xref: /llvm-project/clang/lib/CodeGen/CodeGenFunction.cpp (revision 54c05faadeaeedea3f9df266a1acc1fe3b0ba6c2)
1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-function state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CodeGenModule.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGDebugInfo.h"
19 #include "clang/Basic/TargetInfo.h"
20 #include "clang/AST/ASTContext.h"
21 #include "clang/AST/Decl.h"
22 #include "clang/AST/DeclCXX.h"
23 #include "clang/AST/StmtCXX.h"
24 #include "clang/Frontend/CodeGenOptions.h"
25 #include "llvm/Intrinsics.h"
26 #include "llvm/Support/MDBuilder.h"
27 #include "llvm/Target/TargetData.h"
28 using namespace clang;
29 using namespace CodeGen;
30 
31 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm)
32   : CodeGenTypeCache(cgm), CGM(cgm),
33     Target(CGM.getContext().getTargetInfo()),
34     Builder(cgm.getModule().getContext()),
35     AutoreleaseResult(false), BlockInfo(0), BlockPointer(0),
36     LambdaThisCaptureField(0), NormalCleanupDest(0), NextCleanupDestIndex(1),
37     FirstBlockInfo(0), EHResumeBlock(0), ExceptionSlot(0), EHSelectorSlot(0),
38     DebugInfo(0), DisableDebugInfo(false), DidCallStackSave(false),
39     IndirectBranch(0), SwitchInsn(0), CaseRangeBlock(0), UnreachableBlock(0),
40     CXXABIThisDecl(0), CXXABIThisValue(0), CXXThisValue(0), CXXVTTDecl(0),
41     CXXVTTValue(0), OutermostConditional(0), TerminateLandingPad(0),
42     TerminateHandler(0), TrapBB(0) {
43 
44   CatchUndefined = getContext().getLangOpts().CatchUndefined;
45   CGM.getCXXABI().getMangleContext().startNewFunction();
46 }
47 
48 CodeGenFunction::~CodeGenFunction() {
49   // If there are any unclaimed block infos, go ahead and destroy them
50   // now.  This can happen if IR-gen gets clever and skips evaluating
51   // something.
52   if (FirstBlockInfo)
53     destroyBlockInfos(FirstBlockInfo);
54 }
55 
56 
57 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
58   return CGM.getTypes().ConvertTypeForMem(T);
59 }
60 
61 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
62   return CGM.getTypes().ConvertType(T);
63 }
64 
65 bool CodeGenFunction::hasAggregateLLVMType(QualType type) {
66   switch (type.getCanonicalType()->getTypeClass()) {
67 #define TYPE(name, parent)
68 #define ABSTRACT_TYPE(name, parent)
69 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
70 #define DEPENDENT_TYPE(name, parent) case Type::name:
71 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
72 #include "clang/AST/TypeNodes.def"
73     llvm_unreachable("non-canonical or dependent type in IR-generation");
74 
75   case Type::Builtin:
76   case Type::Pointer:
77   case Type::BlockPointer:
78   case Type::LValueReference:
79   case Type::RValueReference:
80   case Type::MemberPointer:
81   case Type::Vector:
82   case Type::ExtVector:
83   case Type::FunctionProto:
84   case Type::FunctionNoProto:
85   case Type::Enum:
86   case Type::ObjCObjectPointer:
87     return false;
88 
89   // Complexes, arrays, records, and Objective-C objects.
90   case Type::Complex:
91   case Type::ConstantArray:
92   case Type::IncompleteArray:
93   case Type::VariableArray:
94   case Type::Record:
95   case Type::ObjCObject:
96   case Type::ObjCInterface:
97     return true;
98 
99   // In IRGen, atomic types are just the underlying type
100   case Type::Atomic:
101     return hasAggregateLLVMType(type->getAs<AtomicType>()->getValueType());
102   }
103   llvm_unreachable("unknown type kind!");
104 }
105 
106 void CodeGenFunction::EmitReturnBlock() {
107   // For cleanliness, we try to avoid emitting the return block for
108   // simple cases.
109   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
110 
111   if (CurBB) {
112     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
113 
114     // We have a valid insert point, reuse it if it is empty or there are no
115     // explicit jumps to the return block.
116     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
117       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
118       delete ReturnBlock.getBlock();
119     } else
120       EmitBlock(ReturnBlock.getBlock());
121     return;
122   }
123 
124   // Otherwise, if the return block is the target of a single direct
125   // branch then we can just put the code in that block instead. This
126   // cleans up functions which started with a unified return block.
127   if (ReturnBlock.getBlock()->hasOneUse()) {
128     llvm::BranchInst *BI =
129       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->use_begin());
130     if (BI && BI->isUnconditional() &&
131         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
132       // Reset insertion point, including debug location, and delete the branch.
133       Builder.SetCurrentDebugLocation(BI->getDebugLoc());
134       Builder.SetInsertPoint(BI->getParent());
135       BI->eraseFromParent();
136       delete ReturnBlock.getBlock();
137       return;
138     }
139   }
140 
141   // FIXME: We are at an unreachable point, there is no reason to emit the block
142   // unless it has uses. However, we still need a place to put the debug
143   // region.end for now.
144 
145   EmitBlock(ReturnBlock.getBlock());
146 }
147 
148 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
149   if (!BB) return;
150   if (!BB->use_empty())
151     return CGF.CurFn->getBasicBlockList().push_back(BB);
152   delete BB;
153 }
154 
155 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
156   assert(BreakContinueStack.empty() &&
157          "mismatched push/pop in break/continue stack!");
158 
159   // Pop any cleanups that might have been associated with the
160   // parameters.  Do this in whatever block we're currently in; it's
161   // important to do this before we enter the return block or return
162   // edges will be *really* confused.
163   if (EHStack.stable_begin() != PrologueCleanupDepth)
164     PopCleanupBlocks(PrologueCleanupDepth);
165 
166   // Emit function epilog (to return).
167   EmitReturnBlock();
168 
169   if (ShouldInstrumentFunction())
170     EmitFunctionInstrumentation("__cyg_profile_func_exit");
171 
172   // Emit debug descriptor for function end.
173   if (CGDebugInfo *DI = getDebugInfo()) {
174     DI->setLocation(EndLoc);
175     DI->EmitFunctionEnd(Builder);
176   }
177 
178   EmitFunctionEpilog(*CurFnInfo);
179   EmitEndEHSpec(CurCodeDecl);
180 
181   assert(EHStack.empty() &&
182          "did not remove all scopes from cleanup stack!");
183 
184   // If someone did an indirect goto, emit the indirect goto block at the end of
185   // the function.
186   if (IndirectBranch) {
187     EmitBlock(IndirectBranch->getParent());
188     Builder.ClearInsertionPoint();
189   }
190 
191   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
192   llvm::Instruction *Ptr = AllocaInsertPt;
193   AllocaInsertPt = 0;
194   Ptr->eraseFromParent();
195 
196   // If someone took the address of a label but never did an indirect goto, we
197   // made a zero entry PHI node, which is illegal, zap it now.
198   if (IndirectBranch) {
199     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
200     if (PN->getNumIncomingValues() == 0) {
201       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
202       PN->eraseFromParent();
203     }
204   }
205 
206   EmitIfUsed(*this, EHResumeBlock);
207   EmitIfUsed(*this, TerminateLandingPad);
208   EmitIfUsed(*this, TerminateHandler);
209   EmitIfUsed(*this, UnreachableBlock);
210 
211   if (CGM.getCodeGenOpts().EmitDeclMetadata)
212     EmitDeclMetadata();
213 }
214 
215 /// ShouldInstrumentFunction - Return true if the current function should be
216 /// instrumented with __cyg_profile_func_* calls
217 bool CodeGenFunction::ShouldInstrumentFunction() {
218   if (!CGM.getCodeGenOpts().InstrumentFunctions)
219     return false;
220   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
221     return false;
222   return true;
223 }
224 
225 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
226 /// instrumentation function with the current function and the call site, if
227 /// function instrumentation is enabled.
228 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) {
229   // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site);
230   llvm::PointerType *PointerTy = Int8PtrTy;
231   llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy };
232   llvm::FunctionType *FunctionTy =
233     llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false);
234 
235   llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn);
236   llvm::CallInst *CallSite = Builder.CreateCall(
237     CGM.getIntrinsic(llvm::Intrinsic::returnaddress),
238     llvm::ConstantInt::get(Int32Ty, 0),
239     "callsite");
240 
241   Builder.CreateCall2(F,
242                       llvm::ConstantExpr::getBitCast(CurFn, PointerTy),
243                       CallSite);
244 }
245 
246 void CodeGenFunction::EmitMCountInstrumentation() {
247   llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false);
248 
249   llvm::Constant *MCountFn = CGM.CreateRuntimeFunction(FTy,
250                                                        Target.getMCountName());
251   Builder.CreateCall(MCountFn);
252 }
253 
254 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy,
255                                     llvm::Function *Fn,
256                                     const CGFunctionInfo &FnInfo,
257                                     const FunctionArgList &Args,
258                                     SourceLocation StartLoc) {
259   const Decl *D = GD.getDecl();
260 
261   DidCallStackSave = false;
262   CurCodeDecl = CurFuncDecl = D;
263   FnRetTy = RetTy;
264   CurFn = Fn;
265   CurFnInfo = &FnInfo;
266   assert(CurFn->isDeclaration() && "Function already has body?");
267 
268   // Pass inline keyword to optimizer if it appears explicitly on any
269   // declaration.
270   if (!CGM.getCodeGenOpts().NoInline)
271     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
272       for (FunctionDecl::redecl_iterator RI = FD->redecls_begin(),
273              RE = FD->redecls_end(); RI != RE; ++RI)
274         if (RI->isInlineSpecified()) {
275           Fn->addFnAttr(llvm::Attribute::InlineHint);
276           break;
277         }
278 
279   if (getContext().getLangOpts().OpenCL) {
280     // Add metadata for a kernel function.
281     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
282       if (FD->hasAttr<OpenCLKernelAttr>()) {
283         llvm::LLVMContext &Context = getLLVMContext();
284         llvm::NamedMDNode *OpenCLMetadata =
285           CGM.getModule().getOrInsertNamedMetadata("opencl.kernels");
286 
287         llvm::Value *Op = Fn;
288         OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Op));
289       }
290   }
291 
292   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
293 
294   // Create a marker to make it easy to insert allocas into the entryblock
295   // later.  Don't create this with the builder, because we don't want it
296   // folded.
297   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
298   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB);
299   if (Builder.isNamePreserving())
300     AllocaInsertPt->setName("allocapt");
301 
302   ReturnBlock = getJumpDestInCurrentScope("return");
303 
304   Builder.SetInsertPoint(EntryBB);
305 
306   // Emit subprogram debug descriptor.
307   if (CGDebugInfo *DI = getDebugInfo()) {
308     unsigned NumArgs = 0;
309     QualType *ArgsArray = new QualType[Args.size()];
310     for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
311 	 i != e; ++i) {
312       ArgsArray[NumArgs++] = (*i)->getType();
313     }
314 
315     QualType FnType =
316       getContext().getFunctionType(RetTy, ArgsArray, NumArgs,
317                                    FunctionProtoType::ExtProtoInfo());
318 
319     delete[] ArgsArray;
320 
321     DI->setLocation(StartLoc);
322     DI->EmitFunctionStart(GD, FnType, CurFn, Builder);
323   }
324 
325   if (ShouldInstrumentFunction())
326     EmitFunctionInstrumentation("__cyg_profile_func_enter");
327 
328   if (CGM.getCodeGenOpts().InstrumentForProfiling)
329     EmitMCountInstrumentation();
330 
331   if (RetTy->isVoidType()) {
332     // Void type; nothing to return.
333     ReturnValue = 0;
334   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
335              hasAggregateLLVMType(CurFnInfo->getReturnType())) {
336     // Indirect aggregate return; emit returned value directly into sret slot.
337     // This reduces code size, and affects correctness in C++.
338     ReturnValue = CurFn->arg_begin();
339   } else {
340     ReturnValue = CreateIRTemp(RetTy, "retval");
341 
342     // Tell the epilog emitter to autorelease the result.  We do this
343     // now so that various specialized functions can suppress it
344     // during their IR-generation.
345     if (getLangOpts().ObjCAutoRefCount &&
346         !CurFnInfo->isReturnsRetained() &&
347         RetTy->isObjCRetainableType())
348       AutoreleaseResult = true;
349   }
350 
351   EmitStartEHSpec(CurCodeDecl);
352 
353   PrologueCleanupDepth = EHStack.stable_begin();
354   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
355 
356   if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
357     CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
358     const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
359     if (MD->getParent()->isLambda() &&
360         MD->getOverloadedOperator() == OO_Call) {
361       // We're in a lambda; figure out the captures.
362       MD->getParent()->getCaptureFields(LambdaCaptureFields,
363                                         LambdaThisCaptureField);
364       if (LambdaThisCaptureField) {
365         // If this lambda captures this, load it.
366         QualType LambdaTagType =
367             getContext().getTagDeclType(LambdaThisCaptureField->getParent());
368         LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue,
369                                                      LambdaTagType);
370         LValue ThisLValue = EmitLValueForField(LambdaLV,
371                                                LambdaThisCaptureField);
372         CXXThisValue = EmitLoadOfLValue(ThisLValue).getScalarVal();
373       }
374     } else {
375       // Not in a lambda; just use 'this' from the method.
376       // FIXME: Should we generate a new load for each use of 'this'?  The
377       // fast register allocator would be happier...
378       CXXThisValue = CXXABIThisValue;
379     }
380   }
381 
382   // If any of the arguments have a variably modified type, make sure to
383   // emit the type size.
384   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
385        i != e; ++i) {
386     QualType Ty = (*i)->getType();
387 
388     if (Ty->isVariablyModifiedType())
389       EmitVariablyModifiedType(Ty);
390   }
391   // Emit a location at the end of the prologue.
392   if (CGDebugInfo *DI = getDebugInfo())
393     DI->EmitLocation(Builder, StartLoc);
394 }
395 
396 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args) {
397   const FunctionDecl *FD = cast<FunctionDecl>(CurGD.getDecl());
398   assert(FD->getBody());
399   EmitStmt(FD->getBody());
400 }
401 
402 /// Tries to mark the given function nounwind based on the
403 /// non-existence of any throwing calls within it.  We believe this is
404 /// lightweight enough to do at -O0.
405 static void TryMarkNoThrow(llvm::Function *F) {
406   // LLVM treats 'nounwind' on a function as part of the type, so we
407   // can't do this on functions that can be overwritten.
408   if (F->mayBeOverridden()) return;
409 
410   for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI)
411     for (llvm::BasicBlock::iterator
412            BI = FI->begin(), BE = FI->end(); BI != BE; ++BI)
413       if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI)) {
414         if (!Call->doesNotThrow())
415           return;
416       } else if (isa<llvm::ResumeInst>(&*BI)) {
417         return;
418       }
419   F->setDoesNotThrow(true);
420 }
421 
422 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
423                                    const CGFunctionInfo &FnInfo) {
424   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
425 
426   // Check if we should generate debug info for this function.
427   if (CGM.getModuleDebugInfo() && !FD->hasAttr<NoDebugAttr>())
428     DebugInfo = CGM.getModuleDebugInfo();
429 
430   FunctionArgList Args;
431   QualType ResTy = FD->getResultType();
432 
433   CurGD = GD;
434   if (isa<CXXMethodDecl>(FD) && cast<CXXMethodDecl>(FD)->isInstance())
435     CGM.getCXXABI().BuildInstanceFunctionParams(*this, ResTy, Args);
436 
437   for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i)
438     Args.push_back(FD->getParamDecl(i));
439 
440   SourceRange BodyRange;
441   if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange();
442 
443   // Emit the standard function prologue.
444   StartFunction(GD, ResTy, Fn, FnInfo, Args, BodyRange.getBegin());
445 
446   // Generate the body of the function.
447   if (isa<CXXDestructorDecl>(FD))
448     EmitDestructorBody(Args);
449   else if (isa<CXXConstructorDecl>(FD))
450     EmitConstructorBody(Args);
451   else if (getContext().getLangOpts().CUDA &&
452            !CGM.getCodeGenOpts().CUDAIsDevice &&
453            FD->hasAttr<CUDAGlobalAttr>())
454     CGM.getCUDARuntime().EmitDeviceStubBody(*this, Args);
455   else if (isa<CXXConversionDecl>(FD) &&
456            cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) {
457     // The lambda conversion to block pointer is special; the semantics can't be
458     // expressed in the AST, so IRGen needs to special-case it.
459     EmitLambdaToBlockPointerBody(Args);
460   } else if (isa<CXXMethodDecl>(FD) &&
461              cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
462     // The lambda "__invoke" function is special, because it forwards or
463     // clones the body of the function call operator (but is actually static).
464     EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD));
465   }
466   else
467     EmitFunctionBody(Args);
468 
469   // Emit the standard function epilogue.
470   FinishFunction(BodyRange.getEnd());
471 
472   // If we haven't marked the function nothrow through other means, do
473   // a quick pass now to see if we can.
474   if (!CurFn->doesNotThrow())
475     TryMarkNoThrow(CurFn);
476 }
477 
478 /// ContainsLabel - Return true if the statement contains a label in it.  If
479 /// this statement is not executed normally, it not containing a label means
480 /// that we can just remove the code.
481 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
482   // Null statement, not a label!
483   if (S == 0) return false;
484 
485   // If this is a label, we have to emit the code, consider something like:
486   // if (0) {  ...  foo:  bar(); }  goto foo;
487   //
488   // TODO: If anyone cared, we could track __label__'s, since we know that you
489   // can't jump to one from outside their declared region.
490   if (isa<LabelStmt>(S))
491     return true;
492 
493   // If this is a case/default statement, and we haven't seen a switch, we have
494   // to emit the code.
495   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
496     return true;
497 
498   // If this is a switch statement, we want to ignore cases below it.
499   if (isa<SwitchStmt>(S))
500     IgnoreCaseStmts = true;
501 
502   // Scan subexpressions for verboten labels.
503   for (Stmt::const_child_range I = S->children(); I; ++I)
504     if (ContainsLabel(*I, IgnoreCaseStmts))
505       return true;
506 
507   return false;
508 }
509 
510 /// containsBreak - Return true if the statement contains a break out of it.
511 /// If the statement (recursively) contains a switch or loop with a break
512 /// inside of it, this is fine.
513 bool CodeGenFunction::containsBreak(const Stmt *S) {
514   // Null statement, not a label!
515   if (S == 0) return false;
516 
517   // If this is a switch or loop that defines its own break scope, then we can
518   // include it and anything inside of it.
519   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
520       isa<ForStmt>(S))
521     return false;
522 
523   if (isa<BreakStmt>(S))
524     return true;
525 
526   // Scan subexpressions for verboten breaks.
527   for (Stmt::const_child_range I = S->children(); I; ++I)
528     if (containsBreak(*I))
529       return true;
530 
531   return false;
532 }
533 
534 
535 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
536 /// to a constant, or if it does but contains a label, return false.  If it
537 /// constant folds return true and set the boolean result in Result.
538 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
539                                                    bool &ResultBool) {
540   llvm::APInt ResultInt;
541   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt))
542     return false;
543 
544   ResultBool = ResultInt.getBoolValue();
545   return true;
546 }
547 
548 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
549 /// to a constant, or if it does but contains a label, return false.  If it
550 /// constant folds return true and set the folded value.
551 bool CodeGenFunction::
552 ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APInt &ResultInt) {
553   // FIXME: Rename and handle conversion of other evaluatable things
554   // to bool.
555   llvm::APSInt Int;
556   if (!Cond->EvaluateAsInt(Int, getContext()))
557     return false;  // Not foldable, not integer or not fully evaluatable.
558 
559   if (CodeGenFunction::ContainsLabel(Cond))
560     return false;  // Contains a label.
561 
562   ResultInt = Int;
563   return true;
564 }
565 
566 
567 
568 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
569 /// statement) to the specified blocks.  Based on the condition, this might try
570 /// to simplify the codegen of the conditional based on the branch.
571 ///
572 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
573                                            llvm::BasicBlock *TrueBlock,
574                                            llvm::BasicBlock *FalseBlock) {
575   Cond = Cond->IgnoreParens();
576 
577   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
578     // Handle X && Y in a condition.
579     if (CondBOp->getOpcode() == BO_LAnd) {
580       // If we have "1 && X", simplify the code.  "0 && X" would have constant
581       // folded if the case was simple enough.
582       bool ConstantBool = false;
583       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
584           ConstantBool) {
585         // br(1 && X) -> br(X).
586         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
587       }
588 
589       // If we have "X && 1", simplify the code to use an uncond branch.
590       // "X && 0" would have been constant folded to 0.
591       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
592           ConstantBool) {
593         // br(X && 1) -> br(X).
594         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock);
595       }
596 
597       // Emit the LHS as a conditional.  If the LHS conditional is false, we
598       // want to jump to the FalseBlock.
599       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
600 
601       ConditionalEvaluation eval(*this);
602       EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock);
603       EmitBlock(LHSTrue);
604 
605       // Any temporaries created here are conditional.
606       eval.begin(*this);
607       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
608       eval.end(*this);
609 
610       return;
611     }
612 
613     if (CondBOp->getOpcode() == BO_LOr) {
614       // If we have "0 || X", simplify the code.  "1 || X" would have constant
615       // folded if the case was simple enough.
616       bool ConstantBool = false;
617       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
618           !ConstantBool) {
619         // br(0 || X) -> br(X).
620         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
621       }
622 
623       // If we have "X || 0", simplify the code to use an uncond branch.
624       // "X || 1" would have been constant folded to 1.
625       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
626           !ConstantBool) {
627         // br(X || 0) -> br(X).
628         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock);
629       }
630 
631       // Emit the LHS as a conditional.  If the LHS conditional is true, we
632       // want to jump to the TrueBlock.
633       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
634 
635       ConditionalEvaluation eval(*this);
636       EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse);
637       EmitBlock(LHSFalse);
638 
639       // Any temporaries created here are conditional.
640       eval.begin(*this);
641       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
642       eval.end(*this);
643 
644       return;
645     }
646   }
647 
648   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
649     // br(!x, t, f) -> br(x, f, t)
650     if (CondUOp->getOpcode() == UO_LNot)
651       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock);
652   }
653 
654   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
655     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
656     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
657     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
658 
659     ConditionalEvaluation cond(*this);
660     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock);
661 
662     cond.begin(*this);
663     EmitBlock(LHSBlock);
664     EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock);
665     cond.end(*this);
666 
667     cond.begin(*this);
668     EmitBlock(RHSBlock);
669     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock);
670     cond.end(*this);
671 
672     return;
673   }
674 
675   // Emit the code with the fully general case.
676   llvm::Value *CondV = EvaluateExprAsBool(Cond);
677   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock);
678 }
679 
680 /// ErrorUnsupported - Print out an error that codegen doesn't support the
681 /// specified stmt yet.
682 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type,
683                                        bool OmitOnError) {
684   CGM.ErrorUnsupported(S, Type, OmitOnError);
685 }
686 
687 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
688 /// variable-length array whose elements have a non-zero bit-pattern.
689 ///
690 /// \param src - a char* pointing to the bit-pattern for a single
691 /// base element of the array
692 /// \param sizeInChars - the total size of the VLA, in chars
693 /// \param align - the total alignment of the VLA
694 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
695                                llvm::Value *dest, llvm::Value *src,
696                                llvm::Value *sizeInChars) {
697   std::pair<CharUnits,CharUnits> baseSizeAndAlign
698     = CGF.getContext().getTypeInfoInChars(baseType);
699 
700   CGBuilderTy &Builder = CGF.Builder;
701 
702   llvm::Value *baseSizeInChars
703     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSizeAndAlign.first.getQuantity());
704 
705   llvm::Type *i8p = Builder.getInt8PtrTy();
706 
707   llvm::Value *begin = Builder.CreateBitCast(dest, i8p, "vla.begin");
708   llvm::Value *end = Builder.CreateInBoundsGEP(dest, sizeInChars, "vla.end");
709 
710   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
711   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
712   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
713 
714   // Make a loop over the VLA.  C99 guarantees that the VLA element
715   // count must be nonzero.
716   CGF.EmitBlock(loopBB);
717 
718   llvm::PHINode *cur = Builder.CreatePHI(i8p, 2, "vla.cur");
719   cur->addIncoming(begin, originBB);
720 
721   // memcpy the individual element bit-pattern.
722   Builder.CreateMemCpy(cur, src, baseSizeInChars,
723                        baseSizeAndAlign.second.getQuantity(),
724                        /*volatile*/ false);
725 
726   // Go to the next element.
727   llvm::Value *next = Builder.CreateConstInBoundsGEP1_32(cur, 1, "vla.next");
728 
729   // Leave if that's the end of the VLA.
730   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
731   Builder.CreateCondBr(done, contBB, loopBB);
732   cur->addIncoming(next, loopBB);
733 
734   CGF.EmitBlock(contBB);
735 }
736 
737 void
738 CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) {
739   // Ignore empty classes in C++.
740   if (getContext().getLangOpts().CPlusPlus) {
741     if (const RecordType *RT = Ty->getAs<RecordType>()) {
742       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
743         return;
744     }
745   }
746 
747   // Cast the dest ptr to the appropriate i8 pointer type.
748   unsigned DestAS =
749     cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace();
750   llvm::Type *BP = Builder.getInt8PtrTy(DestAS);
751   if (DestPtr->getType() != BP)
752     DestPtr = Builder.CreateBitCast(DestPtr, BP);
753 
754   // Get size and alignment info for this aggregate.
755   std::pair<CharUnits, CharUnits> TypeInfo =
756     getContext().getTypeInfoInChars(Ty);
757   CharUnits Size = TypeInfo.first;
758   CharUnits Align = TypeInfo.second;
759 
760   llvm::Value *SizeVal;
761   const VariableArrayType *vla;
762 
763   // Don't bother emitting a zero-byte memset.
764   if (Size.isZero()) {
765     // But note that getTypeInfo returns 0 for a VLA.
766     if (const VariableArrayType *vlaType =
767           dyn_cast_or_null<VariableArrayType>(
768                                           getContext().getAsArrayType(Ty))) {
769       QualType eltType;
770       llvm::Value *numElts;
771       llvm::tie(numElts, eltType) = getVLASize(vlaType);
772 
773       SizeVal = numElts;
774       CharUnits eltSize = getContext().getTypeSizeInChars(eltType);
775       if (!eltSize.isOne())
776         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
777       vla = vlaType;
778     } else {
779       return;
780     }
781   } else {
782     SizeVal = CGM.getSize(Size);
783     vla = 0;
784   }
785 
786   // If the type contains a pointer to data member we can't memset it to zero.
787   // Instead, create a null constant and copy it to the destination.
788   // TODO: there are other patterns besides zero that we can usefully memset,
789   // like -1, which happens to be the pattern used by member-pointers.
790   if (!CGM.getTypes().isZeroInitializable(Ty)) {
791     // For a VLA, emit a single element, then splat that over the VLA.
792     if (vla) Ty = getContext().getBaseElementType(vla);
793 
794     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
795 
796     llvm::GlobalVariable *NullVariable =
797       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
798                                /*isConstant=*/true,
799                                llvm::GlobalVariable::PrivateLinkage,
800                                NullConstant, Twine());
801     llvm::Value *SrcPtr =
802       Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy());
803 
804     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
805 
806     // Get and call the appropriate llvm.memcpy overload.
807     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity(), false);
808     return;
809   }
810 
811   // Otherwise, just memset the whole thing to zero.  This is legal
812   // because in LLVM, all default initializers (other than the ones we just
813   // handled above) are guaranteed to have a bit pattern of all zeros.
814   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal,
815                        Align.getQuantity(), false);
816 }
817 
818 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
819   // Make sure that there is a block for the indirect goto.
820   if (IndirectBranch == 0)
821     GetIndirectGotoBlock();
822 
823   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
824 
825   // Make sure the indirect branch includes all of the address-taken blocks.
826   IndirectBranch->addDestination(BB);
827   return llvm::BlockAddress::get(CurFn, BB);
828 }
829 
830 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
831   // If we already made the indirect branch for indirect goto, return its block.
832   if (IndirectBranch) return IndirectBranch->getParent();
833 
834   CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto"));
835 
836   // Create the PHI node that indirect gotos will add entries to.
837   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
838                                               "indirect.goto.dest");
839 
840   // Create the indirect branch instruction.
841   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
842   return IndirectBranch->getParent();
843 }
844 
845 /// Computes the length of an array in elements, as well as the base
846 /// element type and a properly-typed first element pointer.
847 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
848                                               QualType &baseType,
849                                               llvm::Value *&addr) {
850   const ArrayType *arrayType = origArrayType;
851 
852   // If it's a VLA, we have to load the stored size.  Note that
853   // this is the size of the VLA in bytes, not its size in elements.
854   llvm::Value *numVLAElements = 0;
855   if (isa<VariableArrayType>(arrayType)) {
856     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first;
857 
858     // Walk into all VLAs.  This doesn't require changes to addr,
859     // which has type T* where T is the first non-VLA element type.
860     do {
861       QualType elementType = arrayType->getElementType();
862       arrayType = getContext().getAsArrayType(elementType);
863 
864       // If we only have VLA components, 'addr' requires no adjustment.
865       if (!arrayType) {
866         baseType = elementType;
867         return numVLAElements;
868       }
869     } while (isa<VariableArrayType>(arrayType));
870 
871     // We get out here only if we find a constant array type
872     // inside the VLA.
873   }
874 
875   // We have some number of constant-length arrays, so addr should
876   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
877   // down to the first element of addr.
878   SmallVector<llvm::Value*, 8> gepIndices;
879 
880   // GEP down to the array type.
881   llvm::ConstantInt *zero = Builder.getInt32(0);
882   gepIndices.push_back(zero);
883 
884   // It's more efficient to calculate the count from the LLVM
885   // constant-length arrays than to re-evaluate the array bounds.
886   uint64_t countFromCLAs = 1;
887 
888   llvm::ArrayType *llvmArrayType =
889     cast<llvm::ArrayType>(
890       cast<llvm::PointerType>(addr->getType())->getElementType());
891   while (true) {
892     assert(isa<ConstantArrayType>(arrayType));
893     assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
894              == llvmArrayType->getNumElements());
895 
896     gepIndices.push_back(zero);
897     countFromCLAs *= llvmArrayType->getNumElements();
898 
899     llvmArrayType =
900       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
901     if (!llvmArrayType) break;
902 
903     arrayType = getContext().getAsArrayType(arrayType->getElementType());
904     assert(arrayType && "LLVM and Clang types are out-of-synch");
905   }
906 
907   baseType = arrayType->getElementType();
908 
909   // Create the actual GEP.
910   addr = Builder.CreateInBoundsGEP(addr, gepIndices, "array.begin");
911 
912   llvm::Value *numElements
913     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
914 
915   // If we had any VLA dimensions, factor them in.
916   if (numVLAElements)
917     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
918 
919   return numElements;
920 }
921 
922 std::pair<llvm::Value*, QualType>
923 CodeGenFunction::getVLASize(QualType type) {
924   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
925   assert(vla && "type was not a variable array type!");
926   return getVLASize(vla);
927 }
928 
929 std::pair<llvm::Value*, QualType>
930 CodeGenFunction::getVLASize(const VariableArrayType *type) {
931   // The number of elements so far; always size_t.
932   llvm::Value *numElements = 0;
933 
934   QualType elementType;
935   do {
936     elementType = type->getElementType();
937     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
938     assert(vlaSize && "no size for VLA!");
939     assert(vlaSize->getType() == SizeTy);
940 
941     if (!numElements) {
942       numElements = vlaSize;
943     } else {
944       // It's undefined behavior if this wraps around, so mark it that way.
945       numElements = Builder.CreateNUWMul(numElements, vlaSize);
946     }
947   } while ((type = getContext().getAsVariableArrayType(elementType)));
948 
949   return std::pair<llvm::Value*,QualType>(numElements, elementType);
950 }
951 
952 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
953   assert(type->isVariablyModifiedType() &&
954          "Must pass variably modified type to EmitVLASizes!");
955 
956   EnsureInsertPoint();
957 
958   // We're going to walk down into the type and look for VLA
959   // expressions.
960   do {
961     assert(type->isVariablyModifiedType());
962 
963     const Type *ty = type.getTypePtr();
964     switch (ty->getTypeClass()) {
965 
966 #define TYPE(Class, Base)
967 #define ABSTRACT_TYPE(Class, Base)
968 #define NON_CANONICAL_TYPE(Class, Base)
969 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
970 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
971 #include "clang/AST/TypeNodes.def"
972       llvm_unreachable("unexpected dependent type!");
973 
974     // These types are never variably-modified.
975     case Type::Builtin:
976     case Type::Complex:
977     case Type::Vector:
978     case Type::ExtVector:
979     case Type::Record:
980     case Type::Enum:
981     case Type::Elaborated:
982     case Type::TemplateSpecialization:
983     case Type::ObjCObject:
984     case Type::ObjCInterface:
985     case Type::ObjCObjectPointer:
986       llvm_unreachable("type class is never variably-modified!");
987 
988     case Type::Pointer:
989       type = cast<PointerType>(ty)->getPointeeType();
990       break;
991 
992     case Type::BlockPointer:
993       type = cast<BlockPointerType>(ty)->getPointeeType();
994       break;
995 
996     case Type::LValueReference:
997     case Type::RValueReference:
998       type = cast<ReferenceType>(ty)->getPointeeType();
999       break;
1000 
1001     case Type::MemberPointer:
1002       type = cast<MemberPointerType>(ty)->getPointeeType();
1003       break;
1004 
1005     case Type::ConstantArray:
1006     case Type::IncompleteArray:
1007       // Losing element qualification here is fine.
1008       type = cast<ArrayType>(ty)->getElementType();
1009       break;
1010 
1011     case Type::VariableArray: {
1012       // Losing element qualification here is fine.
1013       const VariableArrayType *vat = cast<VariableArrayType>(ty);
1014 
1015       // Unknown size indication requires no size computation.
1016       // Otherwise, evaluate and record it.
1017       if (const Expr *size = vat->getSizeExpr()) {
1018         // It's possible that we might have emitted this already,
1019         // e.g. with a typedef and a pointer to it.
1020         llvm::Value *&entry = VLASizeMap[size];
1021         if (!entry) {
1022           // Always zexting here would be wrong if it weren't
1023           // undefined behavior to have a negative bound.
1024           entry = Builder.CreateIntCast(EmitScalarExpr(size), SizeTy,
1025                                         /*signed*/ false);
1026         }
1027       }
1028       type = vat->getElementType();
1029       break;
1030     }
1031 
1032     case Type::FunctionProto:
1033     case Type::FunctionNoProto:
1034       type = cast<FunctionType>(ty)->getResultType();
1035       break;
1036 
1037     case Type::Paren:
1038     case Type::TypeOf:
1039     case Type::UnaryTransform:
1040     case Type::Attributed:
1041     case Type::SubstTemplateTypeParm:
1042       // Keep walking after single level desugaring.
1043       type = type.getSingleStepDesugaredType(getContext());
1044       break;
1045 
1046     case Type::Typedef:
1047     case Type::Decltype:
1048     case Type::Auto:
1049       // Stop walking: nothing to do.
1050       return;
1051 
1052     case Type::TypeOfExpr:
1053       // Stop walking: emit typeof expression.
1054       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
1055       return;
1056 
1057     case Type::Atomic:
1058       type = cast<AtomicType>(ty)->getValueType();
1059       break;
1060     }
1061   } while (type->isVariablyModifiedType());
1062 }
1063 
1064 llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) {
1065   if (getContext().getBuiltinVaListType()->isArrayType())
1066     return EmitScalarExpr(E);
1067   return EmitLValue(E).getAddress();
1068 }
1069 
1070 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
1071                                               llvm::Constant *Init) {
1072   assert (Init && "Invalid DeclRefExpr initializer!");
1073   if (CGDebugInfo *Dbg = getDebugInfo())
1074     Dbg->EmitGlobalVariable(E->getDecl(), Init);
1075 }
1076 
1077 CodeGenFunction::PeepholeProtection
1078 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
1079   // At the moment, the only aggressive peephole we do in IR gen
1080   // is trunc(zext) folding, but if we add more, we can easily
1081   // extend this protection.
1082 
1083   if (!rvalue.isScalar()) return PeepholeProtection();
1084   llvm::Value *value = rvalue.getScalarVal();
1085   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
1086 
1087   // Just make an extra bitcast.
1088   assert(HaveInsertPoint());
1089   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
1090                                                   Builder.GetInsertBlock());
1091 
1092   PeepholeProtection protection;
1093   protection.Inst = inst;
1094   return protection;
1095 }
1096 
1097 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
1098   if (!protection.Inst) return;
1099 
1100   // In theory, we could try to duplicate the peepholes now, but whatever.
1101   protection.Inst->eraseFromParent();
1102 }
1103 
1104 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn,
1105                                                  llvm::Value *AnnotatedVal,
1106                                                  llvm::StringRef AnnotationStr,
1107                                                  SourceLocation Location) {
1108   llvm::Value *Args[4] = {
1109     AnnotatedVal,
1110     Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
1111     Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
1112     CGM.EmitAnnotationLineNo(Location)
1113   };
1114   return Builder.CreateCall(AnnotationFn, Args);
1115 }
1116 
1117 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
1118   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1119   // FIXME We create a new bitcast for every annotation because that's what
1120   // llvm-gcc was doing.
1121   for (specific_attr_iterator<AnnotateAttr>
1122        ai = D->specific_attr_begin<AnnotateAttr>(),
1123        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai)
1124     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
1125                        Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
1126                        (*ai)->getAnnotation(), D->getLocation());
1127 }
1128 
1129 llvm::Value *CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
1130                                                    llvm::Value *V) {
1131   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1132   llvm::Type *VTy = V->getType();
1133   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
1134                                     CGM.Int8PtrTy);
1135 
1136   for (specific_attr_iterator<AnnotateAttr>
1137        ai = D->specific_attr_begin<AnnotateAttr>(),
1138        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) {
1139     // FIXME Always emit the cast inst so we can differentiate between
1140     // annotation on the first field of a struct and annotation on the struct
1141     // itself.
1142     if (VTy != CGM.Int8PtrTy)
1143       V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy));
1144     V = EmitAnnotationCall(F, V, (*ai)->getAnnotation(), D->getLocation());
1145     V = Builder.CreateBitCast(V, VTy);
1146   }
1147 
1148   return V;
1149 }
1150