xref: /llvm-project/clang/lib/CodeGen/CodeGenFunction.cpp (revision 5461a7523f4d92f9fa8ebfc95a708ac64a8a97fc)
1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-function state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CodeGenModule.h"
16 #include "CGCXXABI.h"
17 #include "CGDebugInfo.h"
18 #include "CGException.h"
19 #include "clang/Basic/TargetInfo.h"
20 #include "clang/AST/APValue.h"
21 #include "clang/AST/ASTContext.h"
22 #include "clang/AST/Decl.h"
23 #include "clang/AST/DeclCXX.h"
24 #include "clang/AST/StmtCXX.h"
25 #include "clang/Frontend/CodeGenOptions.h"
26 #include "llvm/Target/TargetData.h"
27 #include "llvm/Intrinsics.h"
28 using namespace clang;
29 using namespace CodeGen;
30 
31 static void ResolveAllBranchFixups(CodeGenFunction &CGF,
32                                    llvm::SwitchInst *Switch,
33                                    llvm::BasicBlock *CleanupEntry);
34 
35 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm)
36   : BlockFunction(cgm, *this, Builder), CGM(cgm),
37     Target(CGM.getContext().Target),
38     Builder(cgm.getModule().getContext()),
39     NormalCleanupDest(0), EHCleanupDest(0), NextCleanupDestIndex(1),
40     ExceptionSlot(0), DebugInfo(0), IndirectBranch(0),
41     SwitchInsn(0), CaseRangeBlock(0),
42     DidCallStackSave(false), UnreachableBlock(0),
43     CXXThisDecl(0), CXXThisValue(0), CXXVTTDecl(0), CXXVTTValue(0),
44     ConditionalBranchLevel(0), TerminateLandingPad(0), TerminateHandler(0),
45     TrapBB(0) {
46 
47   // Get some frequently used types.
48   LLVMPointerWidth = Target.getPointerWidth(0);
49   llvm::LLVMContext &LLVMContext = CGM.getLLVMContext();
50   IntPtrTy = llvm::IntegerType::get(LLVMContext, LLVMPointerWidth);
51   Int32Ty  = llvm::Type::getInt32Ty(LLVMContext);
52   Int64Ty  = llvm::Type::getInt64Ty(LLVMContext);
53 
54   Exceptions = getContext().getLangOptions().Exceptions;
55   CatchUndefined = getContext().getLangOptions().CatchUndefined;
56   CGM.getCXXABI().getMangleContext().startNewFunction();
57 }
58 
59 ASTContext &CodeGenFunction::getContext() const {
60   return CGM.getContext();
61 }
62 
63 
64 const llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
65   return CGM.getTypes().ConvertTypeForMem(T);
66 }
67 
68 const llvm::Type *CodeGenFunction::ConvertType(QualType T) {
69   return CGM.getTypes().ConvertType(T);
70 }
71 
72 bool CodeGenFunction::hasAggregateLLVMType(QualType T) {
73   return T->isRecordType() || T->isArrayType() || T->isAnyComplexType() ||
74     T->isObjCObjectType();
75 }
76 
77 void CodeGenFunction::EmitReturnBlock() {
78   // For cleanliness, we try to avoid emitting the return block for
79   // simple cases.
80   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
81 
82   if (CurBB) {
83     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
84 
85     // We have a valid insert point, reuse it if it is empty or there are no
86     // explicit jumps to the return block.
87     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
88       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
89       delete ReturnBlock.getBlock();
90     } else
91       EmitBlock(ReturnBlock.getBlock());
92     return;
93   }
94 
95   // Otherwise, if the return block is the target of a single direct
96   // branch then we can just put the code in that block instead. This
97   // cleans up functions which started with a unified return block.
98   if (ReturnBlock.getBlock()->hasOneUse()) {
99     llvm::BranchInst *BI =
100       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->use_begin());
101     if (BI && BI->isUnconditional() &&
102         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
103       // Reset insertion point and delete the branch.
104       Builder.SetInsertPoint(BI->getParent());
105       BI->eraseFromParent();
106       delete ReturnBlock.getBlock();
107       return;
108     }
109   }
110 
111   // FIXME: We are at an unreachable point, there is no reason to emit the block
112   // unless it has uses. However, we still need a place to put the debug
113   // region.end for now.
114 
115   EmitBlock(ReturnBlock.getBlock());
116 }
117 
118 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
119   if (!BB) return;
120   if (!BB->use_empty())
121     return CGF.CurFn->getBasicBlockList().push_back(BB);
122   delete BB;
123 }
124 
125 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
126   assert(BreakContinueStack.empty() &&
127          "mismatched push/pop in break/continue stack!");
128 
129   // Emit function epilog (to return).
130   EmitReturnBlock();
131 
132   EmitFunctionInstrumentation("__cyg_profile_func_exit");
133 
134   // Emit debug descriptor for function end.
135   if (CGDebugInfo *DI = getDebugInfo()) {
136     DI->setLocation(EndLoc);
137     DI->EmitFunctionEnd(Builder);
138   }
139 
140   EmitFunctionEpilog(*CurFnInfo);
141   EmitEndEHSpec(CurCodeDecl);
142 
143   assert(EHStack.empty() &&
144          "did not remove all scopes from cleanup stack!");
145 
146   // If someone did an indirect goto, emit the indirect goto block at the end of
147   // the function.
148   if (IndirectBranch) {
149     EmitBlock(IndirectBranch->getParent());
150     Builder.ClearInsertionPoint();
151   }
152 
153   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
154   llvm::Instruction *Ptr = AllocaInsertPt;
155   AllocaInsertPt = 0;
156   Ptr->eraseFromParent();
157 
158   // If someone took the address of a label but never did an indirect goto, we
159   // made a zero entry PHI node, which is illegal, zap it now.
160   if (IndirectBranch) {
161     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
162     if (PN->getNumIncomingValues() == 0) {
163       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
164       PN->eraseFromParent();
165     }
166   }
167 
168   EmitIfUsed(*this, RethrowBlock.getBlock());
169   EmitIfUsed(*this, TerminateLandingPad);
170   EmitIfUsed(*this, TerminateHandler);
171   EmitIfUsed(*this, UnreachableBlock);
172 
173   if (CGM.getCodeGenOpts().EmitDeclMetadata)
174     EmitDeclMetadata();
175 }
176 
177 /// ShouldInstrumentFunction - Return true if the current function should be
178 /// instrumented with __cyg_profile_func_* calls
179 bool CodeGenFunction::ShouldInstrumentFunction() {
180   if (!CGM.getCodeGenOpts().InstrumentFunctions)
181     return false;
182   if (CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
183     return false;
184   return true;
185 }
186 
187 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
188 /// instrumentation function with the current function and the call site, if
189 /// function instrumentation is enabled.
190 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) {
191   if (!ShouldInstrumentFunction())
192     return;
193 
194   const llvm::PointerType *PointerTy;
195   const llvm::FunctionType *FunctionTy;
196   std::vector<const llvm::Type*> ProfileFuncArgs;
197 
198   // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site);
199   PointerTy = llvm::Type::getInt8PtrTy(VMContext);
200   ProfileFuncArgs.push_back(PointerTy);
201   ProfileFuncArgs.push_back(PointerTy);
202   FunctionTy = llvm::FunctionType::get(
203     llvm::Type::getVoidTy(VMContext),
204     ProfileFuncArgs, false);
205 
206   llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn);
207   llvm::CallInst *CallSite = Builder.CreateCall(
208     CGM.getIntrinsic(llvm::Intrinsic::returnaddress, 0, 0),
209     llvm::ConstantInt::get(Int32Ty, 0),
210     "callsite");
211 
212   Builder.CreateCall2(F,
213                       llvm::ConstantExpr::getBitCast(CurFn, PointerTy),
214                       CallSite);
215 }
216 
217 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy,
218                                     llvm::Function *Fn,
219                                     const FunctionArgList &Args,
220                                     SourceLocation StartLoc) {
221   const Decl *D = GD.getDecl();
222 
223   DidCallStackSave = false;
224   CurCodeDecl = CurFuncDecl = D;
225   FnRetTy = RetTy;
226   CurFn = Fn;
227   assert(CurFn->isDeclaration() && "Function already has body?");
228 
229   // Pass inline keyword to optimizer if it appears explicitly on any
230   // declaration.
231   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
232     for (FunctionDecl::redecl_iterator RI = FD->redecls_begin(),
233            RE = FD->redecls_end(); RI != RE; ++RI)
234       if (RI->isInlineSpecified()) {
235         Fn->addFnAttr(llvm::Attribute::InlineHint);
236         break;
237       }
238 
239   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
240 
241   // Create a marker to make it easy to insert allocas into the entryblock
242   // later.  Don't create this with the builder, because we don't want it
243   // folded.
244   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
245   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB);
246   if (Builder.isNamePreserving())
247     AllocaInsertPt->setName("allocapt");
248 
249   ReturnBlock = getJumpDestInCurrentScope("return");
250 
251   Builder.SetInsertPoint(EntryBB);
252 
253   // Emit subprogram debug descriptor.
254   if (CGDebugInfo *DI = getDebugInfo()) {
255     // FIXME: what is going on here and why does it ignore all these
256     // interesting type properties?
257     QualType FnType =
258       getContext().getFunctionType(RetTy, 0, 0,
259                                    FunctionProtoType::ExtProtoInfo());
260 
261     DI->setLocation(StartLoc);
262     DI->EmitFunctionStart(GD, FnType, CurFn, Builder);
263   }
264 
265   EmitFunctionInstrumentation("__cyg_profile_func_enter");
266 
267   // FIXME: Leaked.
268   // CC info is ignored, hopefully?
269   CurFnInfo = &CGM.getTypes().getFunctionInfo(FnRetTy, Args,
270                                               FunctionType::ExtInfo());
271 
272   if (RetTy->isVoidType()) {
273     // Void type; nothing to return.
274     ReturnValue = 0;
275   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
276              hasAggregateLLVMType(CurFnInfo->getReturnType())) {
277     // Indirect aggregate return; emit returned value directly into sret slot.
278     // This reduces code size, and affects correctness in C++.
279     ReturnValue = CurFn->arg_begin();
280   } else {
281     ReturnValue = CreateIRTemp(RetTy, "retval");
282   }
283 
284   EmitStartEHSpec(CurCodeDecl);
285   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
286 
287   if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance())
288     CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
289 
290   // If any of the arguments have a variably modified type, make sure to
291   // emit the type size.
292   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
293        i != e; ++i) {
294     QualType Ty = i->second;
295 
296     if (Ty->isVariablyModifiedType())
297       EmitVLASize(Ty);
298   }
299 }
300 
301 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args) {
302   const FunctionDecl *FD = cast<FunctionDecl>(CurGD.getDecl());
303   assert(FD->getBody());
304   EmitStmt(FD->getBody());
305 }
306 
307 /// Tries to mark the given function nounwind based on the
308 /// non-existence of any throwing calls within it.  We believe this is
309 /// lightweight enough to do at -O0.
310 static void TryMarkNoThrow(llvm::Function *F) {
311   // LLVM treats 'nounwind' on a function as part of the type, so we
312   // can't do this on functions that can be overwritten.
313   if (F->mayBeOverridden()) return;
314 
315   for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI)
316     for (llvm::BasicBlock::iterator
317            BI = FI->begin(), BE = FI->end(); BI != BE; ++BI)
318       if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI))
319         if (!Call->doesNotThrow())
320           return;
321   F->setDoesNotThrow(true);
322 }
323 
324 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn) {
325   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
326 
327   // Check if we should generate debug info for this function.
328   if (CGM.getDebugInfo() && !FD->hasAttr<NoDebugAttr>())
329     DebugInfo = CGM.getDebugInfo();
330 
331   FunctionArgList Args;
332   QualType ResTy = FD->getResultType();
333 
334   CurGD = GD;
335   if (isa<CXXMethodDecl>(FD) && cast<CXXMethodDecl>(FD)->isInstance())
336     CGM.getCXXABI().BuildInstanceFunctionParams(*this, ResTy, Args);
337 
338   if (FD->getNumParams()) {
339     const FunctionProtoType* FProto = FD->getType()->getAs<FunctionProtoType>();
340     assert(FProto && "Function def must have prototype!");
341 
342     for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i)
343       Args.push_back(std::make_pair(FD->getParamDecl(i),
344                                     FProto->getArgType(i)));
345   }
346 
347   SourceRange BodyRange;
348   if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange();
349 
350   // Emit the standard function prologue.
351   StartFunction(GD, ResTy, Fn, Args, BodyRange.getBegin());
352 
353   // Generate the body of the function.
354   if (isa<CXXDestructorDecl>(FD))
355     EmitDestructorBody(Args);
356   else if (isa<CXXConstructorDecl>(FD))
357     EmitConstructorBody(Args);
358   else
359     EmitFunctionBody(Args);
360 
361   // Emit the standard function epilogue.
362   FinishFunction(BodyRange.getEnd());
363 
364   // If we haven't marked the function nothrow through other means, do
365   // a quick pass now to see if we can.
366   if (!CurFn->doesNotThrow())
367     TryMarkNoThrow(CurFn);
368 }
369 
370 /// ContainsLabel - Return true if the statement contains a label in it.  If
371 /// this statement is not executed normally, it not containing a label means
372 /// that we can just remove the code.
373 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
374   // Null statement, not a label!
375   if (S == 0) return false;
376 
377   // If this is a label, we have to emit the code, consider something like:
378   // if (0) {  ...  foo:  bar(); }  goto foo;
379   if (isa<LabelStmt>(S))
380     return true;
381 
382   // If this is a case/default statement, and we haven't seen a switch, we have
383   // to emit the code.
384   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
385     return true;
386 
387   // If this is a switch statement, we want to ignore cases below it.
388   if (isa<SwitchStmt>(S))
389     IgnoreCaseStmts = true;
390 
391   // Scan subexpressions for verboten labels.
392   for (Stmt::const_child_iterator I = S->child_begin(), E = S->child_end();
393        I != E; ++I)
394     if (ContainsLabel(*I, IgnoreCaseStmts))
395       return true;
396 
397   return false;
398 }
399 
400 
401 /// ConstantFoldsToSimpleInteger - If the sepcified expression does not fold to
402 /// a constant, or if it does but contains a label, return 0.  If it constant
403 /// folds to 'true' and does not contain a label, return 1, if it constant folds
404 /// to 'false' and does not contain a label, return -1.
405 int CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond) {
406   // FIXME: Rename and handle conversion of other evaluatable things
407   // to bool.
408   Expr::EvalResult Result;
409   if (!Cond->Evaluate(Result, getContext()) || !Result.Val.isInt() ||
410       Result.HasSideEffects)
411     return 0;  // Not foldable, not integer or not fully evaluatable.
412 
413   if (CodeGenFunction::ContainsLabel(Cond))
414     return 0;  // Contains a label.
415 
416   return Result.Val.getInt().getBoolValue() ? 1 : -1;
417 }
418 
419 
420 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
421 /// statement) to the specified blocks.  Based on the condition, this might try
422 /// to simplify the codegen of the conditional based on the branch.
423 ///
424 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
425                                            llvm::BasicBlock *TrueBlock,
426                                            llvm::BasicBlock *FalseBlock) {
427   if (const ParenExpr *PE = dyn_cast<ParenExpr>(Cond))
428     return EmitBranchOnBoolExpr(PE->getSubExpr(), TrueBlock, FalseBlock);
429 
430   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
431     // Handle X && Y in a condition.
432     if (CondBOp->getOpcode() == BO_LAnd) {
433       // If we have "1 && X", simplify the code.  "0 && X" would have constant
434       // folded if the case was simple enough.
435       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS()) == 1) {
436         // br(1 && X) -> br(X).
437         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
438       }
439 
440       // If we have "X && 1", simplify the code to use an uncond branch.
441       // "X && 0" would have been constant folded to 0.
442       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS()) == 1) {
443         // br(X && 1) -> br(X).
444         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock);
445       }
446 
447       // Emit the LHS as a conditional.  If the LHS conditional is false, we
448       // want to jump to the FalseBlock.
449       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
450       EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock);
451       EmitBlock(LHSTrue);
452 
453       // Any temporaries created here are conditional.
454       BeginConditionalBranch();
455       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
456       EndConditionalBranch();
457 
458       return;
459     } else if (CondBOp->getOpcode() == BO_LOr) {
460       // If we have "0 || X", simplify the code.  "1 || X" would have constant
461       // folded if the case was simple enough.
462       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS()) == -1) {
463         // br(0 || X) -> br(X).
464         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
465       }
466 
467       // If we have "X || 0", simplify the code to use an uncond branch.
468       // "X || 1" would have been constant folded to 1.
469       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS()) == -1) {
470         // br(X || 0) -> br(X).
471         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock);
472       }
473 
474       // Emit the LHS as a conditional.  If the LHS conditional is true, we
475       // want to jump to the TrueBlock.
476       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
477       EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse);
478       EmitBlock(LHSFalse);
479 
480       // Any temporaries created here are conditional.
481       BeginConditionalBranch();
482       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
483       EndConditionalBranch();
484 
485       return;
486     }
487   }
488 
489   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
490     // br(!x, t, f) -> br(x, f, t)
491     if (CondUOp->getOpcode() == UO_LNot)
492       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock);
493   }
494 
495   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
496     // Handle ?: operator.
497 
498     // Just ignore GNU ?: extension.
499     if (CondOp->getLHS()) {
500       // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
501       llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
502       llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
503       EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock);
504       EmitBlock(LHSBlock);
505       EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock);
506       EmitBlock(RHSBlock);
507       EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock);
508       return;
509     }
510   }
511 
512   // Emit the code with the fully general case.
513   llvm::Value *CondV = EvaluateExprAsBool(Cond);
514   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock);
515 }
516 
517 /// ErrorUnsupported - Print out an error that codegen doesn't support the
518 /// specified stmt yet.
519 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type,
520                                        bool OmitOnError) {
521   CGM.ErrorUnsupported(S, Type, OmitOnError);
522 }
523 
524 void
525 CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) {
526   // Ignore empty classes in C++.
527   if (getContext().getLangOptions().CPlusPlus) {
528     if (const RecordType *RT = Ty->getAs<RecordType>()) {
529       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
530         return;
531     }
532   }
533 
534   // Cast the dest ptr to the appropriate i8 pointer type.
535   unsigned DestAS =
536     cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace();
537   const llvm::Type *BP = Builder.getInt8PtrTy(DestAS);
538   if (DestPtr->getType() != BP)
539     DestPtr = Builder.CreateBitCast(DestPtr, BP, "tmp");
540 
541   // Get size and alignment info for this aggregate.
542   std::pair<uint64_t, unsigned> TypeInfo = getContext().getTypeInfo(Ty);
543   uint64_t Size = TypeInfo.first / 8;
544   unsigned Align = TypeInfo.second / 8;
545 
546   // Don't bother emitting a zero-byte memset.
547   if (Size == 0)
548     return;
549 
550   llvm::ConstantInt *SizeVal = llvm::ConstantInt::get(IntPtrTy, Size);
551 
552   // If the type contains a pointer to data member we can't memset it to zero.
553   // Instead, create a null constant and copy it to the destination.
554   if (!CGM.getTypes().isZeroInitializable(Ty)) {
555     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
556 
557     llvm::GlobalVariable *NullVariable =
558       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
559                                /*isConstant=*/true,
560                                llvm::GlobalVariable::PrivateLinkage,
561                                NullConstant, llvm::Twine());
562     llvm::Value *SrcPtr =
563       Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy());
564 
565     // FIXME: variable-size types?
566 
567     // Get and call the appropriate llvm.memcpy overload.
568     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align, false);
569     return;
570   }
571 
572   // Otherwise, just memset the whole thing to zero.  This is legal
573   // because in LLVM, all default initializers (other than the ones we just
574   // handled above) are guaranteed to have a bit pattern of all zeros.
575 
576   // FIXME: Handle variable sized types.
577   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, Align, false);
578 }
579 
580 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelStmt *L) {
581   // Make sure that there is a block for the indirect goto.
582   if (IndirectBranch == 0)
583     GetIndirectGotoBlock();
584 
585   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
586 
587   // Make sure the indirect branch includes all of the address-taken blocks.
588   IndirectBranch->addDestination(BB);
589   return llvm::BlockAddress::get(CurFn, BB);
590 }
591 
592 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
593   // If we already made the indirect branch for indirect goto, return its block.
594   if (IndirectBranch) return IndirectBranch->getParent();
595 
596   CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto"));
597 
598   const llvm::Type *Int8PtrTy = llvm::Type::getInt8PtrTy(VMContext);
599 
600   // Create the PHI node that indirect gotos will add entries to.
601   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, "indirect.goto.dest");
602 
603   // Create the indirect branch instruction.
604   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
605   return IndirectBranch->getParent();
606 }
607 
608 llvm::Value *CodeGenFunction::GetVLASize(const VariableArrayType *VAT) {
609   llvm::Value *&SizeEntry = VLASizeMap[VAT->getSizeExpr()];
610 
611   assert(SizeEntry && "Did not emit size for type");
612   return SizeEntry;
613 }
614 
615 llvm::Value *CodeGenFunction::EmitVLASize(QualType Ty) {
616   assert(Ty->isVariablyModifiedType() &&
617          "Must pass variably modified type to EmitVLASizes!");
618 
619   EnsureInsertPoint();
620 
621   if (const VariableArrayType *VAT = getContext().getAsVariableArrayType(Ty)) {
622     // unknown size indication requires no size computation.
623     if (!VAT->getSizeExpr())
624       return 0;
625     llvm::Value *&SizeEntry = VLASizeMap[VAT->getSizeExpr()];
626 
627     if (!SizeEntry) {
628       const llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
629 
630       // Get the element size;
631       QualType ElemTy = VAT->getElementType();
632       llvm::Value *ElemSize;
633       if (ElemTy->isVariableArrayType())
634         ElemSize = EmitVLASize(ElemTy);
635       else
636         ElemSize = llvm::ConstantInt::get(SizeTy,
637             getContext().getTypeSizeInChars(ElemTy).getQuantity());
638 
639       llvm::Value *NumElements = EmitScalarExpr(VAT->getSizeExpr());
640       NumElements = Builder.CreateIntCast(NumElements, SizeTy, false, "tmp");
641 
642       SizeEntry = Builder.CreateMul(ElemSize, NumElements);
643     }
644 
645     return SizeEntry;
646   }
647 
648   if (const ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
649     EmitVLASize(AT->getElementType());
650     return 0;
651   }
652 
653   if (const ParenType *PT = dyn_cast<ParenType>(Ty)) {
654     EmitVLASize(PT->getInnerType());
655     return 0;
656   }
657 
658   const PointerType *PT = Ty->getAs<PointerType>();
659   assert(PT && "unknown VM type!");
660   EmitVLASize(PT->getPointeeType());
661   return 0;
662 }
663 
664 llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) {
665   if (getContext().getBuiltinVaListType()->isArrayType())
666     return EmitScalarExpr(E);
667   return EmitLValue(E).getAddress();
668 }
669 
670 /// Pops cleanup blocks until the given savepoint is reached.
671 void CodeGenFunction::PopCleanupBlocks(EHScopeStack::stable_iterator Old) {
672   assert(Old.isValid());
673 
674   while (EHStack.stable_begin() != Old) {
675     EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.begin());
676 
677     // As long as Old strictly encloses the scope's enclosing normal
678     // cleanup, we're going to emit another normal cleanup which
679     // fallthrough can propagate through.
680     bool FallThroughIsBranchThrough =
681       Old.strictlyEncloses(Scope.getEnclosingNormalCleanup());
682 
683     PopCleanupBlock(FallThroughIsBranchThrough);
684   }
685 }
686 
687 static llvm::BasicBlock *CreateNormalEntry(CodeGenFunction &CGF,
688                                            EHCleanupScope &Scope) {
689   assert(Scope.isNormalCleanup());
690   llvm::BasicBlock *Entry = Scope.getNormalBlock();
691   if (!Entry) {
692     Entry = CGF.createBasicBlock("cleanup");
693     Scope.setNormalBlock(Entry);
694   }
695   return Entry;
696 }
697 
698 static llvm::BasicBlock *CreateEHEntry(CodeGenFunction &CGF,
699                                        EHCleanupScope &Scope) {
700   assert(Scope.isEHCleanup());
701   llvm::BasicBlock *Entry = Scope.getEHBlock();
702   if (!Entry) {
703     Entry = CGF.createBasicBlock("eh.cleanup");
704     Scope.setEHBlock(Entry);
705   }
706   return Entry;
707 }
708 
709 /// Transitions the terminator of the given exit-block of a cleanup to
710 /// be a cleanup switch.
711 static llvm::SwitchInst *TransitionToCleanupSwitch(CodeGenFunction &CGF,
712                                                    llvm::BasicBlock *Block) {
713   // If it's a branch, turn it into a switch whose default
714   // destination is its original target.
715   llvm::TerminatorInst *Term = Block->getTerminator();
716   assert(Term && "can't transition block without terminator");
717 
718   if (llvm::BranchInst *Br = dyn_cast<llvm::BranchInst>(Term)) {
719     assert(Br->isUnconditional());
720     llvm::LoadInst *Load =
721       new llvm::LoadInst(CGF.getNormalCleanupDestSlot(), "cleanup.dest", Term);
722     llvm::SwitchInst *Switch =
723       llvm::SwitchInst::Create(Load, Br->getSuccessor(0), 4, Block);
724     Br->eraseFromParent();
725     return Switch;
726   } else {
727     return cast<llvm::SwitchInst>(Term);
728   }
729 }
730 
731 /// Attempts to reduce a cleanup's entry block to a fallthrough.  This
732 /// is basically llvm::MergeBlockIntoPredecessor, except
733 /// simplified/optimized for the tighter constraints on cleanup blocks.
734 ///
735 /// Returns the new block, whatever it is.
736 static llvm::BasicBlock *SimplifyCleanupEntry(CodeGenFunction &CGF,
737                                               llvm::BasicBlock *Entry) {
738   llvm::BasicBlock *Pred = Entry->getSinglePredecessor();
739   if (!Pred) return Entry;
740 
741   llvm::BranchInst *Br = dyn_cast<llvm::BranchInst>(Pred->getTerminator());
742   if (!Br || Br->isConditional()) return Entry;
743   assert(Br->getSuccessor(0) == Entry);
744 
745   // If we were previously inserting at the end of the cleanup entry
746   // block, we'll need to continue inserting at the end of the
747   // predecessor.
748   bool WasInsertBlock = CGF.Builder.GetInsertBlock() == Entry;
749   assert(!WasInsertBlock || CGF.Builder.GetInsertPoint() == Entry->end());
750 
751   // Kill the branch.
752   Br->eraseFromParent();
753 
754   // Merge the blocks.
755   Pred->getInstList().splice(Pred->end(), Entry->getInstList());
756 
757   // Replace all uses of the entry with the predecessor, in case there
758   // are phis in the cleanup.
759   Entry->replaceAllUsesWith(Pred);
760 
761   // Kill the entry block.
762   Entry->eraseFromParent();
763 
764   if (WasInsertBlock)
765     CGF.Builder.SetInsertPoint(Pred);
766 
767   return Pred;
768 }
769 
770 static void EmitCleanup(CodeGenFunction &CGF,
771                         EHScopeStack::Cleanup *Fn,
772                         bool ForEH,
773                         llvm::Value *ActiveFlag) {
774   // EH cleanups always occur within a terminate scope.
775   if (ForEH) CGF.EHStack.pushTerminate();
776 
777   // If there's an active flag, load it and skip the cleanup if it's
778   // false.
779   llvm::BasicBlock *ContBB = 0;
780   if (ActiveFlag) {
781     ContBB = CGF.createBasicBlock("cleanup.done");
782     llvm::BasicBlock *CleanupBB = CGF.createBasicBlock("cleanup.action");
783     llvm::Value *IsActive
784       = CGF.Builder.CreateLoad(ActiveFlag, "cleanup.is_active");
785     CGF.Builder.CreateCondBr(IsActive, CleanupBB, ContBB);
786     CGF.EmitBlock(CleanupBB);
787   }
788 
789   // Ask the cleanup to emit itself.
790   Fn->Emit(CGF, ForEH);
791   assert(CGF.HaveInsertPoint() && "cleanup ended with no insertion point?");
792 
793   // Emit the continuation block if there was an active flag.
794   if (ActiveFlag)
795     CGF.EmitBlock(ContBB);
796 
797   // Leave the terminate scope.
798   if (ForEH) CGF.EHStack.popTerminate();
799 }
800 
801 static void ForwardPrebranchedFallthrough(llvm::BasicBlock *Exit,
802                                           llvm::BasicBlock *From,
803                                           llvm::BasicBlock *To) {
804   // Exit is the exit block of a cleanup, so it always terminates in
805   // an unconditional branch or a switch.
806   llvm::TerminatorInst *Term = Exit->getTerminator();
807 
808   if (llvm::BranchInst *Br = dyn_cast<llvm::BranchInst>(Term)) {
809     assert(Br->isUnconditional() && Br->getSuccessor(0) == From);
810     Br->setSuccessor(0, To);
811   } else {
812     llvm::SwitchInst *Switch = cast<llvm::SwitchInst>(Term);
813     for (unsigned I = 0, E = Switch->getNumSuccessors(); I != E; ++I)
814       if (Switch->getSuccessor(I) == From)
815         Switch->setSuccessor(I, To);
816   }
817 }
818 
819 /// Pops a cleanup block.  If the block includes a normal cleanup, the
820 /// current insertion point is threaded through the cleanup, as are
821 /// any branch fixups on the cleanup.
822 void CodeGenFunction::PopCleanupBlock(bool FallthroughIsBranchThrough) {
823   assert(!EHStack.empty() && "cleanup stack is empty!");
824   assert(isa<EHCleanupScope>(*EHStack.begin()) && "top not a cleanup!");
825   EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.begin());
826   assert(Scope.getFixupDepth() <= EHStack.getNumBranchFixups());
827 
828   // Remember activation information.
829   bool IsActive = Scope.isActive();
830   llvm::Value *NormalActiveFlag =
831     Scope.shouldTestFlagInNormalCleanup() ? Scope.getActiveFlag() : 0;
832   llvm::Value *EHActiveFlag =
833     Scope.shouldTestFlagInEHCleanup() ? Scope.getActiveFlag() : 0;
834 
835   // Check whether we need an EH cleanup.  This is only true if we've
836   // generated a lazy EH cleanup block.
837   bool RequiresEHCleanup = Scope.hasEHBranches();
838 
839   // Check the three conditions which might require a normal cleanup:
840 
841   // - whether there are branch fix-ups through this cleanup
842   unsigned FixupDepth = Scope.getFixupDepth();
843   bool HasFixups = EHStack.getNumBranchFixups() != FixupDepth;
844 
845   // - whether there are branch-throughs or branch-afters
846   bool HasExistingBranches = Scope.hasBranches();
847 
848   // - whether there's a fallthrough
849   llvm::BasicBlock *FallthroughSource = Builder.GetInsertBlock();
850   bool HasFallthrough = (FallthroughSource != 0 && IsActive);
851 
852   // Branch-through fall-throughs leave the insertion point set to the
853   // end of the last cleanup, which points to the current scope.  The
854   // rest of IR gen doesn't need to worry about this; it only happens
855   // during the execution of PopCleanupBlocks().
856   bool HasPrebranchedFallthrough =
857     (FallthroughSource && FallthroughSource->getTerminator());
858 
859   // If this is a normal cleanup, then having a prebranched
860   // fallthrough implies that the fallthrough source unconditionally
861   // jumps here.
862   assert(!Scope.isNormalCleanup() || !HasPrebranchedFallthrough ||
863          (Scope.getNormalBlock() &&
864           FallthroughSource->getTerminator()->getSuccessor(0)
865             == Scope.getNormalBlock()));
866 
867   bool RequiresNormalCleanup = false;
868   if (Scope.isNormalCleanup() &&
869       (HasFixups || HasExistingBranches || HasFallthrough)) {
870     RequiresNormalCleanup = true;
871   }
872 
873   // Even if we don't need the normal cleanup, we might still have
874   // prebranched fallthrough to worry about.
875   if (Scope.isNormalCleanup() && !RequiresNormalCleanup &&
876       HasPrebranchedFallthrough) {
877     assert(!IsActive);
878 
879     llvm::BasicBlock *NormalEntry = Scope.getNormalBlock();
880 
881     // If we're branching through this cleanup, just forward the
882     // prebranched fallthrough to the next cleanup, leaving the insert
883     // point in the old block.
884     if (FallthroughIsBranchThrough) {
885       EHScope &S = *EHStack.find(Scope.getEnclosingNormalCleanup());
886       llvm::BasicBlock *EnclosingEntry =
887         CreateNormalEntry(*this, cast<EHCleanupScope>(S));
888 
889       ForwardPrebranchedFallthrough(FallthroughSource,
890                                     NormalEntry, EnclosingEntry);
891       assert(NormalEntry->use_empty() &&
892              "uses of entry remain after forwarding?");
893       delete NormalEntry;
894 
895     // Otherwise, we're branching out;  just emit the next block.
896     } else {
897       EmitBlock(NormalEntry);
898       SimplifyCleanupEntry(*this, NormalEntry);
899     }
900   }
901 
902   // If we don't need the cleanup at all, we're done.
903   if (!RequiresNormalCleanup && !RequiresEHCleanup) {
904     EHStack.popCleanup(); // safe because there are no fixups
905     assert(EHStack.getNumBranchFixups() == 0 ||
906            EHStack.hasNormalCleanups());
907     return;
908   }
909 
910   // Copy the cleanup emission data out.  Note that SmallVector
911   // guarantees maximal alignment for its buffer regardless of its
912   // type parameter.
913   llvm::SmallVector<char, 8*sizeof(void*)> CleanupBuffer;
914   CleanupBuffer.reserve(Scope.getCleanupSize());
915   memcpy(CleanupBuffer.data(),
916          Scope.getCleanupBuffer(), Scope.getCleanupSize());
917   CleanupBuffer.set_size(Scope.getCleanupSize());
918   EHScopeStack::Cleanup *Fn =
919     reinterpret_cast<EHScopeStack::Cleanup*>(CleanupBuffer.data());
920 
921   // We want to emit the EH cleanup after the normal cleanup, but go
922   // ahead and do the setup for the EH cleanup while the scope is still
923   // alive.
924   llvm::BasicBlock *EHEntry = 0;
925   llvm::SmallVector<llvm::Instruction*, 2> EHInstsToAppend;
926   if (RequiresEHCleanup) {
927     EHEntry = CreateEHEntry(*this, Scope);
928 
929     // Figure out the branch-through dest if necessary.
930     llvm::BasicBlock *EHBranchThroughDest = 0;
931     if (Scope.hasEHBranchThroughs()) {
932       assert(Scope.getEnclosingEHCleanup() != EHStack.stable_end());
933       EHScope &S = *EHStack.find(Scope.getEnclosingEHCleanup());
934       EHBranchThroughDest = CreateEHEntry(*this, cast<EHCleanupScope>(S));
935     }
936 
937     // If we have exactly one branch-after and no branch-throughs, we
938     // can dispatch it without a switch.
939     if (!Scope.hasEHBranchThroughs() &&
940         Scope.getNumEHBranchAfters() == 1) {
941       assert(!EHBranchThroughDest);
942 
943       // TODO: remove the spurious eh.cleanup.dest stores if this edge
944       // never went through any switches.
945       llvm::BasicBlock *BranchAfterDest = Scope.getEHBranchAfterBlock(0);
946       EHInstsToAppend.push_back(llvm::BranchInst::Create(BranchAfterDest));
947 
948     // Otherwise, if we have any branch-afters, we need a switch.
949     } else if (Scope.getNumEHBranchAfters()) {
950       // The default of the switch belongs to the branch-throughs if
951       // they exist.
952       llvm::BasicBlock *Default =
953         (EHBranchThroughDest ? EHBranchThroughDest : getUnreachableBlock());
954 
955       const unsigned SwitchCapacity = Scope.getNumEHBranchAfters();
956 
957       llvm::LoadInst *Load =
958         new llvm::LoadInst(getEHCleanupDestSlot(), "cleanup.dest");
959       llvm::SwitchInst *Switch =
960         llvm::SwitchInst::Create(Load, Default, SwitchCapacity);
961 
962       EHInstsToAppend.push_back(Load);
963       EHInstsToAppend.push_back(Switch);
964 
965       for (unsigned I = 0, E = Scope.getNumEHBranchAfters(); I != E; ++I)
966         Switch->addCase(Scope.getEHBranchAfterIndex(I),
967                         Scope.getEHBranchAfterBlock(I));
968 
969     // Otherwise, we have only branch-throughs; jump to the next EH
970     // cleanup.
971     } else {
972       assert(EHBranchThroughDest);
973       EHInstsToAppend.push_back(llvm::BranchInst::Create(EHBranchThroughDest));
974     }
975   }
976 
977   if (!RequiresNormalCleanup) {
978     EHStack.popCleanup();
979   } else {
980     // If we have a fallthrough and no other need for the cleanup,
981     // emit it directly.
982     if (HasFallthrough && !HasPrebranchedFallthrough &&
983         !HasFixups && !HasExistingBranches) {
984 
985       // Fixups can cause us to optimistically create a normal block,
986       // only to later have no real uses for it.  Just delete it in
987       // this case.
988       // TODO: we can potentially simplify all the uses after this.
989       if (Scope.getNormalBlock()) {
990         Scope.getNormalBlock()->replaceAllUsesWith(getUnreachableBlock());
991         delete Scope.getNormalBlock();
992       }
993 
994       EHStack.popCleanup();
995 
996       EmitCleanup(*this, Fn, /*ForEH*/ false, NormalActiveFlag);
997 
998     // Otherwise, the best approach is to thread everything through
999     // the cleanup block and then try to clean up after ourselves.
1000     } else {
1001       // Force the entry block to exist.
1002       llvm::BasicBlock *NormalEntry = CreateNormalEntry(*this, Scope);
1003 
1004       // I.  Set up the fallthrough edge in.
1005 
1006       // If there's a fallthrough, we need to store the cleanup
1007       // destination index.  For fall-throughs this is always zero.
1008       if (HasFallthrough) {
1009         if (!HasPrebranchedFallthrough)
1010           Builder.CreateStore(Builder.getInt32(0), getNormalCleanupDestSlot());
1011 
1012       // Otherwise, clear the IP if we don't have fallthrough because
1013       // the cleanup is inactive.  We don't need to save it because
1014       // it's still just FallthroughSource.
1015       } else if (FallthroughSource) {
1016         assert(!IsActive && "source without fallthrough for active cleanup");
1017         Builder.ClearInsertionPoint();
1018       }
1019 
1020       // II.  Emit the entry block.  This implicitly branches to it if
1021       // we have fallthrough.  All the fixups and existing branches
1022       // should already be branched to it.
1023       EmitBlock(NormalEntry);
1024 
1025       // III.  Figure out where we're going and build the cleanup
1026       // epilogue.
1027 
1028       bool HasEnclosingCleanups =
1029         (Scope.getEnclosingNormalCleanup() != EHStack.stable_end());
1030 
1031       // Compute the branch-through dest if we need it:
1032       //   - if there are branch-throughs threaded through the scope
1033       //   - if fall-through is a branch-through
1034       //   - if there are fixups that will be optimistically forwarded
1035       //     to the enclosing cleanup
1036       llvm::BasicBlock *BranchThroughDest = 0;
1037       if (Scope.hasBranchThroughs() ||
1038           (FallthroughSource && FallthroughIsBranchThrough) ||
1039           (HasFixups && HasEnclosingCleanups)) {
1040         assert(HasEnclosingCleanups);
1041         EHScope &S = *EHStack.find(Scope.getEnclosingNormalCleanup());
1042         BranchThroughDest = CreateNormalEntry(*this, cast<EHCleanupScope>(S));
1043       }
1044 
1045       llvm::BasicBlock *FallthroughDest = 0;
1046       llvm::SmallVector<llvm::Instruction*, 2> InstsToAppend;
1047 
1048       // If there's exactly one branch-after and no other threads,
1049       // we can route it without a switch.
1050       if (!Scope.hasBranchThroughs() && !HasFixups && !HasFallthrough &&
1051           Scope.getNumBranchAfters() == 1) {
1052         assert(!BranchThroughDest || !IsActive);
1053 
1054         // TODO: clean up the possibly dead stores to the cleanup dest slot.
1055         llvm::BasicBlock *BranchAfter = Scope.getBranchAfterBlock(0);
1056         InstsToAppend.push_back(llvm::BranchInst::Create(BranchAfter));
1057 
1058       // Build a switch-out if we need it:
1059       //   - if there are branch-afters threaded through the scope
1060       //   - if fall-through is a branch-after
1061       //   - if there are fixups that have nowhere left to go and
1062       //     so must be immediately resolved
1063       } else if (Scope.getNumBranchAfters() ||
1064                  (HasFallthrough && !FallthroughIsBranchThrough) ||
1065                  (HasFixups && !HasEnclosingCleanups)) {
1066 
1067         llvm::BasicBlock *Default =
1068           (BranchThroughDest ? BranchThroughDest : getUnreachableBlock());
1069 
1070         // TODO: base this on the number of branch-afters and fixups
1071         const unsigned SwitchCapacity = 10;
1072 
1073         llvm::LoadInst *Load =
1074           new llvm::LoadInst(getNormalCleanupDestSlot(), "cleanup.dest");
1075         llvm::SwitchInst *Switch =
1076           llvm::SwitchInst::Create(Load, Default, SwitchCapacity);
1077 
1078         InstsToAppend.push_back(Load);
1079         InstsToAppend.push_back(Switch);
1080 
1081         // Branch-after fallthrough.
1082         if (FallthroughSource && !FallthroughIsBranchThrough) {
1083           FallthroughDest = createBasicBlock("cleanup.cont");
1084           if (HasFallthrough)
1085             Switch->addCase(Builder.getInt32(0), FallthroughDest);
1086         }
1087 
1088         for (unsigned I = 0, E = Scope.getNumBranchAfters(); I != E; ++I) {
1089           Switch->addCase(Scope.getBranchAfterIndex(I),
1090                           Scope.getBranchAfterBlock(I));
1091         }
1092 
1093         // If there aren't any enclosing cleanups, we can resolve all
1094         // the fixups now.
1095         if (HasFixups && !HasEnclosingCleanups)
1096           ResolveAllBranchFixups(*this, Switch, NormalEntry);
1097       } else {
1098         // We should always have a branch-through destination in this case.
1099         assert(BranchThroughDest);
1100         InstsToAppend.push_back(llvm::BranchInst::Create(BranchThroughDest));
1101       }
1102 
1103       // IV.  Pop the cleanup and emit it.
1104       EHStack.popCleanup();
1105       assert(EHStack.hasNormalCleanups() == HasEnclosingCleanups);
1106 
1107       EmitCleanup(*this, Fn, /*ForEH*/ false, NormalActiveFlag);
1108 
1109       // Append the prepared cleanup prologue from above.
1110       llvm::BasicBlock *NormalExit = Builder.GetInsertBlock();
1111       for (unsigned I = 0, E = InstsToAppend.size(); I != E; ++I)
1112         NormalExit->getInstList().push_back(InstsToAppend[I]);
1113 
1114       // Optimistically hope that any fixups will continue falling through.
1115       for (unsigned I = FixupDepth, E = EHStack.getNumBranchFixups();
1116            I < E; ++I) {
1117         BranchFixup &Fixup = CGF.EHStack.getBranchFixup(I);
1118         if (!Fixup.Destination) continue;
1119         if (!Fixup.OptimisticBranchBlock) {
1120           new llvm::StoreInst(Builder.getInt32(Fixup.DestinationIndex),
1121                               getNormalCleanupDestSlot(),
1122                               Fixup.InitialBranch);
1123           Fixup.InitialBranch->setSuccessor(0, NormalEntry);
1124         }
1125         Fixup.OptimisticBranchBlock = NormalExit;
1126       }
1127 
1128       // V.  Set up the fallthrough edge out.
1129 
1130       // Case 1: a fallthrough source exists but shouldn't branch to
1131       // the cleanup because the cleanup is inactive.
1132       if (!HasFallthrough && FallthroughSource) {
1133         assert(!IsActive);
1134 
1135         // If we have a prebranched fallthrough, that needs to be
1136         // forwarded to the right block.
1137         if (HasPrebranchedFallthrough) {
1138           llvm::BasicBlock *Next;
1139           if (FallthroughIsBranchThrough) {
1140             Next = BranchThroughDest;
1141             assert(!FallthroughDest);
1142           } else {
1143             Next = FallthroughDest;
1144           }
1145 
1146           ForwardPrebranchedFallthrough(FallthroughSource, NormalEntry, Next);
1147         }
1148         Builder.SetInsertPoint(FallthroughSource);
1149 
1150       // Case 2: a fallthrough source exists and should branch to the
1151       // cleanup, but we're not supposed to branch through to the next
1152       // cleanup.
1153       } else if (HasFallthrough && FallthroughDest) {
1154         assert(!FallthroughIsBranchThrough);
1155         EmitBlock(FallthroughDest);
1156 
1157       // Case 3: a fallthrough source exists and should branch to the
1158       // cleanup and then through to the next.
1159       } else if (HasFallthrough) {
1160         // Everything is already set up for this.
1161 
1162       // Case 4: no fallthrough source exists.
1163       } else {
1164         Builder.ClearInsertionPoint();
1165       }
1166 
1167       // VI.  Assorted cleaning.
1168 
1169       // Check whether we can merge NormalEntry into a single predecessor.
1170       // This might invalidate (non-IR) pointers to NormalEntry.
1171       llvm::BasicBlock *NewNormalEntry =
1172         SimplifyCleanupEntry(*this, NormalEntry);
1173 
1174       // If it did invalidate those pointers, and NormalEntry was the same
1175       // as NormalExit, go back and patch up the fixups.
1176       if (NewNormalEntry != NormalEntry && NormalEntry == NormalExit)
1177         for (unsigned I = FixupDepth, E = EHStack.getNumBranchFixups();
1178                I < E; ++I)
1179           CGF.EHStack.getBranchFixup(I).OptimisticBranchBlock = NewNormalEntry;
1180     }
1181   }
1182 
1183   assert(EHStack.hasNormalCleanups() || EHStack.getNumBranchFixups() == 0);
1184 
1185   // Emit the EH cleanup if required.
1186   if (RequiresEHCleanup) {
1187     CGBuilderTy::InsertPoint SavedIP = Builder.saveAndClearIP();
1188 
1189     EmitBlock(EHEntry);
1190     EmitCleanup(*this, Fn, /*ForEH*/ true, EHActiveFlag);
1191 
1192     // Append the prepared cleanup prologue from above.
1193     llvm::BasicBlock *EHExit = Builder.GetInsertBlock();
1194     for (unsigned I = 0, E = EHInstsToAppend.size(); I != E; ++I)
1195       EHExit->getInstList().push_back(EHInstsToAppend[I]);
1196 
1197     Builder.restoreIP(SavedIP);
1198 
1199     SimplifyCleanupEntry(*this, EHEntry);
1200   }
1201 }
1202 
1203 /// Terminate the current block by emitting a branch which might leave
1204 /// the current cleanup-protected scope.  The target scope may not yet
1205 /// be known, in which case this will require a fixup.
1206 ///
1207 /// As a side-effect, this method clears the insertion point.
1208 void CodeGenFunction::EmitBranchThroughCleanup(JumpDest Dest) {
1209   assert(Dest.getScopeDepth().encloses(EHStack.getInnermostNormalCleanup())
1210          && "stale jump destination");
1211 
1212   if (!HaveInsertPoint())
1213     return;
1214 
1215   // Create the branch.
1216   llvm::BranchInst *BI = Builder.CreateBr(Dest.getBlock());
1217 
1218   // Calculate the innermost active normal cleanup.
1219   EHScopeStack::stable_iterator
1220     TopCleanup = EHStack.getInnermostActiveNormalCleanup();
1221 
1222   // If we're not in an active normal cleanup scope, or if the
1223   // destination scope is within the innermost active normal cleanup
1224   // scope, we don't need to worry about fixups.
1225   if (TopCleanup == EHStack.stable_end() ||
1226       TopCleanup.encloses(Dest.getScopeDepth())) { // works for invalid
1227     Builder.ClearInsertionPoint();
1228     return;
1229   }
1230 
1231   // If we can't resolve the destination cleanup scope, just add this
1232   // to the current cleanup scope as a branch fixup.
1233   if (!Dest.getScopeDepth().isValid()) {
1234     BranchFixup &Fixup = EHStack.addBranchFixup();
1235     Fixup.Destination = Dest.getBlock();
1236     Fixup.DestinationIndex = Dest.getDestIndex();
1237     Fixup.InitialBranch = BI;
1238     Fixup.OptimisticBranchBlock = 0;
1239 
1240     Builder.ClearInsertionPoint();
1241     return;
1242   }
1243 
1244   // Otherwise, thread through all the normal cleanups in scope.
1245 
1246   // Store the index at the start.
1247   llvm::ConstantInt *Index = Builder.getInt32(Dest.getDestIndex());
1248   new llvm::StoreInst(Index, getNormalCleanupDestSlot(), BI);
1249 
1250   // Adjust BI to point to the first cleanup block.
1251   {
1252     EHCleanupScope &Scope =
1253       cast<EHCleanupScope>(*EHStack.find(TopCleanup));
1254     BI->setSuccessor(0, CreateNormalEntry(*this, Scope));
1255   }
1256 
1257   // Add this destination to all the scopes involved.
1258   EHScopeStack::stable_iterator I = TopCleanup;
1259   EHScopeStack::stable_iterator E = Dest.getScopeDepth();
1260   if (E.strictlyEncloses(I)) {
1261     while (true) {
1262       EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.find(I));
1263       assert(Scope.isNormalCleanup());
1264       I = Scope.getEnclosingNormalCleanup();
1265 
1266       // If this is the last cleanup we're propagating through, tell it
1267       // that there's a resolved jump moving through it.
1268       if (!E.strictlyEncloses(I)) {
1269         Scope.addBranchAfter(Index, Dest.getBlock());
1270         break;
1271       }
1272 
1273       // Otherwise, tell the scope that there's a jump propoagating
1274       // through it.  If this isn't new information, all the rest of
1275       // the work has been done before.
1276       if (!Scope.addBranchThrough(Dest.getBlock()))
1277         break;
1278     }
1279   }
1280 
1281   Builder.ClearInsertionPoint();
1282 }
1283 
1284 void CodeGenFunction::EmitBranchThroughEHCleanup(UnwindDest Dest) {
1285   // We should never get invalid scope depths for an UnwindDest; that
1286   // implies that the destination wasn't set up correctly.
1287   assert(Dest.getScopeDepth().isValid() && "invalid scope depth on EH dest?");
1288 
1289   if (!HaveInsertPoint())
1290     return;
1291 
1292   // Create the branch.
1293   llvm::BranchInst *BI = Builder.CreateBr(Dest.getBlock());
1294 
1295   // Calculate the innermost active cleanup.
1296   EHScopeStack::stable_iterator
1297     InnermostCleanup = EHStack.getInnermostActiveEHCleanup();
1298 
1299   // If the destination is in the same EH cleanup scope as us, we
1300   // don't need to thread through anything.
1301   if (InnermostCleanup.encloses(Dest.getScopeDepth())) {
1302     Builder.ClearInsertionPoint();
1303     return;
1304   }
1305   assert(InnermostCleanup != EHStack.stable_end());
1306 
1307   // Store the index at the start.
1308   llvm::ConstantInt *Index = Builder.getInt32(Dest.getDestIndex());
1309   new llvm::StoreInst(Index, getEHCleanupDestSlot(), BI);
1310 
1311   // Adjust BI to point to the first cleanup block.
1312   {
1313     EHCleanupScope &Scope =
1314       cast<EHCleanupScope>(*EHStack.find(InnermostCleanup));
1315     BI->setSuccessor(0, CreateEHEntry(*this, Scope));
1316   }
1317 
1318   // Add this destination to all the scopes involved.
1319   for (EHScopeStack::stable_iterator
1320          I = InnermostCleanup, E = Dest.getScopeDepth(); ; ) {
1321     assert(E.strictlyEncloses(I));
1322     EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.find(I));
1323     assert(Scope.isEHCleanup());
1324     I = Scope.getEnclosingEHCleanup();
1325 
1326     // If this is the last cleanup we're propagating through, add this
1327     // as a branch-after.
1328     if (I == E) {
1329       Scope.addEHBranchAfter(Index, Dest.getBlock());
1330       break;
1331     }
1332 
1333     // Otherwise, add it as a branch-through.  If this isn't new
1334     // information, all the rest of the work has been done before.
1335     if (!Scope.addEHBranchThrough(Dest.getBlock()))
1336       break;
1337   }
1338 
1339   Builder.ClearInsertionPoint();
1340 }
1341 
1342 /// All the branch fixups on the EH stack have propagated out past the
1343 /// outermost normal cleanup; resolve them all by adding cases to the
1344 /// given switch instruction.
1345 static void ResolveAllBranchFixups(CodeGenFunction &CGF,
1346                                    llvm::SwitchInst *Switch,
1347                                    llvm::BasicBlock *CleanupEntry) {
1348   llvm::SmallPtrSet<llvm::BasicBlock*, 4> CasesAdded;
1349 
1350   for (unsigned I = 0, E = CGF.EHStack.getNumBranchFixups(); I != E; ++I) {
1351     // Skip this fixup if its destination isn't set.
1352     BranchFixup &Fixup = CGF.EHStack.getBranchFixup(I);
1353     if (Fixup.Destination == 0) continue;
1354 
1355     // If there isn't an OptimisticBranchBlock, then InitialBranch is
1356     // still pointing directly to its destination; forward it to the
1357     // appropriate cleanup entry.  This is required in the specific
1358     // case of
1359     //   { std::string s; goto lbl; }
1360     //   lbl:
1361     // i.e. where there's an unresolved fixup inside a single cleanup
1362     // entry which we're currently popping.
1363     if (Fixup.OptimisticBranchBlock == 0) {
1364       new llvm::StoreInst(CGF.Builder.getInt32(Fixup.DestinationIndex),
1365                           CGF.getNormalCleanupDestSlot(),
1366                           Fixup.InitialBranch);
1367       Fixup.InitialBranch->setSuccessor(0, CleanupEntry);
1368     }
1369 
1370     // Don't add this case to the switch statement twice.
1371     if (!CasesAdded.insert(Fixup.Destination)) continue;
1372 
1373     Switch->addCase(CGF.Builder.getInt32(Fixup.DestinationIndex),
1374                     Fixup.Destination);
1375   }
1376 
1377   CGF.EHStack.clearFixups();
1378 }
1379 
1380 void CodeGenFunction::ResolveBranchFixups(llvm::BasicBlock *Block) {
1381   assert(Block && "resolving a null target block");
1382   if (!EHStack.getNumBranchFixups()) return;
1383 
1384   assert(EHStack.hasNormalCleanups() &&
1385          "branch fixups exist with no normal cleanups on stack");
1386 
1387   llvm::SmallPtrSet<llvm::BasicBlock*, 4> ModifiedOptimisticBlocks;
1388   bool ResolvedAny = false;
1389 
1390   for (unsigned I = 0, E = EHStack.getNumBranchFixups(); I != E; ++I) {
1391     // Skip this fixup if its destination doesn't match.
1392     BranchFixup &Fixup = EHStack.getBranchFixup(I);
1393     if (Fixup.Destination != Block) continue;
1394 
1395     Fixup.Destination = 0;
1396     ResolvedAny = true;
1397 
1398     // If it doesn't have an optimistic branch block, LatestBranch is
1399     // already pointing to the right place.
1400     llvm::BasicBlock *BranchBB = Fixup.OptimisticBranchBlock;
1401     if (!BranchBB)
1402       continue;
1403 
1404     // Don't process the same optimistic branch block twice.
1405     if (!ModifiedOptimisticBlocks.insert(BranchBB))
1406       continue;
1407 
1408     llvm::SwitchInst *Switch = TransitionToCleanupSwitch(*this, BranchBB);
1409 
1410     // Add a case to the switch.
1411     Switch->addCase(Builder.getInt32(Fixup.DestinationIndex), Block);
1412   }
1413 
1414   if (ResolvedAny)
1415     EHStack.popNullFixups();
1416 }
1417 
1418 static bool IsUsedAsNormalCleanup(EHScopeStack &EHStack,
1419                                   EHScopeStack::stable_iterator C) {
1420   // If we needed a normal block for any reason, that counts.
1421   if (cast<EHCleanupScope>(*EHStack.find(C)).getNormalBlock())
1422     return true;
1423 
1424   // Check whether any enclosed cleanups were needed.
1425   for (EHScopeStack::stable_iterator
1426          I = EHStack.getInnermostNormalCleanup();
1427          I != C; ) {
1428     assert(C.strictlyEncloses(I));
1429     EHCleanupScope &S = cast<EHCleanupScope>(*EHStack.find(I));
1430     if (S.getNormalBlock()) return true;
1431     I = S.getEnclosingNormalCleanup();
1432   }
1433 
1434   return false;
1435 }
1436 
1437 static bool IsUsedAsEHCleanup(EHScopeStack &EHStack,
1438                               EHScopeStack::stable_iterator C) {
1439   // If we needed an EH block for any reason, that counts.
1440   if (cast<EHCleanupScope>(*EHStack.find(C)).getEHBlock())
1441     return true;
1442 
1443   // Check whether any enclosed cleanups were needed.
1444   for (EHScopeStack::stable_iterator
1445          I = EHStack.getInnermostEHCleanup(); I != C; ) {
1446     assert(C.strictlyEncloses(I));
1447     EHCleanupScope &S = cast<EHCleanupScope>(*EHStack.find(I));
1448     if (S.getEHBlock()) return true;
1449     I = S.getEnclosingEHCleanup();
1450   }
1451 
1452   return false;
1453 }
1454 
1455 enum ForActivation_t {
1456   ForActivation,
1457   ForDeactivation
1458 };
1459 
1460 /// The given cleanup block is changing activation state.  Configure a
1461 /// cleanup variable if necessary.
1462 ///
1463 /// It would be good if we had some way of determining if there were
1464 /// extra uses *after* the change-over point.
1465 static void SetupCleanupBlockActivation(CodeGenFunction &CGF,
1466                                         EHScopeStack::stable_iterator C,
1467                                         ForActivation_t Kind) {
1468   EHCleanupScope &Scope = cast<EHCleanupScope>(*CGF.EHStack.find(C));
1469 
1470   // We always need the flag if we're activating the cleanup, because
1471   // we have to assume that the current location doesn't necessarily
1472   // dominate all future uses of the cleanup.
1473   bool NeedFlag = (Kind == ForActivation);
1474 
1475   // Calculate whether the cleanup was used:
1476 
1477   //   - as a normal cleanup
1478   if (Scope.isNormalCleanup() && IsUsedAsNormalCleanup(CGF.EHStack, C)) {
1479     Scope.setTestFlagInNormalCleanup();
1480     NeedFlag = true;
1481   }
1482 
1483   //  - as an EH cleanup
1484   if (Scope.isEHCleanup() && IsUsedAsEHCleanup(CGF.EHStack, C)) {
1485     Scope.setTestFlagInEHCleanup();
1486     NeedFlag = true;
1487   }
1488 
1489   // If it hasn't yet been used as either, we're done.
1490   if (!NeedFlag) return;
1491 
1492   llvm::AllocaInst *Var = Scope.getActiveFlag();
1493   if (!Var) {
1494     Var = CGF.CreateTempAlloca(CGF.Builder.getInt1Ty(), "cleanup.isactive");
1495     Scope.setActiveFlag(Var);
1496 
1497     // Initialize to true or false depending on whether it was
1498     // active up to this point.
1499     CGF.InitTempAlloca(Var, CGF.Builder.getInt1(Kind == ForDeactivation));
1500   }
1501 
1502   CGF.Builder.CreateStore(CGF.Builder.getInt1(Kind == ForActivation), Var);
1503 }
1504 
1505 /// Activate a cleanup that was created in an inactivated state.
1506 void CodeGenFunction::ActivateCleanupBlock(EHScopeStack::stable_iterator C) {
1507   assert(C != EHStack.stable_end() && "activating bottom of stack?");
1508   EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.find(C));
1509   assert(!Scope.isActive() && "double activation");
1510 
1511   SetupCleanupBlockActivation(*this, C, ForActivation);
1512 
1513   Scope.setActive(true);
1514 }
1515 
1516 /// Deactive a cleanup that was created in an active state.
1517 void CodeGenFunction::DeactivateCleanupBlock(EHScopeStack::stable_iterator C) {
1518   assert(C != EHStack.stable_end() && "deactivating bottom of stack?");
1519   EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.find(C));
1520   assert(Scope.isActive() && "double deactivation");
1521 
1522   // If it's the top of the stack, just pop it.
1523   if (C == EHStack.stable_begin()) {
1524     // If it's a normal cleanup, we need to pretend that the
1525     // fallthrough is unreachable.
1526     CGBuilderTy::InsertPoint SavedIP = Builder.saveAndClearIP();
1527     PopCleanupBlock();
1528     Builder.restoreIP(SavedIP);
1529     return;
1530   }
1531 
1532   // Otherwise, follow the general case.
1533   SetupCleanupBlockActivation(*this, C, ForDeactivation);
1534 
1535   Scope.setActive(false);
1536 }
1537 
1538 llvm::Value *CodeGenFunction::getNormalCleanupDestSlot() {
1539   if (!NormalCleanupDest)
1540     NormalCleanupDest =
1541       CreateTempAlloca(Builder.getInt32Ty(), "cleanup.dest.slot");
1542   return NormalCleanupDest;
1543 }
1544 
1545 llvm::Value *CodeGenFunction::getEHCleanupDestSlot() {
1546   if (!EHCleanupDest)
1547     EHCleanupDest =
1548       CreateTempAlloca(Builder.getInt32Ty(), "eh.cleanup.dest.slot");
1549   return EHCleanupDest;
1550 }
1551 
1552 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
1553                                               llvm::Constant *Init) {
1554   assert (Init && "Invalid DeclRefExpr initializer!");
1555   if (CGDebugInfo *Dbg = getDebugInfo())
1556     Dbg->EmitGlobalVariable(E->getDecl(), Init);
1557 }
1558