xref: /llvm-project/clang/lib/CodeGen/CodeGenFunction.cpp (revision 65512647cc63942e86681a2291abf58f93d88f4f)
1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-function state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGCleanup.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGDebugInfo.h"
19 #include "CGOpenMPRuntime.h"
20 #include "CodeGenModule.h"
21 #include "CodeGenPGO.h"
22 #include "TargetInfo.h"
23 #include "clang/AST/ASTContext.h"
24 #include "clang/AST/Decl.h"
25 #include "clang/AST/DeclCXX.h"
26 #include "clang/AST/StmtCXX.h"
27 #include "clang/Basic/TargetInfo.h"
28 #include "clang/CodeGen/CGFunctionInfo.h"
29 #include "clang/Frontend/CodeGenOptions.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/Intrinsics.h"
32 #include "llvm/IR/MDBuilder.h"
33 #include "llvm/IR/Operator.h"
34 using namespace clang;
35 using namespace CodeGen;
36 
37 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
38     : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
39       Builder(cgm.getModule().getContext(), llvm::ConstantFolder(),
40               CGBuilderInserterTy(this)),
41       CurFn(nullptr), CapturedStmtInfo(nullptr),
42       SanOpts(CGM.getLangOpts().Sanitize), IsSanitizerScope(false),
43       CurFuncIsThunk(false), AutoreleaseResult(false), SawAsmBlock(false),
44       IsOutlinedSEHHelper(false), BlockInfo(nullptr), BlockPointer(nullptr),
45       LambdaThisCaptureField(nullptr), NormalCleanupDest(nullptr),
46       NextCleanupDestIndex(1), FirstBlockInfo(nullptr), EHResumeBlock(nullptr),
47       ExceptionSlot(nullptr), EHSelectorSlot(nullptr),
48       AbnormalTerminationSlot(nullptr), SEHPointersDecl(nullptr),
49       DebugInfo(CGM.getModuleDebugInfo()), DisableDebugInfo(false),
50       DidCallStackSave(false), IndirectBranch(nullptr), PGO(cgm),
51       SwitchInsn(nullptr), SwitchWeights(nullptr), CaseRangeBlock(nullptr),
52       UnreachableBlock(nullptr), NumReturnExprs(0), NumSimpleReturnExprs(0),
53       CXXABIThisDecl(nullptr), CXXABIThisValue(nullptr), CXXThisValue(nullptr),
54       CXXDefaultInitExprThis(nullptr), CXXStructorImplicitParamDecl(nullptr),
55       CXXStructorImplicitParamValue(nullptr), OutermostConditional(nullptr),
56       CurLexicalScope(nullptr), TerminateLandingPad(nullptr),
57       TerminateHandler(nullptr), TrapBB(nullptr) {
58   if (!suppressNewContext)
59     CGM.getCXXABI().getMangleContext().startNewFunction();
60 
61   llvm::FastMathFlags FMF;
62   if (CGM.getLangOpts().FastMath)
63     FMF.setUnsafeAlgebra();
64   if (CGM.getLangOpts().FiniteMathOnly) {
65     FMF.setNoNaNs();
66     FMF.setNoInfs();
67   }
68   if (CGM.getCodeGenOpts().NoNaNsFPMath) {
69     FMF.setNoNaNs();
70   }
71   if (CGM.getCodeGenOpts().NoSignedZeros) {
72     FMF.setNoSignedZeros();
73   }
74   if (CGM.getCodeGenOpts().ReciprocalMath) {
75     FMF.setAllowReciprocal();
76   }
77   Builder.SetFastMathFlags(FMF);
78 }
79 
80 CodeGenFunction::~CodeGenFunction() {
81   assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
82 
83   // If there are any unclaimed block infos, go ahead and destroy them
84   // now.  This can happen if IR-gen gets clever and skips evaluating
85   // something.
86   if (FirstBlockInfo)
87     destroyBlockInfos(FirstBlockInfo);
88 
89   if (getLangOpts().OpenMP) {
90     CGM.getOpenMPRuntime().functionFinished(*this);
91   }
92 }
93 
94 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
95   CharUnits Alignment;
96   if (CGM.getCXXABI().isTypeInfoCalculable(T)) {
97     Alignment = getContext().getTypeAlignInChars(T);
98     unsigned MaxAlign = getContext().getLangOpts().MaxTypeAlign;
99     if (MaxAlign && Alignment.getQuantity() > MaxAlign &&
100         !getContext().isAlignmentRequired(T))
101       Alignment = CharUnits::fromQuantity(MaxAlign);
102   }
103   return LValue::MakeAddr(V, T, Alignment, getContext(), CGM.getTBAAInfo(T));
104 }
105 
106 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
107   return CGM.getTypes().ConvertTypeForMem(T);
108 }
109 
110 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
111   return CGM.getTypes().ConvertType(T);
112 }
113 
114 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
115   type = type.getCanonicalType();
116   while (true) {
117     switch (type->getTypeClass()) {
118 #define TYPE(name, parent)
119 #define ABSTRACT_TYPE(name, parent)
120 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
121 #define DEPENDENT_TYPE(name, parent) case Type::name:
122 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
123 #include "clang/AST/TypeNodes.def"
124       llvm_unreachable("non-canonical or dependent type in IR-generation");
125 
126     case Type::Auto:
127       llvm_unreachable("undeduced auto type in IR-generation");
128 
129     // Various scalar types.
130     case Type::Builtin:
131     case Type::Pointer:
132     case Type::BlockPointer:
133     case Type::LValueReference:
134     case Type::RValueReference:
135     case Type::MemberPointer:
136     case Type::Vector:
137     case Type::ExtVector:
138     case Type::FunctionProto:
139     case Type::FunctionNoProto:
140     case Type::Enum:
141     case Type::ObjCObjectPointer:
142       return TEK_Scalar;
143 
144     // Complexes.
145     case Type::Complex:
146       return TEK_Complex;
147 
148     // Arrays, records, and Objective-C objects.
149     case Type::ConstantArray:
150     case Type::IncompleteArray:
151     case Type::VariableArray:
152     case Type::Record:
153     case Type::ObjCObject:
154     case Type::ObjCInterface:
155       return TEK_Aggregate;
156 
157     // We operate on atomic values according to their underlying type.
158     case Type::Atomic:
159       type = cast<AtomicType>(type)->getValueType();
160       continue;
161     }
162     llvm_unreachable("unknown type kind!");
163   }
164 }
165 
166 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() {
167   // For cleanliness, we try to avoid emitting the return block for
168   // simple cases.
169   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
170 
171   if (CurBB) {
172     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
173 
174     // We have a valid insert point, reuse it if it is empty or there are no
175     // explicit jumps to the return block.
176     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
177       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
178       delete ReturnBlock.getBlock();
179     } else
180       EmitBlock(ReturnBlock.getBlock());
181     return llvm::DebugLoc();
182   }
183 
184   // Otherwise, if the return block is the target of a single direct
185   // branch then we can just put the code in that block instead. This
186   // cleans up functions which started with a unified return block.
187   if (ReturnBlock.getBlock()->hasOneUse()) {
188     llvm::BranchInst *BI =
189       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin());
190     if (BI && BI->isUnconditional() &&
191         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
192       // Record/return the DebugLoc of the simple 'return' expression to be used
193       // later by the actual 'ret' instruction.
194       llvm::DebugLoc Loc = BI->getDebugLoc();
195       Builder.SetInsertPoint(BI->getParent());
196       BI->eraseFromParent();
197       delete ReturnBlock.getBlock();
198       return Loc;
199     }
200   }
201 
202   // FIXME: We are at an unreachable point, there is no reason to emit the block
203   // unless it has uses. However, we still need a place to put the debug
204   // region.end for now.
205 
206   EmitBlock(ReturnBlock.getBlock());
207   return llvm::DebugLoc();
208 }
209 
210 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
211   if (!BB) return;
212   if (!BB->use_empty())
213     return CGF.CurFn->getBasicBlockList().push_back(BB);
214   delete BB;
215 }
216 
217 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
218   assert(BreakContinueStack.empty() &&
219          "mismatched push/pop in break/continue stack!");
220 
221   bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
222     && NumSimpleReturnExprs == NumReturnExprs
223     && ReturnBlock.getBlock()->use_empty();
224   // Usually the return expression is evaluated before the cleanup
225   // code.  If the function contains only a simple return statement,
226   // such as a constant, the location before the cleanup code becomes
227   // the last useful breakpoint in the function, because the simple
228   // return expression will be evaluated after the cleanup code. To be
229   // safe, set the debug location for cleanup code to the location of
230   // the return statement.  Otherwise the cleanup code should be at the
231   // end of the function's lexical scope.
232   //
233   // If there are multiple branches to the return block, the branch
234   // instructions will get the location of the return statements and
235   // all will be fine.
236   if (CGDebugInfo *DI = getDebugInfo()) {
237     if (OnlySimpleReturnStmts)
238       DI->EmitLocation(Builder, LastStopPoint);
239     else
240       DI->EmitLocation(Builder, EndLoc);
241   }
242 
243   // Pop any cleanups that might have been associated with the
244   // parameters.  Do this in whatever block we're currently in; it's
245   // important to do this before we enter the return block or return
246   // edges will be *really* confused.
247   bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth;
248   bool HasOnlyLifetimeMarkers =
249       HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth);
250   bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers;
251   if (HasCleanups) {
252     // Make sure the line table doesn't jump back into the body for
253     // the ret after it's been at EndLoc.
254     if (CGDebugInfo *DI = getDebugInfo())
255       if (OnlySimpleReturnStmts)
256         DI->EmitLocation(Builder, EndLoc);
257 
258     PopCleanupBlocks(PrologueCleanupDepth);
259   }
260 
261   // Emit function epilog (to return).
262   llvm::DebugLoc Loc = EmitReturnBlock();
263 
264   if (ShouldInstrumentFunction())
265     EmitFunctionInstrumentation("__cyg_profile_func_exit");
266 
267   // Emit debug descriptor for function end.
268   if (CGDebugInfo *DI = getDebugInfo())
269     DI->EmitFunctionEnd(Builder);
270 
271   // Reset the debug location to that of the simple 'return' expression, if any
272   // rather than that of the end of the function's scope '}'.
273   ApplyDebugLocation AL(*this, Loc);
274   EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
275   EmitEndEHSpec(CurCodeDecl);
276 
277   assert(EHStack.empty() &&
278          "did not remove all scopes from cleanup stack!");
279 
280   // If someone did an indirect goto, emit the indirect goto block at the end of
281   // the function.
282   if (IndirectBranch) {
283     EmitBlock(IndirectBranch->getParent());
284     Builder.ClearInsertionPoint();
285   }
286 
287   // If some of our locals escaped, insert a call to llvm.frameescape in the
288   // entry block.
289   if (!EscapedLocals.empty()) {
290     // Invert the map from local to index into a simple vector. There should be
291     // no holes.
292     SmallVector<llvm::Value *, 4> EscapeArgs;
293     EscapeArgs.resize(EscapedLocals.size());
294     for (auto &Pair : EscapedLocals)
295       EscapeArgs[Pair.second] = Pair.first;
296     llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration(
297         &CGM.getModule(), llvm::Intrinsic::frameescape);
298     CGBuilderTy(AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs);
299   }
300 
301   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
302   llvm::Instruction *Ptr = AllocaInsertPt;
303   AllocaInsertPt = nullptr;
304   Ptr->eraseFromParent();
305 
306   // If someone took the address of a label but never did an indirect goto, we
307   // made a zero entry PHI node, which is illegal, zap it now.
308   if (IndirectBranch) {
309     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
310     if (PN->getNumIncomingValues() == 0) {
311       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
312       PN->eraseFromParent();
313     }
314   }
315 
316   EmitIfUsed(*this, EHResumeBlock);
317   EmitIfUsed(*this, TerminateLandingPad);
318   EmitIfUsed(*this, TerminateHandler);
319   EmitIfUsed(*this, UnreachableBlock);
320 
321   if (CGM.getCodeGenOpts().EmitDeclMetadata)
322     EmitDeclMetadata();
323 
324   for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator
325            I = DeferredReplacements.begin(),
326            E = DeferredReplacements.end();
327        I != E; ++I) {
328     I->first->replaceAllUsesWith(I->second);
329     I->first->eraseFromParent();
330   }
331 }
332 
333 /// ShouldInstrumentFunction - Return true if the current function should be
334 /// instrumented with __cyg_profile_func_* calls
335 bool CodeGenFunction::ShouldInstrumentFunction() {
336   if (!CGM.getCodeGenOpts().InstrumentFunctions)
337     return false;
338   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
339     return false;
340   return true;
341 }
342 
343 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
344 /// instrumentation function with the current function and the call site, if
345 /// function instrumentation is enabled.
346 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) {
347   // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site);
348   llvm::PointerType *PointerTy = Int8PtrTy;
349   llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy };
350   llvm::FunctionType *FunctionTy =
351     llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false);
352 
353   llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn);
354   llvm::CallInst *CallSite = Builder.CreateCall(
355     CGM.getIntrinsic(llvm::Intrinsic::returnaddress),
356     llvm::ConstantInt::get(Int32Ty, 0),
357     "callsite");
358 
359   llvm::Value *args[] = {
360     llvm::ConstantExpr::getBitCast(CurFn, PointerTy),
361     CallSite
362   };
363 
364   EmitNounwindRuntimeCall(F, args);
365 }
366 
367 void CodeGenFunction::EmitMCountInstrumentation() {
368   llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false);
369 
370   llvm::Constant *MCountFn =
371     CGM.CreateRuntimeFunction(FTy, getTarget().getMCountName());
372   EmitNounwindRuntimeCall(MCountFn);
373 }
374 
375 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument
376 // information in the program executable. The argument information stored
377 // includes the argument name, its type, the address and access qualifiers used.
378 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn,
379                                  CodeGenModule &CGM, llvm::LLVMContext &Context,
380                                  SmallVector<llvm::Metadata *, 5> &kernelMDArgs,
381                                  CGBuilderTy &Builder, ASTContext &ASTCtx) {
382   // Create MDNodes that represent the kernel arg metadata.
383   // Each MDNode is a list in the form of "key", N number of values which is
384   // the same number of values as their are kernel arguments.
385 
386   const PrintingPolicy &Policy = ASTCtx.getPrintingPolicy();
387 
388   // MDNode for the kernel argument address space qualifiers.
389   SmallVector<llvm::Metadata *, 8> addressQuals;
390   addressQuals.push_back(llvm::MDString::get(Context, "kernel_arg_addr_space"));
391 
392   // MDNode for the kernel argument access qualifiers (images only).
393   SmallVector<llvm::Metadata *, 8> accessQuals;
394   accessQuals.push_back(llvm::MDString::get(Context, "kernel_arg_access_qual"));
395 
396   // MDNode for the kernel argument type names.
397   SmallVector<llvm::Metadata *, 8> argTypeNames;
398   argTypeNames.push_back(llvm::MDString::get(Context, "kernel_arg_type"));
399 
400   // MDNode for the kernel argument base type names.
401   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
402   argBaseTypeNames.push_back(
403       llvm::MDString::get(Context, "kernel_arg_base_type"));
404 
405   // MDNode for the kernel argument type qualifiers.
406   SmallVector<llvm::Metadata *, 8> argTypeQuals;
407   argTypeQuals.push_back(llvm::MDString::get(Context, "kernel_arg_type_qual"));
408 
409   // MDNode for the kernel argument names.
410   SmallVector<llvm::Metadata *, 8> argNames;
411   argNames.push_back(llvm::MDString::get(Context, "kernel_arg_name"));
412 
413   for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
414     const ParmVarDecl *parm = FD->getParamDecl(i);
415     QualType ty = parm->getType();
416     std::string typeQuals;
417 
418     if (ty->isPointerType()) {
419       QualType pointeeTy = ty->getPointeeType();
420 
421       // Get address qualifier.
422       addressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(
423           ASTCtx.getTargetAddressSpace(pointeeTy.getAddressSpace()))));
424 
425       // Get argument type name.
426       std::string typeName =
427           pointeeTy.getUnqualifiedType().getAsString(Policy) + "*";
428 
429       // Turn "unsigned type" to "utype"
430       std::string::size_type pos = typeName.find("unsigned");
431       if (pointeeTy.isCanonical() && pos != std::string::npos)
432         typeName.erase(pos+1, 8);
433 
434       argTypeNames.push_back(llvm::MDString::get(Context, typeName));
435 
436       std::string baseTypeName =
437           pointeeTy.getUnqualifiedType().getCanonicalType().getAsString(
438               Policy) +
439           "*";
440 
441       // Turn "unsigned type" to "utype"
442       pos = baseTypeName.find("unsigned");
443       if (pos != std::string::npos)
444         baseTypeName.erase(pos+1, 8);
445 
446       argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName));
447 
448       // Get argument type qualifiers:
449       if (ty.isRestrictQualified())
450         typeQuals = "restrict";
451       if (pointeeTy.isConstQualified() ||
452           (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
453         typeQuals += typeQuals.empty() ? "const" : " const";
454       if (pointeeTy.isVolatileQualified())
455         typeQuals += typeQuals.empty() ? "volatile" : " volatile";
456     } else {
457       uint32_t AddrSpc = 0;
458       if (ty->isImageType())
459         AddrSpc =
460           CGM.getContext().getTargetAddressSpace(LangAS::opencl_global);
461 
462       addressQuals.push_back(
463           llvm::ConstantAsMetadata::get(Builder.getInt32(AddrSpc)));
464 
465       // Get argument type name.
466       std::string typeName = ty.getUnqualifiedType().getAsString(Policy);
467 
468       // Turn "unsigned type" to "utype"
469       std::string::size_type pos = typeName.find("unsigned");
470       if (ty.isCanonical() && pos != std::string::npos)
471         typeName.erase(pos+1, 8);
472 
473       argTypeNames.push_back(llvm::MDString::get(Context, typeName));
474 
475       std::string baseTypeName =
476           ty.getUnqualifiedType().getCanonicalType().getAsString(Policy);
477 
478       // Turn "unsigned type" to "utype"
479       pos = baseTypeName.find("unsigned");
480       if (pos != std::string::npos)
481         baseTypeName.erase(pos+1, 8);
482 
483       argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName));
484 
485       // Get argument type qualifiers:
486       if (ty.isConstQualified())
487         typeQuals = "const";
488       if (ty.isVolatileQualified())
489         typeQuals += typeQuals.empty() ? "volatile" : " volatile";
490     }
491 
492     argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals));
493 
494     // Get image access qualifier:
495     if (ty->isImageType()) {
496       const OpenCLImageAccessAttr *A = parm->getAttr<OpenCLImageAccessAttr>();
497       if (A && A->isWriteOnly())
498         accessQuals.push_back(llvm::MDString::get(Context, "write_only"));
499       else
500         accessQuals.push_back(llvm::MDString::get(Context, "read_only"));
501       // FIXME: what about read_write?
502     } else
503       accessQuals.push_back(llvm::MDString::get(Context, "none"));
504 
505     // Get argument name.
506     argNames.push_back(llvm::MDString::get(Context, parm->getName()));
507   }
508 
509   kernelMDArgs.push_back(llvm::MDNode::get(Context, addressQuals));
510   kernelMDArgs.push_back(llvm::MDNode::get(Context, accessQuals));
511   kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeNames));
512   kernelMDArgs.push_back(llvm::MDNode::get(Context, argBaseTypeNames));
513   kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeQuals));
514   if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
515     kernelMDArgs.push_back(llvm::MDNode::get(Context, argNames));
516 }
517 
518 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD,
519                                                llvm::Function *Fn)
520 {
521   if (!FD->hasAttr<OpenCLKernelAttr>())
522     return;
523 
524   llvm::LLVMContext &Context = getLLVMContext();
525 
526   SmallVector<llvm::Metadata *, 5> kernelMDArgs;
527   kernelMDArgs.push_back(llvm::ConstantAsMetadata::get(Fn));
528 
529   GenOpenCLArgMetadata(FD, Fn, CGM, Context, kernelMDArgs, Builder,
530                        getContext());
531 
532   if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
533     QualType hintQTy = A->getTypeHint();
534     const ExtVectorType *hintEltQTy = hintQTy->getAs<ExtVectorType>();
535     bool isSignedInteger =
536         hintQTy->isSignedIntegerType() ||
537         (hintEltQTy && hintEltQTy->getElementType()->isSignedIntegerType());
538     llvm::Metadata *attrMDArgs[] = {
539         llvm::MDString::get(Context, "vec_type_hint"),
540         llvm::ConstantAsMetadata::get(llvm::UndefValue::get(
541             CGM.getTypes().ConvertType(A->getTypeHint()))),
542         llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
543             llvm::IntegerType::get(Context, 32),
544             llvm::APInt(32, (uint64_t)(isSignedInteger ? 1 : 0))))};
545     kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
546   }
547 
548   if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
549     llvm::Metadata *attrMDArgs[] = {
550         llvm::MDString::get(Context, "work_group_size_hint"),
551         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
552         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
553         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
554     kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
555   }
556 
557   if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
558     llvm::Metadata *attrMDArgs[] = {
559         llvm::MDString::get(Context, "reqd_work_group_size"),
560         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
561         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
562         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
563     kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
564   }
565 
566   llvm::MDNode *kernelMDNode = llvm::MDNode::get(Context, kernelMDArgs);
567   llvm::NamedMDNode *OpenCLKernelMetadata =
568     CGM.getModule().getOrInsertNamedMetadata("opencl.kernels");
569   OpenCLKernelMetadata->addOperand(kernelMDNode);
570 }
571 
572 /// Determine whether the function F ends with a return stmt.
573 static bool endsWithReturn(const Decl* F) {
574   const Stmt *Body = nullptr;
575   if (auto *FD = dyn_cast_or_null<FunctionDecl>(F))
576     Body = FD->getBody();
577   else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F))
578     Body = OMD->getBody();
579 
580   if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
581     auto LastStmt = CS->body_rbegin();
582     if (LastStmt != CS->body_rend())
583       return isa<ReturnStmt>(*LastStmt);
584   }
585   return false;
586 }
587 
588 void CodeGenFunction::StartFunction(GlobalDecl GD,
589                                     QualType RetTy,
590                                     llvm::Function *Fn,
591                                     const CGFunctionInfo &FnInfo,
592                                     const FunctionArgList &Args,
593                                     SourceLocation Loc,
594                                     SourceLocation StartLoc) {
595   assert(!CurFn &&
596          "Do not use a CodeGenFunction object for more than one function");
597 
598   const Decl *D = GD.getDecl();
599 
600   DidCallStackSave = false;
601   CurCodeDecl = D;
602   CurFuncDecl = (D ? D->getNonClosureContext() : nullptr);
603   FnRetTy = RetTy;
604   CurFn = Fn;
605   CurFnInfo = &FnInfo;
606   assert(CurFn->isDeclaration() && "Function already has body?");
607 
608   if (CGM.isInSanitizerBlacklist(Fn, Loc))
609     SanOpts.clear();
610 
611   // Pass inline keyword to optimizer if it appears explicitly on any
612   // declaration. Also, in the case of -fno-inline attach NoInline
613   // attribute to all function that are not marked AlwaysInline.
614   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
615     if (!CGM.getCodeGenOpts().NoInline) {
616       for (auto RI : FD->redecls())
617         if (RI->isInlineSpecified()) {
618           Fn->addFnAttr(llvm::Attribute::InlineHint);
619           break;
620         }
621     } else if (!FD->hasAttr<AlwaysInlineAttr>())
622       Fn->addFnAttr(llvm::Attribute::NoInline);
623   }
624 
625   if (getLangOpts().OpenCL) {
626     // Add metadata for a kernel function.
627     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
628       EmitOpenCLKernelMetadata(FD, Fn);
629   }
630 
631   // If we are checking function types, emit a function type signature as
632   // prologue data.
633   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) {
634     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
635       if (llvm::Constant *PrologueSig =
636               CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
637         llvm::Constant *FTRTTIConst =
638             CGM.GetAddrOfRTTIDescriptor(FD->getType(), /*ForEH=*/true);
639         llvm::Constant *PrologueStructElems[] = { PrologueSig, FTRTTIConst };
640         llvm::Constant *PrologueStructConst =
641             llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true);
642         Fn->setPrologueData(PrologueStructConst);
643       }
644     }
645   }
646 
647   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
648 
649   // Create a marker to make it easy to insert allocas into the entryblock
650   // later.  Don't create this with the builder, because we don't want it
651   // folded.
652   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
653   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB);
654   if (Builder.isNamePreserving())
655     AllocaInsertPt->setName("allocapt");
656 
657   ReturnBlock = getJumpDestInCurrentScope("return");
658 
659   Builder.SetInsertPoint(EntryBB);
660 
661   // Emit subprogram debug descriptor.
662   if (CGDebugInfo *DI = getDebugInfo()) {
663     SmallVector<QualType, 16> ArgTypes;
664     for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
665 	 i != e; ++i) {
666       ArgTypes.push_back((*i)->getType());
667     }
668 
669     QualType FnType =
670       getContext().getFunctionType(RetTy, ArgTypes,
671                                    FunctionProtoType::ExtProtoInfo());
672     DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, Builder);
673   }
674 
675   if (ShouldInstrumentFunction())
676     EmitFunctionInstrumentation("__cyg_profile_func_enter");
677 
678   if (CGM.getCodeGenOpts().InstrumentForProfiling)
679     EmitMCountInstrumentation();
680 
681   if (RetTy->isVoidType()) {
682     // Void type; nothing to return.
683     ReturnValue = nullptr;
684 
685     // Count the implicit return.
686     if (!endsWithReturn(D))
687       ++NumReturnExprs;
688   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
689              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
690     // Indirect aggregate return; emit returned value directly into sret slot.
691     // This reduces code size, and affects correctness in C++.
692     auto AI = CurFn->arg_begin();
693     if (CurFnInfo->getReturnInfo().isSRetAfterThis())
694       ++AI;
695     ReturnValue = AI;
696   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca &&
697              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
698     // Load the sret pointer from the argument struct and return into that.
699     unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex();
700     llvm::Function::arg_iterator EI = CurFn->arg_end();
701     --EI;
702     llvm::Value *Addr = Builder.CreateStructGEP(nullptr, EI, Idx);
703     ReturnValue = Builder.CreateLoad(Addr, "agg.result");
704   } else {
705     ReturnValue = CreateIRTemp(RetTy, "retval");
706 
707     // Tell the epilog emitter to autorelease the result.  We do this
708     // now so that various specialized functions can suppress it
709     // during their IR-generation.
710     if (getLangOpts().ObjCAutoRefCount &&
711         !CurFnInfo->isReturnsRetained() &&
712         RetTy->isObjCRetainableType())
713       AutoreleaseResult = true;
714   }
715 
716   EmitStartEHSpec(CurCodeDecl);
717 
718   PrologueCleanupDepth = EHStack.stable_begin();
719   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
720 
721   if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
722     CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
723     const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
724     if (MD->getParent()->isLambda() &&
725         MD->getOverloadedOperator() == OO_Call) {
726       // We're in a lambda; figure out the captures.
727       MD->getParent()->getCaptureFields(LambdaCaptureFields,
728                                         LambdaThisCaptureField);
729       if (LambdaThisCaptureField) {
730         // If this lambda captures this, load it.
731         LValue ThisLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
732         CXXThisValue = EmitLoadOfLValue(ThisLValue,
733                                         SourceLocation()).getScalarVal();
734       }
735       for (auto *FD : MD->getParent()->fields()) {
736         if (FD->hasCapturedVLAType()) {
737           auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD),
738                                            SourceLocation()).getScalarVal();
739           auto VAT = FD->getCapturedVLAType();
740           VLASizeMap[VAT->getSizeExpr()] = ExprArg;
741         }
742       }
743     } else {
744       // Not in a lambda; just use 'this' from the method.
745       // FIXME: Should we generate a new load for each use of 'this'?  The
746       // fast register allocator would be happier...
747       CXXThisValue = CXXABIThisValue;
748     }
749   }
750 
751   // If any of the arguments have a variably modified type, make sure to
752   // emit the type size.
753   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
754        i != e; ++i) {
755     const VarDecl *VD = *i;
756 
757     // Dig out the type as written from ParmVarDecls; it's unclear whether
758     // the standard (C99 6.9.1p10) requires this, but we're following the
759     // precedent set by gcc.
760     QualType Ty;
761     if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
762       Ty = PVD->getOriginalType();
763     else
764       Ty = VD->getType();
765 
766     if (Ty->isVariablyModifiedType())
767       EmitVariablyModifiedType(Ty);
768   }
769   // Emit a location at the end of the prologue.
770   if (CGDebugInfo *DI = getDebugInfo())
771     DI->EmitLocation(Builder, StartLoc);
772 }
773 
774 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args,
775                                        const Stmt *Body) {
776   incrementProfileCounter(Body);
777   if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
778     EmitCompoundStmtWithoutScope(*S);
779   else
780     EmitStmt(Body);
781 }
782 
783 /// When instrumenting to collect profile data, the counts for some blocks
784 /// such as switch cases need to not include the fall-through counts, so
785 /// emit a branch around the instrumentation code. When not instrumenting,
786 /// this just calls EmitBlock().
787 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB,
788                                                const Stmt *S) {
789   llvm::BasicBlock *SkipCountBB = nullptr;
790   if (HaveInsertPoint() && CGM.getCodeGenOpts().ProfileInstrGenerate) {
791     // When instrumenting for profiling, the fallthrough to certain
792     // statements needs to skip over the instrumentation code so that we
793     // get an accurate count.
794     SkipCountBB = createBasicBlock("skipcount");
795     EmitBranch(SkipCountBB);
796   }
797   EmitBlock(BB);
798   uint64_t CurrentCount = getCurrentProfileCount();
799   incrementProfileCounter(S);
800   setCurrentProfileCount(getCurrentProfileCount() + CurrentCount);
801   if (SkipCountBB)
802     EmitBlock(SkipCountBB);
803 }
804 
805 /// Tries to mark the given function nounwind based on the
806 /// non-existence of any throwing calls within it.  We believe this is
807 /// lightweight enough to do at -O0.
808 static void TryMarkNoThrow(llvm::Function *F) {
809   // LLVM treats 'nounwind' on a function as part of the type, so we
810   // can't do this on functions that can be overwritten.
811   if (F->mayBeOverridden()) return;
812 
813   for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI)
814     for (llvm::BasicBlock::iterator
815            BI = FI->begin(), BE = FI->end(); BI != BE; ++BI)
816       if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI)) {
817         if (!Call->doesNotThrow())
818           return;
819       } else if (isa<llvm::ResumeInst>(&*BI)) {
820         return;
821       }
822   F->setDoesNotThrow();
823 }
824 
825 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
826                                    const CGFunctionInfo &FnInfo) {
827   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
828 
829   // Check if we should generate debug info for this function.
830   if (FD->hasAttr<NoDebugAttr>())
831     DebugInfo = nullptr; // disable debug info indefinitely for this function
832 
833   FunctionArgList Args;
834   QualType ResTy = FD->getReturnType();
835 
836   CurGD = GD;
837   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
838   if (MD && MD->isInstance()) {
839     if (CGM.getCXXABI().HasThisReturn(GD))
840       ResTy = MD->getThisType(getContext());
841     else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
842       ResTy = CGM.getContext().VoidPtrTy;
843     CGM.getCXXABI().buildThisParam(*this, Args);
844   }
845 
846   Args.append(FD->param_begin(), FD->param_end());
847 
848   if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
849     CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args);
850 
851   SourceRange BodyRange;
852   if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange();
853   CurEHLocation = BodyRange.getEnd();
854 
855   // Use the location of the start of the function to determine where
856   // the function definition is located. By default use the location
857   // of the declaration as the location for the subprogram. A function
858   // may lack a declaration in the source code if it is created by code
859   // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
860   SourceLocation Loc = FD->getLocation();
861 
862   // If this is a function specialization then use the pattern body
863   // as the location for the function.
864   if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern())
865     if (SpecDecl->hasBody(SpecDecl))
866       Loc = SpecDecl->getLocation();
867 
868   // Emit the standard function prologue.
869   StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin());
870 
871   // Generate the body of the function.
872   PGO.checkGlobalDecl(GD);
873   PGO.assignRegionCounters(GD.getDecl(), CurFn);
874   if (isa<CXXDestructorDecl>(FD))
875     EmitDestructorBody(Args);
876   else if (isa<CXXConstructorDecl>(FD))
877     EmitConstructorBody(Args);
878   else if (getLangOpts().CUDA &&
879            !getLangOpts().CUDAIsDevice &&
880            FD->hasAttr<CUDAGlobalAttr>())
881     CGM.getCUDARuntime().EmitDeviceStubBody(*this, Args);
882   else if (isa<CXXConversionDecl>(FD) &&
883            cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) {
884     // The lambda conversion to block pointer is special; the semantics can't be
885     // expressed in the AST, so IRGen needs to special-case it.
886     EmitLambdaToBlockPointerBody(Args);
887   } else if (isa<CXXMethodDecl>(FD) &&
888              cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
889     // The lambda static invoker function is special, because it forwards or
890     // clones the body of the function call operator (but is actually static).
891     EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD));
892   } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
893              (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
894               cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
895     // Implicit copy-assignment gets the same special treatment as implicit
896     // copy-constructors.
897     emitImplicitAssignmentOperatorBody(Args);
898   } else if (Stmt *Body = FD->getBody()) {
899     EmitFunctionBody(Args, Body);
900   } else
901     llvm_unreachable("no definition for emitted function");
902 
903   // C++11 [stmt.return]p2:
904   //   Flowing off the end of a function [...] results in undefined behavior in
905   //   a value-returning function.
906   // C11 6.9.1p12:
907   //   If the '}' that terminates a function is reached, and the value of the
908   //   function call is used by the caller, the behavior is undefined.
909   if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock &&
910       !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) {
911     if (SanOpts.has(SanitizerKind::Return)) {
912       SanitizerScope SanScope(this);
913       llvm::Value *IsFalse = Builder.getFalse();
914       EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return),
915                 "missing_return", EmitCheckSourceLocation(FD->getLocation()),
916                 None);
917     } else if (CGM.getCodeGenOpts().OptimizationLevel == 0)
918       Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::trap));
919     Builder.CreateUnreachable();
920     Builder.ClearInsertionPoint();
921   }
922 
923   // Emit the standard function epilogue.
924   FinishFunction(BodyRange.getEnd());
925 
926   // If we haven't marked the function nothrow through other means, do
927   // a quick pass now to see if we can.
928   if (!CurFn->doesNotThrow())
929     TryMarkNoThrow(CurFn);
930 }
931 
932 /// ContainsLabel - Return true if the statement contains a label in it.  If
933 /// this statement is not executed normally, it not containing a label means
934 /// that we can just remove the code.
935 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
936   // Null statement, not a label!
937   if (!S) return false;
938 
939   // If this is a label, we have to emit the code, consider something like:
940   // if (0) {  ...  foo:  bar(); }  goto foo;
941   //
942   // TODO: If anyone cared, we could track __label__'s, since we know that you
943   // can't jump to one from outside their declared region.
944   if (isa<LabelStmt>(S))
945     return true;
946 
947   // If this is a case/default statement, and we haven't seen a switch, we have
948   // to emit the code.
949   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
950     return true;
951 
952   // If this is a switch statement, we want to ignore cases below it.
953   if (isa<SwitchStmt>(S))
954     IgnoreCaseStmts = true;
955 
956   // Scan subexpressions for verboten labels.
957   for (Stmt::const_child_range I = S->children(); I; ++I)
958     if (ContainsLabel(*I, IgnoreCaseStmts))
959       return true;
960 
961   return false;
962 }
963 
964 /// containsBreak - Return true if the statement contains a break out of it.
965 /// If the statement (recursively) contains a switch or loop with a break
966 /// inside of it, this is fine.
967 bool CodeGenFunction::containsBreak(const Stmt *S) {
968   // Null statement, not a label!
969   if (!S) return false;
970 
971   // If this is a switch or loop that defines its own break scope, then we can
972   // include it and anything inside of it.
973   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
974       isa<ForStmt>(S))
975     return false;
976 
977   if (isa<BreakStmt>(S))
978     return true;
979 
980   // Scan subexpressions for verboten breaks.
981   for (Stmt::const_child_range I = S->children(); I; ++I)
982     if (containsBreak(*I))
983       return true;
984 
985   return false;
986 }
987 
988 
989 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
990 /// to a constant, or if it does but contains a label, return false.  If it
991 /// constant folds return true and set the boolean result in Result.
992 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
993                                                    bool &ResultBool) {
994   llvm::APSInt ResultInt;
995   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt))
996     return false;
997 
998   ResultBool = ResultInt.getBoolValue();
999   return true;
1000 }
1001 
1002 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1003 /// to a constant, or if it does but contains a label, return false.  If it
1004 /// constant folds return true and set the folded value.
1005 bool CodeGenFunction::
1006 ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &ResultInt) {
1007   // FIXME: Rename and handle conversion of other evaluatable things
1008   // to bool.
1009   llvm::APSInt Int;
1010   if (!Cond->EvaluateAsInt(Int, getContext()))
1011     return false;  // Not foldable, not integer or not fully evaluatable.
1012 
1013   if (CodeGenFunction::ContainsLabel(Cond))
1014     return false;  // Contains a label.
1015 
1016   ResultInt = Int;
1017   return true;
1018 }
1019 
1020 
1021 
1022 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
1023 /// statement) to the specified blocks.  Based on the condition, this might try
1024 /// to simplify the codegen of the conditional based on the branch.
1025 ///
1026 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
1027                                            llvm::BasicBlock *TrueBlock,
1028                                            llvm::BasicBlock *FalseBlock,
1029                                            uint64_t TrueCount) {
1030   Cond = Cond->IgnoreParens();
1031 
1032   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
1033 
1034     // Handle X && Y in a condition.
1035     if (CondBOp->getOpcode() == BO_LAnd) {
1036       // If we have "1 && X", simplify the code.  "0 && X" would have constant
1037       // folded if the case was simple enough.
1038       bool ConstantBool = false;
1039       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1040           ConstantBool) {
1041         // br(1 && X) -> br(X).
1042         incrementProfileCounter(CondBOp);
1043         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1044                                     TrueCount);
1045       }
1046 
1047       // If we have "X && 1", simplify the code to use an uncond branch.
1048       // "X && 0" would have been constant folded to 0.
1049       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1050           ConstantBool) {
1051         // br(X && 1) -> br(X).
1052         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1053                                     TrueCount);
1054       }
1055 
1056       // Emit the LHS as a conditional.  If the LHS conditional is false, we
1057       // want to jump to the FalseBlock.
1058       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
1059       // The counter tells us how often we evaluate RHS, and all of TrueCount
1060       // can be propagated to that branch.
1061       uint64_t RHSCount = getProfileCount(CondBOp->getRHS());
1062 
1063       ConditionalEvaluation eval(*this);
1064       {
1065         ApplyDebugLocation DL(*this, Cond);
1066         EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount);
1067         EmitBlock(LHSTrue);
1068       }
1069 
1070       incrementProfileCounter(CondBOp);
1071       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1072 
1073       // Any temporaries created here are conditional.
1074       eval.begin(*this);
1075       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount);
1076       eval.end(*this);
1077 
1078       return;
1079     }
1080 
1081     if (CondBOp->getOpcode() == BO_LOr) {
1082       // If we have "0 || X", simplify the code.  "1 || X" would have constant
1083       // folded if the case was simple enough.
1084       bool ConstantBool = false;
1085       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1086           !ConstantBool) {
1087         // br(0 || X) -> br(X).
1088         incrementProfileCounter(CondBOp);
1089         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1090                                     TrueCount);
1091       }
1092 
1093       // If we have "X || 0", simplify the code to use an uncond branch.
1094       // "X || 1" would have been constant folded to 1.
1095       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1096           !ConstantBool) {
1097         // br(X || 0) -> br(X).
1098         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1099                                     TrueCount);
1100       }
1101 
1102       // Emit the LHS as a conditional.  If the LHS conditional is true, we
1103       // want to jump to the TrueBlock.
1104       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
1105       // We have the count for entry to the RHS and for the whole expression
1106       // being true, so we can divy up True count between the short circuit and
1107       // the RHS.
1108       uint64_t LHSCount =
1109           getCurrentProfileCount() - getProfileCount(CondBOp->getRHS());
1110       uint64_t RHSCount = TrueCount - LHSCount;
1111 
1112       ConditionalEvaluation eval(*this);
1113       {
1114         ApplyDebugLocation DL(*this, Cond);
1115         EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount);
1116         EmitBlock(LHSFalse);
1117       }
1118 
1119       incrementProfileCounter(CondBOp);
1120       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1121 
1122       // Any temporaries created here are conditional.
1123       eval.begin(*this);
1124       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount);
1125 
1126       eval.end(*this);
1127 
1128       return;
1129     }
1130   }
1131 
1132   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
1133     // br(!x, t, f) -> br(x, f, t)
1134     if (CondUOp->getOpcode() == UO_LNot) {
1135       // Negate the count.
1136       uint64_t FalseCount = getCurrentProfileCount() - TrueCount;
1137       // Negate the condition and swap the destination blocks.
1138       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock,
1139                                   FalseCount);
1140     }
1141   }
1142 
1143   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
1144     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
1145     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
1146     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
1147 
1148     ConditionalEvaluation cond(*this);
1149     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock,
1150                          getProfileCount(CondOp));
1151 
1152     // When computing PGO branch weights, we only know the overall count for
1153     // the true block. This code is essentially doing tail duplication of the
1154     // naive code-gen, introducing new edges for which counts are not
1155     // available. Divide the counts proportionally between the LHS and RHS of
1156     // the conditional operator.
1157     uint64_t LHSScaledTrueCount = 0;
1158     if (TrueCount) {
1159       double LHSRatio =
1160           getProfileCount(CondOp) / (double)getCurrentProfileCount();
1161       LHSScaledTrueCount = TrueCount * LHSRatio;
1162     }
1163 
1164     cond.begin(*this);
1165     EmitBlock(LHSBlock);
1166     incrementProfileCounter(CondOp);
1167     {
1168       ApplyDebugLocation DL(*this, Cond);
1169       EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock,
1170                            LHSScaledTrueCount);
1171     }
1172     cond.end(*this);
1173 
1174     cond.begin(*this);
1175     EmitBlock(RHSBlock);
1176     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock,
1177                          TrueCount - LHSScaledTrueCount);
1178     cond.end(*this);
1179 
1180     return;
1181   }
1182 
1183   if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
1184     // Conditional operator handling can give us a throw expression as a
1185     // condition for a case like:
1186     //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
1187     // Fold this to:
1188     //   br(c, throw x, br(y, t, f))
1189     EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
1190     return;
1191   }
1192 
1193   // Create branch weights based on the number of times we get here and the
1194   // number of times the condition should be true.
1195   uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount);
1196   llvm::MDNode *Weights =
1197       createProfileWeights(TrueCount, CurrentCount - TrueCount);
1198 
1199   // Emit the code with the fully general case.
1200   llvm::Value *CondV;
1201   {
1202     ApplyDebugLocation DL(*this, Cond);
1203     CondV = EvaluateExprAsBool(Cond);
1204   }
1205   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights);
1206 }
1207 
1208 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1209 /// specified stmt yet.
1210 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
1211   CGM.ErrorUnsupported(S, Type);
1212 }
1213 
1214 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
1215 /// variable-length array whose elements have a non-zero bit-pattern.
1216 ///
1217 /// \param baseType the inner-most element type of the array
1218 /// \param src - a char* pointing to the bit-pattern for a single
1219 /// base element of the array
1220 /// \param sizeInChars - the total size of the VLA, in chars
1221 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
1222                                llvm::Value *dest, llvm::Value *src,
1223                                llvm::Value *sizeInChars) {
1224   std::pair<CharUnits,CharUnits> baseSizeAndAlign
1225     = CGF.getContext().getTypeInfoInChars(baseType);
1226 
1227   CGBuilderTy &Builder = CGF.Builder;
1228 
1229   llvm::Value *baseSizeInChars
1230     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSizeAndAlign.first.getQuantity());
1231 
1232   llvm::Type *i8p = Builder.getInt8PtrTy();
1233 
1234   llvm::Value *begin = Builder.CreateBitCast(dest, i8p, "vla.begin");
1235   llvm::Value *end = Builder.CreateInBoundsGEP(dest, sizeInChars, "vla.end");
1236 
1237   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
1238   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
1239   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
1240 
1241   // Make a loop over the VLA.  C99 guarantees that the VLA element
1242   // count must be nonzero.
1243   CGF.EmitBlock(loopBB);
1244 
1245   llvm::PHINode *cur = Builder.CreatePHI(i8p, 2, "vla.cur");
1246   cur->addIncoming(begin, originBB);
1247 
1248   // memcpy the individual element bit-pattern.
1249   Builder.CreateMemCpy(cur, src, baseSizeInChars,
1250                        baseSizeAndAlign.second.getQuantity(),
1251                        /*volatile*/ false);
1252 
1253   // Go to the next element.
1254   llvm::Value *next = Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(),
1255                                                          cur, 1, "vla.next");
1256 
1257   // Leave if that's the end of the VLA.
1258   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
1259   Builder.CreateCondBr(done, contBB, loopBB);
1260   cur->addIncoming(next, loopBB);
1261 
1262   CGF.EmitBlock(contBB);
1263 }
1264 
1265 void
1266 CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) {
1267   // Ignore empty classes in C++.
1268   if (getLangOpts().CPlusPlus) {
1269     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1270       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
1271         return;
1272     }
1273   }
1274 
1275   // Cast the dest ptr to the appropriate i8 pointer type.
1276   unsigned DestAS =
1277     cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace();
1278   llvm::Type *BP = Builder.getInt8PtrTy(DestAS);
1279   if (DestPtr->getType() != BP)
1280     DestPtr = Builder.CreateBitCast(DestPtr, BP);
1281 
1282   // Get size and alignment info for this aggregate.
1283   std::pair<CharUnits, CharUnits> TypeInfo =
1284     getContext().getTypeInfoInChars(Ty);
1285   CharUnits Size = TypeInfo.first;
1286   CharUnits Align = TypeInfo.second;
1287 
1288   llvm::Value *SizeVal;
1289   const VariableArrayType *vla;
1290 
1291   // Don't bother emitting a zero-byte memset.
1292   if (Size.isZero()) {
1293     // But note that getTypeInfo returns 0 for a VLA.
1294     if (const VariableArrayType *vlaType =
1295           dyn_cast_or_null<VariableArrayType>(
1296                                           getContext().getAsArrayType(Ty))) {
1297       QualType eltType;
1298       llvm::Value *numElts;
1299       std::tie(numElts, eltType) = getVLASize(vlaType);
1300 
1301       SizeVal = numElts;
1302       CharUnits eltSize = getContext().getTypeSizeInChars(eltType);
1303       if (!eltSize.isOne())
1304         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
1305       vla = vlaType;
1306     } else {
1307       return;
1308     }
1309   } else {
1310     SizeVal = CGM.getSize(Size);
1311     vla = nullptr;
1312   }
1313 
1314   // If the type contains a pointer to data member we can't memset it to zero.
1315   // Instead, create a null constant and copy it to the destination.
1316   // TODO: there are other patterns besides zero that we can usefully memset,
1317   // like -1, which happens to be the pattern used by member-pointers.
1318   if (!CGM.getTypes().isZeroInitializable(Ty)) {
1319     // For a VLA, emit a single element, then splat that over the VLA.
1320     if (vla) Ty = getContext().getBaseElementType(vla);
1321 
1322     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
1323 
1324     llvm::GlobalVariable *NullVariable =
1325       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
1326                                /*isConstant=*/true,
1327                                llvm::GlobalVariable::PrivateLinkage,
1328                                NullConstant, Twine());
1329     llvm::Value *SrcPtr =
1330       Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy());
1331 
1332     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
1333 
1334     // Get and call the appropriate llvm.memcpy overload.
1335     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity(), false);
1336     return;
1337   }
1338 
1339   // Otherwise, just memset the whole thing to zero.  This is legal
1340   // because in LLVM, all default initializers (other than the ones we just
1341   // handled above) are guaranteed to have a bit pattern of all zeros.
1342   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal,
1343                        Align.getQuantity(), false);
1344 }
1345 
1346 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
1347   // Make sure that there is a block for the indirect goto.
1348   if (!IndirectBranch)
1349     GetIndirectGotoBlock();
1350 
1351   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
1352 
1353   // Make sure the indirect branch includes all of the address-taken blocks.
1354   IndirectBranch->addDestination(BB);
1355   return llvm::BlockAddress::get(CurFn, BB);
1356 }
1357 
1358 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
1359   // If we already made the indirect branch for indirect goto, return its block.
1360   if (IndirectBranch) return IndirectBranch->getParent();
1361 
1362   CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto"));
1363 
1364   // Create the PHI node that indirect gotos will add entries to.
1365   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
1366                                               "indirect.goto.dest");
1367 
1368   // Create the indirect branch instruction.
1369   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
1370   return IndirectBranch->getParent();
1371 }
1372 
1373 /// Computes the length of an array in elements, as well as the base
1374 /// element type and a properly-typed first element pointer.
1375 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
1376                                               QualType &baseType,
1377                                               llvm::Value *&addr) {
1378   const ArrayType *arrayType = origArrayType;
1379 
1380   // If it's a VLA, we have to load the stored size.  Note that
1381   // this is the size of the VLA in bytes, not its size in elements.
1382   llvm::Value *numVLAElements = nullptr;
1383   if (isa<VariableArrayType>(arrayType)) {
1384     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first;
1385 
1386     // Walk into all VLAs.  This doesn't require changes to addr,
1387     // which has type T* where T is the first non-VLA element type.
1388     do {
1389       QualType elementType = arrayType->getElementType();
1390       arrayType = getContext().getAsArrayType(elementType);
1391 
1392       // If we only have VLA components, 'addr' requires no adjustment.
1393       if (!arrayType) {
1394         baseType = elementType;
1395         return numVLAElements;
1396       }
1397     } while (isa<VariableArrayType>(arrayType));
1398 
1399     // We get out here only if we find a constant array type
1400     // inside the VLA.
1401   }
1402 
1403   // We have some number of constant-length arrays, so addr should
1404   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
1405   // down to the first element of addr.
1406   SmallVector<llvm::Value*, 8> gepIndices;
1407 
1408   // GEP down to the array type.
1409   llvm::ConstantInt *zero = Builder.getInt32(0);
1410   gepIndices.push_back(zero);
1411 
1412   uint64_t countFromCLAs = 1;
1413   QualType eltType;
1414 
1415   llvm::ArrayType *llvmArrayType =
1416     dyn_cast<llvm::ArrayType>(
1417       cast<llvm::PointerType>(addr->getType())->getElementType());
1418   while (llvmArrayType) {
1419     assert(isa<ConstantArrayType>(arrayType));
1420     assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
1421              == llvmArrayType->getNumElements());
1422 
1423     gepIndices.push_back(zero);
1424     countFromCLAs *= llvmArrayType->getNumElements();
1425     eltType = arrayType->getElementType();
1426 
1427     llvmArrayType =
1428       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
1429     arrayType = getContext().getAsArrayType(arrayType->getElementType());
1430     assert((!llvmArrayType || arrayType) &&
1431            "LLVM and Clang types are out-of-synch");
1432   }
1433 
1434   if (arrayType) {
1435     // From this point onwards, the Clang array type has been emitted
1436     // as some other type (probably a packed struct). Compute the array
1437     // size, and just emit the 'begin' expression as a bitcast.
1438     while (arrayType) {
1439       countFromCLAs *=
1440           cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
1441       eltType = arrayType->getElementType();
1442       arrayType = getContext().getAsArrayType(eltType);
1443     }
1444 
1445     unsigned AddressSpace = addr->getType()->getPointerAddressSpace();
1446     llvm::Type *BaseType = ConvertType(eltType)->getPointerTo(AddressSpace);
1447     addr = Builder.CreateBitCast(addr, BaseType, "array.begin");
1448   } else {
1449     // Create the actual GEP.
1450     addr = Builder.CreateInBoundsGEP(addr, gepIndices, "array.begin");
1451   }
1452 
1453   baseType = eltType;
1454 
1455   llvm::Value *numElements
1456     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
1457 
1458   // If we had any VLA dimensions, factor them in.
1459   if (numVLAElements)
1460     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
1461 
1462   return numElements;
1463 }
1464 
1465 std::pair<llvm::Value*, QualType>
1466 CodeGenFunction::getVLASize(QualType type) {
1467   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
1468   assert(vla && "type was not a variable array type!");
1469   return getVLASize(vla);
1470 }
1471 
1472 std::pair<llvm::Value*, QualType>
1473 CodeGenFunction::getVLASize(const VariableArrayType *type) {
1474   // The number of elements so far; always size_t.
1475   llvm::Value *numElements = nullptr;
1476 
1477   QualType elementType;
1478   do {
1479     elementType = type->getElementType();
1480     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
1481     assert(vlaSize && "no size for VLA!");
1482     assert(vlaSize->getType() == SizeTy);
1483 
1484     if (!numElements) {
1485       numElements = vlaSize;
1486     } else {
1487       // It's undefined behavior if this wraps around, so mark it that way.
1488       // FIXME: Teach -fsanitize=undefined to trap this.
1489       numElements = Builder.CreateNUWMul(numElements, vlaSize);
1490     }
1491   } while ((type = getContext().getAsVariableArrayType(elementType)));
1492 
1493   return std::pair<llvm::Value*,QualType>(numElements, elementType);
1494 }
1495 
1496 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
1497   assert(type->isVariablyModifiedType() &&
1498          "Must pass variably modified type to EmitVLASizes!");
1499 
1500   EnsureInsertPoint();
1501 
1502   // We're going to walk down into the type and look for VLA
1503   // expressions.
1504   do {
1505     assert(type->isVariablyModifiedType());
1506 
1507     const Type *ty = type.getTypePtr();
1508     switch (ty->getTypeClass()) {
1509 
1510 #define TYPE(Class, Base)
1511 #define ABSTRACT_TYPE(Class, Base)
1512 #define NON_CANONICAL_TYPE(Class, Base)
1513 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
1514 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
1515 #include "clang/AST/TypeNodes.def"
1516       llvm_unreachable("unexpected dependent type!");
1517 
1518     // These types are never variably-modified.
1519     case Type::Builtin:
1520     case Type::Complex:
1521     case Type::Vector:
1522     case Type::ExtVector:
1523     case Type::Record:
1524     case Type::Enum:
1525     case Type::Elaborated:
1526     case Type::TemplateSpecialization:
1527     case Type::ObjCObject:
1528     case Type::ObjCInterface:
1529     case Type::ObjCObjectPointer:
1530       llvm_unreachable("type class is never variably-modified!");
1531 
1532     case Type::Adjusted:
1533       type = cast<AdjustedType>(ty)->getAdjustedType();
1534       break;
1535 
1536     case Type::Decayed:
1537       type = cast<DecayedType>(ty)->getPointeeType();
1538       break;
1539 
1540     case Type::Pointer:
1541       type = cast<PointerType>(ty)->getPointeeType();
1542       break;
1543 
1544     case Type::BlockPointer:
1545       type = cast<BlockPointerType>(ty)->getPointeeType();
1546       break;
1547 
1548     case Type::LValueReference:
1549     case Type::RValueReference:
1550       type = cast<ReferenceType>(ty)->getPointeeType();
1551       break;
1552 
1553     case Type::MemberPointer:
1554       type = cast<MemberPointerType>(ty)->getPointeeType();
1555       break;
1556 
1557     case Type::ConstantArray:
1558     case Type::IncompleteArray:
1559       // Losing element qualification here is fine.
1560       type = cast<ArrayType>(ty)->getElementType();
1561       break;
1562 
1563     case Type::VariableArray: {
1564       // Losing element qualification here is fine.
1565       const VariableArrayType *vat = cast<VariableArrayType>(ty);
1566 
1567       // Unknown size indication requires no size computation.
1568       // Otherwise, evaluate and record it.
1569       if (const Expr *size = vat->getSizeExpr()) {
1570         // It's possible that we might have emitted this already,
1571         // e.g. with a typedef and a pointer to it.
1572         llvm::Value *&entry = VLASizeMap[size];
1573         if (!entry) {
1574           llvm::Value *Size = EmitScalarExpr(size);
1575 
1576           // C11 6.7.6.2p5:
1577           //   If the size is an expression that is not an integer constant
1578           //   expression [...] each time it is evaluated it shall have a value
1579           //   greater than zero.
1580           if (SanOpts.has(SanitizerKind::VLABound) &&
1581               size->getType()->isSignedIntegerType()) {
1582             SanitizerScope SanScope(this);
1583             llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType());
1584             llvm::Constant *StaticArgs[] = {
1585               EmitCheckSourceLocation(size->getLocStart()),
1586               EmitCheckTypeDescriptor(size->getType())
1587             };
1588             EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero),
1589                                      SanitizerKind::VLABound),
1590                       "vla_bound_not_positive", StaticArgs, Size);
1591           }
1592 
1593           // Always zexting here would be wrong if it weren't
1594           // undefined behavior to have a negative bound.
1595           entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false);
1596         }
1597       }
1598       type = vat->getElementType();
1599       break;
1600     }
1601 
1602     case Type::FunctionProto:
1603     case Type::FunctionNoProto:
1604       type = cast<FunctionType>(ty)->getReturnType();
1605       break;
1606 
1607     case Type::Paren:
1608     case Type::TypeOf:
1609     case Type::UnaryTransform:
1610     case Type::Attributed:
1611     case Type::SubstTemplateTypeParm:
1612     case Type::PackExpansion:
1613       // Keep walking after single level desugaring.
1614       type = type.getSingleStepDesugaredType(getContext());
1615       break;
1616 
1617     case Type::Typedef:
1618     case Type::Decltype:
1619     case Type::Auto:
1620       // Stop walking: nothing to do.
1621       return;
1622 
1623     case Type::TypeOfExpr:
1624       // Stop walking: emit typeof expression.
1625       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
1626       return;
1627 
1628     case Type::Atomic:
1629       type = cast<AtomicType>(ty)->getValueType();
1630       break;
1631     }
1632   } while (type->isVariablyModifiedType());
1633 }
1634 
1635 llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) {
1636   if (getContext().getBuiltinVaListType()->isArrayType())
1637     return EmitScalarExpr(E);
1638   return EmitLValue(E).getAddress();
1639 }
1640 
1641 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
1642                                               llvm::Constant *Init) {
1643   assert (Init && "Invalid DeclRefExpr initializer!");
1644   if (CGDebugInfo *Dbg = getDebugInfo())
1645     if (CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
1646       Dbg->EmitGlobalVariable(E->getDecl(), Init);
1647 }
1648 
1649 CodeGenFunction::PeepholeProtection
1650 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
1651   // At the moment, the only aggressive peephole we do in IR gen
1652   // is trunc(zext) folding, but if we add more, we can easily
1653   // extend this protection.
1654 
1655   if (!rvalue.isScalar()) return PeepholeProtection();
1656   llvm::Value *value = rvalue.getScalarVal();
1657   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
1658 
1659   // Just make an extra bitcast.
1660   assert(HaveInsertPoint());
1661   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
1662                                                   Builder.GetInsertBlock());
1663 
1664   PeepholeProtection protection;
1665   protection.Inst = inst;
1666   return protection;
1667 }
1668 
1669 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
1670   if (!protection.Inst) return;
1671 
1672   // In theory, we could try to duplicate the peepholes now, but whatever.
1673   protection.Inst->eraseFromParent();
1674 }
1675 
1676 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn,
1677                                                  llvm::Value *AnnotatedVal,
1678                                                  StringRef AnnotationStr,
1679                                                  SourceLocation Location) {
1680   llvm::Value *Args[4] = {
1681     AnnotatedVal,
1682     Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
1683     Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
1684     CGM.EmitAnnotationLineNo(Location)
1685   };
1686   return Builder.CreateCall(AnnotationFn, Args);
1687 }
1688 
1689 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
1690   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1691   // FIXME We create a new bitcast for every annotation because that's what
1692   // llvm-gcc was doing.
1693   for (const auto *I : D->specific_attrs<AnnotateAttr>())
1694     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
1695                        Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
1696                        I->getAnnotation(), D->getLocation());
1697 }
1698 
1699 llvm::Value *CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
1700                                                    llvm::Value *V) {
1701   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1702   llvm::Type *VTy = V->getType();
1703   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
1704                                     CGM.Int8PtrTy);
1705 
1706   for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
1707     // FIXME Always emit the cast inst so we can differentiate between
1708     // annotation on the first field of a struct and annotation on the struct
1709     // itself.
1710     if (VTy != CGM.Int8PtrTy)
1711       V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy));
1712     V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation());
1713     V = Builder.CreateBitCast(V, VTy);
1714   }
1715 
1716   return V;
1717 }
1718 
1719 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
1720 
1721 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF)
1722     : CGF(CGF) {
1723   assert(!CGF->IsSanitizerScope);
1724   CGF->IsSanitizerScope = true;
1725 }
1726 
1727 CodeGenFunction::SanitizerScope::~SanitizerScope() {
1728   CGF->IsSanitizerScope = false;
1729 }
1730 
1731 void CodeGenFunction::InsertHelper(llvm::Instruction *I,
1732                                    const llvm::Twine &Name,
1733                                    llvm::BasicBlock *BB,
1734                                    llvm::BasicBlock::iterator InsertPt) const {
1735   LoopStack.InsertHelper(I);
1736   if (IsSanitizerScope)
1737     CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I);
1738 }
1739 
1740 template <bool PreserveNames>
1741 void CGBuilderInserter<PreserveNames>::InsertHelper(
1742     llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB,
1743     llvm::BasicBlock::iterator InsertPt) const {
1744   llvm::IRBuilderDefaultInserter<PreserveNames>::InsertHelper(I, Name, BB,
1745                                                               InsertPt);
1746   if (CGF)
1747     CGF->InsertHelper(I, Name, BB, InsertPt);
1748 }
1749 
1750 #ifdef NDEBUG
1751 #define PreserveNames false
1752 #else
1753 #define PreserveNames true
1754 #endif
1755 template void CGBuilderInserter<PreserveNames>::InsertHelper(
1756     llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB,
1757     llvm::BasicBlock::iterator InsertPt) const;
1758 #undef PreserveNames
1759