xref: /llvm-project/clang/lib/CodeGen/CodeGenFunction.cpp (revision 7f416cc426384ad1f891addb61d93e7ca1ffa0f2)
1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-function state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGBlocks.h"
16 #include "CGCleanup.h"
17 #include "CGCUDARuntime.h"
18 #include "CGCXXABI.h"
19 #include "CGDebugInfo.h"
20 #include "CGOpenMPRuntime.h"
21 #include "CodeGenModule.h"
22 #include "CodeGenPGO.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/Decl.h"
26 #include "clang/AST/DeclCXX.h"
27 #include "clang/AST/StmtCXX.h"
28 #include "clang/Basic/Builtins.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "clang/CodeGen/CGFunctionInfo.h"
31 #include "clang/Frontend/CodeGenOptions.h"
32 #include "llvm/IR/DataLayout.h"
33 #include "llvm/IR/Intrinsics.h"
34 #include "llvm/IR/MDBuilder.h"
35 #include "llvm/IR/Operator.h"
36 using namespace clang;
37 using namespace CodeGen;
38 
39 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
40     : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
41       Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(),
42               CGBuilderInserterTy(this)),
43       CurFn(nullptr), ReturnValue(Address::invalid()),
44       CapturedStmtInfo(nullptr),
45       SanOpts(CGM.getLangOpts().Sanitize), IsSanitizerScope(false),
46       CurFuncIsThunk(false), AutoreleaseResult(false), SawAsmBlock(false),
47       IsOutlinedSEHHelper(false),
48       BlockInfo(nullptr), BlockPointer(nullptr),
49       LambdaThisCaptureField(nullptr), NormalCleanupDest(nullptr),
50       NextCleanupDestIndex(1), FirstBlockInfo(nullptr), EHResumeBlock(nullptr),
51       ExceptionSlot(nullptr), EHSelectorSlot(nullptr),
52       DebugInfo(CGM.getModuleDebugInfo()),
53       DisableDebugInfo(false), DidCallStackSave(false), IndirectBranch(nullptr),
54       PGO(cgm), SwitchInsn(nullptr), SwitchWeights(nullptr),
55       CaseRangeBlock(nullptr), UnreachableBlock(nullptr), NumReturnExprs(0),
56       NumSimpleReturnExprs(0), CXXABIThisDecl(nullptr),
57       CXXABIThisValue(nullptr), CXXThisValue(nullptr),
58       CXXStructorImplicitParamDecl(nullptr),
59       CXXStructorImplicitParamValue(nullptr), OutermostConditional(nullptr),
60       CurLexicalScope(nullptr), TerminateLandingPad(nullptr),
61       TerminateHandler(nullptr), TrapBB(nullptr) {
62   if (!suppressNewContext)
63     CGM.getCXXABI().getMangleContext().startNewFunction();
64 
65   llvm::FastMathFlags FMF;
66   if (CGM.getLangOpts().FastMath)
67     FMF.setUnsafeAlgebra();
68   if (CGM.getLangOpts().FiniteMathOnly) {
69     FMF.setNoNaNs();
70     FMF.setNoInfs();
71   }
72   if (CGM.getCodeGenOpts().NoNaNsFPMath) {
73     FMF.setNoNaNs();
74   }
75   if (CGM.getCodeGenOpts().NoSignedZeros) {
76     FMF.setNoSignedZeros();
77   }
78   if (CGM.getCodeGenOpts().ReciprocalMath) {
79     FMF.setAllowReciprocal();
80   }
81   Builder.SetFastMathFlags(FMF);
82 }
83 
84 CodeGenFunction::~CodeGenFunction() {
85   assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
86 
87   // If there are any unclaimed block infos, go ahead and destroy them
88   // now.  This can happen if IR-gen gets clever and skips evaluating
89   // something.
90   if (FirstBlockInfo)
91     destroyBlockInfos(FirstBlockInfo);
92 
93   if (getLangOpts().OpenMP) {
94     CGM.getOpenMPRuntime().functionFinished(*this);
95   }
96 }
97 
98 CharUnits CodeGenFunction::getNaturalPointeeTypeAlignment(QualType T,
99                                                      AlignmentSource *Source) {
100   return getNaturalTypeAlignment(T->getPointeeType(), Source,
101                                  /*forPointee*/ true);
102 }
103 
104 CharUnits CodeGenFunction::getNaturalTypeAlignment(QualType T,
105                                                    AlignmentSource *Source,
106                                                    bool forPointeeType) {
107   // Honor alignment typedef attributes even on incomplete types.
108   // We also honor them straight for C++ class types, even as pointees;
109   // there's an expressivity gap here.
110   if (auto TT = T->getAs<TypedefType>()) {
111     if (auto Align = TT->getDecl()->getMaxAlignment()) {
112       if (Source) *Source = AlignmentSource::AttributedType;
113       return getContext().toCharUnitsFromBits(Align);
114     }
115   }
116 
117   if (Source) *Source = AlignmentSource::Type;
118 
119   CharUnits Alignment;
120   if (!CGM.getCXXABI().isTypeInfoCalculable(T)) {
121     Alignment = CharUnits::One(); // Shouldn't be used, but pessimistic is best.
122   } else {
123     // For C++ class pointees, we don't know whether we're pointing at a
124     // base or a complete object, so we generally need to use the
125     // non-virtual alignment.
126     const CXXRecordDecl *RD;
127     if (forPointeeType && (RD = T->getAsCXXRecordDecl())) {
128       Alignment = CGM.getClassPointerAlignment(RD);
129     } else {
130       Alignment = getContext().getTypeAlignInChars(T);
131     }
132 
133     // Cap to the global maximum type alignment unless the alignment
134     // was somehow explicit on the type.
135     if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
136       if (Alignment.getQuantity() > MaxAlign &&
137           !getContext().isAlignmentRequired(T))
138         Alignment = CharUnits::fromQuantity(MaxAlign);
139     }
140   }
141   return Alignment;
142 }
143 
144 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
145   AlignmentSource AlignSource;
146   CharUnits Alignment = getNaturalTypeAlignment(T, &AlignSource);
147   return LValue::MakeAddr(Address(V, Alignment), T, getContext(), AlignSource,
148                           CGM.getTBAAInfo(T));
149 }
150 
151 /// Given a value of type T* that may not be to a complete object,
152 /// construct an l-value with the natural pointee alignment of T.
153 LValue
154 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) {
155   AlignmentSource AlignSource;
156   CharUnits Align = getNaturalTypeAlignment(T, &AlignSource, /*pointee*/ true);
157   return MakeAddrLValue(Address(V, Align), T, AlignSource);
158 }
159 
160 
161 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
162   return CGM.getTypes().ConvertTypeForMem(T);
163 }
164 
165 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
166   return CGM.getTypes().ConvertType(T);
167 }
168 
169 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
170   type = type.getCanonicalType();
171   while (true) {
172     switch (type->getTypeClass()) {
173 #define TYPE(name, parent)
174 #define ABSTRACT_TYPE(name, parent)
175 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
176 #define DEPENDENT_TYPE(name, parent) case Type::name:
177 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
178 #include "clang/AST/TypeNodes.def"
179       llvm_unreachable("non-canonical or dependent type in IR-generation");
180 
181     case Type::Auto:
182       llvm_unreachable("undeduced auto type in IR-generation");
183 
184     // Various scalar types.
185     case Type::Builtin:
186     case Type::Pointer:
187     case Type::BlockPointer:
188     case Type::LValueReference:
189     case Type::RValueReference:
190     case Type::MemberPointer:
191     case Type::Vector:
192     case Type::ExtVector:
193     case Type::FunctionProto:
194     case Type::FunctionNoProto:
195     case Type::Enum:
196     case Type::ObjCObjectPointer:
197       return TEK_Scalar;
198 
199     // Complexes.
200     case Type::Complex:
201       return TEK_Complex;
202 
203     // Arrays, records, and Objective-C objects.
204     case Type::ConstantArray:
205     case Type::IncompleteArray:
206     case Type::VariableArray:
207     case Type::Record:
208     case Type::ObjCObject:
209     case Type::ObjCInterface:
210       return TEK_Aggregate;
211 
212     // We operate on atomic values according to their underlying type.
213     case Type::Atomic:
214       type = cast<AtomicType>(type)->getValueType();
215       continue;
216     }
217     llvm_unreachable("unknown type kind!");
218   }
219 }
220 
221 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() {
222   // For cleanliness, we try to avoid emitting the return block for
223   // simple cases.
224   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
225 
226   if (CurBB) {
227     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
228 
229     // We have a valid insert point, reuse it if it is empty or there are no
230     // explicit jumps to the return block.
231     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
232       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
233       delete ReturnBlock.getBlock();
234     } else
235       EmitBlock(ReturnBlock.getBlock());
236     return llvm::DebugLoc();
237   }
238 
239   // Otherwise, if the return block is the target of a single direct
240   // branch then we can just put the code in that block instead. This
241   // cleans up functions which started with a unified return block.
242   if (ReturnBlock.getBlock()->hasOneUse()) {
243     llvm::BranchInst *BI =
244       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin());
245     if (BI && BI->isUnconditional() &&
246         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
247       // Record/return the DebugLoc of the simple 'return' expression to be used
248       // later by the actual 'ret' instruction.
249       llvm::DebugLoc Loc = BI->getDebugLoc();
250       Builder.SetInsertPoint(BI->getParent());
251       BI->eraseFromParent();
252       delete ReturnBlock.getBlock();
253       return Loc;
254     }
255   }
256 
257   // FIXME: We are at an unreachable point, there is no reason to emit the block
258   // unless it has uses. However, we still need a place to put the debug
259   // region.end for now.
260 
261   EmitBlock(ReturnBlock.getBlock());
262   return llvm::DebugLoc();
263 }
264 
265 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
266   if (!BB) return;
267   if (!BB->use_empty())
268     return CGF.CurFn->getBasicBlockList().push_back(BB);
269   delete BB;
270 }
271 
272 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
273   assert(BreakContinueStack.empty() &&
274          "mismatched push/pop in break/continue stack!");
275 
276   bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
277     && NumSimpleReturnExprs == NumReturnExprs
278     && ReturnBlock.getBlock()->use_empty();
279   // Usually the return expression is evaluated before the cleanup
280   // code.  If the function contains only a simple return statement,
281   // such as a constant, the location before the cleanup code becomes
282   // the last useful breakpoint in the function, because the simple
283   // return expression will be evaluated after the cleanup code. To be
284   // safe, set the debug location for cleanup code to the location of
285   // the return statement.  Otherwise the cleanup code should be at the
286   // end of the function's lexical scope.
287   //
288   // If there are multiple branches to the return block, the branch
289   // instructions will get the location of the return statements and
290   // all will be fine.
291   if (CGDebugInfo *DI = getDebugInfo()) {
292     if (OnlySimpleReturnStmts)
293       DI->EmitLocation(Builder, LastStopPoint);
294     else
295       DI->EmitLocation(Builder, EndLoc);
296   }
297 
298   // Pop any cleanups that might have been associated with the
299   // parameters.  Do this in whatever block we're currently in; it's
300   // important to do this before we enter the return block or return
301   // edges will be *really* confused.
302   bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth;
303   bool HasOnlyLifetimeMarkers =
304       HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth);
305   bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers;
306   if (HasCleanups) {
307     // Make sure the line table doesn't jump back into the body for
308     // the ret after it's been at EndLoc.
309     if (CGDebugInfo *DI = getDebugInfo())
310       if (OnlySimpleReturnStmts)
311         DI->EmitLocation(Builder, EndLoc);
312 
313     PopCleanupBlocks(PrologueCleanupDepth);
314   }
315 
316   // Emit function epilog (to return).
317   llvm::DebugLoc Loc = EmitReturnBlock();
318 
319   if (ShouldInstrumentFunction())
320     EmitFunctionInstrumentation("__cyg_profile_func_exit");
321 
322   // Emit debug descriptor for function end.
323   if (CGDebugInfo *DI = getDebugInfo())
324     DI->EmitFunctionEnd(Builder);
325 
326   // Reset the debug location to that of the simple 'return' expression, if any
327   // rather than that of the end of the function's scope '}'.
328   ApplyDebugLocation AL(*this, Loc);
329   EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
330   EmitEndEHSpec(CurCodeDecl);
331 
332   assert(EHStack.empty() &&
333          "did not remove all scopes from cleanup stack!");
334 
335   // If someone did an indirect goto, emit the indirect goto block at the end of
336   // the function.
337   if (IndirectBranch) {
338     EmitBlock(IndirectBranch->getParent());
339     Builder.ClearInsertionPoint();
340   }
341 
342   // If some of our locals escaped, insert a call to llvm.localescape in the
343   // entry block.
344   if (!EscapedLocals.empty()) {
345     // Invert the map from local to index into a simple vector. There should be
346     // no holes.
347     SmallVector<llvm::Value *, 4> EscapeArgs;
348     EscapeArgs.resize(EscapedLocals.size());
349     for (auto &Pair : EscapedLocals)
350       EscapeArgs[Pair.second] = Pair.first;
351     llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration(
352         &CGM.getModule(), llvm::Intrinsic::localescape);
353     CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs);
354   }
355 
356   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
357   llvm::Instruction *Ptr = AllocaInsertPt;
358   AllocaInsertPt = nullptr;
359   Ptr->eraseFromParent();
360 
361   // If someone took the address of a label but never did an indirect goto, we
362   // made a zero entry PHI node, which is illegal, zap it now.
363   if (IndirectBranch) {
364     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
365     if (PN->getNumIncomingValues() == 0) {
366       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
367       PN->eraseFromParent();
368     }
369   }
370 
371   EmitIfUsed(*this, EHResumeBlock);
372   EmitIfUsed(*this, TerminateLandingPad);
373   EmitIfUsed(*this, TerminateHandler);
374   EmitIfUsed(*this, UnreachableBlock);
375 
376   if (CGM.getCodeGenOpts().EmitDeclMetadata)
377     EmitDeclMetadata();
378 
379   for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator
380            I = DeferredReplacements.begin(),
381            E = DeferredReplacements.end();
382        I != E; ++I) {
383     I->first->replaceAllUsesWith(I->second);
384     I->first->eraseFromParent();
385   }
386 }
387 
388 /// ShouldInstrumentFunction - Return true if the current function should be
389 /// instrumented with __cyg_profile_func_* calls
390 bool CodeGenFunction::ShouldInstrumentFunction() {
391   if (!CGM.getCodeGenOpts().InstrumentFunctions)
392     return false;
393   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
394     return false;
395   return true;
396 }
397 
398 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
399 /// instrumentation function with the current function and the call site, if
400 /// function instrumentation is enabled.
401 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) {
402   // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site);
403   llvm::PointerType *PointerTy = Int8PtrTy;
404   llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy };
405   llvm::FunctionType *FunctionTy =
406     llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false);
407 
408   llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn);
409   llvm::CallInst *CallSite = Builder.CreateCall(
410     CGM.getIntrinsic(llvm::Intrinsic::returnaddress),
411     llvm::ConstantInt::get(Int32Ty, 0),
412     "callsite");
413 
414   llvm::Value *args[] = {
415     llvm::ConstantExpr::getBitCast(CurFn, PointerTy),
416     CallSite
417   };
418 
419   EmitNounwindRuntimeCall(F, args);
420 }
421 
422 void CodeGenFunction::EmitMCountInstrumentation() {
423   llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false);
424 
425   llvm::Constant *MCountFn =
426     CGM.CreateRuntimeFunction(FTy, getTarget().getMCountName());
427   EmitNounwindRuntimeCall(MCountFn);
428 }
429 
430 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument
431 // information in the program executable. The argument information stored
432 // includes the argument name, its type, the address and access qualifiers used.
433 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn,
434                                  CodeGenModule &CGM, llvm::LLVMContext &Context,
435                                  SmallVector<llvm::Metadata *, 5> &kernelMDArgs,
436                                  CGBuilderTy &Builder, ASTContext &ASTCtx) {
437   // Create MDNodes that represent the kernel arg metadata.
438   // Each MDNode is a list in the form of "key", N number of values which is
439   // the same number of values as their are kernel arguments.
440 
441   const PrintingPolicy &Policy = ASTCtx.getPrintingPolicy();
442 
443   // MDNode for the kernel argument address space qualifiers.
444   SmallVector<llvm::Metadata *, 8> addressQuals;
445   addressQuals.push_back(llvm::MDString::get(Context, "kernel_arg_addr_space"));
446 
447   // MDNode for the kernel argument access qualifiers (images only).
448   SmallVector<llvm::Metadata *, 8> accessQuals;
449   accessQuals.push_back(llvm::MDString::get(Context, "kernel_arg_access_qual"));
450 
451   // MDNode for the kernel argument type names.
452   SmallVector<llvm::Metadata *, 8> argTypeNames;
453   argTypeNames.push_back(llvm::MDString::get(Context, "kernel_arg_type"));
454 
455   // MDNode for the kernel argument base type names.
456   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
457   argBaseTypeNames.push_back(
458       llvm::MDString::get(Context, "kernel_arg_base_type"));
459 
460   // MDNode for the kernel argument type qualifiers.
461   SmallVector<llvm::Metadata *, 8> argTypeQuals;
462   argTypeQuals.push_back(llvm::MDString::get(Context, "kernel_arg_type_qual"));
463 
464   // MDNode for the kernel argument names.
465   SmallVector<llvm::Metadata *, 8> argNames;
466   argNames.push_back(llvm::MDString::get(Context, "kernel_arg_name"));
467 
468   for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
469     const ParmVarDecl *parm = FD->getParamDecl(i);
470     QualType ty = parm->getType();
471     std::string typeQuals;
472 
473     if (ty->isPointerType()) {
474       QualType pointeeTy = ty->getPointeeType();
475 
476       // Get address qualifier.
477       addressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(
478           ASTCtx.getTargetAddressSpace(pointeeTy.getAddressSpace()))));
479 
480       // Get argument type name.
481       std::string typeName =
482           pointeeTy.getUnqualifiedType().getAsString(Policy) + "*";
483 
484       // Turn "unsigned type" to "utype"
485       std::string::size_type pos = typeName.find("unsigned");
486       if (pointeeTy.isCanonical() && pos != std::string::npos)
487         typeName.erase(pos+1, 8);
488 
489       argTypeNames.push_back(llvm::MDString::get(Context, typeName));
490 
491       std::string baseTypeName =
492           pointeeTy.getUnqualifiedType().getCanonicalType().getAsString(
493               Policy) +
494           "*";
495 
496       // Turn "unsigned type" to "utype"
497       pos = baseTypeName.find("unsigned");
498       if (pos != std::string::npos)
499         baseTypeName.erase(pos+1, 8);
500 
501       argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName));
502 
503       // Get argument type qualifiers:
504       if (ty.isRestrictQualified())
505         typeQuals = "restrict";
506       if (pointeeTy.isConstQualified() ||
507           (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
508         typeQuals += typeQuals.empty() ? "const" : " const";
509       if (pointeeTy.isVolatileQualified())
510         typeQuals += typeQuals.empty() ? "volatile" : " volatile";
511     } else {
512       uint32_t AddrSpc = 0;
513       if (ty->isImageType())
514         AddrSpc =
515           CGM.getContext().getTargetAddressSpace(LangAS::opencl_global);
516 
517       addressQuals.push_back(
518           llvm::ConstantAsMetadata::get(Builder.getInt32(AddrSpc)));
519 
520       // Get argument type name.
521       std::string typeName = ty.getUnqualifiedType().getAsString(Policy);
522 
523       // Turn "unsigned type" to "utype"
524       std::string::size_type pos = typeName.find("unsigned");
525       if (ty.isCanonical() && pos != std::string::npos)
526         typeName.erase(pos+1, 8);
527 
528       argTypeNames.push_back(llvm::MDString::get(Context, typeName));
529 
530       std::string baseTypeName =
531           ty.getUnqualifiedType().getCanonicalType().getAsString(Policy);
532 
533       // Turn "unsigned type" to "utype"
534       pos = baseTypeName.find("unsigned");
535       if (pos != std::string::npos)
536         baseTypeName.erase(pos+1, 8);
537 
538       argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName));
539 
540       // Get argument type qualifiers:
541       if (ty.isConstQualified())
542         typeQuals = "const";
543       if (ty.isVolatileQualified())
544         typeQuals += typeQuals.empty() ? "volatile" : " volatile";
545     }
546 
547     argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals));
548 
549     // Get image access qualifier:
550     if (ty->isImageType()) {
551       const OpenCLImageAccessAttr *A = parm->getAttr<OpenCLImageAccessAttr>();
552       if (A && A->isWriteOnly())
553         accessQuals.push_back(llvm::MDString::get(Context, "write_only"));
554       else
555         accessQuals.push_back(llvm::MDString::get(Context, "read_only"));
556       // FIXME: what about read_write?
557     } else
558       accessQuals.push_back(llvm::MDString::get(Context, "none"));
559 
560     // Get argument name.
561     argNames.push_back(llvm::MDString::get(Context, parm->getName()));
562   }
563 
564   kernelMDArgs.push_back(llvm::MDNode::get(Context, addressQuals));
565   kernelMDArgs.push_back(llvm::MDNode::get(Context, accessQuals));
566   kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeNames));
567   kernelMDArgs.push_back(llvm::MDNode::get(Context, argBaseTypeNames));
568   kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeQuals));
569   if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
570     kernelMDArgs.push_back(llvm::MDNode::get(Context, argNames));
571 }
572 
573 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD,
574                                                llvm::Function *Fn)
575 {
576   if (!FD->hasAttr<OpenCLKernelAttr>())
577     return;
578 
579   llvm::LLVMContext &Context = getLLVMContext();
580 
581   SmallVector<llvm::Metadata *, 5> kernelMDArgs;
582   kernelMDArgs.push_back(llvm::ConstantAsMetadata::get(Fn));
583 
584   GenOpenCLArgMetadata(FD, Fn, CGM, Context, kernelMDArgs, Builder,
585                        getContext());
586 
587   if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
588     QualType hintQTy = A->getTypeHint();
589     const ExtVectorType *hintEltQTy = hintQTy->getAs<ExtVectorType>();
590     bool isSignedInteger =
591         hintQTy->isSignedIntegerType() ||
592         (hintEltQTy && hintEltQTy->getElementType()->isSignedIntegerType());
593     llvm::Metadata *attrMDArgs[] = {
594         llvm::MDString::get(Context, "vec_type_hint"),
595         llvm::ConstantAsMetadata::get(llvm::UndefValue::get(
596             CGM.getTypes().ConvertType(A->getTypeHint()))),
597         llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
598             llvm::IntegerType::get(Context, 32),
599             llvm::APInt(32, (uint64_t)(isSignedInteger ? 1 : 0))))};
600     kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
601   }
602 
603   if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
604     llvm::Metadata *attrMDArgs[] = {
605         llvm::MDString::get(Context, "work_group_size_hint"),
606         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
607         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
608         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
609     kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
610   }
611 
612   if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
613     llvm::Metadata *attrMDArgs[] = {
614         llvm::MDString::get(Context, "reqd_work_group_size"),
615         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
616         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
617         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
618     kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
619   }
620 
621   llvm::MDNode *kernelMDNode = llvm::MDNode::get(Context, kernelMDArgs);
622   llvm::NamedMDNode *OpenCLKernelMetadata =
623     CGM.getModule().getOrInsertNamedMetadata("opencl.kernels");
624   OpenCLKernelMetadata->addOperand(kernelMDNode);
625 }
626 
627 /// Determine whether the function F ends with a return stmt.
628 static bool endsWithReturn(const Decl* F) {
629   const Stmt *Body = nullptr;
630   if (auto *FD = dyn_cast_or_null<FunctionDecl>(F))
631     Body = FD->getBody();
632   else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F))
633     Body = OMD->getBody();
634 
635   if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
636     auto LastStmt = CS->body_rbegin();
637     if (LastStmt != CS->body_rend())
638       return isa<ReturnStmt>(*LastStmt);
639   }
640   return false;
641 }
642 
643 void CodeGenFunction::StartFunction(GlobalDecl GD,
644                                     QualType RetTy,
645                                     llvm::Function *Fn,
646                                     const CGFunctionInfo &FnInfo,
647                                     const FunctionArgList &Args,
648                                     SourceLocation Loc,
649                                     SourceLocation StartLoc) {
650   assert(!CurFn &&
651          "Do not use a CodeGenFunction object for more than one function");
652 
653   const Decl *D = GD.getDecl();
654 
655   DidCallStackSave = false;
656   CurCodeDecl = D;
657   CurFuncDecl = (D ? D->getNonClosureContext() : nullptr);
658   FnRetTy = RetTy;
659   CurFn = Fn;
660   CurFnInfo = &FnInfo;
661   assert(CurFn->isDeclaration() && "Function already has body?");
662 
663   if (CGM.isInSanitizerBlacklist(Fn, Loc))
664     SanOpts.clear();
665 
666   if (D) {
667     // Apply the no_sanitize* attributes to SanOpts.
668     for (auto Attr : D->specific_attrs<NoSanitizeAttr>())
669       SanOpts.Mask &= ~Attr->getMask();
670   }
671 
672   // Apply sanitizer attributes to the function.
673   if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress))
674     Fn->addFnAttr(llvm::Attribute::SanitizeAddress);
675   if (SanOpts.has(SanitizerKind::Thread))
676     Fn->addFnAttr(llvm::Attribute::SanitizeThread);
677   if (SanOpts.has(SanitizerKind::Memory))
678     Fn->addFnAttr(llvm::Attribute::SanitizeMemory);
679   if (SanOpts.has(SanitizerKind::SafeStack))
680     Fn->addFnAttr(llvm::Attribute::SafeStack);
681 
682   // Pass inline keyword to optimizer if it appears explicitly on any
683   // declaration. Also, in the case of -fno-inline attach NoInline
684   // attribute to all function that are not marked AlwaysInline.
685   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
686     if (!CGM.getCodeGenOpts().NoInline) {
687       for (auto RI : FD->redecls())
688         if (RI->isInlineSpecified()) {
689           Fn->addFnAttr(llvm::Attribute::InlineHint);
690           break;
691         }
692     } else if (!FD->hasAttr<AlwaysInlineAttr>())
693       Fn->addFnAttr(llvm::Attribute::NoInline);
694   }
695 
696   if (getLangOpts().OpenCL) {
697     // Add metadata for a kernel function.
698     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
699       EmitOpenCLKernelMetadata(FD, Fn);
700   }
701 
702   // If we are checking function types, emit a function type signature as
703   // prologue data.
704   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) {
705     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
706       if (llvm::Constant *PrologueSig =
707               CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
708         llvm::Constant *FTRTTIConst =
709             CGM.GetAddrOfRTTIDescriptor(FD->getType(), /*ForEH=*/true);
710         llvm::Constant *PrologueStructElems[] = { PrologueSig, FTRTTIConst };
711         llvm::Constant *PrologueStructConst =
712             llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true);
713         Fn->setPrologueData(PrologueStructConst);
714       }
715     }
716   }
717 
718   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
719 
720   // Create a marker to make it easy to insert allocas into the entryblock
721   // later.  Don't create this with the builder, because we don't want it
722   // folded.
723   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
724   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB);
725   if (Builder.isNamePreserving())
726     AllocaInsertPt->setName("allocapt");
727 
728   ReturnBlock = getJumpDestInCurrentScope("return");
729 
730   Builder.SetInsertPoint(EntryBB);
731 
732   // Emit subprogram debug descriptor.
733   if (CGDebugInfo *DI = getDebugInfo()) {
734     SmallVector<QualType, 16> ArgTypes;
735     for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
736 	 i != e; ++i) {
737       ArgTypes.push_back((*i)->getType());
738     }
739 
740     QualType FnType =
741       getContext().getFunctionType(RetTy, ArgTypes,
742                                    FunctionProtoType::ExtProtoInfo());
743     DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, Builder);
744   }
745 
746   if (ShouldInstrumentFunction())
747     EmitFunctionInstrumentation("__cyg_profile_func_enter");
748 
749   if (CGM.getCodeGenOpts().InstrumentForProfiling)
750     EmitMCountInstrumentation();
751 
752   if (RetTy->isVoidType()) {
753     // Void type; nothing to return.
754     ReturnValue = Address::invalid();
755 
756     // Count the implicit return.
757     if (!endsWithReturn(D))
758       ++NumReturnExprs;
759   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
760              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
761     // Indirect aggregate return; emit returned value directly into sret slot.
762     // This reduces code size, and affects correctness in C++.
763     auto AI = CurFn->arg_begin();
764     if (CurFnInfo->getReturnInfo().isSRetAfterThis())
765       ++AI;
766     ReturnValue = Address(AI, CurFnInfo->getReturnInfo().getIndirectAlign());
767   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca &&
768              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
769     // Load the sret pointer from the argument struct and return into that.
770     unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex();
771     llvm::Function::arg_iterator EI = CurFn->arg_end();
772     --EI;
773     llvm::Value *Addr = Builder.CreateStructGEP(nullptr, EI, Idx);
774     Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result");
775     ReturnValue = Address(Addr, getNaturalTypeAlignment(RetTy));
776   } else {
777     ReturnValue = CreateIRTemp(RetTy, "retval");
778 
779     // Tell the epilog emitter to autorelease the result.  We do this
780     // now so that various specialized functions can suppress it
781     // during their IR-generation.
782     if (getLangOpts().ObjCAutoRefCount &&
783         !CurFnInfo->isReturnsRetained() &&
784         RetTy->isObjCRetainableType())
785       AutoreleaseResult = true;
786   }
787 
788   EmitStartEHSpec(CurCodeDecl);
789 
790   PrologueCleanupDepth = EHStack.stable_begin();
791   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
792 
793   if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
794     CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
795     const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
796     if (MD->getParent()->isLambda() &&
797         MD->getOverloadedOperator() == OO_Call) {
798       // We're in a lambda; figure out the captures.
799       MD->getParent()->getCaptureFields(LambdaCaptureFields,
800                                         LambdaThisCaptureField);
801       if (LambdaThisCaptureField) {
802         // If this lambda captures this, load it.
803         LValue ThisLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
804         CXXThisValue = EmitLoadOfLValue(ThisLValue,
805                                         SourceLocation()).getScalarVal();
806       }
807       for (auto *FD : MD->getParent()->fields()) {
808         if (FD->hasCapturedVLAType()) {
809           auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD),
810                                            SourceLocation()).getScalarVal();
811           auto VAT = FD->getCapturedVLAType();
812           VLASizeMap[VAT->getSizeExpr()] = ExprArg;
813         }
814       }
815     } else {
816       // Not in a lambda; just use 'this' from the method.
817       // FIXME: Should we generate a new load for each use of 'this'?  The
818       // fast register allocator would be happier...
819       CXXThisValue = CXXABIThisValue;
820     }
821   }
822 
823   // If any of the arguments have a variably modified type, make sure to
824   // emit the type size.
825   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
826        i != e; ++i) {
827     const VarDecl *VD = *i;
828 
829     // Dig out the type as written from ParmVarDecls; it's unclear whether
830     // the standard (C99 6.9.1p10) requires this, but we're following the
831     // precedent set by gcc.
832     QualType Ty;
833     if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
834       Ty = PVD->getOriginalType();
835     else
836       Ty = VD->getType();
837 
838     if (Ty->isVariablyModifiedType())
839       EmitVariablyModifiedType(Ty);
840   }
841   // Emit a location at the end of the prologue.
842   if (CGDebugInfo *DI = getDebugInfo())
843     DI->EmitLocation(Builder, StartLoc);
844 }
845 
846 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args,
847                                        const Stmt *Body) {
848   incrementProfileCounter(Body);
849   if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
850     EmitCompoundStmtWithoutScope(*S);
851   else
852     EmitStmt(Body);
853 }
854 
855 /// When instrumenting to collect profile data, the counts for some blocks
856 /// such as switch cases need to not include the fall-through counts, so
857 /// emit a branch around the instrumentation code. When not instrumenting,
858 /// this just calls EmitBlock().
859 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB,
860                                                const Stmt *S) {
861   llvm::BasicBlock *SkipCountBB = nullptr;
862   if (HaveInsertPoint() && CGM.getCodeGenOpts().ProfileInstrGenerate) {
863     // When instrumenting for profiling, the fallthrough to certain
864     // statements needs to skip over the instrumentation code so that we
865     // get an accurate count.
866     SkipCountBB = createBasicBlock("skipcount");
867     EmitBranch(SkipCountBB);
868   }
869   EmitBlock(BB);
870   uint64_t CurrentCount = getCurrentProfileCount();
871   incrementProfileCounter(S);
872   setCurrentProfileCount(getCurrentProfileCount() + CurrentCount);
873   if (SkipCountBB)
874     EmitBlock(SkipCountBB);
875 }
876 
877 /// Tries to mark the given function nounwind based on the
878 /// non-existence of any throwing calls within it.  We believe this is
879 /// lightweight enough to do at -O0.
880 static void TryMarkNoThrow(llvm::Function *F) {
881   // LLVM treats 'nounwind' on a function as part of the type, so we
882   // can't do this on functions that can be overwritten.
883   if (F->mayBeOverridden()) return;
884 
885   for (llvm::BasicBlock &BB : *F)
886     for (llvm::Instruction &I : BB)
887       if (I.mayThrow())
888         return;
889 
890   F->setDoesNotThrow();
891 }
892 
893 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
894                                    const CGFunctionInfo &FnInfo) {
895   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
896 
897   // Check if we should generate debug info for this function.
898   if (FD->hasAttr<NoDebugAttr>())
899     DebugInfo = nullptr; // disable debug info indefinitely for this function
900 
901   FunctionArgList Args;
902   QualType ResTy = FD->getReturnType();
903 
904   CurGD = GD;
905   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
906   if (MD && MD->isInstance()) {
907     if (CGM.getCXXABI().HasThisReturn(GD))
908       ResTy = MD->getThisType(getContext());
909     else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
910       ResTy = CGM.getContext().VoidPtrTy;
911     CGM.getCXXABI().buildThisParam(*this, Args);
912   }
913 
914   Args.append(FD->param_begin(), FD->param_end());
915 
916   if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
917     CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args);
918 
919   SourceRange BodyRange;
920   if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange();
921   CurEHLocation = BodyRange.getEnd();
922 
923   // Use the location of the start of the function to determine where
924   // the function definition is located. By default use the location
925   // of the declaration as the location for the subprogram. A function
926   // may lack a declaration in the source code if it is created by code
927   // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
928   SourceLocation Loc = FD->getLocation();
929 
930   // If this is a function specialization then use the pattern body
931   // as the location for the function.
932   if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern())
933     if (SpecDecl->hasBody(SpecDecl))
934       Loc = SpecDecl->getLocation();
935 
936   // Emit the standard function prologue.
937   StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin());
938 
939   // Generate the body of the function.
940   PGO.checkGlobalDecl(GD);
941   PGO.assignRegionCounters(GD.getDecl(), CurFn);
942   if (isa<CXXDestructorDecl>(FD))
943     EmitDestructorBody(Args);
944   else if (isa<CXXConstructorDecl>(FD))
945     EmitConstructorBody(Args);
946   else if (getLangOpts().CUDA &&
947            !getLangOpts().CUDAIsDevice &&
948            FD->hasAttr<CUDAGlobalAttr>())
949     CGM.getCUDARuntime().emitDeviceStub(*this, Args);
950   else if (isa<CXXConversionDecl>(FD) &&
951            cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) {
952     // The lambda conversion to block pointer is special; the semantics can't be
953     // expressed in the AST, so IRGen needs to special-case it.
954     EmitLambdaToBlockPointerBody(Args);
955   } else if (isa<CXXMethodDecl>(FD) &&
956              cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
957     // The lambda static invoker function is special, because it forwards or
958     // clones the body of the function call operator (but is actually static).
959     EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD));
960   } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
961              (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
962               cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
963     // Implicit copy-assignment gets the same special treatment as implicit
964     // copy-constructors.
965     emitImplicitAssignmentOperatorBody(Args);
966   } else if (Stmt *Body = FD->getBody()) {
967     EmitFunctionBody(Args, Body);
968   } else
969     llvm_unreachable("no definition for emitted function");
970 
971   // C++11 [stmt.return]p2:
972   //   Flowing off the end of a function [...] results in undefined behavior in
973   //   a value-returning function.
974   // C11 6.9.1p12:
975   //   If the '}' that terminates a function is reached, and the value of the
976   //   function call is used by the caller, the behavior is undefined.
977   if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock &&
978       !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) {
979     if (SanOpts.has(SanitizerKind::Return)) {
980       SanitizerScope SanScope(this);
981       llvm::Value *IsFalse = Builder.getFalse();
982       EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return),
983                 "missing_return", EmitCheckSourceLocation(FD->getLocation()),
984                 None);
985     } else if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
986       EmitTrapCall(llvm::Intrinsic::trap);
987     }
988     Builder.CreateUnreachable();
989     Builder.ClearInsertionPoint();
990   }
991 
992   // Emit the standard function epilogue.
993   FinishFunction(BodyRange.getEnd());
994 
995   // If we haven't marked the function nothrow through other means, do
996   // a quick pass now to see if we can.
997   if (!CurFn->doesNotThrow())
998     TryMarkNoThrow(CurFn);
999 }
1000 
1001 /// ContainsLabel - Return true if the statement contains a label in it.  If
1002 /// this statement is not executed normally, it not containing a label means
1003 /// that we can just remove the code.
1004 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
1005   // Null statement, not a label!
1006   if (!S) return false;
1007 
1008   // If this is a label, we have to emit the code, consider something like:
1009   // if (0) {  ...  foo:  bar(); }  goto foo;
1010   //
1011   // TODO: If anyone cared, we could track __label__'s, since we know that you
1012   // can't jump to one from outside their declared region.
1013   if (isa<LabelStmt>(S))
1014     return true;
1015 
1016   // If this is a case/default statement, and we haven't seen a switch, we have
1017   // to emit the code.
1018   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
1019     return true;
1020 
1021   // If this is a switch statement, we want to ignore cases below it.
1022   if (isa<SwitchStmt>(S))
1023     IgnoreCaseStmts = true;
1024 
1025   // Scan subexpressions for verboten labels.
1026   for (const Stmt *SubStmt : S->children())
1027     if (ContainsLabel(SubStmt, IgnoreCaseStmts))
1028       return true;
1029 
1030   return false;
1031 }
1032 
1033 /// containsBreak - Return true if the statement contains a break out of it.
1034 /// If the statement (recursively) contains a switch or loop with a break
1035 /// inside of it, this is fine.
1036 bool CodeGenFunction::containsBreak(const Stmt *S) {
1037   // Null statement, not a label!
1038   if (!S) return false;
1039 
1040   // If this is a switch or loop that defines its own break scope, then we can
1041   // include it and anything inside of it.
1042   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
1043       isa<ForStmt>(S))
1044     return false;
1045 
1046   if (isa<BreakStmt>(S))
1047     return true;
1048 
1049   // Scan subexpressions for verboten breaks.
1050   for (const Stmt *SubStmt : S->children())
1051     if (containsBreak(SubStmt))
1052       return true;
1053 
1054   return false;
1055 }
1056 
1057 
1058 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1059 /// to a constant, or if it does but contains a label, return false.  If it
1060 /// constant folds return true and set the boolean result in Result.
1061 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1062                                                    bool &ResultBool) {
1063   llvm::APSInt ResultInt;
1064   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt))
1065     return false;
1066 
1067   ResultBool = ResultInt.getBoolValue();
1068   return true;
1069 }
1070 
1071 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1072 /// to a constant, or if it does but contains a label, return false.  If it
1073 /// constant folds return true and set the folded value.
1074 bool CodeGenFunction::
1075 ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &ResultInt) {
1076   // FIXME: Rename and handle conversion of other evaluatable things
1077   // to bool.
1078   llvm::APSInt Int;
1079   if (!Cond->EvaluateAsInt(Int, getContext()))
1080     return false;  // Not foldable, not integer or not fully evaluatable.
1081 
1082   if (CodeGenFunction::ContainsLabel(Cond))
1083     return false;  // Contains a label.
1084 
1085   ResultInt = Int;
1086   return true;
1087 }
1088 
1089 
1090 
1091 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
1092 /// statement) to the specified blocks.  Based on the condition, this might try
1093 /// to simplify the codegen of the conditional based on the branch.
1094 ///
1095 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
1096                                            llvm::BasicBlock *TrueBlock,
1097                                            llvm::BasicBlock *FalseBlock,
1098                                            uint64_t TrueCount) {
1099   Cond = Cond->IgnoreParens();
1100 
1101   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
1102 
1103     // Handle X && Y in a condition.
1104     if (CondBOp->getOpcode() == BO_LAnd) {
1105       // If we have "1 && X", simplify the code.  "0 && X" would have constant
1106       // folded if the case was simple enough.
1107       bool ConstantBool = false;
1108       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1109           ConstantBool) {
1110         // br(1 && X) -> br(X).
1111         incrementProfileCounter(CondBOp);
1112         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1113                                     TrueCount);
1114       }
1115 
1116       // If we have "X && 1", simplify the code to use an uncond branch.
1117       // "X && 0" would have been constant folded to 0.
1118       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1119           ConstantBool) {
1120         // br(X && 1) -> br(X).
1121         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1122                                     TrueCount);
1123       }
1124 
1125       // Emit the LHS as a conditional.  If the LHS conditional is false, we
1126       // want to jump to the FalseBlock.
1127       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
1128       // The counter tells us how often we evaluate RHS, and all of TrueCount
1129       // can be propagated to that branch.
1130       uint64_t RHSCount = getProfileCount(CondBOp->getRHS());
1131 
1132       ConditionalEvaluation eval(*this);
1133       {
1134         ApplyDebugLocation DL(*this, Cond);
1135         EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount);
1136         EmitBlock(LHSTrue);
1137       }
1138 
1139       incrementProfileCounter(CondBOp);
1140       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1141 
1142       // Any temporaries created here are conditional.
1143       eval.begin(*this);
1144       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount);
1145       eval.end(*this);
1146 
1147       return;
1148     }
1149 
1150     if (CondBOp->getOpcode() == BO_LOr) {
1151       // If we have "0 || X", simplify the code.  "1 || X" would have constant
1152       // folded if the case was simple enough.
1153       bool ConstantBool = false;
1154       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1155           !ConstantBool) {
1156         // br(0 || X) -> br(X).
1157         incrementProfileCounter(CondBOp);
1158         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1159                                     TrueCount);
1160       }
1161 
1162       // If we have "X || 0", simplify the code to use an uncond branch.
1163       // "X || 1" would have been constant folded to 1.
1164       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1165           !ConstantBool) {
1166         // br(X || 0) -> br(X).
1167         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1168                                     TrueCount);
1169       }
1170 
1171       // Emit the LHS as a conditional.  If the LHS conditional is true, we
1172       // want to jump to the TrueBlock.
1173       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
1174       // We have the count for entry to the RHS and for the whole expression
1175       // being true, so we can divy up True count between the short circuit and
1176       // the RHS.
1177       uint64_t LHSCount =
1178           getCurrentProfileCount() - getProfileCount(CondBOp->getRHS());
1179       uint64_t RHSCount = TrueCount - LHSCount;
1180 
1181       ConditionalEvaluation eval(*this);
1182       {
1183         ApplyDebugLocation DL(*this, Cond);
1184         EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount);
1185         EmitBlock(LHSFalse);
1186       }
1187 
1188       incrementProfileCounter(CondBOp);
1189       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1190 
1191       // Any temporaries created here are conditional.
1192       eval.begin(*this);
1193       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount);
1194 
1195       eval.end(*this);
1196 
1197       return;
1198     }
1199   }
1200 
1201   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
1202     // br(!x, t, f) -> br(x, f, t)
1203     if (CondUOp->getOpcode() == UO_LNot) {
1204       // Negate the count.
1205       uint64_t FalseCount = getCurrentProfileCount() - TrueCount;
1206       // Negate the condition and swap the destination blocks.
1207       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock,
1208                                   FalseCount);
1209     }
1210   }
1211 
1212   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
1213     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
1214     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
1215     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
1216 
1217     ConditionalEvaluation cond(*this);
1218     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock,
1219                          getProfileCount(CondOp));
1220 
1221     // When computing PGO branch weights, we only know the overall count for
1222     // the true block. This code is essentially doing tail duplication of the
1223     // naive code-gen, introducing new edges for which counts are not
1224     // available. Divide the counts proportionally between the LHS and RHS of
1225     // the conditional operator.
1226     uint64_t LHSScaledTrueCount = 0;
1227     if (TrueCount) {
1228       double LHSRatio =
1229           getProfileCount(CondOp) / (double)getCurrentProfileCount();
1230       LHSScaledTrueCount = TrueCount * LHSRatio;
1231     }
1232 
1233     cond.begin(*this);
1234     EmitBlock(LHSBlock);
1235     incrementProfileCounter(CondOp);
1236     {
1237       ApplyDebugLocation DL(*this, Cond);
1238       EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock,
1239                            LHSScaledTrueCount);
1240     }
1241     cond.end(*this);
1242 
1243     cond.begin(*this);
1244     EmitBlock(RHSBlock);
1245     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock,
1246                          TrueCount - LHSScaledTrueCount);
1247     cond.end(*this);
1248 
1249     return;
1250   }
1251 
1252   if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
1253     // Conditional operator handling can give us a throw expression as a
1254     // condition for a case like:
1255     //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
1256     // Fold this to:
1257     //   br(c, throw x, br(y, t, f))
1258     EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
1259     return;
1260   }
1261 
1262   // If the branch has a condition wrapped by __builtin_unpredictable,
1263   // create metadata that specifies that the branch is unpredictable.
1264   // Don't bother if not optimizing because that metadata would not be used.
1265   llvm::MDNode *Unpredictable = nullptr;
1266   if (CGM.getCodeGenOpts().OptimizationLevel != 0) {
1267     if (const CallExpr *Call = dyn_cast<CallExpr>(Cond)) {
1268       const Decl *TargetDecl = Call->getCalleeDecl();
1269       if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
1270         if (FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
1271           llvm::MDBuilder MDHelper(getLLVMContext());
1272           Unpredictable = MDHelper.createUnpredictable();
1273         }
1274       }
1275     }
1276   }
1277 
1278   // Create branch weights based on the number of times we get here and the
1279   // number of times the condition should be true.
1280   uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount);
1281   llvm::MDNode *Weights =
1282       createProfileWeights(TrueCount, CurrentCount - TrueCount);
1283 
1284   // Emit the code with the fully general case.
1285   llvm::Value *CondV;
1286   {
1287     ApplyDebugLocation DL(*this, Cond);
1288     CondV = EvaluateExprAsBool(Cond);
1289   }
1290   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable);
1291 }
1292 
1293 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1294 /// specified stmt yet.
1295 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
1296   CGM.ErrorUnsupported(S, Type);
1297 }
1298 
1299 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
1300 /// variable-length array whose elements have a non-zero bit-pattern.
1301 ///
1302 /// \param baseType the inner-most element type of the array
1303 /// \param src - a char* pointing to the bit-pattern for a single
1304 /// base element of the array
1305 /// \param sizeInChars - the total size of the VLA, in chars
1306 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
1307                                Address dest, Address src,
1308                                llvm::Value *sizeInChars) {
1309   CGBuilderTy &Builder = CGF.Builder;
1310 
1311   CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType);
1312   llvm::Value *baseSizeInChars
1313     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity());
1314 
1315   Address begin =
1316     Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin");
1317   llvm::Value *end =
1318     Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end");
1319 
1320   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
1321   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
1322   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
1323 
1324   // Make a loop over the VLA.  C99 guarantees that the VLA element
1325   // count must be nonzero.
1326   CGF.EmitBlock(loopBB);
1327 
1328   llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur");
1329   cur->addIncoming(begin.getPointer(), originBB);
1330 
1331   CharUnits curAlign =
1332     dest.getAlignment().alignmentOfArrayElement(baseSize);
1333 
1334   // memcpy the individual element bit-pattern.
1335   Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars,
1336                        /*volatile*/ false);
1337 
1338   // Go to the next element.
1339   llvm::Value *next =
1340     Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next");
1341 
1342   // Leave if that's the end of the VLA.
1343   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
1344   Builder.CreateCondBr(done, contBB, loopBB);
1345   cur->addIncoming(next, loopBB);
1346 
1347   CGF.EmitBlock(contBB);
1348 }
1349 
1350 void
1351 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) {
1352   // Ignore empty classes in C++.
1353   if (getLangOpts().CPlusPlus) {
1354     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1355       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
1356         return;
1357     }
1358   }
1359 
1360   // Cast the dest ptr to the appropriate i8 pointer type.
1361   if (DestPtr.getElementType() != Int8Ty)
1362     DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty);
1363 
1364   // Get size and alignment info for this aggregate.
1365   CharUnits size = getContext().getTypeSizeInChars(Ty);
1366 
1367   llvm::Value *SizeVal;
1368   const VariableArrayType *vla;
1369 
1370   // Don't bother emitting a zero-byte memset.
1371   if (size.isZero()) {
1372     // But note that getTypeInfo returns 0 for a VLA.
1373     if (const VariableArrayType *vlaType =
1374           dyn_cast_or_null<VariableArrayType>(
1375                                           getContext().getAsArrayType(Ty))) {
1376       QualType eltType;
1377       llvm::Value *numElts;
1378       std::tie(numElts, eltType) = getVLASize(vlaType);
1379 
1380       SizeVal = numElts;
1381       CharUnits eltSize = getContext().getTypeSizeInChars(eltType);
1382       if (!eltSize.isOne())
1383         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
1384       vla = vlaType;
1385     } else {
1386       return;
1387     }
1388   } else {
1389     SizeVal = CGM.getSize(size);
1390     vla = nullptr;
1391   }
1392 
1393   // If the type contains a pointer to data member we can't memset it to zero.
1394   // Instead, create a null constant and copy it to the destination.
1395   // TODO: there are other patterns besides zero that we can usefully memset,
1396   // like -1, which happens to be the pattern used by member-pointers.
1397   if (!CGM.getTypes().isZeroInitializable(Ty)) {
1398     // For a VLA, emit a single element, then splat that over the VLA.
1399     if (vla) Ty = getContext().getBaseElementType(vla);
1400 
1401     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
1402 
1403     llvm::GlobalVariable *NullVariable =
1404       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
1405                                /*isConstant=*/true,
1406                                llvm::GlobalVariable::PrivateLinkage,
1407                                NullConstant, Twine());
1408     CharUnits NullAlign = DestPtr.getAlignment();
1409     NullVariable->setAlignment(NullAlign.getQuantity());
1410     Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()),
1411                    NullAlign);
1412 
1413     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
1414 
1415     // Get and call the appropriate llvm.memcpy overload.
1416     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false);
1417     return;
1418   }
1419 
1420   // Otherwise, just memset the whole thing to zero.  This is legal
1421   // because in LLVM, all default initializers (other than the ones we just
1422   // handled above) are guaranteed to have a bit pattern of all zeros.
1423   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false);
1424 }
1425 
1426 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
1427   // Make sure that there is a block for the indirect goto.
1428   if (!IndirectBranch)
1429     GetIndirectGotoBlock();
1430 
1431   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
1432 
1433   // Make sure the indirect branch includes all of the address-taken blocks.
1434   IndirectBranch->addDestination(BB);
1435   return llvm::BlockAddress::get(CurFn, BB);
1436 }
1437 
1438 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
1439   // If we already made the indirect branch for indirect goto, return its block.
1440   if (IndirectBranch) return IndirectBranch->getParent();
1441 
1442   CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto"));
1443 
1444   // Create the PHI node that indirect gotos will add entries to.
1445   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
1446                                               "indirect.goto.dest");
1447 
1448   // Create the indirect branch instruction.
1449   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
1450   return IndirectBranch->getParent();
1451 }
1452 
1453 /// Computes the length of an array in elements, as well as the base
1454 /// element type and a properly-typed first element pointer.
1455 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
1456                                               QualType &baseType,
1457                                               Address &addr) {
1458   const ArrayType *arrayType = origArrayType;
1459 
1460   // If it's a VLA, we have to load the stored size.  Note that
1461   // this is the size of the VLA in bytes, not its size in elements.
1462   llvm::Value *numVLAElements = nullptr;
1463   if (isa<VariableArrayType>(arrayType)) {
1464     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first;
1465 
1466     // Walk into all VLAs.  This doesn't require changes to addr,
1467     // which has type T* where T is the first non-VLA element type.
1468     do {
1469       QualType elementType = arrayType->getElementType();
1470       arrayType = getContext().getAsArrayType(elementType);
1471 
1472       // If we only have VLA components, 'addr' requires no adjustment.
1473       if (!arrayType) {
1474         baseType = elementType;
1475         return numVLAElements;
1476       }
1477     } while (isa<VariableArrayType>(arrayType));
1478 
1479     // We get out here only if we find a constant array type
1480     // inside the VLA.
1481   }
1482 
1483   // We have some number of constant-length arrays, so addr should
1484   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
1485   // down to the first element of addr.
1486   SmallVector<llvm::Value*, 8> gepIndices;
1487 
1488   // GEP down to the array type.
1489   llvm::ConstantInt *zero = Builder.getInt32(0);
1490   gepIndices.push_back(zero);
1491 
1492   uint64_t countFromCLAs = 1;
1493   QualType eltType;
1494 
1495   llvm::ArrayType *llvmArrayType =
1496     dyn_cast<llvm::ArrayType>(addr.getElementType());
1497   while (llvmArrayType) {
1498     assert(isa<ConstantArrayType>(arrayType));
1499     assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
1500              == llvmArrayType->getNumElements());
1501 
1502     gepIndices.push_back(zero);
1503     countFromCLAs *= llvmArrayType->getNumElements();
1504     eltType = arrayType->getElementType();
1505 
1506     llvmArrayType =
1507       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
1508     arrayType = getContext().getAsArrayType(arrayType->getElementType());
1509     assert((!llvmArrayType || arrayType) &&
1510            "LLVM and Clang types are out-of-synch");
1511   }
1512 
1513   if (arrayType) {
1514     // From this point onwards, the Clang array type has been emitted
1515     // as some other type (probably a packed struct). Compute the array
1516     // size, and just emit the 'begin' expression as a bitcast.
1517     while (arrayType) {
1518       countFromCLAs *=
1519           cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
1520       eltType = arrayType->getElementType();
1521       arrayType = getContext().getAsArrayType(eltType);
1522     }
1523 
1524     llvm::Type *baseType = ConvertType(eltType);
1525     addr = Builder.CreateElementBitCast(addr, baseType, "array.begin");
1526   } else {
1527     // Create the actual GEP.
1528     addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(),
1529                                              gepIndices, "array.begin"),
1530                    addr.getAlignment());
1531   }
1532 
1533   baseType = eltType;
1534 
1535   llvm::Value *numElements
1536     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
1537 
1538   // If we had any VLA dimensions, factor them in.
1539   if (numVLAElements)
1540     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
1541 
1542   return numElements;
1543 }
1544 
1545 std::pair<llvm::Value*, QualType>
1546 CodeGenFunction::getVLASize(QualType type) {
1547   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
1548   assert(vla && "type was not a variable array type!");
1549   return getVLASize(vla);
1550 }
1551 
1552 std::pair<llvm::Value*, QualType>
1553 CodeGenFunction::getVLASize(const VariableArrayType *type) {
1554   // The number of elements so far; always size_t.
1555   llvm::Value *numElements = nullptr;
1556 
1557   QualType elementType;
1558   do {
1559     elementType = type->getElementType();
1560     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
1561     assert(vlaSize && "no size for VLA!");
1562     assert(vlaSize->getType() == SizeTy);
1563 
1564     if (!numElements) {
1565       numElements = vlaSize;
1566     } else {
1567       // It's undefined behavior if this wraps around, so mark it that way.
1568       // FIXME: Teach -fsanitize=undefined to trap this.
1569       numElements = Builder.CreateNUWMul(numElements, vlaSize);
1570     }
1571   } while ((type = getContext().getAsVariableArrayType(elementType)));
1572 
1573   return std::pair<llvm::Value*,QualType>(numElements, elementType);
1574 }
1575 
1576 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
1577   assert(type->isVariablyModifiedType() &&
1578          "Must pass variably modified type to EmitVLASizes!");
1579 
1580   EnsureInsertPoint();
1581 
1582   // We're going to walk down into the type and look for VLA
1583   // expressions.
1584   do {
1585     assert(type->isVariablyModifiedType());
1586 
1587     const Type *ty = type.getTypePtr();
1588     switch (ty->getTypeClass()) {
1589 
1590 #define TYPE(Class, Base)
1591 #define ABSTRACT_TYPE(Class, Base)
1592 #define NON_CANONICAL_TYPE(Class, Base)
1593 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
1594 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
1595 #include "clang/AST/TypeNodes.def"
1596       llvm_unreachable("unexpected dependent type!");
1597 
1598     // These types are never variably-modified.
1599     case Type::Builtin:
1600     case Type::Complex:
1601     case Type::Vector:
1602     case Type::ExtVector:
1603     case Type::Record:
1604     case Type::Enum:
1605     case Type::Elaborated:
1606     case Type::TemplateSpecialization:
1607     case Type::ObjCObject:
1608     case Type::ObjCInterface:
1609     case Type::ObjCObjectPointer:
1610       llvm_unreachable("type class is never variably-modified!");
1611 
1612     case Type::Adjusted:
1613       type = cast<AdjustedType>(ty)->getAdjustedType();
1614       break;
1615 
1616     case Type::Decayed:
1617       type = cast<DecayedType>(ty)->getPointeeType();
1618       break;
1619 
1620     case Type::Pointer:
1621       type = cast<PointerType>(ty)->getPointeeType();
1622       break;
1623 
1624     case Type::BlockPointer:
1625       type = cast<BlockPointerType>(ty)->getPointeeType();
1626       break;
1627 
1628     case Type::LValueReference:
1629     case Type::RValueReference:
1630       type = cast<ReferenceType>(ty)->getPointeeType();
1631       break;
1632 
1633     case Type::MemberPointer:
1634       type = cast<MemberPointerType>(ty)->getPointeeType();
1635       break;
1636 
1637     case Type::ConstantArray:
1638     case Type::IncompleteArray:
1639       // Losing element qualification here is fine.
1640       type = cast<ArrayType>(ty)->getElementType();
1641       break;
1642 
1643     case Type::VariableArray: {
1644       // Losing element qualification here is fine.
1645       const VariableArrayType *vat = cast<VariableArrayType>(ty);
1646 
1647       // Unknown size indication requires no size computation.
1648       // Otherwise, evaluate and record it.
1649       if (const Expr *size = vat->getSizeExpr()) {
1650         // It's possible that we might have emitted this already,
1651         // e.g. with a typedef and a pointer to it.
1652         llvm::Value *&entry = VLASizeMap[size];
1653         if (!entry) {
1654           llvm::Value *Size = EmitScalarExpr(size);
1655 
1656           // C11 6.7.6.2p5:
1657           //   If the size is an expression that is not an integer constant
1658           //   expression [...] each time it is evaluated it shall have a value
1659           //   greater than zero.
1660           if (SanOpts.has(SanitizerKind::VLABound) &&
1661               size->getType()->isSignedIntegerType()) {
1662             SanitizerScope SanScope(this);
1663             llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType());
1664             llvm::Constant *StaticArgs[] = {
1665               EmitCheckSourceLocation(size->getLocStart()),
1666               EmitCheckTypeDescriptor(size->getType())
1667             };
1668             EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero),
1669                                      SanitizerKind::VLABound),
1670                       "vla_bound_not_positive", StaticArgs, Size);
1671           }
1672 
1673           // Always zexting here would be wrong if it weren't
1674           // undefined behavior to have a negative bound.
1675           entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false);
1676         }
1677       }
1678       type = vat->getElementType();
1679       break;
1680     }
1681 
1682     case Type::FunctionProto:
1683     case Type::FunctionNoProto:
1684       type = cast<FunctionType>(ty)->getReturnType();
1685       break;
1686 
1687     case Type::Paren:
1688     case Type::TypeOf:
1689     case Type::UnaryTransform:
1690     case Type::Attributed:
1691     case Type::SubstTemplateTypeParm:
1692     case Type::PackExpansion:
1693       // Keep walking after single level desugaring.
1694       type = type.getSingleStepDesugaredType(getContext());
1695       break;
1696 
1697     case Type::Typedef:
1698     case Type::Decltype:
1699     case Type::Auto:
1700       // Stop walking: nothing to do.
1701       return;
1702 
1703     case Type::TypeOfExpr:
1704       // Stop walking: emit typeof expression.
1705       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
1706       return;
1707 
1708     case Type::Atomic:
1709       type = cast<AtomicType>(ty)->getValueType();
1710       break;
1711     }
1712   } while (type->isVariablyModifiedType());
1713 }
1714 
1715 Address CodeGenFunction::EmitVAListRef(const Expr* E) {
1716   if (getContext().getBuiltinVaListType()->isArrayType())
1717     return EmitPointerWithAlignment(E);
1718   return EmitLValue(E).getAddress();
1719 }
1720 
1721 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
1722                                               llvm::Constant *Init) {
1723   assert (Init && "Invalid DeclRefExpr initializer!");
1724   if (CGDebugInfo *Dbg = getDebugInfo())
1725     if (CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
1726       Dbg->EmitGlobalVariable(E->getDecl(), Init);
1727 }
1728 
1729 CodeGenFunction::PeepholeProtection
1730 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
1731   // At the moment, the only aggressive peephole we do in IR gen
1732   // is trunc(zext) folding, but if we add more, we can easily
1733   // extend this protection.
1734 
1735   if (!rvalue.isScalar()) return PeepholeProtection();
1736   llvm::Value *value = rvalue.getScalarVal();
1737   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
1738 
1739   // Just make an extra bitcast.
1740   assert(HaveInsertPoint());
1741   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
1742                                                   Builder.GetInsertBlock());
1743 
1744   PeepholeProtection protection;
1745   protection.Inst = inst;
1746   return protection;
1747 }
1748 
1749 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
1750   if (!protection.Inst) return;
1751 
1752   // In theory, we could try to duplicate the peepholes now, but whatever.
1753   protection.Inst->eraseFromParent();
1754 }
1755 
1756 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn,
1757                                                  llvm::Value *AnnotatedVal,
1758                                                  StringRef AnnotationStr,
1759                                                  SourceLocation Location) {
1760   llvm::Value *Args[4] = {
1761     AnnotatedVal,
1762     Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
1763     Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
1764     CGM.EmitAnnotationLineNo(Location)
1765   };
1766   return Builder.CreateCall(AnnotationFn, Args);
1767 }
1768 
1769 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
1770   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1771   // FIXME We create a new bitcast for every annotation because that's what
1772   // llvm-gcc was doing.
1773   for (const auto *I : D->specific_attrs<AnnotateAttr>())
1774     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
1775                        Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
1776                        I->getAnnotation(), D->getLocation());
1777 }
1778 
1779 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
1780                                               Address Addr) {
1781   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1782   llvm::Value *V = Addr.getPointer();
1783   llvm::Type *VTy = V->getType();
1784   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
1785                                     CGM.Int8PtrTy);
1786 
1787   for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
1788     // FIXME Always emit the cast inst so we can differentiate between
1789     // annotation on the first field of a struct and annotation on the struct
1790     // itself.
1791     if (VTy != CGM.Int8PtrTy)
1792       V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy));
1793     V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation());
1794     V = Builder.CreateBitCast(V, VTy);
1795   }
1796 
1797   return Address(V, Addr.getAlignment());
1798 }
1799 
1800 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
1801 
1802 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF)
1803     : CGF(CGF) {
1804   assert(!CGF->IsSanitizerScope);
1805   CGF->IsSanitizerScope = true;
1806 }
1807 
1808 CodeGenFunction::SanitizerScope::~SanitizerScope() {
1809   CGF->IsSanitizerScope = false;
1810 }
1811 
1812 void CodeGenFunction::InsertHelper(llvm::Instruction *I,
1813                                    const llvm::Twine &Name,
1814                                    llvm::BasicBlock *BB,
1815                                    llvm::BasicBlock::iterator InsertPt) const {
1816   LoopStack.InsertHelper(I);
1817   if (IsSanitizerScope)
1818     CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I);
1819 }
1820 
1821 template <bool PreserveNames>
1822 void CGBuilderInserter<PreserveNames>::InsertHelper(
1823     llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB,
1824     llvm::BasicBlock::iterator InsertPt) const {
1825   llvm::IRBuilderDefaultInserter<PreserveNames>::InsertHelper(I, Name, BB,
1826                                                               InsertPt);
1827   if (CGF)
1828     CGF->InsertHelper(I, Name, BB, InsertPt);
1829 }
1830 
1831 #ifdef NDEBUG
1832 #define PreserveNames false
1833 #else
1834 #define PreserveNames true
1835 #endif
1836 template void CGBuilderInserter<PreserveNames>::InsertHelper(
1837     llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB,
1838     llvm::BasicBlock::iterator InsertPt) const;
1839 #undef PreserveNames
1840