1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-function state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGDebugInfo.h" 18 #include "CodeGenModule.h" 19 #include "clang/AST/ASTContext.h" 20 #include "clang/AST/Decl.h" 21 #include "clang/AST/DeclCXX.h" 22 #include "clang/AST/StmtCXX.h" 23 #include "clang/Basic/OpenCL.h" 24 #include "clang/Basic/TargetInfo.h" 25 #include "clang/Frontend/CodeGenOptions.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/Intrinsics.h" 28 #include "llvm/IR/MDBuilder.h" 29 #include "llvm/IR/Operator.h" 30 using namespace clang; 31 using namespace CodeGen; 32 33 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 34 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 35 Builder(cgm.getModule().getContext()), 36 SanitizePerformTypeCheck(CGM.getSanOpts().Null | 37 CGM.getSanOpts().Alignment | 38 CGM.getSanOpts().ObjectSize | 39 CGM.getSanOpts().Vptr), 40 SanOpts(&CGM.getSanOpts()), 41 AutoreleaseResult(false), BlockInfo(0), BlockPointer(0), 42 LambdaThisCaptureField(0), NormalCleanupDest(0), NextCleanupDestIndex(1), 43 FirstBlockInfo(0), EHResumeBlock(0), ExceptionSlot(0), EHSelectorSlot(0), 44 DebugInfo(0), DisableDebugInfo(false), CalleeWithThisReturn(0), 45 DidCallStackSave(false), 46 IndirectBranch(0), SwitchInsn(0), CaseRangeBlock(0), UnreachableBlock(0), 47 NumStopPoints(0), NumSimpleReturnExprs(0), 48 CXXABIThisDecl(0), CXXABIThisValue(0), CXXThisValue(0), 49 CXXDefaultInitExprThis(0), 50 CXXStructorImplicitParamDecl(0), CXXStructorImplicitParamValue(0), 51 OutermostConditional(0), CurLexicalScope(0), TerminateLandingPad(0), 52 TerminateHandler(0), TrapBB(0) { 53 if (!suppressNewContext) 54 CGM.getCXXABI().getMangleContext().startNewFunction(); 55 56 llvm::FastMathFlags FMF; 57 if (CGM.getLangOpts().FastMath) 58 FMF.setUnsafeAlgebra(); 59 if (CGM.getLangOpts().FiniteMathOnly) { 60 FMF.setNoNaNs(); 61 FMF.setNoInfs(); 62 } 63 Builder.SetFastMathFlags(FMF); 64 } 65 66 CodeGenFunction::~CodeGenFunction() { 67 // If there are any unclaimed block infos, go ahead and destroy them 68 // now. This can happen if IR-gen gets clever and skips evaluating 69 // something. 70 if (FirstBlockInfo) 71 destroyBlockInfos(FirstBlockInfo); 72 } 73 74 75 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 76 return CGM.getTypes().ConvertTypeForMem(T); 77 } 78 79 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 80 return CGM.getTypes().ConvertType(T); 81 } 82 83 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 84 type = type.getCanonicalType(); 85 while (true) { 86 switch (type->getTypeClass()) { 87 #define TYPE(name, parent) 88 #define ABSTRACT_TYPE(name, parent) 89 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 90 #define DEPENDENT_TYPE(name, parent) case Type::name: 91 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 92 #include "clang/AST/TypeNodes.def" 93 llvm_unreachable("non-canonical or dependent type in IR-generation"); 94 95 case Type::Auto: 96 llvm_unreachable("undeduced auto type in IR-generation"); 97 98 // Various scalar types. 99 case Type::Builtin: 100 case Type::Pointer: 101 case Type::BlockPointer: 102 case Type::LValueReference: 103 case Type::RValueReference: 104 case Type::MemberPointer: 105 case Type::Vector: 106 case Type::ExtVector: 107 case Type::FunctionProto: 108 case Type::FunctionNoProto: 109 case Type::Enum: 110 case Type::ObjCObjectPointer: 111 return TEK_Scalar; 112 113 // Complexes. 114 case Type::Complex: 115 return TEK_Complex; 116 117 // Arrays, records, and Objective-C objects. 118 case Type::ConstantArray: 119 case Type::IncompleteArray: 120 case Type::VariableArray: 121 case Type::Record: 122 case Type::ObjCObject: 123 case Type::ObjCInterface: 124 return TEK_Aggregate; 125 126 // We operate on atomic values according to their underlying type. 127 case Type::Atomic: 128 type = cast<AtomicType>(type)->getValueType(); 129 continue; 130 } 131 llvm_unreachable("unknown type kind!"); 132 } 133 } 134 135 void CodeGenFunction::EmitReturnBlock() { 136 // For cleanliness, we try to avoid emitting the return block for 137 // simple cases. 138 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 139 140 if (CurBB) { 141 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 142 143 // We have a valid insert point, reuse it if it is empty or there are no 144 // explicit jumps to the return block. 145 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 146 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 147 delete ReturnBlock.getBlock(); 148 } else 149 EmitBlock(ReturnBlock.getBlock()); 150 return; 151 } 152 153 // Otherwise, if the return block is the target of a single direct 154 // branch then we can just put the code in that block instead. This 155 // cleans up functions which started with a unified return block. 156 if (ReturnBlock.getBlock()->hasOneUse()) { 157 llvm::BranchInst *BI = 158 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->use_begin()); 159 if (BI && BI->isUnconditional() && 160 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 161 // Reset insertion point, including debug location, and delete the 162 // branch. This is really subtle and only works because the next change 163 // in location will hit the caching in CGDebugInfo::EmitLocation and not 164 // override this. 165 Builder.SetCurrentDebugLocation(BI->getDebugLoc()); 166 Builder.SetInsertPoint(BI->getParent()); 167 BI->eraseFromParent(); 168 delete ReturnBlock.getBlock(); 169 return; 170 } 171 } 172 173 // FIXME: We are at an unreachable point, there is no reason to emit the block 174 // unless it has uses. However, we still need a place to put the debug 175 // region.end for now. 176 177 EmitBlock(ReturnBlock.getBlock()); 178 } 179 180 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 181 if (!BB) return; 182 if (!BB->use_empty()) 183 return CGF.CurFn->getBasicBlockList().push_back(BB); 184 delete BB; 185 } 186 187 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 188 assert(BreakContinueStack.empty() && 189 "mismatched push/pop in break/continue stack!"); 190 191 // If the function contains only a single, simple return statement, 192 // the cleanup code may become the first breakpoint in the 193 // function. To be safe set the debug location for it to the 194 // location of the return statement. Otherwise point it to end of 195 // the function's lexical scope. 196 if (CGDebugInfo *DI = getDebugInfo()) { 197 if (NumSimpleReturnExprs == 1 && NumStopPoints == 1) 198 DI->EmitLocation(Builder, FirstStopPoint); 199 else 200 DI->EmitLocation(Builder, EndLoc); 201 } 202 203 // Pop any cleanups that might have been associated with the 204 // parameters. Do this in whatever block we're currently in; it's 205 // important to do this before we enter the return block or return 206 // edges will be *really* confused. 207 bool EmitRetDbgLoc = true; 208 if (EHStack.stable_begin() != PrologueCleanupDepth) { 209 PopCleanupBlocks(PrologueCleanupDepth); 210 211 // Make sure the line table doesn't jump back into the body for 212 // the ret after it's been at EndLoc. 213 EmitRetDbgLoc = false; 214 215 if (CGDebugInfo *DI = getDebugInfo()) 216 if (NumSimpleReturnExprs == 1 && NumStopPoints == 1) 217 DI->EmitLocation(Builder, EndLoc); 218 } 219 220 // Emit function epilog (to return). 221 EmitReturnBlock(); 222 223 if (ShouldInstrumentFunction()) 224 EmitFunctionInstrumentation("__cyg_profile_func_exit"); 225 226 // Emit debug descriptor for function end. 227 if (CGDebugInfo *DI = getDebugInfo()) { 228 DI->EmitFunctionEnd(Builder); 229 } 230 231 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc); 232 EmitEndEHSpec(CurCodeDecl); 233 234 assert(EHStack.empty() && 235 "did not remove all scopes from cleanup stack!"); 236 237 // If someone did an indirect goto, emit the indirect goto block at the end of 238 // the function. 239 if (IndirectBranch) { 240 EmitBlock(IndirectBranch->getParent()); 241 Builder.ClearInsertionPoint(); 242 } 243 244 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 245 llvm::Instruction *Ptr = AllocaInsertPt; 246 AllocaInsertPt = 0; 247 Ptr->eraseFromParent(); 248 249 // If someone took the address of a label but never did an indirect goto, we 250 // made a zero entry PHI node, which is illegal, zap it now. 251 if (IndirectBranch) { 252 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 253 if (PN->getNumIncomingValues() == 0) { 254 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 255 PN->eraseFromParent(); 256 } 257 } 258 259 EmitIfUsed(*this, EHResumeBlock); 260 EmitIfUsed(*this, TerminateLandingPad); 261 EmitIfUsed(*this, TerminateHandler); 262 EmitIfUsed(*this, UnreachableBlock); 263 264 if (CGM.getCodeGenOpts().EmitDeclMetadata) 265 EmitDeclMetadata(); 266 } 267 268 /// ShouldInstrumentFunction - Return true if the current function should be 269 /// instrumented with __cyg_profile_func_* calls 270 bool CodeGenFunction::ShouldInstrumentFunction() { 271 if (!CGM.getCodeGenOpts().InstrumentFunctions) 272 return false; 273 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 274 return false; 275 return true; 276 } 277 278 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 279 /// instrumentation function with the current function and the call site, if 280 /// function instrumentation is enabled. 281 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) { 282 // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site); 283 llvm::PointerType *PointerTy = Int8PtrTy; 284 llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy }; 285 llvm::FunctionType *FunctionTy = 286 llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false); 287 288 llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn); 289 llvm::CallInst *CallSite = Builder.CreateCall( 290 CGM.getIntrinsic(llvm::Intrinsic::returnaddress), 291 llvm::ConstantInt::get(Int32Ty, 0), 292 "callsite"); 293 294 llvm::Value *args[] = { 295 llvm::ConstantExpr::getBitCast(CurFn, PointerTy), 296 CallSite 297 }; 298 299 EmitNounwindRuntimeCall(F, args); 300 } 301 302 void CodeGenFunction::EmitMCountInstrumentation() { 303 llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false); 304 305 llvm::Constant *MCountFn = 306 CGM.CreateRuntimeFunction(FTy, getTarget().getMCountName()); 307 EmitNounwindRuntimeCall(MCountFn); 308 } 309 310 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument 311 // information in the program executable. The argument information stored 312 // includes the argument name, its type, the address and access qualifiers used. 313 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn, 314 CodeGenModule &CGM,llvm::LLVMContext &Context, 315 SmallVector <llvm::Value*, 5> &kernelMDArgs, 316 CGBuilderTy& Builder, ASTContext &ASTCtx) { 317 // Create MDNodes that represent the kernel arg metadata. 318 // Each MDNode is a list in the form of "key", N number of values which is 319 // the same number of values as their are kernel arguments. 320 321 // MDNode for the kernel argument address space qualifiers. 322 SmallVector<llvm::Value*, 8> addressQuals; 323 addressQuals.push_back(llvm::MDString::get(Context, "kernel_arg_addr_space")); 324 325 // MDNode for the kernel argument access qualifiers (images only). 326 SmallVector<llvm::Value*, 8> accessQuals; 327 accessQuals.push_back(llvm::MDString::get(Context, "kernel_arg_access_qual")); 328 329 // MDNode for the kernel argument type names. 330 SmallVector<llvm::Value*, 8> argTypeNames; 331 argTypeNames.push_back(llvm::MDString::get(Context, "kernel_arg_type")); 332 333 // MDNode for the kernel argument type qualifiers. 334 SmallVector<llvm::Value*, 8> argTypeQuals; 335 argTypeQuals.push_back(llvm::MDString::get(Context, "kernel_arg_type_qual")); 336 337 // MDNode for the kernel argument names. 338 SmallVector<llvm::Value*, 8> argNames; 339 argNames.push_back(llvm::MDString::get(Context, "kernel_arg_name")); 340 341 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 342 const ParmVarDecl *parm = FD->getParamDecl(i); 343 QualType ty = parm->getType(); 344 std::string typeQuals; 345 346 if (ty->isPointerType()) { 347 QualType pointeeTy = ty->getPointeeType(); 348 349 // Get address qualifier. 350 addressQuals.push_back(Builder.getInt32(ASTCtx.getTargetAddressSpace( 351 pointeeTy.getAddressSpace()))); 352 353 // Get argument type name. 354 std::string typeName = pointeeTy.getUnqualifiedType().getAsString() + "*"; 355 356 // Turn "unsigned type" to "utype" 357 std::string::size_type pos = typeName.find("unsigned"); 358 if (pos != std::string::npos) 359 typeName.erase(pos+1, 8); 360 361 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 362 363 // Get argument type qualifiers: 364 if (ty.isRestrictQualified()) 365 typeQuals = "restrict"; 366 if (pointeeTy.isConstQualified() || 367 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 368 typeQuals += typeQuals.empty() ? "const" : " const"; 369 if (pointeeTy.isVolatileQualified()) 370 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 371 } else { 372 addressQuals.push_back(Builder.getInt32(0)); 373 374 // Get argument type name. 375 std::string typeName = ty.getUnqualifiedType().getAsString(); 376 377 // Turn "unsigned type" to "utype" 378 std::string::size_type pos = typeName.find("unsigned"); 379 if (pos != std::string::npos) 380 typeName.erase(pos+1, 8); 381 382 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 383 384 // Get argument type qualifiers: 385 if (ty.isConstQualified()) 386 typeQuals = "const"; 387 if (ty.isVolatileQualified()) 388 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 389 } 390 391 argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals)); 392 393 // Get image access qualifier: 394 if (ty->isImageType()) { 395 if (parm->hasAttr<OpenCLImageAccessAttr>() && 396 parm->getAttr<OpenCLImageAccessAttr>()->getAccess() == CLIA_write_only) 397 accessQuals.push_back(llvm::MDString::get(Context, "write_only")); 398 else 399 accessQuals.push_back(llvm::MDString::get(Context, "read_only")); 400 } else 401 accessQuals.push_back(llvm::MDString::get(Context, "none")); 402 403 // Get argument name. 404 argNames.push_back(llvm::MDString::get(Context, parm->getName())); 405 } 406 407 kernelMDArgs.push_back(llvm::MDNode::get(Context, addressQuals)); 408 kernelMDArgs.push_back(llvm::MDNode::get(Context, accessQuals)); 409 kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeNames)); 410 kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeQuals)); 411 kernelMDArgs.push_back(llvm::MDNode::get(Context, argNames)); 412 } 413 414 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 415 llvm::Function *Fn) 416 { 417 if (!FD->hasAttr<OpenCLKernelAttr>()) 418 return; 419 420 llvm::LLVMContext &Context = getLLVMContext(); 421 422 SmallVector <llvm::Value*, 5> kernelMDArgs; 423 kernelMDArgs.push_back(Fn); 424 425 if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 426 GenOpenCLArgMetadata(FD, Fn, CGM, Context, kernelMDArgs, 427 Builder, getContext()); 428 429 if (FD->hasAttr<VecTypeHintAttr>()) { 430 VecTypeHintAttr *attr = FD->getAttr<VecTypeHintAttr>(); 431 QualType hintQTy = attr->getTypeHint(); 432 const ExtVectorType *hintEltQTy = hintQTy->getAs<ExtVectorType>(); 433 bool isSignedInteger = 434 hintQTy->isSignedIntegerType() || 435 (hintEltQTy && hintEltQTy->getElementType()->isSignedIntegerType()); 436 llvm::Value *attrMDArgs[] = { 437 llvm::MDString::get(Context, "vec_type_hint"), 438 llvm::UndefValue::get(CGM.getTypes().ConvertType(attr->getTypeHint())), 439 llvm::ConstantInt::get( 440 llvm::IntegerType::get(Context, 32), 441 llvm::APInt(32, (uint64_t)(isSignedInteger ? 1 : 0))) 442 }; 443 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 444 } 445 446 if (FD->hasAttr<WorkGroupSizeHintAttr>()) { 447 WorkGroupSizeHintAttr *attr = FD->getAttr<WorkGroupSizeHintAttr>(); 448 llvm::Value *attrMDArgs[] = { 449 llvm::MDString::get(Context, "work_group_size_hint"), 450 Builder.getInt32(attr->getXDim()), 451 Builder.getInt32(attr->getYDim()), 452 Builder.getInt32(attr->getZDim()) 453 }; 454 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 455 } 456 457 if (FD->hasAttr<ReqdWorkGroupSizeAttr>()) { 458 ReqdWorkGroupSizeAttr *attr = FD->getAttr<ReqdWorkGroupSizeAttr>(); 459 llvm::Value *attrMDArgs[] = { 460 llvm::MDString::get(Context, "reqd_work_group_size"), 461 Builder.getInt32(attr->getXDim()), 462 Builder.getInt32(attr->getYDim()), 463 Builder.getInt32(attr->getZDim()) 464 }; 465 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 466 } 467 468 llvm::MDNode *kernelMDNode = llvm::MDNode::get(Context, kernelMDArgs); 469 llvm::NamedMDNode *OpenCLKernelMetadata = 470 CGM.getModule().getOrInsertNamedMetadata("opencl.kernels"); 471 OpenCLKernelMetadata->addOperand(kernelMDNode); 472 } 473 474 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy, 475 llvm::Function *Fn, 476 const CGFunctionInfo &FnInfo, 477 const FunctionArgList &Args, 478 SourceLocation StartLoc) { 479 const Decl *D = GD.getDecl(); 480 481 DidCallStackSave = false; 482 CurCodeDecl = CurFuncDecl = D; 483 FnRetTy = RetTy; 484 CurFn = Fn; 485 CurFnInfo = &FnInfo; 486 assert(CurFn->isDeclaration() && "Function already has body?"); 487 488 if (CGM.getSanitizerBlacklist().isIn(*Fn)) { 489 SanOpts = &SanitizerOptions::Disabled; 490 SanitizePerformTypeCheck = false; 491 } 492 493 // Pass inline keyword to optimizer if it appears explicitly on any 494 // declaration. 495 if (!CGM.getCodeGenOpts().NoInline) 496 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 497 for (FunctionDecl::redecl_iterator RI = FD->redecls_begin(), 498 RE = FD->redecls_end(); RI != RE; ++RI) 499 if (RI->isInlineSpecified()) { 500 Fn->addFnAttr(llvm::Attribute::InlineHint); 501 break; 502 } 503 504 if (getLangOpts().OpenCL) { 505 // Add metadata for a kernel function. 506 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 507 EmitOpenCLKernelMetadata(FD, Fn); 508 } 509 510 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 511 512 // Create a marker to make it easy to insert allocas into the entryblock 513 // later. Don't create this with the builder, because we don't want it 514 // folded. 515 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 516 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB); 517 if (Builder.isNamePreserving()) 518 AllocaInsertPt->setName("allocapt"); 519 520 ReturnBlock = getJumpDestInCurrentScope("return"); 521 522 Builder.SetInsertPoint(EntryBB); 523 524 // Emit subprogram debug descriptor. 525 if (CGDebugInfo *DI = getDebugInfo()) { 526 SmallVector<QualType, 16> ArgTypes; 527 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 528 i != e; ++i) { 529 ArgTypes.push_back((*i)->getType()); 530 } 531 532 QualType FnType = 533 getContext().getFunctionType(RetTy, ArgTypes, 534 FunctionProtoType::ExtProtoInfo()); 535 536 DI->setLocation(StartLoc); 537 DI->EmitFunctionStart(GD, FnType, CurFn, Builder); 538 } 539 540 if (ShouldInstrumentFunction()) 541 EmitFunctionInstrumentation("__cyg_profile_func_enter"); 542 543 if (CGM.getCodeGenOpts().InstrumentForProfiling) 544 EmitMCountInstrumentation(); 545 546 if (RetTy->isVoidType()) { 547 // Void type; nothing to return. 548 ReturnValue = 0; 549 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect && 550 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 551 // Indirect aggregate return; emit returned value directly into sret slot. 552 // This reduces code size, and affects correctness in C++. 553 ReturnValue = CurFn->arg_begin(); 554 } else { 555 ReturnValue = CreateIRTemp(RetTy, "retval"); 556 557 // Tell the epilog emitter to autorelease the result. We do this 558 // now so that various specialized functions can suppress it 559 // during their IR-generation. 560 if (getLangOpts().ObjCAutoRefCount && 561 !CurFnInfo->isReturnsRetained() && 562 RetTy->isObjCRetainableType()) 563 AutoreleaseResult = true; 564 } 565 566 EmitStartEHSpec(CurCodeDecl); 567 568 PrologueCleanupDepth = EHStack.stable_begin(); 569 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 570 571 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 572 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 573 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 574 if (MD->getParent()->isLambda() && 575 MD->getOverloadedOperator() == OO_Call) { 576 // We're in a lambda; figure out the captures. 577 MD->getParent()->getCaptureFields(LambdaCaptureFields, 578 LambdaThisCaptureField); 579 if (LambdaThisCaptureField) { 580 // If this lambda captures this, load it. 581 QualType LambdaTagType = 582 getContext().getTagDeclType(LambdaThisCaptureField->getParent()); 583 LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, 584 LambdaTagType); 585 LValue ThisLValue = EmitLValueForField(LambdaLV, 586 LambdaThisCaptureField); 587 CXXThisValue = EmitLoadOfLValue(ThisLValue).getScalarVal(); 588 } 589 } else { 590 // Not in a lambda; just use 'this' from the method. 591 // FIXME: Should we generate a new load for each use of 'this'? The 592 // fast register allocator would be happier... 593 CXXThisValue = CXXABIThisValue; 594 } 595 } 596 597 // If any of the arguments have a variably modified type, make sure to 598 // emit the type size. 599 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 600 i != e; ++i) { 601 const VarDecl *VD = *i; 602 603 // Dig out the type as written from ParmVarDecls; it's unclear whether 604 // the standard (C99 6.9.1p10) requires this, but we're following the 605 // precedent set by gcc. 606 QualType Ty; 607 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 608 Ty = PVD->getOriginalType(); 609 else 610 Ty = VD->getType(); 611 612 if (Ty->isVariablyModifiedType()) 613 EmitVariablyModifiedType(Ty); 614 } 615 // Emit a location at the end of the prologue. 616 if (CGDebugInfo *DI = getDebugInfo()) 617 DI->EmitLocation(Builder, StartLoc); 618 } 619 620 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args) { 621 const FunctionDecl *FD = cast<FunctionDecl>(CurGD.getDecl()); 622 assert(FD->getBody()); 623 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(FD->getBody())) 624 EmitCompoundStmtWithoutScope(*S); 625 else 626 EmitStmt(FD->getBody()); 627 } 628 629 /// Tries to mark the given function nounwind based on the 630 /// non-existence of any throwing calls within it. We believe this is 631 /// lightweight enough to do at -O0. 632 static void TryMarkNoThrow(llvm::Function *F) { 633 // LLVM treats 'nounwind' on a function as part of the type, so we 634 // can't do this on functions that can be overwritten. 635 if (F->mayBeOverridden()) return; 636 637 for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI) 638 for (llvm::BasicBlock::iterator 639 BI = FI->begin(), BE = FI->end(); BI != BE; ++BI) 640 if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI)) { 641 if (!Call->doesNotThrow()) 642 return; 643 } else if (isa<llvm::ResumeInst>(&*BI)) { 644 return; 645 } 646 F->setDoesNotThrow(); 647 } 648 649 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 650 const CGFunctionInfo &FnInfo) { 651 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 652 653 // Check if we should generate debug info for this function. 654 if (!FD->hasAttr<NoDebugAttr>()) 655 maybeInitializeDebugInfo(); 656 657 FunctionArgList Args; 658 QualType ResTy = FD->getResultType(); 659 660 CurGD = GD; 661 if (isa<CXXMethodDecl>(FD) && cast<CXXMethodDecl>(FD)->isInstance()) 662 CGM.getCXXABI().BuildInstanceFunctionParams(*this, ResTy, Args); 663 664 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) 665 Args.push_back(FD->getParamDecl(i)); 666 667 SourceRange BodyRange; 668 if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange(); 669 670 // CalleeWithThisReturn keeps track of the last callee inside this function 671 // that returns 'this'. Before starting the function, we set it to null. 672 CalleeWithThisReturn = 0; 673 674 // Emit the standard function prologue. 675 StartFunction(GD, ResTy, Fn, FnInfo, Args, BodyRange.getBegin()); 676 677 // Generate the body of the function. 678 if (isa<CXXDestructorDecl>(FD)) 679 EmitDestructorBody(Args); 680 else if (isa<CXXConstructorDecl>(FD)) 681 EmitConstructorBody(Args); 682 else if (getLangOpts().CUDA && 683 !CGM.getCodeGenOpts().CUDAIsDevice && 684 FD->hasAttr<CUDAGlobalAttr>()) 685 CGM.getCUDARuntime().EmitDeviceStubBody(*this, Args); 686 else if (isa<CXXConversionDecl>(FD) && 687 cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) { 688 // The lambda conversion to block pointer is special; the semantics can't be 689 // expressed in the AST, so IRGen needs to special-case it. 690 EmitLambdaToBlockPointerBody(Args); 691 } else if (isa<CXXMethodDecl>(FD) && 692 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 693 // The lambda "__invoke" function is special, because it forwards or 694 // clones the body of the function call operator (but is actually static). 695 EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD)); 696 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 697 cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator()) { 698 // Implicit copy-assignment gets the same special treatment as implicit 699 // copy-constructors. 700 emitImplicitAssignmentOperatorBody(Args); 701 } 702 else 703 EmitFunctionBody(Args); 704 705 // C++11 [stmt.return]p2: 706 // Flowing off the end of a function [...] results in undefined behavior in 707 // a value-returning function. 708 // C11 6.9.1p12: 709 // If the '}' that terminates a function is reached, and the value of the 710 // function call is used by the caller, the behavior is undefined. 711 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && 712 !FD->getResultType()->isVoidType() && Builder.GetInsertBlock()) { 713 if (SanOpts->Return) 714 EmitCheck(Builder.getFalse(), "missing_return", 715 EmitCheckSourceLocation(FD->getLocation()), 716 ArrayRef<llvm::Value *>(), CRK_Unrecoverable); 717 else if (CGM.getCodeGenOpts().OptimizationLevel == 0) 718 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::trap)); 719 Builder.CreateUnreachable(); 720 Builder.ClearInsertionPoint(); 721 } 722 723 // Emit the standard function epilogue. 724 FinishFunction(BodyRange.getEnd()); 725 // CalleeWithThisReturn keeps track of the last callee inside this function 726 // that returns 'this'. After finishing the function, we set it to null. 727 CalleeWithThisReturn = 0; 728 729 // If we haven't marked the function nothrow through other means, do 730 // a quick pass now to see if we can. 731 if (!CurFn->doesNotThrow()) 732 TryMarkNoThrow(CurFn); 733 } 734 735 /// ContainsLabel - Return true if the statement contains a label in it. If 736 /// this statement is not executed normally, it not containing a label means 737 /// that we can just remove the code. 738 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 739 // Null statement, not a label! 740 if (S == 0) return false; 741 742 // If this is a label, we have to emit the code, consider something like: 743 // if (0) { ... foo: bar(); } goto foo; 744 // 745 // TODO: If anyone cared, we could track __label__'s, since we know that you 746 // can't jump to one from outside their declared region. 747 if (isa<LabelStmt>(S)) 748 return true; 749 750 // If this is a case/default statement, and we haven't seen a switch, we have 751 // to emit the code. 752 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 753 return true; 754 755 // If this is a switch statement, we want to ignore cases below it. 756 if (isa<SwitchStmt>(S)) 757 IgnoreCaseStmts = true; 758 759 // Scan subexpressions for verboten labels. 760 for (Stmt::const_child_range I = S->children(); I; ++I) 761 if (ContainsLabel(*I, IgnoreCaseStmts)) 762 return true; 763 764 return false; 765 } 766 767 /// containsBreak - Return true if the statement contains a break out of it. 768 /// If the statement (recursively) contains a switch or loop with a break 769 /// inside of it, this is fine. 770 bool CodeGenFunction::containsBreak(const Stmt *S) { 771 // Null statement, not a label! 772 if (S == 0) return false; 773 774 // If this is a switch or loop that defines its own break scope, then we can 775 // include it and anything inside of it. 776 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 777 isa<ForStmt>(S)) 778 return false; 779 780 if (isa<BreakStmt>(S)) 781 return true; 782 783 // Scan subexpressions for verboten breaks. 784 for (Stmt::const_child_range I = S->children(); I; ++I) 785 if (containsBreak(*I)) 786 return true; 787 788 return false; 789 } 790 791 792 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 793 /// to a constant, or if it does but contains a label, return false. If it 794 /// constant folds return true and set the boolean result in Result. 795 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 796 bool &ResultBool) { 797 llvm::APSInt ResultInt; 798 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt)) 799 return false; 800 801 ResultBool = ResultInt.getBoolValue(); 802 return true; 803 } 804 805 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 806 /// to a constant, or if it does but contains a label, return false. If it 807 /// constant folds return true and set the folded value. 808 bool CodeGenFunction:: 809 ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &ResultInt) { 810 // FIXME: Rename and handle conversion of other evaluatable things 811 // to bool. 812 llvm::APSInt Int; 813 if (!Cond->EvaluateAsInt(Int, getContext())) 814 return false; // Not foldable, not integer or not fully evaluatable. 815 816 if (CodeGenFunction::ContainsLabel(Cond)) 817 return false; // Contains a label. 818 819 ResultInt = Int; 820 return true; 821 } 822 823 824 825 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 826 /// statement) to the specified blocks. Based on the condition, this might try 827 /// to simplify the codegen of the conditional based on the branch. 828 /// 829 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 830 llvm::BasicBlock *TrueBlock, 831 llvm::BasicBlock *FalseBlock) { 832 Cond = Cond->IgnoreParens(); 833 834 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 835 // Handle X && Y in a condition. 836 if (CondBOp->getOpcode() == BO_LAnd) { 837 // If we have "1 && X", simplify the code. "0 && X" would have constant 838 // folded if the case was simple enough. 839 bool ConstantBool = false; 840 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 841 ConstantBool) { 842 // br(1 && X) -> br(X). 843 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 844 } 845 846 // If we have "X && 1", simplify the code to use an uncond branch. 847 // "X && 0" would have been constant folded to 0. 848 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 849 ConstantBool) { 850 // br(X && 1) -> br(X). 851 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock); 852 } 853 854 // Emit the LHS as a conditional. If the LHS conditional is false, we 855 // want to jump to the FalseBlock. 856 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 857 858 ConditionalEvaluation eval(*this); 859 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock); 860 EmitBlock(LHSTrue); 861 862 // Any temporaries created here are conditional. 863 eval.begin(*this); 864 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 865 eval.end(*this); 866 867 return; 868 } 869 870 if (CondBOp->getOpcode() == BO_LOr) { 871 // If we have "0 || X", simplify the code. "1 || X" would have constant 872 // folded if the case was simple enough. 873 bool ConstantBool = false; 874 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 875 !ConstantBool) { 876 // br(0 || X) -> br(X). 877 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 878 } 879 880 // If we have "X || 0", simplify the code to use an uncond branch. 881 // "X || 1" would have been constant folded to 1. 882 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 883 !ConstantBool) { 884 // br(X || 0) -> br(X). 885 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock); 886 } 887 888 // Emit the LHS as a conditional. If the LHS conditional is true, we 889 // want to jump to the TrueBlock. 890 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 891 892 ConditionalEvaluation eval(*this); 893 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse); 894 EmitBlock(LHSFalse); 895 896 // Any temporaries created here are conditional. 897 eval.begin(*this); 898 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 899 eval.end(*this); 900 901 return; 902 } 903 } 904 905 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 906 // br(!x, t, f) -> br(x, f, t) 907 if (CondUOp->getOpcode() == UO_LNot) 908 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock); 909 } 910 911 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 912 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 913 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 914 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 915 916 ConditionalEvaluation cond(*this); 917 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock); 918 919 cond.begin(*this); 920 EmitBlock(LHSBlock); 921 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock); 922 cond.end(*this); 923 924 cond.begin(*this); 925 EmitBlock(RHSBlock); 926 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock); 927 cond.end(*this); 928 929 return; 930 } 931 932 // Emit the code with the fully general case. 933 llvm::Value *CondV = EvaluateExprAsBool(Cond); 934 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock); 935 } 936 937 /// ErrorUnsupported - Print out an error that codegen doesn't support the 938 /// specified stmt yet. 939 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type, 940 bool OmitOnError) { 941 CGM.ErrorUnsupported(S, Type, OmitOnError); 942 } 943 944 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 945 /// variable-length array whose elements have a non-zero bit-pattern. 946 /// 947 /// \param baseType the inner-most element type of the array 948 /// \param src - a char* pointing to the bit-pattern for a single 949 /// base element of the array 950 /// \param sizeInChars - the total size of the VLA, in chars 951 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 952 llvm::Value *dest, llvm::Value *src, 953 llvm::Value *sizeInChars) { 954 std::pair<CharUnits,CharUnits> baseSizeAndAlign 955 = CGF.getContext().getTypeInfoInChars(baseType); 956 957 CGBuilderTy &Builder = CGF.Builder; 958 959 llvm::Value *baseSizeInChars 960 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSizeAndAlign.first.getQuantity()); 961 962 llvm::Type *i8p = Builder.getInt8PtrTy(); 963 964 llvm::Value *begin = Builder.CreateBitCast(dest, i8p, "vla.begin"); 965 llvm::Value *end = Builder.CreateInBoundsGEP(dest, sizeInChars, "vla.end"); 966 967 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 968 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 969 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 970 971 // Make a loop over the VLA. C99 guarantees that the VLA element 972 // count must be nonzero. 973 CGF.EmitBlock(loopBB); 974 975 llvm::PHINode *cur = Builder.CreatePHI(i8p, 2, "vla.cur"); 976 cur->addIncoming(begin, originBB); 977 978 // memcpy the individual element bit-pattern. 979 Builder.CreateMemCpy(cur, src, baseSizeInChars, 980 baseSizeAndAlign.second.getQuantity(), 981 /*volatile*/ false); 982 983 // Go to the next element. 984 llvm::Value *next = Builder.CreateConstInBoundsGEP1_32(cur, 1, "vla.next"); 985 986 // Leave if that's the end of the VLA. 987 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 988 Builder.CreateCondBr(done, contBB, loopBB); 989 cur->addIncoming(next, loopBB); 990 991 CGF.EmitBlock(contBB); 992 } 993 994 void 995 CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) { 996 // Ignore empty classes in C++. 997 if (getLangOpts().CPlusPlus) { 998 if (const RecordType *RT = Ty->getAs<RecordType>()) { 999 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 1000 return; 1001 } 1002 } 1003 1004 // Cast the dest ptr to the appropriate i8 pointer type. 1005 unsigned DestAS = 1006 cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace(); 1007 llvm::Type *BP = Builder.getInt8PtrTy(DestAS); 1008 if (DestPtr->getType() != BP) 1009 DestPtr = Builder.CreateBitCast(DestPtr, BP); 1010 1011 // Get size and alignment info for this aggregate. 1012 std::pair<CharUnits, CharUnits> TypeInfo = 1013 getContext().getTypeInfoInChars(Ty); 1014 CharUnits Size = TypeInfo.first; 1015 CharUnits Align = TypeInfo.second; 1016 1017 llvm::Value *SizeVal; 1018 const VariableArrayType *vla; 1019 1020 // Don't bother emitting a zero-byte memset. 1021 if (Size.isZero()) { 1022 // But note that getTypeInfo returns 0 for a VLA. 1023 if (const VariableArrayType *vlaType = 1024 dyn_cast_or_null<VariableArrayType>( 1025 getContext().getAsArrayType(Ty))) { 1026 QualType eltType; 1027 llvm::Value *numElts; 1028 llvm::tie(numElts, eltType) = getVLASize(vlaType); 1029 1030 SizeVal = numElts; 1031 CharUnits eltSize = getContext().getTypeSizeInChars(eltType); 1032 if (!eltSize.isOne()) 1033 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 1034 vla = vlaType; 1035 } else { 1036 return; 1037 } 1038 } else { 1039 SizeVal = CGM.getSize(Size); 1040 vla = 0; 1041 } 1042 1043 // If the type contains a pointer to data member we can't memset it to zero. 1044 // Instead, create a null constant and copy it to the destination. 1045 // TODO: there are other patterns besides zero that we can usefully memset, 1046 // like -1, which happens to be the pattern used by member-pointers. 1047 if (!CGM.getTypes().isZeroInitializable(Ty)) { 1048 // For a VLA, emit a single element, then splat that over the VLA. 1049 if (vla) Ty = getContext().getBaseElementType(vla); 1050 1051 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 1052 1053 llvm::GlobalVariable *NullVariable = 1054 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 1055 /*isConstant=*/true, 1056 llvm::GlobalVariable::PrivateLinkage, 1057 NullConstant, Twine()); 1058 llvm::Value *SrcPtr = 1059 Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()); 1060 1061 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 1062 1063 // Get and call the appropriate llvm.memcpy overload. 1064 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity(), false); 1065 return; 1066 } 1067 1068 // Otherwise, just memset the whole thing to zero. This is legal 1069 // because in LLVM, all default initializers (other than the ones we just 1070 // handled above) are guaranteed to have a bit pattern of all zeros. 1071 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, 1072 Align.getQuantity(), false); 1073 } 1074 1075 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 1076 // Make sure that there is a block for the indirect goto. 1077 if (IndirectBranch == 0) 1078 GetIndirectGotoBlock(); 1079 1080 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 1081 1082 // Make sure the indirect branch includes all of the address-taken blocks. 1083 IndirectBranch->addDestination(BB); 1084 return llvm::BlockAddress::get(CurFn, BB); 1085 } 1086 1087 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 1088 // If we already made the indirect branch for indirect goto, return its block. 1089 if (IndirectBranch) return IndirectBranch->getParent(); 1090 1091 CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto")); 1092 1093 // Create the PHI node that indirect gotos will add entries to. 1094 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 1095 "indirect.goto.dest"); 1096 1097 // Create the indirect branch instruction. 1098 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 1099 return IndirectBranch->getParent(); 1100 } 1101 1102 /// Computes the length of an array in elements, as well as the base 1103 /// element type and a properly-typed first element pointer. 1104 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 1105 QualType &baseType, 1106 llvm::Value *&addr) { 1107 const ArrayType *arrayType = origArrayType; 1108 1109 // If it's a VLA, we have to load the stored size. Note that 1110 // this is the size of the VLA in bytes, not its size in elements. 1111 llvm::Value *numVLAElements = 0; 1112 if (isa<VariableArrayType>(arrayType)) { 1113 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first; 1114 1115 // Walk into all VLAs. This doesn't require changes to addr, 1116 // which has type T* where T is the first non-VLA element type. 1117 do { 1118 QualType elementType = arrayType->getElementType(); 1119 arrayType = getContext().getAsArrayType(elementType); 1120 1121 // If we only have VLA components, 'addr' requires no adjustment. 1122 if (!arrayType) { 1123 baseType = elementType; 1124 return numVLAElements; 1125 } 1126 } while (isa<VariableArrayType>(arrayType)); 1127 1128 // We get out here only if we find a constant array type 1129 // inside the VLA. 1130 } 1131 1132 // We have some number of constant-length arrays, so addr should 1133 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 1134 // down to the first element of addr. 1135 SmallVector<llvm::Value*, 8> gepIndices; 1136 1137 // GEP down to the array type. 1138 llvm::ConstantInt *zero = Builder.getInt32(0); 1139 gepIndices.push_back(zero); 1140 1141 uint64_t countFromCLAs = 1; 1142 QualType eltType; 1143 1144 llvm::ArrayType *llvmArrayType = 1145 dyn_cast<llvm::ArrayType>( 1146 cast<llvm::PointerType>(addr->getType())->getElementType()); 1147 while (llvmArrayType) { 1148 assert(isa<ConstantArrayType>(arrayType)); 1149 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 1150 == llvmArrayType->getNumElements()); 1151 1152 gepIndices.push_back(zero); 1153 countFromCLAs *= llvmArrayType->getNumElements(); 1154 eltType = arrayType->getElementType(); 1155 1156 llvmArrayType = 1157 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 1158 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 1159 assert((!llvmArrayType || arrayType) && 1160 "LLVM and Clang types are out-of-synch"); 1161 } 1162 1163 if (arrayType) { 1164 // From this point onwards, the Clang array type has been emitted 1165 // as some other type (probably a packed struct). Compute the array 1166 // size, and just emit the 'begin' expression as a bitcast. 1167 while (arrayType) { 1168 countFromCLAs *= 1169 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 1170 eltType = arrayType->getElementType(); 1171 arrayType = getContext().getAsArrayType(eltType); 1172 } 1173 1174 unsigned AddressSpace = addr->getType()->getPointerAddressSpace(); 1175 llvm::Type *BaseType = ConvertType(eltType)->getPointerTo(AddressSpace); 1176 addr = Builder.CreateBitCast(addr, BaseType, "array.begin"); 1177 } else { 1178 // Create the actual GEP. 1179 addr = Builder.CreateInBoundsGEP(addr, gepIndices, "array.begin"); 1180 } 1181 1182 baseType = eltType; 1183 1184 llvm::Value *numElements 1185 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 1186 1187 // If we had any VLA dimensions, factor them in. 1188 if (numVLAElements) 1189 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 1190 1191 return numElements; 1192 } 1193 1194 std::pair<llvm::Value*, QualType> 1195 CodeGenFunction::getVLASize(QualType type) { 1196 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1197 assert(vla && "type was not a variable array type!"); 1198 return getVLASize(vla); 1199 } 1200 1201 std::pair<llvm::Value*, QualType> 1202 CodeGenFunction::getVLASize(const VariableArrayType *type) { 1203 // The number of elements so far; always size_t. 1204 llvm::Value *numElements = 0; 1205 1206 QualType elementType; 1207 do { 1208 elementType = type->getElementType(); 1209 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 1210 assert(vlaSize && "no size for VLA!"); 1211 assert(vlaSize->getType() == SizeTy); 1212 1213 if (!numElements) { 1214 numElements = vlaSize; 1215 } else { 1216 // It's undefined behavior if this wraps around, so mark it that way. 1217 // FIXME: Teach -fcatch-undefined-behavior to trap this. 1218 numElements = Builder.CreateNUWMul(numElements, vlaSize); 1219 } 1220 } while ((type = getContext().getAsVariableArrayType(elementType))); 1221 1222 return std::pair<llvm::Value*,QualType>(numElements, elementType); 1223 } 1224 1225 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 1226 assert(type->isVariablyModifiedType() && 1227 "Must pass variably modified type to EmitVLASizes!"); 1228 1229 EnsureInsertPoint(); 1230 1231 // We're going to walk down into the type and look for VLA 1232 // expressions. 1233 do { 1234 assert(type->isVariablyModifiedType()); 1235 1236 const Type *ty = type.getTypePtr(); 1237 switch (ty->getTypeClass()) { 1238 1239 #define TYPE(Class, Base) 1240 #define ABSTRACT_TYPE(Class, Base) 1241 #define NON_CANONICAL_TYPE(Class, Base) 1242 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 1243 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 1244 #include "clang/AST/TypeNodes.def" 1245 llvm_unreachable("unexpected dependent type!"); 1246 1247 // These types are never variably-modified. 1248 case Type::Builtin: 1249 case Type::Complex: 1250 case Type::Vector: 1251 case Type::ExtVector: 1252 case Type::Record: 1253 case Type::Enum: 1254 case Type::Elaborated: 1255 case Type::TemplateSpecialization: 1256 case Type::ObjCObject: 1257 case Type::ObjCInterface: 1258 case Type::ObjCObjectPointer: 1259 llvm_unreachable("type class is never variably-modified!"); 1260 1261 case Type::Pointer: 1262 type = cast<PointerType>(ty)->getPointeeType(); 1263 break; 1264 1265 case Type::BlockPointer: 1266 type = cast<BlockPointerType>(ty)->getPointeeType(); 1267 break; 1268 1269 case Type::LValueReference: 1270 case Type::RValueReference: 1271 type = cast<ReferenceType>(ty)->getPointeeType(); 1272 break; 1273 1274 case Type::MemberPointer: 1275 type = cast<MemberPointerType>(ty)->getPointeeType(); 1276 break; 1277 1278 case Type::ConstantArray: 1279 case Type::IncompleteArray: 1280 // Losing element qualification here is fine. 1281 type = cast<ArrayType>(ty)->getElementType(); 1282 break; 1283 1284 case Type::VariableArray: { 1285 // Losing element qualification here is fine. 1286 const VariableArrayType *vat = cast<VariableArrayType>(ty); 1287 1288 // Unknown size indication requires no size computation. 1289 // Otherwise, evaluate and record it. 1290 if (const Expr *size = vat->getSizeExpr()) { 1291 // It's possible that we might have emitted this already, 1292 // e.g. with a typedef and a pointer to it. 1293 llvm::Value *&entry = VLASizeMap[size]; 1294 if (!entry) { 1295 llvm::Value *Size = EmitScalarExpr(size); 1296 1297 // C11 6.7.6.2p5: 1298 // If the size is an expression that is not an integer constant 1299 // expression [...] each time it is evaluated it shall have a value 1300 // greater than zero. 1301 if (SanOpts->VLABound && 1302 size->getType()->isSignedIntegerType()) { 1303 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); 1304 llvm::Constant *StaticArgs[] = { 1305 EmitCheckSourceLocation(size->getLocStart()), 1306 EmitCheckTypeDescriptor(size->getType()) 1307 }; 1308 EmitCheck(Builder.CreateICmpSGT(Size, Zero), 1309 "vla_bound_not_positive", StaticArgs, Size, 1310 CRK_Recoverable); 1311 } 1312 1313 // Always zexting here would be wrong if it weren't 1314 // undefined behavior to have a negative bound. 1315 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); 1316 } 1317 } 1318 type = vat->getElementType(); 1319 break; 1320 } 1321 1322 case Type::FunctionProto: 1323 case Type::FunctionNoProto: 1324 type = cast<FunctionType>(ty)->getResultType(); 1325 break; 1326 1327 case Type::Paren: 1328 case Type::TypeOf: 1329 case Type::UnaryTransform: 1330 case Type::Attributed: 1331 case Type::SubstTemplateTypeParm: 1332 // Keep walking after single level desugaring. 1333 type = type.getSingleStepDesugaredType(getContext()); 1334 break; 1335 1336 case Type::Typedef: 1337 case Type::Decltype: 1338 case Type::Auto: 1339 // Stop walking: nothing to do. 1340 return; 1341 1342 case Type::TypeOfExpr: 1343 // Stop walking: emit typeof expression. 1344 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 1345 return; 1346 1347 case Type::Atomic: 1348 type = cast<AtomicType>(ty)->getValueType(); 1349 break; 1350 } 1351 } while (type->isVariablyModifiedType()); 1352 } 1353 1354 llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) { 1355 if (getContext().getBuiltinVaListType()->isArrayType()) 1356 return EmitScalarExpr(E); 1357 return EmitLValue(E).getAddress(); 1358 } 1359 1360 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 1361 llvm::Constant *Init) { 1362 assert (Init && "Invalid DeclRefExpr initializer!"); 1363 if (CGDebugInfo *Dbg = getDebugInfo()) 1364 if (CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 1365 Dbg->EmitGlobalVariable(E->getDecl(), Init); 1366 } 1367 1368 CodeGenFunction::PeepholeProtection 1369 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 1370 // At the moment, the only aggressive peephole we do in IR gen 1371 // is trunc(zext) folding, but if we add more, we can easily 1372 // extend this protection. 1373 1374 if (!rvalue.isScalar()) return PeepholeProtection(); 1375 llvm::Value *value = rvalue.getScalarVal(); 1376 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 1377 1378 // Just make an extra bitcast. 1379 assert(HaveInsertPoint()); 1380 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 1381 Builder.GetInsertBlock()); 1382 1383 PeepholeProtection protection; 1384 protection.Inst = inst; 1385 return protection; 1386 } 1387 1388 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 1389 if (!protection.Inst) return; 1390 1391 // In theory, we could try to duplicate the peepholes now, but whatever. 1392 protection.Inst->eraseFromParent(); 1393 } 1394 1395 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn, 1396 llvm::Value *AnnotatedVal, 1397 StringRef AnnotationStr, 1398 SourceLocation Location) { 1399 llvm::Value *Args[4] = { 1400 AnnotatedVal, 1401 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 1402 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 1403 CGM.EmitAnnotationLineNo(Location) 1404 }; 1405 return Builder.CreateCall(AnnotationFn, Args); 1406 } 1407 1408 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 1409 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1410 // FIXME We create a new bitcast for every annotation because that's what 1411 // llvm-gcc was doing. 1412 for (specific_attr_iterator<AnnotateAttr> 1413 ai = D->specific_attr_begin<AnnotateAttr>(), 1414 ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) 1415 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 1416 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 1417 (*ai)->getAnnotation(), D->getLocation()); 1418 } 1419 1420 llvm::Value *CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 1421 llvm::Value *V) { 1422 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1423 llvm::Type *VTy = V->getType(); 1424 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 1425 CGM.Int8PtrTy); 1426 1427 for (specific_attr_iterator<AnnotateAttr> 1428 ai = D->specific_attr_begin<AnnotateAttr>(), 1429 ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) { 1430 // FIXME Always emit the cast inst so we can differentiate between 1431 // annotation on the first field of a struct and annotation on the struct 1432 // itself. 1433 if (VTy != CGM.Int8PtrTy) 1434 V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy)); 1435 V = EmitAnnotationCall(F, V, (*ai)->getAnnotation(), D->getLocation()); 1436 V = Builder.CreateBitCast(V, VTy); 1437 } 1438 1439 return V; 1440 } 1441