this alignment on 998 // any main function which certainly will need it. 999 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 1000 if ((FD->isMain() || FD->isMSVCRTEntryPoint()) && 1001 CGM.getCodeGenOpts().StackAlignment) 1002 Fn->addFnAttr("stackrealign"); 1003 1004 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 1005 1006 // Create a marker to make it easy to insert allocas into the entryblock 1007 // later. Don't create this with the builder, because we don't want it 1008 // folded. 1009 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 1010 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB); 1011 1012 ReturnBlock = getJumpDestInCurrentScope("return"); 1013 1014 Builder.SetInsertPoint(EntryBB); 1015 1016 // If we're checking the return value, allocate space for a pointer to a 1017 // precise source location of the checked return statement. 1018 if (requiresReturnValueCheck()) { 1019 ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr"); 1020 InitTempAlloca(ReturnLocation, llvm::ConstantPointerNull::get(Int8PtrTy)); 1021 } 1022 1023 // Emit subprogram debug descriptor. 1024 if (CGDebugInfo *DI = getDebugInfo()) { 1025 // Reconstruct the type from the argument list so that implicit parameters, 1026 // such as 'this' and 'vtt', show up in the debug info. Preserve the calling 1027 // convention. 1028 CallingConv CC = CallingConv::CC_C; 1029 if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 1030 if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>()) 1031 CC = SrcFnTy->getCallConv(); 1032 SmallVector<QualType, 16> ArgTypes; 1033 for (const VarDecl *VD : Args) 1034 ArgTypes.push_back(VD->getType()); 1035 QualType FnType = getContext().getFunctionType( 1036 RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC)); 1037 DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, CurFuncIsThunk, 1038 Builder); 1039 } 1040 1041 if (ShouldInstrumentFunction()) { 1042 if (CGM.getCodeGenOpts().InstrumentFunctions) 1043 CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter"); 1044 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 1045 CurFn->addFnAttr("instrument-function-entry-inlined", 1046 "__cyg_profile_func_enter"); 1047 if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 1048 CurFn->addFnAttr("instrument-function-entry-inlined", 1049 "__cyg_profile_func_enter_bare"); 1050 } 1051 1052 // Since emitting the mcount call here impacts optimizations such as function 1053 // inlining, we just add an attribute to insert a mcount call in backend. 1054 // The attribute "counting-function" is set to mcount function name which is 1055 // architecture dependent. 1056 if (CGM.getCodeGenOpts().InstrumentForProfiling) { 1057 // Calls to fentry/mcount should not be generated if function has 1058 // the no_instrument_function attribute. 1059 if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) { 1060 if (CGM.getCodeGenOpts().CallFEntry) 1061 Fn->addFnAttr("fentry-call", "true"); 1062 else { 1063 Fn->addFnAttr("instrument-function-entry-inlined", 1064 getTarget().getMCountName()); 1065 } 1066 } 1067 } 1068 1069 if (RetTy->isVoidType()) { 1070 // Void type; nothing to return. 1071 ReturnValue = Address::invalid(); 1072 1073 // Count the implicit return. 1074 if (!endsWithReturn(D)) 1075 ++NumReturnExprs; 1076 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect && 1077 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 1078 // Indirect aggregate return; emit returned value directly into sret slot. 1079 // This reduces code size, and affects correctness in C++. 1080 auto AI = CurFn->arg_begin(); 1081 if (CurFnInfo->getReturnInfo().isSRetAfterThis()) 1082 ++AI; 1083 ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign()); 1084 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && 1085 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 1086 // Load the sret pointer from the argument struct and return into that. 1087 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); 1088 llvm::Function::arg_iterator EI = CurFn->arg_end(); 1089 --EI; 1090 llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx); 1091 Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result"); 1092 ReturnValue = Address(Addr, getNaturalTypeAlignment(RetTy)); 1093 } else { 1094 ReturnValue = CreateIRTemp(RetTy, "retval"); 1095 1096 // Tell the epilog emitter to autorelease the result. We do this 1097 // now so that various specialized functions can suppress it 1098 // during their IR-generation. 1099 if (getLangOpts().ObjCAutoRefCount && 1100 !CurFnInfo->isReturnsRetained() && 1101 RetTy->isObjCRetainableType()) 1102 AutoreleaseResult = true; 1103 } 1104 1105 EmitStartEHSpec(CurCodeDecl); 1106 1107 PrologueCleanupDepth = EHStack.stable_begin(); 1108 1109 // Emit OpenMP specific initialization of the device functions. 1110 if (getLangOpts().OpenMP && CurCodeDecl) 1111 CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl); 1112 1113 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 1114 1115 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 1116 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 1117 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 1118 if (MD->getParent()->isLambda() && 1119 MD->getOverloadedOperator() == OO_Call) { 1120 // We're in a lambda; figure out the captures. 1121 MD->getParent()->getCaptureFields(LambdaCaptureFields, 1122 LambdaThisCaptureField); 1123 if (LambdaThisCaptureField) { 1124 // If the lambda captures the object referred to by '*this' - either by 1125 // value or by reference, make sure CXXThisValue points to the correct 1126 // object. 1127 1128 // Get the lvalue for the field (which is a copy of the enclosing object 1129 // or contains the address of the enclosing object). 1130 LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 1131 if (!LambdaThisCaptureField->getType()->isPointerType()) { 1132 // If the enclosing object was captured by value, just use its address. 1133 CXXThisValue = ThisFieldLValue.getAddress().getPointer(); 1134 } else { 1135 // Load the lvalue pointed to by the field, since '*this' was captured 1136 // by reference. 1137 CXXThisValue = 1138 EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal(); 1139 } 1140 } 1141 for (auto *FD : MD->getParent()->fields()) { 1142 if (FD->hasCapturedVLAType()) { 1143 auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD), 1144 SourceLocation()).getScalarVal(); 1145 auto VAT = FD->getCapturedVLAType(); 1146 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 1147 } 1148 } 1149 } else { 1150 // Not in a lambda; just use 'this' from the method. 1151 // FIXME: Should we generate a new load for each use of 'this'? The 1152 // fast register allocator would be happier... 1153 CXXThisValue = CXXABIThisValue; 1154 } 1155 1156 // Check the 'this' pointer once per function, if it's available. 1157 if (CXXABIThisValue) { 1158 SanitizerSet SkippedChecks; 1159 SkippedChecks.set(SanitizerKind::ObjectSize, true); 1160 QualType ThisTy = MD->getThisType(getContext()); 1161 1162 // If this is the call operator of a lambda with no capture-default, it 1163 // may have a static invoker function, which may call this operator with 1164 // a null 'this' pointer. 1165 if (isLambdaCallOperator(MD) && 1166 MD->getParent()->getLambdaCaptureDefault() == LCD_None) 1167 SkippedChecks.set(SanitizerKind::Null, true); 1168 1169 EmitTypeCheck(isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall 1170 : TCK_MemberCall, 1171 Loc, CXXABIThisValue, ThisTy, 1172 getContext().getTypeAlignInChars(ThisTy->getPointeeType()), 1173 SkippedChecks); 1174 } 1175 } 1176 1177 // If any of the arguments have a variably modified type, make sure to 1178 // emit the type size. 1179 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 1180 i != e; ++i) { 1181 const VarDecl *VD = *i; 1182 1183 // Dig out the type as written from ParmVarDecls; it's unclear whether 1184 // the standard (C99 6.9.1p10) requires this, but we're following the 1185 // precedent set by gcc. 1186 QualType Ty; 1187 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 1188 Ty = PVD->getOriginalType(); 1189 else 1190 Ty = VD->getType(); 1191 1192 if (Ty->isVariablyModifiedType()) 1193 EmitVariablyModifiedType(Ty); 1194 } 1195 // Emit a location at the end of the prologue. 1196 if (CGDebugInfo *DI = getDebugInfo()) 1197 DI->EmitLocation(Builder, StartLoc); 1198 1199 // TODO: Do we need to handle this in two places like we do with 1200 // target-features/target-cpu? 1201 if (CurFuncDecl) 1202 if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>()) 1203 LargestVectorWidth = VecWidth->getVectorWidth(); 1204 } 1205 1206 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args, 1207 const Stmt *Body) { 1208 incrementProfileCounter(Body); 1209 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 1210 EmitCompoundStmtWithoutScope(*S); 1211 else 1212 EmitStmt(Body); 1213 } 1214 1215 /// When instrumenting to collect profile data, the counts for some blocks 1216 /// such as switch cases need to not include the fall-through counts, so 1217 /// emit a branch around the instrumentation code. When not instrumenting, 1218 /// this just calls EmitBlock(). 1219 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, 1220 const Stmt *S) { 1221 llvm::BasicBlock *SkipCountBB = nullptr; 1222 if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) { 1223 // When instrumenting for profiling, the fallthrough to certain 1224 // statements needs to skip over the instrumentation code so that we 1225 // get an accurate count. 1226 SkipCountBB = createBasicBlock("skipcount"); 1227 EmitBranch(SkipCountBB); 1228 } 1229 EmitBlock(BB); 1230 uint64_t CurrentCount = getCurrentProfileCount(); 1231 incrementProfileCounter(S); 1232 setCurrentProfileCount(getCurrentProfileCount() + CurrentCount); 1233 if (SkipCountBB) 1234 EmitBlock(SkipCountBB); 1235 } 1236 1237 /// Tries to mark the given function nounwind based on the 1238 /// non-existence of any throwing calls within it. We believe this is 1239 /// lightweight enough to do at -O0. 1240 static void TryMarkNoThrow(llvm::Function *F) { 1241 // LLVM treats 'nounwind' on a function as part of the type, so we 1242 // can't do this on functions that can be overwritten. 1243 if (F->isInterposable()) return; 1244 1245 for (llvm::BasicBlock &BB : *F) 1246 for (llvm::Instruction &I : BB) 1247 if (I.mayThrow()) 1248 return; 1249 1250 F->setDoesNotThrow(); 1251 } 1252 1253 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD, 1254 FunctionArgList &Args) { 1255 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1256 QualType ResTy = FD->getReturnType(); 1257 1258 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 1259 if (MD && MD->isInstance()) { 1260 if (CGM.getCXXABI().HasThisReturn(GD)) 1261 ResTy = MD->getThisType(getContext()); 1262 else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) 1263 ResTy = CGM.getContext().VoidPtrTy; 1264 CGM.getCXXABI().buildThisParam(*this, Args); 1265 } 1266 1267 // The base version of an inheriting constructor whose constructed base is a 1268 // virtual base is not passed any arguments (because it doesn't actually call 1269 // the inherited constructor). 1270 bool PassedParams = true; 1271 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 1272 if (auto Inherited = CD->getInheritedConstructor()) 1273 PassedParams = 1274 getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType()); 1275 1276 if (PassedParams) { 1277 for (auto *Param : FD->parameters()) { 1278 Args.push_back(Param); 1279 if (!Param->hasAttr<PassObjectSizeAttr>()) 1280 continue; 1281 1282 auto *Implicit = ImplicitParamDecl::Create( 1283 getContext(), Param->getDeclContext(), Param->getLocation(), 1284 /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other); 1285 SizeArguments[Param] = Implicit; 1286 Args.push_back(Implicit); 1287 } 1288 } 1289 1290 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 1291 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 1292 1293 return ResTy; 1294 } 1295 1296 static bool 1297 shouldUseUndefinedBehaviorReturnOptimization(const FunctionDecl *FD, 1298 const ASTContext &Context) { 1299 QualType T = FD->getReturnType(); 1300 // Avoid the optimization for functions that return a record type with a 1301 // trivial destructor or another trivially copyable type. 1302 if (const RecordType *RT = T.getCanonicalType()->getAs<RecordType>()) { 1303 if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1304 return !ClassDecl->hasTrivialDestructor(); 1305 } 1306 return !T.isTriviallyCopyableType(Context); 1307 } 1308 1309 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1310 const CGFunctionInfo &FnInfo) { 1311 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1312 CurGD = GD; 1313 1314 FunctionArgList Args; 1315 QualType ResTy = BuildFunctionArgList(GD, Args); 1316 1317 // Check if we should generate debug info for this function. 1318 if (FD->hasAttr<NoDebugAttr>()) 1319 DebugInfo = nullptr; // disable debug info indefinitely for this function 1320 1321 // The function might not have a body if we're generating thunks for a 1322 // function declaration. 1323 SourceRange BodyRange; 1324 if (Stmt *Body = FD->getBody()) 1325 BodyRange = Body->getSourceRange(); 1326 else 1327 BodyRange = FD->getLocation(); 1328 CurEHLocation = BodyRange.getEnd(); 1329 1330 // Use the location of the start of the function to determine where 1331 // the function definition is located. By default use the location 1332 // of the declaration as the location for the subprogram. A function 1333 // may lack a declaration in the source code if it is created by code 1334 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). 1335 SourceLocation Loc = FD->getLocation(); 1336 1337 // If this is a function specialization then use the pattern body 1338 // as the location for the function. 1339 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) 1340 if (SpecDecl->hasBody(SpecDecl)) 1341 Loc = SpecDecl->getLocation(); 1342 1343 Stmt *Body = FD->getBody(); 1344 1345 // Initialize helper which will detect jumps which can cause invalid lifetime 1346 // markers. 1347 if (Body && ShouldEmitLifetimeMarkers) 1348 Bypasses.Init(Body); 1349 1350 // Emit the standard function prologue. 1351 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin()); 1352 1353 // Generate the body of the function. 1354 PGO.assignRegionCounters(GD, CurFn); 1355 if (isa<CXXDestructorDecl>(FD)) 1356 EmitDestructorBody(Args); 1357 else if (isa<CXXConstructorDecl>(FD)) 1358 EmitConstructorBody(Args); 1359 else if (getLangOpts().CUDA && 1360 !getLangOpts().CUDAIsDevice && 1361 FD->hasAttr<CUDAGlobalAttr>()) 1362 CGM.getCUDARuntime().emitDeviceStub(*this, Args); 1363 else if (isa<CXXMethodDecl>(FD) && 1364 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 1365 // The lambda static invoker function is special, because it forwards or 1366 // clones the body of the function call operator (but is actually static). 1367 EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD)); 1368 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 1369 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 1370 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 1371 // Implicit copy-assignment gets the same special treatment as implicit 1372 // copy-constructors. 1373 emitImplicitAssignmentOperatorBody(Args); 1374 } else if (Body) { 1375 EmitFunctionBody(Args, Body); 1376 } else 1377 llvm_unreachable("no definition for emitted function"); 1378 1379 // C++11 [stmt.return]p2: 1380 // Flowing off the end of a function [...] results in undefined behavior in 1381 // a value-returning function. 1382 // C11 6.9.1p12: 1383 // If the '}' that terminates a function is reached, and the value of the 1384 // function call is used by the caller, the behavior is undefined. 1385 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock && 1386 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { 1387 bool ShouldEmitUnreachable = 1388 CGM.getCodeGenOpts().StrictReturn || 1389 shouldUseUndefinedBehaviorReturnOptimization(FD, getContext()); 1390 if (SanOpts.has(SanitizerKind::Return)) { 1391 SanitizerScope SanScope(this); 1392 llvm::Value *IsFalse = Builder.getFalse(); 1393 EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return), 1394 SanitizerHandler::MissingReturn, 1395 EmitCheckSourceLocation(FD->getLocation()), None); 1396 } else if (ShouldEmitUnreachable) { 1397 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 1398 EmitTrapCall(llvm::Intrinsic::trap); 1399 } 1400 if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) { 1401 Builder.CreateUnreachable(); 1402 Builder.ClearInsertionPoint(); 1403 } 1404 } 1405 1406 // Emit the standard function epilogue. 1407 FinishFunction(BodyRange.getEnd()); 1408 1409 // If we haven't marked the function nothrow through other means, do 1410 // a quick pass now to see if we can. 1411 if (!CurFn->doesNotThrow()) 1412 TryMarkNoThrow(CurFn); 1413 } 1414 1415 /// ContainsLabel - Return true if the statement contains a label in it. If 1416 /// this statement is not executed normally, it not containing a label means 1417 /// that we can just remove the code. 1418 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 1419 // Null statement, not a label! 1420 if (!S) return false; 1421 1422 // If this is a label, we have to emit the code, consider something like: 1423 // if (0) { ... foo: bar(); } goto foo; 1424 // 1425 // TODO: If anyone cared, we could track __label__'s, since we know that you 1426 // can't jump to one from outside their declared region. 1427 if (isa<LabelStmt>(S)) 1428 return true; 1429 1430 // If this is a case/default statement, and we haven't seen a switch, we have 1431 // to emit the code. 1432 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 1433 return true; 1434 1435 // If this is a switch statement, we want to ignore cases below it. 1436 if (isa<SwitchStmt>(S)) 1437 IgnoreCaseStmts = true; 1438 1439 // Scan subexpressions for verboten labels. 1440 for (const Stmt *SubStmt : S->children()) 1441 if (ContainsLabel(SubStmt, IgnoreCaseStmts)) 1442 return true; 1443 1444 return false; 1445 } 1446 1447 /// containsBreak - Return true if the statement contains a break out of it. 1448 /// If the statement (recursively) contains a switch or loop with a break 1449 /// inside of it, this is fine. 1450 bool CodeGenFunction::containsBreak(const Stmt *S) { 1451 // Null statement, not a label! 1452 if (!S) return false; 1453 1454 // If this is a switch or loop that defines its own break scope, then we can 1455 // include it and anything inside of it. 1456 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 1457 isa<ForStmt>(S)) 1458 return false; 1459 1460 if (isa<BreakStmt>(S)) 1461 return true; 1462 1463 // Scan subexpressions for verboten breaks. 1464 for (const Stmt *SubStmt : S->children()) 1465 if (containsBreak(SubStmt)) 1466 return true; 1467 1468 return false; 1469 } 1470 1471 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) { 1472 if (!S) return false; 1473 1474 // Some statement kinds add a scope and thus never add a decl to the current 1475 // scope. Note, this list is longer than the list of statements that might 1476 // have an unscoped decl nested within them, but this way is conservatively 1477 // correct even if more statement kinds are added. 1478 if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) || 1479 isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) || 1480 isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) || 1481 isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S)) 1482 return false; 1483 1484 if (isa<DeclStmt>(S)) 1485 return true; 1486 1487 for (const Stmt *SubStmt : S->children()) 1488 if (mightAddDeclToScope(SubStmt)) 1489 return true; 1490 1491 return false; 1492 } 1493 1494 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1495 /// to a constant, or if it does but contains a label, return false. If it 1496 /// constant folds return true and set the boolean result in Result. 1497 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1498 bool &ResultBool, 1499 bool AllowLabels) { 1500 llvm::APSInt ResultInt; 1501 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels)) 1502 return false; 1503 1504 ResultBool = ResultInt.getBoolValue(); 1505 return true; 1506 } 1507 1508 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1509 /// to a constant, or if it does but contains a label, return false. If it 1510 /// constant folds return true and set the folded value. 1511 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1512 llvm::APSInt &ResultInt, 1513 bool AllowLabels) { 1514 // FIXME: Rename and handle conversion of other evaluatable things 1515 // to bool. 1516 Expr::EvalResult Result; 1517 if (!Cond->EvaluateAsInt(Result, getContext())) 1518 return false; // Not foldable, not integer or not fully evaluatable. 1519 1520 llvm::APSInt Int = Result.Val.getInt(); 1521 if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond)) 1522 return false; // Contains a label. 1523 1524 ResultInt = Int; 1525 return true; 1526 } 1527 1528 1529 1530 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 1531 /// statement) to the specified blocks. Based on the condition, this might try 1532 /// to simplify the codegen of the conditional based on the branch. 1533 /// 1534 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 1535 llvm::BasicBlock *TrueBlock, 1536 llvm::BasicBlock *FalseBlock, 1537 uint64_t TrueCount) { 1538 Cond = Cond->IgnoreParens(); 1539 1540 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 1541 1542 // Handle X && Y in a condition. 1543 if (CondBOp->getOpcode() == BO_LAnd) { 1544 // If we have "1 && X", simplify the code. "0 && X" would have constant 1545 // folded if the case was simple enough. 1546 bool ConstantBool = false; 1547 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1548 ConstantBool) { 1549 // br(1 && X) -> br(X). 1550 incrementProfileCounter(CondBOp); 1551 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1552 TrueCount); 1553 } 1554 1555 // If we have "X && 1", simplify the code to use an uncond branch. 1556 // "X && 0" would have been constant folded to 0. 1557 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1558 ConstantBool) { 1559 // br(X && 1) -> br(X). 1560 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1561 TrueCount); 1562 } 1563 1564 // Emit the LHS as a conditional. If the LHS conditional is false, we 1565 // want to jump to the FalseBlock. 1566 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 1567 // The counter tells us how often we evaluate RHS, and all of TrueCount 1568 // can be propagated to that branch. 1569 uint64_t RHSCount = getProfileCount(CondBOp->getRHS()); 1570 1571 ConditionalEvaluation eval(*this); 1572 { 1573 ApplyDebugLocation DL(*this, Cond); 1574 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount); 1575 EmitBlock(LHSTrue); 1576 } 1577 1578 incrementProfileCounter(CondBOp); 1579 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1580 1581 // Any temporaries created here are conditional. 1582 eval.begin(*this); 1583 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount); 1584 eval.end(*this); 1585 1586 return; 1587 } 1588 1589 if (CondBOp->getOpcode() == BO_LOr) { 1590 // If we have "0 || X", simplify the code. "1 || X" would have constant 1591 // folded if the case was simple enough. 1592 bool ConstantBool = false; 1593 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1594 !ConstantBool) { 1595 // br(0 || X) -> br(X). 1596 incrementProfileCounter(CondBOp); 1597 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1598 TrueCount); 1599 } 1600 1601 // If we have "X || 0", simplify the code to use an uncond branch. 1602 // "X || 1" would have been constant folded to 1. 1603 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1604 !ConstantBool) { 1605 // br(X || 0) -> br(X). 1606 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1607 TrueCount); 1608 } 1609 1610 // Emit the LHS as a conditional. If the LHS conditional is true, we 1611 // want to jump to the TrueBlock. 1612 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 1613 // We have the count for entry to the RHS and for the whole expression 1614 // being true, so we can divy up True count between the short circuit and 1615 // the RHS. 1616 uint64_t LHSCount = 1617 getCurrentProfileCount() - getProfileCount(CondBOp->getRHS()); 1618 uint64_t RHSCount = TrueCount - LHSCount; 1619 1620 ConditionalEvaluation eval(*this); 1621 { 1622 ApplyDebugLocation DL(*this, Cond); 1623 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount); 1624 EmitBlock(LHSFalse); 1625 } 1626 1627 incrementProfileCounter(CondBOp); 1628 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1629 1630 // Any temporaries created here are conditional. 1631 eval.begin(*this); 1632 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount); 1633 1634 eval.end(*this); 1635 1636 return; 1637 } 1638 } 1639 1640 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 1641 // br(!x, t, f) -> br(x, f, t) 1642 if (CondUOp->getOpcode() == UO_LNot) { 1643 // Negate the count. 1644 uint64_t FalseCount = getCurrentProfileCount() - TrueCount; 1645 // Negate the condition and swap the destination blocks. 1646 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, 1647 FalseCount); 1648 } 1649 } 1650 1651 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 1652 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 1653 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1654 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1655 1656 ConditionalEvaluation cond(*this); 1657 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, 1658 getProfileCount(CondOp)); 1659 1660 // When computing PGO branch weights, we only know the overall count for 1661 // the true block. This code is essentially doing tail duplication of the 1662 // naive code-gen, introducing new edges for which counts are not 1663 // available. Divide the counts proportionally between the LHS and RHS of 1664 // the conditional operator. 1665 uint64_t LHSScaledTrueCount = 0; 1666 if (TrueCount) { 1667 double LHSRatio = 1668 getProfileCount(CondOp) / (double)getCurrentProfileCount(); 1669 LHSScaledTrueCount = TrueCount * LHSRatio; 1670 } 1671 1672 cond.begin(*this); 1673 EmitBlock(LHSBlock); 1674 incrementProfileCounter(CondOp); 1675 { 1676 ApplyDebugLocation DL(*this, Cond); 1677 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, 1678 LHSScaledTrueCount); 1679 } 1680 cond.end(*this); 1681 1682 cond.begin(*this); 1683 EmitBlock(RHSBlock); 1684 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, 1685 TrueCount - LHSScaledTrueCount); 1686 cond.end(*this); 1687 1688 return; 1689 } 1690 1691 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 1692 // Conditional operator handling can give us a throw expression as a 1693 // condition for a case like: 1694 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 1695 // Fold this to: 1696 // br(c, throw x, br(y, t, f)) 1697 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 1698 return; 1699 } 1700 1701 // If the branch has a condition wrapped by __builtin_unpredictable, 1702 // create metadata that specifies that the branch is unpredictable. 1703 // Don't bother if not optimizing because that metadata would not be used. 1704 llvm::MDNode *Unpredictable = nullptr; 1705 auto *Call = dyn_cast<CallExpr>(Cond); 1706 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 1707 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 1708 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 1709 llvm::MDBuilder MDHelper(getLLVMContext()); 1710 Unpredictable = MDHelper.createUnpredictable(); 1711 } 1712 } 1713 1714 // Create branch weights based on the number of times we get here and the 1715 // number of times the condition should be true. 1716 uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount); 1717 llvm::MDNode *Weights = 1718 createProfileWeights(TrueCount, CurrentCount - TrueCount); 1719 1720 // Emit the code with the fully general case. 1721 llvm::Value *CondV; 1722 { 1723 ApplyDebugLocation DL(*this, Cond); 1724 CondV = EvaluateExprAsBool(Cond); 1725 } 1726 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable); 1727 } 1728 1729 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1730 /// specified stmt yet. 1731 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 1732 CGM.ErrorUnsupported(S, Type); 1733 } 1734 1735 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 1736 /// variable-length array whose elements have a non-zero bit-pattern. 1737 /// 1738 /// \param baseType the inner-most element type of the array 1739 /// \param src - a char* pointing to the bit-pattern for a single 1740 /// base element of the array 1741 /// \param sizeInChars - the total size of the VLA, in chars 1742 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 1743 Address dest, Address src, 1744 llvm::Value *sizeInChars) { 1745 CGBuilderTy &Builder = CGF.Builder; 1746 1747 CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType); 1748 llvm::Value *baseSizeInChars 1749 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity()); 1750 1751 Address begin = 1752 Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin"); 1753 llvm::Value *end = 1754 Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end"); 1755 1756 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 1757 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 1758 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 1759 1760 // Make a loop over the VLA. C99 guarantees that the VLA element 1761 // count must be nonzero. 1762 CGF.EmitBlock(loopBB); 1763 1764 llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur"); 1765 cur->addIncoming(begin.getPointer(), originBB); 1766 1767 CharUnits curAlign = 1768 dest.getAlignment().alignmentOfArrayElement(baseSize); 1769 1770 // memcpy the individual element bit-pattern. 1771 Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars, 1772 /*volatile*/ false); 1773 1774 // Go to the next element. 1775 llvm::Value *next = 1776 Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next"); 1777 1778 // Leave if that's the end of the VLA. 1779 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 1780 Builder.CreateCondBr(done, contBB, loopBB); 1781 cur->addIncoming(next, loopBB); 1782 1783 CGF.EmitBlock(contBB); 1784 } 1785 1786 void 1787 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) { 1788 // Ignore empty classes in C++. 1789 if (getLangOpts().CPlusPlus) { 1790 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1791 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 1792 return; 1793 } 1794 } 1795 1796 // Cast the dest ptr to the appropriate i8 pointer type. 1797 if (DestPtr.getElementType() != Int8Ty) 1798 DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty); 1799 1800 // Get size and alignment info for this aggregate. 1801 CharUnits size = getContext().getTypeSizeInChars(Ty); 1802 1803 llvm::Value *SizeVal; 1804 const VariableArrayType *vla; 1805 1806 // Don't bother emitting a zero-byte memset. 1807 if (size.isZero()) { 1808 // But note that getTypeInfo returns 0 for a VLA. 1809 if (const VariableArrayType *vlaType = 1810 dyn_cast_or_null<VariableArrayType>( 1811 getContext().getAsArrayType(Ty))) { 1812 auto VlaSize = getVLASize(vlaType); 1813 SizeVal = VlaSize.NumElts; 1814 CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type); 1815 if (!eltSize.isOne()) 1816 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 1817 vla = vlaType; 1818 } else { 1819 return; 1820 } 1821 } else { 1822 SizeVal = CGM.getSize(size); 1823 vla = nullptr; 1824 } 1825 1826 // If the type contains a pointer to data member we can't memset it to zero. 1827 // Instead, create a null constant and copy it to the destination. 1828 // TODO: there are other patterns besides zero that we can usefully memset, 1829 // like -1, which happens to be the pattern used by member-pointers. 1830 if (!CGM.getTypes().isZeroInitializable(Ty)) { 1831 // For a VLA, emit a single element, then splat that over the VLA. 1832 if (vla) Ty = getContext().getBaseElementType(vla); 1833 1834 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 1835 1836 llvm::GlobalVariable *NullVariable = 1837 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 1838 /*isConstant=*/true, 1839 llvm::GlobalVariable::PrivateLinkage, 1840 NullConstant, Twine()); 1841 CharUnits NullAlign = DestPtr.getAlignment(); 1842 NullVariable->setAlignment(NullAlign.getQuantity()); 1843 Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()), 1844 NullAlign); 1845 1846 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 1847 1848 // Get and call the appropriate llvm.memcpy overload. 1849 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false); 1850 return; 1851 } 1852 1853 // Otherwise, just memset the whole thing to zero. This is legal 1854 // because in LLVM, all default initializers (other than the ones we just 1855 // handled above) are guaranteed to have a bit pattern of all zeros. 1856 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false); 1857 } 1858 1859 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 1860 // Make sure that there is a block for the indirect goto. 1861 if (!IndirectBranch) 1862 GetIndirectGotoBlock(); 1863 1864 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 1865 1866 // Make sure the indirect branch includes all of the address-taken blocks. 1867 IndirectBranch->addDestination(BB); 1868 return llvm::BlockAddress::get(CurFn, BB); 1869 } 1870 1871 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 1872 // If we already made the indirect branch for indirect goto, return its block. 1873 if (IndirectBranch) return IndirectBranch->getParent(); 1874 1875 CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto")); 1876 1877 // Create the PHI node that indirect gotos will add entries to. 1878 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 1879 "indirect.goto.dest"); 1880 1881 // Create the indirect branch instruction. 1882 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 1883 return IndirectBranch->getParent(); 1884 } 1885 1886 /// Computes the length of an array in elements, as well as the base 1887 /// element type and a properly-typed first element pointer. 1888 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 1889 QualType &baseType, 1890 Address &addr) { 1891 const ArrayType *arrayType = origArrayType; 1892 1893 // If it's a VLA, we have to load the stored size. Note that 1894 // this is the size of the VLA in bytes, not its size in elements. 1895 llvm::Value *numVLAElements = nullptr; 1896 if (isa<VariableArrayType>(arrayType)) { 1897 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts; 1898 1899 // Walk into all VLAs. This doesn't require changes to addr, 1900 // which has type T* where T is the first non-VLA element type. 1901 do { 1902 QualType elementType = arrayType->getElementType(); 1903 arrayType = getContext().getAsArrayType(elementType); 1904 1905 // If we only have VLA components, 'addr' requires no adjustment. 1906 if (!arrayType) { 1907 baseType = elementType; 1908 return numVLAElements; 1909 } 1910 } while (isa<VariableArrayType>(arrayType)); 1911 1912 // We get out here only if we find a constant array type 1913 // inside the VLA. 1914 } 1915 1916 // We have some number of constant-length arrays, so addr should 1917 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 1918 // down to the first element of addr. 1919 SmallVector<llvm::Value*, 8> gepIndices; 1920 1921 // GEP down to the array type. 1922 llvm::ConstantInt *zero = Builder.getInt32(0); 1923 gepIndices.push_back(zero); 1924 1925 uint64_t countFromCLAs = 1; 1926 QualType eltType; 1927 1928 llvm::ArrayType *llvmArrayType = 1929 dyn_cast<llvm::ArrayType>(addr.getElementType()); 1930 while (llvmArrayType) { 1931 assert(isa<ConstantArrayType>(arrayType)); 1932 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 1933 == llvmArrayType->getNumElements()); 1934 1935 gepIndices.push_back(zero); 1936 countFromCLAs *= llvmArrayType->getNumElements(); 1937 eltType = arrayType->getElementType(); 1938 1939 llvmArrayType = 1940 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 1941 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 1942 assert((!llvmArrayType || arrayType) && 1943 "LLVM and Clang types are out-of-synch"); 1944 } 1945 1946 if (arrayType) { 1947 // From this point onwards, the Clang array type has been emitted 1948 // as some other type (probably a packed struct). Compute the array 1949 // size, and just emit the 'begin' expression as a bitcast. 1950 while (arrayType) { 1951 countFromCLAs *= 1952 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 1953 eltType = arrayType->getElementType(); 1954 arrayType = getContext().getAsArrayType(eltType); 1955 } 1956 1957 llvm::Type *baseType = ConvertType(eltType); 1958 addr = Builder.CreateElementBitCast(addr, baseType, "array.begin"); 1959 } else { 1960 // Create the actual GEP. 1961 addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(), 1962 gepIndices, "array.begin"), 1963 addr.getAlignment()); 1964 } 1965 1966 baseType = eltType; 1967 1968 llvm::Value *numElements 1969 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 1970 1971 // If we had any VLA dimensions, factor them in. 1972 if (numVLAElements) 1973 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 1974 1975 return numElements; 1976 } 1977 1978 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) { 1979 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1980 assert(vla && "type was not a variable array type!"); 1981 return getVLASize(vla); 1982 } 1983 1984 CodeGenFunction::VlaSizePair 1985 CodeGenFunction::getVLASize(const VariableArrayType *type) { 1986 // The number of elements so far; always size_t. 1987 llvm::Value *numElements = nullptr; 1988 1989 QualType elementType; 1990 do { 1991 elementType = type->getElementType(); 1992 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 1993 assert(vlaSize && "no size for VLA!"); 1994 assert(vlaSize->getType() == SizeTy); 1995 1996 if (!numElements) { 1997 numElements = vlaSize; 1998 } else { 1999 // It's undefined behavior if this wraps around, so mark it that way. 2000 // FIXME: Teach -fsanitize=undefined to trap this. 2001 numElements = Builder.CreateNUWMul(numElements, vlaSize); 2002 } 2003 } while ((type = getContext().getAsVariableArrayType(elementType))); 2004 2005 return { numElements, elementType }; 2006 } 2007 2008 CodeGenFunction::VlaSizePair 2009 CodeGenFunction::getVLAElements1D(QualType type) { 2010 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 2011 assert(vla && "type was not a variable array type!"); 2012 return getVLAElements1D(vla); 2013 } 2014 2015 CodeGenFunction::VlaSizePair 2016 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) { 2017 llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()]; 2018 assert(VlaSize && "no size for VLA!"); 2019 assert(VlaSize->getType() == SizeTy); 2020 return { VlaSize, Vla->getElementType() }; 2021 } 2022 2023 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 2024 assert(type->isVariablyModifiedType() && 2025 "Must pass variably modified type to EmitVLASizes!"); 2026 2027 EnsureInsertPoint(); 2028 2029 // We're going to walk down into the type and look for VLA 2030 // expressions. 2031 do { 2032 assert(type->isVariablyModifiedType()); 2033 2034 const Type *ty = type.getTypePtr(); 2035 switch (ty->getTypeClass()) { 2036 2037 #define TYPE(Class, Base) 2038 #define ABSTRACT_TYPE(Class, Base) 2039 #define NON_CANONICAL_TYPE(Class, Base) 2040 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 2041 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 2042 #include "clang/AST/TypeNodes.def" 2043 llvm_unreachable("unexpected dependent type!"); 2044 2045 // These types are never variably-modified. 2046 case Type::Builtin: 2047 case Type::Complex: 2048 case Type::Vector: 2049 case Type::ExtVector: 2050 case Type::Record: 2051 case Type::Enum: 2052 case Type::Elaborated: 2053 case Type::TemplateSpecialization: 2054 case Type::ObjCTypeParam: 2055 case Type::ObjCObject: 2056 case Type::ObjCInterface: 2057 case Type::ObjCObjectPointer: 2058 llvm_unreachable("type class is never variably-modified!"); 2059 2060 case Type::Adjusted: 2061 type = cast<AdjustedType>(ty)->getAdjustedType(); 2062 break; 2063 2064 case Type::Decayed: 2065 type = cast<DecayedType>(ty)->getPointeeType(); 2066 break; 2067 2068 case Type::Pointer: 2069 type = cast<PointerType>(ty)->getPointeeType(); 2070 break; 2071 2072 case Type::BlockPointer: 2073 type = cast<BlockPointerType>(ty)->getPointeeType(); 2074 break; 2075 2076 case Type::LValueReference: 2077 case Type::RValueReference: 2078 type = cast<ReferenceType>(ty)->getPointeeType(); 2079 break; 2080 2081 case Type::MemberPointer: 2082 type = cast<MemberPointerType>(ty)->getPointeeType(); 2083 break; 2084 2085 case Type::ConstantArray: 2086 case Type::IncompleteArray: 2087 // Losing element qualification here is fine. 2088 type = cast<ArrayType>(ty)->getElementType(); 2089 break; 2090 2091 case Type::VariableArray: { 2092 // Losing element qualification here is fine. 2093 const VariableArrayType *vat = cast<VariableArrayType>(ty); 2094 2095 // Unknown size indication requires no size computation. 2096 // Otherwise, evaluate and record it. 2097 if (const Expr *size = vat->getSizeExpr()) { 2098 // It's possible that we might have emitted this already, 2099 // e.g. with a typedef and a pointer to it. 2100 llvm::Value *&entry = VLASizeMap[size]; 2101 if (!entry) { 2102 llvm::Value *Size = EmitScalarExpr(size); 2103 2104 // C11 6.7.6.2p5: 2105 // If the size is an expression that is not an integer constant 2106 // expression [...] each time it is evaluated it shall have a value 2107 // greater than zero. 2108 if (SanOpts.has(SanitizerKind::VLABound) && 2109 size->getType()->isSignedIntegerType()) { 2110 SanitizerScope SanScope(this); 2111 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); 2112 llvm::Constant *StaticArgs[] = { 2113 EmitCheckSourceLocation(size->getBeginLoc()), 2114 EmitCheckTypeDescriptor(size->getType())}; 2115 EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero), 2116 SanitizerKind::VLABound), 2117 SanitizerHandler::VLABoundNotPositive, StaticArgs, Size); 2118 } 2119 2120 // Always zexting here would be wrong if it weren't 2121 // undefined behavior to have a negative bound. 2122 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); 2123 } 2124 } 2125 type = vat->getElementType(); 2126 break; 2127 } 2128 2129 case Type::FunctionProto: 2130 case Type::FunctionNoProto: 2131 type = cast<FunctionType>(ty)->getReturnType(); 2132 break; 2133 2134 case Type::Paren: 2135 case Type::TypeOf: 2136 case Type::UnaryTransform: 2137 case Type::Attributed: 2138 case Type::SubstTemplateTypeParm: 2139 case Type::PackExpansion: 2140 // Keep walking after single level desugaring. 2141 type = type.getSingleStepDesugaredType(getContext()); 2142 break; 2143 2144 case Type::Typedef: 2145 case Type::Decltype: 2146 case Type::Auto: 2147 case Type::DeducedTemplateSpecialization: 2148 // Stop walking: nothing to do. 2149 return; 2150 2151 case Type::TypeOfExpr: 2152 // Stop walking: emit typeof expression. 2153 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 2154 return; 2155 2156 case Type::Atomic: 2157 type = cast<AtomicType>(ty)->getValueType(); 2158 break; 2159 2160 case Type::Pipe: 2161 type = cast<PipeType>(ty)->getElementType(); 2162 break; 2163 } 2164 } while (type->isVariablyModifiedType()); 2165 } 2166 2167 Address CodeGenFunction::EmitVAListRef(const Expr* E) { 2168 if (getContext().getBuiltinVaListType()->isArrayType()) 2169 return EmitPointerWithAlignment(E); 2170 return EmitLValue(E).getAddress(); 2171 } 2172 2173 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) { 2174 return EmitLValue(E).getAddress(); 2175 } 2176 2177 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 2178 const APValue &Init) { 2179 assert(!Init.isUninit() && "Invalid DeclRefExpr initializer!"); 2180 if (CGDebugInfo *Dbg = getDebugInfo()) 2181 if (CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 2182 Dbg->EmitGlobalVariable(E->getDecl(), Init); 2183 } 2184 2185 CodeGenFunction::PeepholeProtection 2186 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 2187 // At the moment, the only aggressive peephole we do in IR gen 2188 // is trunc(zext) folding, but if we add more, we can easily 2189 // extend this protection. 2190 2191 if (!rvalue.isScalar()) return PeepholeProtection(); 2192 llvm::Value *value = rvalue.getScalarVal(); 2193 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 2194 2195 // Just make an extra bitcast. 2196 assert(HaveInsertPoint()); 2197 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 2198 Builder.GetInsertBlock()); 2199 2200 PeepholeProtection protection; 2201 protection.Inst = inst; 2202 return protection; 2203 } 2204 2205 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 2206 if (!protection.Inst) return; 2207 2208 // In theory, we could try to duplicate the peepholes now, but whatever. 2209 protection.Inst->eraseFromParent(); 2210 } 2211 2212 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn, 2213 llvm::Value *AnnotatedVal, 2214 StringRef AnnotationStr, 2215 SourceLocation Location) { 2216 llvm::Value *Args[4] = { 2217 AnnotatedVal, 2218 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 2219 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 2220 CGM.EmitAnnotationLineNo(Location) 2221 }; 2222 return Builder.CreateCall(AnnotationFn, Args); 2223 } 2224 2225 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 2226 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2227 // FIXME We create a new bitcast for every annotation because that's what 2228 // llvm-gcc was doing. 2229 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2230 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 2231 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 2232 I->getAnnotation(), D->getLocation()); 2233 } 2234 2235 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 2236 Address Addr) { 2237 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2238 llvm::Value *V = Addr.getPointer(); 2239 llvm::Type *VTy = V->getType(); 2240 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 2241 CGM.Int8PtrTy); 2242 2243 for (const auto *I : D->specific_attrs<AnnotateAttr>()) { 2244 // FIXME Always emit the cast inst so we can differentiate between 2245 // annotation on the first field of a struct and annotation on the struct 2246 // itself. 2247 if (VTy != CGM.Int8PtrTy) 2248 V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy)); 2249 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation()); 2250 V = Builder.CreateBitCast(V, VTy); 2251 } 2252 2253 return Address(V, Addr.getAlignment()); 2254 } 2255 2256 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 2257 2258 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF) 2259 : CGF(CGF) { 2260 assert(!CGF->IsSanitizerScope); 2261 CGF->IsSanitizerScope = true; 2262 } 2263 2264 CodeGenFunction::SanitizerScope::~SanitizerScope() { 2265 CGF->IsSanitizerScope = false; 2266 } 2267 2268 void CodeGenFunction::InsertHelper(llvm::Instruction *I, 2269 const llvm::Twine &Name, 2270 llvm::BasicBlock *BB, 2271 llvm::BasicBlock::iterator InsertPt) const { 2272 LoopStack.InsertHelper(I); 2273 if (IsSanitizerScope) 2274 CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I); 2275 } 2276 2277 void CGBuilderInserter::InsertHelper( 2278 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, 2279 llvm::BasicBlock::iterator InsertPt) const { 2280 llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt); 2281 if (CGF) 2282 CGF->InsertHelper(I, Name, BB, InsertPt); 2283 } 2284 2285 static bool hasRequiredFeatures(const SmallVectorImpl<StringRef> &ReqFeatures, 2286 CodeGenModule &CGM, const FunctionDecl *FD, 2287 std::string &FirstMissing) { 2288 // If there aren't any required features listed then go ahead and return. 2289 if (ReqFeatures.empty()) 2290 return false; 2291 2292 // Now build up the set of caller features and verify that all the required 2293 // features are there. 2294 llvm::StringMap<bool> CallerFeatureMap; 2295 CGM.getFunctionFeatureMap(CallerFeatureMap, GlobalDecl().getWithDecl(FD)); 2296 2297 // If we have at least one of the features in the feature list return 2298 // true, otherwise return false. 2299 return std::all_of( 2300 ReqFeatures.begin(), ReqFeatures.end(), [&](StringRef Feature) { 2301 SmallVector<StringRef, 1> OrFeatures; 2302 Feature.split(OrFeatures, '|'); 2303 return llvm::any_of(OrFeatures, [&](StringRef Feature) { 2304 if (!CallerFeatureMap.lookup(Feature)) { 2305 FirstMissing = Feature.str(); 2306 return false; 2307 } 2308 return true; 2309 }); 2310 }); 2311 } 2312 2313 // Emits an error if we don't have a valid set of target features for the 2314 // called function. 2315 void CodeGenFunction::checkTargetFeatures(const CallExpr *E, 2316 const FunctionDecl *TargetDecl) { 2317 // Early exit if this is an indirect call. 2318 if (!TargetDecl) 2319 return; 2320 2321 // Get the current enclosing function if it exists. If it doesn't 2322 // we can't check the target features anyhow. 2323 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl); 2324 if (!FD) 2325 return; 2326 2327 // Grab the required features for the call. For a builtin this is listed in 2328 // the td file with the default cpu, for an always_inline function this is any 2329 // listed cpu and any listed features. 2330 unsigned BuiltinID = TargetDecl->getBuiltinID(); 2331 std::string MissingFeature; 2332 if (BuiltinID) { 2333 SmallVector<StringRef, 1> ReqFeatures; 2334 const char *FeatureList = 2335 CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 2336 // Return if the builtin doesn't have any required features. 2337 if (!FeatureList || StringRef(FeatureList) == "") 2338 return; 2339 StringRef(FeatureList).split(ReqFeatures, ','); 2340 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 2341 CGM.getDiags().Report(E->getBeginLoc(), diag::err_builtin_needs_feature) 2342 << TargetDecl->getDeclName() 2343 << CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 2344 2345 } else if (TargetDecl->hasAttr<TargetAttr>() || 2346 TargetDecl->hasAttr<CPUSpecificAttr>()) { 2347 // Get the required features for the callee. 2348 2349 const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>(); 2350 TargetAttr::ParsedTargetAttr ParsedAttr = CGM.filterFunctionTargetAttrs(TD); 2351 2352 SmallVector<StringRef, 1> ReqFeatures; 2353 llvm::StringMap<bool> CalleeFeatureMap; 2354 CGM.getFunctionFeatureMap(CalleeFeatureMap, TargetDecl); 2355 2356 for (const auto &F : ParsedAttr.Features) { 2357 if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1))) 2358 ReqFeatures.push_back(StringRef(F).substr(1)); 2359 } 2360 2361 for (const auto &F : CalleeFeatureMap) { 2362 // Only positive features are "required". 2363 if (F.getValue()) 2364 ReqFeatures.push_back(F.getKey()); 2365 } 2366 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 2367 CGM.getDiags().Report(E->getBeginLoc(), diag::err_function_needs_feature) 2368 << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature; 2369 } 2370 } 2371 2372 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) { 2373 if (!CGM.getCodeGenOpts().SanitizeStats) 2374 return; 2375 2376 llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint()); 2377 IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation()); 2378 CGM.getSanStats().create(IRB, SSK); 2379 } 2380 2381 llvm::Value * 2382 CodeGenFunction::FormResolverCondition(const MultiVersionResolverOption &RO) { 2383 llvm::Value *Condition = nullptr; 2384 2385 if (!RO.Conditions.Architecture.empty()) 2386 Condition = EmitX86CpuIs(RO.Conditions.Architecture); 2387 2388 if (!RO.Conditions.Features.empty()) { 2389 llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features); 2390 Condition = 2391 Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond; 2392 } 2393 return Condition; 2394 } 2395 2396 static void CreateMultiVersionResolverReturn(CodeGenModule &CGM, 2397 llvm::Function *Resolver, 2398 CGBuilderTy &Builder, 2399 llvm::Function *FuncToReturn, 2400 bool SupportsIFunc) { 2401 if (SupportsIFunc) { 2402 Builder.CreateRet(FuncToReturn); 2403 return; 2404 } 2405 2406 llvm::SmallVector<llvm::Value *, 10> Args; 2407 llvm::for_each(Resolver->args(), 2408 [&](llvm::Argument &Arg) { Args.push_back(&Arg); }); 2409 2410 llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args); 2411 Result->setTailCallKind(llvm::CallInst::TCK_MustTail); 2412 2413 if (Resolver->getReturnType()->isVoidTy()) 2414 Builder.CreateRetVoid(); 2415 else 2416 Builder.CreateRet(Result); 2417 } 2418 2419 void CodeGenFunction::EmitMultiVersionResolver( 2420 llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) { 2421 assert((getContext().getTargetInfo().getTriple().getArch() == 2422 llvm::Triple::x86 || 2423 getContext().getTargetInfo().getTriple().getArch() == 2424 llvm::Triple::x86_64) && 2425 "Only implemented for x86 targets"); 2426 2427 bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc(); 2428 2429 // Main function's basic block. 2430 llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver); 2431 Builder.SetInsertPoint(CurBlock); 2432 EmitX86CpuInit(); 2433 2434 for (const MultiVersionResolverOption &RO : Options) { 2435 Builder.SetInsertPoint(CurBlock); 2436 llvm::Value *Condition = FormResolverCondition(RO); 2437 2438 // The 'default' or 'generic' case. 2439 if (!Condition) { 2440 assert(&RO == Options.end() - 1 && 2441 "Default or Generic case must be last"); 2442 CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function, 2443 SupportsIFunc); 2444 return; 2445 } 2446 2447 llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver); 2448 CGBuilderTy RetBuilder(*this, RetBlock); 2449 CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function, 2450 SupportsIFunc); 2451 CurBlock = createBasicBlock("resolver_else", Resolver); 2452 Builder.CreateCondBr(Condition, RetBlock, CurBlock); 2453 } 2454 2455 // If no generic/default, emit an unreachable. 2456 Builder.SetInsertPoint(CurBlock); 2457 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 2458 TrapCall->setDoesNotReturn(); 2459 TrapCall->setDoesNotThrow(); 2460 Builder.CreateUnreachable(); 2461 Builder.ClearInsertionPoint(); 2462 } 2463 2464 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) { 2465 if (CGDebugInfo *DI = getDebugInfo()) 2466 return DI->SourceLocToDebugLoc(Location); 2467 2468 return llvm::DebugLoc(); 2469 } 2470