1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-function state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGBlocks.h" 16 #include "CGCleanup.h" 17 #include "CGCUDARuntime.h" 18 #include "CGCXXABI.h" 19 #include "CGDebugInfo.h" 20 #include "CGOpenMPRuntime.h" 21 #include "CodeGenModule.h" 22 #include "CodeGenPGO.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/ASTLambda.h" 26 #include "clang/AST/Decl.h" 27 #include "clang/AST/DeclCXX.h" 28 #include "clang/AST/StmtCXX.h" 29 #include "clang/AST/StmtObjC.h" 30 #include "clang/Basic/Builtins.h" 31 #include "clang/Basic/TargetInfo.h" 32 #include "clang/CodeGen/CGFunctionInfo.h" 33 #include "clang/Frontend/CodeGenOptions.h" 34 #include "clang/Sema/SemaDiagnostic.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/Dominators.h" 37 #include "llvm/IR/Intrinsics.h" 38 #include "llvm/IR/MDBuilder.h" 39 #include "llvm/IR/Operator.h" 40 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 41 using namespace clang; 42 using namespace CodeGen; 43 44 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time 45 /// markers. 46 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts, 47 const LangOptions &LangOpts) { 48 if (CGOpts.DisableLifetimeMarkers) 49 return false; 50 51 // Disable lifetime markers in msan builds. 52 // FIXME: Remove this when msan works with lifetime markers. 53 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) 54 return false; 55 56 // Asan uses markers for use-after-scope checks. 57 if (CGOpts.SanitizeAddressUseAfterScope) 58 return true; 59 60 // For now, only in optimized builds. 61 return CGOpts.OptimizationLevel != 0; 62 } 63 64 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 65 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 66 Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(), 67 CGBuilderInserterTy(this)), 68 CurFn(nullptr), ReturnValue(Address::invalid()), 69 CapturedStmtInfo(nullptr), SanOpts(CGM.getLangOpts().Sanitize), 70 IsSanitizerScope(false), CurFuncIsThunk(false), AutoreleaseResult(false), 71 SawAsmBlock(false), IsOutlinedSEHHelper(false), BlockInfo(nullptr), 72 BlockPointer(nullptr), LambdaThisCaptureField(nullptr), 73 NormalCleanupDest(nullptr), NextCleanupDestIndex(1), 74 FirstBlockInfo(nullptr), EHResumeBlock(nullptr), ExceptionSlot(nullptr), 75 EHSelectorSlot(nullptr), DebugInfo(CGM.getModuleDebugInfo()), 76 DisableDebugInfo(false), DidCallStackSave(false), IndirectBranch(nullptr), 77 PGO(cgm), SwitchInsn(nullptr), SwitchWeights(nullptr), 78 CaseRangeBlock(nullptr), UnreachableBlock(nullptr), NumReturnExprs(0), 79 NumSimpleReturnExprs(0), CXXABIThisDecl(nullptr), 80 CXXABIThisValue(nullptr), CXXThisValue(nullptr), 81 CXXStructorImplicitParamDecl(nullptr), 82 CXXStructorImplicitParamValue(nullptr), OutermostConditional(nullptr), 83 CurLexicalScope(nullptr), TerminateLandingPad(nullptr), 84 TerminateHandler(nullptr), TrapBB(nullptr), 85 ShouldEmitLifetimeMarkers( 86 shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) { 87 if (!suppressNewContext) 88 CGM.getCXXABI().getMangleContext().startNewFunction(); 89 90 llvm::FastMathFlags FMF; 91 if (CGM.getLangOpts().FastMath) 92 FMF.setFast(); 93 if (CGM.getLangOpts().FiniteMathOnly) { 94 FMF.setNoNaNs(); 95 FMF.setNoInfs(); 96 } 97 if (CGM.getCodeGenOpts().NoNaNsFPMath) { 98 FMF.setNoNaNs(); 99 } 100 if (CGM.getCodeGenOpts().NoSignedZeros) { 101 FMF.setNoSignedZeros(); 102 } 103 if (CGM.getCodeGenOpts().ReciprocalMath) { 104 FMF.setAllowReciprocal(); 105 } 106 if (CGM.getCodeGenOpts().Reassociate) { 107 FMF.setAllowReassoc(); 108 } 109 Builder.setFastMathFlags(FMF); 110 } 111 112 CodeGenFunction::~CodeGenFunction() { 113 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 114 115 // If there are any unclaimed block infos, go ahead and destroy them 116 // now. This can happen if IR-gen gets clever and skips evaluating 117 // something. 118 if (FirstBlockInfo) 119 destroyBlockInfos(FirstBlockInfo); 120 121 if (getLangOpts().OpenMP && CurFn) 122 CGM.getOpenMPRuntime().functionFinished(*this); 123 } 124 125 CharUnits CodeGenFunction::getNaturalPointeeTypeAlignment(QualType T, 126 LValueBaseInfo *BaseInfo, 127 TBAAAccessInfo *TBAAInfo) { 128 return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo, 129 /* forPointeeType= */ true); 130 } 131 132 CharUnits CodeGenFunction::getNaturalTypeAlignment(QualType T, 133 LValueBaseInfo *BaseInfo, 134 TBAAAccessInfo *TBAAInfo, 135 bool forPointeeType) { 136 if (TBAAInfo) 137 *TBAAInfo = CGM.getTBAAAccessInfo(T); 138 139 // Honor alignment typedef attributes even on incomplete types. 140 // We also honor them straight for C++ class types, even as pointees; 141 // there's an expressivity gap here. 142 if (auto TT = T->getAs<TypedefType>()) { 143 if (auto Align = TT->getDecl()->getMaxAlignment()) { 144 if (BaseInfo) 145 *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType); 146 return getContext().toCharUnitsFromBits(Align); 147 } 148 } 149 150 if (BaseInfo) 151 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 152 153 CharUnits Alignment; 154 if (T->isIncompleteType()) { 155 Alignment = CharUnits::One(); // Shouldn't be used, but pessimistic is best. 156 } else { 157 // For C++ class pointees, we don't know whether we're pointing at a 158 // base or a complete object, so we generally need to use the 159 // non-virtual alignment. 160 const CXXRecordDecl *RD; 161 if (forPointeeType && (RD = T->getAsCXXRecordDecl())) { 162 Alignment = CGM.getClassPointerAlignment(RD); 163 } else { 164 Alignment = getContext().getTypeAlignInChars(T); 165 if (T.getQualifiers().hasUnaligned()) 166 Alignment = CharUnits::One(); 167 } 168 169 // Cap to the global maximum type alignment unless the alignment 170 // was somehow explicit on the type. 171 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 172 if (Alignment.getQuantity() > MaxAlign && 173 !getContext().isAlignmentRequired(T)) 174 Alignment = CharUnits::fromQuantity(MaxAlign); 175 } 176 } 177 return Alignment; 178 } 179 180 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { 181 LValueBaseInfo BaseInfo; 182 TBAAAccessInfo TBAAInfo; 183 CharUnits Alignment = getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo); 184 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), BaseInfo, 185 TBAAInfo); 186 } 187 188 /// Given a value of type T* that may not be to a complete object, 189 /// construct an l-value with the natural pointee alignment of T. 190 LValue 191 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) { 192 LValueBaseInfo BaseInfo; 193 TBAAAccessInfo TBAAInfo; 194 CharUnits Align = getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo, 195 /* forPointeeType= */ true); 196 return MakeAddrLValue(Address(V, Align), T, BaseInfo, TBAAInfo); 197 } 198 199 200 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 201 return CGM.getTypes().ConvertTypeForMem(T); 202 } 203 204 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 205 return CGM.getTypes().ConvertType(T); 206 } 207 208 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 209 type = type.getCanonicalType(); 210 while (true) { 211 switch (type->getTypeClass()) { 212 #define TYPE(name, parent) 213 #define ABSTRACT_TYPE(name, parent) 214 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 215 #define DEPENDENT_TYPE(name, parent) case Type::name: 216 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 217 #include "clang/AST/TypeNodes.def" 218 llvm_unreachable("non-canonical or dependent type in IR-generation"); 219 220 case Type::Auto: 221 case Type::DeducedTemplateSpecialization: 222 llvm_unreachable("undeduced type in IR-generation"); 223 224 // Various scalar types. 225 case Type::Builtin: 226 case Type::Pointer: 227 case Type::BlockPointer: 228 case Type::LValueReference: 229 case Type::RValueReference: 230 case Type::MemberPointer: 231 case Type::Vector: 232 case Type::ExtVector: 233 case Type::FunctionProto: 234 case Type::FunctionNoProto: 235 case Type::Enum: 236 case Type::ObjCObjectPointer: 237 case Type::Pipe: 238 return TEK_Scalar; 239 240 // Complexes. 241 case Type::Complex: 242 return TEK_Complex; 243 244 // Arrays, records, and Objective-C objects. 245 case Type::ConstantArray: 246 case Type::IncompleteArray: 247 case Type::VariableArray: 248 case Type::Record: 249 case Type::ObjCObject: 250 case Type::ObjCInterface: 251 return TEK_Aggregate; 252 253 // We operate on atomic values according to their underlying type. 254 case Type::Atomic: 255 type = cast<AtomicType>(type)->getValueType(); 256 continue; 257 } 258 llvm_unreachable("unknown type kind!"); 259 } 260 } 261 262 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() { 263 // For cleanliness, we try to avoid emitting the return block for 264 // simple cases. 265 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 266 267 if (CurBB) { 268 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 269 270 // We have a valid insert point, reuse it if it is empty or there are no 271 // explicit jumps to the return block. 272 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 273 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 274 delete ReturnBlock.getBlock(); 275 } else 276 EmitBlock(ReturnBlock.getBlock()); 277 return llvm::DebugLoc(); 278 } 279 280 // Otherwise, if the return block is the target of a single direct 281 // branch then we can just put the code in that block instead. This 282 // cleans up functions which started with a unified return block. 283 if (ReturnBlock.getBlock()->hasOneUse()) { 284 llvm::BranchInst *BI = 285 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin()); 286 if (BI && BI->isUnconditional() && 287 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 288 // Record/return the DebugLoc of the simple 'return' expression to be used 289 // later by the actual 'ret' instruction. 290 llvm::DebugLoc Loc = BI->getDebugLoc(); 291 Builder.SetInsertPoint(BI->getParent()); 292 BI->eraseFromParent(); 293 delete ReturnBlock.getBlock(); 294 return Loc; 295 } 296 } 297 298 // FIXME: We are at an unreachable point, there is no reason to emit the block 299 // unless it has uses. However, we still need a place to put the debug 300 // region.end for now. 301 302 EmitBlock(ReturnBlock.getBlock()); 303 return llvm::DebugLoc(); 304 } 305 306 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 307 if (!BB) return; 308 if (!BB->use_empty()) 309 return CGF.CurFn->getBasicBlockList().push_back(BB); 310 delete BB; 311 } 312 313 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 314 assert(BreakContinueStack.empty() && 315 "mismatched push/pop in break/continue stack!"); 316 317 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 318 && NumSimpleReturnExprs == NumReturnExprs 319 && ReturnBlock.getBlock()->use_empty(); 320 // Usually the return expression is evaluated before the cleanup 321 // code. If the function contains only a simple return statement, 322 // such as a constant, the location before the cleanup code becomes 323 // the last useful breakpoint in the function, because the simple 324 // return expression will be evaluated after the cleanup code. To be 325 // safe, set the debug location for cleanup code to the location of 326 // the return statement. Otherwise the cleanup code should be at the 327 // end of the function's lexical scope. 328 // 329 // If there are multiple branches to the return block, the branch 330 // instructions will get the location of the return statements and 331 // all will be fine. 332 if (CGDebugInfo *DI = getDebugInfo()) { 333 if (OnlySimpleReturnStmts) 334 DI->EmitLocation(Builder, LastStopPoint); 335 else 336 DI->EmitLocation(Builder, EndLoc); 337 } 338 339 // Pop any cleanups that might have been associated with the 340 // parameters. Do this in whatever block we're currently in; it's 341 // important to do this before we enter the return block or return 342 // edges will be *really* confused. 343 bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth; 344 bool HasOnlyLifetimeMarkers = 345 HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth); 346 bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers; 347 if (HasCleanups) { 348 // Make sure the line table doesn't jump back into the body for 349 // the ret after it's been at EndLoc. 350 if (CGDebugInfo *DI = getDebugInfo()) 351 if (OnlySimpleReturnStmts) 352 DI->EmitLocation(Builder, EndLoc); 353 354 PopCleanupBlocks(PrologueCleanupDepth); 355 } 356 357 // Emit function epilog (to return). 358 llvm::DebugLoc Loc = EmitReturnBlock(); 359 360 if (ShouldInstrumentFunction()) { 361 if (CGM.getCodeGenOpts().InstrumentFunctions) 362 CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit"); 363 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 364 CurFn->addFnAttr("instrument-function-exit-inlined", 365 "__cyg_profile_func_exit"); 366 } 367 368 // Emit debug descriptor for function end. 369 if (CGDebugInfo *DI = getDebugInfo()) 370 DI->EmitFunctionEnd(Builder, CurFn); 371 372 // Reset the debug location to that of the simple 'return' expression, if any 373 // rather than that of the end of the function's scope '}'. 374 ApplyDebugLocation AL(*this, Loc); 375 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 376 EmitEndEHSpec(CurCodeDecl); 377 378 assert(EHStack.empty() && 379 "did not remove all scopes from cleanup stack!"); 380 381 // If someone did an indirect goto, emit the indirect goto block at the end of 382 // the function. 383 if (IndirectBranch) { 384 EmitBlock(IndirectBranch->getParent()); 385 Builder.ClearInsertionPoint(); 386 } 387 388 // If some of our locals escaped, insert a call to llvm.localescape in the 389 // entry block. 390 if (!EscapedLocals.empty()) { 391 // Invert the map from local to index into a simple vector. There should be 392 // no holes. 393 SmallVector<llvm::Value *, 4> EscapeArgs; 394 EscapeArgs.resize(EscapedLocals.size()); 395 for (auto &Pair : EscapedLocals) 396 EscapeArgs[Pair.second] = Pair.first; 397 llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration( 398 &CGM.getModule(), llvm::Intrinsic::localescape); 399 CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs); 400 } 401 402 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 403 llvm::Instruction *Ptr = AllocaInsertPt; 404 AllocaInsertPt = nullptr; 405 Ptr->eraseFromParent(); 406 407 // If someone took the address of a label but never did an indirect goto, we 408 // made a zero entry PHI node, which is illegal, zap it now. 409 if (IndirectBranch) { 410 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 411 if (PN->getNumIncomingValues() == 0) { 412 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 413 PN->eraseFromParent(); 414 } 415 } 416 417 EmitIfUsed(*this, EHResumeBlock); 418 EmitIfUsed(*this, TerminateLandingPad); 419 EmitIfUsed(*this, TerminateHandler); 420 EmitIfUsed(*this, UnreachableBlock); 421 422 for (const auto &FuncletAndParent : TerminateFunclets) 423 EmitIfUsed(*this, FuncletAndParent.second); 424 425 if (CGM.getCodeGenOpts().EmitDeclMetadata) 426 EmitDeclMetadata(); 427 428 for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator 429 I = DeferredReplacements.begin(), 430 E = DeferredReplacements.end(); 431 I != E; ++I) { 432 I->first->replaceAllUsesWith(I->second); 433 I->first->eraseFromParent(); 434 } 435 436 // Eliminate CleanupDestSlot alloca by replacing it with SSA values and 437 // PHIs if the current function is a coroutine. We don't do it for all 438 // functions as it may result in slight increase in numbers of instructions 439 // if compiled with no optimizations. We do it for coroutine as the lifetime 440 // of CleanupDestSlot alloca make correct coroutine frame building very 441 // difficult. 442 if (NormalCleanupDest && isCoroutine()) { 443 llvm::DominatorTree DT(*CurFn); 444 llvm::PromoteMemToReg(NormalCleanupDest, DT); 445 NormalCleanupDest = nullptr; 446 } 447 } 448 449 /// ShouldInstrumentFunction - Return true if the current function should be 450 /// instrumented with __cyg_profile_func_* calls 451 bool CodeGenFunction::ShouldInstrumentFunction() { 452 if (!CGM.getCodeGenOpts().InstrumentFunctions && 453 !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining && 454 !CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 455 return false; 456 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 457 return false; 458 return true; 459 } 460 461 /// ShouldXRayInstrument - Return true if the current function should be 462 /// instrumented with XRay nop sleds. 463 bool CodeGenFunction::ShouldXRayInstrumentFunction() const { 464 return CGM.getCodeGenOpts().XRayInstrumentFunctions; 465 } 466 467 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to 468 /// the __xray_customevent(...) builin calls, when doing XRay instrumentation. 469 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const { 470 return CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents; 471 } 472 473 llvm::Constant * 474 CodeGenFunction::EncodeAddrForUseInPrologue(llvm::Function *F, 475 llvm::Constant *Addr) { 476 // Addresses stored in prologue data can't require run-time fixups and must 477 // be PC-relative. Run-time fixups are undesirable because they necessitate 478 // writable text segments, which are unsafe. And absolute addresses are 479 // undesirable because they break PIE mode. 480 481 // Add a layer of indirection through a private global. Taking its address 482 // won't result in a run-time fixup, even if Addr has linkonce_odr linkage. 483 auto *GV = new llvm::GlobalVariable(CGM.getModule(), Addr->getType(), 484 /*isConstant=*/true, 485 llvm::GlobalValue::PrivateLinkage, Addr); 486 487 // Create a PC-relative address. 488 auto *GOTAsInt = llvm::ConstantExpr::getPtrToInt(GV, IntPtrTy); 489 auto *FuncAsInt = llvm::ConstantExpr::getPtrToInt(F, IntPtrTy); 490 auto *PCRelAsInt = llvm::ConstantExpr::getSub(GOTAsInt, FuncAsInt); 491 return (IntPtrTy == Int32Ty) 492 ? PCRelAsInt 493 : llvm::ConstantExpr::getTrunc(PCRelAsInt, Int32Ty); 494 } 495 496 llvm::Value * 497 CodeGenFunction::DecodeAddrUsedInPrologue(llvm::Value *F, 498 llvm::Value *EncodedAddr) { 499 // Reconstruct the address of the global. 500 auto *PCRelAsInt = Builder.CreateSExt(EncodedAddr, IntPtrTy); 501 auto *FuncAsInt = Builder.CreatePtrToInt(F, IntPtrTy, "func_addr.int"); 502 auto *GOTAsInt = Builder.CreateAdd(PCRelAsInt, FuncAsInt, "global_addr.int"); 503 auto *GOTAddr = Builder.CreateIntToPtr(GOTAsInt, Int8PtrPtrTy, "global_addr"); 504 505 // Load the original pointer through the global. 506 return Builder.CreateLoad(Address(GOTAddr, getPointerAlign()), 507 "decoded_addr"); 508 } 509 510 static void removeImageAccessQualifier(std::string& TyName) { 511 std::string ReadOnlyQual("__read_only"); 512 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 513 if (ReadOnlyPos != std::string::npos) 514 // "+ 1" for the space after access qualifier. 515 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 516 else { 517 std::string WriteOnlyQual("__write_only"); 518 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 519 if (WriteOnlyPos != std::string::npos) 520 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 521 else { 522 std::string ReadWriteQual("__read_write"); 523 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 524 if (ReadWritePos != std::string::npos) 525 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 526 } 527 } 528 } 529 530 // Returns the address space id that should be produced to the 531 // kernel_arg_addr_space metadata. This is always fixed to the ids 532 // as specified in the SPIR 2.0 specification in order to differentiate 533 // for example in clGetKernelArgInfo() implementation between the address 534 // spaces with targets without unique mapping to the OpenCL address spaces 535 // (basically all single AS CPUs). 536 static unsigned ArgInfoAddressSpace(LangAS AS) { 537 switch (AS) { 538 case LangAS::opencl_global: return 1; 539 case LangAS::opencl_constant: return 2; 540 case LangAS::opencl_local: return 3; 541 case LangAS::opencl_generic: return 4; // Not in SPIR 2.0 specs. 542 default: 543 return 0; // Assume private. 544 } 545 } 546 547 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument 548 // information in the program executable. The argument information stored 549 // includes the argument name, its type, the address and access qualifiers used. 550 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn, 551 CodeGenModule &CGM, llvm::LLVMContext &Context, 552 CGBuilderTy &Builder, ASTContext &ASTCtx) { 553 // Create MDNodes that represent the kernel arg metadata. 554 // Each MDNode is a list in the form of "key", N number of values which is 555 // the same number of values as their are kernel arguments. 556 557 const PrintingPolicy &Policy = ASTCtx.getPrintingPolicy(); 558 559 // MDNode for the kernel argument address space qualifiers. 560 SmallVector<llvm::Metadata *, 8> addressQuals; 561 562 // MDNode for the kernel argument access qualifiers (images only). 563 SmallVector<llvm::Metadata *, 8> accessQuals; 564 565 // MDNode for the kernel argument type names. 566 SmallVector<llvm::Metadata *, 8> argTypeNames; 567 568 // MDNode for the kernel argument base type names. 569 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 570 571 // MDNode for the kernel argument type qualifiers. 572 SmallVector<llvm::Metadata *, 8> argTypeQuals; 573 574 // MDNode for the kernel argument names. 575 SmallVector<llvm::Metadata *, 8> argNames; 576 577 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 578 const ParmVarDecl *parm = FD->getParamDecl(i); 579 QualType ty = parm->getType(); 580 std::string typeQuals; 581 582 if (ty->isPointerType()) { 583 QualType pointeeTy = ty->getPointeeType(); 584 585 // Get address qualifier. 586 addressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32( 587 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 588 589 // Get argument type name. 590 std::string typeName = 591 pointeeTy.getUnqualifiedType().getAsString(Policy) + "*"; 592 593 // Turn "unsigned type" to "utype" 594 std::string::size_type pos = typeName.find("unsigned"); 595 if (pointeeTy.isCanonical() && pos != std::string::npos) 596 typeName.erase(pos+1, 8); 597 598 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 599 600 std::string baseTypeName = 601 pointeeTy.getUnqualifiedType().getCanonicalType().getAsString( 602 Policy) + 603 "*"; 604 605 // Turn "unsigned type" to "utype" 606 pos = baseTypeName.find("unsigned"); 607 if (pos != std::string::npos) 608 baseTypeName.erase(pos+1, 8); 609 610 argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName)); 611 612 // Get argument type qualifiers: 613 if (ty.isRestrictQualified()) 614 typeQuals = "restrict"; 615 if (pointeeTy.isConstQualified() || 616 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 617 typeQuals += typeQuals.empty() ? "const" : " const"; 618 if (pointeeTy.isVolatileQualified()) 619 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 620 } else { 621 uint32_t AddrSpc = 0; 622 bool isPipe = ty->isPipeType(); 623 if (ty->isImageType() || isPipe) 624 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 625 626 addressQuals.push_back( 627 llvm::ConstantAsMetadata::get(Builder.getInt32(AddrSpc))); 628 629 // Get argument type name. 630 std::string typeName; 631 if (isPipe) 632 typeName = ty.getCanonicalType()->getAs<PipeType>()->getElementType() 633 .getAsString(Policy); 634 else 635 typeName = ty.getUnqualifiedType().getAsString(Policy); 636 637 // Turn "unsigned type" to "utype" 638 std::string::size_type pos = typeName.find("unsigned"); 639 if (ty.isCanonical() && pos != std::string::npos) 640 typeName.erase(pos+1, 8); 641 642 std::string baseTypeName; 643 if (isPipe) 644 baseTypeName = ty.getCanonicalType()->getAs<PipeType>() 645 ->getElementType().getCanonicalType() 646 .getAsString(Policy); 647 else 648 baseTypeName = 649 ty.getUnqualifiedType().getCanonicalType().getAsString(Policy); 650 651 // Remove access qualifiers on images 652 // (as they are inseparable from type in clang implementation, 653 // but OpenCL spec provides a special query to get access qualifier 654 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 655 if (ty->isImageType()) { 656 removeImageAccessQualifier(typeName); 657 removeImageAccessQualifier(baseTypeName); 658 } 659 660 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 661 662 // Turn "unsigned type" to "utype" 663 pos = baseTypeName.find("unsigned"); 664 if (pos != std::string::npos) 665 baseTypeName.erase(pos+1, 8); 666 667 argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName)); 668 669 if (isPipe) 670 typeQuals = "pipe"; 671 } 672 673 argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals)); 674 675 // Get image and pipe access qualifier: 676 if (ty->isImageType()|| ty->isPipeType()) { 677 const Decl *PDecl = parm; 678 if (auto *TD = dyn_cast<TypedefType>(ty)) 679 PDecl = TD->getDecl(); 680 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>(); 681 if (A && A->isWriteOnly()) 682 accessQuals.push_back(llvm::MDString::get(Context, "write_only")); 683 else if (A && A->isReadWrite()) 684 accessQuals.push_back(llvm::MDString::get(Context, "read_write")); 685 else 686 accessQuals.push_back(llvm::MDString::get(Context, "read_only")); 687 } else 688 accessQuals.push_back(llvm::MDString::get(Context, "none")); 689 690 // Get argument name. 691 argNames.push_back(llvm::MDString::get(Context, parm->getName())); 692 } 693 694 Fn->setMetadata("kernel_arg_addr_space", 695 llvm::MDNode::get(Context, addressQuals)); 696 Fn->setMetadata("kernel_arg_access_qual", 697 llvm::MDNode::get(Context, accessQuals)); 698 Fn->setMetadata("kernel_arg_type", 699 llvm::MDNode::get(Context, argTypeNames)); 700 Fn->setMetadata("kernel_arg_base_type", 701 llvm::MDNode::get(Context, argBaseTypeNames)); 702 Fn->setMetadata("kernel_arg_type_qual", 703 llvm::MDNode::get(Context, argTypeQuals)); 704 if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 705 Fn->setMetadata("kernel_arg_name", 706 llvm::MDNode::get(Context, argNames)); 707 } 708 709 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 710 llvm::Function *Fn) 711 { 712 if (!FD->hasAttr<OpenCLKernelAttr>()) 713 return; 714 715 llvm::LLVMContext &Context = getLLVMContext(); 716 717 GenOpenCLArgMetadata(FD, Fn, CGM, Context, Builder, getContext()); 718 719 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { 720 QualType HintQTy = A->getTypeHint(); 721 const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>(); 722 bool IsSignedInteger = 723 HintQTy->isSignedIntegerType() || 724 (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType()); 725 llvm::Metadata *AttrMDArgs[] = { 726 llvm::ConstantAsMetadata::get(llvm::UndefValue::get( 727 CGM.getTypes().ConvertType(A->getTypeHint()))), 728 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 729 llvm::IntegerType::get(Context, 32), 730 llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))}; 731 Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs)); 732 } 733 734 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { 735 llvm::Metadata *AttrMDArgs[] = { 736 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 737 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 738 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 739 Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs)); 740 } 741 742 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { 743 llvm::Metadata *AttrMDArgs[] = { 744 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 745 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 746 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 747 Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs)); 748 } 749 750 if (const OpenCLIntelReqdSubGroupSizeAttr *A = 751 FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) { 752 llvm::Metadata *AttrMDArgs[] = { 753 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))}; 754 Fn->setMetadata("intel_reqd_sub_group_size", 755 llvm::MDNode::get(Context, AttrMDArgs)); 756 } 757 } 758 759 /// Determine whether the function F ends with a return stmt. 760 static bool endsWithReturn(const Decl* F) { 761 const Stmt *Body = nullptr; 762 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F)) 763 Body = FD->getBody(); 764 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F)) 765 Body = OMD->getBody(); 766 767 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 768 auto LastStmt = CS->body_rbegin(); 769 if (LastStmt != CS->body_rend()) 770 return isa<ReturnStmt>(*LastStmt); 771 } 772 return false; 773 } 774 775 static void markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) { 776 Fn->addFnAttr("sanitize_thread_no_checking_at_run_time"); 777 Fn->removeFnAttr(llvm::Attribute::SanitizeThread); 778 } 779 780 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) { 781 auto *MD = dyn_cast_or_null<CXXMethodDecl>(D); 782 if (!MD || !MD->getDeclName().getAsIdentifierInfo() || 783 !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") || 784 (MD->getNumParams() != 1 && MD->getNumParams() != 2)) 785 return false; 786 787 if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType()) 788 return false; 789 790 if (MD->getNumParams() == 2) { 791 auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>(); 792 if (!PT || !PT->isVoidPointerType() || 793 !PT->getPointeeType().isConstQualified()) 794 return false; 795 } 796 797 return true; 798 } 799 800 /// Return the UBSan prologue signature for \p FD if one is available. 801 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM, 802 const FunctionDecl *FD) { 803 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 804 if (!MD->isStatic()) 805 return nullptr; 806 return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM); 807 } 808 809 void CodeGenFunction::StartFunction(GlobalDecl GD, 810 QualType RetTy, 811 llvm::Function *Fn, 812 const CGFunctionInfo &FnInfo, 813 const FunctionArgList &Args, 814 SourceLocation Loc, 815 SourceLocation StartLoc) { 816 assert(!CurFn && 817 "Do not use a CodeGenFunction object for more than one function"); 818 819 const Decl *D = GD.getDecl(); 820 821 DidCallStackSave = false; 822 CurCodeDecl = D; 823 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 824 if (FD->usesSEHTry()) 825 CurSEHParent = FD; 826 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr); 827 FnRetTy = RetTy; 828 CurFn = Fn; 829 CurFnInfo = &FnInfo; 830 assert(CurFn->isDeclaration() && "Function already has body?"); 831 832 // If this function has been blacklisted for any of the enabled sanitizers, 833 // disable the sanitizer for the function. 834 do { 835 #define SANITIZER(NAME, ID) \ 836 if (SanOpts.empty()) \ 837 break; \ 838 if (SanOpts.has(SanitizerKind::ID)) \ 839 if (CGM.isInSanitizerBlacklist(SanitizerKind::ID, Fn, Loc)) \ 840 SanOpts.set(SanitizerKind::ID, false); 841 842 #include "clang/Basic/Sanitizers.def" 843 #undef SANITIZER 844 } while (0); 845 846 if (D) { 847 // Apply the no_sanitize* attributes to SanOpts. 848 for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) 849 SanOpts.Mask &= ~Attr->getMask(); 850 } 851 852 // Apply sanitizer attributes to the function. 853 if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress)) 854 Fn->addFnAttr(llvm::Attribute::SanitizeAddress); 855 if (SanOpts.hasOneOf(SanitizerKind::HWAddress)) 856 Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress); 857 if (SanOpts.has(SanitizerKind::Thread)) 858 Fn->addFnAttr(llvm::Attribute::SanitizeThread); 859 if (SanOpts.has(SanitizerKind::Memory)) 860 Fn->addFnAttr(llvm::Attribute::SanitizeMemory); 861 if (SanOpts.has(SanitizerKind::SafeStack)) 862 Fn->addFnAttr(llvm::Attribute::SafeStack); 863 864 // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize, 865 // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time. 866 if (SanOpts.has(SanitizerKind::Thread)) { 867 if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) { 868 IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0); 869 if (OMD->getMethodFamily() == OMF_dealloc || 870 OMD->getMethodFamily() == OMF_initialize || 871 (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) { 872 markAsIgnoreThreadCheckingAtRuntime(Fn); 873 } 874 } else if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 875 IdentifierInfo *II = FD->getIdentifier(); 876 if (II && II->isStr("__destroy_helper_block_")) 877 markAsIgnoreThreadCheckingAtRuntime(Fn); 878 } 879 } 880 881 // Ignore unrelated casts in STL allocate() since the allocator must cast 882 // from void* to T* before object initialization completes. Don't match on the 883 // namespace because not all allocators are in std:: 884 if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 885 if (matchesStlAllocatorFn(D, getContext())) 886 SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast; 887 } 888 889 // Apply xray attributes to the function (as a string, for now) 890 bool InstrumentXray = ShouldXRayInstrumentFunction(); 891 if (D && InstrumentXray) { 892 if (const auto *XRayAttr = D->getAttr<XRayInstrumentAttr>()) { 893 if (XRayAttr->alwaysXRayInstrument()) 894 Fn->addFnAttr("function-instrument", "xray-always"); 895 if (XRayAttr->neverXRayInstrument()) 896 Fn->addFnAttr("function-instrument", "xray-never"); 897 if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>()) { 898 Fn->addFnAttr("xray-log-args", 899 llvm::utostr(LogArgs->getArgumentCount())); 900 } 901 } else { 902 if (!CGM.imbueXRayAttrs(Fn, Loc)) 903 Fn->addFnAttr( 904 "xray-instruction-threshold", 905 llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold)); 906 } 907 } 908 909 // Add no-jump-tables value. 910 Fn->addFnAttr("no-jump-tables", 911 llvm::toStringRef(CGM.getCodeGenOpts().NoUseJumpTables)); 912 913 // Add profile-sample-accurate value. 914 if (CGM.getCodeGenOpts().ProfileSampleAccurate) 915 Fn->addFnAttr("profile-sample-accurate"); 916 917 if (getLangOpts().OpenCL) { 918 // Add metadata for a kernel function. 919 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 920 EmitOpenCLKernelMetadata(FD, Fn); 921 } 922 923 // If we are checking function types, emit a function type signature as 924 // prologue data. 925 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) { 926 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 927 if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) { 928 // Remove any (C++17) exception specifications, to allow calling e.g. a 929 // noexcept function through a non-noexcept pointer. 930 auto ProtoTy = 931 getContext().getFunctionTypeWithExceptionSpec(FD->getType(), 932 EST_None); 933 llvm::Constant *FTRTTIConst = 934 CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true); 935 llvm::Constant *FTRTTIConstEncoded = 936 EncodeAddrForUseInPrologue(Fn, FTRTTIConst); 937 llvm::Constant *PrologueStructElems[] = {PrologueSig, 938 FTRTTIConstEncoded}; 939 llvm::Constant *PrologueStructConst = 940 llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true); 941 Fn->setPrologueData(PrologueStructConst); 942 } 943 } 944 } 945 946 // If we're checking nullability, we need to know whether we can check the 947 // return value. Initialize the flag to 'true' and refine it in EmitParmDecl. 948 if (SanOpts.has(SanitizerKind::NullabilityReturn)) { 949 auto Nullability = FnRetTy->getNullability(getContext()); 950 if (Nullability && *Nullability == NullabilityKind::NonNull) { 951 if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && 952 CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>())) 953 RetValNullabilityPrecondition = 954 llvm::ConstantInt::getTrue(getLLVMContext()); 955 } 956 } 957 958 // If we're in C++ mode and the function name is "main", it is guaranteed 959 // to be norecurse by the standard (3.6.1.3 "The function main shall not be 960 // used within a program"). 961 if (getLangOpts().CPlusPlus) 962 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 963 if (FD->isMain()) 964 Fn->addFnAttr(llvm::Attribute::NoRecurse); 965 966 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 967 968 // Create a marker to make it easy to insert allocas into the entryblock 969 // later. Don't create this with the builder, because we don't want it 970 // folded. 971 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 972 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB); 973 974 ReturnBlock = getJumpDestInCurrentScope("return"); 975 976 Builder.SetInsertPoint(EntryBB); 977 978 // If we're checking the return value, allocate space for a pointer to a 979 // precise source location of the checked return statement. 980 if (requiresReturnValueCheck()) { 981 ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr"); 982 InitTempAlloca(ReturnLocation, llvm::ConstantPointerNull::get(Int8PtrTy)); 983 } 984 985 // Emit subprogram debug descriptor. 986 if (CGDebugInfo *DI = getDebugInfo()) { 987 // Reconstruct the type from the argument list so that implicit parameters, 988 // such as 'this' and 'vtt', show up in the debug info. Preserve the calling 989 // convention. 990 CallingConv CC = CallingConv::CC_C; 991 if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 992 if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>()) 993 CC = SrcFnTy->getCallConv(); 994 SmallVector<QualType, 16> ArgTypes; 995 for (const VarDecl *VD : Args) 996 ArgTypes.push_back(VD->getType()); 997 QualType FnType = getContext().getFunctionType( 998 RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC)); 999 DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, Builder); 1000 } 1001 1002 if (ShouldInstrumentFunction()) { 1003 if (CGM.getCodeGenOpts().InstrumentFunctions) 1004 CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter"); 1005 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 1006 CurFn->addFnAttr("instrument-function-entry-inlined", 1007 "__cyg_profile_func_enter"); 1008 if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 1009 CurFn->addFnAttr("instrument-function-entry-inlined", 1010 "__cyg_profile_func_enter_bare"); 1011 } 1012 1013 // Since emitting the mcount call here impacts optimizations such as function 1014 // inlining, we just add an attribute to insert a mcount call in backend. 1015 // The attribute "counting-function" is set to mcount function name which is 1016 // architecture dependent. 1017 if (CGM.getCodeGenOpts().InstrumentForProfiling) { 1018 if (CGM.getCodeGenOpts().CallFEntry) 1019 Fn->addFnAttr("fentry-call", "true"); 1020 else { 1021 if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) { 1022 Fn->addFnAttr("instrument-function-entry-inlined", 1023 getTarget().getMCountName()); 1024 } 1025 } 1026 } 1027 1028 if (RetTy->isVoidType()) { 1029 // Void type; nothing to return. 1030 ReturnValue = Address::invalid(); 1031 1032 // Count the implicit return. 1033 if (!endsWithReturn(D)) 1034 ++NumReturnExprs; 1035 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect && 1036 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 1037 // Indirect aggregate return; emit returned value directly into sret slot. 1038 // This reduces code size, and affects correctness in C++. 1039 auto AI = CurFn->arg_begin(); 1040 if (CurFnInfo->getReturnInfo().isSRetAfterThis()) 1041 ++AI; 1042 ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign()); 1043 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && 1044 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 1045 // Load the sret pointer from the argument struct and return into that. 1046 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); 1047 llvm::Function::arg_iterator EI = CurFn->arg_end(); 1048 --EI; 1049 llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx); 1050 Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result"); 1051 ReturnValue = Address(Addr, getNaturalTypeAlignment(RetTy)); 1052 } else { 1053 ReturnValue = CreateIRTemp(RetTy, "retval"); 1054 1055 // Tell the epilog emitter to autorelease the result. We do this 1056 // now so that various specialized functions can suppress it 1057 // during their IR-generation. 1058 if (getLangOpts().ObjCAutoRefCount && 1059 !CurFnInfo->isReturnsRetained() && 1060 RetTy->isObjCRetainableType()) 1061 AutoreleaseResult = true; 1062 } 1063 1064 EmitStartEHSpec(CurCodeDecl); 1065 1066 PrologueCleanupDepth = EHStack.stable_begin(); 1067 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 1068 1069 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 1070 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 1071 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 1072 if (MD->getParent()->isLambda() && 1073 MD->getOverloadedOperator() == OO_Call) { 1074 // We're in a lambda; figure out the captures. 1075 MD->getParent()->getCaptureFields(LambdaCaptureFields, 1076 LambdaThisCaptureField); 1077 if (LambdaThisCaptureField) { 1078 // If the lambda captures the object referred to by '*this' - either by 1079 // value or by reference, make sure CXXThisValue points to the correct 1080 // object. 1081 1082 // Get the lvalue for the field (which is a copy of the enclosing object 1083 // or contains the address of the enclosing object). 1084 LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 1085 if (!LambdaThisCaptureField->getType()->isPointerType()) { 1086 // If the enclosing object was captured by value, just use its address. 1087 CXXThisValue = ThisFieldLValue.getAddress().getPointer(); 1088 } else { 1089 // Load the lvalue pointed to by the field, since '*this' was captured 1090 // by reference. 1091 CXXThisValue = 1092 EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal(); 1093 } 1094 } 1095 for (auto *FD : MD->getParent()->fields()) { 1096 if (FD->hasCapturedVLAType()) { 1097 auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD), 1098 SourceLocation()).getScalarVal(); 1099 auto VAT = FD->getCapturedVLAType(); 1100 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 1101 } 1102 } 1103 } else { 1104 // Not in a lambda; just use 'this' from the method. 1105 // FIXME: Should we generate a new load for each use of 'this'? The 1106 // fast register allocator would be happier... 1107 CXXThisValue = CXXABIThisValue; 1108 } 1109 1110 // Check the 'this' pointer once per function, if it's available. 1111 if (CXXABIThisValue) { 1112 SanitizerSet SkippedChecks; 1113 SkippedChecks.set(SanitizerKind::ObjectSize, true); 1114 QualType ThisTy = MD->getThisType(getContext()); 1115 1116 // If this is the call operator of a lambda with no capture-default, it 1117 // may have a static invoker function, which may call this operator with 1118 // a null 'this' pointer. 1119 if (isLambdaCallOperator(MD) && 1120 cast<CXXRecordDecl>(MD->getParent())->getLambdaCaptureDefault() == 1121 LCD_None) 1122 SkippedChecks.set(SanitizerKind::Null, true); 1123 1124 EmitTypeCheck(isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall 1125 : TCK_MemberCall, 1126 Loc, CXXABIThisValue, ThisTy, 1127 getContext().getTypeAlignInChars(ThisTy->getPointeeType()), 1128 SkippedChecks); 1129 } 1130 } 1131 1132 // If any of the arguments have a variably modified type, make sure to 1133 // emit the type size. 1134 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 1135 i != e; ++i) { 1136 const VarDecl *VD = *i; 1137 1138 // Dig out the type as written from ParmVarDecls; it's unclear whether 1139 // the standard (C99 6.9.1p10) requires this, but we're following the 1140 // precedent set by gcc. 1141 QualType Ty; 1142 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 1143 Ty = PVD->getOriginalType(); 1144 else 1145 Ty = VD->getType(); 1146 1147 if (Ty->isVariablyModifiedType()) 1148 EmitVariablyModifiedType(Ty); 1149 } 1150 // Emit a location at the end of the prologue. 1151 if (CGDebugInfo *DI = getDebugInfo()) 1152 DI->EmitLocation(Builder, StartLoc); 1153 } 1154 1155 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args, 1156 const Stmt *Body) { 1157 incrementProfileCounter(Body); 1158 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 1159 EmitCompoundStmtWithoutScope(*S); 1160 else 1161 EmitStmt(Body); 1162 } 1163 1164 /// When instrumenting to collect profile data, the counts for some blocks 1165 /// such as switch cases need to not include the fall-through counts, so 1166 /// emit a branch around the instrumentation code. When not instrumenting, 1167 /// this just calls EmitBlock(). 1168 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, 1169 const Stmt *S) { 1170 llvm::BasicBlock *SkipCountBB = nullptr; 1171 if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) { 1172 // When instrumenting for profiling, the fallthrough to certain 1173 // statements needs to skip over the instrumentation code so that we 1174 // get an accurate count. 1175 SkipCountBB = createBasicBlock("skipcount"); 1176 EmitBranch(SkipCountBB); 1177 } 1178 EmitBlock(BB); 1179 uint64_t CurrentCount = getCurrentProfileCount(); 1180 incrementProfileCounter(S); 1181 setCurrentProfileCount(getCurrentProfileCount() + CurrentCount); 1182 if (SkipCountBB) 1183 EmitBlock(SkipCountBB); 1184 } 1185 1186 /// Tries to mark the given function nounwind based on the 1187 /// non-existence of any throwing calls within it. We believe this is 1188 /// lightweight enough to do at -O0. 1189 static void TryMarkNoThrow(llvm::Function *F) { 1190 // LLVM treats 'nounwind' on a function as part of the type, so we 1191 // can't do this on functions that can be overwritten. 1192 if (F->isInterposable()) return; 1193 1194 for (llvm::BasicBlock &BB : *F) 1195 for (llvm::Instruction &I : BB) 1196 if (I.mayThrow()) 1197 return; 1198 1199 F->setDoesNotThrow(); 1200 } 1201 1202 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD, 1203 FunctionArgList &Args) { 1204 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1205 QualType ResTy = FD->getReturnType(); 1206 1207 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 1208 if (MD && MD->isInstance()) { 1209 if (CGM.getCXXABI().HasThisReturn(GD)) 1210 ResTy = MD->getThisType(getContext()); 1211 else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) 1212 ResTy = CGM.getContext().VoidPtrTy; 1213 CGM.getCXXABI().buildThisParam(*this, Args); 1214 } 1215 1216 // The base version of an inheriting constructor whose constructed base is a 1217 // virtual base is not passed any arguments (because it doesn't actually call 1218 // the inherited constructor). 1219 bool PassedParams = true; 1220 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 1221 if (auto Inherited = CD->getInheritedConstructor()) 1222 PassedParams = 1223 getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType()); 1224 1225 if (PassedParams) { 1226 for (auto *Param : FD->parameters()) { 1227 Args.push_back(Param); 1228 if (!Param->hasAttr<PassObjectSizeAttr>()) 1229 continue; 1230 1231 auto *Implicit = ImplicitParamDecl::Create( 1232 getContext(), Param->getDeclContext(), Param->getLocation(), 1233 /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other); 1234 SizeArguments[Param] = Implicit; 1235 Args.push_back(Implicit); 1236 } 1237 } 1238 1239 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 1240 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 1241 1242 return ResTy; 1243 } 1244 1245 static bool 1246 shouldUseUndefinedBehaviorReturnOptimization(const FunctionDecl *FD, 1247 const ASTContext &Context) { 1248 QualType T = FD->getReturnType(); 1249 // Avoid the optimization for functions that return a record type with a 1250 // trivial destructor or another trivially copyable type. 1251 if (const RecordType *RT = T.getCanonicalType()->getAs<RecordType>()) { 1252 if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1253 return !ClassDecl->hasTrivialDestructor(); 1254 } 1255 return !T.isTriviallyCopyableType(Context); 1256 } 1257 1258 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1259 const CGFunctionInfo &FnInfo) { 1260 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1261 CurGD = GD; 1262 1263 FunctionArgList Args; 1264 QualType ResTy = BuildFunctionArgList(GD, Args); 1265 1266 // Check if we should generate debug info for this function. 1267 if (FD->hasAttr<NoDebugAttr>()) 1268 DebugInfo = nullptr; // disable debug info indefinitely for this function 1269 1270 // The function might not have a body if we're generating thunks for a 1271 // function declaration. 1272 SourceRange BodyRange; 1273 if (Stmt *Body = FD->getBody()) 1274 BodyRange = Body->getSourceRange(); 1275 else 1276 BodyRange = FD->getLocation(); 1277 CurEHLocation = BodyRange.getEnd(); 1278 1279 // Use the location of the start of the function to determine where 1280 // the function definition is located. By default use the location 1281 // of the declaration as the location for the subprogram. A function 1282 // may lack a declaration in the source code if it is created by code 1283 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). 1284 SourceLocation Loc = FD->getLocation(); 1285 1286 // If this is a function specialization then use the pattern body 1287 // as the location for the function. 1288 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) 1289 if (SpecDecl->hasBody(SpecDecl)) 1290 Loc = SpecDecl->getLocation(); 1291 1292 Stmt *Body = FD->getBody(); 1293 1294 // Initialize helper which will detect jumps which can cause invalid lifetime 1295 // markers. 1296 if (Body && ShouldEmitLifetimeMarkers) 1297 Bypasses.Init(Body); 1298 1299 // Emit the standard function prologue. 1300 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin()); 1301 1302 // Generate the body of the function. 1303 PGO.assignRegionCounters(GD, CurFn); 1304 if (isa<CXXDestructorDecl>(FD)) 1305 EmitDestructorBody(Args); 1306 else if (isa<CXXConstructorDecl>(FD)) 1307 EmitConstructorBody(Args); 1308 else if (getLangOpts().CUDA && 1309 !getLangOpts().CUDAIsDevice && 1310 FD->hasAttr<CUDAGlobalAttr>()) 1311 CGM.getCUDARuntime().emitDeviceStub(*this, Args); 1312 else if (isa<CXXMethodDecl>(FD) && 1313 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 1314 // The lambda static invoker function is special, because it forwards or 1315 // clones the body of the function call operator (but is actually static). 1316 EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD)); 1317 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 1318 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 1319 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 1320 // Implicit copy-assignment gets the same special treatment as implicit 1321 // copy-constructors. 1322 emitImplicitAssignmentOperatorBody(Args); 1323 } else if (Body) { 1324 EmitFunctionBody(Args, Body); 1325 } else 1326 llvm_unreachable("no definition for emitted function"); 1327 1328 // C++11 [stmt.return]p2: 1329 // Flowing off the end of a function [...] results in undefined behavior in 1330 // a value-returning function. 1331 // C11 6.9.1p12: 1332 // If the '}' that terminates a function is reached, and the value of the 1333 // function call is used by the caller, the behavior is undefined. 1334 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock && 1335 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { 1336 bool ShouldEmitUnreachable = 1337 CGM.getCodeGenOpts().StrictReturn || 1338 shouldUseUndefinedBehaviorReturnOptimization(FD, getContext()); 1339 if (SanOpts.has(SanitizerKind::Return)) { 1340 SanitizerScope SanScope(this); 1341 llvm::Value *IsFalse = Builder.getFalse(); 1342 EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return), 1343 SanitizerHandler::MissingReturn, 1344 EmitCheckSourceLocation(FD->getLocation()), None); 1345 } else if (ShouldEmitUnreachable) { 1346 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 1347 EmitTrapCall(llvm::Intrinsic::trap); 1348 } 1349 if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) { 1350 Builder.CreateUnreachable(); 1351 Builder.ClearInsertionPoint(); 1352 } 1353 } 1354 1355 // Emit the standard function epilogue. 1356 FinishFunction(BodyRange.getEnd()); 1357 1358 // If we haven't marked the function nothrow through other means, do 1359 // a quick pass now to see if we can. 1360 if (!CurFn->doesNotThrow()) 1361 TryMarkNoThrow(CurFn); 1362 } 1363 1364 /// ContainsLabel - Return true if the statement contains a label in it. If 1365 /// this statement is not executed normally, it not containing a label means 1366 /// that we can just remove the code. 1367 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 1368 // Null statement, not a label! 1369 if (!S) return false; 1370 1371 // If this is a label, we have to emit the code, consider something like: 1372 // if (0) { ... foo: bar(); } goto foo; 1373 // 1374 // TODO: If anyone cared, we could track __label__'s, since we know that you 1375 // can't jump to one from outside their declared region. 1376 if (isa<LabelStmt>(S)) 1377 return true; 1378 1379 // If this is a case/default statement, and we haven't seen a switch, we have 1380 // to emit the code. 1381 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 1382 return true; 1383 1384 // If this is a switch statement, we want to ignore cases below it. 1385 if (isa<SwitchStmt>(S)) 1386 IgnoreCaseStmts = true; 1387 1388 // Scan subexpressions for verboten labels. 1389 for (const Stmt *SubStmt : S->children()) 1390 if (ContainsLabel(SubStmt, IgnoreCaseStmts)) 1391 return true; 1392 1393 return false; 1394 } 1395 1396 /// containsBreak - Return true if the statement contains a break out of it. 1397 /// If the statement (recursively) contains a switch or loop with a break 1398 /// inside of it, this is fine. 1399 bool CodeGenFunction::containsBreak(const Stmt *S) { 1400 // Null statement, not a label! 1401 if (!S) return false; 1402 1403 // If this is a switch or loop that defines its own break scope, then we can 1404 // include it and anything inside of it. 1405 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 1406 isa<ForStmt>(S)) 1407 return false; 1408 1409 if (isa<BreakStmt>(S)) 1410 return true; 1411 1412 // Scan subexpressions for verboten breaks. 1413 for (const Stmt *SubStmt : S->children()) 1414 if (containsBreak(SubStmt)) 1415 return true; 1416 1417 return false; 1418 } 1419 1420 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) { 1421 if (!S) return false; 1422 1423 // Some statement kinds add a scope and thus never add a decl to the current 1424 // scope. Note, this list is longer than the list of statements that might 1425 // have an unscoped decl nested within them, but this way is conservatively 1426 // correct even if more statement kinds are added. 1427 if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) || 1428 isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) || 1429 isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) || 1430 isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S)) 1431 return false; 1432 1433 if (isa<DeclStmt>(S)) 1434 return true; 1435 1436 for (const Stmt *SubStmt : S->children()) 1437 if (mightAddDeclToScope(SubStmt)) 1438 return true; 1439 1440 return false; 1441 } 1442 1443 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1444 /// to a constant, or if it does but contains a label, return false. If it 1445 /// constant folds return true and set the boolean result in Result. 1446 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1447 bool &ResultBool, 1448 bool AllowLabels) { 1449 llvm::APSInt ResultInt; 1450 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels)) 1451 return false; 1452 1453 ResultBool = ResultInt.getBoolValue(); 1454 return true; 1455 } 1456 1457 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1458 /// to a constant, or if it does but contains a label, return false. If it 1459 /// constant folds return true and set the folded value. 1460 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1461 llvm::APSInt &ResultInt, 1462 bool AllowLabels) { 1463 // FIXME: Rename and handle conversion of other evaluatable things 1464 // to bool. 1465 llvm::APSInt Int; 1466 if (!Cond->EvaluateAsInt(Int, getContext())) 1467 return false; // Not foldable, not integer or not fully evaluatable. 1468 1469 if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond)) 1470 return false; // Contains a label. 1471 1472 ResultInt = Int; 1473 return true; 1474 } 1475 1476 1477 1478 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 1479 /// statement) to the specified blocks. Based on the condition, this might try 1480 /// to simplify the codegen of the conditional based on the branch. 1481 /// 1482 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 1483 llvm::BasicBlock *TrueBlock, 1484 llvm::BasicBlock *FalseBlock, 1485 uint64_t TrueCount) { 1486 Cond = Cond->IgnoreParens(); 1487 1488 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 1489 1490 // Handle X && Y in a condition. 1491 if (CondBOp->getOpcode() == BO_LAnd) { 1492 // If we have "1 && X", simplify the code. "0 && X" would have constant 1493 // folded if the case was simple enough. 1494 bool ConstantBool = false; 1495 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1496 ConstantBool) { 1497 // br(1 && X) -> br(X). 1498 incrementProfileCounter(CondBOp); 1499 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1500 TrueCount); 1501 } 1502 1503 // If we have "X && 1", simplify the code to use an uncond branch. 1504 // "X && 0" would have been constant folded to 0. 1505 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1506 ConstantBool) { 1507 // br(X && 1) -> br(X). 1508 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1509 TrueCount); 1510 } 1511 1512 // Emit the LHS as a conditional. If the LHS conditional is false, we 1513 // want to jump to the FalseBlock. 1514 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 1515 // The counter tells us how often we evaluate RHS, and all of TrueCount 1516 // can be propagated to that branch. 1517 uint64_t RHSCount = getProfileCount(CondBOp->getRHS()); 1518 1519 ConditionalEvaluation eval(*this); 1520 { 1521 ApplyDebugLocation DL(*this, Cond); 1522 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount); 1523 EmitBlock(LHSTrue); 1524 } 1525 1526 incrementProfileCounter(CondBOp); 1527 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1528 1529 // Any temporaries created here are conditional. 1530 eval.begin(*this); 1531 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount); 1532 eval.end(*this); 1533 1534 return; 1535 } 1536 1537 if (CondBOp->getOpcode() == BO_LOr) { 1538 // If we have "0 || X", simplify the code. "1 || X" would have constant 1539 // folded if the case was simple enough. 1540 bool ConstantBool = false; 1541 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1542 !ConstantBool) { 1543 // br(0 || X) -> br(X). 1544 incrementProfileCounter(CondBOp); 1545 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1546 TrueCount); 1547 } 1548 1549 // If we have "X || 0", simplify the code to use an uncond branch. 1550 // "X || 1" would have been constant folded to 1. 1551 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1552 !ConstantBool) { 1553 // br(X || 0) -> br(X). 1554 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1555 TrueCount); 1556 } 1557 1558 // Emit the LHS as a conditional. If the LHS conditional is true, we 1559 // want to jump to the TrueBlock. 1560 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 1561 // We have the count for entry to the RHS and for the whole expression 1562 // being true, so we can divy up True count between the short circuit and 1563 // the RHS. 1564 uint64_t LHSCount = 1565 getCurrentProfileCount() - getProfileCount(CondBOp->getRHS()); 1566 uint64_t RHSCount = TrueCount - LHSCount; 1567 1568 ConditionalEvaluation eval(*this); 1569 { 1570 ApplyDebugLocation DL(*this, Cond); 1571 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount); 1572 EmitBlock(LHSFalse); 1573 } 1574 1575 incrementProfileCounter(CondBOp); 1576 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1577 1578 // Any temporaries created here are conditional. 1579 eval.begin(*this); 1580 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount); 1581 1582 eval.end(*this); 1583 1584 return; 1585 } 1586 } 1587 1588 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 1589 // br(!x, t, f) -> br(x, f, t) 1590 if (CondUOp->getOpcode() == UO_LNot) { 1591 // Negate the count. 1592 uint64_t FalseCount = getCurrentProfileCount() - TrueCount; 1593 // Negate the condition and swap the destination blocks. 1594 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, 1595 FalseCount); 1596 } 1597 } 1598 1599 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 1600 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 1601 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1602 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1603 1604 ConditionalEvaluation cond(*this); 1605 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, 1606 getProfileCount(CondOp)); 1607 1608 // When computing PGO branch weights, we only know the overall count for 1609 // the true block. This code is essentially doing tail duplication of the 1610 // naive code-gen, introducing new edges for which counts are not 1611 // available. Divide the counts proportionally between the LHS and RHS of 1612 // the conditional operator. 1613 uint64_t LHSScaledTrueCount = 0; 1614 if (TrueCount) { 1615 double LHSRatio = 1616 getProfileCount(CondOp) / (double)getCurrentProfileCount(); 1617 LHSScaledTrueCount = TrueCount * LHSRatio; 1618 } 1619 1620 cond.begin(*this); 1621 EmitBlock(LHSBlock); 1622 incrementProfileCounter(CondOp); 1623 { 1624 ApplyDebugLocation DL(*this, Cond); 1625 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, 1626 LHSScaledTrueCount); 1627 } 1628 cond.end(*this); 1629 1630 cond.begin(*this); 1631 EmitBlock(RHSBlock); 1632 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, 1633 TrueCount - LHSScaledTrueCount); 1634 cond.end(*this); 1635 1636 return; 1637 } 1638 1639 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 1640 // Conditional operator handling can give us a throw expression as a 1641 // condition for a case like: 1642 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 1643 // Fold this to: 1644 // br(c, throw x, br(y, t, f)) 1645 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 1646 return; 1647 } 1648 1649 // If the branch has a condition wrapped by __builtin_unpredictable, 1650 // create metadata that specifies that the branch is unpredictable. 1651 // Don't bother if not optimizing because that metadata would not be used. 1652 llvm::MDNode *Unpredictable = nullptr; 1653 auto *Call = dyn_cast<CallExpr>(Cond); 1654 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 1655 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 1656 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 1657 llvm::MDBuilder MDHelper(getLLVMContext()); 1658 Unpredictable = MDHelper.createUnpredictable(); 1659 } 1660 } 1661 1662 // Create branch weights based on the number of times we get here and the 1663 // number of times the condition should be true. 1664 uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount); 1665 llvm::MDNode *Weights = 1666 createProfileWeights(TrueCount, CurrentCount - TrueCount); 1667 1668 // Emit the code with the fully general case. 1669 llvm::Value *CondV; 1670 { 1671 ApplyDebugLocation DL(*this, Cond); 1672 CondV = EvaluateExprAsBool(Cond); 1673 } 1674 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable); 1675 } 1676 1677 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1678 /// specified stmt yet. 1679 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 1680 CGM.ErrorUnsupported(S, Type); 1681 } 1682 1683 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 1684 /// variable-length array whose elements have a non-zero bit-pattern. 1685 /// 1686 /// \param baseType the inner-most element type of the array 1687 /// \param src - a char* pointing to the bit-pattern for a single 1688 /// base element of the array 1689 /// \param sizeInChars - the total size of the VLA, in chars 1690 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 1691 Address dest, Address src, 1692 llvm::Value *sizeInChars) { 1693 CGBuilderTy &Builder = CGF.Builder; 1694 1695 CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType); 1696 llvm::Value *baseSizeInChars 1697 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity()); 1698 1699 Address begin = 1700 Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin"); 1701 llvm::Value *end = 1702 Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end"); 1703 1704 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 1705 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 1706 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 1707 1708 // Make a loop over the VLA. C99 guarantees that the VLA element 1709 // count must be nonzero. 1710 CGF.EmitBlock(loopBB); 1711 1712 llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur"); 1713 cur->addIncoming(begin.getPointer(), originBB); 1714 1715 CharUnits curAlign = 1716 dest.getAlignment().alignmentOfArrayElement(baseSize); 1717 1718 // memcpy the individual element bit-pattern. 1719 Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars, 1720 /*volatile*/ false); 1721 1722 // Go to the next element. 1723 llvm::Value *next = 1724 Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next"); 1725 1726 // Leave if that's the end of the VLA. 1727 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 1728 Builder.CreateCondBr(done, contBB, loopBB); 1729 cur->addIncoming(next, loopBB); 1730 1731 CGF.EmitBlock(contBB); 1732 } 1733 1734 void 1735 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) { 1736 // Ignore empty classes in C++. 1737 if (getLangOpts().CPlusPlus) { 1738 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1739 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 1740 return; 1741 } 1742 } 1743 1744 // Cast the dest ptr to the appropriate i8 pointer type. 1745 if (DestPtr.getElementType() != Int8Ty) 1746 DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty); 1747 1748 // Get size and alignment info for this aggregate. 1749 CharUnits size = getContext().getTypeSizeInChars(Ty); 1750 1751 llvm::Value *SizeVal; 1752 const VariableArrayType *vla; 1753 1754 // Don't bother emitting a zero-byte memset. 1755 if (size.isZero()) { 1756 // But note that getTypeInfo returns 0 for a VLA. 1757 if (const VariableArrayType *vlaType = 1758 dyn_cast_or_null<VariableArrayType>( 1759 getContext().getAsArrayType(Ty))) { 1760 QualType eltType; 1761 llvm::Value *numElts; 1762 std::tie(numElts, eltType) = getVLASize(vlaType); 1763 1764 SizeVal = numElts; 1765 CharUnits eltSize = getContext().getTypeSizeInChars(eltType); 1766 if (!eltSize.isOne()) 1767 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 1768 vla = vlaType; 1769 } else { 1770 return; 1771 } 1772 } else { 1773 SizeVal = CGM.getSize(size); 1774 vla = nullptr; 1775 } 1776 1777 // If the type contains a pointer to data member we can't memset it to zero. 1778 // Instead, create a null constant and copy it to the destination. 1779 // TODO: there are other patterns besides zero that we can usefully memset, 1780 // like -1, which happens to be the pattern used by member-pointers. 1781 if (!CGM.getTypes().isZeroInitializable(Ty)) { 1782 // For a VLA, emit a single element, then splat that over the VLA. 1783 if (vla) Ty = getContext().getBaseElementType(vla); 1784 1785 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 1786 1787 llvm::GlobalVariable *NullVariable = 1788 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 1789 /*isConstant=*/true, 1790 llvm::GlobalVariable::PrivateLinkage, 1791 NullConstant, Twine()); 1792 CharUnits NullAlign = DestPtr.getAlignment(); 1793 NullVariable->setAlignment(NullAlign.getQuantity()); 1794 Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()), 1795 NullAlign); 1796 1797 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 1798 1799 // Get and call the appropriate llvm.memcpy overload. 1800 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false); 1801 return; 1802 } 1803 1804 // Otherwise, just memset the whole thing to zero. This is legal 1805 // because in LLVM, all default initializers (other than the ones we just 1806 // handled above) are guaranteed to have a bit pattern of all zeros. 1807 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false); 1808 } 1809 1810 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 1811 // Make sure that there is a block for the indirect goto. 1812 if (!IndirectBranch) 1813 GetIndirectGotoBlock(); 1814 1815 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 1816 1817 // Make sure the indirect branch includes all of the address-taken blocks. 1818 IndirectBranch->addDestination(BB); 1819 return llvm::BlockAddress::get(CurFn, BB); 1820 } 1821 1822 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 1823 // If we already made the indirect branch for indirect goto, return its block. 1824 if (IndirectBranch) return IndirectBranch->getParent(); 1825 1826 CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto")); 1827 1828 // Create the PHI node that indirect gotos will add entries to. 1829 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 1830 "indirect.goto.dest"); 1831 1832 // Create the indirect branch instruction. 1833 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 1834 return IndirectBranch->getParent(); 1835 } 1836 1837 /// Computes the length of an array in elements, as well as the base 1838 /// element type and a properly-typed first element pointer. 1839 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 1840 QualType &baseType, 1841 Address &addr) { 1842 const ArrayType *arrayType = origArrayType; 1843 1844 // If it's a VLA, we have to load the stored size. Note that 1845 // this is the size of the VLA in bytes, not its size in elements. 1846 llvm::Value *numVLAElements = nullptr; 1847 if (isa<VariableArrayType>(arrayType)) { 1848 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first; 1849 1850 // Walk into all VLAs. This doesn't require changes to addr, 1851 // which has type T* where T is the first non-VLA element type. 1852 do { 1853 QualType elementType = arrayType->getElementType(); 1854 arrayType = getContext().getAsArrayType(elementType); 1855 1856 // If we only have VLA components, 'addr' requires no adjustment. 1857 if (!arrayType) { 1858 baseType = elementType; 1859 return numVLAElements; 1860 } 1861 } while (isa<VariableArrayType>(arrayType)); 1862 1863 // We get out here only if we find a constant array type 1864 // inside the VLA. 1865 } 1866 1867 // We have some number of constant-length arrays, so addr should 1868 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 1869 // down to the first element of addr. 1870 SmallVector<llvm::Value*, 8> gepIndices; 1871 1872 // GEP down to the array type. 1873 llvm::ConstantInt *zero = Builder.getInt32(0); 1874 gepIndices.push_back(zero); 1875 1876 uint64_t countFromCLAs = 1; 1877 QualType eltType; 1878 1879 llvm::ArrayType *llvmArrayType = 1880 dyn_cast<llvm::ArrayType>(addr.getElementType()); 1881 while (llvmArrayType) { 1882 assert(isa<ConstantArrayType>(arrayType)); 1883 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 1884 == llvmArrayType->getNumElements()); 1885 1886 gepIndices.push_back(zero); 1887 countFromCLAs *= llvmArrayType->getNumElements(); 1888 eltType = arrayType->getElementType(); 1889 1890 llvmArrayType = 1891 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 1892 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 1893 assert((!llvmArrayType || arrayType) && 1894 "LLVM and Clang types are out-of-synch"); 1895 } 1896 1897 if (arrayType) { 1898 // From this point onwards, the Clang array type has been emitted 1899 // as some other type (probably a packed struct). Compute the array 1900 // size, and just emit the 'begin' expression as a bitcast. 1901 while (arrayType) { 1902 countFromCLAs *= 1903 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 1904 eltType = arrayType->getElementType(); 1905 arrayType = getContext().getAsArrayType(eltType); 1906 } 1907 1908 llvm::Type *baseType = ConvertType(eltType); 1909 addr = Builder.CreateElementBitCast(addr, baseType, "array.begin"); 1910 } else { 1911 // Create the actual GEP. 1912 addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(), 1913 gepIndices, "array.begin"), 1914 addr.getAlignment()); 1915 } 1916 1917 baseType = eltType; 1918 1919 llvm::Value *numElements 1920 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 1921 1922 // If we had any VLA dimensions, factor them in. 1923 if (numVLAElements) 1924 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 1925 1926 return numElements; 1927 } 1928 1929 std::pair<llvm::Value*, QualType> 1930 CodeGenFunction::getVLASize(QualType type) { 1931 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1932 assert(vla && "type was not a variable array type!"); 1933 return getVLASize(vla); 1934 } 1935 1936 std::pair<llvm::Value*, QualType> 1937 CodeGenFunction::getVLASize(const VariableArrayType *type) { 1938 // The number of elements so far; always size_t. 1939 llvm::Value *numElements = nullptr; 1940 1941 QualType elementType; 1942 do { 1943 elementType = type->getElementType(); 1944 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 1945 assert(vlaSize && "no size for VLA!"); 1946 assert(vlaSize->getType() == SizeTy); 1947 1948 if (!numElements) { 1949 numElements = vlaSize; 1950 } else { 1951 // It's undefined behavior if this wraps around, so mark it that way. 1952 // FIXME: Teach -fsanitize=undefined to trap this. 1953 numElements = Builder.CreateNUWMul(numElements, vlaSize); 1954 } 1955 } while ((type = getContext().getAsVariableArrayType(elementType))); 1956 1957 return std::pair<llvm::Value*,QualType>(numElements, elementType); 1958 } 1959 1960 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 1961 assert(type->isVariablyModifiedType() && 1962 "Must pass variably modified type to EmitVLASizes!"); 1963 1964 EnsureInsertPoint(); 1965 1966 // We're going to walk down into the type and look for VLA 1967 // expressions. 1968 do { 1969 assert(type->isVariablyModifiedType()); 1970 1971 const Type *ty = type.getTypePtr(); 1972 switch (ty->getTypeClass()) { 1973 1974 #define TYPE(Class, Base) 1975 #define ABSTRACT_TYPE(Class, Base) 1976 #define NON_CANONICAL_TYPE(Class, Base) 1977 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 1978 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 1979 #include "clang/AST/TypeNodes.def" 1980 llvm_unreachable("unexpected dependent type!"); 1981 1982 // These types are never variably-modified. 1983 case Type::Builtin: 1984 case Type::Complex: 1985 case Type::Vector: 1986 case Type::ExtVector: 1987 case Type::Record: 1988 case Type::Enum: 1989 case Type::Elaborated: 1990 case Type::TemplateSpecialization: 1991 case Type::ObjCTypeParam: 1992 case Type::ObjCObject: 1993 case Type::ObjCInterface: 1994 case Type::ObjCObjectPointer: 1995 llvm_unreachable("type class is never variably-modified!"); 1996 1997 case Type::Adjusted: 1998 type = cast<AdjustedType>(ty)->getAdjustedType(); 1999 break; 2000 2001 case Type::Decayed: 2002 type = cast<DecayedType>(ty)->getPointeeType(); 2003 break; 2004 2005 case Type::Pointer: 2006 type = cast<PointerType>(ty)->getPointeeType(); 2007 break; 2008 2009 case Type::BlockPointer: 2010 type = cast<BlockPointerType>(ty)->getPointeeType(); 2011 break; 2012 2013 case Type::LValueReference: 2014 case Type::RValueReference: 2015 type = cast<ReferenceType>(ty)->getPointeeType(); 2016 break; 2017 2018 case Type::MemberPointer: 2019 type = cast<MemberPointerType>(ty)->getPointeeType(); 2020 break; 2021 2022 case Type::ConstantArray: 2023 case Type::IncompleteArray: 2024 // Losing element qualification here is fine. 2025 type = cast<ArrayType>(ty)->getElementType(); 2026 break; 2027 2028 case Type::VariableArray: { 2029 // Losing element qualification here is fine. 2030 const VariableArrayType *vat = cast<VariableArrayType>(ty); 2031 2032 // Unknown size indication requires no size computation. 2033 // Otherwise, evaluate and record it. 2034 if (const Expr *size = vat->getSizeExpr()) { 2035 // It's possible that we might have emitted this already, 2036 // e.g. with a typedef and a pointer to it. 2037 llvm::Value *&entry = VLASizeMap[size]; 2038 if (!entry) { 2039 llvm::Value *Size = EmitScalarExpr(size); 2040 2041 // C11 6.7.6.2p5: 2042 // If the size is an expression that is not an integer constant 2043 // expression [...] each time it is evaluated it shall have a value 2044 // greater than zero. 2045 if (SanOpts.has(SanitizerKind::VLABound) && 2046 size->getType()->isSignedIntegerType()) { 2047 SanitizerScope SanScope(this); 2048 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); 2049 llvm::Constant *StaticArgs[] = { 2050 EmitCheckSourceLocation(size->getLocStart()), 2051 EmitCheckTypeDescriptor(size->getType()) 2052 }; 2053 EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero), 2054 SanitizerKind::VLABound), 2055 SanitizerHandler::VLABoundNotPositive, StaticArgs, Size); 2056 } 2057 2058 // Always zexting here would be wrong if it weren't 2059 // undefined behavior to have a negative bound. 2060 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); 2061 } 2062 } 2063 type = vat->getElementType(); 2064 break; 2065 } 2066 2067 case Type::FunctionProto: 2068 case Type::FunctionNoProto: 2069 type = cast<FunctionType>(ty)->getReturnType(); 2070 break; 2071 2072 case Type::Paren: 2073 case Type::TypeOf: 2074 case Type::UnaryTransform: 2075 case Type::Attributed: 2076 case Type::SubstTemplateTypeParm: 2077 case Type::PackExpansion: 2078 // Keep walking after single level desugaring. 2079 type = type.getSingleStepDesugaredType(getContext()); 2080 break; 2081 2082 case Type::Typedef: 2083 case Type::Decltype: 2084 case Type::Auto: 2085 case Type::DeducedTemplateSpecialization: 2086 // Stop walking: nothing to do. 2087 return; 2088 2089 case Type::TypeOfExpr: 2090 // Stop walking: emit typeof expression. 2091 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 2092 return; 2093 2094 case Type::Atomic: 2095 type = cast<AtomicType>(ty)->getValueType(); 2096 break; 2097 2098 case Type::Pipe: 2099 type = cast<PipeType>(ty)->getElementType(); 2100 break; 2101 } 2102 } while (type->isVariablyModifiedType()); 2103 } 2104 2105 Address CodeGenFunction::EmitVAListRef(const Expr* E) { 2106 if (getContext().getBuiltinVaListType()->isArrayType()) 2107 return EmitPointerWithAlignment(E); 2108 return EmitLValue(E).getAddress(); 2109 } 2110 2111 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) { 2112 return EmitLValue(E).getAddress(); 2113 } 2114 2115 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 2116 const APValue &Init) { 2117 assert(!Init.isUninit() && "Invalid DeclRefExpr initializer!"); 2118 if (CGDebugInfo *Dbg = getDebugInfo()) 2119 if (CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 2120 Dbg->EmitGlobalVariable(E->getDecl(), Init); 2121 } 2122 2123 CodeGenFunction::PeepholeProtection 2124 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 2125 // At the moment, the only aggressive peephole we do in IR gen 2126 // is trunc(zext) folding, but if we add more, we can easily 2127 // extend this protection. 2128 2129 if (!rvalue.isScalar()) return PeepholeProtection(); 2130 llvm::Value *value = rvalue.getScalarVal(); 2131 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 2132 2133 // Just make an extra bitcast. 2134 assert(HaveInsertPoint()); 2135 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 2136 Builder.GetInsertBlock()); 2137 2138 PeepholeProtection protection; 2139 protection.Inst = inst; 2140 return protection; 2141 } 2142 2143 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 2144 if (!protection.Inst) return; 2145 2146 // In theory, we could try to duplicate the peepholes now, but whatever. 2147 protection.Inst->eraseFromParent(); 2148 } 2149 2150 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn, 2151 llvm::Value *AnnotatedVal, 2152 StringRef AnnotationStr, 2153 SourceLocation Location) { 2154 llvm::Value *Args[4] = { 2155 AnnotatedVal, 2156 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 2157 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 2158 CGM.EmitAnnotationLineNo(Location) 2159 }; 2160 return Builder.CreateCall(AnnotationFn, Args); 2161 } 2162 2163 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 2164 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2165 // FIXME We create a new bitcast for every annotation because that's what 2166 // llvm-gcc was doing. 2167 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2168 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 2169 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 2170 I->getAnnotation(), D->getLocation()); 2171 } 2172 2173 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 2174 Address Addr) { 2175 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2176 llvm::Value *V = Addr.getPointer(); 2177 llvm::Type *VTy = V->getType(); 2178 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 2179 CGM.Int8PtrTy); 2180 2181 for (const auto *I : D->specific_attrs<AnnotateAttr>()) { 2182 // FIXME Always emit the cast inst so we can differentiate between 2183 // annotation on the first field of a struct and annotation on the struct 2184 // itself. 2185 if (VTy != CGM.Int8PtrTy) 2186 V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy)); 2187 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation()); 2188 V = Builder.CreateBitCast(V, VTy); 2189 } 2190 2191 return Address(V, Addr.getAlignment()); 2192 } 2193 2194 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 2195 2196 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF) 2197 : CGF(CGF) { 2198 assert(!CGF->IsSanitizerScope); 2199 CGF->IsSanitizerScope = true; 2200 } 2201 2202 CodeGenFunction::SanitizerScope::~SanitizerScope() { 2203 CGF->IsSanitizerScope = false; 2204 } 2205 2206 void CodeGenFunction::InsertHelper(llvm::Instruction *I, 2207 const llvm::Twine &Name, 2208 llvm::BasicBlock *BB, 2209 llvm::BasicBlock::iterator InsertPt) const { 2210 LoopStack.InsertHelper(I); 2211 if (IsSanitizerScope) 2212 CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I); 2213 } 2214 2215 void CGBuilderInserter::InsertHelper( 2216 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, 2217 llvm::BasicBlock::iterator InsertPt) const { 2218 llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt); 2219 if (CGF) 2220 CGF->InsertHelper(I, Name, BB, InsertPt); 2221 } 2222 2223 static bool hasRequiredFeatures(const SmallVectorImpl<StringRef> &ReqFeatures, 2224 CodeGenModule &CGM, const FunctionDecl *FD, 2225 std::string &FirstMissing) { 2226 // If there aren't any required features listed then go ahead and return. 2227 if (ReqFeatures.empty()) 2228 return false; 2229 2230 // Now build up the set of caller features and verify that all the required 2231 // features are there. 2232 llvm::StringMap<bool> CallerFeatureMap; 2233 CGM.getFunctionFeatureMap(CallerFeatureMap, FD); 2234 2235 // If we have at least one of the features in the feature list return 2236 // true, otherwise return false. 2237 return std::all_of( 2238 ReqFeatures.begin(), ReqFeatures.end(), [&](StringRef Feature) { 2239 SmallVector<StringRef, 1> OrFeatures; 2240 Feature.split(OrFeatures, "|"); 2241 return std::any_of(OrFeatures.begin(), OrFeatures.end(), 2242 [&](StringRef Feature) { 2243 if (!CallerFeatureMap.lookup(Feature)) { 2244 FirstMissing = Feature.str(); 2245 return false; 2246 } 2247 return true; 2248 }); 2249 }); 2250 } 2251 2252 // Emits an error if we don't have a valid set of target features for the 2253 // called function. 2254 void CodeGenFunction::checkTargetFeatures(const CallExpr *E, 2255 const FunctionDecl *TargetDecl) { 2256 // Early exit if this is an indirect call. 2257 if (!TargetDecl) 2258 return; 2259 2260 // Get the current enclosing function if it exists. If it doesn't 2261 // we can't check the target features anyhow. 2262 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl); 2263 if (!FD) 2264 return; 2265 2266 // Grab the required features for the call. For a builtin this is listed in 2267 // the td file with the default cpu, for an always_inline function this is any 2268 // listed cpu and any listed features. 2269 unsigned BuiltinID = TargetDecl->getBuiltinID(); 2270 std::string MissingFeature; 2271 if (BuiltinID) { 2272 SmallVector<StringRef, 1> ReqFeatures; 2273 const char *FeatureList = 2274 CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 2275 // Return if the builtin doesn't have any required features. 2276 if (!FeatureList || StringRef(FeatureList) == "") 2277 return; 2278 StringRef(FeatureList).split(ReqFeatures, ","); 2279 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 2280 CGM.getDiags().Report(E->getLocStart(), diag::err_builtin_needs_feature) 2281 << TargetDecl->getDeclName() 2282 << CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 2283 2284 } else if (TargetDecl->hasAttr<TargetAttr>()) { 2285 // Get the required features for the callee. 2286 SmallVector<StringRef, 1> ReqFeatures; 2287 llvm::StringMap<bool> CalleeFeatureMap; 2288 CGM.getFunctionFeatureMap(CalleeFeatureMap, TargetDecl); 2289 for (const auto &F : CalleeFeatureMap) { 2290 // Only positive features are "required". 2291 if (F.getValue()) 2292 ReqFeatures.push_back(F.getKey()); 2293 } 2294 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 2295 CGM.getDiags().Report(E->getLocStart(), diag::err_function_needs_feature) 2296 << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature; 2297 } 2298 } 2299 2300 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) { 2301 if (!CGM.getCodeGenOpts().SanitizeStats) 2302 return; 2303 2304 llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint()); 2305 IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation()); 2306 CGM.getSanStats().create(IRB, SSK); 2307 } 2308 2309 llvm::Value * 2310 CodeGenFunction::FormResolverCondition(const MultiVersionResolverOption &RO) { 2311 llvm::Value *TrueCondition = nullptr; 2312 if (!RO.ParsedAttribute.Architecture.empty()) 2313 TrueCondition = EmitX86CpuIs(RO.ParsedAttribute.Architecture); 2314 2315 if (!RO.ParsedAttribute.Features.empty()) { 2316 SmallVector<StringRef, 8> FeatureList; 2317 llvm::for_each(RO.ParsedAttribute.Features, 2318 [&FeatureList](const std::string &Feature) { 2319 FeatureList.push_back(StringRef{Feature}.substr(1)); 2320 }); 2321 llvm::Value *FeatureCmp = EmitX86CpuSupports(FeatureList); 2322 TrueCondition = TrueCondition ? Builder.CreateAnd(TrueCondition, FeatureCmp) 2323 : FeatureCmp; 2324 } 2325 return TrueCondition; 2326 } 2327 2328 void CodeGenFunction::EmitMultiVersionResolver( 2329 llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) { 2330 assert((getContext().getTargetInfo().getTriple().getArch() == 2331 llvm::Triple::x86 || 2332 getContext().getTargetInfo().getTriple().getArch() == 2333 llvm::Triple::x86_64) && 2334 "Only implemented for x86 targets"); 2335 2336 // Main function's basic block. 2337 llvm::BasicBlock *CurBlock = createBasicBlock("entry", Resolver); 2338 Builder.SetInsertPoint(CurBlock); 2339 EmitX86CpuInit(); 2340 2341 llvm::Function *DefaultFunc = nullptr; 2342 for (const MultiVersionResolverOption &RO : Options) { 2343 Builder.SetInsertPoint(CurBlock); 2344 llvm::Value *TrueCondition = FormResolverCondition(RO); 2345 2346 if (!TrueCondition) { 2347 DefaultFunc = RO.Function; 2348 } else { 2349 llvm::BasicBlock *RetBlock = createBasicBlock("ro_ret", Resolver); 2350 llvm::IRBuilder<> RetBuilder(RetBlock); 2351 RetBuilder.CreateRet(RO.Function); 2352 CurBlock = createBasicBlock("ro_else", Resolver); 2353 Builder.CreateCondBr(TrueCondition, RetBlock, CurBlock); 2354 } 2355 } 2356 2357 assert(DefaultFunc && "No default version?"); 2358 // Emit return from the 'else-ist' block. 2359 Builder.SetInsertPoint(CurBlock); 2360 Builder.CreateRet(DefaultFunc); 2361 } 2362 2363 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) { 2364 if (CGDebugInfo *DI = getDebugInfo()) 2365 return DI->SourceLocToDebugLoc(Location); 2366 2367 return llvm::DebugLoc(); 2368 } 2369