1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-function state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGDebugInfo.h" 18 #include "CodeGenModule.h" 19 #include "clang/AST/ASTContext.h" 20 #include "clang/AST/Decl.h" 21 #include "clang/AST/DeclCXX.h" 22 #include "clang/AST/StmtCXX.h" 23 #include "clang/Basic/OpenCL.h" 24 #include "clang/Basic/TargetInfo.h" 25 #include "clang/Frontend/CodeGenOptions.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/Intrinsics.h" 28 #include "llvm/IR/MDBuilder.h" 29 #include "llvm/IR/Operator.h" 30 using namespace clang; 31 using namespace CodeGen; 32 33 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 34 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 35 Builder(cgm.getModule().getContext()), 36 CapturedStmtInfo(0), 37 SanitizePerformTypeCheck(CGM.getSanOpts().Null | 38 CGM.getSanOpts().Alignment | 39 CGM.getSanOpts().ObjectSize | 40 CGM.getSanOpts().Vptr), 41 SanOpts(&CGM.getSanOpts()), 42 AutoreleaseResult(false), BlockInfo(0), BlockPointer(0), 43 LambdaThisCaptureField(0), NormalCleanupDest(0), NextCleanupDestIndex(1), 44 FirstBlockInfo(0), EHResumeBlock(0), ExceptionSlot(0), EHSelectorSlot(0), 45 DebugInfo(0), DisableDebugInfo(false), CalleeWithThisReturn(0), 46 DidCallStackSave(false), 47 IndirectBranch(0), SwitchInsn(0), CaseRangeBlock(0), UnreachableBlock(0), 48 NumReturnExprs(0), NumSimpleReturnExprs(0), 49 CXXABIThisDecl(0), CXXABIThisValue(0), CXXThisValue(0), 50 CXXDefaultInitExprThis(0), 51 CXXStructorImplicitParamDecl(0), CXXStructorImplicitParamValue(0), 52 OutermostConditional(0), CurLexicalScope(0), TerminateLandingPad(0), 53 TerminateHandler(0), TrapBB(0) { 54 if (!suppressNewContext) 55 CGM.getCXXABI().getMangleContext().startNewFunction(); 56 57 llvm::FastMathFlags FMF; 58 if (CGM.getLangOpts().FastMath) 59 FMF.setUnsafeAlgebra(); 60 if (CGM.getLangOpts().FiniteMathOnly) { 61 FMF.setNoNaNs(); 62 FMF.setNoInfs(); 63 } 64 Builder.SetFastMathFlags(FMF); 65 } 66 67 CodeGenFunction::~CodeGenFunction() { 68 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 69 70 // If there are any unclaimed block infos, go ahead and destroy them 71 // now. This can happen if IR-gen gets clever and skips evaluating 72 // something. 73 if (FirstBlockInfo) 74 destroyBlockInfos(FirstBlockInfo); 75 } 76 77 78 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 79 return CGM.getTypes().ConvertTypeForMem(T); 80 } 81 82 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 83 return CGM.getTypes().ConvertType(T); 84 } 85 86 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 87 type = type.getCanonicalType(); 88 while (true) { 89 switch (type->getTypeClass()) { 90 #define TYPE(name, parent) 91 #define ABSTRACT_TYPE(name, parent) 92 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 93 #define DEPENDENT_TYPE(name, parent) case Type::name: 94 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 95 #include "clang/AST/TypeNodes.def" 96 llvm_unreachable("non-canonical or dependent type in IR-generation"); 97 98 case Type::Auto: 99 llvm_unreachable("undeduced auto type in IR-generation"); 100 101 // Various scalar types. 102 case Type::Builtin: 103 case Type::Pointer: 104 case Type::BlockPointer: 105 case Type::LValueReference: 106 case Type::RValueReference: 107 case Type::MemberPointer: 108 case Type::Vector: 109 case Type::ExtVector: 110 case Type::FunctionProto: 111 case Type::FunctionNoProto: 112 case Type::Enum: 113 case Type::ObjCObjectPointer: 114 return TEK_Scalar; 115 116 // Complexes. 117 case Type::Complex: 118 return TEK_Complex; 119 120 // Arrays, records, and Objective-C objects. 121 case Type::ConstantArray: 122 case Type::IncompleteArray: 123 case Type::VariableArray: 124 case Type::Record: 125 case Type::ObjCObject: 126 case Type::ObjCInterface: 127 return TEK_Aggregate; 128 129 // We operate on atomic values according to their underlying type. 130 case Type::Atomic: 131 type = cast<AtomicType>(type)->getValueType(); 132 continue; 133 } 134 llvm_unreachable("unknown type kind!"); 135 } 136 } 137 138 void CodeGenFunction::EmitReturnBlock() { 139 // For cleanliness, we try to avoid emitting the return block for 140 // simple cases. 141 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 142 143 if (CurBB) { 144 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 145 146 // We have a valid insert point, reuse it if it is empty or there are no 147 // explicit jumps to the return block. 148 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 149 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 150 delete ReturnBlock.getBlock(); 151 } else 152 EmitBlock(ReturnBlock.getBlock()); 153 return; 154 } 155 156 // Otherwise, if the return block is the target of a single direct 157 // branch then we can just put the code in that block instead. This 158 // cleans up functions which started with a unified return block. 159 if (ReturnBlock.getBlock()->hasOneUse()) { 160 llvm::BranchInst *BI = 161 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->use_begin()); 162 if (BI && BI->isUnconditional() && 163 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 164 // Reset insertion point, including debug location, and delete the 165 // branch. This is really subtle and only works because the next change 166 // in location will hit the caching in CGDebugInfo::EmitLocation and not 167 // override this. 168 Builder.SetCurrentDebugLocation(BI->getDebugLoc()); 169 Builder.SetInsertPoint(BI->getParent()); 170 BI->eraseFromParent(); 171 delete ReturnBlock.getBlock(); 172 return; 173 } 174 } 175 176 // FIXME: We are at an unreachable point, there is no reason to emit the block 177 // unless it has uses. However, we still need a place to put the debug 178 // region.end for now. 179 180 EmitBlock(ReturnBlock.getBlock()); 181 } 182 183 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 184 if (!BB) return; 185 if (!BB->use_empty()) 186 return CGF.CurFn->getBasicBlockList().push_back(BB); 187 delete BB; 188 } 189 190 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 191 assert(BreakContinueStack.empty() && 192 "mismatched push/pop in break/continue stack!"); 193 194 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 195 && NumSimpleReturnExprs == NumReturnExprs; 196 // If the function contains only a simple return statement, the 197 // location before the cleanup code becomes the last useful 198 // breakpoint in the function, because the simple return expression 199 // will be evaluated after the cleanup code. To be safe, set the 200 // debug location for cleanup code to the location of the return 201 // statement. Otherwise the cleanup code should be at the end of the 202 // function's lexical scope. 203 if (CGDebugInfo *DI = getDebugInfo()) { 204 if (OnlySimpleReturnStmts) 205 DI->EmitLocation(Builder, LastStopPoint); 206 else 207 DI->EmitLocation(Builder, EndLoc); 208 } 209 210 // Pop any cleanups that might have been associated with the 211 // parameters. Do this in whatever block we're currently in; it's 212 // important to do this before we enter the return block or return 213 // edges will be *really* confused. 214 bool EmitRetDbgLoc = true; 215 if (EHStack.stable_begin() != PrologueCleanupDepth) { 216 PopCleanupBlocks(PrologueCleanupDepth); 217 218 // Make sure the line table doesn't jump back into the body for 219 // the ret after it's been at EndLoc. 220 EmitRetDbgLoc = false; 221 222 if (CGDebugInfo *DI = getDebugInfo()) 223 if (OnlySimpleReturnStmts) 224 DI->EmitLocation(Builder, EndLoc); 225 } 226 227 // Emit function epilog (to return). 228 EmitReturnBlock(); 229 230 if (ShouldInstrumentFunction()) 231 EmitFunctionInstrumentation("__cyg_profile_func_exit"); 232 233 // Emit debug descriptor for function end. 234 if (CGDebugInfo *DI = getDebugInfo()) { 235 DI->EmitFunctionEnd(Builder); 236 } 237 238 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc); 239 EmitEndEHSpec(CurCodeDecl); 240 241 assert(EHStack.empty() && 242 "did not remove all scopes from cleanup stack!"); 243 244 // If someone did an indirect goto, emit the indirect goto block at the end of 245 // the function. 246 if (IndirectBranch) { 247 EmitBlock(IndirectBranch->getParent()); 248 Builder.ClearInsertionPoint(); 249 } 250 251 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 252 llvm::Instruction *Ptr = AllocaInsertPt; 253 AllocaInsertPt = 0; 254 Ptr->eraseFromParent(); 255 256 // If someone took the address of a label but never did an indirect goto, we 257 // made a zero entry PHI node, which is illegal, zap it now. 258 if (IndirectBranch) { 259 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 260 if (PN->getNumIncomingValues() == 0) { 261 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 262 PN->eraseFromParent(); 263 } 264 } 265 266 EmitIfUsed(*this, EHResumeBlock); 267 EmitIfUsed(*this, TerminateLandingPad); 268 EmitIfUsed(*this, TerminateHandler); 269 EmitIfUsed(*this, UnreachableBlock); 270 271 if (CGM.getCodeGenOpts().EmitDeclMetadata) 272 EmitDeclMetadata(); 273 } 274 275 /// ShouldInstrumentFunction - Return true if the current function should be 276 /// instrumented with __cyg_profile_func_* calls 277 bool CodeGenFunction::ShouldInstrumentFunction() { 278 if (!CGM.getCodeGenOpts().InstrumentFunctions) 279 return false; 280 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 281 return false; 282 return true; 283 } 284 285 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 286 /// instrumentation function with the current function and the call site, if 287 /// function instrumentation is enabled. 288 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) { 289 // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site); 290 llvm::PointerType *PointerTy = Int8PtrTy; 291 llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy }; 292 llvm::FunctionType *FunctionTy = 293 llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false); 294 295 llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn); 296 llvm::CallInst *CallSite = Builder.CreateCall( 297 CGM.getIntrinsic(llvm::Intrinsic::returnaddress), 298 llvm::ConstantInt::get(Int32Ty, 0), 299 "callsite"); 300 301 llvm::Value *args[] = { 302 llvm::ConstantExpr::getBitCast(CurFn, PointerTy), 303 CallSite 304 }; 305 306 EmitNounwindRuntimeCall(F, args); 307 } 308 309 void CodeGenFunction::EmitMCountInstrumentation() { 310 llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false); 311 312 llvm::Constant *MCountFn = 313 CGM.CreateRuntimeFunction(FTy, getTarget().getMCountName()); 314 EmitNounwindRuntimeCall(MCountFn); 315 } 316 317 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument 318 // information in the program executable. The argument information stored 319 // includes the argument name, its type, the address and access qualifiers used. 320 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn, 321 CodeGenModule &CGM,llvm::LLVMContext &Context, 322 SmallVector <llvm::Value*, 5> &kernelMDArgs, 323 CGBuilderTy& Builder, ASTContext &ASTCtx) { 324 // Create MDNodes that represent the kernel arg metadata. 325 // Each MDNode is a list in the form of "key", N number of values which is 326 // the same number of values as their are kernel arguments. 327 328 // MDNode for the kernel argument address space qualifiers. 329 SmallVector<llvm::Value*, 8> addressQuals; 330 addressQuals.push_back(llvm::MDString::get(Context, "kernel_arg_addr_space")); 331 332 // MDNode for the kernel argument access qualifiers (images only). 333 SmallVector<llvm::Value*, 8> accessQuals; 334 accessQuals.push_back(llvm::MDString::get(Context, "kernel_arg_access_qual")); 335 336 // MDNode for the kernel argument type names. 337 SmallVector<llvm::Value*, 8> argTypeNames; 338 argTypeNames.push_back(llvm::MDString::get(Context, "kernel_arg_type")); 339 340 // MDNode for the kernel argument type qualifiers. 341 SmallVector<llvm::Value*, 8> argTypeQuals; 342 argTypeQuals.push_back(llvm::MDString::get(Context, "kernel_arg_type_qual")); 343 344 // MDNode for the kernel argument names. 345 SmallVector<llvm::Value*, 8> argNames; 346 argNames.push_back(llvm::MDString::get(Context, "kernel_arg_name")); 347 348 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 349 const ParmVarDecl *parm = FD->getParamDecl(i); 350 QualType ty = parm->getType(); 351 std::string typeQuals; 352 353 if (ty->isPointerType()) { 354 QualType pointeeTy = ty->getPointeeType(); 355 356 // Get address qualifier. 357 addressQuals.push_back(Builder.getInt32(ASTCtx.getTargetAddressSpace( 358 pointeeTy.getAddressSpace()))); 359 360 // Get argument type name. 361 std::string typeName = pointeeTy.getUnqualifiedType().getAsString() + "*"; 362 363 // Turn "unsigned type" to "utype" 364 std::string::size_type pos = typeName.find("unsigned"); 365 if (pos != std::string::npos) 366 typeName.erase(pos+1, 8); 367 368 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 369 370 // Get argument type qualifiers: 371 if (ty.isRestrictQualified()) 372 typeQuals = "restrict"; 373 if (pointeeTy.isConstQualified() || 374 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 375 typeQuals += typeQuals.empty() ? "const" : " const"; 376 if (pointeeTy.isVolatileQualified()) 377 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 378 } else { 379 addressQuals.push_back(Builder.getInt32(0)); 380 381 // Get argument type name. 382 std::string typeName = ty.getUnqualifiedType().getAsString(); 383 384 // Turn "unsigned type" to "utype" 385 std::string::size_type pos = typeName.find("unsigned"); 386 if (pos != std::string::npos) 387 typeName.erase(pos+1, 8); 388 389 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 390 391 // Get argument type qualifiers: 392 if (ty.isConstQualified()) 393 typeQuals = "const"; 394 if (ty.isVolatileQualified()) 395 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 396 } 397 398 argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals)); 399 400 // Get image access qualifier: 401 if (ty->isImageType()) { 402 if (parm->hasAttr<OpenCLImageAccessAttr>() && 403 parm->getAttr<OpenCLImageAccessAttr>()->getAccess() == CLIA_write_only) 404 accessQuals.push_back(llvm::MDString::get(Context, "write_only")); 405 else 406 accessQuals.push_back(llvm::MDString::get(Context, "read_only")); 407 } else 408 accessQuals.push_back(llvm::MDString::get(Context, "none")); 409 410 // Get argument name. 411 argNames.push_back(llvm::MDString::get(Context, parm->getName())); 412 } 413 414 kernelMDArgs.push_back(llvm::MDNode::get(Context, addressQuals)); 415 kernelMDArgs.push_back(llvm::MDNode::get(Context, accessQuals)); 416 kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeNames)); 417 kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeQuals)); 418 kernelMDArgs.push_back(llvm::MDNode::get(Context, argNames)); 419 } 420 421 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 422 llvm::Function *Fn) 423 { 424 if (!FD->hasAttr<OpenCLKernelAttr>()) 425 return; 426 427 llvm::LLVMContext &Context = getLLVMContext(); 428 429 SmallVector <llvm::Value*, 5> kernelMDArgs; 430 kernelMDArgs.push_back(Fn); 431 432 if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 433 GenOpenCLArgMetadata(FD, Fn, CGM, Context, kernelMDArgs, 434 Builder, getContext()); 435 436 if (FD->hasAttr<VecTypeHintAttr>()) { 437 VecTypeHintAttr *attr = FD->getAttr<VecTypeHintAttr>(); 438 QualType hintQTy = attr->getTypeHint(); 439 const ExtVectorType *hintEltQTy = hintQTy->getAs<ExtVectorType>(); 440 bool isSignedInteger = 441 hintQTy->isSignedIntegerType() || 442 (hintEltQTy && hintEltQTy->getElementType()->isSignedIntegerType()); 443 llvm::Value *attrMDArgs[] = { 444 llvm::MDString::get(Context, "vec_type_hint"), 445 llvm::UndefValue::get(CGM.getTypes().ConvertType(attr->getTypeHint())), 446 llvm::ConstantInt::get( 447 llvm::IntegerType::get(Context, 32), 448 llvm::APInt(32, (uint64_t)(isSignedInteger ? 1 : 0))) 449 }; 450 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 451 } 452 453 if (FD->hasAttr<WorkGroupSizeHintAttr>()) { 454 WorkGroupSizeHintAttr *attr = FD->getAttr<WorkGroupSizeHintAttr>(); 455 llvm::Value *attrMDArgs[] = { 456 llvm::MDString::get(Context, "work_group_size_hint"), 457 Builder.getInt32(attr->getXDim()), 458 Builder.getInt32(attr->getYDim()), 459 Builder.getInt32(attr->getZDim()) 460 }; 461 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 462 } 463 464 if (FD->hasAttr<ReqdWorkGroupSizeAttr>()) { 465 ReqdWorkGroupSizeAttr *attr = FD->getAttr<ReqdWorkGroupSizeAttr>(); 466 llvm::Value *attrMDArgs[] = { 467 llvm::MDString::get(Context, "reqd_work_group_size"), 468 Builder.getInt32(attr->getXDim()), 469 Builder.getInt32(attr->getYDim()), 470 Builder.getInt32(attr->getZDim()) 471 }; 472 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 473 } 474 475 llvm::MDNode *kernelMDNode = llvm::MDNode::get(Context, kernelMDArgs); 476 llvm::NamedMDNode *OpenCLKernelMetadata = 477 CGM.getModule().getOrInsertNamedMetadata("opencl.kernels"); 478 OpenCLKernelMetadata->addOperand(kernelMDNode); 479 } 480 481 void CodeGenFunction::StartFunction(GlobalDecl GD, 482 QualType RetTy, 483 llvm::Function *Fn, 484 const CGFunctionInfo &FnInfo, 485 const FunctionArgList &Args, 486 SourceLocation StartLoc) { 487 const Decl *D = GD.getDecl(); 488 489 DidCallStackSave = false; 490 CurCodeDecl = D; 491 CurFuncDecl = (D ? D->getNonClosureContext() : 0); 492 FnRetTy = RetTy; 493 CurFn = Fn; 494 CurFnInfo = &FnInfo; 495 assert(CurFn->isDeclaration() && "Function already has body?"); 496 497 if (CGM.getSanitizerBlacklist().isIn(*Fn)) { 498 SanOpts = &SanitizerOptions::Disabled; 499 SanitizePerformTypeCheck = false; 500 } 501 502 // Pass inline keyword to optimizer if it appears explicitly on any 503 // declaration. 504 if (!CGM.getCodeGenOpts().NoInline) 505 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 506 for (FunctionDecl::redecl_iterator RI = FD->redecls_begin(), 507 RE = FD->redecls_end(); RI != RE; ++RI) 508 if (RI->isInlineSpecified()) { 509 Fn->addFnAttr(llvm::Attribute::InlineHint); 510 break; 511 } 512 513 if (getLangOpts().OpenCL) { 514 // Add metadata for a kernel function. 515 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 516 EmitOpenCLKernelMetadata(FD, Fn); 517 } 518 519 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 520 521 // Create a marker to make it easy to insert allocas into the entryblock 522 // later. Don't create this with the builder, because we don't want it 523 // folded. 524 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 525 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB); 526 if (Builder.isNamePreserving()) 527 AllocaInsertPt->setName("allocapt"); 528 529 ReturnBlock = getJumpDestInCurrentScope("return"); 530 531 Builder.SetInsertPoint(EntryBB); 532 533 // Emit subprogram debug descriptor. 534 if (CGDebugInfo *DI = getDebugInfo()) { 535 SmallVector<QualType, 16> ArgTypes; 536 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 537 i != e; ++i) { 538 ArgTypes.push_back((*i)->getType()); 539 } 540 541 QualType FnType = 542 getContext().getFunctionType(RetTy, ArgTypes, 543 FunctionProtoType::ExtProtoInfo()); 544 545 DI->setLocation(StartLoc); 546 DI->EmitFunctionStart(GD, FnType, CurFn, Builder); 547 } 548 549 if (ShouldInstrumentFunction()) 550 EmitFunctionInstrumentation("__cyg_profile_func_enter"); 551 552 if (CGM.getCodeGenOpts().InstrumentForProfiling) 553 EmitMCountInstrumentation(); 554 555 if (RetTy->isVoidType()) { 556 // Void type; nothing to return. 557 ReturnValue = 0; 558 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect && 559 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 560 // Indirect aggregate return; emit returned value directly into sret slot. 561 // This reduces code size, and affects correctness in C++. 562 ReturnValue = CurFn->arg_begin(); 563 } else { 564 ReturnValue = CreateIRTemp(RetTy, "retval"); 565 566 // Tell the epilog emitter to autorelease the result. We do this 567 // now so that various specialized functions can suppress it 568 // during their IR-generation. 569 if (getLangOpts().ObjCAutoRefCount && 570 !CurFnInfo->isReturnsRetained() && 571 RetTy->isObjCRetainableType()) 572 AutoreleaseResult = true; 573 } 574 575 EmitStartEHSpec(CurCodeDecl); 576 577 PrologueCleanupDepth = EHStack.stable_begin(); 578 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 579 580 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 581 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 582 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 583 if (MD->getParent()->isLambda() && 584 MD->getOverloadedOperator() == OO_Call) { 585 // We're in a lambda; figure out the captures. 586 MD->getParent()->getCaptureFields(LambdaCaptureFields, 587 LambdaThisCaptureField); 588 if (LambdaThisCaptureField) { 589 // If this lambda captures this, load it. 590 LValue ThisLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 591 CXXThisValue = EmitLoadOfLValue(ThisLValue).getScalarVal(); 592 } 593 } else { 594 // Not in a lambda; just use 'this' from the method. 595 // FIXME: Should we generate a new load for each use of 'this'? The 596 // fast register allocator would be happier... 597 CXXThisValue = CXXABIThisValue; 598 } 599 } 600 601 // If any of the arguments have a variably modified type, make sure to 602 // emit the type size. 603 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 604 i != e; ++i) { 605 const VarDecl *VD = *i; 606 607 // Dig out the type as written from ParmVarDecls; it's unclear whether 608 // the standard (C99 6.9.1p10) requires this, but we're following the 609 // precedent set by gcc. 610 QualType Ty; 611 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 612 Ty = PVD->getOriginalType(); 613 else 614 Ty = VD->getType(); 615 616 if (Ty->isVariablyModifiedType()) 617 EmitVariablyModifiedType(Ty); 618 } 619 // Emit a location at the end of the prologue. 620 if (CGDebugInfo *DI = getDebugInfo()) 621 DI->EmitLocation(Builder, StartLoc); 622 } 623 624 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args) { 625 const FunctionDecl *FD = cast<FunctionDecl>(CurGD.getDecl()); 626 assert(FD->getBody()); 627 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(FD->getBody())) 628 EmitCompoundStmtWithoutScope(*S); 629 else 630 EmitStmt(FD->getBody()); 631 } 632 633 /// Tries to mark the given function nounwind based on the 634 /// non-existence of any throwing calls within it. We believe this is 635 /// lightweight enough to do at -O0. 636 static void TryMarkNoThrow(llvm::Function *F) { 637 // LLVM treats 'nounwind' on a function as part of the type, so we 638 // can't do this on functions that can be overwritten. 639 if (F->mayBeOverridden()) return; 640 641 for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI) 642 for (llvm::BasicBlock::iterator 643 BI = FI->begin(), BE = FI->end(); BI != BE; ++BI) 644 if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI)) { 645 if (!Call->doesNotThrow()) 646 return; 647 } else if (isa<llvm::ResumeInst>(&*BI)) { 648 return; 649 } 650 F->setDoesNotThrow(); 651 } 652 653 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 654 const CGFunctionInfo &FnInfo) { 655 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 656 657 // Check if we should generate debug info for this function. 658 if (!FD->hasAttr<NoDebugAttr>()) 659 maybeInitializeDebugInfo(); 660 661 FunctionArgList Args; 662 QualType ResTy = FD->getResultType(); 663 664 CurGD = GD; 665 if (isa<CXXMethodDecl>(FD) && cast<CXXMethodDecl>(FD)->isInstance()) 666 CGM.getCXXABI().BuildInstanceFunctionParams(*this, ResTy, Args); 667 668 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) 669 Args.push_back(FD->getParamDecl(i)); 670 671 SourceRange BodyRange; 672 if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange(); 673 CurEHLocation = BodyRange.getEnd(); 674 675 // CalleeWithThisReturn keeps track of the last callee inside this function 676 // that returns 'this'. Before starting the function, we set it to null. 677 CalleeWithThisReturn = 0; 678 679 // Emit the standard function prologue. 680 StartFunction(GD, ResTy, Fn, FnInfo, Args, BodyRange.getBegin()); 681 682 // Generate the body of the function. 683 if (isa<CXXDestructorDecl>(FD)) 684 EmitDestructorBody(Args); 685 else if (isa<CXXConstructorDecl>(FD)) 686 EmitConstructorBody(Args); 687 else if (getLangOpts().CUDA && 688 !CGM.getCodeGenOpts().CUDAIsDevice && 689 FD->hasAttr<CUDAGlobalAttr>()) 690 CGM.getCUDARuntime().EmitDeviceStubBody(*this, Args); 691 else if (isa<CXXConversionDecl>(FD) && 692 cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) { 693 // The lambda conversion to block pointer is special; the semantics can't be 694 // expressed in the AST, so IRGen needs to special-case it. 695 EmitLambdaToBlockPointerBody(Args); 696 } else if (isa<CXXMethodDecl>(FD) && 697 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 698 // The lambda "__invoke" function is special, because it forwards or 699 // clones the body of the function call operator (but is actually static). 700 EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD)); 701 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 702 cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator()) { 703 // Implicit copy-assignment gets the same special treatment as implicit 704 // copy-constructors. 705 emitImplicitAssignmentOperatorBody(Args); 706 } 707 else 708 EmitFunctionBody(Args); 709 710 // C++11 [stmt.return]p2: 711 // Flowing off the end of a function [...] results in undefined behavior in 712 // a value-returning function. 713 // C11 6.9.1p12: 714 // If the '}' that terminates a function is reached, and the value of the 715 // function call is used by the caller, the behavior is undefined. 716 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && 717 !FD->getResultType()->isVoidType() && Builder.GetInsertBlock()) { 718 if (SanOpts->Return) 719 EmitCheck(Builder.getFalse(), "missing_return", 720 EmitCheckSourceLocation(FD->getLocation()), 721 ArrayRef<llvm::Value *>(), CRK_Unrecoverable); 722 else if (CGM.getCodeGenOpts().OptimizationLevel == 0) 723 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::trap)); 724 Builder.CreateUnreachable(); 725 Builder.ClearInsertionPoint(); 726 } 727 728 // Emit the standard function epilogue. 729 FinishFunction(BodyRange.getEnd()); 730 // CalleeWithThisReturn keeps track of the last callee inside this function 731 // that returns 'this'. After finishing the function, we set it to null. 732 CalleeWithThisReturn = 0; 733 734 // If we haven't marked the function nothrow through other means, do 735 // a quick pass now to see if we can. 736 if (!CurFn->doesNotThrow()) 737 TryMarkNoThrow(CurFn); 738 } 739 740 /// ContainsLabel - Return true if the statement contains a label in it. If 741 /// this statement is not executed normally, it not containing a label means 742 /// that we can just remove the code. 743 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 744 // Null statement, not a label! 745 if (S == 0) return false; 746 747 // If this is a label, we have to emit the code, consider something like: 748 // if (0) { ... foo: bar(); } goto foo; 749 // 750 // TODO: If anyone cared, we could track __label__'s, since we know that you 751 // can't jump to one from outside their declared region. 752 if (isa<LabelStmt>(S)) 753 return true; 754 755 // If this is a case/default statement, and we haven't seen a switch, we have 756 // to emit the code. 757 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 758 return true; 759 760 // If this is a switch statement, we want to ignore cases below it. 761 if (isa<SwitchStmt>(S)) 762 IgnoreCaseStmts = true; 763 764 // Scan subexpressions for verboten labels. 765 for (Stmt::const_child_range I = S->children(); I; ++I) 766 if (ContainsLabel(*I, IgnoreCaseStmts)) 767 return true; 768 769 return false; 770 } 771 772 /// containsBreak - Return true if the statement contains a break out of it. 773 /// If the statement (recursively) contains a switch or loop with a break 774 /// inside of it, this is fine. 775 bool CodeGenFunction::containsBreak(const Stmt *S) { 776 // Null statement, not a label! 777 if (S == 0) return false; 778 779 // If this is a switch or loop that defines its own break scope, then we can 780 // include it and anything inside of it. 781 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 782 isa<ForStmt>(S)) 783 return false; 784 785 if (isa<BreakStmt>(S)) 786 return true; 787 788 // Scan subexpressions for verboten breaks. 789 for (Stmt::const_child_range I = S->children(); I; ++I) 790 if (containsBreak(*I)) 791 return true; 792 793 return false; 794 } 795 796 797 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 798 /// to a constant, or if it does but contains a label, return false. If it 799 /// constant folds return true and set the boolean result in Result. 800 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 801 bool &ResultBool) { 802 llvm::APSInt ResultInt; 803 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt)) 804 return false; 805 806 ResultBool = ResultInt.getBoolValue(); 807 return true; 808 } 809 810 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 811 /// to a constant, or if it does but contains a label, return false. If it 812 /// constant folds return true and set the folded value. 813 bool CodeGenFunction:: 814 ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &ResultInt) { 815 // FIXME: Rename and handle conversion of other evaluatable things 816 // to bool. 817 llvm::APSInt Int; 818 if (!Cond->EvaluateAsInt(Int, getContext())) 819 return false; // Not foldable, not integer or not fully evaluatable. 820 821 if (CodeGenFunction::ContainsLabel(Cond)) 822 return false; // Contains a label. 823 824 ResultInt = Int; 825 return true; 826 } 827 828 829 830 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 831 /// statement) to the specified blocks. Based on the condition, this might try 832 /// to simplify the codegen of the conditional based on the branch. 833 /// 834 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 835 llvm::BasicBlock *TrueBlock, 836 llvm::BasicBlock *FalseBlock) { 837 Cond = Cond->IgnoreParens(); 838 839 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 840 // Handle X && Y in a condition. 841 if (CondBOp->getOpcode() == BO_LAnd) { 842 // If we have "1 && X", simplify the code. "0 && X" would have constant 843 // folded if the case was simple enough. 844 bool ConstantBool = false; 845 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 846 ConstantBool) { 847 // br(1 && X) -> br(X). 848 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 849 } 850 851 // If we have "X && 1", simplify the code to use an uncond branch. 852 // "X && 0" would have been constant folded to 0. 853 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 854 ConstantBool) { 855 // br(X && 1) -> br(X). 856 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock); 857 } 858 859 // Emit the LHS as a conditional. If the LHS conditional is false, we 860 // want to jump to the FalseBlock. 861 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 862 863 ConditionalEvaluation eval(*this); 864 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock); 865 EmitBlock(LHSTrue); 866 867 // Any temporaries created here are conditional. 868 eval.begin(*this); 869 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 870 eval.end(*this); 871 872 return; 873 } 874 875 if (CondBOp->getOpcode() == BO_LOr) { 876 // If we have "0 || X", simplify the code. "1 || X" would have constant 877 // folded if the case was simple enough. 878 bool ConstantBool = false; 879 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 880 !ConstantBool) { 881 // br(0 || X) -> br(X). 882 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 883 } 884 885 // If we have "X || 0", simplify the code to use an uncond branch. 886 // "X || 1" would have been constant folded to 1. 887 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 888 !ConstantBool) { 889 // br(X || 0) -> br(X). 890 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock); 891 } 892 893 // Emit the LHS as a conditional. If the LHS conditional is true, we 894 // want to jump to the TrueBlock. 895 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 896 897 ConditionalEvaluation eval(*this); 898 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse); 899 EmitBlock(LHSFalse); 900 901 // Any temporaries created here are conditional. 902 eval.begin(*this); 903 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 904 eval.end(*this); 905 906 return; 907 } 908 } 909 910 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 911 // br(!x, t, f) -> br(x, f, t) 912 if (CondUOp->getOpcode() == UO_LNot) 913 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock); 914 } 915 916 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 917 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 918 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 919 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 920 921 ConditionalEvaluation cond(*this); 922 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock); 923 924 cond.begin(*this); 925 EmitBlock(LHSBlock); 926 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock); 927 cond.end(*this); 928 929 cond.begin(*this); 930 EmitBlock(RHSBlock); 931 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock); 932 cond.end(*this); 933 934 return; 935 } 936 937 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 938 // Conditional operator handling can give us a throw expression as a 939 // condition for a case like: 940 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 941 // Fold this to: 942 // br(c, throw x, br(y, t, f)) 943 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 944 return; 945 } 946 947 // Emit the code with the fully general case. 948 llvm::Value *CondV = EvaluateExprAsBool(Cond); 949 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock); 950 } 951 952 /// ErrorUnsupported - Print out an error that codegen doesn't support the 953 /// specified stmt yet. 954 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type, 955 bool OmitOnError) { 956 CGM.ErrorUnsupported(S, Type, OmitOnError); 957 } 958 959 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 960 /// variable-length array whose elements have a non-zero bit-pattern. 961 /// 962 /// \param baseType the inner-most element type of the array 963 /// \param src - a char* pointing to the bit-pattern for a single 964 /// base element of the array 965 /// \param sizeInChars - the total size of the VLA, in chars 966 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 967 llvm::Value *dest, llvm::Value *src, 968 llvm::Value *sizeInChars) { 969 std::pair<CharUnits,CharUnits> baseSizeAndAlign 970 = CGF.getContext().getTypeInfoInChars(baseType); 971 972 CGBuilderTy &Builder = CGF.Builder; 973 974 llvm::Value *baseSizeInChars 975 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSizeAndAlign.first.getQuantity()); 976 977 llvm::Type *i8p = Builder.getInt8PtrTy(); 978 979 llvm::Value *begin = Builder.CreateBitCast(dest, i8p, "vla.begin"); 980 llvm::Value *end = Builder.CreateInBoundsGEP(dest, sizeInChars, "vla.end"); 981 982 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 983 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 984 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 985 986 // Make a loop over the VLA. C99 guarantees that the VLA element 987 // count must be nonzero. 988 CGF.EmitBlock(loopBB); 989 990 llvm::PHINode *cur = Builder.CreatePHI(i8p, 2, "vla.cur"); 991 cur->addIncoming(begin, originBB); 992 993 // memcpy the individual element bit-pattern. 994 Builder.CreateMemCpy(cur, src, baseSizeInChars, 995 baseSizeAndAlign.second.getQuantity(), 996 /*volatile*/ false); 997 998 // Go to the next element. 999 llvm::Value *next = Builder.CreateConstInBoundsGEP1_32(cur, 1, "vla.next"); 1000 1001 // Leave if that's the end of the VLA. 1002 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 1003 Builder.CreateCondBr(done, contBB, loopBB); 1004 cur->addIncoming(next, loopBB); 1005 1006 CGF.EmitBlock(contBB); 1007 } 1008 1009 void 1010 CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) { 1011 // Ignore empty classes in C++. 1012 if (getLangOpts().CPlusPlus) { 1013 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1014 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 1015 return; 1016 } 1017 } 1018 1019 // Cast the dest ptr to the appropriate i8 pointer type. 1020 unsigned DestAS = 1021 cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace(); 1022 llvm::Type *BP = Builder.getInt8PtrTy(DestAS); 1023 if (DestPtr->getType() != BP) 1024 DestPtr = Builder.CreateBitCast(DestPtr, BP); 1025 1026 // Get size and alignment info for this aggregate. 1027 std::pair<CharUnits, CharUnits> TypeInfo = 1028 getContext().getTypeInfoInChars(Ty); 1029 CharUnits Size = TypeInfo.first; 1030 CharUnits Align = TypeInfo.second; 1031 1032 llvm::Value *SizeVal; 1033 const VariableArrayType *vla; 1034 1035 // Don't bother emitting a zero-byte memset. 1036 if (Size.isZero()) { 1037 // But note that getTypeInfo returns 0 for a VLA. 1038 if (const VariableArrayType *vlaType = 1039 dyn_cast_or_null<VariableArrayType>( 1040 getContext().getAsArrayType(Ty))) { 1041 QualType eltType; 1042 llvm::Value *numElts; 1043 llvm::tie(numElts, eltType) = getVLASize(vlaType); 1044 1045 SizeVal = numElts; 1046 CharUnits eltSize = getContext().getTypeSizeInChars(eltType); 1047 if (!eltSize.isOne()) 1048 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 1049 vla = vlaType; 1050 } else { 1051 return; 1052 } 1053 } else { 1054 SizeVal = CGM.getSize(Size); 1055 vla = 0; 1056 } 1057 1058 // If the type contains a pointer to data member we can't memset it to zero. 1059 // Instead, create a null constant and copy it to the destination. 1060 // TODO: there are other patterns besides zero that we can usefully memset, 1061 // like -1, which happens to be the pattern used by member-pointers. 1062 if (!CGM.getTypes().isZeroInitializable(Ty)) { 1063 // For a VLA, emit a single element, then splat that over the VLA. 1064 if (vla) Ty = getContext().getBaseElementType(vla); 1065 1066 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 1067 1068 llvm::GlobalVariable *NullVariable = 1069 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 1070 /*isConstant=*/true, 1071 llvm::GlobalVariable::PrivateLinkage, 1072 NullConstant, Twine()); 1073 llvm::Value *SrcPtr = 1074 Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()); 1075 1076 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 1077 1078 // Get and call the appropriate llvm.memcpy overload. 1079 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity(), false); 1080 return; 1081 } 1082 1083 // Otherwise, just memset the whole thing to zero. This is legal 1084 // because in LLVM, all default initializers (other than the ones we just 1085 // handled above) are guaranteed to have a bit pattern of all zeros. 1086 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, 1087 Align.getQuantity(), false); 1088 } 1089 1090 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 1091 // Make sure that there is a block for the indirect goto. 1092 if (IndirectBranch == 0) 1093 GetIndirectGotoBlock(); 1094 1095 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 1096 1097 // Make sure the indirect branch includes all of the address-taken blocks. 1098 IndirectBranch->addDestination(BB); 1099 return llvm::BlockAddress::get(CurFn, BB); 1100 } 1101 1102 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 1103 // If we already made the indirect branch for indirect goto, return its block. 1104 if (IndirectBranch) return IndirectBranch->getParent(); 1105 1106 CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto")); 1107 1108 // Create the PHI node that indirect gotos will add entries to. 1109 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 1110 "indirect.goto.dest"); 1111 1112 // Create the indirect branch instruction. 1113 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 1114 return IndirectBranch->getParent(); 1115 } 1116 1117 /// Computes the length of an array in elements, as well as the base 1118 /// element type and a properly-typed first element pointer. 1119 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 1120 QualType &baseType, 1121 llvm::Value *&addr) { 1122 const ArrayType *arrayType = origArrayType; 1123 1124 // If it's a VLA, we have to load the stored size. Note that 1125 // this is the size of the VLA in bytes, not its size in elements. 1126 llvm::Value *numVLAElements = 0; 1127 if (isa<VariableArrayType>(arrayType)) { 1128 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first; 1129 1130 // Walk into all VLAs. This doesn't require changes to addr, 1131 // which has type T* where T is the first non-VLA element type. 1132 do { 1133 QualType elementType = arrayType->getElementType(); 1134 arrayType = getContext().getAsArrayType(elementType); 1135 1136 // If we only have VLA components, 'addr' requires no adjustment. 1137 if (!arrayType) { 1138 baseType = elementType; 1139 return numVLAElements; 1140 } 1141 } while (isa<VariableArrayType>(arrayType)); 1142 1143 // We get out here only if we find a constant array type 1144 // inside the VLA. 1145 } 1146 1147 // We have some number of constant-length arrays, so addr should 1148 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 1149 // down to the first element of addr. 1150 SmallVector<llvm::Value*, 8> gepIndices; 1151 1152 // GEP down to the array type. 1153 llvm::ConstantInt *zero = Builder.getInt32(0); 1154 gepIndices.push_back(zero); 1155 1156 uint64_t countFromCLAs = 1; 1157 QualType eltType; 1158 1159 llvm::ArrayType *llvmArrayType = 1160 dyn_cast<llvm::ArrayType>( 1161 cast<llvm::PointerType>(addr->getType())->getElementType()); 1162 while (llvmArrayType) { 1163 assert(isa<ConstantArrayType>(arrayType)); 1164 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 1165 == llvmArrayType->getNumElements()); 1166 1167 gepIndices.push_back(zero); 1168 countFromCLAs *= llvmArrayType->getNumElements(); 1169 eltType = arrayType->getElementType(); 1170 1171 llvmArrayType = 1172 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 1173 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 1174 assert((!llvmArrayType || arrayType) && 1175 "LLVM and Clang types are out-of-synch"); 1176 } 1177 1178 if (arrayType) { 1179 // From this point onwards, the Clang array type has been emitted 1180 // as some other type (probably a packed struct). Compute the array 1181 // size, and just emit the 'begin' expression as a bitcast. 1182 while (arrayType) { 1183 countFromCLAs *= 1184 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 1185 eltType = arrayType->getElementType(); 1186 arrayType = getContext().getAsArrayType(eltType); 1187 } 1188 1189 unsigned AddressSpace = addr->getType()->getPointerAddressSpace(); 1190 llvm::Type *BaseType = ConvertType(eltType)->getPointerTo(AddressSpace); 1191 addr = Builder.CreateBitCast(addr, BaseType, "array.begin"); 1192 } else { 1193 // Create the actual GEP. 1194 addr = Builder.CreateInBoundsGEP(addr, gepIndices, "array.begin"); 1195 } 1196 1197 baseType = eltType; 1198 1199 llvm::Value *numElements 1200 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 1201 1202 // If we had any VLA dimensions, factor them in. 1203 if (numVLAElements) 1204 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 1205 1206 return numElements; 1207 } 1208 1209 std::pair<llvm::Value*, QualType> 1210 CodeGenFunction::getVLASize(QualType type) { 1211 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1212 assert(vla && "type was not a variable array type!"); 1213 return getVLASize(vla); 1214 } 1215 1216 std::pair<llvm::Value*, QualType> 1217 CodeGenFunction::getVLASize(const VariableArrayType *type) { 1218 // The number of elements so far; always size_t. 1219 llvm::Value *numElements = 0; 1220 1221 QualType elementType; 1222 do { 1223 elementType = type->getElementType(); 1224 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 1225 assert(vlaSize && "no size for VLA!"); 1226 assert(vlaSize->getType() == SizeTy); 1227 1228 if (!numElements) { 1229 numElements = vlaSize; 1230 } else { 1231 // It's undefined behavior if this wraps around, so mark it that way. 1232 // FIXME: Teach -fcatch-undefined-behavior to trap this. 1233 numElements = Builder.CreateNUWMul(numElements, vlaSize); 1234 } 1235 } while ((type = getContext().getAsVariableArrayType(elementType))); 1236 1237 return std::pair<llvm::Value*,QualType>(numElements, elementType); 1238 } 1239 1240 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 1241 assert(type->isVariablyModifiedType() && 1242 "Must pass variably modified type to EmitVLASizes!"); 1243 1244 EnsureInsertPoint(); 1245 1246 // We're going to walk down into the type and look for VLA 1247 // expressions. 1248 do { 1249 assert(type->isVariablyModifiedType()); 1250 1251 const Type *ty = type.getTypePtr(); 1252 switch (ty->getTypeClass()) { 1253 1254 #define TYPE(Class, Base) 1255 #define ABSTRACT_TYPE(Class, Base) 1256 #define NON_CANONICAL_TYPE(Class, Base) 1257 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 1258 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 1259 #include "clang/AST/TypeNodes.def" 1260 llvm_unreachable("unexpected dependent type!"); 1261 1262 // These types are never variably-modified. 1263 case Type::Builtin: 1264 case Type::Complex: 1265 case Type::Vector: 1266 case Type::ExtVector: 1267 case Type::Record: 1268 case Type::Enum: 1269 case Type::Elaborated: 1270 case Type::TemplateSpecialization: 1271 case Type::ObjCObject: 1272 case Type::ObjCInterface: 1273 case Type::ObjCObjectPointer: 1274 llvm_unreachable("type class is never variably-modified!"); 1275 1276 case Type::Pointer: 1277 type = cast<PointerType>(ty)->getPointeeType(); 1278 break; 1279 1280 case Type::BlockPointer: 1281 type = cast<BlockPointerType>(ty)->getPointeeType(); 1282 break; 1283 1284 case Type::LValueReference: 1285 case Type::RValueReference: 1286 type = cast<ReferenceType>(ty)->getPointeeType(); 1287 break; 1288 1289 case Type::MemberPointer: 1290 type = cast<MemberPointerType>(ty)->getPointeeType(); 1291 break; 1292 1293 case Type::ConstantArray: 1294 case Type::IncompleteArray: 1295 // Losing element qualification here is fine. 1296 type = cast<ArrayType>(ty)->getElementType(); 1297 break; 1298 1299 case Type::VariableArray: { 1300 // Losing element qualification here is fine. 1301 const VariableArrayType *vat = cast<VariableArrayType>(ty); 1302 1303 // Unknown size indication requires no size computation. 1304 // Otherwise, evaluate and record it. 1305 if (const Expr *size = vat->getSizeExpr()) { 1306 // It's possible that we might have emitted this already, 1307 // e.g. with a typedef and a pointer to it. 1308 llvm::Value *&entry = VLASizeMap[size]; 1309 if (!entry) { 1310 llvm::Value *Size = EmitScalarExpr(size); 1311 1312 // C11 6.7.6.2p5: 1313 // If the size is an expression that is not an integer constant 1314 // expression [...] each time it is evaluated it shall have a value 1315 // greater than zero. 1316 if (SanOpts->VLABound && 1317 size->getType()->isSignedIntegerType()) { 1318 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); 1319 llvm::Constant *StaticArgs[] = { 1320 EmitCheckSourceLocation(size->getLocStart()), 1321 EmitCheckTypeDescriptor(size->getType()) 1322 }; 1323 EmitCheck(Builder.CreateICmpSGT(Size, Zero), 1324 "vla_bound_not_positive", StaticArgs, Size, 1325 CRK_Recoverable); 1326 } 1327 1328 // Always zexting here would be wrong if it weren't 1329 // undefined behavior to have a negative bound. 1330 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); 1331 } 1332 } 1333 type = vat->getElementType(); 1334 break; 1335 } 1336 1337 case Type::FunctionProto: 1338 case Type::FunctionNoProto: 1339 type = cast<FunctionType>(ty)->getResultType(); 1340 break; 1341 1342 case Type::Paren: 1343 case Type::TypeOf: 1344 case Type::UnaryTransform: 1345 case Type::Attributed: 1346 case Type::SubstTemplateTypeParm: 1347 // Keep walking after single level desugaring. 1348 type = type.getSingleStepDesugaredType(getContext()); 1349 break; 1350 1351 case Type::Typedef: 1352 case Type::Decltype: 1353 case Type::Auto: 1354 // Stop walking: nothing to do. 1355 return; 1356 1357 case Type::TypeOfExpr: 1358 // Stop walking: emit typeof expression. 1359 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 1360 return; 1361 1362 case Type::Atomic: 1363 type = cast<AtomicType>(ty)->getValueType(); 1364 break; 1365 } 1366 } while (type->isVariablyModifiedType()); 1367 } 1368 1369 llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) { 1370 if (getContext().getBuiltinVaListType()->isArrayType()) 1371 return EmitScalarExpr(E); 1372 return EmitLValue(E).getAddress(); 1373 } 1374 1375 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 1376 llvm::Constant *Init) { 1377 assert (Init && "Invalid DeclRefExpr initializer!"); 1378 if (CGDebugInfo *Dbg = getDebugInfo()) 1379 if (CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 1380 Dbg->EmitGlobalVariable(E->getDecl(), Init); 1381 } 1382 1383 CodeGenFunction::PeepholeProtection 1384 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 1385 // At the moment, the only aggressive peephole we do in IR gen 1386 // is trunc(zext) folding, but if we add more, we can easily 1387 // extend this protection. 1388 1389 if (!rvalue.isScalar()) return PeepholeProtection(); 1390 llvm::Value *value = rvalue.getScalarVal(); 1391 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 1392 1393 // Just make an extra bitcast. 1394 assert(HaveInsertPoint()); 1395 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 1396 Builder.GetInsertBlock()); 1397 1398 PeepholeProtection protection; 1399 protection.Inst = inst; 1400 return protection; 1401 } 1402 1403 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 1404 if (!protection.Inst) return; 1405 1406 // In theory, we could try to duplicate the peepholes now, but whatever. 1407 protection.Inst->eraseFromParent(); 1408 } 1409 1410 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn, 1411 llvm::Value *AnnotatedVal, 1412 StringRef AnnotationStr, 1413 SourceLocation Location) { 1414 llvm::Value *Args[4] = { 1415 AnnotatedVal, 1416 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 1417 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 1418 CGM.EmitAnnotationLineNo(Location) 1419 }; 1420 return Builder.CreateCall(AnnotationFn, Args); 1421 } 1422 1423 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 1424 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1425 // FIXME We create a new bitcast for every annotation because that's what 1426 // llvm-gcc was doing. 1427 for (specific_attr_iterator<AnnotateAttr> 1428 ai = D->specific_attr_begin<AnnotateAttr>(), 1429 ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) 1430 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 1431 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 1432 (*ai)->getAnnotation(), D->getLocation()); 1433 } 1434 1435 llvm::Value *CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 1436 llvm::Value *V) { 1437 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1438 llvm::Type *VTy = V->getType(); 1439 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 1440 CGM.Int8PtrTy); 1441 1442 for (specific_attr_iterator<AnnotateAttr> 1443 ai = D->specific_attr_begin<AnnotateAttr>(), 1444 ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) { 1445 // FIXME Always emit the cast inst so we can differentiate between 1446 // annotation on the first field of a struct and annotation on the struct 1447 // itself. 1448 if (VTy != CGM.Int8PtrTy) 1449 V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy)); 1450 V = EmitAnnotationCall(F, V, (*ai)->getAnnotation(), D->getLocation()); 1451 V = Builder.CreateBitCast(V, VTy); 1452 } 1453 1454 return V; 1455 } 1456 1457 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 1458