xref: /llvm-project/clang/lib/CodeGen/CodeGenFunction.cpp (revision 3fa38a14acca2ee81b2ee724d2bf1197d20494cf)
1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-function state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGBlocks.h"
16 #include "CGCleanup.h"
17 #include "CGCUDARuntime.h"
18 #include "CGCXXABI.h"
19 #include "CGDebugInfo.h"
20 #include "CGOpenMPRuntime.h"
21 #include "CodeGenModule.h"
22 #include "CodeGenPGO.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/Decl.h"
26 #include "clang/AST/DeclCXX.h"
27 #include "clang/AST/StmtCXX.h"
28 #include "clang/AST/StmtObjC.h"
29 #include "clang/Basic/Builtins.h"
30 #include "clang/Basic/TargetInfo.h"
31 #include "clang/CodeGen/CGFunctionInfo.h"
32 #include "clang/Frontend/CodeGenOptions.h"
33 #include "clang/Sema/SemaDiagnostic.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/Intrinsics.h"
36 #include "llvm/IR/MDBuilder.h"
37 #include "llvm/IR/Operator.h"
38 using namespace clang;
39 using namespace CodeGen;
40 
41 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time
42 /// markers.
43 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts,
44                                       const LangOptions &LangOpts) {
45   if (CGOpts.DisableLifetimeMarkers)
46     return false;
47 
48   // Asan uses markers for use-after-scope checks.
49   if (CGOpts.SanitizeAddressUseAfterScope)
50     return true;
51 
52   // Disable lifetime markers in msan builds.
53   // FIXME: Remove this when msan works with lifetime markers.
54   if (LangOpts.Sanitize.has(SanitizerKind::Memory))
55     return false;
56 
57   // For now, only in optimized builds.
58   return CGOpts.OptimizationLevel != 0;
59 }
60 
61 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
62     : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
63       Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(),
64               CGBuilderInserterTy(this)),
65       CurFn(nullptr), ReturnValue(Address::invalid()),
66       CapturedStmtInfo(nullptr), SanOpts(CGM.getLangOpts().Sanitize),
67       IsSanitizerScope(false), CurFuncIsThunk(false), AutoreleaseResult(false),
68       SawAsmBlock(false), IsOutlinedSEHHelper(false), BlockInfo(nullptr),
69       BlockPointer(nullptr), LambdaThisCaptureField(nullptr),
70       NormalCleanupDest(nullptr), NextCleanupDestIndex(1),
71       FirstBlockInfo(nullptr), EHResumeBlock(nullptr), ExceptionSlot(nullptr),
72       EHSelectorSlot(nullptr), DebugInfo(CGM.getModuleDebugInfo()),
73       DisableDebugInfo(false), DidCallStackSave(false), IndirectBranch(nullptr),
74       PGO(cgm), SwitchInsn(nullptr), SwitchWeights(nullptr),
75       CaseRangeBlock(nullptr), UnreachableBlock(nullptr), NumReturnExprs(0),
76       NumSimpleReturnExprs(0), CXXABIThisDecl(nullptr),
77       CXXABIThisValue(nullptr), CXXThisValue(nullptr),
78       CXXStructorImplicitParamDecl(nullptr),
79       CXXStructorImplicitParamValue(nullptr), OutermostConditional(nullptr),
80       CurLexicalScope(nullptr), TerminateLandingPad(nullptr),
81       TerminateHandler(nullptr), TrapBB(nullptr),
82       ShouldEmitLifetimeMarkers(
83           shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) {
84   if (!suppressNewContext)
85     CGM.getCXXABI().getMangleContext().startNewFunction();
86 
87   llvm::FastMathFlags FMF;
88   if (CGM.getLangOpts().FastMath)
89     FMF.setUnsafeAlgebra();
90   if (CGM.getLangOpts().FiniteMathOnly) {
91     FMF.setNoNaNs();
92     FMF.setNoInfs();
93   }
94   if (CGM.getCodeGenOpts().NoNaNsFPMath) {
95     FMF.setNoNaNs();
96   }
97   if (CGM.getCodeGenOpts().NoSignedZeros) {
98     FMF.setNoSignedZeros();
99   }
100   if (CGM.getCodeGenOpts().ReciprocalMath) {
101     FMF.setAllowReciprocal();
102   }
103   Builder.setFastMathFlags(FMF);
104 }
105 
106 CodeGenFunction::~CodeGenFunction() {
107   assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
108 
109   // If there are any unclaimed block infos, go ahead and destroy them
110   // now.  This can happen if IR-gen gets clever and skips evaluating
111   // something.
112   if (FirstBlockInfo)
113     destroyBlockInfos(FirstBlockInfo);
114 
115   if (getLangOpts().OpenMP && CurFn)
116     CGM.getOpenMPRuntime().functionFinished(*this);
117 }
118 
119 CharUnits CodeGenFunction::getNaturalPointeeTypeAlignment(QualType T,
120                                                      AlignmentSource *Source) {
121   return getNaturalTypeAlignment(T->getPointeeType(), Source,
122                                  /*forPointee*/ true);
123 }
124 
125 CharUnits CodeGenFunction::getNaturalTypeAlignment(QualType T,
126                                                    AlignmentSource *Source,
127                                                    bool forPointeeType) {
128   // Honor alignment typedef attributes even on incomplete types.
129   // We also honor them straight for C++ class types, even as pointees;
130   // there's an expressivity gap here.
131   if (auto TT = T->getAs<TypedefType>()) {
132     if (auto Align = TT->getDecl()->getMaxAlignment()) {
133       if (Source) *Source = AlignmentSource::AttributedType;
134       return getContext().toCharUnitsFromBits(Align);
135     }
136   }
137 
138   if (Source) *Source = AlignmentSource::Type;
139 
140   CharUnits Alignment;
141   if (T->isIncompleteType()) {
142     Alignment = CharUnits::One(); // Shouldn't be used, but pessimistic is best.
143   } else {
144     // For C++ class pointees, we don't know whether we're pointing at a
145     // base or a complete object, so we generally need to use the
146     // non-virtual alignment.
147     const CXXRecordDecl *RD;
148     if (forPointeeType && (RD = T->getAsCXXRecordDecl())) {
149       Alignment = CGM.getClassPointerAlignment(RD);
150     } else {
151       Alignment = getContext().getTypeAlignInChars(T);
152       if (T.getQualifiers().hasUnaligned())
153         Alignment = CharUnits::One();
154     }
155 
156     // Cap to the global maximum type alignment unless the alignment
157     // was somehow explicit on the type.
158     if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
159       if (Alignment.getQuantity() > MaxAlign &&
160           !getContext().isAlignmentRequired(T))
161         Alignment = CharUnits::fromQuantity(MaxAlign);
162     }
163   }
164   return Alignment;
165 }
166 
167 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
168   AlignmentSource AlignSource;
169   CharUnits Alignment = getNaturalTypeAlignment(T, &AlignSource);
170   return LValue::MakeAddr(Address(V, Alignment), T, getContext(), AlignSource,
171                           CGM.getTBAAInfo(T));
172 }
173 
174 /// Given a value of type T* that may not be to a complete object,
175 /// construct an l-value with the natural pointee alignment of T.
176 LValue
177 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) {
178   AlignmentSource AlignSource;
179   CharUnits Align = getNaturalTypeAlignment(T, &AlignSource, /*pointee*/ true);
180   return MakeAddrLValue(Address(V, Align), T, AlignSource);
181 }
182 
183 
184 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
185   return CGM.getTypes().ConvertTypeForMem(T);
186 }
187 
188 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
189   return CGM.getTypes().ConvertType(T);
190 }
191 
192 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
193   type = type.getCanonicalType();
194   while (true) {
195     switch (type->getTypeClass()) {
196 #define TYPE(name, parent)
197 #define ABSTRACT_TYPE(name, parent)
198 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
199 #define DEPENDENT_TYPE(name, parent) case Type::name:
200 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
201 #include "clang/AST/TypeNodes.def"
202       llvm_unreachable("non-canonical or dependent type in IR-generation");
203 
204     case Type::Auto:
205     case Type::DeducedTemplateSpecialization:
206       llvm_unreachable("undeduced type in IR-generation");
207 
208     // Various scalar types.
209     case Type::Builtin:
210     case Type::Pointer:
211     case Type::BlockPointer:
212     case Type::LValueReference:
213     case Type::RValueReference:
214     case Type::MemberPointer:
215     case Type::Vector:
216     case Type::ExtVector:
217     case Type::FunctionProto:
218     case Type::FunctionNoProto:
219     case Type::Enum:
220     case Type::ObjCObjectPointer:
221     case Type::Pipe:
222       return TEK_Scalar;
223 
224     // Complexes.
225     case Type::Complex:
226       return TEK_Complex;
227 
228     // Arrays, records, and Objective-C objects.
229     case Type::ConstantArray:
230     case Type::IncompleteArray:
231     case Type::VariableArray:
232     case Type::Record:
233     case Type::ObjCObject:
234     case Type::ObjCInterface:
235       return TEK_Aggregate;
236 
237     // We operate on atomic values according to their underlying type.
238     case Type::Atomic:
239       type = cast<AtomicType>(type)->getValueType();
240       continue;
241     }
242     llvm_unreachable("unknown type kind!");
243   }
244 }
245 
246 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() {
247   // For cleanliness, we try to avoid emitting the return block for
248   // simple cases.
249   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
250 
251   if (CurBB) {
252     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
253 
254     // We have a valid insert point, reuse it if it is empty or there are no
255     // explicit jumps to the return block.
256     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
257       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
258       delete ReturnBlock.getBlock();
259     } else
260       EmitBlock(ReturnBlock.getBlock());
261     return llvm::DebugLoc();
262   }
263 
264   // Otherwise, if the return block is the target of a single direct
265   // branch then we can just put the code in that block instead. This
266   // cleans up functions which started with a unified return block.
267   if (ReturnBlock.getBlock()->hasOneUse()) {
268     llvm::BranchInst *BI =
269       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin());
270     if (BI && BI->isUnconditional() &&
271         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
272       // Record/return the DebugLoc of the simple 'return' expression to be used
273       // later by the actual 'ret' instruction.
274       llvm::DebugLoc Loc = BI->getDebugLoc();
275       Builder.SetInsertPoint(BI->getParent());
276       BI->eraseFromParent();
277       delete ReturnBlock.getBlock();
278       return Loc;
279     }
280   }
281 
282   // FIXME: We are at an unreachable point, there is no reason to emit the block
283   // unless it has uses. However, we still need a place to put the debug
284   // region.end for now.
285 
286   EmitBlock(ReturnBlock.getBlock());
287   return llvm::DebugLoc();
288 }
289 
290 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
291   if (!BB) return;
292   if (!BB->use_empty())
293     return CGF.CurFn->getBasicBlockList().push_back(BB);
294   delete BB;
295 }
296 
297 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
298   assert(BreakContinueStack.empty() &&
299          "mismatched push/pop in break/continue stack!");
300 
301   bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
302     && NumSimpleReturnExprs == NumReturnExprs
303     && ReturnBlock.getBlock()->use_empty();
304   // Usually the return expression is evaluated before the cleanup
305   // code.  If the function contains only a simple return statement,
306   // such as a constant, the location before the cleanup code becomes
307   // the last useful breakpoint in the function, because the simple
308   // return expression will be evaluated after the cleanup code. To be
309   // safe, set the debug location for cleanup code to the location of
310   // the return statement.  Otherwise the cleanup code should be at the
311   // end of the function's lexical scope.
312   //
313   // If there are multiple branches to the return block, the branch
314   // instructions will get the location of the return statements and
315   // all will be fine.
316   if (CGDebugInfo *DI = getDebugInfo()) {
317     if (OnlySimpleReturnStmts)
318       DI->EmitLocation(Builder, LastStopPoint);
319     else
320       DI->EmitLocation(Builder, EndLoc);
321   }
322 
323   // Pop any cleanups that might have been associated with the
324   // parameters.  Do this in whatever block we're currently in; it's
325   // important to do this before we enter the return block or return
326   // edges will be *really* confused.
327   bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth;
328   bool HasOnlyLifetimeMarkers =
329       HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth);
330   bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers;
331   if (HasCleanups) {
332     // Make sure the line table doesn't jump back into the body for
333     // the ret after it's been at EndLoc.
334     if (CGDebugInfo *DI = getDebugInfo())
335       if (OnlySimpleReturnStmts)
336         DI->EmitLocation(Builder, EndLoc);
337 
338     PopCleanupBlocks(PrologueCleanupDepth);
339   }
340 
341   // Emit function epilog (to return).
342   llvm::DebugLoc Loc = EmitReturnBlock();
343 
344   if (ShouldInstrumentFunction())
345     EmitFunctionInstrumentation("__cyg_profile_func_exit");
346 
347   // Emit debug descriptor for function end.
348   if (CGDebugInfo *DI = getDebugInfo())
349     DI->EmitFunctionEnd(Builder);
350 
351   // Reset the debug location to that of the simple 'return' expression, if any
352   // rather than that of the end of the function's scope '}'.
353   ApplyDebugLocation AL(*this, Loc);
354   EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
355   EmitEndEHSpec(CurCodeDecl);
356 
357   assert(EHStack.empty() &&
358          "did not remove all scopes from cleanup stack!");
359 
360   // If someone did an indirect goto, emit the indirect goto block at the end of
361   // the function.
362   if (IndirectBranch) {
363     EmitBlock(IndirectBranch->getParent());
364     Builder.ClearInsertionPoint();
365   }
366 
367   // If some of our locals escaped, insert a call to llvm.localescape in the
368   // entry block.
369   if (!EscapedLocals.empty()) {
370     // Invert the map from local to index into a simple vector. There should be
371     // no holes.
372     SmallVector<llvm::Value *, 4> EscapeArgs;
373     EscapeArgs.resize(EscapedLocals.size());
374     for (auto &Pair : EscapedLocals)
375       EscapeArgs[Pair.second] = Pair.first;
376     llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration(
377         &CGM.getModule(), llvm::Intrinsic::localescape);
378     CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs);
379   }
380 
381   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
382   llvm::Instruction *Ptr = AllocaInsertPt;
383   AllocaInsertPt = nullptr;
384   Ptr->eraseFromParent();
385 
386   // If someone took the address of a label but never did an indirect goto, we
387   // made a zero entry PHI node, which is illegal, zap it now.
388   if (IndirectBranch) {
389     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
390     if (PN->getNumIncomingValues() == 0) {
391       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
392       PN->eraseFromParent();
393     }
394   }
395 
396   EmitIfUsed(*this, EHResumeBlock);
397   EmitIfUsed(*this, TerminateLandingPad);
398   EmitIfUsed(*this, TerminateHandler);
399   EmitIfUsed(*this, UnreachableBlock);
400 
401   if (CGM.getCodeGenOpts().EmitDeclMetadata)
402     EmitDeclMetadata();
403 
404   for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator
405            I = DeferredReplacements.begin(),
406            E = DeferredReplacements.end();
407        I != E; ++I) {
408     I->first->replaceAllUsesWith(I->second);
409     I->first->eraseFromParent();
410   }
411 }
412 
413 /// ShouldInstrumentFunction - Return true if the current function should be
414 /// instrumented with __cyg_profile_func_* calls
415 bool CodeGenFunction::ShouldInstrumentFunction() {
416   if (!CGM.getCodeGenOpts().InstrumentFunctions)
417     return false;
418   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
419     return false;
420   return true;
421 }
422 
423 /// ShouldXRayInstrument - Return true if the current function should be
424 /// instrumented with XRay nop sleds.
425 bool CodeGenFunction::ShouldXRayInstrumentFunction() const {
426   return CGM.getCodeGenOpts().XRayInstrumentFunctions;
427 }
428 
429 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
430 /// instrumentation function with the current function and the call site, if
431 /// function instrumentation is enabled.
432 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) {
433   auto NL = ApplyDebugLocation::CreateArtificial(*this);
434   // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site);
435   llvm::PointerType *PointerTy = Int8PtrTy;
436   llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy };
437   llvm::FunctionType *FunctionTy =
438     llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false);
439 
440   llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn);
441   llvm::CallInst *CallSite = Builder.CreateCall(
442     CGM.getIntrinsic(llvm::Intrinsic::returnaddress),
443     llvm::ConstantInt::get(Int32Ty, 0),
444     "callsite");
445 
446   llvm::Value *args[] = {
447     llvm::ConstantExpr::getBitCast(CurFn, PointerTy),
448     CallSite
449   };
450 
451   EmitNounwindRuntimeCall(F, args);
452 }
453 
454 static void removeImageAccessQualifier(std::string& TyName) {
455   std::string ReadOnlyQual("__read_only");
456   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
457   if (ReadOnlyPos != std::string::npos)
458     // "+ 1" for the space after access qualifier.
459     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
460   else {
461     std::string WriteOnlyQual("__write_only");
462     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
463     if (WriteOnlyPos != std::string::npos)
464       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
465     else {
466       std::string ReadWriteQual("__read_write");
467       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
468       if (ReadWritePos != std::string::npos)
469         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
470     }
471   }
472 }
473 
474 // Returns the address space id that should be produced to the
475 // kernel_arg_addr_space metadata. This is always fixed to the ids
476 // as specified in the SPIR 2.0 specification in order to differentiate
477 // for example in clGetKernelArgInfo() implementation between the address
478 // spaces with targets without unique mapping to the OpenCL address spaces
479 // (basically all single AS CPUs).
480 static unsigned ArgInfoAddressSpace(unsigned LangAS) {
481   switch (LangAS) {
482   case LangAS::opencl_global:   return 1;
483   case LangAS::opencl_constant: return 2;
484   case LangAS::opencl_local:    return 3;
485   case LangAS::opencl_generic:  return 4; // Not in SPIR 2.0 specs.
486   default:
487     return 0; // Assume private.
488   }
489 }
490 
491 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument
492 // information in the program executable. The argument information stored
493 // includes the argument name, its type, the address and access qualifiers used.
494 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn,
495                                  CodeGenModule &CGM, llvm::LLVMContext &Context,
496                                  CGBuilderTy &Builder, ASTContext &ASTCtx) {
497   // Create MDNodes that represent the kernel arg metadata.
498   // Each MDNode is a list in the form of "key", N number of values which is
499   // the same number of values as their are kernel arguments.
500 
501   const PrintingPolicy &Policy = ASTCtx.getPrintingPolicy();
502 
503   // MDNode for the kernel argument address space qualifiers.
504   SmallVector<llvm::Metadata *, 8> addressQuals;
505 
506   // MDNode for the kernel argument access qualifiers (images only).
507   SmallVector<llvm::Metadata *, 8> accessQuals;
508 
509   // MDNode for the kernel argument type names.
510   SmallVector<llvm::Metadata *, 8> argTypeNames;
511 
512   // MDNode for the kernel argument base type names.
513   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
514 
515   // MDNode for the kernel argument type qualifiers.
516   SmallVector<llvm::Metadata *, 8> argTypeQuals;
517 
518   // MDNode for the kernel argument names.
519   SmallVector<llvm::Metadata *, 8> argNames;
520 
521   for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
522     const ParmVarDecl *parm = FD->getParamDecl(i);
523     QualType ty = parm->getType();
524     std::string typeQuals;
525 
526     if (ty->isPointerType()) {
527       QualType pointeeTy = ty->getPointeeType();
528 
529       // Get address qualifier.
530       addressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(
531         ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
532 
533       // Get argument type name.
534       std::string typeName =
535           pointeeTy.getUnqualifiedType().getAsString(Policy) + "*";
536 
537       // Turn "unsigned type" to "utype"
538       std::string::size_type pos = typeName.find("unsigned");
539       if (pointeeTy.isCanonical() && pos != std::string::npos)
540         typeName.erase(pos+1, 8);
541 
542       argTypeNames.push_back(llvm::MDString::get(Context, typeName));
543 
544       std::string baseTypeName =
545           pointeeTy.getUnqualifiedType().getCanonicalType().getAsString(
546               Policy) +
547           "*";
548 
549       // Turn "unsigned type" to "utype"
550       pos = baseTypeName.find("unsigned");
551       if (pos != std::string::npos)
552         baseTypeName.erase(pos+1, 8);
553 
554       argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName));
555 
556       // Get argument type qualifiers:
557       if (ty.isRestrictQualified())
558         typeQuals = "restrict";
559       if (pointeeTy.isConstQualified() ||
560           (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
561         typeQuals += typeQuals.empty() ? "const" : " const";
562       if (pointeeTy.isVolatileQualified())
563         typeQuals += typeQuals.empty() ? "volatile" : " volatile";
564     } else {
565       uint32_t AddrSpc = 0;
566       bool isPipe = ty->isPipeType();
567       if (ty->isImageType() || isPipe)
568         AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
569 
570       addressQuals.push_back(
571           llvm::ConstantAsMetadata::get(Builder.getInt32(AddrSpc)));
572 
573       // Get argument type name.
574       std::string typeName;
575       if (isPipe)
576         typeName = ty.getCanonicalType()->getAs<PipeType>()->getElementType()
577                      .getAsString(Policy);
578       else
579         typeName = ty.getUnqualifiedType().getAsString(Policy);
580 
581       // Turn "unsigned type" to "utype"
582       std::string::size_type pos = typeName.find("unsigned");
583       if (ty.isCanonical() && pos != std::string::npos)
584         typeName.erase(pos+1, 8);
585 
586       std::string baseTypeName;
587       if (isPipe)
588         baseTypeName = ty.getCanonicalType()->getAs<PipeType>()
589                           ->getElementType().getCanonicalType()
590                           .getAsString(Policy);
591       else
592         baseTypeName =
593           ty.getUnqualifiedType().getCanonicalType().getAsString(Policy);
594 
595       // Remove access qualifiers on images
596       // (as they are inseparable from type in clang implementation,
597       // but OpenCL spec provides a special query to get access qualifier
598       // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
599       if (ty->isImageType()) {
600         removeImageAccessQualifier(typeName);
601         removeImageAccessQualifier(baseTypeName);
602       }
603 
604       argTypeNames.push_back(llvm::MDString::get(Context, typeName));
605 
606       // Turn "unsigned type" to "utype"
607       pos = baseTypeName.find("unsigned");
608       if (pos != std::string::npos)
609         baseTypeName.erase(pos+1, 8);
610 
611       argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName));
612 
613       // Get argument type qualifiers:
614       if (ty.isConstQualified())
615         typeQuals = "const";
616       if (ty.isVolatileQualified())
617         typeQuals += typeQuals.empty() ? "volatile" : " volatile";
618       if (isPipe)
619         typeQuals = "pipe";
620     }
621 
622     argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals));
623 
624     // Get image and pipe access qualifier:
625     if (ty->isImageType()|| ty->isPipeType()) {
626       const OpenCLAccessAttr *A = parm->getAttr<OpenCLAccessAttr>();
627       if (A && A->isWriteOnly())
628         accessQuals.push_back(llvm::MDString::get(Context, "write_only"));
629       else if (A && A->isReadWrite())
630         accessQuals.push_back(llvm::MDString::get(Context, "read_write"));
631       else
632         accessQuals.push_back(llvm::MDString::get(Context, "read_only"));
633     } else
634       accessQuals.push_back(llvm::MDString::get(Context, "none"));
635 
636     // Get argument name.
637     argNames.push_back(llvm::MDString::get(Context, parm->getName()));
638   }
639 
640   Fn->setMetadata("kernel_arg_addr_space",
641                   llvm::MDNode::get(Context, addressQuals));
642   Fn->setMetadata("kernel_arg_access_qual",
643                   llvm::MDNode::get(Context, accessQuals));
644   Fn->setMetadata("kernel_arg_type",
645                   llvm::MDNode::get(Context, argTypeNames));
646   Fn->setMetadata("kernel_arg_base_type",
647                   llvm::MDNode::get(Context, argBaseTypeNames));
648   Fn->setMetadata("kernel_arg_type_qual",
649                   llvm::MDNode::get(Context, argTypeQuals));
650   if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
651     Fn->setMetadata("kernel_arg_name",
652                     llvm::MDNode::get(Context, argNames));
653 }
654 
655 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD,
656                                                llvm::Function *Fn)
657 {
658   if (!FD->hasAttr<OpenCLKernelAttr>())
659     return;
660 
661   llvm::LLVMContext &Context = getLLVMContext();
662 
663   GenOpenCLArgMetadata(FD, Fn, CGM, Context, Builder, getContext());
664 
665   if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
666     QualType hintQTy = A->getTypeHint();
667     const ExtVectorType *hintEltQTy = hintQTy->getAs<ExtVectorType>();
668     bool isSignedInteger =
669         hintQTy->isSignedIntegerType() ||
670         (hintEltQTy && hintEltQTy->getElementType()->isSignedIntegerType());
671     llvm::Metadata *attrMDArgs[] = {
672         llvm::ConstantAsMetadata::get(llvm::UndefValue::get(
673             CGM.getTypes().ConvertType(A->getTypeHint()))),
674         llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
675             llvm::IntegerType::get(Context, 32),
676             llvm::APInt(32, (uint64_t)(isSignedInteger ? 1 : 0))))};
677     Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, attrMDArgs));
678   }
679 
680   if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
681     llvm::Metadata *attrMDArgs[] = {
682         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
683         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
684         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
685     Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, attrMDArgs));
686   }
687 
688   if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
689     llvm::Metadata *attrMDArgs[] = {
690         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
691         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
692         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
693     Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, attrMDArgs));
694   }
695 }
696 
697 /// Determine whether the function F ends with a return stmt.
698 static bool endsWithReturn(const Decl* F) {
699   const Stmt *Body = nullptr;
700   if (auto *FD = dyn_cast_or_null<FunctionDecl>(F))
701     Body = FD->getBody();
702   else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F))
703     Body = OMD->getBody();
704 
705   if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
706     auto LastStmt = CS->body_rbegin();
707     if (LastStmt != CS->body_rend())
708       return isa<ReturnStmt>(*LastStmt);
709   }
710   return false;
711 }
712 
713 static void markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) {
714   Fn->addFnAttr("sanitize_thread_no_checking_at_run_time");
715   Fn->removeFnAttr(llvm::Attribute::SanitizeThread);
716 }
717 
718 void CodeGenFunction::StartFunction(GlobalDecl GD,
719                                     QualType RetTy,
720                                     llvm::Function *Fn,
721                                     const CGFunctionInfo &FnInfo,
722                                     const FunctionArgList &Args,
723                                     SourceLocation Loc,
724                                     SourceLocation StartLoc) {
725   assert(!CurFn &&
726          "Do not use a CodeGenFunction object for more than one function");
727 
728   const Decl *D = GD.getDecl();
729 
730   DidCallStackSave = false;
731   CurCodeDecl = D;
732   if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D))
733     if (FD->usesSEHTry())
734       CurSEHParent = FD;
735   CurFuncDecl = (D ? D->getNonClosureContext() : nullptr);
736   FnRetTy = RetTy;
737   CurFn = Fn;
738   CurFnInfo = &FnInfo;
739   assert(CurFn->isDeclaration() && "Function already has body?");
740 
741   if (CGM.isInSanitizerBlacklist(Fn, Loc))
742     SanOpts.clear();
743 
744   if (D) {
745     // Apply the no_sanitize* attributes to SanOpts.
746     for (auto Attr : D->specific_attrs<NoSanitizeAttr>())
747       SanOpts.Mask &= ~Attr->getMask();
748   }
749 
750   // Apply sanitizer attributes to the function.
751   if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress))
752     Fn->addFnAttr(llvm::Attribute::SanitizeAddress);
753   if (SanOpts.has(SanitizerKind::Thread))
754     Fn->addFnAttr(llvm::Attribute::SanitizeThread);
755   if (SanOpts.has(SanitizerKind::Memory))
756     Fn->addFnAttr(llvm::Attribute::SanitizeMemory);
757   if (SanOpts.has(SanitizerKind::SafeStack))
758     Fn->addFnAttr(llvm::Attribute::SafeStack);
759 
760   // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize,
761   // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time.
762   if (SanOpts.has(SanitizerKind::Thread)) {
763     if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) {
764       IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0);
765       if (OMD->getMethodFamily() == OMF_dealloc ||
766           OMD->getMethodFamily() == OMF_initialize ||
767           (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) {
768         markAsIgnoreThreadCheckingAtRuntime(Fn);
769       }
770     } else if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) {
771       IdentifierInfo *II = FD->getIdentifier();
772       if (II && II->isStr("__destroy_helper_block_"))
773         markAsIgnoreThreadCheckingAtRuntime(Fn);
774     }
775   }
776 
777   // Apply xray attributes to the function (as a string, for now)
778   if (D && ShouldXRayInstrumentFunction()) {
779     if (const auto *XRayAttr = D->getAttr<XRayInstrumentAttr>()) {
780       if (XRayAttr->alwaysXRayInstrument())
781         Fn->addFnAttr("function-instrument", "xray-always");
782       if (XRayAttr->neverXRayInstrument())
783         Fn->addFnAttr("function-instrument", "xray-never");
784       if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>()) {
785         Fn->addFnAttr("xray-log-args",
786                       llvm::utostr(LogArgs->getArgumentCount()));
787       }
788     } else {
789       Fn->addFnAttr(
790           "xray-instruction-threshold",
791           llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold));
792     }
793   }
794 
795   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
796     if (CGM.getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
797       CGM.getOpenMPRuntime().emitDeclareSimdFunction(FD, Fn);
798 
799   // Add no-jump-tables value.
800   Fn->addFnAttr("no-jump-tables",
801                 llvm::toStringRef(CGM.getCodeGenOpts().NoUseJumpTables));
802 
803   if (getLangOpts().OpenCL) {
804     // Add metadata for a kernel function.
805     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
806       EmitOpenCLKernelMetadata(FD, Fn);
807   }
808 
809   // If we are checking function types, emit a function type signature as
810   // prologue data.
811   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) {
812     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
813       if (llvm::Constant *PrologueSig =
814               CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
815         llvm::Constant *FTRTTIConst =
816             CGM.GetAddrOfRTTIDescriptor(FD->getType(), /*ForEH=*/true);
817         llvm::Constant *PrologueStructElems[] = { PrologueSig, FTRTTIConst };
818         llvm::Constant *PrologueStructConst =
819             llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true);
820         Fn->setPrologueData(PrologueStructConst);
821       }
822     }
823   }
824 
825   // If we're in C++ mode and the function name is "main", it is guaranteed
826   // to be norecurse by the standard (3.6.1.3 "The function main shall not be
827   // used within a program").
828   if (getLangOpts().CPlusPlus)
829     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
830       if (FD->isMain())
831         Fn->addFnAttr(llvm::Attribute::NoRecurse);
832 
833   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
834 
835   // Create a marker to make it easy to insert allocas into the entryblock
836   // later.  Don't create this with the builder, because we don't want it
837   // folded.
838   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
839   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB);
840 
841   ReturnBlock = getJumpDestInCurrentScope("return");
842 
843   Builder.SetInsertPoint(EntryBB);
844 
845   // Emit subprogram debug descriptor.
846   if (CGDebugInfo *DI = getDebugInfo()) {
847     // Reconstruct the type from the argument list so that implicit parameters,
848     // such as 'this' and 'vtt', show up in the debug info. Preserve the calling
849     // convention.
850     CallingConv CC = CallingConv::CC_C;
851     if (auto *FD = dyn_cast_or_null<FunctionDecl>(D))
852       if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>())
853         CC = SrcFnTy->getCallConv();
854     SmallVector<QualType, 16> ArgTypes;
855     for (const VarDecl *VD : Args)
856       ArgTypes.push_back(VD->getType());
857     QualType FnType = getContext().getFunctionType(
858         RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC));
859     DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, Builder);
860   }
861 
862   if (ShouldInstrumentFunction())
863     EmitFunctionInstrumentation("__cyg_profile_func_enter");
864 
865   // Since emitting the mcount call here impacts optimizations such as function
866   // inlining, we just add an attribute to insert a mcount call in backend.
867   // The attribute "counting-function" is set to mcount function name which is
868   // architecture dependent.
869   if (CGM.getCodeGenOpts().InstrumentForProfiling) {
870     if (CGM.getCodeGenOpts().CallFEntry)
871       Fn->addFnAttr("fentry-call", "true");
872     else
873       Fn->addFnAttr("counting-function", getTarget().getMCountName());
874   }
875 
876   if (RetTy->isVoidType()) {
877     // Void type; nothing to return.
878     ReturnValue = Address::invalid();
879 
880     // Count the implicit return.
881     if (!endsWithReturn(D))
882       ++NumReturnExprs;
883   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
884              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
885     // Indirect aggregate return; emit returned value directly into sret slot.
886     // This reduces code size, and affects correctness in C++.
887     auto AI = CurFn->arg_begin();
888     if (CurFnInfo->getReturnInfo().isSRetAfterThis())
889       ++AI;
890     ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign());
891   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca &&
892              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
893     // Load the sret pointer from the argument struct and return into that.
894     unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex();
895     llvm::Function::arg_iterator EI = CurFn->arg_end();
896     --EI;
897     llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx);
898     Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result");
899     ReturnValue = Address(Addr, getNaturalTypeAlignment(RetTy));
900   } else {
901     ReturnValue = CreateIRTemp(RetTy, "retval");
902 
903     // Tell the epilog emitter to autorelease the result.  We do this
904     // now so that various specialized functions can suppress it
905     // during their IR-generation.
906     if (getLangOpts().ObjCAutoRefCount &&
907         !CurFnInfo->isReturnsRetained() &&
908         RetTy->isObjCRetainableType())
909       AutoreleaseResult = true;
910   }
911 
912   EmitStartEHSpec(CurCodeDecl);
913 
914   PrologueCleanupDepth = EHStack.stable_begin();
915   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
916 
917   if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
918     CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
919     const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
920     if (MD->getParent()->isLambda() &&
921         MD->getOverloadedOperator() == OO_Call) {
922       // We're in a lambda; figure out the captures.
923       MD->getParent()->getCaptureFields(LambdaCaptureFields,
924                                         LambdaThisCaptureField);
925       if (LambdaThisCaptureField) {
926         // If the lambda captures the object referred to by '*this' - either by
927         // value or by reference, make sure CXXThisValue points to the correct
928         // object.
929 
930         // Get the lvalue for the field (which is a copy of the enclosing object
931         // or contains the address of the enclosing object).
932         LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
933         if (!LambdaThisCaptureField->getType()->isPointerType()) {
934           // If the enclosing object was captured by value, just use its address.
935           CXXThisValue = ThisFieldLValue.getAddress().getPointer();
936         } else {
937           // Load the lvalue pointed to by the field, since '*this' was captured
938           // by reference.
939           CXXThisValue =
940               EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal();
941         }
942       }
943       for (auto *FD : MD->getParent()->fields()) {
944         if (FD->hasCapturedVLAType()) {
945           auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD),
946                                            SourceLocation()).getScalarVal();
947           auto VAT = FD->getCapturedVLAType();
948           VLASizeMap[VAT->getSizeExpr()] = ExprArg;
949         }
950       }
951     } else {
952       // Not in a lambda; just use 'this' from the method.
953       // FIXME: Should we generate a new load for each use of 'this'?  The
954       // fast register allocator would be happier...
955       CXXThisValue = CXXABIThisValue;
956     }
957 
958     // Null-check the 'this' pointer once per function, if it's available.
959     if (CXXThisValue) {
960       SanitizerSet SkippedChecks;
961       SkippedChecks.set(SanitizerKind::Alignment, true);
962       SkippedChecks.set(SanitizerKind::ObjectSize, true);
963       EmitTypeCheck(TCK_Load, Loc, CXXThisValue, MD->getThisType(getContext()),
964                     /*Alignment=*/CharUnits::Zero(), SkippedChecks);
965     }
966   }
967 
968   // If any of the arguments have a variably modified type, make sure to
969   // emit the type size.
970   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
971        i != e; ++i) {
972     const VarDecl *VD = *i;
973 
974     // Dig out the type as written from ParmVarDecls; it's unclear whether
975     // the standard (C99 6.9.1p10) requires this, but we're following the
976     // precedent set by gcc.
977     QualType Ty;
978     if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
979       Ty = PVD->getOriginalType();
980     else
981       Ty = VD->getType();
982 
983     if (Ty->isVariablyModifiedType())
984       EmitVariablyModifiedType(Ty);
985   }
986   // Emit a location at the end of the prologue.
987   if (CGDebugInfo *DI = getDebugInfo())
988     DI->EmitLocation(Builder, StartLoc);
989 }
990 
991 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args,
992                                        const Stmt *Body) {
993   incrementProfileCounter(Body);
994   if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
995     EmitCompoundStmtWithoutScope(*S);
996   else
997     EmitStmt(Body);
998 }
999 
1000 /// When instrumenting to collect profile data, the counts for some blocks
1001 /// such as switch cases need to not include the fall-through counts, so
1002 /// emit a branch around the instrumentation code. When not instrumenting,
1003 /// this just calls EmitBlock().
1004 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB,
1005                                                const Stmt *S) {
1006   llvm::BasicBlock *SkipCountBB = nullptr;
1007   if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) {
1008     // When instrumenting for profiling, the fallthrough to certain
1009     // statements needs to skip over the instrumentation code so that we
1010     // get an accurate count.
1011     SkipCountBB = createBasicBlock("skipcount");
1012     EmitBranch(SkipCountBB);
1013   }
1014   EmitBlock(BB);
1015   uint64_t CurrentCount = getCurrentProfileCount();
1016   incrementProfileCounter(S);
1017   setCurrentProfileCount(getCurrentProfileCount() + CurrentCount);
1018   if (SkipCountBB)
1019     EmitBlock(SkipCountBB);
1020 }
1021 
1022 /// Tries to mark the given function nounwind based on the
1023 /// non-existence of any throwing calls within it.  We believe this is
1024 /// lightweight enough to do at -O0.
1025 static void TryMarkNoThrow(llvm::Function *F) {
1026   // LLVM treats 'nounwind' on a function as part of the type, so we
1027   // can't do this on functions that can be overwritten.
1028   if (F->isInterposable()) return;
1029 
1030   for (llvm::BasicBlock &BB : *F)
1031     for (llvm::Instruction &I : BB)
1032       if (I.mayThrow())
1033         return;
1034 
1035   F->setDoesNotThrow();
1036 }
1037 
1038 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD,
1039                                                FunctionArgList &Args) {
1040   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1041   QualType ResTy = FD->getReturnType();
1042 
1043   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
1044   if (MD && MD->isInstance()) {
1045     if (CGM.getCXXABI().HasThisReturn(GD))
1046       ResTy = MD->getThisType(getContext());
1047     else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
1048       ResTy = CGM.getContext().VoidPtrTy;
1049     CGM.getCXXABI().buildThisParam(*this, Args);
1050   }
1051 
1052   // The base version of an inheriting constructor whose constructed base is a
1053   // virtual base is not passed any arguments (because it doesn't actually call
1054   // the inherited constructor).
1055   bool PassedParams = true;
1056   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
1057     if (auto Inherited = CD->getInheritedConstructor())
1058       PassedParams =
1059           getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType());
1060 
1061   if (PassedParams) {
1062     for (auto *Param : FD->parameters()) {
1063       Args.push_back(Param);
1064       if (!Param->hasAttr<PassObjectSizeAttr>())
1065         continue;
1066 
1067       IdentifierInfo *NoID = nullptr;
1068       auto *Implicit = ImplicitParamDecl::Create(
1069           getContext(), Param->getDeclContext(), Param->getLocation(), NoID,
1070           getContext().getSizeType());
1071       SizeArguments[Param] = Implicit;
1072       Args.push_back(Implicit);
1073     }
1074   }
1075 
1076   if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
1077     CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args);
1078 
1079   return ResTy;
1080 }
1081 
1082 static bool
1083 shouldUseUndefinedBehaviorReturnOptimization(const FunctionDecl *FD,
1084                                              const ASTContext &Context) {
1085   QualType T = FD->getReturnType();
1086   // Avoid the optimization for functions that return a record type with a
1087   // trivial destructor or another trivially copyable type.
1088   if (const RecordType *RT = T.getCanonicalType()->getAs<RecordType>()) {
1089     if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1090       return !ClassDecl->hasTrivialDestructor();
1091   }
1092   return !T.isTriviallyCopyableType(Context);
1093 }
1094 
1095 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1096                                    const CGFunctionInfo &FnInfo) {
1097   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1098   CurGD = GD;
1099 
1100   FunctionArgList Args;
1101   QualType ResTy = BuildFunctionArgList(GD, Args);
1102 
1103   // Check if we should generate debug info for this function.
1104   if (FD->hasAttr<NoDebugAttr>())
1105     DebugInfo = nullptr; // disable debug info indefinitely for this function
1106 
1107   // The function might not have a body if we're generating thunks for a
1108   // function declaration.
1109   SourceRange BodyRange;
1110   if (Stmt *Body = FD->getBody())
1111     BodyRange = Body->getSourceRange();
1112   else
1113     BodyRange = FD->getLocation();
1114   CurEHLocation = BodyRange.getEnd();
1115 
1116   // Use the location of the start of the function to determine where
1117   // the function definition is located. By default use the location
1118   // of the declaration as the location for the subprogram. A function
1119   // may lack a declaration in the source code if it is created by code
1120   // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
1121   SourceLocation Loc = FD->getLocation();
1122 
1123   // If this is a function specialization then use the pattern body
1124   // as the location for the function.
1125   if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern())
1126     if (SpecDecl->hasBody(SpecDecl))
1127       Loc = SpecDecl->getLocation();
1128 
1129   Stmt *Body = FD->getBody();
1130 
1131   // Initialize helper which will detect jumps which can cause invalid lifetime
1132   // markers.
1133   if (Body && ShouldEmitLifetimeMarkers)
1134     Bypasses.Init(Body);
1135 
1136   // Emit the standard function prologue.
1137   StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin());
1138 
1139   // Generate the body of the function.
1140   PGO.assignRegionCounters(GD, CurFn);
1141   if (isa<CXXDestructorDecl>(FD))
1142     EmitDestructorBody(Args);
1143   else if (isa<CXXConstructorDecl>(FD))
1144     EmitConstructorBody(Args);
1145   else if (getLangOpts().CUDA &&
1146            !getLangOpts().CUDAIsDevice &&
1147            FD->hasAttr<CUDAGlobalAttr>())
1148     CGM.getCUDARuntime().emitDeviceStub(*this, Args);
1149   else if (isa<CXXConversionDecl>(FD) &&
1150            cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) {
1151     // The lambda conversion to block pointer is special; the semantics can't be
1152     // expressed in the AST, so IRGen needs to special-case it.
1153     EmitLambdaToBlockPointerBody(Args);
1154   } else if (isa<CXXMethodDecl>(FD) &&
1155              cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
1156     // The lambda static invoker function is special, because it forwards or
1157     // clones the body of the function call operator (but is actually static).
1158     EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD));
1159   } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
1160              (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
1161               cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
1162     // Implicit copy-assignment gets the same special treatment as implicit
1163     // copy-constructors.
1164     emitImplicitAssignmentOperatorBody(Args);
1165   } else if (Body) {
1166     EmitFunctionBody(Args, Body);
1167   } else
1168     llvm_unreachable("no definition for emitted function");
1169 
1170   // C++11 [stmt.return]p2:
1171   //   Flowing off the end of a function [...] results in undefined behavior in
1172   //   a value-returning function.
1173   // C11 6.9.1p12:
1174   //   If the '}' that terminates a function is reached, and the value of the
1175   //   function call is used by the caller, the behavior is undefined.
1176   if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock &&
1177       !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) {
1178     bool ShouldEmitUnreachable =
1179         CGM.getCodeGenOpts().StrictReturn ||
1180         shouldUseUndefinedBehaviorReturnOptimization(FD, getContext());
1181     if (SanOpts.has(SanitizerKind::Return)) {
1182       SanitizerScope SanScope(this);
1183       llvm::Value *IsFalse = Builder.getFalse();
1184       EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return),
1185                 SanitizerHandler::MissingReturn,
1186                 EmitCheckSourceLocation(FD->getLocation()), None);
1187     } else if (ShouldEmitUnreachable) {
1188       if (CGM.getCodeGenOpts().OptimizationLevel == 0)
1189         EmitTrapCall(llvm::Intrinsic::trap);
1190     }
1191     if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) {
1192       Builder.CreateUnreachable();
1193       Builder.ClearInsertionPoint();
1194     }
1195   }
1196 
1197   // Emit the standard function epilogue.
1198   FinishFunction(BodyRange.getEnd());
1199 
1200   // If we haven't marked the function nothrow through other means, do
1201   // a quick pass now to see if we can.
1202   if (!CurFn->doesNotThrow())
1203     TryMarkNoThrow(CurFn);
1204 }
1205 
1206 /// ContainsLabel - Return true if the statement contains a label in it.  If
1207 /// this statement is not executed normally, it not containing a label means
1208 /// that we can just remove the code.
1209 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
1210   // Null statement, not a label!
1211   if (!S) return false;
1212 
1213   // If this is a label, we have to emit the code, consider something like:
1214   // if (0) {  ...  foo:  bar(); }  goto foo;
1215   //
1216   // TODO: If anyone cared, we could track __label__'s, since we know that you
1217   // can't jump to one from outside their declared region.
1218   if (isa<LabelStmt>(S))
1219     return true;
1220 
1221   // If this is a case/default statement, and we haven't seen a switch, we have
1222   // to emit the code.
1223   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
1224     return true;
1225 
1226   // If this is a switch statement, we want to ignore cases below it.
1227   if (isa<SwitchStmt>(S))
1228     IgnoreCaseStmts = true;
1229 
1230   // Scan subexpressions for verboten labels.
1231   for (const Stmt *SubStmt : S->children())
1232     if (ContainsLabel(SubStmt, IgnoreCaseStmts))
1233       return true;
1234 
1235   return false;
1236 }
1237 
1238 /// containsBreak - Return true if the statement contains a break out of it.
1239 /// If the statement (recursively) contains a switch or loop with a break
1240 /// inside of it, this is fine.
1241 bool CodeGenFunction::containsBreak(const Stmt *S) {
1242   // Null statement, not a label!
1243   if (!S) return false;
1244 
1245   // If this is a switch or loop that defines its own break scope, then we can
1246   // include it and anything inside of it.
1247   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
1248       isa<ForStmt>(S))
1249     return false;
1250 
1251   if (isa<BreakStmt>(S))
1252     return true;
1253 
1254   // Scan subexpressions for verboten breaks.
1255   for (const Stmt *SubStmt : S->children())
1256     if (containsBreak(SubStmt))
1257       return true;
1258 
1259   return false;
1260 }
1261 
1262 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) {
1263   if (!S) return false;
1264 
1265   // Some statement kinds add a scope and thus never add a decl to the current
1266   // scope. Note, this list is longer than the list of statements that might
1267   // have an unscoped decl nested within them, but this way is conservatively
1268   // correct even if more statement kinds are added.
1269   if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) ||
1270       isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) ||
1271       isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) ||
1272       isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S))
1273     return false;
1274 
1275   if (isa<DeclStmt>(S))
1276     return true;
1277 
1278   for (const Stmt *SubStmt : S->children())
1279     if (mightAddDeclToScope(SubStmt))
1280       return true;
1281 
1282   return false;
1283 }
1284 
1285 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1286 /// to a constant, or if it does but contains a label, return false.  If it
1287 /// constant folds return true and set the boolean result in Result.
1288 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1289                                                    bool &ResultBool,
1290                                                    bool AllowLabels) {
1291   llvm::APSInt ResultInt;
1292   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels))
1293     return false;
1294 
1295   ResultBool = ResultInt.getBoolValue();
1296   return true;
1297 }
1298 
1299 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1300 /// to a constant, or if it does but contains a label, return false.  If it
1301 /// constant folds return true and set the folded value.
1302 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1303                                                    llvm::APSInt &ResultInt,
1304                                                    bool AllowLabels) {
1305   // FIXME: Rename and handle conversion of other evaluatable things
1306   // to bool.
1307   llvm::APSInt Int;
1308   if (!Cond->EvaluateAsInt(Int, getContext()))
1309     return false;  // Not foldable, not integer or not fully evaluatable.
1310 
1311   if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond))
1312     return false;  // Contains a label.
1313 
1314   ResultInt = Int;
1315   return true;
1316 }
1317 
1318 
1319 
1320 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
1321 /// statement) to the specified blocks.  Based on the condition, this might try
1322 /// to simplify the codegen of the conditional based on the branch.
1323 ///
1324 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
1325                                            llvm::BasicBlock *TrueBlock,
1326                                            llvm::BasicBlock *FalseBlock,
1327                                            uint64_t TrueCount) {
1328   Cond = Cond->IgnoreParens();
1329 
1330   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
1331 
1332     // Handle X && Y in a condition.
1333     if (CondBOp->getOpcode() == BO_LAnd) {
1334       // If we have "1 && X", simplify the code.  "0 && X" would have constant
1335       // folded if the case was simple enough.
1336       bool ConstantBool = false;
1337       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1338           ConstantBool) {
1339         // br(1 && X) -> br(X).
1340         incrementProfileCounter(CondBOp);
1341         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1342                                     TrueCount);
1343       }
1344 
1345       // If we have "X && 1", simplify the code to use an uncond branch.
1346       // "X && 0" would have been constant folded to 0.
1347       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1348           ConstantBool) {
1349         // br(X && 1) -> br(X).
1350         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1351                                     TrueCount);
1352       }
1353 
1354       // Emit the LHS as a conditional.  If the LHS conditional is false, we
1355       // want to jump to the FalseBlock.
1356       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
1357       // The counter tells us how often we evaluate RHS, and all of TrueCount
1358       // can be propagated to that branch.
1359       uint64_t RHSCount = getProfileCount(CondBOp->getRHS());
1360 
1361       ConditionalEvaluation eval(*this);
1362       {
1363         ApplyDebugLocation DL(*this, Cond);
1364         EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount);
1365         EmitBlock(LHSTrue);
1366       }
1367 
1368       incrementProfileCounter(CondBOp);
1369       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1370 
1371       // Any temporaries created here are conditional.
1372       eval.begin(*this);
1373       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount);
1374       eval.end(*this);
1375 
1376       return;
1377     }
1378 
1379     if (CondBOp->getOpcode() == BO_LOr) {
1380       // If we have "0 || X", simplify the code.  "1 || X" would have constant
1381       // folded if the case was simple enough.
1382       bool ConstantBool = false;
1383       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1384           !ConstantBool) {
1385         // br(0 || X) -> br(X).
1386         incrementProfileCounter(CondBOp);
1387         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1388                                     TrueCount);
1389       }
1390 
1391       // If we have "X || 0", simplify the code to use an uncond branch.
1392       // "X || 1" would have been constant folded to 1.
1393       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1394           !ConstantBool) {
1395         // br(X || 0) -> br(X).
1396         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1397                                     TrueCount);
1398       }
1399 
1400       // Emit the LHS as a conditional.  If the LHS conditional is true, we
1401       // want to jump to the TrueBlock.
1402       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
1403       // We have the count for entry to the RHS and for the whole expression
1404       // being true, so we can divy up True count between the short circuit and
1405       // the RHS.
1406       uint64_t LHSCount =
1407           getCurrentProfileCount() - getProfileCount(CondBOp->getRHS());
1408       uint64_t RHSCount = TrueCount - LHSCount;
1409 
1410       ConditionalEvaluation eval(*this);
1411       {
1412         ApplyDebugLocation DL(*this, Cond);
1413         EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount);
1414         EmitBlock(LHSFalse);
1415       }
1416 
1417       incrementProfileCounter(CondBOp);
1418       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1419 
1420       // Any temporaries created here are conditional.
1421       eval.begin(*this);
1422       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount);
1423 
1424       eval.end(*this);
1425 
1426       return;
1427     }
1428   }
1429 
1430   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
1431     // br(!x, t, f) -> br(x, f, t)
1432     if (CondUOp->getOpcode() == UO_LNot) {
1433       // Negate the count.
1434       uint64_t FalseCount = getCurrentProfileCount() - TrueCount;
1435       // Negate the condition and swap the destination blocks.
1436       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock,
1437                                   FalseCount);
1438     }
1439   }
1440 
1441   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
1442     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
1443     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
1444     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
1445 
1446     ConditionalEvaluation cond(*this);
1447     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock,
1448                          getProfileCount(CondOp));
1449 
1450     // When computing PGO branch weights, we only know the overall count for
1451     // the true block. This code is essentially doing tail duplication of the
1452     // naive code-gen, introducing new edges for which counts are not
1453     // available. Divide the counts proportionally between the LHS and RHS of
1454     // the conditional operator.
1455     uint64_t LHSScaledTrueCount = 0;
1456     if (TrueCount) {
1457       double LHSRatio =
1458           getProfileCount(CondOp) / (double)getCurrentProfileCount();
1459       LHSScaledTrueCount = TrueCount * LHSRatio;
1460     }
1461 
1462     cond.begin(*this);
1463     EmitBlock(LHSBlock);
1464     incrementProfileCounter(CondOp);
1465     {
1466       ApplyDebugLocation DL(*this, Cond);
1467       EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock,
1468                            LHSScaledTrueCount);
1469     }
1470     cond.end(*this);
1471 
1472     cond.begin(*this);
1473     EmitBlock(RHSBlock);
1474     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock,
1475                          TrueCount - LHSScaledTrueCount);
1476     cond.end(*this);
1477 
1478     return;
1479   }
1480 
1481   if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
1482     // Conditional operator handling can give us a throw expression as a
1483     // condition for a case like:
1484     //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
1485     // Fold this to:
1486     //   br(c, throw x, br(y, t, f))
1487     EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
1488     return;
1489   }
1490 
1491   // If the branch has a condition wrapped by __builtin_unpredictable,
1492   // create metadata that specifies that the branch is unpredictable.
1493   // Don't bother if not optimizing because that metadata would not be used.
1494   llvm::MDNode *Unpredictable = nullptr;
1495   auto *Call = dyn_cast<CallExpr>(Cond);
1496   if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
1497     auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
1498     if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
1499       llvm::MDBuilder MDHelper(getLLVMContext());
1500       Unpredictable = MDHelper.createUnpredictable();
1501     }
1502   }
1503 
1504   // Create branch weights based on the number of times we get here and the
1505   // number of times the condition should be true.
1506   uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount);
1507   llvm::MDNode *Weights =
1508       createProfileWeights(TrueCount, CurrentCount - TrueCount);
1509 
1510   // Emit the code with the fully general case.
1511   llvm::Value *CondV;
1512   {
1513     ApplyDebugLocation DL(*this, Cond);
1514     CondV = EvaluateExprAsBool(Cond);
1515   }
1516   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable);
1517 }
1518 
1519 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1520 /// specified stmt yet.
1521 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
1522   CGM.ErrorUnsupported(S, Type);
1523 }
1524 
1525 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
1526 /// variable-length array whose elements have a non-zero bit-pattern.
1527 ///
1528 /// \param baseType the inner-most element type of the array
1529 /// \param src - a char* pointing to the bit-pattern for a single
1530 /// base element of the array
1531 /// \param sizeInChars - the total size of the VLA, in chars
1532 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
1533                                Address dest, Address src,
1534                                llvm::Value *sizeInChars) {
1535   CGBuilderTy &Builder = CGF.Builder;
1536 
1537   CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType);
1538   llvm::Value *baseSizeInChars
1539     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity());
1540 
1541   Address begin =
1542     Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin");
1543   llvm::Value *end =
1544     Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end");
1545 
1546   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
1547   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
1548   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
1549 
1550   // Make a loop over the VLA.  C99 guarantees that the VLA element
1551   // count must be nonzero.
1552   CGF.EmitBlock(loopBB);
1553 
1554   llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur");
1555   cur->addIncoming(begin.getPointer(), originBB);
1556 
1557   CharUnits curAlign =
1558     dest.getAlignment().alignmentOfArrayElement(baseSize);
1559 
1560   // memcpy the individual element bit-pattern.
1561   Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars,
1562                        /*volatile*/ false);
1563 
1564   // Go to the next element.
1565   llvm::Value *next =
1566     Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next");
1567 
1568   // Leave if that's the end of the VLA.
1569   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
1570   Builder.CreateCondBr(done, contBB, loopBB);
1571   cur->addIncoming(next, loopBB);
1572 
1573   CGF.EmitBlock(contBB);
1574 }
1575 
1576 void
1577 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) {
1578   // Ignore empty classes in C++.
1579   if (getLangOpts().CPlusPlus) {
1580     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1581       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
1582         return;
1583     }
1584   }
1585 
1586   // Cast the dest ptr to the appropriate i8 pointer type.
1587   if (DestPtr.getElementType() != Int8Ty)
1588     DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty);
1589 
1590   // Get size and alignment info for this aggregate.
1591   CharUnits size = getContext().getTypeSizeInChars(Ty);
1592 
1593   llvm::Value *SizeVal;
1594   const VariableArrayType *vla;
1595 
1596   // Don't bother emitting a zero-byte memset.
1597   if (size.isZero()) {
1598     // But note that getTypeInfo returns 0 for a VLA.
1599     if (const VariableArrayType *vlaType =
1600           dyn_cast_or_null<VariableArrayType>(
1601                                           getContext().getAsArrayType(Ty))) {
1602       QualType eltType;
1603       llvm::Value *numElts;
1604       std::tie(numElts, eltType) = getVLASize(vlaType);
1605 
1606       SizeVal = numElts;
1607       CharUnits eltSize = getContext().getTypeSizeInChars(eltType);
1608       if (!eltSize.isOne())
1609         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
1610       vla = vlaType;
1611     } else {
1612       return;
1613     }
1614   } else {
1615     SizeVal = CGM.getSize(size);
1616     vla = nullptr;
1617   }
1618 
1619   // If the type contains a pointer to data member we can't memset it to zero.
1620   // Instead, create a null constant and copy it to the destination.
1621   // TODO: there are other patterns besides zero that we can usefully memset,
1622   // like -1, which happens to be the pattern used by member-pointers.
1623   if (!CGM.getTypes().isZeroInitializable(Ty)) {
1624     // For a VLA, emit a single element, then splat that over the VLA.
1625     if (vla) Ty = getContext().getBaseElementType(vla);
1626 
1627     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
1628 
1629     llvm::GlobalVariable *NullVariable =
1630       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
1631                                /*isConstant=*/true,
1632                                llvm::GlobalVariable::PrivateLinkage,
1633                                NullConstant, Twine());
1634     CharUnits NullAlign = DestPtr.getAlignment();
1635     NullVariable->setAlignment(NullAlign.getQuantity());
1636     Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()),
1637                    NullAlign);
1638 
1639     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
1640 
1641     // Get and call the appropriate llvm.memcpy overload.
1642     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false);
1643     return;
1644   }
1645 
1646   // Otherwise, just memset the whole thing to zero.  This is legal
1647   // because in LLVM, all default initializers (other than the ones we just
1648   // handled above) are guaranteed to have a bit pattern of all zeros.
1649   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false);
1650 }
1651 
1652 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
1653   // Make sure that there is a block for the indirect goto.
1654   if (!IndirectBranch)
1655     GetIndirectGotoBlock();
1656 
1657   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
1658 
1659   // Make sure the indirect branch includes all of the address-taken blocks.
1660   IndirectBranch->addDestination(BB);
1661   return llvm::BlockAddress::get(CurFn, BB);
1662 }
1663 
1664 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
1665   // If we already made the indirect branch for indirect goto, return its block.
1666   if (IndirectBranch) return IndirectBranch->getParent();
1667 
1668   CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto"));
1669 
1670   // Create the PHI node that indirect gotos will add entries to.
1671   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
1672                                               "indirect.goto.dest");
1673 
1674   // Create the indirect branch instruction.
1675   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
1676   return IndirectBranch->getParent();
1677 }
1678 
1679 /// Computes the length of an array in elements, as well as the base
1680 /// element type and a properly-typed first element pointer.
1681 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
1682                                               QualType &baseType,
1683                                               Address &addr) {
1684   const ArrayType *arrayType = origArrayType;
1685 
1686   // If it's a VLA, we have to load the stored size.  Note that
1687   // this is the size of the VLA in bytes, not its size in elements.
1688   llvm::Value *numVLAElements = nullptr;
1689   if (isa<VariableArrayType>(arrayType)) {
1690     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first;
1691 
1692     // Walk into all VLAs.  This doesn't require changes to addr,
1693     // which has type T* where T is the first non-VLA element type.
1694     do {
1695       QualType elementType = arrayType->getElementType();
1696       arrayType = getContext().getAsArrayType(elementType);
1697 
1698       // If we only have VLA components, 'addr' requires no adjustment.
1699       if (!arrayType) {
1700         baseType = elementType;
1701         return numVLAElements;
1702       }
1703     } while (isa<VariableArrayType>(arrayType));
1704 
1705     // We get out here only if we find a constant array type
1706     // inside the VLA.
1707   }
1708 
1709   // We have some number of constant-length arrays, so addr should
1710   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
1711   // down to the first element of addr.
1712   SmallVector<llvm::Value*, 8> gepIndices;
1713 
1714   // GEP down to the array type.
1715   llvm::ConstantInt *zero = Builder.getInt32(0);
1716   gepIndices.push_back(zero);
1717 
1718   uint64_t countFromCLAs = 1;
1719   QualType eltType;
1720 
1721   llvm::ArrayType *llvmArrayType =
1722     dyn_cast<llvm::ArrayType>(addr.getElementType());
1723   while (llvmArrayType) {
1724     assert(isa<ConstantArrayType>(arrayType));
1725     assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
1726              == llvmArrayType->getNumElements());
1727 
1728     gepIndices.push_back(zero);
1729     countFromCLAs *= llvmArrayType->getNumElements();
1730     eltType = arrayType->getElementType();
1731 
1732     llvmArrayType =
1733       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
1734     arrayType = getContext().getAsArrayType(arrayType->getElementType());
1735     assert((!llvmArrayType || arrayType) &&
1736            "LLVM and Clang types are out-of-synch");
1737   }
1738 
1739   if (arrayType) {
1740     // From this point onwards, the Clang array type has been emitted
1741     // as some other type (probably a packed struct). Compute the array
1742     // size, and just emit the 'begin' expression as a bitcast.
1743     while (arrayType) {
1744       countFromCLAs *=
1745           cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
1746       eltType = arrayType->getElementType();
1747       arrayType = getContext().getAsArrayType(eltType);
1748     }
1749 
1750     llvm::Type *baseType = ConvertType(eltType);
1751     addr = Builder.CreateElementBitCast(addr, baseType, "array.begin");
1752   } else {
1753     // Create the actual GEP.
1754     addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(),
1755                                              gepIndices, "array.begin"),
1756                    addr.getAlignment());
1757   }
1758 
1759   baseType = eltType;
1760 
1761   llvm::Value *numElements
1762     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
1763 
1764   // If we had any VLA dimensions, factor them in.
1765   if (numVLAElements)
1766     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
1767 
1768   return numElements;
1769 }
1770 
1771 std::pair<llvm::Value*, QualType>
1772 CodeGenFunction::getVLASize(QualType type) {
1773   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
1774   assert(vla && "type was not a variable array type!");
1775   return getVLASize(vla);
1776 }
1777 
1778 std::pair<llvm::Value*, QualType>
1779 CodeGenFunction::getVLASize(const VariableArrayType *type) {
1780   // The number of elements so far; always size_t.
1781   llvm::Value *numElements = nullptr;
1782 
1783   QualType elementType;
1784   do {
1785     elementType = type->getElementType();
1786     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
1787     assert(vlaSize && "no size for VLA!");
1788     assert(vlaSize->getType() == SizeTy);
1789 
1790     if (!numElements) {
1791       numElements = vlaSize;
1792     } else {
1793       // It's undefined behavior if this wraps around, so mark it that way.
1794       // FIXME: Teach -fsanitize=undefined to trap this.
1795       numElements = Builder.CreateNUWMul(numElements, vlaSize);
1796     }
1797   } while ((type = getContext().getAsVariableArrayType(elementType)));
1798 
1799   return std::pair<llvm::Value*,QualType>(numElements, elementType);
1800 }
1801 
1802 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
1803   assert(type->isVariablyModifiedType() &&
1804          "Must pass variably modified type to EmitVLASizes!");
1805 
1806   EnsureInsertPoint();
1807 
1808   // We're going to walk down into the type and look for VLA
1809   // expressions.
1810   do {
1811     assert(type->isVariablyModifiedType());
1812 
1813     const Type *ty = type.getTypePtr();
1814     switch (ty->getTypeClass()) {
1815 
1816 #define TYPE(Class, Base)
1817 #define ABSTRACT_TYPE(Class, Base)
1818 #define NON_CANONICAL_TYPE(Class, Base)
1819 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
1820 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
1821 #include "clang/AST/TypeNodes.def"
1822       llvm_unreachable("unexpected dependent type!");
1823 
1824     // These types are never variably-modified.
1825     case Type::Builtin:
1826     case Type::Complex:
1827     case Type::Vector:
1828     case Type::ExtVector:
1829     case Type::Record:
1830     case Type::Enum:
1831     case Type::Elaborated:
1832     case Type::TemplateSpecialization:
1833     case Type::ObjCTypeParam:
1834     case Type::ObjCObject:
1835     case Type::ObjCInterface:
1836     case Type::ObjCObjectPointer:
1837       llvm_unreachable("type class is never variably-modified!");
1838 
1839     case Type::Adjusted:
1840       type = cast<AdjustedType>(ty)->getAdjustedType();
1841       break;
1842 
1843     case Type::Decayed:
1844       type = cast<DecayedType>(ty)->getPointeeType();
1845       break;
1846 
1847     case Type::Pointer:
1848       type = cast<PointerType>(ty)->getPointeeType();
1849       break;
1850 
1851     case Type::BlockPointer:
1852       type = cast<BlockPointerType>(ty)->getPointeeType();
1853       break;
1854 
1855     case Type::LValueReference:
1856     case Type::RValueReference:
1857       type = cast<ReferenceType>(ty)->getPointeeType();
1858       break;
1859 
1860     case Type::MemberPointer:
1861       type = cast<MemberPointerType>(ty)->getPointeeType();
1862       break;
1863 
1864     case Type::ConstantArray:
1865     case Type::IncompleteArray:
1866       // Losing element qualification here is fine.
1867       type = cast<ArrayType>(ty)->getElementType();
1868       break;
1869 
1870     case Type::VariableArray: {
1871       // Losing element qualification here is fine.
1872       const VariableArrayType *vat = cast<VariableArrayType>(ty);
1873 
1874       // Unknown size indication requires no size computation.
1875       // Otherwise, evaluate and record it.
1876       if (const Expr *size = vat->getSizeExpr()) {
1877         // It's possible that we might have emitted this already,
1878         // e.g. with a typedef and a pointer to it.
1879         llvm::Value *&entry = VLASizeMap[size];
1880         if (!entry) {
1881           llvm::Value *Size = EmitScalarExpr(size);
1882 
1883           // C11 6.7.6.2p5:
1884           //   If the size is an expression that is not an integer constant
1885           //   expression [...] each time it is evaluated it shall have a value
1886           //   greater than zero.
1887           if (SanOpts.has(SanitizerKind::VLABound) &&
1888               size->getType()->isSignedIntegerType()) {
1889             SanitizerScope SanScope(this);
1890             llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType());
1891             llvm::Constant *StaticArgs[] = {
1892               EmitCheckSourceLocation(size->getLocStart()),
1893               EmitCheckTypeDescriptor(size->getType())
1894             };
1895             EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero),
1896                                      SanitizerKind::VLABound),
1897                       SanitizerHandler::VLABoundNotPositive, StaticArgs, Size);
1898           }
1899 
1900           // Always zexting here would be wrong if it weren't
1901           // undefined behavior to have a negative bound.
1902           entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false);
1903         }
1904       }
1905       type = vat->getElementType();
1906       break;
1907     }
1908 
1909     case Type::FunctionProto:
1910     case Type::FunctionNoProto:
1911       type = cast<FunctionType>(ty)->getReturnType();
1912       break;
1913 
1914     case Type::Paren:
1915     case Type::TypeOf:
1916     case Type::UnaryTransform:
1917     case Type::Attributed:
1918     case Type::SubstTemplateTypeParm:
1919     case Type::PackExpansion:
1920       // Keep walking after single level desugaring.
1921       type = type.getSingleStepDesugaredType(getContext());
1922       break;
1923 
1924     case Type::Typedef:
1925     case Type::Decltype:
1926     case Type::Auto:
1927     case Type::DeducedTemplateSpecialization:
1928       // Stop walking: nothing to do.
1929       return;
1930 
1931     case Type::TypeOfExpr:
1932       // Stop walking: emit typeof expression.
1933       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
1934       return;
1935 
1936     case Type::Atomic:
1937       type = cast<AtomicType>(ty)->getValueType();
1938       break;
1939 
1940     case Type::Pipe:
1941       type = cast<PipeType>(ty)->getElementType();
1942       break;
1943     }
1944   } while (type->isVariablyModifiedType());
1945 }
1946 
1947 Address CodeGenFunction::EmitVAListRef(const Expr* E) {
1948   if (getContext().getBuiltinVaListType()->isArrayType())
1949     return EmitPointerWithAlignment(E);
1950   return EmitLValue(E).getAddress();
1951 }
1952 
1953 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) {
1954   return EmitLValue(E).getAddress();
1955 }
1956 
1957 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
1958                                               const APValue &Init) {
1959   assert(!Init.isUninit() && "Invalid DeclRefExpr initializer!");
1960   if (CGDebugInfo *Dbg = getDebugInfo())
1961     if (CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
1962       Dbg->EmitGlobalVariable(E->getDecl(), Init);
1963 }
1964 
1965 CodeGenFunction::PeepholeProtection
1966 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
1967   // At the moment, the only aggressive peephole we do in IR gen
1968   // is trunc(zext) folding, but if we add more, we can easily
1969   // extend this protection.
1970 
1971   if (!rvalue.isScalar()) return PeepholeProtection();
1972   llvm::Value *value = rvalue.getScalarVal();
1973   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
1974 
1975   // Just make an extra bitcast.
1976   assert(HaveInsertPoint());
1977   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
1978                                                   Builder.GetInsertBlock());
1979 
1980   PeepholeProtection protection;
1981   protection.Inst = inst;
1982   return protection;
1983 }
1984 
1985 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
1986   if (!protection.Inst) return;
1987 
1988   // In theory, we could try to duplicate the peepholes now, but whatever.
1989   protection.Inst->eraseFromParent();
1990 }
1991 
1992 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn,
1993                                                  llvm::Value *AnnotatedVal,
1994                                                  StringRef AnnotationStr,
1995                                                  SourceLocation Location) {
1996   llvm::Value *Args[4] = {
1997     AnnotatedVal,
1998     Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
1999     Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
2000     CGM.EmitAnnotationLineNo(Location)
2001   };
2002   return Builder.CreateCall(AnnotationFn, Args);
2003 }
2004 
2005 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
2006   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2007   // FIXME We create a new bitcast for every annotation because that's what
2008   // llvm-gcc was doing.
2009   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2010     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
2011                        Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
2012                        I->getAnnotation(), D->getLocation());
2013 }
2014 
2015 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
2016                                               Address Addr) {
2017   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2018   llvm::Value *V = Addr.getPointer();
2019   llvm::Type *VTy = V->getType();
2020   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
2021                                     CGM.Int8PtrTy);
2022 
2023   for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
2024     // FIXME Always emit the cast inst so we can differentiate between
2025     // annotation on the first field of a struct and annotation on the struct
2026     // itself.
2027     if (VTy != CGM.Int8PtrTy)
2028       V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy));
2029     V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation());
2030     V = Builder.CreateBitCast(V, VTy);
2031   }
2032 
2033   return Address(V, Addr.getAlignment());
2034 }
2035 
2036 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
2037 
2038 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF)
2039     : CGF(CGF) {
2040   assert(!CGF->IsSanitizerScope);
2041   CGF->IsSanitizerScope = true;
2042 }
2043 
2044 CodeGenFunction::SanitizerScope::~SanitizerScope() {
2045   CGF->IsSanitizerScope = false;
2046 }
2047 
2048 void CodeGenFunction::InsertHelper(llvm::Instruction *I,
2049                                    const llvm::Twine &Name,
2050                                    llvm::BasicBlock *BB,
2051                                    llvm::BasicBlock::iterator InsertPt) const {
2052   LoopStack.InsertHelper(I);
2053   if (IsSanitizerScope)
2054     CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I);
2055 }
2056 
2057 void CGBuilderInserter::InsertHelper(
2058     llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB,
2059     llvm::BasicBlock::iterator InsertPt) const {
2060   llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt);
2061   if (CGF)
2062     CGF->InsertHelper(I, Name, BB, InsertPt);
2063 }
2064 
2065 static bool hasRequiredFeatures(const SmallVectorImpl<StringRef> &ReqFeatures,
2066                                 CodeGenModule &CGM, const FunctionDecl *FD,
2067                                 std::string &FirstMissing) {
2068   // If there aren't any required features listed then go ahead and return.
2069   if (ReqFeatures.empty())
2070     return false;
2071 
2072   // Now build up the set of caller features and verify that all the required
2073   // features are there.
2074   llvm::StringMap<bool> CallerFeatureMap;
2075   CGM.getFunctionFeatureMap(CallerFeatureMap, FD);
2076 
2077   // If we have at least one of the features in the feature list return
2078   // true, otherwise return false.
2079   return std::all_of(
2080       ReqFeatures.begin(), ReqFeatures.end(), [&](StringRef Feature) {
2081         SmallVector<StringRef, 1> OrFeatures;
2082         Feature.split(OrFeatures, "|");
2083         return std::any_of(OrFeatures.begin(), OrFeatures.end(),
2084                            [&](StringRef Feature) {
2085                              if (!CallerFeatureMap.lookup(Feature)) {
2086                                FirstMissing = Feature.str();
2087                                return false;
2088                              }
2089                              return true;
2090                            });
2091       });
2092 }
2093 
2094 // Emits an error if we don't have a valid set of target features for the
2095 // called function.
2096 void CodeGenFunction::checkTargetFeatures(const CallExpr *E,
2097                                           const FunctionDecl *TargetDecl) {
2098   // Early exit if this is an indirect call.
2099   if (!TargetDecl)
2100     return;
2101 
2102   // Get the current enclosing function if it exists. If it doesn't
2103   // we can't check the target features anyhow.
2104   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl);
2105   if (!FD)
2106     return;
2107 
2108   // Grab the required features for the call. For a builtin this is listed in
2109   // the td file with the default cpu, for an always_inline function this is any
2110   // listed cpu and any listed features.
2111   unsigned BuiltinID = TargetDecl->getBuiltinID();
2112   std::string MissingFeature;
2113   if (BuiltinID) {
2114     SmallVector<StringRef, 1> ReqFeatures;
2115     const char *FeatureList =
2116         CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID);
2117     // Return if the builtin doesn't have any required features.
2118     if (!FeatureList || StringRef(FeatureList) == "")
2119       return;
2120     StringRef(FeatureList).split(ReqFeatures, ",");
2121     if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature))
2122       CGM.getDiags().Report(E->getLocStart(), diag::err_builtin_needs_feature)
2123           << TargetDecl->getDeclName()
2124           << CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID);
2125 
2126   } else if (TargetDecl->hasAttr<TargetAttr>()) {
2127     // Get the required features for the callee.
2128     SmallVector<StringRef, 1> ReqFeatures;
2129     llvm::StringMap<bool> CalleeFeatureMap;
2130     CGM.getFunctionFeatureMap(CalleeFeatureMap, TargetDecl);
2131     for (const auto &F : CalleeFeatureMap) {
2132       // Only positive features are "required".
2133       if (F.getValue())
2134         ReqFeatures.push_back(F.getKey());
2135     }
2136     if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature))
2137       CGM.getDiags().Report(E->getLocStart(), diag::err_function_needs_feature)
2138           << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature;
2139   }
2140 }
2141 
2142 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) {
2143   if (!CGM.getCodeGenOpts().SanitizeStats)
2144     return;
2145 
2146   llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint());
2147   IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation());
2148   CGM.getSanStats().create(IRB, SSK);
2149 }
2150 
2151 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) {
2152   if (CGDebugInfo *DI = getDebugInfo())
2153     return DI->SourceLocToDebugLoc(Location);
2154 
2155   return llvm::DebugLoc();
2156 }
2157