1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-function state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CodeGenModule.h" 16 #include "CGDebugInfo.h" 17 #include "clang/Basic/TargetInfo.h" 18 #include "clang/AST/APValue.h" 19 #include "clang/AST/ASTContext.h" 20 #include "clang/AST/Decl.h" 21 #include "llvm/Support/CFG.h" 22 using namespace clang; 23 using namespace CodeGen; 24 25 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm) 26 : CGM(cgm), Target(CGM.getContext().Target), SwitchInsn(NULL), 27 CaseRangeBlock(NULL) { 28 LLVMIntTy = ConvertType(getContext().IntTy); 29 LLVMPointerWidth = Target.getPointerWidth(0); 30 } 31 32 ASTContext &CodeGenFunction::getContext() const { 33 return CGM.getContext(); 34 } 35 36 37 llvm::BasicBlock *CodeGenFunction::getBasicBlockForLabel(const LabelStmt *S) { 38 llvm::BasicBlock *&BB = LabelMap[S]; 39 if (BB) return BB; 40 41 // Create, but don't insert, the new block. 42 return BB = createBasicBlock(S->getName()); 43 } 44 45 llvm::Constant * 46 CodeGenFunction::GetAddrOfStaticLocalVar(const VarDecl *BVD) { 47 return cast<llvm::Constant>(LocalDeclMap[BVD]); 48 } 49 50 llvm::Value *CodeGenFunction::GetAddrOfLocalVar(const VarDecl *VD) 51 { 52 return LocalDeclMap[VD]; 53 } 54 55 const llvm::Type *CodeGenFunction::ConvertType(QualType T) { 56 return CGM.getTypes().ConvertType(T); 57 } 58 59 bool CodeGenFunction::isObjCPointerType(QualType T) { 60 // All Objective-C types are pointers. 61 return T->isObjCInterfaceType() || 62 T->isObjCQualifiedInterfaceType() || T->isObjCQualifiedIdType(); 63 } 64 65 bool CodeGenFunction::hasAggregateLLVMType(QualType T) { 66 return !isObjCPointerType(T) &&!T->isRealType() && !T->isPointerLikeType() && 67 !T->isVoidType() && !T->isVectorType() && !T->isFunctionType(); 68 } 69 70 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 71 // Finish emission of indirect switches. 72 EmitIndirectSwitches(); 73 74 assert(BreakContinueStack.empty() && 75 "mismatched push/pop in break/continue stack!"); 76 77 // Emit function epilog (to return). This has the nice side effect 78 // of also automatically handling code that falls off the end. 79 EmitBlock(ReturnBlock); 80 81 // Emit debug descriptor for function end. 82 if (CGDebugInfo *DI = CGM.getDebugInfo()) { 83 DI->setLocation(EndLoc); 84 DI->EmitRegionEnd(CurFn, Builder); 85 } 86 87 EmitFunctionEpilog(FnRetTy, ReturnValue); 88 89 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 90 AllocaInsertPt->eraseFromParent(); 91 AllocaInsertPt = 0; 92 } 93 94 void CodeGenFunction::StartFunction(const Decl *D, QualType RetTy, 95 llvm::Function *Fn, 96 const FunctionArgList &Args, 97 SourceLocation StartLoc) { 98 CurFuncDecl = D; 99 FnRetTy = RetTy; 100 CurFn = Fn; 101 assert(CurFn->isDeclaration() && "Function already has body?"); 102 103 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 104 105 // Create a marker to make it easy to insert allocas into the entryblock 106 // later. Don't create this with the builder, because we don't want it 107 // folded. 108 llvm::Value *Undef = llvm::UndefValue::get(llvm::Type::Int32Ty); 109 AllocaInsertPt = new llvm::BitCastInst(Undef, llvm::Type::Int32Ty, "allocapt", 110 EntryBB); 111 112 ReturnBlock = createBasicBlock("return"); 113 ReturnValue = 0; 114 if (!RetTy->isVoidType()) 115 ReturnValue = CreateTempAlloca(ConvertType(RetTy), "retval"); 116 117 Builder.SetInsertPoint(EntryBB); 118 119 // Emit subprogram debug descriptor. 120 // FIXME: The cast here is a huge hack. 121 if (CGDebugInfo *DI = CGM.getDebugInfo()) { 122 DI->setLocation(StartLoc); 123 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 124 DI->EmitFunctionStart(FD->getIdentifier()->getName(), 125 RetTy, CurFn, Builder); 126 } else { 127 // Just use LLVM function name. 128 DI->EmitFunctionStart(Fn->getName().c_str(), 129 RetTy, CurFn, Builder); 130 } 131 } 132 133 EmitFunctionProlog(CurFn, FnRetTy, Args); 134 } 135 136 void CodeGenFunction::GenerateCode(const FunctionDecl *FD, 137 llvm::Function *Fn) { 138 FunctionArgList Args; 139 if (FD->getNumParams()) { 140 const FunctionTypeProto* FProto = FD->getType()->getAsFunctionTypeProto(); 141 assert(FProto && "Function def must have prototype!"); 142 143 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) 144 Args.push_back(std::make_pair(FD->getParamDecl(i), 145 FProto->getArgType(i))); 146 } 147 148 StartFunction(FD, FD->getResultType(), Fn, Args, 149 cast<CompoundStmt>(FD->getBody())->getLBracLoc()); 150 151 EmitStmt(FD->getBody()); 152 153 const CompoundStmt *S = dyn_cast<CompoundStmt>(FD->getBody()); 154 if (S) { 155 FinishFunction(S->getRBracLoc()); 156 } else { 157 FinishFunction(); 158 } 159 } 160 161 /// ContainsLabel - Return true if the statement contains a label in it. If 162 /// this statement is not executed normally, it not containing a label means 163 /// that we can just remove the code. 164 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 165 // Null statement, not a label! 166 if (S == 0) return false; 167 168 // If this is a label, we have to emit the code, consider something like: 169 // if (0) { ... foo: bar(); } goto foo; 170 if (isa<LabelStmt>(S)) 171 return true; 172 173 // If this is a case/default statement, and we haven't seen a switch, we have 174 // to emit the code. 175 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 176 return true; 177 178 // If this is a switch statement, we want to ignore cases below it. 179 if (isa<SwitchStmt>(S)) 180 IgnoreCaseStmts = true; 181 182 // Scan subexpressions for verboten labels. 183 for (Stmt::const_child_iterator I = S->child_begin(), E = S->child_end(); 184 I != E; ++I) 185 if (ContainsLabel(*I, IgnoreCaseStmts)) 186 return true; 187 188 return false; 189 } 190 191 192 /// ConstantFoldsToSimpleInteger - If the sepcified expression does not fold to 193 /// a constant, or if it does but contains a label, return 0. If it constant 194 /// folds to 'true' and does not contain a label, return 1, if it constant folds 195 /// to 'false' and does not contain a label, return -1. 196 int CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond) { 197 // FIXME: Rename and handle conversion of other evaluatable things 198 // to bool. 199 Expr::EvalResult Result; 200 if (!Cond->Evaluate(Result, getContext()) || !Result.Val.isInt() || 201 Result.HasSideEffects) 202 return 0; // Not foldable, not integer or not fully evaluatable. 203 204 if (CodeGenFunction::ContainsLabel(Cond)) 205 return 0; // Contains a label. 206 207 return Result.Val.getInt().getBoolValue() ? 1 : -1; 208 } 209 210 211 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 212 /// statement) to the specified blocks. Based on the condition, this might try 213 /// to simplify the codegen of the conditional based on the branch. 214 /// 215 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 216 llvm::BasicBlock *TrueBlock, 217 llvm::BasicBlock *FalseBlock) { 218 if (const ParenExpr *PE = dyn_cast<ParenExpr>(Cond)) 219 return EmitBranchOnBoolExpr(PE->getSubExpr(), TrueBlock, FalseBlock); 220 221 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 222 // Handle X && Y in a condition. 223 if (CondBOp->getOpcode() == BinaryOperator::LAnd) { 224 // If we have "1 && X", simplify the code. "0 && X" would have constant 225 // folded if the case was simple enough. 226 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS()) == 1) { 227 // br(1 && X) -> br(X). 228 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 229 } 230 231 // If we have "X && 1", simplify the code to use an uncond branch. 232 // "X && 0" would have been constant folded to 0. 233 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS()) == 1) { 234 // br(X && 1) -> br(X). 235 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock); 236 } 237 238 // Emit the LHS as a conditional. If the LHS conditional is false, we 239 // want to jump to the FalseBlock. 240 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 241 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock); 242 EmitBlock(LHSTrue); 243 244 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 245 return; 246 } else if (CondBOp->getOpcode() == BinaryOperator::LOr) { 247 // If we have "0 || X", simplify the code. "1 || X" would have constant 248 // folded if the case was simple enough. 249 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS()) == -1) { 250 // br(0 || X) -> br(X). 251 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 252 } 253 254 // If we have "X || 0", simplify the code to use an uncond branch. 255 // "X || 1" would have been constant folded to 1. 256 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS()) == -1) { 257 // br(X || 0) -> br(X). 258 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock); 259 } 260 261 // Emit the LHS as a conditional. If the LHS conditional is true, we 262 // want to jump to the TrueBlock. 263 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 264 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse); 265 EmitBlock(LHSFalse); 266 267 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 268 return; 269 } 270 } 271 272 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 273 // br(!x, t, f) -> br(x, f, t) 274 if (CondUOp->getOpcode() == UnaryOperator::LNot) 275 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock); 276 } 277 278 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 279 // Handle ?: operator. 280 281 // Just ignore GNU ?: extension. 282 if (CondOp->getLHS()) { 283 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 284 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 285 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 286 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock); 287 EmitBlock(LHSBlock); 288 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock); 289 EmitBlock(RHSBlock); 290 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock); 291 return; 292 } 293 } 294 295 // Emit the code with the fully general case. 296 llvm::Value *CondV = EvaluateExprAsBool(Cond); 297 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock); 298 } 299 300 /// getCGRecordLayout - Return record layout info. 301 const CGRecordLayout *CodeGenFunction::getCGRecordLayout(CodeGenTypes &CGT, 302 QualType Ty) { 303 const RecordType *RTy = Ty->getAsRecordType(); 304 assert (RTy && "Unexpected type. RecordType expected here."); 305 306 return CGT.getCGRecordLayout(RTy->getDecl()); 307 } 308 309 /// ErrorUnsupported - Print out an error that codegen doesn't support the 310 /// specified stmt yet. 311 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type, 312 bool OmitOnError) { 313 CGM.ErrorUnsupported(S, Type, OmitOnError); 314 } 315 316 unsigned CodeGenFunction::GetIDForAddrOfLabel(const LabelStmt *L) { 317 // Use LabelIDs.size() as the new ID if one hasn't been assigned. 318 return LabelIDs.insert(std::make_pair(L, LabelIDs.size())).first->second; 319 } 320 321 void CodeGenFunction::EmitMemSetToZero(llvm::Value *DestPtr, QualType Ty) 322 { 323 const llvm::Type *BP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); 324 if (DestPtr->getType() != BP) 325 DestPtr = Builder.CreateBitCast(DestPtr, BP, "tmp"); 326 327 // Get size and alignment info for this aggregate. 328 std::pair<uint64_t, unsigned> TypeInfo = getContext().getTypeInfo(Ty); 329 330 // FIXME: Handle variable sized types. 331 const llvm::Type *IntPtr = llvm::IntegerType::get(LLVMPointerWidth); 332 333 Builder.CreateCall4(CGM.getMemSetFn(), DestPtr, 334 llvm::ConstantInt::getNullValue(llvm::Type::Int8Ty), 335 // TypeInfo.first describes size in bits. 336 llvm::ConstantInt::get(IntPtr, TypeInfo.first/8), 337 llvm::ConstantInt::get(llvm::Type::Int32Ty, 338 TypeInfo.second/8)); 339 } 340 341 void CodeGenFunction::EmitIndirectSwitches() { 342 llvm::BasicBlock *Default; 343 344 if (IndirectSwitches.empty()) 345 return; 346 347 if (!LabelIDs.empty()) { 348 Default = getBasicBlockForLabel(LabelIDs.begin()->first); 349 } else { 350 // No possible targets for indirect goto, just emit an infinite 351 // loop. 352 Default = createBasicBlock("indirectgoto.loop", CurFn); 353 llvm::BranchInst::Create(Default, Default); 354 } 355 356 for (std::vector<llvm::SwitchInst*>::iterator i = IndirectSwitches.begin(), 357 e = IndirectSwitches.end(); i != e; ++i) { 358 llvm::SwitchInst *I = *i; 359 360 I->setSuccessor(0, Default); 361 for (std::map<const LabelStmt*,unsigned>::iterator LI = LabelIDs.begin(), 362 LE = LabelIDs.end(); LI != LE; ++LI) { 363 I->addCase(llvm::ConstantInt::get(llvm::Type::Int32Ty, 364 LI->second), 365 getBasicBlockForLabel(LI->first)); 366 } 367 } 368 } 369 370 llvm::Value *CodeGenFunction::EmitVAArg(llvm::Value *VAListAddr, QualType Ty) 371 { 372 // FIXME: This entire method is hardcoded for 32-bit X86. 373 374 const char *TargetPrefix = getContext().Target.getTargetPrefix(); 375 376 if (strcmp(TargetPrefix, "x86") != 0 || 377 getContext().Target.getPointerWidth(0) != 32) 378 return 0; 379 380 const llvm::Type *BP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); 381 const llvm::Type *BPP = llvm::PointerType::getUnqual(BP); 382 383 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, 384 "ap"); 385 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 386 llvm::Value *AddrTyped = 387 Builder.CreateBitCast(Addr, 388 llvm::PointerType::getUnqual(ConvertType(Ty))); 389 390 uint64_t SizeInBytes = getContext().getTypeSize(Ty) / 8; 391 const unsigned ArgumentSizeInBytes = 4; 392 if (SizeInBytes < ArgumentSizeInBytes) 393 SizeInBytes = ArgumentSizeInBytes; 394 395 llvm::Value *NextAddr = 396 Builder.CreateGEP(Addr, 397 llvm::ConstantInt::get(llvm::Type::Int32Ty, SizeInBytes), 398 "ap.next"); 399 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 400 401 return AddrTyped; 402 } 403 404 405 llvm::Value *CodeGenFunction::GetVLASize(const VariableArrayType *VAT) 406 { 407 llvm::Value *&SizeEntry = VLASizeMap[VAT]; 408 409 assert(SizeEntry && "Did not emit size for type"); 410 return SizeEntry; 411 } 412 413 llvm::Value *CodeGenFunction::EmitVLASize(QualType Ty) 414 { 415 assert(Ty->isVariablyModifiedType() && 416 "Must pass variably modified type to EmitVLASizes!"); 417 418 if (const VariableArrayType *VAT = getContext().getAsVariableArrayType(Ty)) { 419 llvm::Value *&SizeEntry = VLASizeMap[VAT]; 420 421 assert(!SizeEntry && "Must not emit the same VLA size more than once!"); 422 423 // Get the element size; 424 llvm::Value *ElemSize; 425 426 QualType ElemTy = VAT->getElementType(); 427 428 if (ElemTy->isVariableArrayType()) 429 ElemSize = EmitVLASize(ElemTy); 430 else { 431 // FIXME: We use Int32Ty here because the alloca instruction takes a 432 // 32-bit integer. What should we do about overflow? 433 ElemSize = llvm::ConstantInt::get(llvm::Type::Int32Ty, 434 getContext().getTypeSize(ElemTy) / 8); 435 } 436 437 llvm::Value *NumElements = EmitScalarExpr(VAT->getSizeExpr()); 438 439 SizeEntry = Builder.CreateMul(ElemSize, NumElements); 440 441 return SizeEntry; 442 } else if (const PointerType *PT = Ty->getAsPointerType()) 443 EmitVLASize(PT->getPointeeType()); 444 else { 445 assert(0 && "unknown VM type!"); 446 } 447 448 return 0; 449 } 450