xref: /llvm-project/clang/lib/CodeGen/CodeGenFunction.cpp (revision 355efbb2e044126adecdcadca87c8cdfb5c33a85)
1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-function state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CodeGenModule.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGDebugInfo.h"
19 #include "clang/Basic/TargetInfo.h"
20 #include "clang/AST/ASTContext.h"
21 #include "clang/AST/Decl.h"
22 #include "clang/AST/DeclCXX.h"
23 #include "clang/AST/StmtCXX.h"
24 #include "clang/Frontend/CodeGenOptions.h"
25 #include "llvm/Target/TargetData.h"
26 #include "llvm/Intrinsics.h"
27 using namespace clang;
28 using namespace CodeGen;
29 
30 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm)
31   : CodeGenTypeCache(cgm), CGM(cgm),
32     Target(CGM.getContext().getTargetInfo()),
33     Builder(cgm.getModule().getContext()),
34     AutoreleaseResult(false), BlockInfo(0), BlockPointer(0),
35     LambdaThisCaptureField(0), NormalCleanupDest(0), NextCleanupDestIndex(1),
36     FirstBlockInfo(0), EHResumeBlock(0), ExceptionSlot(0), EHSelectorSlot(0),
37     DebugInfo(0), DisableDebugInfo(false), DidCallStackSave(false),
38     IndirectBranch(0), SwitchInsn(0), CaseRangeBlock(0), UnreachableBlock(0),
39     CXXABIThisDecl(0), CXXABIThisValue(0), CXXThisValue(0), CXXVTTDecl(0),
40     CXXVTTValue(0), OutermostConditional(0), TerminateLandingPad(0),
41     TerminateHandler(0), TrapBB(0) {
42 
43   CatchUndefined = getContext().getLangOptions().CatchUndefined;
44   CGM.getCXXABI().getMangleContext().startNewFunction();
45 }
46 
47 CodeGenFunction::~CodeGenFunction() {
48   // If there are any unclaimed block infos, go ahead and destroy them
49   // now.  This can happen if IR-gen gets clever and skips evaluating
50   // something.
51   if (FirstBlockInfo)
52     destroyBlockInfos(FirstBlockInfo);
53 }
54 
55 
56 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
57   return CGM.getTypes().ConvertTypeForMem(T);
58 }
59 
60 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
61   return CGM.getTypes().ConvertType(T);
62 }
63 
64 bool CodeGenFunction::hasAggregateLLVMType(QualType type) {
65   switch (type.getCanonicalType()->getTypeClass()) {
66 #define TYPE(name, parent)
67 #define ABSTRACT_TYPE(name, parent)
68 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
69 #define DEPENDENT_TYPE(name, parent) case Type::name:
70 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
71 #include "clang/AST/TypeNodes.def"
72     llvm_unreachable("non-canonical or dependent type in IR-generation");
73 
74   case Type::Builtin:
75   case Type::Pointer:
76   case Type::BlockPointer:
77   case Type::LValueReference:
78   case Type::RValueReference:
79   case Type::MemberPointer:
80   case Type::Vector:
81   case Type::ExtVector:
82   case Type::FunctionProto:
83   case Type::FunctionNoProto:
84   case Type::Enum:
85   case Type::ObjCObjectPointer:
86     return false;
87 
88   // Complexes, arrays, records, and Objective-C objects.
89   case Type::Complex:
90   case Type::ConstantArray:
91   case Type::IncompleteArray:
92   case Type::VariableArray:
93   case Type::Record:
94   case Type::ObjCObject:
95   case Type::ObjCInterface:
96     return true;
97 
98   // In IRGen, atomic types are just the underlying type
99   case Type::Atomic:
100     return hasAggregateLLVMType(type->getAs<AtomicType>()->getValueType());
101   }
102   llvm_unreachable("unknown type kind!");
103 }
104 
105 void CodeGenFunction::EmitReturnBlock() {
106   // For cleanliness, we try to avoid emitting the return block for
107   // simple cases.
108   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
109 
110   if (CurBB) {
111     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
112 
113     // We have a valid insert point, reuse it if it is empty or there are no
114     // explicit jumps to the return block.
115     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
116       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
117       delete ReturnBlock.getBlock();
118     } else
119       EmitBlock(ReturnBlock.getBlock());
120     return;
121   }
122 
123   // Otherwise, if the return block is the target of a single direct
124   // branch then we can just put the code in that block instead. This
125   // cleans up functions which started with a unified return block.
126   if (ReturnBlock.getBlock()->hasOneUse()) {
127     llvm::BranchInst *BI =
128       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->use_begin());
129     if (BI && BI->isUnconditional() &&
130         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
131       // Reset insertion point, including debug location, and delete the branch.
132       Builder.SetCurrentDebugLocation(BI->getDebugLoc());
133       Builder.SetInsertPoint(BI->getParent());
134       BI->eraseFromParent();
135       delete ReturnBlock.getBlock();
136       return;
137     }
138   }
139 
140   // FIXME: We are at an unreachable point, there is no reason to emit the block
141   // unless it has uses. However, we still need a place to put the debug
142   // region.end for now.
143 
144   EmitBlock(ReturnBlock.getBlock());
145 }
146 
147 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
148   if (!BB) return;
149   if (!BB->use_empty())
150     return CGF.CurFn->getBasicBlockList().push_back(BB);
151   delete BB;
152 }
153 
154 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
155   assert(BreakContinueStack.empty() &&
156          "mismatched push/pop in break/continue stack!");
157 
158   // Pop any cleanups that might have been associated with the
159   // parameters.  Do this in whatever block we're currently in; it's
160   // important to do this before we enter the return block or return
161   // edges will be *really* confused.
162   if (EHStack.stable_begin() != PrologueCleanupDepth)
163     PopCleanupBlocks(PrologueCleanupDepth);
164 
165   // Emit function epilog (to return).
166   EmitReturnBlock();
167 
168   if (ShouldInstrumentFunction())
169     EmitFunctionInstrumentation("__cyg_profile_func_exit");
170 
171   // Emit debug descriptor for function end.
172   if (CGDebugInfo *DI = getDebugInfo()) {
173     DI->setLocation(EndLoc);
174     DI->EmitFunctionEnd(Builder);
175   }
176 
177   EmitFunctionEpilog(*CurFnInfo);
178   EmitEndEHSpec(CurCodeDecl);
179 
180   assert(EHStack.empty() &&
181          "did not remove all scopes from cleanup stack!");
182 
183   // If someone did an indirect goto, emit the indirect goto block at the end of
184   // the function.
185   if (IndirectBranch) {
186     EmitBlock(IndirectBranch->getParent());
187     Builder.ClearInsertionPoint();
188   }
189 
190   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
191   llvm::Instruction *Ptr = AllocaInsertPt;
192   AllocaInsertPt = 0;
193   Ptr->eraseFromParent();
194 
195   // If someone took the address of a label but never did an indirect goto, we
196   // made a zero entry PHI node, which is illegal, zap it now.
197   if (IndirectBranch) {
198     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
199     if (PN->getNumIncomingValues() == 0) {
200       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
201       PN->eraseFromParent();
202     }
203   }
204 
205   EmitIfUsed(*this, EHResumeBlock);
206   EmitIfUsed(*this, TerminateLandingPad);
207   EmitIfUsed(*this, TerminateHandler);
208   EmitIfUsed(*this, UnreachableBlock);
209 
210   if (CGM.getCodeGenOpts().EmitDeclMetadata)
211     EmitDeclMetadata();
212 }
213 
214 /// ShouldInstrumentFunction - Return true if the current function should be
215 /// instrumented with __cyg_profile_func_* calls
216 bool CodeGenFunction::ShouldInstrumentFunction() {
217   if (!CGM.getCodeGenOpts().InstrumentFunctions)
218     return false;
219   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
220     return false;
221   return true;
222 }
223 
224 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
225 /// instrumentation function with the current function and the call site, if
226 /// function instrumentation is enabled.
227 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) {
228   // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site);
229   llvm::PointerType *PointerTy = Int8PtrTy;
230   llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy };
231   llvm::FunctionType *FunctionTy =
232     llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false);
233 
234   llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn);
235   llvm::CallInst *CallSite = Builder.CreateCall(
236     CGM.getIntrinsic(llvm::Intrinsic::returnaddress),
237     llvm::ConstantInt::get(Int32Ty, 0),
238     "callsite");
239 
240   Builder.CreateCall2(F,
241                       llvm::ConstantExpr::getBitCast(CurFn, PointerTy),
242                       CallSite);
243 }
244 
245 void CodeGenFunction::EmitMCountInstrumentation() {
246   llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false);
247 
248   llvm::Constant *MCountFn = CGM.CreateRuntimeFunction(FTy,
249                                                        Target.getMCountName());
250   Builder.CreateCall(MCountFn);
251 }
252 
253 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy,
254                                     llvm::Function *Fn,
255                                     const CGFunctionInfo &FnInfo,
256                                     const FunctionArgList &Args,
257                                     SourceLocation StartLoc) {
258   const Decl *D = GD.getDecl();
259 
260   DidCallStackSave = false;
261   CurCodeDecl = CurFuncDecl = D;
262   FnRetTy = RetTy;
263   CurFn = Fn;
264   CurFnInfo = &FnInfo;
265   assert(CurFn->isDeclaration() && "Function already has body?");
266 
267   // Pass inline keyword to optimizer if it appears explicitly on any
268   // declaration.
269   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
270     for (FunctionDecl::redecl_iterator RI = FD->redecls_begin(),
271            RE = FD->redecls_end(); RI != RE; ++RI)
272       if (RI->isInlineSpecified()) {
273         Fn->addFnAttr(llvm::Attribute::InlineHint);
274         break;
275       }
276 
277   if (getContext().getLangOptions().OpenCL) {
278     // Add metadata for a kernel function.
279     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
280       if (FD->hasAttr<OpenCLKernelAttr>()) {
281         llvm::LLVMContext &Context = getLLVMContext();
282         llvm::NamedMDNode *OpenCLMetadata =
283           CGM.getModule().getOrInsertNamedMetadata("opencl.kernels");
284 
285         llvm::Value *Op = Fn;
286         OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Op));
287       }
288   }
289 
290   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
291 
292   // Create a marker to make it easy to insert allocas into the entryblock
293   // later.  Don't create this with the builder, because we don't want it
294   // folded.
295   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
296   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB);
297   if (Builder.isNamePreserving())
298     AllocaInsertPt->setName("allocapt");
299 
300   ReturnBlock = getJumpDestInCurrentScope("return");
301 
302   Builder.SetInsertPoint(EntryBB);
303 
304   // Emit subprogram debug descriptor.
305   if (CGDebugInfo *DI = getDebugInfo()) {
306     unsigned NumArgs = 0;
307     QualType *ArgsArray = new QualType[Args.size()];
308     for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
309 	 i != e; ++i) {
310       ArgsArray[NumArgs++] = (*i)->getType();
311     }
312 
313     QualType FnType =
314       getContext().getFunctionType(RetTy, ArgsArray, NumArgs,
315                                    FunctionProtoType::ExtProtoInfo());
316 
317     delete[] ArgsArray;
318 
319     DI->setLocation(StartLoc);
320     DI->EmitFunctionStart(GD, FnType, CurFn, Builder);
321   }
322 
323   if (ShouldInstrumentFunction())
324     EmitFunctionInstrumentation("__cyg_profile_func_enter");
325 
326   if (CGM.getCodeGenOpts().InstrumentForProfiling)
327     EmitMCountInstrumentation();
328 
329   if (RetTy->isVoidType()) {
330     // Void type; nothing to return.
331     ReturnValue = 0;
332   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
333              hasAggregateLLVMType(CurFnInfo->getReturnType())) {
334     // Indirect aggregate return; emit returned value directly into sret slot.
335     // This reduces code size, and affects correctness in C++.
336     ReturnValue = CurFn->arg_begin();
337   } else {
338     ReturnValue = CreateIRTemp(RetTy, "retval");
339 
340     // Tell the epilog emitter to autorelease the result.  We do this
341     // now so that various specialized functions can suppress it
342     // during their IR-generation.
343     if (getLangOptions().ObjCAutoRefCount &&
344         !CurFnInfo->isReturnsRetained() &&
345         RetTy->isObjCRetainableType())
346       AutoreleaseResult = true;
347   }
348 
349   EmitStartEHSpec(CurCodeDecl);
350 
351   PrologueCleanupDepth = EHStack.stable_begin();
352   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
353 
354   if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
355     CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
356     const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
357     if (MD->getParent()->isLambda() &&
358         MD->getOverloadedOperator() == OO_Call) {
359       // We're in a lambda; figure out the captures.
360       MD->getParent()->getCaptureFields(LambdaCaptureFields,
361                                         LambdaThisCaptureField);
362       if (LambdaThisCaptureField) {
363         // If this lambda captures this, load it.
364         LValue ThisLValue = EmitLValueForField(CXXABIThisValue,
365                                                LambdaThisCaptureField, 0);
366         CXXThisValue = EmitLoadOfLValue(ThisLValue).getScalarVal();
367       }
368     } else {
369       // Not in a lambda; just use 'this' from the method.
370       // FIXME: Should we generate a new load for each use of 'this'?  The
371       // fast register allocator would be happier...
372       CXXThisValue = CXXABIThisValue;
373     }
374   }
375 
376   // If any of the arguments have a variably modified type, make sure to
377   // emit the type size.
378   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
379        i != e; ++i) {
380     QualType Ty = (*i)->getType();
381 
382     if (Ty->isVariablyModifiedType())
383       EmitVariablyModifiedType(Ty);
384   }
385   // Emit a location at the end of the prologue.
386   if (CGDebugInfo *DI = getDebugInfo())
387     DI->EmitLocation(Builder, StartLoc);
388 }
389 
390 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args) {
391   const FunctionDecl *FD = cast<FunctionDecl>(CurGD.getDecl());
392   assert(FD->getBody());
393   EmitStmt(FD->getBody());
394 }
395 
396 /// Tries to mark the given function nounwind based on the
397 /// non-existence of any throwing calls within it.  We believe this is
398 /// lightweight enough to do at -O0.
399 static void TryMarkNoThrow(llvm::Function *F) {
400   // LLVM treats 'nounwind' on a function as part of the type, so we
401   // can't do this on functions that can be overwritten.
402   if (F->mayBeOverridden()) return;
403 
404   for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI)
405     for (llvm::BasicBlock::iterator
406            BI = FI->begin(), BE = FI->end(); BI != BE; ++BI)
407       if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI)) {
408         if (!Call->doesNotThrow())
409           return;
410       } else if (isa<llvm::ResumeInst>(&*BI)) {
411         return;
412       }
413   F->setDoesNotThrow(true);
414 }
415 
416 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
417                                    const CGFunctionInfo &FnInfo) {
418   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
419 
420   // Check if we should generate debug info for this function.
421   if (CGM.getModuleDebugInfo() && !FD->hasAttr<NoDebugAttr>())
422     DebugInfo = CGM.getModuleDebugInfo();
423 
424   FunctionArgList Args;
425   QualType ResTy = FD->getResultType();
426 
427   CurGD = GD;
428   if (isa<CXXMethodDecl>(FD) && cast<CXXMethodDecl>(FD)->isInstance())
429     CGM.getCXXABI().BuildInstanceFunctionParams(*this, ResTy, Args);
430 
431   if (FD->getNumParams())
432     for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i)
433       Args.push_back(FD->getParamDecl(i));
434 
435   SourceRange BodyRange;
436   if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange();
437 
438   // Emit the standard function prologue.
439   StartFunction(GD, ResTy, Fn, FnInfo, Args, BodyRange.getBegin());
440 
441   // Generate the body of the function.
442   if (isa<CXXDestructorDecl>(FD))
443     EmitDestructorBody(Args);
444   else if (isa<CXXConstructorDecl>(FD))
445     EmitConstructorBody(Args);
446   else if (getContext().getLangOptions().CUDA &&
447            !CGM.getCodeGenOpts().CUDAIsDevice &&
448            FD->hasAttr<CUDAGlobalAttr>())
449     CGM.getCUDARuntime().EmitDeviceStubBody(*this, Args);
450   else if (isa<CXXConversionDecl>(FD) &&
451            cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) {
452     // The lambda conversion to block pointer is special; the semantics can't be
453     // expressed in the AST, so IRGen needs to special-case it.
454     EmitLambdaToBlockPointerBody(Args);
455   } else if (isa<CXXMethodDecl>(FD) &&
456              cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
457     // The lambda "__invoke" function is special, because it forwards or
458     // clones the body of the function call operator (but is actually static).
459     EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD));
460   }
461   else
462     EmitFunctionBody(Args);
463 
464   // Emit the standard function epilogue.
465   FinishFunction(BodyRange.getEnd());
466 
467   // If we haven't marked the function nothrow through other means, do
468   // a quick pass now to see if we can.
469   if (!CurFn->doesNotThrow())
470     TryMarkNoThrow(CurFn);
471 }
472 
473 /// ContainsLabel - Return true if the statement contains a label in it.  If
474 /// this statement is not executed normally, it not containing a label means
475 /// that we can just remove the code.
476 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
477   // Null statement, not a label!
478   if (S == 0) return false;
479 
480   // If this is a label, we have to emit the code, consider something like:
481   // if (0) {  ...  foo:  bar(); }  goto foo;
482   //
483   // TODO: If anyone cared, we could track __label__'s, since we know that you
484   // can't jump to one from outside their declared region.
485   if (isa<LabelStmt>(S))
486     return true;
487 
488   // If this is a case/default statement, and we haven't seen a switch, we have
489   // to emit the code.
490   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
491     return true;
492 
493   // If this is a switch statement, we want to ignore cases below it.
494   if (isa<SwitchStmt>(S))
495     IgnoreCaseStmts = true;
496 
497   // Scan subexpressions for verboten labels.
498   for (Stmt::const_child_range I = S->children(); I; ++I)
499     if (ContainsLabel(*I, IgnoreCaseStmts))
500       return true;
501 
502   return false;
503 }
504 
505 /// containsBreak - Return true if the statement contains a break out of it.
506 /// If the statement (recursively) contains a switch or loop with a break
507 /// inside of it, this is fine.
508 bool CodeGenFunction::containsBreak(const Stmt *S) {
509   // Null statement, not a label!
510   if (S == 0) return false;
511 
512   // If this is a switch or loop that defines its own break scope, then we can
513   // include it and anything inside of it.
514   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
515       isa<ForStmt>(S))
516     return false;
517 
518   if (isa<BreakStmt>(S))
519     return true;
520 
521   // Scan subexpressions for verboten breaks.
522   for (Stmt::const_child_range I = S->children(); I; ++I)
523     if (containsBreak(*I))
524       return true;
525 
526   return false;
527 }
528 
529 
530 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
531 /// to a constant, or if it does but contains a label, return false.  If it
532 /// constant folds return true and set the boolean result in Result.
533 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
534                                                    bool &ResultBool) {
535   llvm::APInt ResultInt;
536   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt))
537     return false;
538 
539   ResultBool = ResultInt.getBoolValue();
540   return true;
541 }
542 
543 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
544 /// to a constant, or if it does but contains a label, return false.  If it
545 /// constant folds return true and set the folded value.
546 bool CodeGenFunction::
547 ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APInt &ResultInt) {
548   // FIXME: Rename and handle conversion of other evaluatable things
549   // to bool.
550   llvm::APSInt Int;
551   if (!Cond->EvaluateAsInt(Int, getContext()))
552     return false;  // Not foldable, not integer or not fully evaluatable.
553 
554   if (CodeGenFunction::ContainsLabel(Cond))
555     return false;  // Contains a label.
556 
557   ResultInt = Int;
558   return true;
559 }
560 
561 
562 
563 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
564 /// statement) to the specified blocks.  Based on the condition, this might try
565 /// to simplify the codegen of the conditional based on the branch.
566 ///
567 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
568                                            llvm::BasicBlock *TrueBlock,
569                                            llvm::BasicBlock *FalseBlock) {
570   Cond = Cond->IgnoreParens();
571 
572   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
573     // Handle X && Y in a condition.
574     if (CondBOp->getOpcode() == BO_LAnd) {
575       // If we have "1 && X", simplify the code.  "0 && X" would have constant
576       // folded if the case was simple enough.
577       bool ConstantBool = false;
578       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
579           ConstantBool) {
580         // br(1 && X) -> br(X).
581         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
582       }
583 
584       // If we have "X && 1", simplify the code to use an uncond branch.
585       // "X && 0" would have been constant folded to 0.
586       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
587           ConstantBool) {
588         // br(X && 1) -> br(X).
589         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock);
590       }
591 
592       // Emit the LHS as a conditional.  If the LHS conditional is false, we
593       // want to jump to the FalseBlock.
594       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
595 
596       ConditionalEvaluation eval(*this);
597       EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock);
598       EmitBlock(LHSTrue);
599 
600       // Any temporaries created here are conditional.
601       eval.begin(*this);
602       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
603       eval.end(*this);
604 
605       return;
606     }
607 
608     if (CondBOp->getOpcode() == BO_LOr) {
609       // If we have "0 || X", simplify the code.  "1 || X" would have constant
610       // folded if the case was simple enough.
611       bool ConstantBool = false;
612       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
613           !ConstantBool) {
614         // br(0 || X) -> br(X).
615         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
616       }
617 
618       // If we have "X || 0", simplify the code to use an uncond branch.
619       // "X || 1" would have been constant folded to 1.
620       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
621           !ConstantBool) {
622         // br(X || 0) -> br(X).
623         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock);
624       }
625 
626       // Emit the LHS as a conditional.  If the LHS conditional is true, we
627       // want to jump to the TrueBlock.
628       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
629 
630       ConditionalEvaluation eval(*this);
631       EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse);
632       EmitBlock(LHSFalse);
633 
634       // Any temporaries created here are conditional.
635       eval.begin(*this);
636       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
637       eval.end(*this);
638 
639       return;
640     }
641   }
642 
643   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
644     // br(!x, t, f) -> br(x, f, t)
645     if (CondUOp->getOpcode() == UO_LNot)
646       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock);
647   }
648 
649   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
650     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
651     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
652     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
653 
654     ConditionalEvaluation cond(*this);
655     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock);
656 
657     cond.begin(*this);
658     EmitBlock(LHSBlock);
659     EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock);
660     cond.end(*this);
661 
662     cond.begin(*this);
663     EmitBlock(RHSBlock);
664     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock);
665     cond.end(*this);
666 
667     return;
668   }
669 
670   // Emit the code with the fully general case.
671   llvm::Value *CondV = EvaluateExprAsBool(Cond);
672   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock);
673 }
674 
675 /// ErrorUnsupported - Print out an error that codegen doesn't support the
676 /// specified stmt yet.
677 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type,
678                                        bool OmitOnError) {
679   CGM.ErrorUnsupported(S, Type, OmitOnError);
680 }
681 
682 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
683 /// variable-length array whose elements have a non-zero bit-pattern.
684 ///
685 /// \param src - a char* pointing to the bit-pattern for a single
686 /// base element of the array
687 /// \param sizeInChars - the total size of the VLA, in chars
688 /// \param align - the total alignment of the VLA
689 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
690                                llvm::Value *dest, llvm::Value *src,
691                                llvm::Value *sizeInChars) {
692   std::pair<CharUnits,CharUnits> baseSizeAndAlign
693     = CGF.getContext().getTypeInfoInChars(baseType);
694 
695   CGBuilderTy &Builder = CGF.Builder;
696 
697   llvm::Value *baseSizeInChars
698     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSizeAndAlign.first.getQuantity());
699 
700   llvm::Type *i8p = Builder.getInt8PtrTy();
701 
702   llvm::Value *begin = Builder.CreateBitCast(dest, i8p, "vla.begin");
703   llvm::Value *end = Builder.CreateInBoundsGEP(dest, sizeInChars, "vla.end");
704 
705   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
706   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
707   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
708 
709   // Make a loop over the VLA.  C99 guarantees that the VLA element
710   // count must be nonzero.
711   CGF.EmitBlock(loopBB);
712 
713   llvm::PHINode *cur = Builder.CreatePHI(i8p, 2, "vla.cur");
714   cur->addIncoming(begin, originBB);
715 
716   // memcpy the individual element bit-pattern.
717   Builder.CreateMemCpy(cur, src, baseSizeInChars,
718                        baseSizeAndAlign.second.getQuantity(),
719                        /*volatile*/ false);
720 
721   // Go to the next element.
722   llvm::Value *next = Builder.CreateConstInBoundsGEP1_32(cur, 1, "vla.next");
723 
724   // Leave if that's the end of the VLA.
725   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
726   Builder.CreateCondBr(done, contBB, loopBB);
727   cur->addIncoming(next, loopBB);
728 
729   CGF.EmitBlock(contBB);
730 }
731 
732 void
733 CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) {
734   // Ignore empty classes in C++.
735   if (getContext().getLangOptions().CPlusPlus) {
736     if (const RecordType *RT = Ty->getAs<RecordType>()) {
737       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
738         return;
739     }
740   }
741 
742   // Cast the dest ptr to the appropriate i8 pointer type.
743   unsigned DestAS =
744     cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace();
745   llvm::Type *BP = Builder.getInt8PtrTy(DestAS);
746   if (DestPtr->getType() != BP)
747     DestPtr = Builder.CreateBitCast(DestPtr, BP);
748 
749   // Get size and alignment info for this aggregate.
750   std::pair<CharUnits, CharUnits> TypeInfo =
751     getContext().getTypeInfoInChars(Ty);
752   CharUnits Size = TypeInfo.first;
753   CharUnits Align = TypeInfo.second;
754 
755   llvm::Value *SizeVal;
756   const VariableArrayType *vla;
757 
758   // Don't bother emitting a zero-byte memset.
759   if (Size.isZero()) {
760     // But note that getTypeInfo returns 0 for a VLA.
761     if (const VariableArrayType *vlaType =
762           dyn_cast_or_null<VariableArrayType>(
763                                           getContext().getAsArrayType(Ty))) {
764       QualType eltType;
765       llvm::Value *numElts;
766       llvm::tie(numElts, eltType) = getVLASize(vlaType);
767 
768       SizeVal = numElts;
769       CharUnits eltSize = getContext().getTypeSizeInChars(eltType);
770       if (!eltSize.isOne())
771         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
772       vla = vlaType;
773     } else {
774       return;
775     }
776   } else {
777     SizeVal = CGM.getSize(Size);
778     vla = 0;
779   }
780 
781   // If the type contains a pointer to data member we can't memset it to zero.
782   // Instead, create a null constant and copy it to the destination.
783   // TODO: there are other patterns besides zero that we can usefully memset,
784   // like -1, which happens to be the pattern used by member-pointers.
785   if (!CGM.getTypes().isZeroInitializable(Ty)) {
786     // For a VLA, emit a single element, then splat that over the VLA.
787     if (vla) Ty = getContext().getBaseElementType(vla);
788 
789     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
790 
791     llvm::GlobalVariable *NullVariable =
792       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
793                                /*isConstant=*/true,
794                                llvm::GlobalVariable::PrivateLinkage,
795                                NullConstant, Twine());
796     llvm::Value *SrcPtr =
797       Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy());
798 
799     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
800 
801     // Get and call the appropriate llvm.memcpy overload.
802     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity(), false);
803     return;
804   }
805 
806   // Otherwise, just memset the whole thing to zero.  This is legal
807   // because in LLVM, all default initializers (other than the ones we just
808   // handled above) are guaranteed to have a bit pattern of all zeros.
809   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal,
810                        Align.getQuantity(), false);
811 }
812 
813 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
814   // Make sure that there is a block for the indirect goto.
815   if (IndirectBranch == 0)
816     GetIndirectGotoBlock();
817 
818   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
819 
820   // Make sure the indirect branch includes all of the address-taken blocks.
821   IndirectBranch->addDestination(BB);
822   return llvm::BlockAddress::get(CurFn, BB);
823 }
824 
825 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
826   // If we already made the indirect branch for indirect goto, return its block.
827   if (IndirectBranch) return IndirectBranch->getParent();
828 
829   CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto"));
830 
831   // Create the PHI node that indirect gotos will add entries to.
832   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
833                                               "indirect.goto.dest");
834 
835   // Create the indirect branch instruction.
836   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
837   return IndirectBranch->getParent();
838 }
839 
840 /// Computes the length of an array in elements, as well as the base
841 /// element type and a properly-typed first element pointer.
842 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
843                                               QualType &baseType,
844                                               llvm::Value *&addr) {
845   const ArrayType *arrayType = origArrayType;
846 
847   // If it's a VLA, we have to load the stored size.  Note that
848   // this is the size of the VLA in bytes, not its size in elements.
849   llvm::Value *numVLAElements = 0;
850   if (isa<VariableArrayType>(arrayType)) {
851     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first;
852 
853     // Walk into all VLAs.  This doesn't require changes to addr,
854     // which has type T* where T is the first non-VLA element type.
855     do {
856       QualType elementType = arrayType->getElementType();
857       arrayType = getContext().getAsArrayType(elementType);
858 
859       // If we only have VLA components, 'addr' requires no adjustment.
860       if (!arrayType) {
861         baseType = elementType;
862         return numVLAElements;
863       }
864     } while (isa<VariableArrayType>(arrayType));
865 
866     // We get out here only if we find a constant array type
867     // inside the VLA.
868   }
869 
870   // We have some number of constant-length arrays, so addr should
871   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
872   // down to the first element of addr.
873   SmallVector<llvm::Value*, 8> gepIndices;
874 
875   // GEP down to the array type.
876   llvm::ConstantInt *zero = Builder.getInt32(0);
877   gepIndices.push_back(zero);
878 
879   // It's more efficient to calculate the count from the LLVM
880   // constant-length arrays than to re-evaluate the array bounds.
881   uint64_t countFromCLAs = 1;
882 
883   llvm::ArrayType *llvmArrayType =
884     cast<llvm::ArrayType>(
885       cast<llvm::PointerType>(addr->getType())->getElementType());
886   while (true) {
887     assert(isa<ConstantArrayType>(arrayType));
888     assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
889              == llvmArrayType->getNumElements());
890 
891     gepIndices.push_back(zero);
892     countFromCLAs *= llvmArrayType->getNumElements();
893 
894     llvmArrayType =
895       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
896     if (!llvmArrayType) break;
897 
898     arrayType = getContext().getAsArrayType(arrayType->getElementType());
899     assert(arrayType && "LLVM and Clang types are out-of-synch");
900   }
901 
902   baseType = arrayType->getElementType();
903 
904   // Create the actual GEP.
905   addr = Builder.CreateInBoundsGEP(addr, gepIndices, "array.begin");
906 
907   llvm::Value *numElements
908     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
909 
910   // If we had any VLA dimensions, factor them in.
911   if (numVLAElements)
912     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
913 
914   return numElements;
915 }
916 
917 std::pair<llvm::Value*, QualType>
918 CodeGenFunction::getVLASize(QualType type) {
919   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
920   assert(vla && "type was not a variable array type!");
921   return getVLASize(vla);
922 }
923 
924 std::pair<llvm::Value*, QualType>
925 CodeGenFunction::getVLASize(const VariableArrayType *type) {
926   // The number of elements so far; always size_t.
927   llvm::Value *numElements = 0;
928 
929   QualType elementType;
930   do {
931     elementType = type->getElementType();
932     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
933     assert(vlaSize && "no size for VLA!");
934     assert(vlaSize->getType() == SizeTy);
935 
936     if (!numElements) {
937       numElements = vlaSize;
938     } else {
939       // It's undefined behavior if this wraps around, so mark it that way.
940       numElements = Builder.CreateNUWMul(numElements, vlaSize);
941     }
942   } while ((type = getContext().getAsVariableArrayType(elementType)));
943 
944   return std::pair<llvm::Value*,QualType>(numElements, elementType);
945 }
946 
947 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
948   assert(type->isVariablyModifiedType() &&
949          "Must pass variably modified type to EmitVLASizes!");
950 
951   EnsureInsertPoint();
952 
953   // We're going to walk down into the type and look for VLA
954   // expressions.
955   do {
956     assert(type->isVariablyModifiedType());
957 
958     const Type *ty = type.getTypePtr();
959     switch (ty->getTypeClass()) {
960 
961 #define TYPE(Class, Base)
962 #define ABSTRACT_TYPE(Class, Base)
963 #define NON_CANONICAL_TYPE(Class, Base)
964 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
965 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
966 #include "clang/AST/TypeNodes.def"
967       llvm_unreachable("unexpected dependent type!");
968 
969     // These types are never variably-modified.
970     case Type::Builtin:
971     case Type::Complex:
972     case Type::Vector:
973     case Type::ExtVector:
974     case Type::Record:
975     case Type::Enum:
976     case Type::Elaborated:
977     case Type::TemplateSpecialization:
978     case Type::ObjCObject:
979     case Type::ObjCInterface:
980     case Type::ObjCObjectPointer:
981       llvm_unreachable("type class is never variably-modified!");
982 
983     case Type::Pointer:
984       type = cast<PointerType>(ty)->getPointeeType();
985       break;
986 
987     case Type::BlockPointer:
988       type = cast<BlockPointerType>(ty)->getPointeeType();
989       break;
990 
991     case Type::LValueReference:
992     case Type::RValueReference:
993       type = cast<ReferenceType>(ty)->getPointeeType();
994       break;
995 
996     case Type::MemberPointer:
997       type = cast<MemberPointerType>(ty)->getPointeeType();
998       break;
999 
1000     case Type::ConstantArray:
1001     case Type::IncompleteArray:
1002       // Losing element qualification here is fine.
1003       type = cast<ArrayType>(ty)->getElementType();
1004       break;
1005 
1006     case Type::VariableArray: {
1007       // Losing element qualification here is fine.
1008       const VariableArrayType *vat = cast<VariableArrayType>(ty);
1009 
1010       // Unknown size indication requires no size computation.
1011       // Otherwise, evaluate and record it.
1012       if (const Expr *size = vat->getSizeExpr()) {
1013         // It's possible that we might have emitted this already,
1014         // e.g. with a typedef and a pointer to it.
1015         llvm::Value *&entry = VLASizeMap[size];
1016         if (!entry) {
1017           // Always zexting here would be wrong if it weren't
1018           // undefined behavior to have a negative bound.
1019           entry = Builder.CreateIntCast(EmitScalarExpr(size), SizeTy,
1020                                         /*signed*/ false);
1021         }
1022       }
1023       type = vat->getElementType();
1024       break;
1025     }
1026 
1027     case Type::FunctionProto:
1028     case Type::FunctionNoProto:
1029       type = cast<FunctionType>(ty)->getResultType();
1030       break;
1031 
1032     case Type::Paren:
1033     case Type::TypeOf:
1034     case Type::UnaryTransform:
1035     case Type::Attributed:
1036     case Type::SubstTemplateTypeParm:
1037       // Keep walking after single level desugaring.
1038       type = type.getSingleStepDesugaredType(getContext());
1039       break;
1040 
1041     case Type::Typedef:
1042     case Type::Decltype:
1043     case Type::Auto:
1044       // Stop walking: nothing to do.
1045       return;
1046 
1047     case Type::TypeOfExpr:
1048       // Stop walking: emit typeof expression.
1049       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
1050       return;
1051 
1052     case Type::Atomic:
1053       type = cast<AtomicType>(ty)->getValueType();
1054       break;
1055     }
1056   } while (type->isVariablyModifiedType());
1057 }
1058 
1059 llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) {
1060   if (getContext().getBuiltinVaListType()->isArrayType())
1061     return EmitScalarExpr(E);
1062   return EmitLValue(E).getAddress();
1063 }
1064 
1065 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
1066                                               llvm::Constant *Init) {
1067   assert (Init && "Invalid DeclRefExpr initializer!");
1068   if (CGDebugInfo *Dbg = getDebugInfo())
1069     Dbg->EmitGlobalVariable(E->getDecl(), Init);
1070 }
1071 
1072 CodeGenFunction::PeepholeProtection
1073 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
1074   // At the moment, the only aggressive peephole we do in IR gen
1075   // is trunc(zext) folding, but if we add more, we can easily
1076   // extend this protection.
1077 
1078   if (!rvalue.isScalar()) return PeepholeProtection();
1079   llvm::Value *value = rvalue.getScalarVal();
1080   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
1081 
1082   // Just make an extra bitcast.
1083   assert(HaveInsertPoint());
1084   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
1085                                                   Builder.GetInsertBlock());
1086 
1087   PeepholeProtection protection;
1088   protection.Inst = inst;
1089   return protection;
1090 }
1091 
1092 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
1093   if (!protection.Inst) return;
1094 
1095   // In theory, we could try to duplicate the peepholes now, but whatever.
1096   protection.Inst->eraseFromParent();
1097 }
1098 
1099 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn,
1100                                                  llvm::Value *AnnotatedVal,
1101                                                  llvm::StringRef AnnotationStr,
1102                                                  SourceLocation Location) {
1103   llvm::Value *Args[4] = {
1104     AnnotatedVal,
1105     Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
1106     Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
1107     CGM.EmitAnnotationLineNo(Location)
1108   };
1109   return Builder.CreateCall(AnnotationFn, Args);
1110 }
1111 
1112 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
1113   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1114   // FIXME We create a new bitcast for every annotation because that's what
1115   // llvm-gcc was doing.
1116   for (specific_attr_iterator<AnnotateAttr>
1117        ai = D->specific_attr_begin<AnnotateAttr>(),
1118        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai)
1119     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
1120                        Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
1121                        (*ai)->getAnnotation(), D->getLocation());
1122 }
1123 
1124 llvm::Value *CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
1125                                                    llvm::Value *V) {
1126   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1127   llvm::Type *VTy = V->getType();
1128   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
1129                                     CGM.Int8PtrTy);
1130 
1131   for (specific_attr_iterator<AnnotateAttr>
1132        ai = D->specific_attr_begin<AnnotateAttr>(),
1133        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) {
1134     // FIXME Always emit the cast inst so we can differentiate between
1135     // annotation on the first field of a struct and annotation on the struct
1136     // itself.
1137     if (VTy != CGM.Int8PtrTy)
1138       V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy));
1139     V = EmitAnnotationCall(F, V, (*ai)->getAnnotation(), D->getLocation());
1140     V = Builder.CreateBitCast(V, VTy);
1141   }
1142 
1143   return V;
1144 }
1145