1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-function state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenFunction.h" 14 #include "CGBlocks.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCleanup.h" 18 #include "CGDebugInfo.h" 19 #include "CGOpenMPRuntime.h" 20 #include "CodeGenModule.h" 21 #include "CodeGenPGO.h" 22 #include "TargetInfo.h" 23 #include "clang/AST/ASTContext.h" 24 #include "clang/AST/ASTLambda.h" 25 #include "clang/AST/Attr.h" 26 #include "clang/AST/Decl.h" 27 #include "clang/AST/DeclCXX.h" 28 #include "clang/AST/StmtCXX.h" 29 #include "clang/AST/StmtObjC.h" 30 #include "clang/Basic/Builtins.h" 31 #include "clang/Basic/CodeGenOptions.h" 32 #include "clang/Basic/TargetInfo.h" 33 #include "clang/CodeGen/CGFunctionInfo.h" 34 #include "clang/Frontend/FrontendDiagnostic.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/Dominators.h" 37 #include "llvm/IR/FPEnv.h" 38 #include "llvm/IR/IntrinsicInst.h" 39 #include "llvm/IR/Intrinsics.h" 40 #include "llvm/IR/MDBuilder.h" 41 #include "llvm/IR/Operator.h" 42 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 43 using namespace clang; 44 using namespace CodeGen; 45 46 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time 47 /// markers. 48 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts, 49 const LangOptions &LangOpts) { 50 if (CGOpts.DisableLifetimeMarkers) 51 return false; 52 53 // Sanitizers may use markers. 54 if (CGOpts.SanitizeAddressUseAfterScope || 55 LangOpts.Sanitize.has(SanitizerKind::HWAddress) || 56 LangOpts.Sanitize.has(SanitizerKind::Memory)) 57 return true; 58 59 // For now, only in optimized builds. 60 return CGOpts.OptimizationLevel != 0; 61 } 62 63 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 64 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 65 Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(), 66 CGBuilderInserterTy(this)), 67 SanOpts(CGM.getLangOpts().Sanitize), DebugInfo(CGM.getModuleDebugInfo()), 68 PGO(cgm), ShouldEmitLifetimeMarkers(shouldEmitLifetimeMarkers( 69 CGM.getCodeGenOpts(), CGM.getLangOpts())) { 70 if (!suppressNewContext) 71 CGM.getCXXABI().getMangleContext().startNewFunction(); 72 73 llvm::FastMathFlags FMF; 74 if (CGM.getLangOpts().FastMath) 75 FMF.setFast(); 76 if (CGM.getLangOpts().FiniteMathOnly) { 77 FMF.setNoNaNs(); 78 FMF.setNoInfs(); 79 } 80 if (CGM.getCodeGenOpts().NoNaNsFPMath) { 81 FMF.setNoNaNs(); 82 } 83 if (CGM.getCodeGenOpts().NoSignedZeros) { 84 FMF.setNoSignedZeros(); 85 } 86 if (CGM.getCodeGenOpts().ReciprocalMath) { 87 FMF.setAllowReciprocal(); 88 } 89 if (CGM.getCodeGenOpts().Reassociate) { 90 FMF.setAllowReassoc(); 91 } 92 Builder.setFastMathFlags(FMF); 93 SetFPModel(); 94 } 95 96 CodeGenFunction::~CodeGenFunction() { 97 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 98 99 // If there are any unclaimed block infos, go ahead and destroy them 100 // now. This can happen if IR-gen gets clever and skips evaluating 101 // something. 102 if (FirstBlockInfo) 103 destroyBlockInfos(FirstBlockInfo); 104 105 if (getLangOpts().OpenMP && CurFn) 106 CGM.getOpenMPRuntime().functionFinished(*this); 107 } 108 109 // Map the LangOption for rounding mode into 110 // the corresponding enum in the IR. 111 static llvm::fp::RoundingMode ToConstrainedRoundingMD( 112 LangOptions::FPRoundingModeKind Kind) { 113 114 switch (Kind) { 115 case LangOptions::FPR_ToNearest: return llvm::fp::rmToNearest; 116 case LangOptions::FPR_Downward: return llvm::fp::rmDownward; 117 case LangOptions::FPR_Upward: return llvm::fp::rmUpward; 118 case LangOptions::FPR_TowardZero: return llvm::fp::rmTowardZero; 119 case LangOptions::FPR_Dynamic: return llvm::fp::rmDynamic; 120 } 121 llvm_unreachable("Unsupported FP RoundingMode"); 122 } 123 124 // Map the LangOption for exception behavior into 125 // the corresponding enum in the IR. 126 static llvm::fp::ExceptionBehavior ToConstrainedExceptMD( 127 LangOptions::FPExceptionModeKind Kind) { 128 129 switch (Kind) { 130 case LangOptions::FPE_Ignore: return llvm::fp::ebIgnore; 131 case LangOptions::FPE_MayTrap: return llvm::fp::ebMayTrap; 132 case LangOptions::FPE_Strict: return llvm::fp::ebStrict; 133 } 134 llvm_unreachable("Unsupported FP Exception Behavior"); 135 } 136 137 void CodeGenFunction::SetFPModel() { 138 auto fpRoundingMode = ToConstrainedRoundingMD( 139 getLangOpts().getFPRoundingMode()); 140 auto fpExceptionBehavior = ToConstrainedExceptMD( 141 getLangOpts().getFPExceptionMode()); 142 143 if (fpExceptionBehavior == llvm::fp::ebIgnore && 144 fpRoundingMode == llvm::fp::rmToNearest) 145 // Constrained intrinsics are not used. 146 ; 147 else { 148 Builder.setIsFPConstrained(true); 149 Builder.setDefaultConstrainedRounding(fpRoundingMode); 150 Builder.setDefaultConstrainedExcept(fpExceptionBehavior); 151 } 152 } 153 154 CharUnits CodeGenFunction::getNaturalPointeeTypeAlignment(QualType T, 155 LValueBaseInfo *BaseInfo, 156 TBAAAccessInfo *TBAAInfo) { 157 return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo, 158 /* forPointeeType= */ true); 159 } 160 161 CharUnits CodeGenFunction::getNaturalTypeAlignment(QualType T, 162 LValueBaseInfo *BaseInfo, 163 TBAAAccessInfo *TBAAInfo, 164 bool forPointeeType) { 165 if (TBAAInfo) 166 *TBAAInfo = CGM.getTBAAAccessInfo(T); 167 168 // Honor alignment typedef attributes even on incomplete types. 169 // We also honor them straight for C++ class types, even as pointees; 170 // there's an expressivity gap here. 171 if (auto TT = T->getAs<TypedefType>()) { 172 if (auto Align = TT->getDecl()->getMaxAlignment()) { 173 if (BaseInfo) 174 *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType); 175 return getContext().toCharUnitsFromBits(Align); 176 } 177 } 178 179 if (BaseInfo) 180 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 181 182 CharUnits Alignment; 183 if (T->isIncompleteType()) { 184 Alignment = CharUnits::One(); // Shouldn't be used, but pessimistic is best. 185 } else { 186 // For C++ class pointees, we don't know whether we're pointing at a 187 // base or a complete object, so we generally need to use the 188 // non-virtual alignment. 189 const CXXRecordDecl *RD; 190 if (forPointeeType && (RD = T->getAsCXXRecordDecl())) { 191 Alignment = CGM.getClassPointerAlignment(RD); 192 } else { 193 Alignment = getContext().getTypeAlignInChars(T); 194 if (T.getQualifiers().hasUnaligned()) 195 Alignment = CharUnits::One(); 196 } 197 198 // Cap to the global maximum type alignment unless the alignment 199 // was somehow explicit on the type. 200 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 201 if (Alignment.getQuantity() > MaxAlign && 202 !getContext().isAlignmentRequired(T)) 203 Alignment = CharUnits::fromQuantity(MaxAlign); 204 } 205 } 206 return Alignment; 207 } 208 209 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { 210 LValueBaseInfo BaseInfo; 211 TBAAAccessInfo TBAAInfo; 212 CharUnits Alignment = getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo); 213 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), BaseInfo, 214 TBAAInfo); 215 } 216 217 /// Given a value of type T* that may not be to a complete object, 218 /// construct an l-value with the natural pointee alignment of T. 219 LValue 220 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) { 221 LValueBaseInfo BaseInfo; 222 TBAAAccessInfo TBAAInfo; 223 CharUnits Align = getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo, 224 /* forPointeeType= */ true); 225 return MakeAddrLValue(Address(V, Align), T, BaseInfo, TBAAInfo); 226 } 227 228 229 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 230 return CGM.getTypes().ConvertTypeForMem(T); 231 } 232 233 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 234 return CGM.getTypes().ConvertType(T); 235 } 236 237 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 238 type = type.getCanonicalType(); 239 while (true) { 240 switch (type->getTypeClass()) { 241 #define TYPE(name, parent) 242 #define ABSTRACT_TYPE(name, parent) 243 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 244 #define DEPENDENT_TYPE(name, parent) case Type::name: 245 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 246 #include "clang/AST/TypeNodes.inc" 247 llvm_unreachable("non-canonical or dependent type in IR-generation"); 248 249 case Type::Auto: 250 case Type::DeducedTemplateSpecialization: 251 llvm_unreachable("undeduced type in IR-generation"); 252 253 // Various scalar types. 254 case Type::Builtin: 255 case Type::Pointer: 256 case Type::BlockPointer: 257 case Type::LValueReference: 258 case Type::RValueReference: 259 case Type::MemberPointer: 260 case Type::Vector: 261 case Type::ExtVector: 262 case Type::FunctionProto: 263 case Type::FunctionNoProto: 264 case Type::Enum: 265 case Type::ObjCObjectPointer: 266 case Type::Pipe: 267 return TEK_Scalar; 268 269 // Complexes. 270 case Type::Complex: 271 return TEK_Complex; 272 273 // Arrays, records, and Objective-C objects. 274 case Type::ConstantArray: 275 case Type::IncompleteArray: 276 case Type::VariableArray: 277 case Type::Record: 278 case Type::ObjCObject: 279 case Type::ObjCInterface: 280 return TEK_Aggregate; 281 282 // We operate on atomic values according to their underlying type. 283 case Type::Atomic: 284 type = cast<AtomicType>(type)->getValueType(); 285 continue; 286 } 287 llvm_unreachable("unknown type kind!"); 288 } 289 } 290 291 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() { 292 // For cleanliness, we try to avoid emitting the return block for 293 // simple cases. 294 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 295 296 if (CurBB) { 297 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 298 299 // We have a valid insert point, reuse it if it is empty or there are no 300 // explicit jumps to the return block. 301 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 302 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 303 delete ReturnBlock.getBlock(); 304 ReturnBlock = JumpDest(); 305 } else 306 EmitBlock(ReturnBlock.getBlock()); 307 return llvm::DebugLoc(); 308 } 309 310 // Otherwise, if the return block is the target of a single direct 311 // branch then we can just put the code in that block instead. This 312 // cleans up functions which started with a unified return block. 313 if (ReturnBlock.getBlock()->hasOneUse()) { 314 llvm::BranchInst *BI = 315 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin()); 316 if (BI && BI->isUnconditional() && 317 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 318 // Record/return the DebugLoc of the simple 'return' expression to be used 319 // later by the actual 'ret' instruction. 320 llvm::DebugLoc Loc = BI->getDebugLoc(); 321 Builder.SetInsertPoint(BI->getParent()); 322 BI->eraseFromParent(); 323 delete ReturnBlock.getBlock(); 324 ReturnBlock = JumpDest(); 325 return Loc; 326 } 327 } 328 329 // FIXME: We are at an unreachable point, there is no reason to emit the block 330 // unless it has uses. However, we still need a place to put the debug 331 // region.end for now. 332 333 EmitBlock(ReturnBlock.getBlock()); 334 return llvm::DebugLoc(); 335 } 336 337 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 338 if (!BB) return; 339 if (!BB->use_empty()) 340 return CGF.CurFn->getBasicBlockList().push_back(BB); 341 delete BB; 342 } 343 344 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 345 assert(BreakContinueStack.empty() && 346 "mismatched push/pop in break/continue stack!"); 347 348 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 349 && NumSimpleReturnExprs == NumReturnExprs 350 && ReturnBlock.getBlock()->use_empty(); 351 // Usually the return expression is evaluated before the cleanup 352 // code. If the function contains only a simple return statement, 353 // such as a constant, the location before the cleanup code becomes 354 // the last useful breakpoint in the function, because the simple 355 // return expression will be evaluated after the cleanup code. To be 356 // safe, set the debug location for cleanup code to the location of 357 // the return statement. Otherwise the cleanup code should be at the 358 // end of the function's lexical scope. 359 // 360 // If there are multiple branches to the return block, the branch 361 // instructions will get the location of the return statements and 362 // all will be fine. 363 if (CGDebugInfo *DI = getDebugInfo()) { 364 if (OnlySimpleReturnStmts) 365 DI->EmitLocation(Builder, LastStopPoint); 366 else 367 DI->EmitLocation(Builder, EndLoc); 368 } 369 370 // Pop any cleanups that might have been associated with the 371 // parameters. Do this in whatever block we're currently in; it's 372 // important to do this before we enter the return block or return 373 // edges will be *really* confused. 374 bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth; 375 bool HasOnlyLifetimeMarkers = 376 HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth); 377 bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers; 378 if (HasCleanups) { 379 // Make sure the line table doesn't jump back into the body for 380 // the ret after it's been at EndLoc. 381 Optional<ApplyDebugLocation> AL; 382 if (CGDebugInfo *DI = getDebugInfo()) { 383 if (OnlySimpleReturnStmts) 384 DI->EmitLocation(Builder, EndLoc); 385 else 386 // We may not have a valid end location. Try to apply it anyway, and 387 // fall back to an artificial location if needed. 388 AL = ApplyDebugLocation::CreateDefaultArtificial(*this, EndLoc); 389 } 390 391 PopCleanupBlocks(PrologueCleanupDepth); 392 } 393 394 // Emit function epilog (to return). 395 llvm::DebugLoc Loc = EmitReturnBlock(); 396 397 if (ShouldInstrumentFunction()) { 398 if (CGM.getCodeGenOpts().InstrumentFunctions) 399 CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit"); 400 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 401 CurFn->addFnAttr("instrument-function-exit-inlined", 402 "__cyg_profile_func_exit"); 403 } 404 405 // Emit debug descriptor for function end. 406 if (CGDebugInfo *DI = getDebugInfo()) 407 DI->EmitFunctionEnd(Builder, CurFn); 408 409 // Reset the debug location to that of the simple 'return' expression, if any 410 // rather than that of the end of the function's scope '}'. 411 ApplyDebugLocation AL(*this, Loc); 412 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 413 EmitEndEHSpec(CurCodeDecl); 414 415 assert(EHStack.empty() && 416 "did not remove all scopes from cleanup stack!"); 417 418 // If someone did an indirect goto, emit the indirect goto block at the end of 419 // the function. 420 if (IndirectBranch) { 421 EmitBlock(IndirectBranch->getParent()); 422 Builder.ClearInsertionPoint(); 423 } 424 425 // If some of our locals escaped, insert a call to llvm.localescape in the 426 // entry block. 427 if (!EscapedLocals.empty()) { 428 // Invert the map from local to index into a simple vector. There should be 429 // no holes. 430 SmallVector<llvm::Value *, 4> EscapeArgs; 431 EscapeArgs.resize(EscapedLocals.size()); 432 for (auto &Pair : EscapedLocals) 433 EscapeArgs[Pair.second] = Pair.first; 434 llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration( 435 &CGM.getModule(), llvm::Intrinsic::localescape); 436 CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs); 437 } 438 439 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 440 llvm::Instruction *Ptr = AllocaInsertPt; 441 AllocaInsertPt = nullptr; 442 Ptr->eraseFromParent(); 443 444 // If someone took the address of a label but never did an indirect goto, we 445 // made a zero entry PHI node, which is illegal, zap it now. 446 if (IndirectBranch) { 447 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 448 if (PN->getNumIncomingValues() == 0) { 449 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 450 PN->eraseFromParent(); 451 } 452 } 453 454 EmitIfUsed(*this, EHResumeBlock); 455 EmitIfUsed(*this, TerminateLandingPad); 456 EmitIfUsed(*this, TerminateHandler); 457 EmitIfUsed(*this, UnreachableBlock); 458 459 for (const auto &FuncletAndParent : TerminateFunclets) 460 EmitIfUsed(*this, FuncletAndParent.second); 461 462 if (CGM.getCodeGenOpts().EmitDeclMetadata) 463 EmitDeclMetadata(); 464 465 for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator 466 I = DeferredReplacements.begin(), 467 E = DeferredReplacements.end(); 468 I != E; ++I) { 469 I->first->replaceAllUsesWith(I->second); 470 I->first->eraseFromParent(); 471 } 472 473 // Eliminate CleanupDestSlot alloca by replacing it with SSA values and 474 // PHIs if the current function is a coroutine. We don't do it for all 475 // functions as it may result in slight increase in numbers of instructions 476 // if compiled with no optimizations. We do it for coroutine as the lifetime 477 // of CleanupDestSlot alloca make correct coroutine frame building very 478 // difficult. 479 if (NormalCleanupDest.isValid() && isCoroutine()) { 480 llvm::DominatorTree DT(*CurFn); 481 llvm::PromoteMemToReg( 482 cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT); 483 NormalCleanupDest = Address::invalid(); 484 } 485 486 // Scan function arguments for vector width. 487 for (llvm::Argument &A : CurFn->args()) 488 if (auto *VT = dyn_cast<llvm::VectorType>(A.getType())) 489 LargestVectorWidth = std::max((uint64_t)LargestVectorWidth, 490 VT->getPrimitiveSizeInBits().getFixedSize()); 491 492 // Update vector width based on return type. 493 if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType())) 494 LargestVectorWidth = std::max((uint64_t)LargestVectorWidth, 495 VT->getPrimitiveSizeInBits().getFixedSize()); 496 497 // Add the required-vector-width attribute. This contains the max width from: 498 // 1. min-vector-width attribute used in the source program. 499 // 2. Any builtins used that have a vector width specified. 500 // 3. Values passed in and out of inline assembly. 501 // 4. Width of vector arguments and return types for this function. 502 // 5. Width of vector aguments and return types for functions called by this 503 // function. 504 CurFn->addFnAttr("min-legal-vector-width", llvm::utostr(LargestVectorWidth)); 505 506 // If we generated an unreachable return block, delete it now. 507 if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) { 508 Builder.ClearInsertionPoint(); 509 ReturnBlock.getBlock()->eraseFromParent(); 510 } 511 if (ReturnValue.isValid()) { 512 auto *RetAlloca = dyn_cast<llvm::AllocaInst>(ReturnValue.getPointer()); 513 if (RetAlloca && RetAlloca->use_empty()) { 514 RetAlloca->eraseFromParent(); 515 ReturnValue = Address::invalid(); 516 } 517 } 518 } 519 520 /// ShouldInstrumentFunction - Return true if the current function should be 521 /// instrumented with __cyg_profile_func_* calls 522 bool CodeGenFunction::ShouldInstrumentFunction() { 523 if (!CGM.getCodeGenOpts().InstrumentFunctions && 524 !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining && 525 !CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 526 return false; 527 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 528 return false; 529 return true; 530 } 531 532 /// ShouldXRayInstrument - Return true if the current function should be 533 /// instrumented with XRay nop sleds. 534 bool CodeGenFunction::ShouldXRayInstrumentFunction() const { 535 return CGM.getCodeGenOpts().XRayInstrumentFunctions; 536 } 537 538 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to 539 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation. 540 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const { 541 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 542 (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents || 543 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 544 XRayInstrKind::Custom); 545 } 546 547 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const { 548 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 549 (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents || 550 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 551 XRayInstrKind::Typed); 552 } 553 554 llvm::Constant * 555 CodeGenFunction::EncodeAddrForUseInPrologue(llvm::Function *F, 556 llvm::Constant *Addr) { 557 // Addresses stored in prologue data can't require run-time fixups and must 558 // be PC-relative. Run-time fixups are undesirable because they necessitate 559 // writable text segments, which are unsafe. And absolute addresses are 560 // undesirable because they break PIE mode. 561 562 // Add a layer of indirection through a private global. Taking its address 563 // won't result in a run-time fixup, even if Addr has linkonce_odr linkage. 564 auto *GV = new llvm::GlobalVariable(CGM.getModule(), Addr->getType(), 565 /*isConstant=*/true, 566 llvm::GlobalValue::PrivateLinkage, Addr); 567 568 // Create a PC-relative address. 569 auto *GOTAsInt = llvm::ConstantExpr::getPtrToInt(GV, IntPtrTy); 570 auto *FuncAsInt = llvm::ConstantExpr::getPtrToInt(F, IntPtrTy); 571 auto *PCRelAsInt = llvm::ConstantExpr::getSub(GOTAsInt, FuncAsInt); 572 return (IntPtrTy == Int32Ty) 573 ? PCRelAsInt 574 : llvm::ConstantExpr::getTrunc(PCRelAsInt, Int32Ty); 575 } 576 577 llvm::Value * 578 CodeGenFunction::DecodeAddrUsedInPrologue(llvm::Value *F, 579 llvm::Value *EncodedAddr) { 580 // Reconstruct the address of the global. 581 auto *PCRelAsInt = Builder.CreateSExt(EncodedAddr, IntPtrTy); 582 auto *FuncAsInt = Builder.CreatePtrToInt(F, IntPtrTy, "func_addr.int"); 583 auto *GOTAsInt = Builder.CreateAdd(PCRelAsInt, FuncAsInt, "global_addr.int"); 584 auto *GOTAddr = Builder.CreateIntToPtr(GOTAsInt, Int8PtrPtrTy, "global_addr"); 585 586 // Load the original pointer through the global. 587 return Builder.CreateLoad(Address(GOTAddr, getPointerAlign()), 588 "decoded_addr"); 589 } 590 591 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 592 llvm::Function *Fn) 593 { 594 if (!FD->hasAttr<OpenCLKernelAttr>()) 595 return; 596 597 llvm::LLVMContext &Context = getLLVMContext(); 598 599 CGM.GenOpenCLArgMetadata(Fn, FD, this); 600 601 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { 602 QualType HintQTy = A->getTypeHint(); 603 const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>(); 604 bool IsSignedInteger = 605 HintQTy->isSignedIntegerType() || 606 (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType()); 607 llvm::Metadata *AttrMDArgs[] = { 608 llvm::ConstantAsMetadata::get(llvm::UndefValue::get( 609 CGM.getTypes().ConvertType(A->getTypeHint()))), 610 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 611 llvm::IntegerType::get(Context, 32), 612 llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))}; 613 Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs)); 614 } 615 616 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { 617 llvm::Metadata *AttrMDArgs[] = { 618 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 619 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 620 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 621 Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs)); 622 } 623 624 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { 625 llvm::Metadata *AttrMDArgs[] = { 626 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 627 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 628 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 629 Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs)); 630 } 631 632 if (const OpenCLIntelReqdSubGroupSizeAttr *A = 633 FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) { 634 llvm::Metadata *AttrMDArgs[] = { 635 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))}; 636 Fn->setMetadata("intel_reqd_sub_group_size", 637 llvm::MDNode::get(Context, AttrMDArgs)); 638 } 639 } 640 641 /// Determine whether the function F ends with a return stmt. 642 static bool endsWithReturn(const Decl* F) { 643 const Stmt *Body = nullptr; 644 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F)) 645 Body = FD->getBody(); 646 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F)) 647 Body = OMD->getBody(); 648 649 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 650 auto LastStmt = CS->body_rbegin(); 651 if (LastStmt != CS->body_rend()) 652 return isa<ReturnStmt>(*LastStmt); 653 } 654 return false; 655 } 656 657 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) { 658 if (SanOpts.has(SanitizerKind::Thread)) { 659 Fn->addFnAttr("sanitize_thread_no_checking_at_run_time"); 660 Fn->removeFnAttr(llvm::Attribute::SanitizeThread); 661 } 662 } 663 664 /// Check if the return value of this function requires sanitization. 665 bool CodeGenFunction::requiresReturnValueCheck() const { 666 return requiresReturnValueNullabilityCheck() || 667 (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && CurCodeDecl && 668 CurCodeDecl->getAttr<ReturnsNonNullAttr>()); 669 } 670 671 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) { 672 auto *MD = dyn_cast_or_null<CXXMethodDecl>(D); 673 if (!MD || !MD->getDeclName().getAsIdentifierInfo() || 674 !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") || 675 (MD->getNumParams() != 1 && MD->getNumParams() != 2)) 676 return false; 677 678 if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType()) 679 return false; 680 681 if (MD->getNumParams() == 2) { 682 auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>(); 683 if (!PT || !PT->isVoidPointerType() || 684 !PT->getPointeeType().isConstQualified()) 685 return false; 686 } 687 688 return true; 689 } 690 691 /// Return the UBSan prologue signature for \p FD if one is available. 692 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM, 693 const FunctionDecl *FD) { 694 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 695 if (!MD->isStatic()) 696 return nullptr; 697 return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM); 698 } 699 700 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy, 701 llvm::Function *Fn, 702 const CGFunctionInfo &FnInfo, 703 const FunctionArgList &Args, 704 SourceLocation Loc, 705 SourceLocation StartLoc) { 706 assert(!CurFn && 707 "Do not use a CodeGenFunction object for more than one function"); 708 709 const Decl *D = GD.getDecl(); 710 711 DidCallStackSave = false; 712 CurCodeDecl = D; 713 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 714 if (FD->usesSEHTry()) 715 CurSEHParent = FD; 716 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr); 717 FnRetTy = RetTy; 718 CurFn = Fn; 719 CurFnInfo = &FnInfo; 720 assert(CurFn->isDeclaration() && "Function already has body?"); 721 722 // If this function has been blacklisted for any of the enabled sanitizers, 723 // disable the sanitizer for the function. 724 do { 725 #define SANITIZER(NAME, ID) \ 726 if (SanOpts.empty()) \ 727 break; \ 728 if (SanOpts.has(SanitizerKind::ID)) \ 729 if (CGM.isInSanitizerBlacklist(SanitizerKind::ID, Fn, Loc)) \ 730 SanOpts.set(SanitizerKind::ID, false); 731 732 #include "clang/Basic/Sanitizers.def" 733 #undef SANITIZER 734 } while (0); 735 736 if (D) { 737 // Apply the no_sanitize* attributes to SanOpts. 738 for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) { 739 SanitizerMask mask = Attr->getMask(); 740 SanOpts.Mask &= ~mask; 741 if (mask & SanitizerKind::Address) 742 SanOpts.set(SanitizerKind::KernelAddress, false); 743 if (mask & SanitizerKind::KernelAddress) 744 SanOpts.set(SanitizerKind::Address, false); 745 if (mask & SanitizerKind::HWAddress) 746 SanOpts.set(SanitizerKind::KernelHWAddress, false); 747 if (mask & SanitizerKind::KernelHWAddress) 748 SanOpts.set(SanitizerKind::HWAddress, false); 749 } 750 } 751 752 // Apply sanitizer attributes to the function. 753 if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress)) 754 Fn->addFnAttr(llvm::Attribute::SanitizeAddress); 755 if (SanOpts.hasOneOf(SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress)) 756 Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress); 757 if (SanOpts.has(SanitizerKind::MemTag)) 758 Fn->addFnAttr(llvm::Attribute::SanitizeMemTag); 759 if (SanOpts.has(SanitizerKind::Thread)) 760 Fn->addFnAttr(llvm::Attribute::SanitizeThread); 761 if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory)) 762 Fn->addFnAttr(llvm::Attribute::SanitizeMemory); 763 if (SanOpts.has(SanitizerKind::SafeStack)) 764 Fn->addFnAttr(llvm::Attribute::SafeStack); 765 if (SanOpts.has(SanitizerKind::ShadowCallStack)) 766 Fn->addFnAttr(llvm::Attribute::ShadowCallStack); 767 768 // Apply fuzzing attribute to the function. 769 if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink)) 770 Fn->addFnAttr(llvm::Attribute::OptForFuzzing); 771 772 // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize, 773 // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time. 774 if (SanOpts.has(SanitizerKind::Thread)) { 775 if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) { 776 IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0); 777 if (OMD->getMethodFamily() == OMF_dealloc || 778 OMD->getMethodFamily() == OMF_initialize || 779 (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) { 780 markAsIgnoreThreadCheckingAtRuntime(Fn); 781 } 782 } 783 } 784 785 // Ignore unrelated casts in STL allocate() since the allocator must cast 786 // from void* to T* before object initialization completes. Don't match on the 787 // namespace because not all allocators are in std:: 788 if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 789 if (matchesStlAllocatorFn(D, getContext())) 790 SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast; 791 } 792 793 // Ignore null checks in coroutine functions since the coroutines passes 794 // are not aware of how to move the extra UBSan instructions across the split 795 // coroutine boundaries. 796 if (D && SanOpts.has(SanitizerKind::Null)) 797 if (const auto *FD = dyn_cast<FunctionDecl>(D)) 798 if (FD->getBody() && 799 FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass) 800 SanOpts.Mask &= ~SanitizerKind::Null; 801 802 if (D) { 803 // Apply xray attributes to the function (as a string, for now) 804 if (const auto *XRayAttr = D->getAttr<XRayInstrumentAttr>()) { 805 if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 806 XRayInstrKind::Function)) { 807 if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) 808 Fn->addFnAttr("function-instrument", "xray-always"); 809 if (XRayAttr->neverXRayInstrument()) 810 Fn->addFnAttr("function-instrument", "xray-never"); 811 if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>()) 812 if (ShouldXRayInstrumentFunction()) 813 Fn->addFnAttr("xray-log-args", 814 llvm::utostr(LogArgs->getArgumentCount())); 815 } 816 } else { 817 if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc)) 818 Fn->addFnAttr( 819 "xray-instruction-threshold", 820 llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold)); 821 } 822 823 if (const auto *Attr = D->getAttr<PatchableFunctionEntryAttr>()) { 824 // Attr->getStart is currently ignored. 825 Fn->addFnAttr("patchable-function-entry", 826 std::to_string(Attr->getCount())); 827 } else if (unsigned Count = CGM.getCodeGenOpts().PatchableFunctionEntryCount) { 828 Fn->addFnAttr("patchable-function-entry", 829 std::to_string(Count)); 830 } 831 } 832 833 // Add no-jump-tables value. 834 Fn->addFnAttr("no-jump-tables", 835 llvm::toStringRef(CGM.getCodeGenOpts().NoUseJumpTables)); 836 837 // Add no-inline-line-tables value. 838 if (CGM.getCodeGenOpts().NoInlineLineTables) 839 Fn->addFnAttr("no-inline-line-tables"); 840 841 // Add profile-sample-accurate value. 842 if (CGM.getCodeGenOpts().ProfileSampleAccurate) 843 Fn->addFnAttr("profile-sample-accurate"); 844 845 if (D && D->hasAttr<CFICanonicalJumpTableAttr>()) 846 Fn->addFnAttr("cfi-canonical-jump-table"); 847 848 if (getLangOpts().OpenCL) { 849 // Add metadata for a kernel function. 850 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 851 EmitOpenCLKernelMetadata(FD, Fn); 852 } 853 854 // If we are checking function types, emit a function type signature as 855 // prologue data. 856 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) { 857 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 858 if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) { 859 // Remove any (C++17) exception specifications, to allow calling e.g. a 860 // noexcept function through a non-noexcept pointer. 861 auto ProtoTy = 862 getContext().getFunctionTypeWithExceptionSpec(FD->getType(), 863 EST_None); 864 llvm::Constant *FTRTTIConst = 865 CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true); 866 llvm::Constant *FTRTTIConstEncoded = 867 EncodeAddrForUseInPrologue(Fn, FTRTTIConst); 868 llvm::Constant *PrologueStructElems[] = {PrologueSig, 869 FTRTTIConstEncoded}; 870 llvm::Constant *PrologueStructConst = 871 llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true); 872 Fn->setPrologueData(PrologueStructConst); 873 } 874 } 875 } 876 877 // If we're checking nullability, we need to know whether we can check the 878 // return value. Initialize the flag to 'true' and refine it in EmitParmDecl. 879 if (SanOpts.has(SanitizerKind::NullabilityReturn)) { 880 auto Nullability = FnRetTy->getNullability(getContext()); 881 if (Nullability && *Nullability == NullabilityKind::NonNull) { 882 if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && 883 CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>())) 884 RetValNullabilityPrecondition = 885 llvm::ConstantInt::getTrue(getLLVMContext()); 886 } 887 } 888 889 // If we're in C++ mode and the function name is "main", it is guaranteed 890 // to be norecurse by the standard (3.6.1.3 "The function main shall not be 891 // used within a program"). 892 if (getLangOpts().CPlusPlus) 893 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 894 if (FD->isMain()) 895 Fn->addFnAttr(llvm::Attribute::NoRecurse); 896 897 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 898 if (FD->usesFPIntrin()) 899 Fn->addFnAttr(llvm::Attribute::StrictFP); 900 901 // If a custom alignment is used, force realigning to this alignment on 902 // any main function which certainly will need it. 903 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 904 if ((FD->isMain() || FD->isMSVCRTEntryPoint()) && 905 CGM.getCodeGenOpts().StackAlignment) 906 Fn->addFnAttr("stackrealign"); 907 908 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 909 910 // Create a marker to make it easy to insert allocas into the entryblock 911 // later. Don't create this with the builder, because we don't want it 912 // folded. 913 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 914 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB); 915 916 ReturnBlock = getJumpDestInCurrentScope("return"); 917 918 Builder.SetInsertPoint(EntryBB); 919 920 // If we're checking the return value, allocate space for a pointer to a 921 // precise source location of the checked return statement. 922 if (requiresReturnValueCheck()) { 923 ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr"); 924 InitTempAlloca(ReturnLocation, llvm::ConstantPointerNull::get(Int8PtrTy)); 925 } 926 927 // Emit subprogram debug descriptor. 928 if (CGDebugInfo *DI = getDebugInfo()) { 929 // Reconstruct the type from the argument list so that implicit parameters, 930 // such as 'this' and 'vtt', show up in the debug info. Preserve the calling 931 // convention. 932 CallingConv CC = CallingConv::CC_C; 933 if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 934 if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>()) 935 CC = SrcFnTy->getCallConv(); 936 SmallVector<QualType, 16> ArgTypes; 937 for (const VarDecl *VD : Args) 938 ArgTypes.push_back(VD->getType()); 939 QualType FnType = getContext().getFunctionType( 940 RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC)); 941 DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, CurFuncIsThunk, 942 Builder); 943 } 944 945 if (ShouldInstrumentFunction()) { 946 if (CGM.getCodeGenOpts().InstrumentFunctions) 947 CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter"); 948 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 949 CurFn->addFnAttr("instrument-function-entry-inlined", 950 "__cyg_profile_func_enter"); 951 if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 952 CurFn->addFnAttr("instrument-function-entry-inlined", 953 "__cyg_profile_func_enter_bare"); 954 } 955 956 // Since emitting the mcount call here impacts optimizations such as function 957 // inlining, we just add an attribute to insert a mcount call in backend. 958 // The attribute "counting-function" is set to mcount function name which is 959 // architecture dependent. 960 if (CGM.getCodeGenOpts().InstrumentForProfiling) { 961 // Calls to fentry/mcount should not be generated if function has 962 // the no_instrument_function attribute. 963 if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) { 964 if (CGM.getCodeGenOpts().CallFEntry) 965 Fn->addFnAttr("fentry-call", "true"); 966 else { 967 Fn->addFnAttr("instrument-function-entry-inlined", 968 getTarget().getMCountName()); 969 } 970 if (CGM.getCodeGenOpts().MNopMCount) { 971 if (!CGM.getCodeGenOpts().CallFEntry) 972 CGM.getDiags().Report(diag::err_opt_not_valid_without_opt) 973 << "-mnop-mcount" << "-mfentry"; 974 Fn->addFnAttr("mnop-mcount"); 975 } 976 977 if (CGM.getCodeGenOpts().RecordMCount) { 978 if (!CGM.getCodeGenOpts().CallFEntry) 979 CGM.getDiags().Report(diag::err_opt_not_valid_without_opt) 980 << "-mrecord-mcount" << "-mfentry"; 981 Fn->addFnAttr("mrecord-mcount"); 982 } 983 } 984 } 985 986 if (CGM.getCodeGenOpts().PackedStack) { 987 if (getContext().getTargetInfo().getTriple().getArch() != 988 llvm::Triple::systemz) 989 CGM.getDiags().Report(diag::err_opt_not_valid_on_target) 990 << "-mpacked-stack"; 991 Fn->addFnAttr("packed-stack"); 992 } 993 994 if (RetTy->isVoidType()) { 995 // Void type; nothing to return. 996 ReturnValue = Address::invalid(); 997 998 // Count the implicit return. 999 if (!endsWithReturn(D)) 1000 ++NumReturnExprs; 1001 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) { 1002 // Indirect return; emit returned value directly into sret slot. 1003 // This reduces code size, and affects correctness in C++. 1004 auto AI = CurFn->arg_begin(); 1005 if (CurFnInfo->getReturnInfo().isSRetAfterThis()) 1006 ++AI; 1007 ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign()); 1008 if (!CurFnInfo->getReturnInfo().getIndirectByVal()) { 1009 ReturnValuePointer = 1010 CreateDefaultAlignTempAlloca(Int8PtrTy, "result.ptr"); 1011 Builder.CreateStore(Builder.CreatePointerBitCastOrAddrSpaceCast( 1012 ReturnValue.getPointer(), Int8PtrTy), 1013 ReturnValuePointer); 1014 } 1015 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && 1016 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 1017 // Load the sret pointer from the argument struct and return into that. 1018 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); 1019 llvm::Function::arg_iterator EI = CurFn->arg_end(); 1020 --EI; 1021 llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx); 1022 ReturnValuePointer = Address(Addr, getPointerAlign()); 1023 Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result"); 1024 ReturnValue = Address(Addr, getNaturalTypeAlignment(RetTy)); 1025 } else { 1026 ReturnValue = CreateIRTemp(RetTy, "retval"); 1027 1028 // Tell the epilog emitter to autorelease the result. We do this 1029 // now so that various specialized functions can suppress it 1030 // during their IR-generation. 1031 if (getLangOpts().ObjCAutoRefCount && 1032 !CurFnInfo->isReturnsRetained() && 1033 RetTy->isObjCRetainableType()) 1034 AutoreleaseResult = true; 1035 } 1036 1037 EmitStartEHSpec(CurCodeDecl); 1038 1039 PrologueCleanupDepth = EHStack.stable_begin(); 1040 1041 // Emit OpenMP specific initialization of the device functions. 1042 if (getLangOpts().OpenMP && CurCodeDecl) 1043 CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl); 1044 1045 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 1046 1047 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 1048 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 1049 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 1050 if (MD->getParent()->isLambda() && 1051 MD->getOverloadedOperator() == OO_Call) { 1052 // We're in a lambda; figure out the captures. 1053 MD->getParent()->getCaptureFields(LambdaCaptureFields, 1054 LambdaThisCaptureField); 1055 if (LambdaThisCaptureField) { 1056 // If the lambda captures the object referred to by '*this' - either by 1057 // value or by reference, make sure CXXThisValue points to the correct 1058 // object. 1059 1060 // Get the lvalue for the field (which is a copy of the enclosing object 1061 // or contains the address of the enclosing object). 1062 LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 1063 if (!LambdaThisCaptureField->getType()->isPointerType()) { 1064 // If the enclosing object was captured by value, just use its address. 1065 CXXThisValue = ThisFieldLValue.getAddress(*this).getPointer(); 1066 } else { 1067 // Load the lvalue pointed to by the field, since '*this' was captured 1068 // by reference. 1069 CXXThisValue = 1070 EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal(); 1071 } 1072 } 1073 for (auto *FD : MD->getParent()->fields()) { 1074 if (FD->hasCapturedVLAType()) { 1075 auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD), 1076 SourceLocation()).getScalarVal(); 1077 auto VAT = FD->getCapturedVLAType(); 1078 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 1079 } 1080 } 1081 } else { 1082 // Not in a lambda; just use 'this' from the method. 1083 // FIXME: Should we generate a new load for each use of 'this'? The 1084 // fast register allocator would be happier... 1085 CXXThisValue = CXXABIThisValue; 1086 } 1087 1088 // Check the 'this' pointer once per function, if it's available. 1089 if (CXXABIThisValue) { 1090 SanitizerSet SkippedChecks; 1091 SkippedChecks.set(SanitizerKind::ObjectSize, true); 1092 QualType ThisTy = MD->getThisType(); 1093 1094 // If this is the call operator of a lambda with no capture-default, it 1095 // may have a static invoker function, which may call this operator with 1096 // a null 'this' pointer. 1097 if (isLambdaCallOperator(MD) && 1098 MD->getParent()->getLambdaCaptureDefault() == LCD_None) 1099 SkippedChecks.set(SanitizerKind::Null, true); 1100 1101 EmitTypeCheck(isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall 1102 : TCK_MemberCall, 1103 Loc, CXXABIThisValue, ThisTy, 1104 getContext().getTypeAlignInChars(ThisTy->getPointeeType()), 1105 SkippedChecks); 1106 } 1107 } 1108 1109 // If any of the arguments have a variably modified type, make sure to 1110 // emit the type size. 1111 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 1112 i != e; ++i) { 1113 const VarDecl *VD = *i; 1114 1115 // Dig out the type as written from ParmVarDecls; it's unclear whether 1116 // the standard (C99 6.9.1p10) requires this, but we're following the 1117 // precedent set by gcc. 1118 QualType Ty; 1119 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 1120 Ty = PVD->getOriginalType(); 1121 else 1122 Ty = VD->getType(); 1123 1124 if (Ty->isVariablyModifiedType()) 1125 EmitVariablyModifiedType(Ty); 1126 } 1127 // Emit a location at the end of the prologue. 1128 if (CGDebugInfo *DI = getDebugInfo()) 1129 DI->EmitLocation(Builder, StartLoc); 1130 1131 // TODO: Do we need to handle this in two places like we do with 1132 // target-features/target-cpu? 1133 if (CurFuncDecl) 1134 if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>()) 1135 LargestVectorWidth = VecWidth->getVectorWidth(); 1136 } 1137 1138 void CodeGenFunction::EmitFunctionBody(const Stmt *Body) { 1139 incrementProfileCounter(Body); 1140 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 1141 EmitCompoundStmtWithoutScope(*S); 1142 else 1143 EmitStmt(Body); 1144 } 1145 1146 /// When instrumenting to collect profile data, the counts for some blocks 1147 /// such as switch cases need to not include the fall-through counts, so 1148 /// emit a branch around the instrumentation code. When not instrumenting, 1149 /// this just calls EmitBlock(). 1150 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, 1151 const Stmt *S) { 1152 llvm::BasicBlock *SkipCountBB = nullptr; 1153 if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) { 1154 // When instrumenting for profiling, the fallthrough to certain 1155 // statements needs to skip over the instrumentation code so that we 1156 // get an accurate count. 1157 SkipCountBB = createBasicBlock("skipcount"); 1158 EmitBranch(SkipCountBB); 1159 } 1160 EmitBlock(BB); 1161 uint64_t CurrentCount = getCurrentProfileCount(); 1162 incrementProfileCounter(S); 1163 setCurrentProfileCount(getCurrentProfileCount() + CurrentCount); 1164 if (SkipCountBB) 1165 EmitBlock(SkipCountBB); 1166 } 1167 1168 /// Tries to mark the given function nounwind based on the 1169 /// non-existence of any throwing calls within it. We believe this is 1170 /// lightweight enough to do at -O0. 1171 static void TryMarkNoThrow(llvm::Function *F) { 1172 // LLVM treats 'nounwind' on a function as part of the type, so we 1173 // can't do this on functions that can be overwritten. 1174 if (F->isInterposable()) return; 1175 1176 for (llvm::BasicBlock &BB : *F) 1177 for (llvm::Instruction &I : BB) 1178 if (I.mayThrow()) 1179 return; 1180 1181 F->setDoesNotThrow(); 1182 } 1183 1184 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD, 1185 FunctionArgList &Args) { 1186 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1187 QualType ResTy = FD->getReturnType(); 1188 1189 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 1190 if (MD && MD->isInstance()) { 1191 if (CGM.getCXXABI().HasThisReturn(GD)) 1192 ResTy = MD->getThisType(); 1193 else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) 1194 ResTy = CGM.getContext().VoidPtrTy; 1195 CGM.getCXXABI().buildThisParam(*this, Args); 1196 } 1197 1198 // The base version of an inheriting constructor whose constructed base is a 1199 // virtual base is not passed any arguments (because it doesn't actually call 1200 // the inherited constructor). 1201 bool PassedParams = true; 1202 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 1203 if (auto Inherited = CD->getInheritedConstructor()) 1204 PassedParams = 1205 getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType()); 1206 1207 if (PassedParams) { 1208 for (auto *Param : FD->parameters()) { 1209 Args.push_back(Param); 1210 if (!Param->hasAttr<PassObjectSizeAttr>()) 1211 continue; 1212 1213 auto *Implicit = ImplicitParamDecl::Create( 1214 getContext(), Param->getDeclContext(), Param->getLocation(), 1215 /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other); 1216 SizeArguments[Param] = Implicit; 1217 Args.push_back(Implicit); 1218 } 1219 } 1220 1221 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 1222 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 1223 1224 return ResTy; 1225 } 1226 1227 static bool 1228 shouldUseUndefinedBehaviorReturnOptimization(const FunctionDecl *FD, 1229 const ASTContext &Context) { 1230 QualType T = FD->getReturnType(); 1231 // Avoid the optimization for functions that return a record type with a 1232 // trivial destructor or another trivially copyable type. 1233 if (const RecordType *RT = T.getCanonicalType()->getAs<RecordType>()) { 1234 if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1235 return !ClassDecl->hasTrivialDestructor(); 1236 } 1237 return !T.isTriviallyCopyableType(Context); 1238 } 1239 1240 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1241 const CGFunctionInfo &FnInfo) { 1242 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1243 CurGD = GD; 1244 1245 FunctionArgList Args; 1246 QualType ResTy = BuildFunctionArgList(GD, Args); 1247 1248 // Check if we should generate debug info for this function. 1249 if (FD->hasAttr<NoDebugAttr>()) 1250 DebugInfo = nullptr; // disable debug info indefinitely for this function 1251 1252 // The function might not have a body if we're generating thunks for a 1253 // function declaration. 1254 SourceRange BodyRange; 1255 if (Stmt *Body = FD->getBody()) 1256 BodyRange = Body->getSourceRange(); 1257 else 1258 BodyRange = FD->getLocation(); 1259 CurEHLocation = BodyRange.getEnd(); 1260 1261 // Use the location of the start of the function to determine where 1262 // the function definition is located. By default use the location 1263 // of the declaration as the location for the subprogram. A function 1264 // may lack a declaration in the source code if it is created by code 1265 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). 1266 SourceLocation Loc = FD->getLocation(); 1267 1268 // If this is a function specialization then use the pattern body 1269 // as the location for the function. 1270 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) 1271 if (SpecDecl->hasBody(SpecDecl)) 1272 Loc = SpecDecl->getLocation(); 1273 1274 Stmt *Body = FD->getBody(); 1275 1276 // Initialize helper which will detect jumps which can cause invalid lifetime 1277 // markers. 1278 if (Body && ShouldEmitLifetimeMarkers) 1279 Bypasses.Init(Body); 1280 1281 // Emit the standard function prologue. 1282 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin()); 1283 1284 // Generate the body of the function. 1285 PGO.assignRegionCounters(GD, CurFn); 1286 if (isa<CXXDestructorDecl>(FD)) 1287 EmitDestructorBody(Args); 1288 else if (isa<CXXConstructorDecl>(FD)) 1289 EmitConstructorBody(Args); 1290 else if (getLangOpts().CUDA && 1291 !getLangOpts().CUDAIsDevice && 1292 FD->hasAttr<CUDAGlobalAttr>()) 1293 CGM.getCUDARuntime().emitDeviceStub(*this, Args); 1294 else if (isa<CXXMethodDecl>(FD) && 1295 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 1296 // The lambda static invoker function is special, because it forwards or 1297 // clones the body of the function call operator (but is actually static). 1298 EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD)); 1299 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 1300 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 1301 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 1302 // Implicit copy-assignment gets the same special treatment as implicit 1303 // copy-constructors. 1304 emitImplicitAssignmentOperatorBody(Args); 1305 } else if (Body) { 1306 EmitFunctionBody(Body); 1307 } else 1308 llvm_unreachable("no definition for emitted function"); 1309 1310 // C++11 [stmt.return]p2: 1311 // Flowing off the end of a function [...] results in undefined behavior in 1312 // a value-returning function. 1313 // C11 6.9.1p12: 1314 // If the '}' that terminates a function is reached, and the value of the 1315 // function call is used by the caller, the behavior is undefined. 1316 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock && 1317 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { 1318 bool ShouldEmitUnreachable = 1319 CGM.getCodeGenOpts().StrictReturn || 1320 shouldUseUndefinedBehaviorReturnOptimization(FD, getContext()); 1321 if (SanOpts.has(SanitizerKind::Return)) { 1322 SanitizerScope SanScope(this); 1323 llvm::Value *IsFalse = Builder.getFalse(); 1324 EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return), 1325 SanitizerHandler::MissingReturn, 1326 EmitCheckSourceLocation(FD->getLocation()), None); 1327 } else if (ShouldEmitUnreachable) { 1328 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 1329 EmitTrapCall(llvm::Intrinsic::trap); 1330 } 1331 if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) { 1332 Builder.CreateUnreachable(); 1333 Builder.ClearInsertionPoint(); 1334 } 1335 } 1336 1337 // Emit the standard function epilogue. 1338 FinishFunction(BodyRange.getEnd()); 1339 1340 // If we haven't marked the function nothrow through other means, do 1341 // a quick pass now to see if we can. 1342 if (!CurFn->doesNotThrow()) 1343 TryMarkNoThrow(CurFn); 1344 } 1345 1346 /// ContainsLabel - Return true if the statement contains a label in it. If 1347 /// this statement is not executed normally, it not containing a label means 1348 /// that we can just remove the code. 1349 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 1350 // Null statement, not a label! 1351 if (!S) return false; 1352 1353 // If this is a label, we have to emit the code, consider something like: 1354 // if (0) { ... foo: bar(); } goto foo; 1355 // 1356 // TODO: If anyone cared, we could track __label__'s, since we know that you 1357 // can't jump to one from outside their declared region. 1358 if (isa<LabelStmt>(S)) 1359 return true; 1360 1361 // If this is a case/default statement, and we haven't seen a switch, we have 1362 // to emit the code. 1363 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 1364 return true; 1365 1366 // If this is a switch statement, we want to ignore cases below it. 1367 if (isa<SwitchStmt>(S)) 1368 IgnoreCaseStmts = true; 1369 1370 // Scan subexpressions for verboten labels. 1371 for (const Stmt *SubStmt : S->children()) 1372 if (ContainsLabel(SubStmt, IgnoreCaseStmts)) 1373 return true; 1374 1375 return false; 1376 } 1377 1378 /// containsBreak - Return true if the statement contains a break out of it. 1379 /// If the statement (recursively) contains a switch or loop with a break 1380 /// inside of it, this is fine. 1381 bool CodeGenFunction::containsBreak(const Stmt *S) { 1382 // Null statement, not a label! 1383 if (!S) return false; 1384 1385 // If this is a switch or loop that defines its own break scope, then we can 1386 // include it and anything inside of it. 1387 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 1388 isa<ForStmt>(S)) 1389 return false; 1390 1391 if (isa<BreakStmt>(S)) 1392 return true; 1393 1394 // Scan subexpressions for verboten breaks. 1395 for (const Stmt *SubStmt : S->children()) 1396 if (containsBreak(SubStmt)) 1397 return true; 1398 1399 return false; 1400 } 1401 1402 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) { 1403 if (!S) return false; 1404 1405 // Some statement kinds add a scope and thus never add a decl to the current 1406 // scope. Note, this list is longer than the list of statements that might 1407 // have an unscoped decl nested within them, but this way is conservatively 1408 // correct even if more statement kinds are added. 1409 if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) || 1410 isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) || 1411 isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) || 1412 isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S)) 1413 return false; 1414 1415 if (isa<DeclStmt>(S)) 1416 return true; 1417 1418 for (const Stmt *SubStmt : S->children()) 1419 if (mightAddDeclToScope(SubStmt)) 1420 return true; 1421 1422 return false; 1423 } 1424 1425 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1426 /// to a constant, or if it does but contains a label, return false. If it 1427 /// constant folds return true and set the boolean result in Result. 1428 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1429 bool &ResultBool, 1430 bool AllowLabels) { 1431 llvm::APSInt ResultInt; 1432 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels)) 1433 return false; 1434 1435 ResultBool = ResultInt.getBoolValue(); 1436 return true; 1437 } 1438 1439 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1440 /// to a constant, or if it does but contains a label, return false. If it 1441 /// constant folds return true and set the folded value. 1442 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1443 llvm::APSInt &ResultInt, 1444 bool AllowLabels) { 1445 // FIXME: Rename and handle conversion of other evaluatable things 1446 // to bool. 1447 Expr::EvalResult Result; 1448 if (!Cond->EvaluateAsInt(Result, getContext())) 1449 return false; // Not foldable, not integer or not fully evaluatable. 1450 1451 llvm::APSInt Int = Result.Val.getInt(); 1452 if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond)) 1453 return false; // Contains a label. 1454 1455 ResultInt = Int; 1456 return true; 1457 } 1458 1459 1460 1461 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 1462 /// statement) to the specified blocks. Based on the condition, this might try 1463 /// to simplify the codegen of the conditional based on the branch. 1464 /// 1465 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 1466 llvm::BasicBlock *TrueBlock, 1467 llvm::BasicBlock *FalseBlock, 1468 uint64_t TrueCount) { 1469 Cond = Cond->IgnoreParens(); 1470 1471 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 1472 1473 // Handle X && Y in a condition. 1474 if (CondBOp->getOpcode() == BO_LAnd) { 1475 // If we have "1 && X", simplify the code. "0 && X" would have constant 1476 // folded if the case was simple enough. 1477 bool ConstantBool = false; 1478 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1479 ConstantBool) { 1480 // br(1 && X) -> br(X). 1481 incrementProfileCounter(CondBOp); 1482 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1483 TrueCount); 1484 } 1485 1486 // If we have "X && 1", simplify the code to use an uncond branch. 1487 // "X && 0" would have been constant folded to 0. 1488 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1489 ConstantBool) { 1490 // br(X && 1) -> br(X). 1491 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1492 TrueCount); 1493 } 1494 1495 // Emit the LHS as a conditional. If the LHS conditional is false, we 1496 // want to jump to the FalseBlock. 1497 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 1498 // The counter tells us how often we evaluate RHS, and all of TrueCount 1499 // can be propagated to that branch. 1500 uint64_t RHSCount = getProfileCount(CondBOp->getRHS()); 1501 1502 ConditionalEvaluation eval(*this); 1503 { 1504 ApplyDebugLocation DL(*this, Cond); 1505 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount); 1506 EmitBlock(LHSTrue); 1507 } 1508 1509 incrementProfileCounter(CondBOp); 1510 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1511 1512 // Any temporaries created here are conditional. 1513 eval.begin(*this); 1514 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount); 1515 eval.end(*this); 1516 1517 return; 1518 } 1519 1520 if (CondBOp->getOpcode() == BO_LOr) { 1521 // If we have "0 || X", simplify the code. "1 || X" would have constant 1522 // folded if the case was simple enough. 1523 bool ConstantBool = false; 1524 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1525 !ConstantBool) { 1526 // br(0 || X) -> br(X). 1527 incrementProfileCounter(CondBOp); 1528 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1529 TrueCount); 1530 } 1531 1532 // If we have "X || 0", simplify the code to use an uncond branch. 1533 // "X || 1" would have been constant folded to 1. 1534 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1535 !ConstantBool) { 1536 // br(X || 0) -> br(X). 1537 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1538 TrueCount); 1539 } 1540 1541 // Emit the LHS as a conditional. If the LHS conditional is true, we 1542 // want to jump to the TrueBlock. 1543 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 1544 // We have the count for entry to the RHS and for the whole expression 1545 // being true, so we can divy up True count between the short circuit and 1546 // the RHS. 1547 uint64_t LHSCount = 1548 getCurrentProfileCount() - getProfileCount(CondBOp->getRHS()); 1549 uint64_t RHSCount = TrueCount - LHSCount; 1550 1551 ConditionalEvaluation eval(*this); 1552 { 1553 ApplyDebugLocation DL(*this, Cond); 1554 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount); 1555 EmitBlock(LHSFalse); 1556 } 1557 1558 incrementProfileCounter(CondBOp); 1559 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1560 1561 // Any temporaries created here are conditional. 1562 eval.begin(*this); 1563 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount); 1564 1565 eval.end(*this); 1566 1567 return; 1568 } 1569 } 1570 1571 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 1572 // br(!x, t, f) -> br(x, f, t) 1573 if (CondUOp->getOpcode() == UO_LNot) { 1574 // Negate the count. 1575 uint64_t FalseCount = getCurrentProfileCount() - TrueCount; 1576 // Negate the condition and swap the destination blocks. 1577 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, 1578 FalseCount); 1579 } 1580 } 1581 1582 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 1583 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 1584 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1585 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1586 1587 ConditionalEvaluation cond(*this); 1588 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, 1589 getProfileCount(CondOp)); 1590 1591 // When computing PGO branch weights, we only know the overall count for 1592 // the true block. This code is essentially doing tail duplication of the 1593 // naive code-gen, introducing new edges for which counts are not 1594 // available. Divide the counts proportionally between the LHS and RHS of 1595 // the conditional operator. 1596 uint64_t LHSScaledTrueCount = 0; 1597 if (TrueCount) { 1598 double LHSRatio = 1599 getProfileCount(CondOp) / (double)getCurrentProfileCount(); 1600 LHSScaledTrueCount = TrueCount * LHSRatio; 1601 } 1602 1603 cond.begin(*this); 1604 EmitBlock(LHSBlock); 1605 incrementProfileCounter(CondOp); 1606 { 1607 ApplyDebugLocation DL(*this, Cond); 1608 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, 1609 LHSScaledTrueCount); 1610 } 1611 cond.end(*this); 1612 1613 cond.begin(*this); 1614 EmitBlock(RHSBlock); 1615 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, 1616 TrueCount - LHSScaledTrueCount); 1617 cond.end(*this); 1618 1619 return; 1620 } 1621 1622 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 1623 // Conditional operator handling can give us a throw expression as a 1624 // condition for a case like: 1625 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 1626 // Fold this to: 1627 // br(c, throw x, br(y, t, f)) 1628 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 1629 return; 1630 } 1631 1632 // If the branch has a condition wrapped by __builtin_unpredictable, 1633 // create metadata that specifies that the branch is unpredictable. 1634 // Don't bother if not optimizing because that metadata would not be used. 1635 llvm::MDNode *Unpredictable = nullptr; 1636 auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts()); 1637 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 1638 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 1639 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 1640 llvm::MDBuilder MDHelper(getLLVMContext()); 1641 Unpredictable = MDHelper.createUnpredictable(); 1642 } 1643 } 1644 1645 // Create branch weights based on the number of times we get here and the 1646 // number of times the condition should be true. 1647 uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount); 1648 llvm::MDNode *Weights = 1649 createProfileWeights(TrueCount, CurrentCount - TrueCount); 1650 1651 // Emit the code with the fully general case. 1652 llvm::Value *CondV; 1653 { 1654 ApplyDebugLocation DL(*this, Cond); 1655 CondV = EvaluateExprAsBool(Cond); 1656 } 1657 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable); 1658 } 1659 1660 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1661 /// specified stmt yet. 1662 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 1663 CGM.ErrorUnsupported(S, Type); 1664 } 1665 1666 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 1667 /// variable-length array whose elements have a non-zero bit-pattern. 1668 /// 1669 /// \param baseType the inner-most element type of the array 1670 /// \param src - a char* pointing to the bit-pattern for a single 1671 /// base element of the array 1672 /// \param sizeInChars - the total size of the VLA, in chars 1673 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 1674 Address dest, Address src, 1675 llvm::Value *sizeInChars) { 1676 CGBuilderTy &Builder = CGF.Builder; 1677 1678 CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType); 1679 llvm::Value *baseSizeInChars 1680 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity()); 1681 1682 Address begin = 1683 Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin"); 1684 llvm::Value *end = 1685 Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end"); 1686 1687 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 1688 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 1689 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 1690 1691 // Make a loop over the VLA. C99 guarantees that the VLA element 1692 // count must be nonzero. 1693 CGF.EmitBlock(loopBB); 1694 1695 llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur"); 1696 cur->addIncoming(begin.getPointer(), originBB); 1697 1698 CharUnits curAlign = 1699 dest.getAlignment().alignmentOfArrayElement(baseSize); 1700 1701 // memcpy the individual element bit-pattern. 1702 Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars, 1703 /*volatile*/ false); 1704 1705 // Go to the next element. 1706 llvm::Value *next = 1707 Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next"); 1708 1709 // Leave if that's the end of the VLA. 1710 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 1711 Builder.CreateCondBr(done, contBB, loopBB); 1712 cur->addIncoming(next, loopBB); 1713 1714 CGF.EmitBlock(contBB); 1715 } 1716 1717 void 1718 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) { 1719 // Ignore empty classes in C++. 1720 if (getLangOpts().CPlusPlus) { 1721 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1722 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 1723 return; 1724 } 1725 } 1726 1727 // Cast the dest ptr to the appropriate i8 pointer type. 1728 if (DestPtr.getElementType() != Int8Ty) 1729 DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty); 1730 1731 // Get size and alignment info for this aggregate. 1732 CharUnits size = getContext().getTypeSizeInChars(Ty); 1733 1734 llvm::Value *SizeVal; 1735 const VariableArrayType *vla; 1736 1737 // Don't bother emitting a zero-byte memset. 1738 if (size.isZero()) { 1739 // But note that getTypeInfo returns 0 for a VLA. 1740 if (const VariableArrayType *vlaType = 1741 dyn_cast_or_null<VariableArrayType>( 1742 getContext().getAsArrayType(Ty))) { 1743 auto VlaSize = getVLASize(vlaType); 1744 SizeVal = VlaSize.NumElts; 1745 CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type); 1746 if (!eltSize.isOne()) 1747 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 1748 vla = vlaType; 1749 } else { 1750 return; 1751 } 1752 } else { 1753 SizeVal = CGM.getSize(size); 1754 vla = nullptr; 1755 } 1756 1757 // If the type contains a pointer to data member we can't memset it to zero. 1758 // Instead, create a null constant and copy it to the destination. 1759 // TODO: there are other patterns besides zero that we can usefully memset, 1760 // like -1, which happens to be the pattern used by member-pointers. 1761 if (!CGM.getTypes().isZeroInitializable(Ty)) { 1762 // For a VLA, emit a single element, then splat that over the VLA. 1763 if (vla) Ty = getContext().getBaseElementType(vla); 1764 1765 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 1766 1767 llvm::GlobalVariable *NullVariable = 1768 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 1769 /*isConstant=*/true, 1770 llvm::GlobalVariable::PrivateLinkage, 1771 NullConstant, Twine()); 1772 CharUnits NullAlign = DestPtr.getAlignment(); 1773 NullVariable->setAlignment(NullAlign.getAsAlign()); 1774 Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()), 1775 NullAlign); 1776 1777 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 1778 1779 // Get and call the appropriate llvm.memcpy overload. 1780 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false); 1781 return; 1782 } 1783 1784 // Otherwise, just memset the whole thing to zero. This is legal 1785 // because in LLVM, all default initializers (other than the ones we just 1786 // handled above) are guaranteed to have a bit pattern of all zeros. 1787 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false); 1788 } 1789 1790 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 1791 // Make sure that there is a block for the indirect goto. 1792 if (!IndirectBranch) 1793 GetIndirectGotoBlock(); 1794 1795 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 1796 1797 // Make sure the indirect branch includes all of the address-taken blocks. 1798 IndirectBranch->addDestination(BB); 1799 return llvm::BlockAddress::get(CurFn, BB); 1800 } 1801 1802 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 1803 // If we already made the indirect branch for indirect goto, return its block. 1804 if (IndirectBranch) return IndirectBranch->getParent(); 1805 1806 CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto")); 1807 1808 // Create the PHI node that indirect gotos will add entries to. 1809 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 1810 "indirect.goto.dest"); 1811 1812 // Create the indirect branch instruction. 1813 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 1814 return IndirectBranch->getParent(); 1815 } 1816 1817 /// Computes the length of an array in elements, as well as the base 1818 /// element type and a properly-typed first element pointer. 1819 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 1820 QualType &baseType, 1821 Address &addr) { 1822 const ArrayType *arrayType = origArrayType; 1823 1824 // If it's a VLA, we have to load the stored size. Note that 1825 // this is the size of the VLA in bytes, not its size in elements. 1826 llvm::Value *numVLAElements = nullptr; 1827 if (isa<VariableArrayType>(arrayType)) { 1828 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts; 1829 1830 // Walk into all VLAs. This doesn't require changes to addr, 1831 // which has type T* where T is the first non-VLA element type. 1832 do { 1833 QualType elementType = arrayType->getElementType(); 1834 arrayType = getContext().getAsArrayType(elementType); 1835 1836 // If we only have VLA components, 'addr' requires no adjustment. 1837 if (!arrayType) { 1838 baseType = elementType; 1839 return numVLAElements; 1840 } 1841 } while (isa<VariableArrayType>(arrayType)); 1842 1843 // We get out here only if we find a constant array type 1844 // inside the VLA. 1845 } 1846 1847 // We have some number of constant-length arrays, so addr should 1848 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 1849 // down to the first element of addr. 1850 SmallVector<llvm::Value*, 8> gepIndices; 1851 1852 // GEP down to the array type. 1853 llvm::ConstantInt *zero = Builder.getInt32(0); 1854 gepIndices.push_back(zero); 1855 1856 uint64_t countFromCLAs = 1; 1857 QualType eltType; 1858 1859 llvm::ArrayType *llvmArrayType = 1860 dyn_cast<llvm::ArrayType>(addr.getElementType()); 1861 while (llvmArrayType) { 1862 assert(isa<ConstantArrayType>(arrayType)); 1863 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 1864 == llvmArrayType->getNumElements()); 1865 1866 gepIndices.push_back(zero); 1867 countFromCLAs *= llvmArrayType->getNumElements(); 1868 eltType = arrayType->getElementType(); 1869 1870 llvmArrayType = 1871 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 1872 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 1873 assert((!llvmArrayType || arrayType) && 1874 "LLVM and Clang types are out-of-synch"); 1875 } 1876 1877 if (arrayType) { 1878 // From this point onwards, the Clang array type has been emitted 1879 // as some other type (probably a packed struct). Compute the array 1880 // size, and just emit the 'begin' expression as a bitcast. 1881 while (arrayType) { 1882 countFromCLAs *= 1883 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 1884 eltType = arrayType->getElementType(); 1885 arrayType = getContext().getAsArrayType(eltType); 1886 } 1887 1888 llvm::Type *baseType = ConvertType(eltType); 1889 addr = Builder.CreateElementBitCast(addr, baseType, "array.begin"); 1890 } else { 1891 // Create the actual GEP. 1892 addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(), 1893 gepIndices, "array.begin"), 1894 addr.getAlignment()); 1895 } 1896 1897 baseType = eltType; 1898 1899 llvm::Value *numElements 1900 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 1901 1902 // If we had any VLA dimensions, factor them in. 1903 if (numVLAElements) 1904 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 1905 1906 return numElements; 1907 } 1908 1909 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) { 1910 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1911 assert(vla && "type was not a variable array type!"); 1912 return getVLASize(vla); 1913 } 1914 1915 CodeGenFunction::VlaSizePair 1916 CodeGenFunction::getVLASize(const VariableArrayType *type) { 1917 // The number of elements so far; always size_t. 1918 llvm::Value *numElements = nullptr; 1919 1920 QualType elementType; 1921 do { 1922 elementType = type->getElementType(); 1923 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 1924 assert(vlaSize && "no size for VLA!"); 1925 assert(vlaSize->getType() == SizeTy); 1926 1927 if (!numElements) { 1928 numElements = vlaSize; 1929 } else { 1930 // It's undefined behavior if this wraps around, so mark it that way. 1931 // FIXME: Teach -fsanitize=undefined to trap this. 1932 numElements = Builder.CreateNUWMul(numElements, vlaSize); 1933 } 1934 } while ((type = getContext().getAsVariableArrayType(elementType))); 1935 1936 return { numElements, elementType }; 1937 } 1938 1939 CodeGenFunction::VlaSizePair 1940 CodeGenFunction::getVLAElements1D(QualType type) { 1941 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1942 assert(vla && "type was not a variable array type!"); 1943 return getVLAElements1D(vla); 1944 } 1945 1946 CodeGenFunction::VlaSizePair 1947 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) { 1948 llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()]; 1949 assert(VlaSize && "no size for VLA!"); 1950 assert(VlaSize->getType() == SizeTy); 1951 return { VlaSize, Vla->getElementType() }; 1952 } 1953 1954 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 1955 assert(type->isVariablyModifiedType() && 1956 "Must pass variably modified type to EmitVLASizes!"); 1957 1958 EnsureInsertPoint(); 1959 1960 // We're going to walk down into the type and look for VLA 1961 // expressions. 1962 do { 1963 assert(type->isVariablyModifiedType()); 1964 1965 const Type *ty = type.getTypePtr(); 1966 switch (ty->getTypeClass()) { 1967 1968 #define TYPE(Class, Base) 1969 #define ABSTRACT_TYPE(Class, Base) 1970 #define NON_CANONICAL_TYPE(Class, Base) 1971 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 1972 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 1973 #include "clang/AST/TypeNodes.inc" 1974 llvm_unreachable("unexpected dependent type!"); 1975 1976 // These types are never variably-modified. 1977 case Type::Builtin: 1978 case Type::Complex: 1979 case Type::Vector: 1980 case Type::ExtVector: 1981 case Type::Record: 1982 case Type::Enum: 1983 case Type::Elaborated: 1984 case Type::TemplateSpecialization: 1985 case Type::ObjCTypeParam: 1986 case Type::ObjCObject: 1987 case Type::ObjCInterface: 1988 case Type::ObjCObjectPointer: 1989 llvm_unreachable("type class is never variably-modified!"); 1990 1991 case Type::Adjusted: 1992 type = cast<AdjustedType>(ty)->getAdjustedType(); 1993 break; 1994 1995 case Type::Decayed: 1996 type = cast<DecayedType>(ty)->getPointeeType(); 1997 break; 1998 1999 case Type::Pointer: 2000 type = cast<PointerType>(ty)->getPointeeType(); 2001 break; 2002 2003 case Type::BlockPointer: 2004 type = cast<BlockPointerType>(ty)->getPointeeType(); 2005 break; 2006 2007 case Type::LValueReference: 2008 case Type::RValueReference: 2009 type = cast<ReferenceType>(ty)->getPointeeType(); 2010 break; 2011 2012 case Type::MemberPointer: 2013 type = cast<MemberPointerType>(ty)->getPointeeType(); 2014 break; 2015 2016 case Type::ConstantArray: 2017 case Type::IncompleteArray: 2018 // Losing element qualification here is fine. 2019 type = cast<ArrayType>(ty)->getElementType(); 2020 break; 2021 2022 case Type::VariableArray: { 2023 // Losing element qualification here is fine. 2024 const VariableArrayType *vat = cast<VariableArrayType>(ty); 2025 2026 // Unknown size indication requires no size computation. 2027 // Otherwise, evaluate and record it. 2028 if (const Expr *size = vat->getSizeExpr()) { 2029 // It's possible that we might have emitted this already, 2030 // e.g. with a typedef and a pointer to it. 2031 llvm::Value *&entry = VLASizeMap[size]; 2032 if (!entry) { 2033 llvm::Value *Size = EmitScalarExpr(size); 2034 2035 // C11 6.7.6.2p5: 2036 // If the size is an expression that is not an integer constant 2037 // expression [...] each time it is evaluated it shall have a value 2038 // greater than zero. 2039 if (SanOpts.has(SanitizerKind::VLABound) && 2040 size->getType()->isSignedIntegerType()) { 2041 SanitizerScope SanScope(this); 2042 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); 2043 llvm::Constant *StaticArgs[] = { 2044 EmitCheckSourceLocation(size->getBeginLoc()), 2045 EmitCheckTypeDescriptor(size->getType())}; 2046 EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero), 2047 SanitizerKind::VLABound), 2048 SanitizerHandler::VLABoundNotPositive, StaticArgs, Size); 2049 } 2050 2051 // Always zexting here would be wrong if it weren't 2052 // undefined behavior to have a negative bound. 2053 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); 2054 } 2055 } 2056 type = vat->getElementType(); 2057 break; 2058 } 2059 2060 case Type::FunctionProto: 2061 case Type::FunctionNoProto: 2062 type = cast<FunctionType>(ty)->getReturnType(); 2063 break; 2064 2065 case Type::Paren: 2066 case Type::TypeOf: 2067 case Type::UnaryTransform: 2068 case Type::Attributed: 2069 case Type::SubstTemplateTypeParm: 2070 case Type::PackExpansion: 2071 case Type::MacroQualified: 2072 // Keep walking after single level desugaring. 2073 type = type.getSingleStepDesugaredType(getContext()); 2074 break; 2075 2076 case Type::Typedef: 2077 case Type::Decltype: 2078 case Type::Auto: 2079 case Type::DeducedTemplateSpecialization: 2080 // Stop walking: nothing to do. 2081 return; 2082 2083 case Type::TypeOfExpr: 2084 // Stop walking: emit typeof expression. 2085 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 2086 return; 2087 2088 case Type::Atomic: 2089 type = cast<AtomicType>(ty)->getValueType(); 2090 break; 2091 2092 case Type::Pipe: 2093 type = cast<PipeType>(ty)->getElementType(); 2094 break; 2095 } 2096 } while (type->isVariablyModifiedType()); 2097 } 2098 2099 Address CodeGenFunction::EmitVAListRef(const Expr* E) { 2100 if (getContext().getBuiltinVaListType()->isArrayType()) 2101 return EmitPointerWithAlignment(E); 2102 return EmitLValue(E).getAddress(*this); 2103 } 2104 2105 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) { 2106 return EmitLValue(E).getAddress(*this); 2107 } 2108 2109 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 2110 const APValue &Init) { 2111 assert(Init.hasValue() && "Invalid DeclRefExpr initializer!"); 2112 if (CGDebugInfo *Dbg = getDebugInfo()) 2113 if (CGM.getCodeGenOpts().hasReducedDebugInfo()) 2114 Dbg->EmitGlobalVariable(E->getDecl(), Init); 2115 } 2116 2117 CodeGenFunction::PeepholeProtection 2118 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 2119 // At the moment, the only aggressive peephole we do in IR gen 2120 // is trunc(zext) folding, but if we add more, we can easily 2121 // extend this protection. 2122 2123 if (!rvalue.isScalar()) return PeepholeProtection(); 2124 llvm::Value *value = rvalue.getScalarVal(); 2125 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 2126 2127 // Just make an extra bitcast. 2128 assert(HaveInsertPoint()); 2129 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 2130 Builder.GetInsertBlock()); 2131 2132 PeepholeProtection protection; 2133 protection.Inst = inst; 2134 return protection; 2135 } 2136 2137 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 2138 if (!protection.Inst) return; 2139 2140 // In theory, we could try to duplicate the peepholes now, but whatever. 2141 protection.Inst->eraseFromParent(); 2142 } 2143 2144 void CodeGenFunction::EmitAlignmentAssumption(llvm::Value *PtrValue, 2145 QualType Ty, SourceLocation Loc, 2146 SourceLocation AssumptionLoc, 2147 llvm::Value *Alignment, 2148 llvm::Value *OffsetValue) { 2149 llvm::Value *TheCheck; 2150 llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption( 2151 CGM.getDataLayout(), PtrValue, Alignment, OffsetValue, &TheCheck); 2152 if (SanOpts.has(SanitizerKind::Alignment)) { 2153 EmitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment, 2154 OffsetValue, TheCheck, Assumption); 2155 } 2156 } 2157 2158 void CodeGenFunction::EmitAlignmentAssumption(llvm::Value *PtrValue, 2159 const Expr *E, 2160 SourceLocation AssumptionLoc, 2161 llvm::Value *Alignment, 2162 llvm::Value *OffsetValue) { 2163 if (auto *CE = dyn_cast<CastExpr>(E)) 2164 E = CE->getSubExprAsWritten(); 2165 QualType Ty = E->getType(); 2166 SourceLocation Loc = E->getExprLoc(); 2167 2168 EmitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment, 2169 OffsetValue); 2170 } 2171 2172 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn, 2173 llvm::Value *AnnotatedVal, 2174 StringRef AnnotationStr, 2175 SourceLocation Location) { 2176 llvm::Value *Args[4] = { 2177 AnnotatedVal, 2178 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 2179 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 2180 CGM.EmitAnnotationLineNo(Location) 2181 }; 2182 return Builder.CreateCall(AnnotationFn, Args); 2183 } 2184 2185 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 2186 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2187 // FIXME We create a new bitcast for every annotation because that's what 2188 // llvm-gcc was doing. 2189 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2190 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 2191 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 2192 I->getAnnotation(), D->getLocation()); 2193 } 2194 2195 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 2196 Address Addr) { 2197 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2198 llvm::Value *V = Addr.getPointer(); 2199 llvm::Type *VTy = V->getType(); 2200 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 2201 CGM.Int8PtrTy); 2202 2203 for (const auto *I : D->specific_attrs<AnnotateAttr>()) { 2204 // FIXME Always emit the cast inst so we can differentiate between 2205 // annotation on the first field of a struct and annotation on the struct 2206 // itself. 2207 if (VTy != CGM.Int8PtrTy) 2208 V = Builder.CreateBitCast(V, CGM.Int8PtrTy); 2209 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation()); 2210 V = Builder.CreateBitCast(V, VTy); 2211 } 2212 2213 return Address(V, Addr.getAlignment()); 2214 } 2215 2216 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 2217 2218 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF) 2219 : CGF(CGF) { 2220 assert(!CGF->IsSanitizerScope); 2221 CGF->IsSanitizerScope = true; 2222 } 2223 2224 CodeGenFunction::SanitizerScope::~SanitizerScope() { 2225 CGF->IsSanitizerScope = false; 2226 } 2227 2228 void CodeGenFunction::InsertHelper(llvm::Instruction *I, 2229 const llvm::Twine &Name, 2230 llvm::BasicBlock *BB, 2231 llvm::BasicBlock::iterator InsertPt) const { 2232 LoopStack.InsertHelper(I); 2233 if (IsSanitizerScope) 2234 CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I); 2235 } 2236 2237 void CGBuilderInserter::InsertHelper( 2238 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, 2239 llvm::BasicBlock::iterator InsertPt) const { 2240 llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt); 2241 if (CGF) 2242 CGF->InsertHelper(I, Name, BB, InsertPt); 2243 } 2244 2245 static bool hasRequiredFeatures(const SmallVectorImpl<StringRef> &ReqFeatures, 2246 CodeGenModule &CGM, const FunctionDecl *FD, 2247 std::string &FirstMissing) { 2248 // If there aren't any required features listed then go ahead and return. 2249 if (ReqFeatures.empty()) 2250 return false; 2251 2252 // Now build up the set of caller features and verify that all the required 2253 // features are there. 2254 llvm::StringMap<bool> CallerFeatureMap; 2255 CGM.getContext().getFunctionFeatureMap(CallerFeatureMap, FD); 2256 2257 // If we have at least one of the features in the feature list return 2258 // true, otherwise return false. 2259 return std::all_of( 2260 ReqFeatures.begin(), ReqFeatures.end(), [&](StringRef Feature) { 2261 SmallVector<StringRef, 1> OrFeatures; 2262 Feature.split(OrFeatures, '|'); 2263 return llvm::any_of(OrFeatures, [&](StringRef Feature) { 2264 if (!CallerFeatureMap.lookup(Feature)) { 2265 FirstMissing = Feature.str(); 2266 return false; 2267 } 2268 return true; 2269 }); 2270 }); 2271 } 2272 2273 // Emits an error if we don't have a valid set of target features for the 2274 // called function. 2275 void CodeGenFunction::checkTargetFeatures(const CallExpr *E, 2276 const FunctionDecl *TargetDecl) { 2277 return checkTargetFeatures(E->getBeginLoc(), TargetDecl); 2278 } 2279 2280 // Emits an error if we don't have a valid set of target features for the 2281 // called function. 2282 void CodeGenFunction::checkTargetFeatures(SourceLocation Loc, 2283 const FunctionDecl *TargetDecl) { 2284 // Early exit if this is an indirect call. 2285 if (!TargetDecl) 2286 return; 2287 2288 // Get the current enclosing function if it exists. If it doesn't 2289 // we can't check the target features anyhow. 2290 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl); 2291 if (!FD) 2292 return; 2293 2294 // Grab the required features for the call. For a builtin this is listed in 2295 // the td file with the default cpu, for an always_inline function this is any 2296 // listed cpu and any listed features. 2297 unsigned BuiltinID = TargetDecl->getBuiltinID(); 2298 std::string MissingFeature; 2299 if (BuiltinID) { 2300 SmallVector<StringRef, 1> ReqFeatures; 2301 const char *FeatureList = 2302 CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 2303 // Return if the builtin doesn't have any required features. 2304 if (!FeatureList || StringRef(FeatureList) == "") 2305 return; 2306 StringRef(FeatureList).split(ReqFeatures, ','); 2307 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 2308 CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature) 2309 << TargetDecl->getDeclName() 2310 << CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 2311 2312 } else if (!TargetDecl->isMultiVersion() && 2313 TargetDecl->hasAttr<TargetAttr>()) { 2314 // Get the required features for the callee. 2315 2316 const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>(); 2317 ParsedTargetAttr ParsedAttr = 2318 CGM.getContext().filterFunctionTargetAttrs(TD); 2319 2320 SmallVector<StringRef, 1> ReqFeatures; 2321 llvm::StringMap<bool> CalleeFeatureMap; 2322 CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, 2323 GlobalDecl(TargetDecl)); 2324 2325 for (const auto &F : ParsedAttr.Features) { 2326 if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1))) 2327 ReqFeatures.push_back(StringRef(F).substr(1)); 2328 } 2329 2330 for (const auto &F : CalleeFeatureMap) { 2331 // Only positive features are "required". 2332 if (F.getValue()) 2333 ReqFeatures.push_back(F.getKey()); 2334 } 2335 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 2336 CGM.getDiags().Report(Loc, diag::err_function_needs_feature) 2337 << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature; 2338 } 2339 } 2340 2341 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) { 2342 if (!CGM.getCodeGenOpts().SanitizeStats) 2343 return; 2344 2345 llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint()); 2346 IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation()); 2347 CGM.getSanStats().create(IRB, SSK); 2348 } 2349 2350 llvm::Value * 2351 CodeGenFunction::FormResolverCondition(const MultiVersionResolverOption &RO) { 2352 llvm::Value *Condition = nullptr; 2353 2354 if (!RO.Conditions.Architecture.empty()) 2355 Condition = EmitX86CpuIs(RO.Conditions.Architecture); 2356 2357 if (!RO.Conditions.Features.empty()) { 2358 llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features); 2359 Condition = 2360 Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond; 2361 } 2362 return Condition; 2363 } 2364 2365 static void CreateMultiVersionResolverReturn(CodeGenModule &CGM, 2366 llvm::Function *Resolver, 2367 CGBuilderTy &Builder, 2368 llvm::Function *FuncToReturn, 2369 bool SupportsIFunc) { 2370 if (SupportsIFunc) { 2371 Builder.CreateRet(FuncToReturn); 2372 return; 2373 } 2374 2375 llvm::SmallVector<llvm::Value *, 10> Args; 2376 llvm::for_each(Resolver->args(), 2377 [&](llvm::Argument &Arg) { Args.push_back(&Arg); }); 2378 2379 llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args); 2380 Result->setTailCallKind(llvm::CallInst::TCK_MustTail); 2381 2382 if (Resolver->getReturnType()->isVoidTy()) 2383 Builder.CreateRetVoid(); 2384 else 2385 Builder.CreateRet(Result); 2386 } 2387 2388 void CodeGenFunction::EmitMultiVersionResolver( 2389 llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) { 2390 assert(getContext().getTargetInfo().getTriple().isX86() && 2391 "Only implemented for x86 targets"); 2392 2393 bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc(); 2394 2395 // Main function's basic block. 2396 llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver); 2397 Builder.SetInsertPoint(CurBlock); 2398 EmitX86CpuInit(); 2399 2400 for (const MultiVersionResolverOption &RO : Options) { 2401 Builder.SetInsertPoint(CurBlock); 2402 llvm::Value *Condition = FormResolverCondition(RO); 2403 2404 // The 'default' or 'generic' case. 2405 if (!Condition) { 2406 assert(&RO == Options.end() - 1 && 2407 "Default or Generic case must be last"); 2408 CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function, 2409 SupportsIFunc); 2410 return; 2411 } 2412 2413 llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver); 2414 CGBuilderTy RetBuilder(*this, RetBlock); 2415 CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function, 2416 SupportsIFunc); 2417 CurBlock = createBasicBlock("resolver_else", Resolver); 2418 Builder.CreateCondBr(Condition, RetBlock, CurBlock); 2419 } 2420 2421 // If no generic/default, emit an unreachable. 2422 Builder.SetInsertPoint(CurBlock); 2423 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 2424 TrapCall->setDoesNotReturn(); 2425 TrapCall->setDoesNotThrow(); 2426 Builder.CreateUnreachable(); 2427 Builder.ClearInsertionPoint(); 2428 } 2429 2430 // Loc - where the diagnostic will point, where in the source code this 2431 // alignment has failed. 2432 // SecondaryLoc - if present (will be present if sufficiently different from 2433 // Loc), the diagnostic will additionally point a "Note:" to this location. 2434 // It should be the location where the __attribute__((assume_aligned)) 2435 // was written e.g. 2436 void CodeGenFunction::EmitAlignmentAssumptionCheck( 2437 llvm::Value *Ptr, QualType Ty, SourceLocation Loc, 2438 SourceLocation SecondaryLoc, llvm::Value *Alignment, 2439 llvm::Value *OffsetValue, llvm::Value *TheCheck, 2440 llvm::Instruction *Assumption) { 2441 assert(Assumption && isa<llvm::CallInst>(Assumption) && 2442 cast<llvm::CallInst>(Assumption)->getCalledValue() == 2443 llvm::Intrinsic::getDeclaration( 2444 Builder.GetInsertBlock()->getParent()->getParent(), 2445 llvm::Intrinsic::assume) && 2446 "Assumption should be a call to llvm.assume()."); 2447 assert(&(Builder.GetInsertBlock()->back()) == Assumption && 2448 "Assumption should be the last instruction of the basic block, " 2449 "since the basic block is still being generated."); 2450 2451 if (!SanOpts.has(SanitizerKind::Alignment)) 2452 return; 2453 2454 // Don't check pointers to volatile data. The behavior here is implementation- 2455 // defined. 2456 if (Ty->getPointeeType().isVolatileQualified()) 2457 return; 2458 2459 // We need to temorairly remove the assumption so we can insert the 2460 // sanitizer check before it, else the check will be dropped by optimizations. 2461 Assumption->removeFromParent(); 2462 2463 { 2464 SanitizerScope SanScope(this); 2465 2466 if (!OffsetValue) 2467 OffsetValue = Builder.getInt1(0); // no offset. 2468 2469 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc), 2470 EmitCheckSourceLocation(SecondaryLoc), 2471 EmitCheckTypeDescriptor(Ty)}; 2472 llvm::Value *DynamicData[] = {EmitCheckValue(Ptr), 2473 EmitCheckValue(Alignment), 2474 EmitCheckValue(OffsetValue)}; 2475 EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)}, 2476 SanitizerHandler::AlignmentAssumption, StaticData, DynamicData); 2477 } 2478 2479 // We are now in the (new, empty) "cont" basic block. 2480 // Reintroduce the assumption. 2481 Builder.Insert(Assumption); 2482 // FIXME: Assumption still has it's original basic block as it's Parent. 2483 } 2484 2485 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) { 2486 if (CGDebugInfo *DI = getDebugInfo()) 2487 return DI->SourceLocToDebugLoc(Location); 2488 2489 return llvm::DebugLoc(); 2490 } 2491