1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-function state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGBlocks.h" 16 #include "CGCleanup.h" 17 #include "CGCUDARuntime.h" 18 #include "CGCXXABI.h" 19 #include "CGDebugInfo.h" 20 #include "CGOpenMPRuntime.h" 21 #include "CodeGenModule.h" 22 #include "CodeGenPGO.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/Decl.h" 26 #include "clang/AST/DeclCXX.h" 27 #include "clang/AST/StmtCXX.h" 28 #include "clang/AST/StmtObjC.h" 29 #include "clang/Basic/Builtins.h" 30 #include "clang/Basic/TargetInfo.h" 31 #include "clang/CodeGen/CGFunctionInfo.h" 32 #include "clang/Frontend/CodeGenOptions.h" 33 #include "clang/Sema/SemaDiagnostic.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/Intrinsics.h" 36 #include "llvm/IR/MDBuilder.h" 37 #include "llvm/IR/Operator.h" 38 using namespace clang; 39 using namespace CodeGen; 40 41 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time 42 /// markers. 43 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts, 44 const LangOptions &LangOpts) { 45 if (CGOpts.DisableLifetimeMarkers) 46 return false; 47 48 // Asan uses markers for use-after-scope checks. 49 if (CGOpts.SanitizeAddressUseAfterScope) 50 return true; 51 52 // Disable lifetime markers in msan builds. 53 // FIXME: Remove this when msan works with lifetime markers. 54 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) 55 return false; 56 57 // For now, only in optimized builds. 58 return CGOpts.OptimizationLevel != 0; 59 } 60 61 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 62 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 63 Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(), 64 CGBuilderInserterTy(this)), 65 CurFn(nullptr), ReturnValue(Address::invalid()), 66 CapturedStmtInfo(nullptr), SanOpts(CGM.getLangOpts().Sanitize), 67 IsSanitizerScope(false), CurFuncIsThunk(false), AutoreleaseResult(false), 68 SawAsmBlock(false), IsOutlinedSEHHelper(false), BlockInfo(nullptr), 69 BlockPointer(nullptr), LambdaThisCaptureField(nullptr), 70 NormalCleanupDest(nullptr), NextCleanupDestIndex(1), 71 FirstBlockInfo(nullptr), EHResumeBlock(nullptr), ExceptionSlot(nullptr), 72 EHSelectorSlot(nullptr), DebugInfo(CGM.getModuleDebugInfo()), 73 DisableDebugInfo(false), DidCallStackSave(false), IndirectBranch(nullptr), 74 PGO(cgm), SwitchInsn(nullptr), SwitchWeights(nullptr), 75 CaseRangeBlock(nullptr), UnreachableBlock(nullptr), NumReturnExprs(0), 76 NumSimpleReturnExprs(0), CXXABIThisDecl(nullptr), 77 CXXABIThisValue(nullptr), CXXThisValue(nullptr), 78 CXXStructorImplicitParamDecl(nullptr), 79 CXXStructorImplicitParamValue(nullptr), OutermostConditional(nullptr), 80 CurLexicalScope(nullptr), TerminateLandingPad(nullptr), 81 TerminateHandler(nullptr), TrapBB(nullptr), 82 ShouldEmitLifetimeMarkers( 83 shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) { 84 if (!suppressNewContext) 85 CGM.getCXXABI().getMangleContext().startNewFunction(); 86 87 llvm::FastMathFlags FMF; 88 if (CGM.getLangOpts().FastMath) 89 FMF.setUnsafeAlgebra(); 90 if (CGM.getLangOpts().FiniteMathOnly) { 91 FMF.setNoNaNs(); 92 FMF.setNoInfs(); 93 } 94 if (CGM.getCodeGenOpts().NoNaNsFPMath) { 95 FMF.setNoNaNs(); 96 } 97 if (CGM.getCodeGenOpts().NoSignedZeros) { 98 FMF.setNoSignedZeros(); 99 } 100 if (CGM.getCodeGenOpts().ReciprocalMath) { 101 FMF.setAllowReciprocal(); 102 } 103 Builder.setFastMathFlags(FMF); 104 } 105 106 CodeGenFunction::~CodeGenFunction() { 107 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 108 109 // If there are any unclaimed block infos, go ahead and destroy them 110 // now. This can happen if IR-gen gets clever and skips evaluating 111 // something. 112 if (FirstBlockInfo) 113 destroyBlockInfos(FirstBlockInfo); 114 115 if (getLangOpts().OpenMP && CurFn) 116 CGM.getOpenMPRuntime().functionFinished(*this); 117 } 118 119 CharUnits CodeGenFunction::getNaturalPointeeTypeAlignment(QualType T, 120 AlignmentSource *Source) { 121 return getNaturalTypeAlignment(T->getPointeeType(), Source, 122 /*forPointee*/ true); 123 } 124 125 CharUnits CodeGenFunction::getNaturalTypeAlignment(QualType T, 126 AlignmentSource *Source, 127 bool forPointeeType) { 128 // Honor alignment typedef attributes even on incomplete types. 129 // We also honor them straight for C++ class types, even as pointees; 130 // there's an expressivity gap here. 131 if (auto TT = T->getAs<TypedefType>()) { 132 if (auto Align = TT->getDecl()->getMaxAlignment()) { 133 if (Source) *Source = AlignmentSource::AttributedType; 134 return getContext().toCharUnitsFromBits(Align); 135 } 136 } 137 138 if (Source) *Source = AlignmentSource::Type; 139 140 CharUnits Alignment; 141 if (T->isIncompleteType()) { 142 Alignment = CharUnits::One(); // Shouldn't be used, but pessimistic is best. 143 } else { 144 // For C++ class pointees, we don't know whether we're pointing at a 145 // base or a complete object, so we generally need to use the 146 // non-virtual alignment. 147 const CXXRecordDecl *RD; 148 if (forPointeeType && (RD = T->getAsCXXRecordDecl())) { 149 Alignment = CGM.getClassPointerAlignment(RD); 150 } else { 151 Alignment = getContext().getTypeAlignInChars(T); 152 if (T.getQualifiers().hasUnaligned()) 153 Alignment = CharUnits::One(); 154 } 155 156 // Cap to the global maximum type alignment unless the alignment 157 // was somehow explicit on the type. 158 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 159 if (Alignment.getQuantity() > MaxAlign && 160 !getContext().isAlignmentRequired(T)) 161 Alignment = CharUnits::fromQuantity(MaxAlign); 162 } 163 } 164 return Alignment; 165 } 166 167 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { 168 AlignmentSource AlignSource; 169 CharUnits Alignment = getNaturalTypeAlignment(T, &AlignSource); 170 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), AlignSource, 171 CGM.getTBAAInfo(T)); 172 } 173 174 /// Given a value of type T* that may not be to a complete object, 175 /// construct an l-value with the natural pointee alignment of T. 176 LValue 177 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) { 178 AlignmentSource AlignSource; 179 CharUnits Align = getNaturalTypeAlignment(T, &AlignSource, /*pointee*/ true); 180 return MakeAddrLValue(Address(V, Align), T, AlignSource); 181 } 182 183 184 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 185 return CGM.getTypes().ConvertTypeForMem(T); 186 } 187 188 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 189 return CGM.getTypes().ConvertType(T); 190 } 191 192 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 193 type = type.getCanonicalType(); 194 while (true) { 195 switch (type->getTypeClass()) { 196 #define TYPE(name, parent) 197 #define ABSTRACT_TYPE(name, parent) 198 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 199 #define DEPENDENT_TYPE(name, parent) case Type::name: 200 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 201 #include "clang/AST/TypeNodes.def" 202 llvm_unreachable("non-canonical or dependent type in IR-generation"); 203 204 case Type::Auto: 205 case Type::DeducedTemplateSpecialization: 206 llvm_unreachable("undeduced type in IR-generation"); 207 208 // Various scalar types. 209 case Type::Builtin: 210 case Type::Pointer: 211 case Type::BlockPointer: 212 case Type::LValueReference: 213 case Type::RValueReference: 214 case Type::MemberPointer: 215 case Type::Vector: 216 case Type::ExtVector: 217 case Type::FunctionProto: 218 case Type::FunctionNoProto: 219 case Type::Enum: 220 case Type::ObjCObjectPointer: 221 case Type::Pipe: 222 return TEK_Scalar; 223 224 // Complexes. 225 case Type::Complex: 226 return TEK_Complex; 227 228 // Arrays, records, and Objective-C objects. 229 case Type::ConstantArray: 230 case Type::IncompleteArray: 231 case Type::VariableArray: 232 case Type::Record: 233 case Type::ObjCObject: 234 case Type::ObjCInterface: 235 return TEK_Aggregate; 236 237 // We operate on atomic values according to their underlying type. 238 case Type::Atomic: 239 type = cast<AtomicType>(type)->getValueType(); 240 continue; 241 } 242 llvm_unreachable("unknown type kind!"); 243 } 244 } 245 246 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() { 247 // For cleanliness, we try to avoid emitting the return block for 248 // simple cases. 249 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 250 251 if (CurBB) { 252 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 253 254 // We have a valid insert point, reuse it if it is empty or there are no 255 // explicit jumps to the return block. 256 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 257 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 258 delete ReturnBlock.getBlock(); 259 } else 260 EmitBlock(ReturnBlock.getBlock()); 261 return llvm::DebugLoc(); 262 } 263 264 // Otherwise, if the return block is the target of a single direct 265 // branch then we can just put the code in that block instead. This 266 // cleans up functions which started with a unified return block. 267 if (ReturnBlock.getBlock()->hasOneUse()) { 268 llvm::BranchInst *BI = 269 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin()); 270 if (BI && BI->isUnconditional() && 271 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 272 // Record/return the DebugLoc of the simple 'return' expression to be used 273 // later by the actual 'ret' instruction. 274 llvm::DebugLoc Loc = BI->getDebugLoc(); 275 Builder.SetInsertPoint(BI->getParent()); 276 BI->eraseFromParent(); 277 delete ReturnBlock.getBlock(); 278 return Loc; 279 } 280 } 281 282 // FIXME: We are at an unreachable point, there is no reason to emit the block 283 // unless it has uses. However, we still need a place to put the debug 284 // region.end for now. 285 286 EmitBlock(ReturnBlock.getBlock()); 287 return llvm::DebugLoc(); 288 } 289 290 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 291 if (!BB) return; 292 if (!BB->use_empty()) 293 return CGF.CurFn->getBasicBlockList().push_back(BB); 294 delete BB; 295 } 296 297 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 298 assert(BreakContinueStack.empty() && 299 "mismatched push/pop in break/continue stack!"); 300 301 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 302 && NumSimpleReturnExprs == NumReturnExprs 303 && ReturnBlock.getBlock()->use_empty(); 304 // Usually the return expression is evaluated before the cleanup 305 // code. If the function contains only a simple return statement, 306 // such as a constant, the location before the cleanup code becomes 307 // the last useful breakpoint in the function, because the simple 308 // return expression will be evaluated after the cleanup code. To be 309 // safe, set the debug location for cleanup code to the location of 310 // the return statement. Otherwise the cleanup code should be at the 311 // end of the function's lexical scope. 312 // 313 // If there are multiple branches to the return block, the branch 314 // instructions will get the location of the return statements and 315 // all will be fine. 316 if (CGDebugInfo *DI = getDebugInfo()) { 317 if (OnlySimpleReturnStmts) 318 DI->EmitLocation(Builder, LastStopPoint); 319 else 320 DI->EmitLocation(Builder, EndLoc); 321 } 322 323 // Pop any cleanups that might have been associated with the 324 // parameters. Do this in whatever block we're currently in; it's 325 // important to do this before we enter the return block or return 326 // edges will be *really* confused. 327 bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth; 328 bool HasOnlyLifetimeMarkers = 329 HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth); 330 bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers; 331 if (HasCleanups) { 332 // Make sure the line table doesn't jump back into the body for 333 // the ret after it's been at EndLoc. 334 if (CGDebugInfo *DI = getDebugInfo()) 335 if (OnlySimpleReturnStmts) 336 DI->EmitLocation(Builder, EndLoc); 337 338 PopCleanupBlocks(PrologueCleanupDepth); 339 } 340 341 // Emit function epilog (to return). 342 llvm::DebugLoc Loc = EmitReturnBlock(); 343 344 if (ShouldInstrumentFunction()) 345 EmitFunctionInstrumentation("__cyg_profile_func_exit"); 346 347 // Emit debug descriptor for function end. 348 if (CGDebugInfo *DI = getDebugInfo()) 349 DI->EmitFunctionEnd(Builder); 350 351 // Reset the debug location to that of the simple 'return' expression, if any 352 // rather than that of the end of the function's scope '}'. 353 ApplyDebugLocation AL(*this, Loc); 354 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 355 EmitEndEHSpec(CurCodeDecl); 356 357 assert(EHStack.empty() && 358 "did not remove all scopes from cleanup stack!"); 359 360 // If someone did an indirect goto, emit the indirect goto block at the end of 361 // the function. 362 if (IndirectBranch) { 363 EmitBlock(IndirectBranch->getParent()); 364 Builder.ClearInsertionPoint(); 365 } 366 367 // If some of our locals escaped, insert a call to llvm.localescape in the 368 // entry block. 369 if (!EscapedLocals.empty()) { 370 // Invert the map from local to index into a simple vector. There should be 371 // no holes. 372 SmallVector<llvm::Value *, 4> EscapeArgs; 373 EscapeArgs.resize(EscapedLocals.size()); 374 for (auto &Pair : EscapedLocals) 375 EscapeArgs[Pair.second] = Pair.first; 376 llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration( 377 &CGM.getModule(), llvm::Intrinsic::localescape); 378 CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs); 379 } 380 381 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 382 llvm::Instruction *Ptr = AllocaInsertPt; 383 AllocaInsertPt = nullptr; 384 Ptr->eraseFromParent(); 385 386 // If someone took the address of a label but never did an indirect goto, we 387 // made a zero entry PHI node, which is illegal, zap it now. 388 if (IndirectBranch) { 389 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 390 if (PN->getNumIncomingValues() == 0) { 391 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 392 PN->eraseFromParent(); 393 } 394 } 395 396 EmitIfUsed(*this, EHResumeBlock); 397 EmitIfUsed(*this, TerminateLandingPad); 398 EmitIfUsed(*this, TerminateHandler); 399 EmitIfUsed(*this, UnreachableBlock); 400 401 if (CGM.getCodeGenOpts().EmitDeclMetadata) 402 EmitDeclMetadata(); 403 404 for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator 405 I = DeferredReplacements.begin(), 406 E = DeferredReplacements.end(); 407 I != E; ++I) { 408 I->first->replaceAllUsesWith(I->second); 409 I->first->eraseFromParent(); 410 } 411 } 412 413 /// ShouldInstrumentFunction - Return true if the current function should be 414 /// instrumented with __cyg_profile_func_* calls 415 bool CodeGenFunction::ShouldInstrumentFunction() { 416 if (!CGM.getCodeGenOpts().InstrumentFunctions) 417 return false; 418 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 419 return false; 420 return true; 421 } 422 423 /// ShouldXRayInstrument - Return true if the current function should be 424 /// instrumented with XRay nop sleds. 425 bool CodeGenFunction::ShouldXRayInstrumentFunction() const { 426 return CGM.getCodeGenOpts().XRayInstrumentFunctions; 427 } 428 429 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 430 /// instrumentation function with the current function and the call site, if 431 /// function instrumentation is enabled. 432 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) { 433 auto NL = ApplyDebugLocation::CreateArtificial(*this); 434 // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site); 435 llvm::PointerType *PointerTy = Int8PtrTy; 436 llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy }; 437 llvm::FunctionType *FunctionTy = 438 llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false); 439 440 llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn); 441 llvm::CallInst *CallSite = Builder.CreateCall( 442 CGM.getIntrinsic(llvm::Intrinsic::returnaddress), 443 llvm::ConstantInt::get(Int32Ty, 0), 444 "callsite"); 445 446 llvm::Value *args[] = { 447 llvm::ConstantExpr::getBitCast(CurFn, PointerTy), 448 CallSite 449 }; 450 451 EmitNounwindRuntimeCall(F, args); 452 } 453 454 static void removeImageAccessQualifier(std::string& TyName) { 455 std::string ReadOnlyQual("__read_only"); 456 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 457 if (ReadOnlyPos != std::string::npos) 458 // "+ 1" for the space after access qualifier. 459 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 460 else { 461 std::string WriteOnlyQual("__write_only"); 462 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 463 if (WriteOnlyPos != std::string::npos) 464 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 465 else { 466 std::string ReadWriteQual("__read_write"); 467 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 468 if (ReadWritePos != std::string::npos) 469 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 470 } 471 } 472 } 473 474 // Returns the address space id that should be produced to the 475 // kernel_arg_addr_space metadata. This is always fixed to the ids 476 // as specified in the SPIR 2.0 specification in order to differentiate 477 // for example in clGetKernelArgInfo() implementation between the address 478 // spaces with targets without unique mapping to the OpenCL address spaces 479 // (basically all single AS CPUs). 480 static unsigned ArgInfoAddressSpace(unsigned LangAS) { 481 switch (LangAS) { 482 case LangAS::opencl_global: return 1; 483 case LangAS::opencl_constant: return 2; 484 case LangAS::opencl_local: return 3; 485 case LangAS::opencl_generic: return 4; // Not in SPIR 2.0 specs. 486 default: 487 return 0; // Assume private. 488 } 489 } 490 491 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument 492 // information in the program executable. The argument information stored 493 // includes the argument name, its type, the address and access qualifiers used. 494 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn, 495 CodeGenModule &CGM, llvm::LLVMContext &Context, 496 CGBuilderTy &Builder, ASTContext &ASTCtx) { 497 // Create MDNodes that represent the kernel arg metadata. 498 // Each MDNode is a list in the form of "key", N number of values which is 499 // the same number of values as their are kernel arguments. 500 501 const PrintingPolicy &Policy = ASTCtx.getPrintingPolicy(); 502 503 // MDNode for the kernel argument address space qualifiers. 504 SmallVector<llvm::Metadata *, 8> addressQuals; 505 506 // MDNode for the kernel argument access qualifiers (images only). 507 SmallVector<llvm::Metadata *, 8> accessQuals; 508 509 // MDNode for the kernel argument type names. 510 SmallVector<llvm::Metadata *, 8> argTypeNames; 511 512 // MDNode for the kernel argument base type names. 513 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 514 515 // MDNode for the kernel argument type qualifiers. 516 SmallVector<llvm::Metadata *, 8> argTypeQuals; 517 518 // MDNode for the kernel argument names. 519 SmallVector<llvm::Metadata *, 8> argNames; 520 521 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 522 const ParmVarDecl *parm = FD->getParamDecl(i); 523 QualType ty = parm->getType(); 524 std::string typeQuals; 525 526 if (ty->isPointerType()) { 527 QualType pointeeTy = ty->getPointeeType(); 528 529 // Get address qualifier. 530 addressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32( 531 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 532 533 // Get argument type name. 534 std::string typeName = 535 pointeeTy.getUnqualifiedType().getAsString(Policy) + "*"; 536 537 // Turn "unsigned type" to "utype" 538 std::string::size_type pos = typeName.find("unsigned"); 539 if (pointeeTy.isCanonical() && pos != std::string::npos) 540 typeName.erase(pos+1, 8); 541 542 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 543 544 std::string baseTypeName = 545 pointeeTy.getUnqualifiedType().getCanonicalType().getAsString( 546 Policy) + 547 "*"; 548 549 // Turn "unsigned type" to "utype" 550 pos = baseTypeName.find("unsigned"); 551 if (pos != std::string::npos) 552 baseTypeName.erase(pos+1, 8); 553 554 argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName)); 555 556 // Get argument type qualifiers: 557 if (ty.isRestrictQualified()) 558 typeQuals = "restrict"; 559 if (pointeeTy.isConstQualified() || 560 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 561 typeQuals += typeQuals.empty() ? "const" : " const"; 562 if (pointeeTy.isVolatileQualified()) 563 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 564 } else { 565 uint32_t AddrSpc = 0; 566 bool isPipe = ty->isPipeType(); 567 if (ty->isImageType() || isPipe) 568 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 569 570 addressQuals.push_back( 571 llvm::ConstantAsMetadata::get(Builder.getInt32(AddrSpc))); 572 573 // Get argument type name. 574 std::string typeName; 575 if (isPipe) 576 typeName = ty.getCanonicalType()->getAs<PipeType>()->getElementType() 577 .getAsString(Policy); 578 else 579 typeName = ty.getUnqualifiedType().getAsString(Policy); 580 581 // Turn "unsigned type" to "utype" 582 std::string::size_type pos = typeName.find("unsigned"); 583 if (ty.isCanonical() && pos != std::string::npos) 584 typeName.erase(pos+1, 8); 585 586 std::string baseTypeName; 587 if (isPipe) 588 baseTypeName = ty.getCanonicalType()->getAs<PipeType>() 589 ->getElementType().getCanonicalType() 590 .getAsString(Policy); 591 else 592 baseTypeName = 593 ty.getUnqualifiedType().getCanonicalType().getAsString(Policy); 594 595 // Remove access qualifiers on images 596 // (as they are inseparable from type in clang implementation, 597 // but OpenCL spec provides a special query to get access qualifier 598 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 599 if (ty->isImageType()) { 600 removeImageAccessQualifier(typeName); 601 removeImageAccessQualifier(baseTypeName); 602 } 603 604 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 605 606 // Turn "unsigned type" to "utype" 607 pos = baseTypeName.find("unsigned"); 608 if (pos != std::string::npos) 609 baseTypeName.erase(pos+1, 8); 610 611 argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName)); 612 613 // Get argument type qualifiers: 614 if (ty.isConstQualified()) 615 typeQuals = "const"; 616 if (ty.isVolatileQualified()) 617 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 618 if (isPipe) 619 typeQuals = "pipe"; 620 } 621 622 argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals)); 623 624 // Get image and pipe access qualifier: 625 if (ty->isImageType()|| ty->isPipeType()) { 626 const OpenCLAccessAttr *A = parm->getAttr<OpenCLAccessAttr>(); 627 if (A && A->isWriteOnly()) 628 accessQuals.push_back(llvm::MDString::get(Context, "write_only")); 629 else if (A && A->isReadWrite()) 630 accessQuals.push_back(llvm::MDString::get(Context, "read_write")); 631 else 632 accessQuals.push_back(llvm::MDString::get(Context, "read_only")); 633 } else 634 accessQuals.push_back(llvm::MDString::get(Context, "none")); 635 636 // Get argument name. 637 argNames.push_back(llvm::MDString::get(Context, parm->getName())); 638 } 639 640 Fn->setMetadata("kernel_arg_addr_space", 641 llvm::MDNode::get(Context, addressQuals)); 642 Fn->setMetadata("kernel_arg_access_qual", 643 llvm::MDNode::get(Context, accessQuals)); 644 Fn->setMetadata("kernel_arg_type", 645 llvm::MDNode::get(Context, argTypeNames)); 646 Fn->setMetadata("kernel_arg_base_type", 647 llvm::MDNode::get(Context, argBaseTypeNames)); 648 Fn->setMetadata("kernel_arg_type_qual", 649 llvm::MDNode::get(Context, argTypeQuals)); 650 if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 651 Fn->setMetadata("kernel_arg_name", 652 llvm::MDNode::get(Context, argNames)); 653 } 654 655 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 656 llvm::Function *Fn) 657 { 658 if (!FD->hasAttr<OpenCLKernelAttr>()) 659 return; 660 661 llvm::LLVMContext &Context = getLLVMContext(); 662 663 GenOpenCLArgMetadata(FD, Fn, CGM, Context, Builder, getContext()); 664 665 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { 666 QualType hintQTy = A->getTypeHint(); 667 const ExtVectorType *hintEltQTy = hintQTy->getAs<ExtVectorType>(); 668 bool isSignedInteger = 669 hintQTy->isSignedIntegerType() || 670 (hintEltQTy && hintEltQTy->getElementType()->isSignedIntegerType()); 671 llvm::Metadata *attrMDArgs[] = { 672 llvm::ConstantAsMetadata::get(llvm::UndefValue::get( 673 CGM.getTypes().ConvertType(A->getTypeHint()))), 674 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 675 llvm::IntegerType::get(Context, 32), 676 llvm::APInt(32, (uint64_t)(isSignedInteger ? 1 : 0))))}; 677 Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, attrMDArgs)); 678 } 679 680 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { 681 llvm::Metadata *attrMDArgs[] = { 682 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 683 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 684 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 685 Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, attrMDArgs)); 686 } 687 688 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { 689 llvm::Metadata *attrMDArgs[] = { 690 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 691 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 692 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 693 Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, attrMDArgs)); 694 } 695 } 696 697 /// Determine whether the function F ends with a return stmt. 698 static bool endsWithReturn(const Decl* F) { 699 const Stmt *Body = nullptr; 700 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F)) 701 Body = FD->getBody(); 702 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F)) 703 Body = OMD->getBody(); 704 705 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 706 auto LastStmt = CS->body_rbegin(); 707 if (LastStmt != CS->body_rend()) 708 return isa<ReturnStmt>(*LastStmt); 709 } 710 return false; 711 } 712 713 static void markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) { 714 Fn->addFnAttr("sanitize_thread_no_checking_at_run_time"); 715 Fn->removeFnAttr(llvm::Attribute::SanitizeThread); 716 } 717 718 void CodeGenFunction::StartFunction(GlobalDecl GD, 719 QualType RetTy, 720 llvm::Function *Fn, 721 const CGFunctionInfo &FnInfo, 722 const FunctionArgList &Args, 723 SourceLocation Loc, 724 SourceLocation StartLoc) { 725 assert(!CurFn && 726 "Do not use a CodeGenFunction object for more than one function"); 727 728 const Decl *D = GD.getDecl(); 729 730 DidCallStackSave = false; 731 CurCodeDecl = D; 732 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 733 if (FD->usesSEHTry()) 734 CurSEHParent = FD; 735 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr); 736 FnRetTy = RetTy; 737 CurFn = Fn; 738 CurFnInfo = &FnInfo; 739 assert(CurFn->isDeclaration() && "Function already has body?"); 740 741 if (CGM.isInSanitizerBlacklist(Fn, Loc)) 742 SanOpts.clear(); 743 744 if (D) { 745 // Apply the no_sanitize* attributes to SanOpts. 746 for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) 747 SanOpts.Mask &= ~Attr->getMask(); 748 } 749 750 // Apply sanitizer attributes to the function. 751 if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress)) 752 Fn->addFnAttr(llvm::Attribute::SanitizeAddress); 753 if (SanOpts.has(SanitizerKind::Thread)) 754 Fn->addFnAttr(llvm::Attribute::SanitizeThread); 755 if (SanOpts.has(SanitizerKind::Memory)) 756 Fn->addFnAttr(llvm::Attribute::SanitizeMemory); 757 if (SanOpts.has(SanitizerKind::SafeStack)) 758 Fn->addFnAttr(llvm::Attribute::SafeStack); 759 760 // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize, 761 // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time. 762 if (SanOpts.has(SanitizerKind::Thread)) { 763 if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) { 764 IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0); 765 if (OMD->getMethodFamily() == OMF_dealloc || 766 OMD->getMethodFamily() == OMF_initialize || 767 (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) { 768 markAsIgnoreThreadCheckingAtRuntime(Fn); 769 } 770 } else if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 771 IdentifierInfo *II = FD->getIdentifier(); 772 if (II && II->isStr("__destroy_helper_block_")) 773 markAsIgnoreThreadCheckingAtRuntime(Fn); 774 } 775 } 776 777 // Apply xray attributes to the function (as a string, for now) 778 if (D && ShouldXRayInstrumentFunction()) { 779 if (const auto *XRayAttr = D->getAttr<XRayInstrumentAttr>()) { 780 if (XRayAttr->alwaysXRayInstrument()) 781 Fn->addFnAttr("function-instrument", "xray-always"); 782 if (XRayAttr->neverXRayInstrument()) 783 Fn->addFnAttr("function-instrument", "xray-never"); 784 if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>()) { 785 Fn->addFnAttr("xray-log-args", 786 llvm::utostr(LogArgs->getArgumentCount())); 787 } 788 } else { 789 Fn->addFnAttr( 790 "xray-instruction-threshold", 791 llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold)); 792 } 793 } 794 795 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 796 if (CGM.getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 797 CGM.getOpenMPRuntime().emitDeclareSimdFunction(FD, Fn); 798 799 // Add no-jump-tables value. 800 Fn->addFnAttr("no-jump-tables", 801 llvm::toStringRef(CGM.getCodeGenOpts().NoUseJumpTables)); 802 803 if (getLangOpts().OpenCL) { 804 // Add metadata for a kernel function. 805 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 806 EmitOpenCLKernelMetadata(FD, Fn); 807 } 808 809 // If we are checking function types, emit a function type signature as 810 // prologue data. 811 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) { 812 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 813 if (llvm::Constant *PrologueSig = 814 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { 815 llvm::Constant *FTRTTIConst = 816 CGM.GetAddrOfRTTIDescriptor(FD->getType(), /*ForEH=*/true); 817 llvm::Constant *PrologueStructElems[] = { PrologueSig, FTRTTIConst }; 818 llvm::Constant *PrologueStructConst = 819 llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true); 820 Fn->setPrologueData(PrologueStructConst); 821 } 822 } 823 } 824 825 // If we're in C++ mode and the function name is "main", it is guaranteed 826 // to be norecurse by the standard (3.6.1.3 "The function main shall not be 827 // used within a program"). 828 if (getLangOpts().CPlusPlus) 829 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 830 if (FD->isMain()) 831 Fn->addFnAttr(llvm::Attribute::NoRecurse); 832 833 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 834 835 // Create a marker to make it easy to insert allocas into the entryblock 836 // later. Don't create this with the builder, because we don't want it 837 // folded. 838 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 839 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB); 840 841 ReturnBlock = getJumpDestInCurrentScope("return"); 842 843 Builder.SetInsertPoint(EntryBB); 844 845 // Emit subprogram debug descriptor. 846 if (CGDebugInfo *DI = getDebugInfo()) { 847 // Reconstruct the type from the argument list so that implicit parameters, 848 // such as 'this' and 'vtt', show up in the debug info. Preserve the calling 849 // convention. 850 CallingConv CC = CallingConv::CC_C; 851 if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 852 if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>()) 853 CC = SrcFnTy->getCallConv(); 854 SmallVector<QualType, 16> ArgTypes; 855 for (const VarDecl *VD : Args) 856 ArgTypes.push_back(VD->getType()); 857 QualType FnType = getContext().getFunctionType( 858 RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC)); 859 DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, Builder); 860 } 861 862 if (ShouldInstrumentFunction()) 863 EmitFunctionInstrumentation("__cyg_profile_func_enter"); 864 865 // Since emitting the mcount call here impacts optimizations such as function 866 // inlining, we just add an attribute to insert a mcount call in backend. 867 // The attribute "counting-function" is set to mcount function name which is 868 // architecture dependent. 869 if (CGM.getCodeGenOpts().InstrumentForProfiling) { 870 if (CGM.getCodeGenOpts().CallFEntry) 871 Fn->addFnAttr("fentry-call", "true"); 872 else 873 Fn->addFnAttr("counting-function", getTarget().getMCountName()); 874 } 875 876 if (RetTy->isVoidType()) { 877 // Void type; nothing to return. 878 ReturnValue = Address::invalid(); 879 880 // Count the implicit return. 881 if (!endsWithReturn(D)) 882 ++NumReturnExprs; 883 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect && 884 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 885 // Indirect aggregate return; emit returned value directly into sret slot. 886 // This reduces code size, and affects correctness in C++. 887 auto AI = CurFn->arg_begin(); 888 if (CurFnInfo->getReturnInfo().isSRetAfterThis()) 889 ++AI; 890 ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign()); 891 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && 892 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 893 // Load the sret pointer from the argument struct and return into that. 894 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); 895 llvm::Function::arg_iterator EI = CurFn->arg_end(); 896 --EI; 897 llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx); 898 Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result"); 899 ReturnValue = Address(Addr, getNaturalTypeAlignment(RetTy)); 900 } else { 901 ReturnValue = CreateIRTemp(RetTy, "retval"); 902 903 // Tell the epilog emitter to autorelease the result. We do this 904 // now so that various specialized functions can suppress it 905 // during their IR-generation. 906 if (getLangOpts().ObjCAutoRefCount && 907 !CurFnInfo->isReturnsRetained() && 908 RetTy->isObjCRetainableType()) 909 AutoreleaseResult = true; 910 } 911 912 EmitStartEHSpec(CurCodeDecl); 913 914 PrologueCleanupDepth = EHStack.stable_begin(); 915 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 916 917 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 918 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 919 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 920 if (MD->getParent()->isLambda() && 921 MD->getOverloadedOperator() == OO_Call) { 922 // We're in a lambda; figure out the captures. 923 MD->getParent()->getCaptureFields(LambdaCaptureFields, 924 LambdaThisCaptureField); 925 if (LambdaThisCaptureField) { 926 // If the lambda captures the object referred to by '*this' - either by 927 // value or by reference, make sure CXXThisValue points to the correct 928 // object. 929 930 // Get the lvalue for the field (which is a copy of the enclosing object 931 // or contains the address of the enclosing object). 932 LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 933 if (!LambdaThisCaptureField->getType()->isPointerType()) { 934 // If the enclosing object was captured by value, just use its address. 935 CXXThisValue = ThisFieldLValue.getAddress().getPointer(); 936 } else { 937 // Load the lvalue pointed to by the field, since '*this' was captured 938 // by reference. 939 CXXThisValue = 940 EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal(); 941 } 942 } 943 for (auto *FD : MD->getParent()->fields()) { 944 if (FD->hasCapturedVLAType()) { 945 auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD), 946 SourceLocation()).getScalarVal(); 947 auto VAT = FD->getCapturedVLAType(); 948 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 949 } 950 } 951 } else { 952 // Not in a lambda; just use 'this' from the method. 953 // FIXME: Should we generate a new load for each use of 'this'? The 954 // fast register allocator would be happier... 955 CXXThisValue = CXXABIThisValue; 956 } 957 958 // Null-check the 'this' pointer once per function, if it's available. 959 if (CXXThisValue) { 960 SanitizerSet SkippedChecks; 961 SkippedChecks.set(SanitizerKind::Alignment, true); 962 SkippedChecks.set(SanitizerKind::ObjectSize, true); 963 EmitTypeCheck(TCK_Load, Loc, CXXThisValue, MD->getThisType(getContext()), 964 /*Alignment=*/CharUnits::Zero(), SkippedChecks); 965 } 966 } 967 968 // If any of the arguments have a variably modified type, make sure to 969 // emit the type size. 970 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 971 i != e; ++i) { 972 const VarDecl *VD = *i; 973 974 // Dig out the type as written from ParmVarDecls; it's unclear whether 975 // the standard (C99 6.9.1p10) requires this, but we're following the 976 // precedent set by gcc. 977 QualType Ty; 978 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 979 Ty = PVD->getOriginalType(); 980 else 981 Ty = VD->getType(); 982 983 if (Ty->isVariablyModifiedType()) 984 EmitVariablyModifiedType(Ty); 985 } 986 // Emit a location at the end of the prologue. 987 if (CGDebugInfo *DI = getDebugInfo()) 988 DI->EmitLocation(Builder, StartLoc); 989 } 990 991 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args, 992 const Stmt *Body) { 993 incrementProfileCounter(Body); 994 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 995 EmitCompoundStmtWithoutScope(*S); 996 else 997 EmitStmt(Body); 998 } 999 1000 /// When instrumenting to collect profile data, the counts for some blocks 1001 /// such as switch cases need to not include the fall-through counts, so 1002 /// emit a branch around the instrumentation code. When not instrumenting, 1003 /// this just calls EmitBlock(). 1004 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, 1005 const Stmt *S) { 1006 llvm::BasicBlock *SkipCountBB = nullptr; 1007 if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) { 1008 // When instrumenting for profiling, the fallthrough to certain 1009 // statements needs to skip over the instrumentation code so that we 1010 // get an accurate count. 1011 SkipCountBB = createBasicBlock("skipcount"); 1012 EmitBranch(SkipCountBB); 1013 } 1014 EmitBlock(BB); 1015 uint64_t CurrentCount = getCurrentProfileCount(); 1016 incrementProfileCounter(S); 1017 setCurrentProfileCount(getCurrentProfileCount() + CurrentCount); 1018 if (SkipCountBB) 1019 EmitBlock(SkipCountBB); 1020 } 1021 1022 /// Tries to mark the given function nounwind based on the 1023 /// non-existence of any throwing calls within it. We believe this is 1024 /// lightweight enough to do at -O0. 1025 static void TryMarkNoThrow(llvm::Function *F) { 1026 // LLVM treats 'nounwind' on a function as part of the type, so we 1027 // can't do this on functions that can be overwritten. 1028 if (F->isInterposable()) return; 1029 1030 for (llvm::BasicBlock &BB : *F) 1031 for (llvm::Instruction &I : BB) 1032 if (I.mayThrow()) 1033 return; 1034 1035 F->setDoesNotThrow(); 1036 } 1037 1038 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD, 1039 FunctionArgList &Args) { 1040 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1041 QualType ResTy = FD->getReturnType(); 1042 1043 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 1044 if (MD && MD->isInstance()) { 1045 if (CGM.getCXXABI().HasThisReturn(GD)) 1046 ResTy = MD->getThisType(getContext()); 1047 else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) 1048 ResTy = CGM.getContext().VoidPtrTy; 1049 CGM.getCXXABI().buildThisParam(*this, Args); 1050 } 1051 1052 // The base version of an inheriting constructor whose constructed base is a 1053 // virtual base is not passed any arguments (because it doesn't actually call 1054 // the inherited constructor). 1055 bool PassedParams = true; 1056 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 1057 if (auto Inherited = CD->getInheritedConstructor()) 1058 PassedParams = 1059 getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType()); 1060 1061 if (PassedParams) { 1062 for (auto *Param : FD->parameters()) { 1063 Args.push_back(Param); 1064 if (!Param->hasAttr<PassObjectSizeAttr>()) 1065 continue; 1066 1067 IdentifierInfo *NoID = nullptr; 1068 auto *Implicit = ImplicitParamDecl::Create( 1069 getContext(), Param->getDeclContext(), Param->getLocation(), NoID, 1070 getContext().getSizeType()); 1071 SizeArguments[Param] = Implicit; 1072 Args.push_back(Implicit); 1073 } 1074 } 1075 1076 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 1077 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 1078 1079 return ResTy; 1080 } 1081 1082 static bool 1083 shouldUseUndefinedBehaviorReturnOptimization(const FunctionDecl *FD, 1084 const ASTContext &Context) { 1085 QualType T = FD->getReturnType(); 1086 // Avoid the optimization for functions that return a record type with a 1087 // trivial destructor or another trivially copyable type. 1088 if (const RecordType *RT = T.getCanonicalType()->getAs<RecordType>()) { 1089 if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1090 return !ClassDecl->hasTrivialDestructor(); 1091 } 1092 return !T.isTriviallyCopyableType(Context); 1093 } 1094 1095 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1096 const CGFunctionInfo &FnInfo) { 1097 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1098 CurGD = GD; 1099 1100 FunctionArgList Args; 1101 QualType ResTy = BuildFunctionArgList(GD, Args); 1102 1103 // Check if we should generate debug info for this function. 1104 if (FD->hasAttr<NoDebugAttr>()) 1105 DebugInfo = nullptr; // disable debug info indefinitely for this function 1106 1107 // The function might not have a body if we're generating thunks for a 1108 // function declaration. 1109 SourceRange BodyRange; 1110 if (Stmt *Body = FD->getBody()) 1111 BodyRange = Body->getSourceRange(); 1112 else 1113 BodyRange = FD->getLocation(); 1114 CurEHLocation = BodyRange.getEnd(); 1115 1116 // Use the location of the start of the function to determine where 1117 // the function definition is located. By default use the location 1118 // of the declaration as the location for the subprogram. A function 1119 // may lack a declaration in the source code if it is created by code 1120 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). 1121 SourceLocation Loc = FD->getLocation(); 1122 1123 // If this is a function specialization then use the pattern body 1124 // as the location for the function. 1125 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) 1126 if (SpecDecl->hasBody(SpecDecl)) 1127 Loc = SpecDecl->getLocation(); 1128 1129 Stmt *Body = FD->getBody(); 1130 1131 // Initialize helper which will detect jumps which can cause invalid lifetime 1132 // markers. 1133 if (Body && ShouldEmitLifetimeMarkers) 1134 Bypasses.Init(Body); 1135 1136 // Emit the standard function prologue. 1137 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin()); 1138 1139 // Generate the body of the function. 1140 PGO.assignRegionCounters(GD, CurFn); 1141 if (isa<CXXDestructorDecl>(FD)) 1142 EmitDestructorBody(Args); 1143 else if (isa<CXXConstructorDecl>(FD)) 1144 EmitConstructorBody(Args); 1145 else if (getLangOpts().CUDA && 1146 !getLangOpts().CUDAIsDevice && 1147 FD->hasAttr<CUDAGlobalAttr>()) 1148 CGM.getCUDARuntime().emitDeviceStub(*this, Args); 1149 else if (isa<CXXConversionDecl>(FD) && 1150 cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) { 1151 // The lambda conversion to block pointer is special; the semantics can't be 1152 // expressed in the AST, so IRGen needs to special-case it. 1153 EmitLambdaToBlockPointerBody(Args); 1154 } else if (isa<CXXMethodDecl>(FD) && 1155 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 1156 // The lambda static invoker function is special, because it forwards or 1157 // clones the body of the function call operator (but is actually static). 1158 EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD)); 1159 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 1160 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 1161 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 1162 // Implicit copy-assignment gets the same special treatment as implicit 1163 // copy-constructors. 1164 emitImplicitAssignmentOperatorBody(Args); 1165 } else if (Body) { 1166 EmitFunctionBody(Args, Body); 1167 } else 1168 llvm_unreachable("no definition for emitted function"); 1169 1170 // C++11 [stmt.return]p2: 1171 // Flowing off the end of a function [...] results in undefined behavior in 1172 // a value-returning function. 1173 // C11 6.9.1p12: 1174 // If the '}' that terminates a function is reached, and the value of the 1175 // function call is used by the caller, the behavior is undefined. 1176 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock && 1177 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { 1178 bool ShouldEmitUnreachable = 1179 CGM.getCodeGenOpts().StrictReturn || 1180 shouldUseUndefinedBehaviorReturnOptimization(FD, getContext()); 1181 if (SanOpts.has(SanitizerKind::Return)) { 1182 SanitizerScope SanScope(this); 1183 llvm::Value *IsFalse = Builder.getFalse(); 1184 EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return), 1185 SanitizerHandler::MissingReturn, 1186 EmitCheckSourceLocation(FD->getLocation()), None); 1187 } else if (ShouldEmitUnreachable) { 1188 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 1189 EmitTrapCall(llvm::Intrinsic::trap); 1190 } 1191 if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) { 1192 Builder.CreateUnreachable(); 1193 Builder.ClearInsertionPoint(); 1194 } 1195 } 1196 1197 // Emit the standard function epilogue. 1198 FinishFunction(BodyRange.getEnd()); 1199 1200 // If we haven't marked the function nothrow through other means, do 1201 // a quick pass now to see if we can. 1202 if (!CurFn->doesNotThrow()) 1203 TryMarkNoThrow(CurFn); 1204 } 1205 1206 /// ContainsLabel - Return true if the statement contains a label in it. If 1207 /// this statement is not executed normally, it not containing a label means 1208 /// that we can just remove the code. 1209 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 1210 // Null statement, not a label! 1211 if (!S) return false; 1212 1213 // If this is a label, we have to emit the code, consider something like: 1214 // if (0) { ... foo: bar(); } goto foo; 1215 // 1216 // TODO: If anyone cared, we could track __label__'s, since we know that you 1217 // can't jump to one from outside their declared region. 1218 if (isa<LabelStmt>(S)) 1219 return true; 1220 1221 // If this is a case/default statement, and we haven't seen a switch, we have 1222 // to emit the code. 1223 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 1224 return true; 1225 1226 // If this is a switch statement, we want to ignore cases below it. 1227 if (isa<SwitchStmt>(S)) 1228 IgnoreCaseStmts = true; 1229 1230 // Scan subexpressions for verboten labels. 1231 for (const Stmt *SubStmt : S->children()) 1232 if (ContainsLabel(SubStmt, IgnoreCaseStmts)) 1233 return true; 1234 1235 return false; 1236 } 1237 1238 /// containsBreak - Return true if the statement contains a break out of it. 1239 /// If the statement (recursively) contains a switch or loop with a break 1240 /// inside of it, this is fine. 1241 bool CodeGenFunction::containsBreak(const Stmt *S) { 1242 // Null statement, not a label! 1243 if (!S) return false; 1244 1245 // If this is a switch or loop that defines its own break scope, then we can 1246 // include it and anything inside of it. 1247 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 1248 isa<ForStmt>(S)) 1249 return false; 1250 1251 if (isa<BreakStmt>(S)) 1252 return true; 1253 1254 // Scan subexpressions for verboten breaks. 1255 for (const Stmt *SubStmt : S->children()) 1256 if (containsBreak(SubStmt)) 1257 return true; 1258 1259 return false; 1260 } 1261 1262 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) { 1263 if (!S) return false; 1264 1265 // Some statement kinds add a scope and thus never add a decl to the current 1266 // scope. Note, this list is longer than the list of statements that might 1267 // have an unscoped decl nested within them, but this way is conservatively 1268 // correct even if more statement kinds are added. 1269 if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) || 1270 isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) || 1271 isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) || 1272 isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S)) 1273 return false; 1274 1275 if (isa<DeclStmt>(S)) 1276 return true; 1277 1278 for (const Stmt *SubStmt : S->children()) 1279 if (mightAddDeclToScope(SubStmt)) 1280 return true; 1281 1282 return false; 1283 } 1284 1285 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1286 /// to a constant, or if it does but contains a label, return false. If it 1287 /// constant folds return true and set the boolean result in Result. 1288 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1289 bool &ResultBool, 1290 bool AllowLabels) { 1291 llvm::APSInt ResultInt; 1292 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels)) 1293 return false; 1294 1295 ResultBool = ResultInt.getBoolValue(); 1296 return true; 1297 } 1298 1299 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1300 /// to a constant, or if it does but contains a label, return false. If it 1301 /// constant folds return true and set the folded value. 1302 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1303 llvm::APSInt &ResultInt, 1304 bool AllowLabels) { 1305 // FIXME: Rename and handle conversion of other evaluatable things 1306 // to bool. 1307 llvm::APSInt Int; 1308 if (!Cond->EvaluateAsInt(Int, getContext())) 1309 return false; // Not foldable, not integer or not fully evaluatable. 1310 1311 if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond)) 1312 return false; // Contains a label. 1313 1314 ResultInt = Int; 1315 return true; 1316 } 1317 1318 1319 1320 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 1321 /// statement) to the specified blocks. Based on the condition, this might try 1322 /// to simplify the codegen of the conditional based on the branch. 1323 /// 1324 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 1325 llvm::BasicBlock *TrueBlock, 1326 llvm::BasicBlock *FalseBlock, 1327 uint64_t TrueCount) { 1328 Cond = Cond->IgnoreParens(); 1329 1330 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 1331 1332 // Handle X && Y in a condition. 1333 if (CondBOp->getOpcode() == BO_LAnd) { 1334 // If we have "1 && X", simplify the code. "0 && X" would have constant 1335 // folded if the case was simple enough. 1336 bool ConstantBool = false; 1337 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1338 ConstantBool) { 1339 // br(1 && X) -> br(X). 1340 incrementProfileCounter(CondBOp); 1341 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1342 TrueCount); 1343 } 1344 1345 // If we have "X && 1", simplify the code to use an uncond branch. 1346 // "X && 0" would have been constant folded to 0. 1347 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1348 ConstantBool) { 1349 // br(X && 1) -> br(X). 1350 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1351 TrueCount); 1352 } 1353 1354 // Emit the LHS as a conditional. If the LHS conditional is false, we 1355 // want to jump to the FalseBlock. 1356 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 1357 // The counter tells us how often we evaluate RHS, and all of TrueCount 1358 // can be propagated to that branch. 1359 uint64_t RHSCount = getProfileCount(CondBOp->getRHS()); 1360 1361 ConditionalEvaluation eval(*this); 1362 { 1363 ApplyDebugLocation DL(*this, Cond); 1364 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount); 1365 EmitBlock(LHSTrue); 1366 } 1367 1368 incrementProfileCounter(CondBOp); 1369 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1370 1371 // Any temporaries created here are conditional. 1372 eval.begin(*this); 1373 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount); 1374 eval.end(*this); 1375 1376 return; 1377 } 1378 1379 if (CondBOp->getOpcode() == BO_LOr) { 1380 // If we have "0 || X", simplify the code. "1 || X" would have constant 1381 // folded if the case was simple enough. 1382 bool ConstantBool = false; 1383 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1384 !ConstantBool) { 1385 // br(0 || X) -> br(X). 1386 incrementProfileCounter(CondBOp); 1387 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1388 TrueCount); 1389 } 1390 1391 // If we have "X || 0", simplify the code to use an uncond branch. 1392 // "X || 1" would have been constant folded to 1. 1393 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1394 !ConstantBool) { 1395 // br(X || 0) -> br(X). 1396 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1397 TrueCount); 1398 } 1399 1400 // Emit the LHS as a conditional. If the LHS conditional is true, we 1401 // want to jump to the TrueBlock. 1402 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 1403 // We have the count for entry to the RHS and for the whole expression 1404 // being true, so we can divy up True count between the short circuit and 1405 // the RHS. 1406 uint64_t LHSCount = 1407 getCurrentProfileCount() - getProfileCount(CondBOp->getRHS()); 1408 uint64_t RHSCount = TrueCount - LHSCount; 1409 1410 ConditionalEvaluation eval(*this); 1411 { 1412 ApplyDebugLocation DL(*this, Cond); 1413 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount); 1414 EmitBlock(LHSFalse); 1415 } 1416 1417 incrementProfileCounter(CondBOp); 1418 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1419 1420 // Any temporaries created here are conditional. 1421 eval.begin(*this); 1422 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount); 1423 1424 eval.end(*this); 1425 1426 return; 1427 } 1428 } 1429 1430 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 1431 // br(!x, t, f) -> br(x, f, t) 1432 if (CondUOp->getOpcode() == UO_LNot) { 1433 // Negate the count. 1434 uint64_t FalseCount = getCurrentProfileCount() - TrueCount; 1435 // Negate the condition and swap the destination blocks. 1436 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, 1437 FalseCount); 1438 } 1439 } 1440 1441 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 1442 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 1443 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1444 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1445 1446 ConditionalEvaluation cond(*this); 1447 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, 1448 getProfileCount(CondOp)); 1449 1450 // When computing PGO branch weights, we only know the overall count for 1451 // the true block. This code is essentially doing tail duplication of the 1452 // naive code-gen, introducing new edges for which counts are not 1453 // available. Divide the counts proportionally between the LHS and RHS of 1454 // the conditional operator. 1455 uint64_t LHSScaledTrueCount = 0; 1456 if (TrueCount) { 1457 double LHSRatio = 1458 getProfileCount(CondOp) / (double)getCurrentProfileCount(); 1459 LHSScaledTrueCount = TrueCount * LHSRatio; 1460 } 1461 1462 cond.begin(*this); 1463 EmitBlock(LHSBlock); 1464 incrementProfileCounter(CondOp); 1465 { 1466 ApplyDebugLocation DL(*this, Cond); 1467 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, 1468 LHSScaledTrueCount); 1469 } 1470 cond.end(*this); 1471 1472 cond.begin(*this); 1473 EmitBlock(RHSBlock); 1474 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, 1475 TrueCount - LHSScaledTrueCount); 1476 cond.end(*this); 1477 1478 return; 1479 } 1480 1481 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 1482 // Conditional operator handling can give us a throw expression as a 1483 // condition for a case like: 1484 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 1485 // Fold this to: 1486 // br(c, throw x, br(y, t, f)) 1487 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 1488 return; 1489 } 1490 1491 // If the branch has a condition wrapped by __builtin_unpredictable, 1492 // create metadata that specifies that the branch is unpredictable. 1493 // Don't bother if not optimizing because that metadata would not be used. 1494 llvm::MDNode *Unpredictable = nullptr; 1495 auto *Call = dyn_cast<CallExpr>(Cond); 1496 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 1497 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 1498 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 1499 llvm::MDBuilder MDHelper(getLLVMContext()); 1500 Unpredictable = MDHelper.createUnpredictable(); 1501 } 1502 } 1503 1504 // Create branch weights based on the number of times we get here and the 1505 // number of times the condition should be true. 1506 uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount); 1507 llvm::MDNode *Weights = 1508 createProfileWeights(TrueCount, CurrentCount - TrueCount); 1509 1510 // Emit the code with the fully general case. 1511 llvm::Value *CondV; 1512 { 1513 ApplyDebugLocation DL(*this, Cond); 1514 CondV = EvaluateExprAsBool(Cond); 1515 } 1516 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable); 1517 } 1518 1519 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1520 /// specified stmt yet. 1521 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 1522 CGM.ErrorUnsupported(S, Type); 1523 } 1524 1525 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 1526 /// variable-length array whose elements have a non-zero bit-pattern. 1527 /// 1528 /// \param baseType the inner-most element type of the array 1529 /// \param src - a char* pointing to the bit-pattern for a single 1530 /// base element of the array 1531 /// \param sizeInChars - the total size of the VLA, in chars 1532 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 1533 Address dest, Address src, 1534 llvm::Value *sizeInChars) { 1535 CGBuilderTy &Builder = CGF.Builder; 1536 1537 CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType); 1538 llvm::Value *baseSizeInChars 1539 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity()); 1540 1541 Address begin = 1542 Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin"); 1543 llvm::Value *end = 1544 Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end"); 1545 1546 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 1547 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 1548 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 1549 1550 // Make a loop over the VLA. C99 guarantees that the VLA element 1551 // count must be nonzero. 1552 CGF.EmitBlock(loopBB); 1553 1554 llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur"); 1555 cur->addIncoming(begin.getPointer(), originBB); 1556 1557 CharUnits curAlign = 1558 dest.getAlignment().alignmentOfArrayElement(baseSize); 1559 1560 // memcpy the individual element bit-pattern. 1561 Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars, 1562 /*volatile*/ false); 1563 1564 // Go to the next element. 1565 llvm::Value *next = 1566 Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next"); 1567 1568 // Leave if that's the end of the VLA. 1569 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 1570 Builder.CreateCondBr(done, contBB, loopBB); 1571 cur->addIncoming(next, loopBB); 1572 1573 CGF.EmitBlock(contBB); 1574 } 1575 1576 void 1577 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) { 1578 // Ignore empty classes in C++. 1579 if (getLangOpts().CPlusPlus) { 1580 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1581 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 1582 return; 1583 } 1584 } 1585 1586 // Cast the dest ptr to the appropriate i8 pointer type. 1587 if (DestPtr.getElementType() != Int8Ty) 1588 DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty); 1589 1590 // Get size and alignment info for this aggregate. 1591 CharUnits size = getContext().getTypeSizeInChars(Ty); 1592 1593 llvm::Value *SizeVal; 1594 const VariableArrayType *vla; 1595 1596 // Don't bother emitting a zero-byte memset. 1597 if (size.isZero()) { 1598 // But note that getTypeInfo returns 0 for a VLA. 1599 if (const VariableArrayType *vlaType = 1600 dyn_cast_or_null<VariableArrayType>( 1601 getContext().getAsArrayType(Ty))) { 1602 QualType eltType; 1603 llvm::Value *numElts; 1604 std::tie(numElts, eltType) = getVLASize(vlaType); 1605 1606 SizeVal = numElts; 1607 CharUnits eltSize = getContext().getTypeSizeInChars(eltType); 1608 if (!eltSize.isOne()) 1609 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 1610 vla = vlaType; 1611 } else { 1612 return; 1613 } 1614 } else { 1615 SizeVal = CGM.getSize(size); 1616 vla = nullptr; 1617 } 1618 1619 // If the type contains a pointer to data member we can't memset it to zero. 1620 // Instead, create a null constant and copy it to the destination. 1621 // TODO: there are other patterns besides zero that we can usefully memset, 1622 // like -1, which happens to be the pattern used by member-pointers. 1623 if (!CGM.getTypes().isZeroInitializable(Ty)) { 1624 // For a VLA, emit a single element, then splat that over the VLA. 1625 if (vla) Ty = getContext().getBaseElementType(vla); 1626 1627 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 1628 1629 llvm::GlobalVariable *NullVariable = 1630 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 1631 /*isConstant=*/true, 1632 llvm::GlobalVariable::PrivateLinkage, 1633 NullConstant, Twine()); 1634 CharUnits NullAlign = DestPtr.getAlignment(); 1635 NullVariable->setAlignment(NullAlign.getQuantity()); 1636 Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()), 1637 NullAlign); 1638 1639 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 1640 1641 // Get and call the appropriate llvm.memcpy overload. 1642 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false); 1643 return; 1644 } 1645 1646 // Otherwise, just memset the whole thing to zero. This is legal 1647 // because in LLVM, all default initializers (other than the ones we just 1648 // handled above) are guaranteed to have a bit pattern of all zeros. 1649 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false); 1650 } 1651 1652 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 1653 // Make sure that there is a block for the indirect goto. 1654 if (!IndirectBranch) 1655 GetIndirectGotoBlock(); 1656 1657 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 1658 1659 // Make sure the indirect branch includes all of the address-taken blocks. 1660 IndirectBranch->addDestination(BB); 1661 return llvm::BlockAddress::get(CurFn, BB); 1662 } 1663 1664 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 1665 // If we already made the indirect branch for indirect goto, return its block. 1666 if (IndirectBranch) return IndirectBranch->getParent(); 1667 1668 CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto")); 1669 1670 // Create the PHI node that indirect gotos will add entries to. 1671 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 1672 "indirect.goto.dest"); 1673 1674 // Create the indirect branch instruction. 1675 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 1676 return IndirectBranch->getParent(); 1677 } 1678 1679 /// Computes the length of an array in elements, as well as the base 1680 /// element type and a properly-typed first element pointer. 1681 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 1682 QualType &baseType, 1683 Address &addr) { 1684 const ArrayType *arrayType = origArrayType; 1685 1686 // If it's a VLA, we have to load the stored size. Note that 1687 // this is the size of the VLA in bytes, not its size in elements. 1688 llvm::Value *numVLAElements = nullptr; 1689 if (isa<VariableArrayType>(arrayType)) { 1690 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first; 1691 1692 // Walk into all VLAs. This doesn't require changes to addr, 1693 // which has type T* where T is the first non-VLA element type. 1694 do { 1695 QualType elementType = arrayType->getElementType(); 1696 arrayType = getContext().getAsArrayType(elementType); 1697 1698 // If we only have VLA components, 'addr' requires no adjustment. 1699 if (!arrayType) { 1700 baseType = elementType; 1701 return numVLAElements; 1702 } 1703 } while (isa<VariableArrayType>(arrayType)); 1704 1705 // We get out here only if we find a constant array type 1706 // inside the VLA. 1707 } 1708 1709 // We have some number of constant-length arrays, so addr should 1710 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 1711 // down to the first element of addr. 1712 SmallVector<llvm::Value*, 8> gepIndices; 1713 1714 // GEP down to the array type. 1715 llvm::ConstantInt *zero = Builder.getInt32(0); 1716 gepIndices.push_back(zero); 1717 1718 uint64_t countFromCLAs = 1; 1719 QualType eltType; 1720 1721 llvm::ArrayType *llvmArrayType = 1722 dyn_cast<llvm::ArrayType>(addr.getElementType()); 1723 while (llvmArrayType) { 1724 assert(isa<ConstantArrayType>(arrayType)); 1725 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 1726 == llvmArrayType->getNumElements()); 1727 1728 gepIndices.push_back(zero); 1729 countFromCLAs *= llvmArrayType->getNumElements(); 1730 eltType = arrayType->getElementType(); 1731 1732 llvmArrayType = 1733 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 1734 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 1735 assert((!llvmArrayType || arrayType) && 1736 "LLVM and Clang types are out-of-synch"); 1737 } 1738 1739 if (arrayType) { 1740 // From this point onwards, the Clang array type has been emitted 1741 // as some other type (probably a packed struct). Compute the array 1742 // size, and just emit the 'begin' expression as a bitcast. 1743 while (arrayType) { 1744 countFromCLAs *= 1745 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 1746 eltType = arrayType->getElementType(); 1747 arrayType = getContext().getAsArrayType(eltType); 1748 } 1749 1750 llvm::Type *baseType = ConvertType(eltType); 1751 addr = Builder.CreateElementBitCast(addr, baseType, "array.begin"); 1752 } else { 1753 // Create the actual GEP. 1754 addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(), 1755 gepIndices, "array.begin"), 1756 addr.getAlignment()); 1757 } 1758 1759 baseType = eltType; 1760 1761 llvm::Value *numElements 1762 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 1763 1764 // If we had any VLA dimensions, factor them in. 1765 if (numVLAElements) 1766 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 1767 1768 return numElements; 1769 } 1770 1771 std::pair<llvm::Value*, QualType> 1772 CodeGenFunction::getVLASize(QualType type) { 1773 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1774 assert(vla && "type was not a variable array type!"); 1775 return getVLASize(vla); 1776 } 1777 1778 std::pair<llvm::Value*, QualType> 1779 CodeGenFunction::getVLASize(const VariableArrayType *type) { 1780 // The number of elements so far; always size_t. 1781 llvm::Value *numElements = nullptr; 1782 1783 QualType elementType; 1784 do { 1785 elementType = type->getElementType(); 1786 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 1787 assert(vlaSize && "no size for VLA!"); 1788 assert(vlaSize->getType() == SizeTy); 1789 1790 if (!numElements) { 1791 numElements = vlaSize; 1792 } else { 1793 // It's undefined behavior if this wraps around, so mark it that way. 1794 // FIXME: Teach -fsanitize=undefined to trap this. 1795 numElements = Builder.CreateNUWMul(numElements, vlaSize); 1796 } 1797 } while ((type = getContext().getAsVariableArrayType(elementType))); 1798 1799 return std::pair<llvm::Value*,QualType>(numElements, elementType); 1800 } 1801 1802 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 1803 assert(type->isVariablyModifiedType() && 1804 "Must pass variably modified type to EmitVLASizes!"); 1805 1806 EnsureInsertPoint(); 1807 1808 // We're going to walk down into the type and look for VLA 1809 // expressions. 1810 do { 1811 assert(type->isVariablyModifiedType()); 1812 1813 const Type *ty = type.getTypePtr(); 1814 switch (ty->getTypeClass()) { 1815 1816 #define TYPE(Class, Base) 1817 #define ABSTRACT_TYPE(Class, Base) 1818 #define NON_CANONICAL_TYPE(Class, Base) 1819 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 1820 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 1821 #include "clang/AST/TypeNodes.def" 1822 llvm_unreachable("unexpected dependent type!"); 1823 1824 // These types are never variably-modified. 1825 case Type::Builtin: 1826 case Type::Complex: 1827 case Type::Vector: 1828 case Type::ExtVector: 1829 case Type::Record: 1830 case Type::Enum: 1831 case Type::Elaborated: 1832 case Type::TemplateSpecialization: 1833 case Type::ObjCTypeParam: 1834 case Type::ObjCObject: 1835 case Type::ObjCInterface: 1836 case Type::ObjCObjectPointer: 1837 llvm_unreachable("type class is never variably-modified!"); 1838 1839 case Type::Adjusted: 1840 type = cast<AdjustedType>(ty)->getAdjustedType(); 1841 break; 1842 1843 case Type::Decayed: 1844 type = cast<DecayedType>(ty)->getPointeeType(); 1845 break; 1846 1847 case Type::Pointer: 1848 type = cast<PointerType>(ty)->getPointeeType(); 1849 break; 1850 1851 case Type::BlockPointer: 1852 type = cast<BlockPointerType>(ty)->getPointeeType(); 1853 break; 1854 1855 case Type::LValueReference: 1856 case Type::RValueReference: 1857 type = cast<ReferenceType>(ty)->getPointeeType(); 1858 break; 1859 1860 case Type::MemberPointer: 1861 type = cast<MemberPointerType>(ty)->getPointeeType(); 1862 break; 1863 1864 case Type::ConstantArray: 1865 case Type::IncompleteArray: 1866 // Losing element qualification here is fine. 1867 type = cast<ArrayType>(ty)->getElementType(); 1868 break; 1869 1870 case Type::VariableArray: { 1871 // Losing element qualification here is fine. 1872 const VariableArrayType *vat = cast<VariableArrayType>(ty); 1873 1874 // Unknown size indication requires no size computation. 1875 // Otherwise, evaluate and record it. 1876 if (const Expr *size = vat->getSizeExpr()) { 1877 // It's possible that we might have emitted this already, 1878 // e.g. with a typedef and a pointer to it. 1879 llvm::Value *&entry = VLASizeMap[size]; 1880 if (!entry) { 1881 llvm::Value *Size = EmitScalarExpr(size); 1882 1883 // C11 6.7.6.2p5: 1884 // If the size is an expression that is not an integer constant 1885 // expression [...] each time it is evaluated it shall have a value 1886 // greater than zero. 1887 if (SanOpts.has(SanitizerKind::VLABound) && 1888 size->getType()->isSignedIntegerType()) { 1889 SanitizerScope SanScope(this); 1890 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); 1891 llvm::Constant *StaticArgs[] = { 1892 EmitCheckSourceLocation(size->getLocStart()), 1893 EmitCheckTypeDescriptor(size->getType()) 1894 }; 1895 EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero), 1896 SanitizerKind::VLABound), 1897 SanitizerHandler::VLABoundNotPositive, StaticArgs, Size); 1898 } 1899 1900 // Always zexting here would be wrong if it weren't 1901 // undefined behavior to have a negative bound. 1902 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); 1903 } 1904 } 1905 type = vat->getElementType(); 1906 break; 1907 } 1908 1909 case Type::FunctionProto: 1910 case Type::FunctionNoProto: 1911 type = cast<FunctionType>(ty)->getReturnType(); 1912 break; 1913 1914 case Type::Paren: 1915 case Type::TypeOf: 1916 case Type::UnaryTransform: 1917 case Type::Attributed: 1918 case Type::SubstTemplateTypeParm: 1919 case Type::PackExpansion: 1920 // Keep walking after single level desugaring. 1921 type = type.getSingleStepDesugaredType(getContext()); 1922 break; 1923 1924 case Type::Typedef: 1925 case Type::Decltype: 1926 case Type::Auto: 1927 case Type::DeducedTemplateSpecialization: 1928 // Stop walking: nothing to do. 1929 return; 1930 1931 case Type::TypeOfExpr: 1932 // Stop walking: emit typeof expression. 1933 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 1934 return; 1935 1936 case Type::Atomic: 1937 type = cast<AtomicType>(ty)->getValueType(); 1938 break; 1939 1940 case Type::Pipe: 1941 type = cast<PipeType>(ty)->getElementType(); 1942 break; 1943 } 1944 } while (type->isVariablyModifiedType()); 1945 } 1946 1947 Address CodeGenFunction::EmitVAListRef(const Expr* E) { 1948 if (getContext().getBuiltinVaListType()->isArrayType()) 1949 return EmitPointerWithAlignment(E); 1950 return EmitLValue(E).getAddress(); 1951 } 1952 1953 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) { 1954 return EmitLValue(E).getAddress(); 1955 } 1956 1957 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 1958 const APValue &Init) { 1959 assert(!Init.isUninit() && "Invalid DeclRefExpr initializer!"); 1960 if (CGDebugInfo *Dbg = getDebugInfo()) 1961 if (CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 1962 Dbg->EmitGlobalVariable(E->getDecl(), Init); 1963 } 1964 1965 CodeGenFunction::PeepholeProtection 1966 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 1967 // At the moment, the only aggressive peephole we do in IR gen 1968 // is trunc(zext) folding, but if we add more, we can easily 1969 // extend this protection. 1970 1971 if (!rvalue.isScalar()) return PeepholeProtection(); 1972 llvm::Value *value = rvalue.getScalarVal(); 1973 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 1974 1975 // Just make an extra bitcast. 1976 assert(HaveInsertPoint()); 1977 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 1978 Builder.GetInsertBlock()); 1979 1980 PeepholeProtection protection; 1981 protection.Inst = inst; 1982 return protection; 1983 } 1984 1985 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 1986 if (!protection.Inst) return; 1987 1988 // In theory, we could try to duplicate the peepholes now, but whatever. 1989 protection.Inst->eraseFromParent(); 1990 } 1991 1992 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn, 1993 llvm::Value *AnnotatedVal, 1994 StringRef AnnotationStr, 1995 SourceLocation Location) { 1996 llvm::Value *Args[4] = { 1997 AnnotatedVal, 1998 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 1999 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 2000 CGM.EmitAnnotationLineNo(Location) 2001 }; 2002 return Builder.CreateCall(AnnotationFn, Args); 2003 } 2004 2005 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 2006 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2007 // FIXME We create a new bitcast for every annotation because that's what 2008 // llvm-gcc was doing. 2009 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2010 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 2011 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 2012 I->getAnnotation(), D->getLocation()); 2013 } 2014 2015 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 2016 Address Addr) { 2017 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2018 llvm::Value *V = Addr.getPointer(); 2019 llvm::Type *VTy = V->getType(); 2020 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 2021 CGM.Int8PtrTy); 2022 2023 for (const auto *I : D->specific_attrs<AnnotateAttr>()) { 2024 // FIXME Always emit the cast inst so we can differentiate between 2025 // annotation on the first field of a struct and annotation on the struct 2026 // itself. 2027 if (VTy != CGM.Int8PtrTy) 2028 V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy)); 2029 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation()); 2030 V = Builder.CreateBitCast(V, VTy); 2031 } 2032 2033 return Address(V, Addr.getAlignment()); 2034 } 2035 2036 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 2037 2038 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF) 2039 : CGF(CGF) { 2040 assert(!CGF->IsSanitizerScope); 2041 CGF->IsSanitizerScope = true; 2042 } 2043 2044 CodeGenFunction::SanitizerScope::~SanitizerScope() { 2045 CGF->IsSanitizerScope = false; 2046 } 2047 2048 void CodeGenFunction::InsertHelper(llvm::Instruction *I, 2049 const llvm::Twine &Name, 2050 llvm::BasicBlock *BB, 2051 llvm::BasicBlock::iterator InsertPt) const { 2052 LoopStack.InsertHelper(I); 2053 if (IsSanitizerScope) 2054 CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I); 2055 } 2056 2057 void CGBuilderInserter::InsertHelper( 2058 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, 2059 llvm::BasicBlock::iterator InsertPt) const { 2060 llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt); 2061 if (CGF) 2062 CGF->InsertHelper(I, Name, BB, InsertPt); 2063 } 2064 2065 static bool hasRequiredFeatures(const SmallVectorImpl<StringRef> &ReqFeatures, 2066 CodeGenModule &CGM, const FunctionDecl *FD, 2067 std::string &FirstMissing) { 2068 // If there aren't any required features listed then go ahead and return. 2069 if (ReqFeatures.empty()) 2070 return false; 2071 2072 // Now build up the set of caller features and verify that all the required 2073 // features are there. 2074 llvm::StringMap<bool> CallerFeatureMap; 2075 CGM.getFunctionFeatureMap(CallerFeatureMap, FD); 2076 2077 // If we have at least one of the features in the feature list return 2078 // true, otherwise return false. 2079 return std::all_of( 2080 ReqFeatures.begin(), ReqFeatures.end(), [&](StringRef Feature) { 2081 SmallVector<StringRef, 1> OrFeatures; 2082 Feature.split(OrFeatures, "|"); 2083 return std::any_of(OrFeatures.begin(), OrFeatures.end(), 2084 [&](StringRef Feature) { 2085 if (!CallerFeatureMap.lookup(Feature)) { 2086 FirstMissing = Feature.str(); 2087 return false; 2088 } 2089 return true; 2090 }); 2091 }); 2092 } 2093 2094 // Emits an error if we don't have a valid set of target features for the 2095 // called function. 2096 void CodeGenFunction::checkTargetFeatures(const CallExpr *E, 2097 const FunctionDecl *TargetDecl) { 2098 // Early exit if this is an indirect call. 2099 if (!TargetDecl) 2100 return; 2101 2102 // Get the current enclosing function if it exists. If it doesn't 2103 // we can't check the target features anyhow. 2104 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl); 2105 if (!FD) 2106 return; 2107 2108 // Grab the required features for the call. For a builtin this is listed in 2109 // the td file with the default cpu, for an always_inline function this is any 2110 // listed cpu and any listed features. 2111 unsigned BuiltinID = TargetDecl->getBuiltinID(); 2112 std::string MissingFeature; 2113 if (BuiltinID) { 2114 SmallVector<StringRef, 1> ReqFeatures; 2115 const char *FeatureList = 2116 CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 2117 // Return if the builtin doesn't have any required features. 2118 if (!FeatureList || StringRef(FeatureList) == "") 2119 return; 2120 StringRef(FeatureList).split(ReqFeatures, ","); 2121 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 2122 CGM.getDiags().Report(E->getLocStart(), diag::err_builtin_needs_feature) 2123 << TargetDecl->getDeclName() 2124 << CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 2125 2126 } else if (TargetDecl->hasAttr<TargetAttr>()) { 2127 // Get the required features for the callee. 2128 SmallVector<StringRef, 1> ReqFeatures; 2129 llvm::StringMap<bool> CalleeFeatureMap; 2130 CGM.getFunctionFeatureMap(CalleeFeatureMap, TargetDecl); 2131 for (const auto &F : CalleeFeatureMap) { 2132 // Only positive features are "required". 2133 if (F.getValue()) 2134 ReqFeatures.push_back(F.getKey()); 2135 } 2136 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 2137 CGM.getDiags().Report(E->getLocStart(), diag::err_function_needs_feature) 2138 << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature; 2139 } 2140 } 2141 2142 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) { 2143 if (!CGM.getCodeGenOpts().SanitizeStats) 2144 return; 2145 2146 llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint()); 2147 IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation()); 2148 CGM.getSanStats().create(IRB, SSK); 2149 } 2150 2151 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) { 2152 if (CGDebugInfo *DI = getDebugInfo()) 2153 return DI->SourceLocToDebugLoc(Location); 2154 2155 return llvm::DebugLoc(); 2156 } 2157