1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-function state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGBlocks.h" 16 #include "CGCleanup.h" 17 #include "CGCUDARuntime.h" 18 #include "CGCXXABI.h" 19 #include "CGDebugInfo.h" 20 #include "CGOpenMPRuntime.h" 21 #include "CodeGenModule.h" 22 #include "CodeGenPGO.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/Decl.h" 26 #include "clang/AST/DeclCXX.h" 27 #include "clang/AST/StmtCXX.h" 28 #include "clang/AST/StmtObjC.h" 29 #include "clang/Basic/Builtins.h" 30 #include "clang/Basic/TargetInfo.h" 31 #include "clang/CodeGen/CGFunctionInfo.h" 32 #include "clang/Frontend/CodeGenOptions.h" 33 #include "clang/Sema/SemaDiagnostic.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/Intrinsics.h" 36 #include "llvm/IR/MDBuilder.h" 37 #include "llvm/IR/Operator.h" 38 using namespace clang; 39 using namespace CodeGen; 40 41 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time 42 /// markers. 43 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts, 44 const LangOptions &LangOpts) { 45 // Asan uses markers for use-after-scope checks. 46 if (CGOpts.SanitizeAddressUseAfterScope) 47 return true; 48 49 // Disable lifetime markers in msan builds. 50 // FIXME: Remove this when msan works with lifetime markers. 51 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) 52 return false; 53 54 // For now, only in optimized builds. 55 return CGOpts.OptimizationLevel != 0; 56 } 57 58 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 59 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 60 Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(), 61 CGBuilderInserterTy(this)), 62 CurFn(nullptr), ReturnValue(Address::invalid()), 63 CapturedStmtInfo(nullptr), SanOpts(CGM.getLangOpts().Sanitize), 64 IsSanitizerScope(false), CurFuncIsThunk(false), AutoreleaseResult(false), 65 SawAsmBlock(false), IsOutlinedSEHHelper(false), BlockInfo(nullptr), 66 BlockPointer(nullptr), LambdaThisCaptureField(nullptr), 67 NormalCleanupDest(nullptr), NextCleanupDestIndex(1), 68 FirstBlockInfo(nullptr), EHResumeBlock(nullptr), ExceptionSlot(nullptr), 69 EHSelectorSlot(nullptr), DebugInfo(CGM.getModuleDebugInfo()), 70 DisableDebugInfo(false), DidCallStackSave(false), IndirectBranch(nullptr), 71 PGO(cgm), SwitchInsn(nullptr), SwitchWeights(nullptr), 72 CaseRangeBlock(nullptr), UnreachableBlock(nullptr), NumReturnExprs(0), 73 NumSimpleReturnExprs(0), CXXABIThisDecl(nullptr), 74 CXXABIThisValue(nullptr), CXXThisValue(nullptr), 75 CXXStructorImplicitParamDecl(nullptr), 76 CXXStructorImplicitParamValue(nullptr), OutermostConditional(nullptr), 77 CurLexicalScope(nullptr), TerminateLandingPad(nullptr), 78 TerminateHandler(nullptr), TrapBB(nullptr), 79 ShouldEmitLifetimeMarkers( 80 shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) { 81 if (!suppressNewContext) 82 CGM.getCXXABI().getMangleContext().startNewFunction(); 83 84 llvm::FastMathFlags FMF; 85 if (CGM.getLangOpts().FastMath) 86 FMF.setUnsafeAlgebra(); 87 if (CGM.getLangOpts().FiniteMathOnly) { 88 FMF.setNoNaNs(); 89 FMF.setNoInfs(); 90 } 91 if (CGM.getCodeGenOpts().NoNaNsFPMath) { 92 FMF.setNoNaNs(); 93 } 94 if (CGM.getCodeGenOpts().NoSignedZeros) { 95 FMF.setNoSignedZeros(); 96 } 97 if (CGM.getCodeGenOpts().ReciprocalMath) { 98 FMF.setAllowReciprocal(); 99 } 100 Builder.setFastMathFlags(FMF); 101 } 102 103 CodeGenFunction::~CodeGenFunction() { 104 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 105 106 // If there are any unclaimed block infos, go ahead and destroy them 107 // now. This can happen if IR-gen gets clever and skips evaluating 108 // something. 109 if (FirstBlockInfo) 110 destroyBlockInfos(FirstBlockInfo); 111 112 if (getLangOpts().OpenMP) { 113 CGM.getOpenMPRuntime().functionFinished(*this); 114 } 115 } 116 117 CharUnits CodeGenFunction::getNaturalPointeeTypeAlignment(QualType T, 118 AlignmentSource *Source) { 119 return getNaturalTypeAlignment(T->getPointeeType(), Source, 120 /*forPointee*/ true); 121 } 122 123 CharUnits CodeGenFunction::getNaturalTypeAlignment(QualType T, 124 AlignmentSource *Source, 125 bool forPointeeType) { 126 // Honor alignment typedef attributes even on incomplete types. 127 // We also honor them straight for C++ class types, even as pointees; 128 // there's an expressivity gap here. 129 if (auto TT = T->getAs<TypedefType>()) { 130 if (auto Align = TT->getDecl()->getMaxAlignment()) { 131 if (Source) *Source = AlignmentSource::AttributedType; 132 return getContext().toCharUnitsFromBits(Align); 133 } 134 } 135 136 if (Source) *Source = AlignmentSource::Type; 137 138 CharUnits Alignment; 139 if (T->isIncompleteType()) { 140 Alignment = CharUnits::One(); // Shouldn't be used, but pessimistic is best. 141 } else { 142 // For C++ class pointees, we don't know whether we're pointing at a 143 // base or a complete object, so we generally need to use the 144 // non-virtual alignment. 145 const CXXRecordDecl *RD; 146 if (forPointeeType && (RD = T->getAsCXXRecordDecl())) { 147 Alignment = CGM.getClassPointerAlignment(RD); 148 } else { 149 Alignment = getContext().getTypeAlignInChars(T); 150 } 151 152 // Cap to the global maximum type alignment unless the alignment 153 // was somehow explicit on the type. 154 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 155 if (Alignment.getQuantity() > MaxAlign && 156 !getContext().isAlignmentRequired(T)) 157 Alignment = CharUnits::fromQuantity(MaxAlign); 158 } 159 } 160 return Alignment; 161 } 162 163 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { 164 AlignmentSource AlignSource; 165 CharUnits Alignment = getNaturalTypeAlignment(T, &AlignSource); 166 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), AlignSource, 167 CGM.getTBAAInfo(T)); 168 } 169 170 /// Given a value of type T* that may not be to a complete object, 171 /// construct an l-value with the natural pointee alignment of T. 172 LValue 173 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) { 174 AlignmentSource AlignSource; 175 CharUnits Align = getNaturalTypeAlignment(T, &AlignSource, /*pointee*/ true); 176 return MakeAddrLValue(Address(V, Align), T, AlignSource); 177 } 178 179 180 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 181 return CGM.getTypes().ConvertTypeForMem(T); 182 } 183 184 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 185 return CGM.getTypes().ConvertType(T); 186 } 187 188 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 189 type = type.getCanonicalType(); 190 while (true) { 191 switch (type->getTypeClass()) { 192 #define TYPE(name, parent) 193 #define ABSTRACT_TYPE(name, parent) 194 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 195 #define DEPENDENT_TYPE(name, parent) case Type::name: 196 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 197 #include "clang/AST/TypeNodes.def" 198 llvm_unreachable("non-canonical or dependent type in IR-generation"); 199 200 case Type::Auto: 201 llvm_unreachable("undeduced auto type in IR-generation"); 202 203 // Various scalar types. 204 case Type::Builtin: 205 case Type::Pointer: 206 case Type::BlockPointer: 207 case Type::LValueReference: 208 case Type::RValueReference: 209 case Type::MemberPointer: 210 case Type::Vector: 211 case Type::ExtVector: 212 case Type::FunctionProto: 213 case Type::FunctionNoProto: 214 case Type::Enum: 215 case Type::ObjCObjectPointer: 216 case Type::Pipe: 217 return TEK_Scalar; 218 219 // Complexes. 220 case Type::Complex: 221 return TEK_Complex; 222 223 // Arrays, records, and Objective-C objects. 224 case Type::ConstantArray: 225 case Type::IncompleteArray: 226 case Type::VariableArray: 227 case Type::Record: 228 case Type::ObjCObject: 229 case Type::ObjCInterface: 230 return TEK_Aggregate; 231 232 // We operate on atomic values according to their underlying type. 233 case Type::Atomic: 234 type = cast<AtomicType>(type)->getValueType(); 235 continue; 236 } 237 llvm_unreachable("unknown type kind!"); 238 } 239 } 240 241 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() { 242 // For cleanliness, we try to avoid emitting the return block for 243 // simple cases. 244 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 245 246 if (CurBB) { 247 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 248 249 // We have a valid insert point, reuse it if it is empty or there are no 250 // explicit jumps to the return block. 251 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 252 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 253 delete ReturnBlock.getBlock(); 254 } else 255 EmitBlock(ReturnBlock.getBlock()); 256 return llvm::DebugLoc(); 257 } 258 259 // Otherwise, if the return block is the target of a single direct 260 // branch then we can just put the code in that block instead. This 261 // cleans up functions which started with a unified return block. 262 if (ReturnBlock.getBlock()->hasOneUse()) { 263 llvm::BranchInst *BI = 264 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin()); 265 if (BI && BI->isUnconditional() && 266 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 267 // Record/return the DebugLoc of the simple 'return' expression to be used 268 // later by the actual 'ret' instruction. 269 llvm::DebugLoc Loc = BI->getDebugLoc(); 270 Builder.SetInsertPoint(BI->getParent()); 271 BI->eraseFromParent(); 272 delete ReturnBlock.getBlock(); 273 return Loc; 274 } 275 } 276 277 // FIXME: We are at an unreachable point, there is no reason to emit the block 278 // unless it has uses. However, we still need a place to put the debug 279 // region.end for now. 280 281 EmitBlock(ReturnBlock.getBlock()); 282 return llvm::DebugLoc(); 283 } 284 285 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 286 if (!BB) return; 287 if (!BB->use_empty()) 288 return CGF.CurFn->getBasicBlockList().push_back(BB); 289 delete BB; 290 } 291 292 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 293 assert(BreakContinueStack.empty() && 294 "mismatched push/pop in break/continue stack!"); 295 296 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 297 && NumSimpleReturnExprs == NumReturnExprs 298 && ReturnBlock.getBlock()->use_empty(); 299 // Usually the return expression is evaluated before the cleanup 300 // code. If the function contains only a simple return statement, 301 // such as a constant, the location before the cleanup code becomes 302 // the last useful breakpoint in the function, because the simple 303 // return expression will be evaluated after the cleanup code. To be 304 // safe, set the debug location for cleanup code to the location of 305 // the return statement. Otherwise the cleanup code should be at the 306 // end of the function's lexical scope. 307 // 308 // If there are multiple branches to the return block, the branch 309 // instructions will get the location of the return statements and 310 // all will be fine. 311 if (CGDebugInfo *DI = getDebugInfo()) { 312 if (OnlySimpleReturnStmts) 313 DI->EmitLocation(Builder, LastStopPoint); 314 else 315 DI->EmitLocation(Builder, EndLoc); 316 } 317 318 // Pop any cleanups that might have been associated with the 319 // parameters. Do this in whatever block we're currently in; it's 320 // important to do this before we enter the return block or return 321 // edges will be *really* confused. 322 bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth; 323 bool HasOnlyLifetimeMarkers = 324 HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth); 325 bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers; 326 if (HasCleanups) { 327 // Make sure the line table doesn't jump back into the body for 328 // the ret after it's been at EndLoc. 329 if (CGDebugInfo *DI = getDebugInfo()) 330 if (OnlySimpleReturnStmts) 331 DI->EmitLocation(Builder, EndLoc); 332 333 PopCleanupBlocks(PrologueCleanupDepth); 334 } 335 336 // Emit function epilog (to return). 337 llvm::DebugLoc Loc = EmitReturnBlock(); 338 339 if (ShouldInstrumentFunction()) 340 EmitFunctionInstrumentation("__cyg_profile_func_exit"); 341 342 // Emit debug descriptor for function end. 343 if (CGDebugInfo *DI = getDebugInfo()) 344 DI->EmitFunctionEnd(Builder); 345 346 // Reset the debug location to that of the simple 'return' expression, if any 347 // rather than that of the end of the function's scope '}'. 348 ApplyDebugLocation AL(*this, Loc); 349 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 350 EmitEndEHSpec(CurCodeDecl); 351 352 assert(EHStack.empty() && 353 "did not remove all scopes from cleanup stack!"); 354 355 // If someone did an indirect goto, emit the indirect goto block at the end of 356 // the function. 357 if (IndirectBranch) { 358 EmitBlock(IndirectBranch->getParent()); 359 Builder.ClearInsertionPoint(); 360 } 361 362 // If some of our locals escaped, insert a call to llvm.localescape in the 363 // entry block. 364 if (!EscapedLocals.empty()) { 365 // Invert the map from local to index into a simple vector. There should be 366 // no holes. 367 SmallVector<llvm::Value *, 4> EscapeArgs; 368 EscapeArgs.resize(EscapedLocals.size()); 369 for (auto &Pair : EscapedLocals) 370 EscapeArgs[Pair.second] = Pair.first; 371 llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration( 372 &CGM.getModule(), llvm::Intrinsic::localescape); 373 CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs); 374 } 375 376 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 377 llvm::Instruction *Ptr = AllocaInsertPt; 378 AllocaInsertPt = nullptr; 379 Ptr->eraseFromParent(); 380 381 // If someone took the address of a label but never did an indirect goto, we 382 // made a zero entry PHI node, which is illegal, zap it now. 383 if (IndirectBranch) { 384 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 385 if (PN->getNumIncomingValues() == 0) { 386 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 387 PN->eraseFromParent(); 388 } 389 } 390 391 EmitIfUsed(*this, EHResumeBlock); 392 EmitIfUsed(*this, TerminateLandingPad); 393 EmitIfUsed(*this, TerminateHandler); 394 EmitIfUsed(*this, UnreachableBlock); 395 396 if (CGM.getCodeGenOpts().EmitDeclMetadata) 397 EmitDeclMetadata(); 398 399 for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator 400 I = DeferredReplacements.begin(), 401 E = DeferredReplacements.end(); 402 I != E; ++I) { 403 I->first->replaceAllUsesWith(I->second); 404 I->first->eraseFromParent(); 405 } 406 } 407 408 /// ShouldInstrumentFunction - Return true if the current function should be 409 /// instrumented with __cyg_profile_func_* calls 410 bool CodeGenFunction::ShouldInstrumentFunction() { 411 if (!CGM.getCodeGenOpts().InstrumentFunctions) 412 return false; 413 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 414 return false; 415 return true; 416 } 417 418 /// ShouldXRayInstrument - Return true if the current function should be 419 /// instrumented with XRay nop sleds. 420 bool CodeGenFunction::ShouldXRayInstrumentFunction() const { 421 return CGM.getCodeGenOpts().XRayInstrumentFunctions; 422 } 423 424 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 425 /// instrumentation function with the current function and the call site, if 426 /// function instrumentation is enabled. 427 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) { 428 auto NL = ApplyDebugLocation::CreateArtificial(*this); 429 // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site); 430 llvm::PointerType *PointerTy = Int8PtrTy; 431 llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy }; 432 llvm::FunctionType *FunctionTy = 433 llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false); 434 435 llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn); 436 llvm::CallInst *CallSite = Builder.CreateCall( 437 CGM.getIntrinsic(llvm::Intrinsic::returnaddress), 438 llvm::ConstantInt::get(Int32Ty, 0), 439 "callsite"); 440 441 llvm::Value *args[] = { 442 llvm::ConstantExpr::getBitCast(CurFn, PointerTy), 443 CallSite 444 }; 445 446 EmitNounwindRuntimeCall(F, args); 447 } 448 449 static void removeImageAccessQualifier(std::string& TyName) { 450 std::string ReadOnlyQual("__read_only"); 451 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 452 if (ReadOnlyPos != std::string::npos) 453 // "+ 1" for the space after access qualifier. 454 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 455 else { 456 std::string WriteOnlyQual("__write_only"); 457 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 458 if (WriteOnlyPos != std::string::npos) 459 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 460 else { 461 std::string ReadWriteQual("__read_write"); 462 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 463 if (ReadWritePos != std::string::npos) 464 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 465 } 466 } 467 } 468 469 // Returns the address space id that should be produced to the 470 // kernel_arg_addr_space metadata. This is always fixed to the ids 471 // as specified in the SPIR 2.0 specification in order to differentiate 472 // for example in clGetKernelArgInfo() implementation between the address 473 // spaces with targets without unique mapping to the OpenCL address spaces 474 // (basically all single AS CPUs). 475 static unsigned ArgInfoAddressSpace(unsigned LangAS) { 476 switch (LangAS) { 477 case LangAS::opencl_global: return 1; 478 case LangAS::opencl_constant: return 2; 479 case LangAS::opencl_local: return 3; 480 case LangAS::opencl_generic: return 4; // Not in SPIR 2.0 specs. 481 default: 482 return 0; // Assume private. 483 } 484 } 485 486 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument 487 // information in the program executable. The argument information stored 488 // includes the argument name, its type, the address and access qualifiers used. 489 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn, 490 CodeGenModule &CGM, llvm::LLVMContext &Context, 491 CGBuilderTy &Builder, ASTContext &ASTCtx) { 492 // Create MDNodes that represent the kernel arg metadata. 493 // Each MDNode is a list in the form of "key", N number of values which is 494 // the same number of values as their are kernel arguments. 495 496 const PrintingPolicy &Policy = ASTCtx.getPrintingPolicy(); 497 498 // MDNode for the kernel argument address space qualifiers. 499 SmallVector<llvm::Metadata *, 8> addressQuals; 500 501 // MDNode for the kernel argument access qualifiers (images only). 502 SmallVector<llvm::Metadata *, 8> accessQuals; 503 504 // MDNode for the kernel argument type names. 505 SmallVector<llvm::Metadata *, 8> argTypeNames; 506 507 // MDNode for the kernel argument base type names. 508 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 509 510 // MDNode for the kernel argument type qualifiers. 511 SmallVector<llvm::Metadata *, 8> argTypeQuals; 512 513 // MDNode for the kernel argument names. 514 SmallVector<llvm::Metadata *, 8> argNames; 515 516 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 517 const ParmVarDecl *parm = FD->getParamDecl(i); 518 QualType ty = parm->getType(); 519 std::string typeQuals; 520 521 if (ty->isPointerType()) { 522 QualType pointeeTy = ty->getPointeeType(); 523 524 // Get address qualifier. 525 addressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32( 526 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 527 528 // Get argument type name. 529 std::string typeName = 530 pointeeTy.getUnqualifiedType().getAsString(Policy) + "*"; 531 532 // Turn "unsigned type" to "utype" 533 std::string::size_type pos = typeName.find("unsigned"); 534 if (pointeeTy.isCanonical() && pos != std::string::npos) 535 typeName.erase(pos+1, 8); 536 537 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 538 539 std::string baseTypeName = 540 pointeeTy.getUnqualifiedType().getCanonicalType().getAsString( 541 Policy) + 542 "*"; 543 544 // Turn "unsigned type" to "utype" 545 pos = baseTypeName.find("unsigned"); 546 if (pos != std::string::npos) 547 baseTypeName.erase(pos+1, 8); 548 549 argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName)); 550 551 // Get argument type qualifiers: 552 if (ty.isRestrictQualified()) 553 typeQuals = "restrict"; 554 if (pointeeTy.isConstQualified() || 555 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 556 typeQuals += typeQuals.empty() ? "const" : " const"; 557 if (pointeeTy.isVolatileQualified()) 558 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 559 } else { 560 uint32_t AddrSpc = 0; 561 bool isPipe = ty->isPipeType(); 562 if (ty->isImageType() || isPipe) 563 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 564 565 addressQuals.push_back( 566 llvm::ConstantAsMetadata::get(Builder.getInt32(AddrSpc))); 567 568 // Get argument type name. 569 std::string typeName; 570 if (isPipe) 571 typeName = ty.getCanonicalType()->getAs<PipeType>()->getElementType() 572 .getAsString(Policy); 573 else 574 typeName = ty.getUnqualifiedType().getAsString(Policy); 575 576 // Turn "unsigned type" to "utype" 577 std::string::size_type pos = typeName.find("unsigned"); 578 if (ty.isCanonical() && pos != std::string::npos) 579 typeName.erase(pos+1, 8); 580 581 std::string baseTypeName; 582 if (isPipe) 583 baseTypeName = ty.getCanonicalType()->getAs<PipeType>() 584 ->getElementType().getCanonicalType() 585 .getAsString(Policy); 586 else 587 baseTypeName = 588 ty.getUnqualifiedType().getCanonicalType().getAsString(Policy); 589 590 // Remove access qualifiers on images 591 // (as they are inseparable from type in clang implementation, 592 // but OpenCL spec provides a special query to get access qualifier 593 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 594 if (ty->isImageType()) { 595 removeImageAccessQualifier(typeName); 596 removeImageAccessQualifier(baseTypeName); 597 } 598 599 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 600 601 // Turn "unsigned type" to "utype" 602 pos = baseTypeName.find("unsigned"); 603 if (pos != std::string::npos) 604 baseTypeName.erase(pos+1, 8); 605 606 argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName)); 607 608 // Get argument type qualifiers: 609 if (ty.isConstQualified()) 610 typeQuals = "const"; 611 if (ty.isVolatileQualified()) 612 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 613 if (isPipe) 614 typeQuals = "pipe"; 615 } 616 617 argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals)); 618 619 // Get image and pipe access qualifier: 620 if (ty->isImageType()|| ty->isPipeType()) { 621 const OpenCLAccessAttr *A = parm->getAttr<OpenCLAccessAttr>(); 622 if (A && A->isWriteOnly()) 623 accessQuals.push_back(llvm::MDString::get(Context, "write_only")); 624 else if (A && A->isReadWrite()) 625 accessQuals.push_back(llvm::MDString::get(Context, "read_write")); 626 else 627 accessQuals.push_back(llvm::MDString::get(Context, "read_only")); 628 } else 629 accessQuals.push_back(llvm::MDString::get(Context, "none")); 630 631 // Get argument name. 632 argNames.push_back(llvm::MDString::get(Context, parm->getName())); 633 } 634 635 Fn->setMetadata("kernel_arg_addr_space", 636 llvm::MDNode::get(Context, addressQuals)); 637 Fn->setMetadata("kernel_arg_access_qual", 638 llvm::MDNode::get(Context, accessQuals)); 639 Fn->setMetadata("kernel_arg_type", 640 llvm::MDNode::get(Context, argTypeNames)); 641 Fn->setMetadata("kernel_arg_base_type", 642 llvm::MDNode::get(Context, argBaseTypeNames)); 643 Fn->setMetadata("kernel_arg_type_qual", 644 llvm::MDNode::get(Context, argTypeQuals)); 645 if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 646 Fn->setMetadata("kernel_arg_name", 647 llvm::MDNode::get(Context, argNames)); 648 } 649 650 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 651 llvm::Function *Fn) 652 { 653 if (!FD->hasAttr<OpenCLKernelAttr>()) 654 return; 655 656 llvm::LLVMContext &Context = getLLVMContext(); 657 658 GenOpenCLArgMetadata(FD, Fn, CGM, Context, Builder, getContext()); 659 660 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { 661 QualType hintQTy = A->getTypeHint(); 662 const ExtVectorType *hintEltQTy = hintQTy->getAs<ExtVectorType>(); 663 bool isSignedInteger = 664 hintQTy->isSignedIntegerType() || 665 (hintEltQTy && hintEltQTy->getElementType()->isSignedIntegerType()); 666 llvm::Metadata *attrMDArgs[] = { 667 llvm::ConstantAsMetadata::get(llvm::UndefValue::get( 668 CGM.getTypes().ConvertType(A->getTypeHint()))), 669 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 670 llvm::IntegerType::get(Context, 32), 671 llvm::APInt(32, (uint64_t)(isSignedInteger ? 1 : 0))))}; 672 Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, attrMDArgs)); 673 } 674 675 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { 676 llvm::Metadata *attrMDArgs[] = { 677 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 678 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 679 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 680 Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, attrMDArgs)); 681 } 682 683 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { 684 llvm::Metadata *attrMDArgs[] = { 685 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 686 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 687 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 688 Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, attrMDArgs)); 689 } 690 } 691 692 /// Determine whether the function F ends with a return stmt. 693 static bool endsWithReturn(const Decl* F) { 694 const Stmt *Body = nullptr; 695 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F)) 696 Body = FD->getBody(); 697 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F)) 698 Body = OMD->getBody(); 699 700 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 701 auto LastStmt = CS->body_rbegin(); 702 if (LastStmt != CS->body_rend()) 703 return isa<ReturnStmt>(*LastStmt); 704 } 705 return false; 706 } 707 708 void CodeGenFunction::StartFunction(GlobalDecl GD, 709 QualType RetTy, 710 llvm::Function *Fn, 711 const CGFunctionInfo &FnInfo, 712 const FunctionArgList &Args, 713 SourceLocation Loc, 714 SourceLocation StartLoc) { 715 assert(!CurFn && 716 "Do not use a CodeGenFunction object for more than one function"); 717 718 const Decl *D = GD.getDecl(); 719 720 DidCallStackSave = false; 721 CurCodeDecl = D; 722 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 723 if (FD->usesSEHTry()) 724 CurSEHParent = FD; 725 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr); 726 FnRetTy = RetTy; 727 CurFn = Fn; 728 CurFnInfo = &FnInfo; 729 assert(CurFn->isDeclaration() && "Function already has body?"); 730 731 if (CGM.isInSanitizerBlacklist(Fn, Loc)) 732 SanOpts.clear(); 733 734 if (D) { 735 // Apply the no_sanitize* attributes to SanOpts. 736 for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) 737 SanOpts.Mask &= ~Attr->getMask(); 738 } 739 740 // Apply sanitizer attributes to the function. 741 if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress)) 742 Fn->addFnAttr(llvm::Attribute::SanitizeAddress); 743 if (SanOpts.has(SanitizerKind::Thread)) 744 Fn->addFnAttr(llvm::Attribute::SanitizeThread); 745 if (SanOpts.has(SanitizerKind::Memory)) 746 Fn->addFnAttr(llvm::Attribute::SanitizeMemory); 747 if (SanOpts.has(SanitizerKind::SafeStack)) 748 Fn->addFnAttr(llvm::Attribute::SafeStack); 749 750 // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize, 751 // .cxx_destruct and all of their calees at run time. 752 if (SanOpts.has(SanitizerKind::Thread)) { 753 if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) { 754 IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0); 755 if (OMD->getMethodFamily() == OMF_dealloc || 756 OMD->getMethodFamily() == OMF_initialize || 757 (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) { 758 Fn->addFnAttr("sanitize_thread_no_checking_at_run_time"); 759 Fn->removeFnAttr(llvm::Attribute::SanitizeThread); 760 } 761 } 762 } 763 764 // Apply xray attributes to the function (as a string, for now) 765 if (D && ShouldXRayInstrumentFunction()) { 766 if (const auto *XRayAttr = D->getAttr<XRayInstrumentAttr>()) { 767 if (XRayAttr->alwaysXRayInstrument()) 768 Fn->addFnAttr("function-instrument", "xray-always"); 769 if (XRayAttr->neverXRayInstrument()) 770 Fn->addFnAttr("function-instrument", "xray-never"); 771 } else { 772 Fn->addFnAttr( 773 "xray-instruction-threshold", 774 llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold)); 775 } 776 } 777 778 // Pass inline keyword to optimizer if it appears explicitly on any 779 // declaration. Also, in the case of -fno-inline attach NoInline 780 // attribute to all functions that are not marked AlwaysInline, or 781 // to all functions that are not marked inline or implicitly inline 782 // in the case of -finline-hint-functions. 783 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 784 const CodeGenOptions& CodeGenOpts = CGM.getCodeGenOpts(); 785 if (!CodeGenOpts.NoInline) { 786 for (auto RI : FD->redecls()) 787 if (RI->isInlineSpecified()) { 788 Fn->addFnAttr(llvm::Attribute::InlineHint); 789 break; 790 } 791 if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyHintInlining && 792 !FD->isInlined() && !Fn->hasFnAttribute(llvm::Attribute::InlineHint)) 793 Fn->addFnAttr(llvm::Attribute::NoInline); 794 } else if (!FD->hasAttr<AlwaysInlineAttr>()) 795 Fn->addFnAttr(llvm::Attribute::NoInline); 796 if (CGM.getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 797 CGM.getOpenMPRuntime().emitDeclareSimdFunction(FD, Fn); 798 } 799 800 // Add no-jump-tables value. 801 Fn->addFnAttr("no-jump-tables", 802 llvm::toStringRef(CGM.getCodeGenOpts().NoUseJumpTables)); 803 804 if (getLangOpts().OpenCL) { 805 // Add metadata for a kernel function. 806 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 807 EmitOpenCLKernelMetadata(FD, Fn); 808 } 809 810 // If we are checking function types, emit a function type signature as 811 // prologue data. 812 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) { 813 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 814 if (llvm::Constant *PrologueSig = 815 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { 816 llvm::Constant *FTRTTIConst = 817 CGM.GetAddrOfRTTIDescriptor(FD->getType(), /*ForEH=*/true); 818 llvm::Constant *PrologueStructElems[] = { PrologueSig, FTRTTIConst }; 819 llvm::Constant *PrologueStructConst = 820 llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true); 821 Fn->setPrologueData(PrologueStructConst); 822 } 823 } 824 } 825 826 // If we're in C++ mode and the function name is "main", it is guaranteed 827 // to be norecurse by the standard (3.6.1.3 "The function main shall not be 828 // used within a program"). 829 if (getLangOpts().CPlusPlus) 830 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 831 if (FD->isMain()) 832 Fn->addFnAttr(llvm::Attribute::NoRecurse); 833 834 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 835 836 // Create a marker to make it easy to insert allocas into the entryblock 837 // later. Don't create this with the builder, because we don't want it 838 // folded. 839 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 840 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB); 841 842 ReturnBlock = getJumpDestInCurrentScope("return"); 843 844 Builder.SetInsertPoint(EntryBB); 845 846 // Emit subprogram debug descriptor. 847 if (CGDebugInfo *DI = getDebugInfo()) { 848 // Reconstruct the type from the argument list so that implicit parameters, 849 // such as 'this' and 'vtt', show up in the debug info. Preserve the calling 850 // convention. 851 CallingConv CC = CallingConv::CC_C; 852 if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 853 if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>()) 854 CC = SrcFnTy->getCallConv(); 855 SmallVector<QualType, 16> ArgTypes; 856 for (const VarDecl *VD : Args) 857 ArgTypes.push_back(VD->getType()); 858 QualType FnType = getContext().getFunctionType( 859 RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC)); 860 DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, Builder); 861 } 862 863 if (ShouldInstrumentFunction()) 864 EmitFunctionInstrumentation("__cyg_profile_func_enter"); 865 866 // Since emitting the mcount call here impacts optimizations such as function 867 // inlining, we just add an attribute to insert a mcount call in backend. 868 // The attribute "counting-function" is set to mcount function name which is 869 // architecture dependent. 870 if (CGM.getCodeGenOpts().InstrumentForProfiling) 871 Fn->addFnAttr("counting-function", getTarget().getMCountName()); 872 873 if (RetTy->isVoidType()) { 874 // Void type; nothing to return. 875 ReturnValue = Address::invalid(); 876 877 // Count the implicit return. 878 if (!endsWithReturn(D)) 879 ++NumReturnExprs; 880 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect && 881 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 882 // Indirect aggregate return; emit returned value directly into sret slot. 883 // This reduces code size, and affects correctness in C++. 884 auto AI = CurFn->arg_begin(); 885 if (CurFnInfo->getReturnInfo().isSRetAfterThis()) 886 ++AI; 887 ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign()); 888 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && 889 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 890 // Load the sret pointer from the argument struct and return into that. 891 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); 892 llvm::Function::arg_iterator EI = CurFn->arg_end(); 893 --EI; 894 llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx); 895 Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result"); 896 ReturnValue = Address(Addr, getNaturalTypeAlignment(RetTy)); 897 } else { 898 ReturnValue = CreateIRTemp(RetTy, "retval"); 899 900 // Tell the epilog emitter to autorelease the result. We do this 901 // now so that various specialized functions can suppress it 902 // during their IR-generation. 903 if (getLangOpts().ObjCAutoRefCount && 904 !CurFnInfo->isReturnsRetained() && 905 RetTy->isObjCRetainableType()) 906 AutoreleaseResult = true; 907 } 908 909 EmitStartEHSpec(CurCodeDecl); 910 911 PrologueCleanupDepth = EHStack.stable_begin(); 912 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 913 914 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 915 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 916 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 917 if (MD->getParent()->isLambda() && 918 MD->getOverloadedOperator() == OO_Call) { 919 // We're in a lambda; figure out the captures. 920 MD->getParent()->getCaptureFields(LambdaCaptureFields, 921 LambdaThisCaptureField); 922 if (LambdaThisCaptureField) { 923 // If the lambda captures the object referred to by '*this' - either by 924 // value or by reference, make sure CXXThisValue points to the correct 925 // object. 926 927 // Get the lvalue for the field (which is a copy of the enclosing object 928 // or contains the address of the enclosing object). 929 LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 930 if (!LambdaThisCaptureField->getType()->isPointerType()) { 931 // If the enclosing object was captured by value, just use its address. 932 CXXThisValue = ThisFieldLValue.getAddress().getPointer(); 933 } else { 934 // Load the lvalue pointed to by the field, since '*this' was captured 935 // by reference. 936 CXXThisValue = 937 EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal(); 938 } 939 } 940 for (auto *FD : MD->getParent()->fields()) { 941 if (FD->hasCapturedVLAType()) { 942 auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD), 943 SourceLocation()).getScalarVal(); 944 auto VAT = FD->getCapturedVLAType(); 945 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 946 } 947 } 948 } else { 949 // Not in a lambda; just use 'this' from the method. 950 // FIXME: Should we generate a new load for each use of 'this'? The 951 // fast register allocator would be happier... 952 CXXThisValue = CXXABIThisValue; 953 } 954 } 955 956 // If any of the arguments have a variably modified type, make sure to 957 // emit the type size. 958 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 959 i != e; ++i) { 960 const VarDecl *VD = *i; 961 962 // Dig out the type as written from ParmVarDecls; it's unclear whether 963 // the standard (C99 6.9.1p10) requires this, but we're following the 964 // precedent set by gcc. 965 QualType Ty; 966 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 967 Ty = PVD->getOriginalType(); 968 else 969 Ty = VD->getType(); 970 971 if (Ty->isVariablyModifiedType()) 972 EmitVariablyModifiedType(Ty); 973 } 974 // Emit a location at the end of the prologue. 975 if (CGDebugInfo *DI = getDebugInfo()) 976 DI->EmitLocation(Builder, StartLoc); 977 } 978 979 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args, 980 const Stmt *Body) { 981 incrementProfileCounter(Body); 982 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 983 EmitCompoundStmtWithoutScope(*S); 984 else 985 EmitStmt(Body); 986 } 987 988 /// When instrumenting to collect profile data, the counts for some blocks 989 /// such as switch cases need to not include the fall-through counts, so 990 /// emit a branch around the instrumentation code. When not instrumenting, 991 /// this just calls EmitBlock(). 992 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, 993 const Stmt *S) { 994 llvm::BasicBlock *SkipCountBB = nullptr; 995 if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) { 996 // When instrumenting for profiling, the fallthrough to certain 997 // statements needs to skip over the instrumentation code so that we 998 // get an accurate count. 999 SkipCountBB = createBasicBlock("skipcount"); 1000 EmitBranch(SkipCountBB); 1001 } 1002 EmitBlock(BB); 1003 uint64_t CurrentCount = getCurrentProfileCount(); 1004 incrementProfileCounter(S); 1005 setCurrentProfileCount(getCurrentProfileCount() + CurrentCount); 1006 if (SkipCountBB) 1007 EmitBlock(SkipCountBB); 1008 } 1009 1010 /// Tries to mark the given function nounwind based on the 1011 /// non-existence of any throwing calls within it. We believe this is 1012 /// lightweight enough to do at -O0. 1013 static void TryMarkNoThrow(llvm::Function *F) { 1014 // LLVM treats 'nounwind' on a function as part of the type, so we 1015 // can't do this on functions that can be overwritten. 1016 if (F->isInterposable()) return; 1017 1018 for (llvm::BasicBlock &BB : *F) 1019 for (llvm::Instruction &I : BB) 1020 if (I.mayThrow()) 1021 return; 1022 1023 F->setDoesNotThrow(); 1024 } 1025 1026 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD, 1027 FunctionArgList &Args) { 1028 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1029 QualType ResTy = FD->getReturnType(); 1030 1031 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 1032 if (MD && MD->isInstance()) { 1033 if (CGM.getCXXABI().HasThisReturn(GD)) 1034 ResTy = MD->getThisType(getContext()); 1035 else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) 1036 ResTy = CGM.getContext().VoidPtrTy; 1037 CGM.getCXXABI().buildThisParam(*this, Args); 1038 } 1039 1040 // The base version of an inheriting constructor whose constructed base is a 1041 // virtual base is not passed any arguments (because it doesn't actually call 1042 // the inherited constructor). 1043 bool PassedParams = true; 1044 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 1045 if (auto Inherited = CD->getInheritedConstructor()) 1046 PassedParams = 1047 getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType()); 1048 1049 if (PassedParams) { 1050 for (auto *Param : FD->parameters()) { 1051 Args.push_back(Param); 1052 if (!Param->hasAttr<PassObjectSizeAttr>()) 1053 continue; 1054 1055 IdentifierInfo *NoID = nullptr; 1056 auto *Implicit = ImplicitParamDecl::Create( 1057 getContext(), Param->getDeclContext(), Param->getLocation(), NoID, 1058 getContext().getSizeType()); 1059 SizeArguments[Param] = Implicit; 1060 Args.push_back(Implicit); 1061 } 1062 } 1063 1064 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 1065 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 1066 1067 return ResTy; 1068 } 1069 1070 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1071 const CGFunctionInfo &FnInfo) { 1072 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1073 CurGD = GD; 1074 1075 FunctionArgList Args; 1076 QualType ResTy = BuildFunctionArgList(GD, Args); 1077 1078 // Check if we should generate debug info for this function. 1079 if (FD->hasAttr<NoDebugAttr>()) 1080 DebugInfo = nullptr; // disable debug info indefinitely for this function 1081 1082 SourceRange BodyRange; 1083 if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange(); 1084 CurEHLocation = BodyRange.getEnd(); 1085 1086 // Use the location of the start of the function to determine where 1087 // the function definition is located. By default use the location 1088 // of the declaration as the location for the subprogram. A function 1089 // may lack a declaration in the source code if it is created by code 1090 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). 1091 SourceLocation Loc = FD->getLocation(); 1092 1093 // If this is a function specialization then use the pattern body 1094 // as the location for the function. 1095 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) 1096 if (SpecDecl->hasBody(SpecDecl)) 1097 Loc = SpecDecl->getLocation(); 1098 1099 Stmt *Body = FD->getBody(); 1100 1101 // Initialize helper which will detect jumps which can cause invalid lifetime 1102 // markers. 1103 if (Body && ShouldEmitLifetimeMarkers) 1104 Bypasses.Init(Body); 1105 1106 // Emit the standard function prologue. 1107 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin()); 1108 1109 // Generate the body of the function. 1110 PGO.assignRegionCounters(GD, CurFn); 1111 if (isa<CXXDestructorDecl>(FD)) 1112 EmitDestructorBody(Args); 1113 else if (isa<CXXConstructorDecl>(FD)) 1114 EmitConstructorBody(Args); 1115 else if (getLangOpts().CUDA && 1116 !getLangOpts().CUDAIsDevice && 1117 FD->hasAttr<CUDAGlobalAttr>()) 1118 CGM.getCUDARuntime().emitDeviceStub(*this, Args); 1119 else if (isa<CXXConversionDecl>(FD) && 1120 cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) { 1121 // The lambda conversion to block pointer is special; the semantics can't be 1122 // expressed in the AST, so IRGen needs to special-case it. 1123 EmitLambdaToBlockPointerBody(Args); 1124 } else if (isa<CXXMethodDecl>(FD) && 1125 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 1126 // The lambda static invoker function is special, because it forwards or 1127 // clones the body of the function call operator (but is actually static). 1128 EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD)); 1129 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 1130 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 1131 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 1132 // Implicit copy-assignment gets the same special treatment as implicit 1133 // copy-constructors. 1134 emitImplicitAssignmentOperatorBody(Args); 1135 } else if (Body) { 1136 EmitFunctionBody(Args, Body); 1137 } else 1138 llvm_unreachable("no definition for emitted function"); 1139 1140 // C++11 [stmt.return]p2: 1141 // Flowing off the end of a function [...] results in undefined behavior in 1142 // a value-returning function. 1143 // C11 6.9.1p12: 1144 // If the '}' that terminates a function is reached, and the value of the 1145 // function call is used by the caller, the behavior is undefined. 1146 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock && 1147 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { 1148 if (SanOpts.has(SanitizerKind::Return)) { 1149 SanitizerScope SanScope(this); 1150 llvm::Value *IsFalse = Builder.getFalse(); 1151 EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return), 1152 SanitizerHandler::MissingReturn, 1153 EmitCheckSourceLocation(FD->getLocation()), None); 1154 } else if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 1155 EmitTrapCall(llvm::Intrinsic::trap); 1156 } 1157 Builder.CreateUnreachable(); 1158 Builder.ClearInsertionPoint(); 1159 } 1160 1161 // Emit the standard function epilogue. 1162 FinishFunction(BodyRange.getEnd()); 1163 1164 // If we haven't marked the function nothrow through other means, do 1165 // a quick pass now to see if we can. 1166 if (!CurFn->doesNotThrow()) 1167 TryMarkNoThrow(CurFn); 1168 } 1169 1170 /// ContainsLabel - Return true if the statement contains a label in it. If 1171 /// this statement is not executed normally, it not containing a label means 1172 /// that we can just remove the code. 1173 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 1174 // Null statement, not a label! 1175 if (!S) return false; 1176 1177 // If this is a label, we have to emit the code, consider something like: 1178 // if (0) { ... foo: bar(); } goto foo; 1179 // 1180 // TODO: If anyone cared, we could track __label__'s, since we know that you 1181 // can't jump to one from outside their declared region. 1182 if (isa<LabelStmt>(S)) 1183 return true; 1184 1185 // If this is a case/default statement, and we haven't seen a switch, we have 1186 // to emit the code. 1187 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 1188 return true; 1189 1190 // If this is a switch statement, we want to ignore cases below it. 1191 if (isa<SwitchStmt>(S)) 1192 IgnoreCaseStmts = true; 1193 1194 // Scan subexpressions for verboten labels. 1195 for (const Stmt *SubStmt : S->children()) 1196 if (ContainsLabel(SubStmt, IgnoreCaseStmts)) 1197 return true; 1198 1199 return false; 1200 } 1201 1202 /// containsBreak - Return true if the statement contains a break out of it. 1203 /// If the statement (recursively) contains a switch or loop with a break 1204 /// inside of it, this is fine. 1205 bool CodeGenFunction::containsBreak(const Stmt *S) { 1206 // Null statement, not a label! 1207 if (!S) return false; 1208 1209 // If this is a switch or loop that defines its own break scope, then we can 1210 // include it and anything inside of it. 1211 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 1212 isa<ForStmt>(S)) 1213 return false; 1214 1215 if (isa<BreakStmt>(S)) 1216 return true; 1217 1218 // Scan subexpressions for verboten breaks. 1219 for (const Stmt *SubStmt : S->children()) 1220 if (containsBreak(SubStmt)) 1221 return true; 1222 1223 return false; 1224 } 1225 1226 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) { 1227 if (!S) return false; 1228 1229 // Some statement kinds add a scope and thus never add a decl to the current 1230 // scope. Note, this list is longer than the list of statements that might 1231 // have an unscoped decl nested within them, but this way is conservatively 1232 // correct even if more statement kinds are added. 1233 if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) || 1234 isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) || 1235 isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) || 1236 isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S)) 1237 return false; 1238 1239 if (isa<DeclStmt>(S)) 1240 return true; 1241 1242 for (const Stmt *SubStmt : S->children()) 1243 if (mightAddDeclToScope(SubStmt)) 1244 return true; 1245 1246 return false; 1247 } 1248 1249 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1250 /// to a constant, or if it does but contains a label, return false. If it 1251 /// constant folds return true and set the boolean result in Result. 1252 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1253 bool &ResultBool, 1254 bool AllowLabels) { 1255 llvm::APSInt ResultInt; 1256 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels)) 1257 return false; 1258 1259 ResultBool = ResultInt.getBoolValue(); 1260 return true; 1261 } 1262 1263 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1264 /// to a constant, or if it does but contains a label, return false. If it 1265 /// constant folds return true and set the folded value. 1266 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1267 llvm::APSInt &ResultInt, 1268 bool AllowLabels) { 1269 // FIXME: Rename and handle conversion of other evaluatable things 1270 // to bool. 1271 llvm::APSInt Int; 1272 if (!Cond->EvaluateAsInt(Int, getContext())) 1273 return false; // Not foldable, not integer or not fully evaluatable. 1274 1275 if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond)) 1276 return false; // Contains a label. 1277 1278 ResultInt = Int; 1279 return true; 1280 } 1281 1282 1283 1284 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 1285 /// statement) to the specified blocks. Based on the condition, this might try 1286 /// to simplify the codegen of the conditional based on the branch. 1287 /// 1288 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 1289 llvm::BasicBlock *TrueBlock, 1290 llvm::BasicBlock *FalseBlock, 1291 uint64_t TrueCount) { 1292 Cond = Cond->IgnoreParens(); 1293 1294 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 1295 1296 // Handle X && Y in a condition. 1297 if (CondBOp->getOpcode() == BO_LAnd) { 1298 // If we have "1 && X", simplify the code. "0 && X" would have constant 1299 // folded if the case was simple enough. 1300 bool ConstantBool = false; 1301 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1302 ConstantBool) { 1303 // br(1 && X) -> br(X). 1304 incrementProfileCounter(CondBOp); 1305 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1306 TrueCount); 1307 } 1308 1309 // If we have "X && 1", simplify the code to use an uncond branch. 1310 // "X && 0" would have been constant folded to 0. 1311 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1312 ConstantBool) { 1313 // br(X && 1) -> br(X). 1314 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1315 TrueCount); 1316 } 1317 1318 // Emit the LHS as a conditional. If the LHS conditional is false, we 1319 // want to jump to the FalseBlock. 1320 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 1321 // The counter tells us how often we evaluate RHS, and all of TrueCount 1322 // can be propagated to that branch. 1323 uint64_t RHSCount = getProfileCount(CondBOp->getRHS()); 1324 1325 ConditionalEvaluation eval(*this); 1326 { 1327 ApplyDebugLocation DL(*this, Cond); 1328 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount); 1329 EmitBlock(LHSTrue); 1330 } 1331 1332 incrementProfileCounter(CondBOp); 1333 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1334 1335 // Any temporaries created here are conditional. 1336 eval.begin(*this); 1337 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount); 1338 eval.end(*this); 1339 1340 return; 1341 } 1342 1343 if (CondBOp->getOpcode() == BO_LOr) { 1344 // If we have "0 || X", simplify the code. "1 || X" would have constant 1345 // folded if the case was simple enough. 1346 bool ConstantBool = false; 1347 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1348 !ConstantBool) { 1349 // br(0 || X) -> br(X). 1350 incrementProfileCounter(CondBOp); 1351 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1352 TrueCount); 1353 } 1354 1355 // If we have "X || 0", simplify the code to use an uncond branch. 1356 // "X || 1" would have been constant folded to 1. 1357 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1358 !ConstantBool) { 1359 // br(X || 0) -> br(X). 1360 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1361 TrueCount); 1362 } 1363 1364 // Emit the LHS as a conditional. If the LHS conditional is true, we 1365 // want to jump to the TrueBlock. 1366 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 1367 // We have the count for entry to the RHS and for the whole expression 1368 // being true, so we can divy up True count between the short circuit and 1369 // the RHS. 1370 uint64_t LHSCount = 1371 getCurrentProfileCount() - getProfileCount(CondBOp->getRHS()); 1372 uint64_t RHSCount = TrueCount - LHSCount; 1373 1374 ConditionalEvaluation eval(*this); 1375 { 1376 ApplyDebugLocation DL(*this, Cond); 1377 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount); 1378 EmitBlock(LHSFalse); 1379 } 1380 1381 incrementProfileCounter(CondBOp); 1382 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1383 1384 // Any temporaries created here are conditional. 1385 eval.begin(*this); 1386 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount); 1387 1388 eval.end(*this); 1389 1390 return; 1391 } 1392 } 1393 1394 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 1395 // br(!x, t, f) -> br(x, f, t) 1396 if (CondUOp->getOpcode() == UO_LNot) { 1397 // Negate the count. 1398 uint64_t FalseCount = getCurrentProfileCount() - TrueCount; 1399 // Negate the condition and swap the destination blocks. 1400 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, 1401 FalseCount); 1402 } 1403 } 1404 1405 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 1406 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 1407 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1408 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1409 1410 ConditionalEvaluation cond(*this); 1411 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, 1412 getProfileCount(CondOp)); 1413 1414 // When computing PGO branch weights, we only know the overall count for 1415 // the true block. This code is essentially doing tail duplication of the 1416 // naive code-gen, introducing new edges for which counts are not 1417 // available. Divide the counts proportionally between the LHS and RHS of 1418 // the conditional operator. 1419 uint64_t LHSScaledTrueCount = 0; 1420 if (TrueCount) { 1421 double LHSRatio = 1422 getProfileCount(CondOp) / (double)getCurrentProfileCount(); 1423 LHSScaledTrueCount = TrueCount * LHSRatio; 1424 } 1425 1426 cond.begin(*this); 1427 EmitBlock(LHSBlock); 1428 incrementProfileCounter(CondOp); 1429 { 1430 ApplyDebugLocation DL(*this, Cond); 1431 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, 1432 LHSScaledTrueCount); 1433 } 1434 cond.end(*this); 1435 1436 cond.begin(*this); 1437 EmitBlock(RHSBlock); 1438 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, 1439 TrueCount - LHSScaledTrueCount); 1440 cond.end(*this); 1441 1442 return; 1443 } 1444 1445 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 1446 // Conditional operator handling can give us a throw expression as a 1447 // condition for a case like: 1448 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 1449 // Fold this to: 1450 // br(c, throw x, br(y, t, f)) 1451 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 1452 return; 1453 } 1454 1455 // If the branch has a condition wrapped by __builtin_unpredictable, 1456 // create metadata that specifies that the branch is unpredictable. 1457 // Don't bother if not optimizing because that metadata would not be used. 1458 llvm::MDNode *Unpredictable = nullptr; 1459 auto *Call = dyn_cast<CallExpr>(Cond); 1460 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 1461 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 1462 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 1463 llvm::MDBuilder MDHelper(getLLVMContext()); 1464 Unpredictable = MDHelper.createUnpredictable(); 1465 } 1466 } 1467 1468 // Create branch weights based on the number of times we get here and the 1469 // number of times the condition should be true. 1470 uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount); 1471 llvm::MDNode *Weights = 1472 createProfileWeights(TrueCount, CurrentCount - TrueCount); 1473 1474 // Emit the code with the fully general case. 1475 llvm::Value *CondV; 1476 { 1477 ApplyDebugLocation DL(*this, Cond); 1478 CondV = EvaluateExprAsBool(Cond); 1479 } 1480 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable); 1481 } 1482 1483 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1484 /// specified stmt yet. 1485 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 1486 CGM.ErrorUnsupported(S, Type); 1487 } 1488 1489 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 1490 /// variable-length array whose elements have a non-zero bit-pattern. 1491 /// 1492 /// \param baseType the inner-most element type of the array 1493 /// \param src - a char* pointing to the bit-pattern for a single 1494 /// base element of the array 1495 /// \param sizeInChars - the total size of the VLA, in chars 1496 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 1497 Address dest, Address src, 1498 llvm::Value *sizeInChars) { 1499 CGBuilderTy &Builder = CGF.Builder; 1500 1501 CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType); 1502 llvm::Value *baseSizeInChars 1503 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity()); 1504 1505 Address begin = 1506 Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin"); 1507 llvm::Value *end = 1508 Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end"); 1509 1510 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 1511 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 1512 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 1513 1514 // Make a loop over the VLA. C99 guarantees that the VLA element 1515 // count must be nonzero. 1516 CGF.EmitBlock(loopBB); 1517 1518 llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur"); 1519 cur->addIncoming(begin.getPointer(), originBB); 1520 1521 CharUnits curAlign = 1522 dest.getAlignment().alignmentOfArrayElement(baseSize); 1523 1524 // memcpy the individual element bit-pattern. 1525 Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars, 1526 /*volatile*/ false); 1527 1528 // Go to the next element. 1529 llvm::Value *next = 1530 Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next"); 1531 1532 // Leave if that's the end of the VLA. 1533 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 1534 Builder.CreateCondBr(done, contBB, loopBB); 1535 cur->addIncoming(next, loopBB); 1536 1537 CGF.EmitBlock(contBB); 1538 } 1539 1540 void 1541 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) { 1542 // Ignore empty classes in C++. 1543 if (getLangOpts().CPlusPlus) { 1544 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1545 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 1546 return; 1547 } 1548 } 1549 1550 // Cast the dest ptr to the appropriate i8 pointer type. 1551 if (DestPtr.getElementType() != Int8Ty) 1552 DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty); 1553 1554 // Get size and alignment info for this aggregate. 1555 CharUnits size = getContext().getTypeSizeInChars(Ty); 1556 1557 llvm::Value *SizeVal; 1558 const VariableArrayType *vla; 1559 1560 // Don't bother emitting a zero-byte memset. 1561 if (size.isZero()) { 1562 // But note that getTypeInfo returns 0 for a VLA. 1563 if (const VariableArrayType *vlaType = 1564 dyn_cast_or_null<VariableArrayType>( 1565 getContext().getAsArrayType(Ty))) { 1566 QualType eltType; 1567 llvm::Value *numElts; 1568 std::tie(numElts, eltType) = getVLASize(vlaType); 1569 1570 SizeVal = numElts; 1571 CharUnits eltSize = getContext().getTypeSizeInChars(eltType); 1572 if (!eltSize.isOne()) 1573 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 1574 vla = vlaType; 1575 } else { 1576 return; 1577 } 1578 } else { 1579 SizeVal = CGM.getSize(size); 1580 vla = nullptr; 1581 } 1582 1583 // If the type contains a pointer to data member we can't memset it to zero. 1584 // Instead, create a null constant and copy it to the destination. 1585 // TODO: there are other patterns besides zero that we can usefully memset, 1586 // like -1, which happens to be the pattern used by member-pointers. 1587 if (!CGM.getTypes().isZeroInitializable(Ty)) { 1588 // For a VLA, emit a single element, then splat that over the VLA. 1589 if (vla) Ty = getContext().getBaseElementType(vla); 1590 1591 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 1592 1593 llvm::GlobalVariable *NullVariable = 1594 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 1595 /*isConstant=*/true, 1596 llvm::GlobalVariable::PrivateLinkage, 1597 NullConstant, Twine()); 1598 CharUnits NullAlign = DestPtr.getAlignment(); 1599 NullVariable->setAlignment(NullAlign.getQuantity()); 1600 Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()), 1601 NullAlign); 1602 1603 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 1604 1605 // Get and call the appropriate llvm.memcpy overload. 1606 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false); 1607 return; 1608 } 1609 1610 // Otherwise, just memset the whole thing to zero. This is legal 1611 // because in LLVM, all default initializers (other than the ones we just 1612 // handled above) are guaranteed to have a bit pattern of all zeros. 1613 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false); 1614 } 1615 1616 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 1617 // Make sure that there is a block for the indirect goto. 1618 if (!IndirectBranch) 1619 GetIndirectGotoBlock(); 1620 1621 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 1622 1623 // Make sure the indirect branch includes all of the address-taken blocks. 1624 IndirectBranch->addDestination(BB); 1625 return llvm::BlockAddress::get(CurFn, BB); 1626 } 1627 1628 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 1629 // If we already made the indirect branch for indirect goto, return its block. 1630 if (IndirectBranch) return IndirectBranch->getParent(); 1631 1632 CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto")); 1633 1634 // Create the PHI node that indirect gotos will add entries to. 1635 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 1636 "indirect.goto.dest"); 1637 1638 // Create the indirect branch instruction. 1639 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 1640 return IndirectBranch->getParent(); 1641 } 1642 1643 /// Computes the length of an array in elements, as well as the base 1644 /// element type and a properly-typed first element pointer. 1645 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 1646 QualType &baseType, 1647 Address &addr) { 1648 const ArrayType *arrayType = origArrayType; 1649 1650 // If it's a VLA, we have to load the stored size. Note that 1651 // this is the size of the VLA in bytes, not its size in elements. 1652 llvm::Value *numVLAElements = nullptr; 1653 if (isa<VariableArrayType>(arrayType)) { 1654 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first; 1655 1656 // Walk into all VLAs. This doesn't require changes to addr, 1657 // which has type T* where T is the first non-VLA element type. 1658 do { 1659 QualType elementType = arrayType->getElementType(); 1660 arrayType = getContext().getAsArrayType(elementType); 1661 1662 // If we only have VLA components, 'addr' requires no adjustment. 1663 if (!arrayType) { 1664 baseType = elementType; 1665 return numVLAElements; 1666 } 1667 } while (isa<VariableArrayType>(arrayType)); 1668 1669 // We get out here only if we find a constant array type 1670 // inside the VLA. 1671 } 1672 1673 // We have some number of constant-length arrays, so addr should 1674 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 1675 // down to the first element of addr. 1676 SmallVector<llvm::Value*, 8> gepIndices; 1677 1678 // GEP down to the array type. 1679 llvm::ConstantInt *zero = Builder.getInt32(0); 1680 gepIndices.push_back(zero); 1681 1682 uint64_t countFromCLAs = 1; 1683 QualType eltType; 1684 1685 llvm::ArrayType *llvmArrayType = 1686 dyn_cast<llvm::ArrayType>(addr.getElementType()); 1687 while (llvmArrayType) { 1688 assert(isa<ConstantArrayType>(arrayType)); 1689 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 1690 == llvmArrayType->getNumElements()); 1691 1692 gepIndices.push_back(zero); 1693 countFromCLAs *= llvmArrayType->getNumElements(); 1694 eltType = arrayType->getElementType(); 1695 1696 llvmArrayType = 1697 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 1698 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 1699 assert((!llvmArrayType || arrayType) && 1700 "LLVM and Clang types are out-of-synch"); 1701 } 1702 1703 if (arrayType) { 1704 // From this point onwards, the Clang array type has been emitted 1705 // as some other type (probably a packed struct). Compute the array 1706 // size, and just emit the 'begin' expression as a bitcast. 1707 while (arrayType) { 1708 countFromCLAs *= 1709 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 1710 eltType = arrayType->getElementType(); 1711 arrayType = getContext().getAsArrayType(eltType); 1712 } 1713 1714 llvm::Type *baseType = ConvertType(eltType); 1715 addr = Builder.CreateElementBitCast(addr, baseType, "array.begin"); 1716 } else { 1717 // Create the actual GEP. 1718 addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(), 1719 gepIndices, "array.begin"), 1720 addr.getAlignment()); 1721 } 1722 1723 baseType = eltType; 1724 1725 llvm::Value *numElements 1726 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 1727 1728 // If we had any VLA dimensions, factor them in. 1729 if (numVLAElements) 1730 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 1731 1732 return numElements; 1733 } 1734 1735 std::pair<llvm::Value*, QualType> 1736 CodeGenFunction::getVLASize(QualType type) { 1737 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1738 assert(vla && "type was not a variable array type!"); 1739 return getVLASize(vla); 1740 } 1741 1742 std::pair<llvm::Value*, QualType> 1743 CodeGenFunction::getVLASize(const VariableArrayType *type) { 1744 // The number of elements so far; always size_t. 1745 llvm::Value *numElements = nullptr; 1746 1747 QualType elementType; 1748 do { 1749 elementType = type->getElementType(); 1750 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 1751 assert(vlaSize && "no size for VLA!"); 1752 assert(vlaSize->getType() == SizeTy); 1753 1754 if (!numElements) { 1755 numElements = vlaSize; 1756 } else { 1757 // It's undefined behavior if this wraps around, so mark it that way. 1758 // FIXME: Teach -fsanitize=undefined to trap this. 1759 numElements = Builder.CreateNUWMul(numElements, vlaSize); 1760 } 1761 } while ((type = getContext().getAsVariableArrayType(elementType))); 1762 1763 return std::pair<llvm::Value*,QualType>(numElements, elementType); 1764 } 1765 1766 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 1767 assert(type->isVariablyModifiedType() && 1768 "Must pass variably modified type to EmitVLASizes!"); 1769 1770 EnsureInsertPoint(); 1771 1772 // We're going to walk down into the type and look for VLA 1773 // expressions. 1774 do { 1775 assert(type->isVariablyModifiedType()); 1776 1777 const Type *ty = type.getTypePtr(); 1778 switch (ty->getTypeClass()) { 1779 1780 #define TYPE(Class, Base) 1781 #define ABSTRACT_TYPE(Class, Base) 1782 #define NON_CANONICAL_TYPE(Class, Base) 1783 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 1784 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 1785 #include "clang/AST/TypeNodes.def" 1786 llvm_unreachable("unexpected dependent type!"); 1787 1788 // These types are never variably-modified. 1789 case Type::Builtin: 1790 case Type::Complex: 1791 case Type::Vector: 1792 case Type::ExtVector: 1793 case Type::Record: 1794 case Type::Enum: 1795 case Type::Elaborated: 1796 case Type::TemplateSpecialization: 1797 case Type::ObjCTypeParam: 1798 case Type::ObjCObject: 1799 case Type::ObjCInterface: 1800 case Type::ObjCObjectPointer: 1801 llvm_unreachable("type class is never variably-modified!"); 1802 1803 case Type::Adjusted: 1804 type = cast<AdjustedType>(ty)->getAdjustedType(); 1805 break; 1806 1807 case Type::Decayed: 1808 type = cast<DecayedType>(ty)->getPointeeType(); 1809 break; 1810 1811 case Type::Pointer: 1812 type = cast<PointerType>(ty)->getPointeeType(); 1813 break; 1814 1815 case Type::BlockPointer: 1816 type = cast<BlockPointerType>(ty)->getPointeeType(); 1817 break; 1818 1819 case Type::LValueReference: 1820 case Type::RValueReference: 1821 type = cast<ReferenceType>(ty)->getPointeeType(); 1822 break; 1823 1824 case Type::MemberPointer: 1825 type = cast<MemberPointerType>(ty)->getPointeeType(); 1826 break; 1827 1828 case Type::ConstantArray: 1829 case Type::IncompleteArray: 1830 // Losing element qualification here is fine. 1831 type = cast<ArrayType>(ty)->getElementType(); 1832 break; 1833 1834 case Type::VariableArray: { 1835 // Losing element qualification here is fine. 1836 const VariableArrayType *vat = cast<VariableArrayType>(ty); 1837 1838 // Unknown size indication requires no size computation. 1839 // Otherwise, evaluate and record it. 1840 if (const Expr *size = vat->getSizeExpr()) { 1841 // It's possible that we might have emitted this already, 1842 // e.g. with a typedef and a pointer to it. 1843 llvm::Value *&entry = VLASizeMap[size]; 1844 if (!entry) { 1845 llvm::Value *Size = EmitScalarExpr(size); 1846 1847 // C11 6.7.6.2p5: 1848 // If the size is an expression that is not an integer constant 1849 // expression [...] each time it is evaluated it shall have a value 1850 // greater than zero. 1851 if (SanOpts.has(SanitizerKind::VLABound) && 1852 size->getType()->isSignedIntegerType()) { 1853 SanitizerScope SanScope(this); 1854 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); 1855 llvm::Constant *StaticArgs[] = { 1856 EmitCheckSourceLocation(size->getLocStart()), 1857 EmitCheckTypeDescriptor(size->getType()) 1858 }; 1859 EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero), 1860 SanitizerKind::VLABound), 1861 SanitizerHandler::VLABoundNotPositive, StaticArgs, Size); 1862 } 1863 1864 // Always zexting here would be wrong if it weren't 1865 // undefined behavior to have a negative bound. 1866 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); 1867 } 1868 } 1869 type = vat->getElementType(); 1870 break; 1871 } 1872 1873 case Type::FunctionProto: 1874 case Type::FunctionNoProto: 1875 type = cast<FunctionType>(ty)->getReturnType(); 1876 break; 1877 1878 case Type::Paren: 1879 case Type::TypeOf: 1880 case Type::UnaryTransform: 1881 case Type::Attributed: 1882 case Type::SubstTemplateTypeParm: 1883 case Type::PackExpansion: 1884 // Keep walking after single level desugaring. 1885 type = type.getSingleStepDesugaredType(getContext()); 1886 break; 1887 1888 case Type::Typedef: 1889 case Type::Decltype: 1890 case Type::Auto: 1891 // Stop walking: nothing to do. 1892 return; 1893 1894 case Type::TypeOfExpr: 1895 // Stop walking: emit typeof expression. 1896 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 1897 return; 1898 1899 case Type::Atomic: 1900 type = cast<AtomicType>(ty)->getValueType(); 1901 break; 1902 1903 case Type::Pipe: 1904 type = cast<PipeType>(ty)->getElementType(); 1905 break; 1906 } 1907 } while (type->isVariablyModifiedType()); 1908 } 1909 1910 Address CodeGenFunction::EmitVAListRef(const Expr* E) { 1911 if (getContext().getBuiltinVaListType()->isArrayType()) 1912 return EmitPointerWithAlignment(E); 1913 return EmitLValue(E).getAddress(); 1914 } 1915 1916 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) { 1917 return EmitLValue(E).getAddress(); 1918 } 1919 1920 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 1921 const APValue &Init) { 1922 assert(!Init.isUninit() && "Invalid DeclRefExpr initializer!"); 1923 if (CGDebugInfo *Dbg = getDebugInfo()) 1924 if (CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 1925 Dbg->EmitGlobalVariable(E->getDecl(), Init); 1926 } 1927 1928 CodeGenFunction::PeepholeProtection 1929 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 1930 // At the moment, the only aggressive peephole we do in IR gen 1931 // is trunc(zext) folding, but if we add more, we can easily 1932 // extend this protection. 1933 1934 if (!rvalue.isScalar()) return PeepholeProtection(); 1935 llvm::Value *value = rvalue.getScalarVal(); 1936 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 1937 1938 // Just make an extra bitcast. 1939 assert(HaveInsertPoint()); 1940 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 1941 Builder.GetInsertBlock()); 1942 1943 PeepholeProtection protection; 1944 protection.Inst = inst; 1945 return protection; 1946 } 1947 1948 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 1949 if (!protection.Inst) return; 1950 1951 // In theory, we could try to duplicate the peepholes now, but whatever. 1952 protection.Inst->eraseFromParent(); 1953 } 1954 1955 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn, 1956 llvm::Value *AnnotatedVal, 1957 StringRef AnnotationStr, 1958 SourceLocation Location) { 1959 llvm::Value *Args[4] = { 1960 AnnotatedVal, 1961 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 1962 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 1963 CGM.EmitAnnotationLineNo(Location) 1964 }; 1965 return Builder.CreateCall(AnnotationFn, Args); 1966 } 1967 1968 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 1969 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1970 // FIXME We create a new bitcast for every annotation because that's what 1971 // llvm-gcc was doing. 1972 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1973 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 1974 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 1975 I->getAnnotation(), D->getLocation()); 1976 } 1977 1978 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 1979 Address Addr) { 1980 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1981 llvm::Value *V = Addr.getPointer(); 1982 llvm::Type *VTy = V->getType(); 1983 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 1984 CGM.Int8PtrTy); 1985 1986 for (const auto *I : D->specific_attrs<AnnotateAttr>()) { 1987 // FIXME Always emit the cast inst so we can differentiate between 1988 // annotation on the first field of a struct and annotation on the struct 1989 // itself. 1990 if (VTy != CGM.Int8PtrTy) 1991 V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy)); 1992 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation()); 1993 V = Builder.CreateBitCast(V, VTy); 1994 } 1995 1996 return Address(V, Addr.getAlignment()); 1997 } 1998 1999 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 2000 2001 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF) 2002 : CGF(CGF) { 2003 assert(!CGF->IsSanitizerScope); 2004 CGF->IsSanitizerScope = true; 2005 } 2006 2007 CodeGenFunction::SanitizerScope::~SanitizerScope() { 2008 CGF->IsSanitizerScope = false; 2009 } 2010 2011 void CodeGenFunction::InsertHelper(llvm::Instruction *I, 2012 const llvm::Twine &Name, 2013 llvm::BasicBlock *BB, 2014 llvm::BasicBlock::iterator InsertPt) const { 2015 LoopStack.InsertHelper(I); 2016 if (IsSanitizerScope) 2017 CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I); 2018 } 2019 2020 void CGBuilderInserter::InsertHelper( 2021 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, 2022 llvm::BasicBlock::iterator InsertPt) const { 2023 llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt); 2024 if (CGF) 2025 CGF->InsertHelper(I, Name, BB, InsertPt); 2026 } 2027 2028 static bool hasRequiredFeatures(const SmallVectorImpl<StringRef> &ReqFeatures, 2029 CodeGenModule &CGM, const FunctionDecl *FD, 2030 std::string &FirstMissing) { 2031 // If there aren't any required features listed then go ahead and return. 2032 if (ReqFeatures.empty()) 2033 return false; 2034 2035 // Now build up the set of caller features and verify that all the required 2036 // features are there. 2037 llvm::StringMap<bool> CallerFeatureMap; 2038 CGM.getFunctionFeatureMap(CallerFeatureMap, FD); 2039 2040 // If we have at least one of the features in the feature list return 2041 // true, otherwise return false. 2042 return std::all_of( 2043 ReqFeatures.begin(), ReqFeatures.end(), [&](StringRef Feature) { 2044 SmallVector<StringRef, 1> OrFeatures; 2045 Feature.split(OrFeatures, "|"); 2046 return std::any_of(OrFeatures.begin(), OrFeatures.end(), 2047 [&](StringRef Feature) { 2048 if (!CallerFeatureMap.lookup(Feature)) { 2049 FirstMissing = Feature.str(); 2050 return false; 2051 } 2052 return true; 2053 }); 2054 }); 2055 } 2056 2057 // Emits an error if we don't have a valid set of target features for the 2058 // called function. 2059 void CodeGenFunction::checkTargetFeatures(const CallExpr *E, 2060 const FunctionDecl *TargetDecl) { 2061 // Early exit if this is an indirect call. 2062 if (!TargetDecl) 2063 return; 2064 2065 // Get the current enclosing function if it exists. If it doesn't 2066 // we can't check the target features anyhow. 2067 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl); 2068 if (!FD) 2069 return; 2070 2071 // Grab the required features for the call. For a builtin this is listed in 2072 // the td file with the default cpu, for an always_inline function this is any 2073 // listed cpu and any listed features. 2074 unsigned BuiltinID = TargetDecl->getBuiltinID(); 2075 std::string MissingFeature; 2076 if (BuiltinID) { 2077 SmallVector<StringRef, 1> ReqFeatures; 2078 const char *FeatureList = 2079 CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 2080 // Return if the builtin doesn't have any required features. 2081 if (!FeatureList || StringRef(FeatureList) == "") 2082 return; 2083 StringRef(FeatureList).split(ReqFeatures, ","); 2084 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 2085 CGM.getDiags().Report(E->getLocStart(), diag::err_builtin_needs_feature) 2086 << TargetDecl->getDeclName() 2087 << CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 2088 2089 } else if (TargetDecl->hasAttr<TargetAttr>()) { 2090 // Get the required features for the callee. 2091 SmallVector<StringRef, 1> ReqFeatures; 2092 llvm::StringMap<bool> CalleeFeatureMap; 2093 CGM.getFunctionFeatureMap(CalleeFeatureMap, TargetDecl); 2094 for (const auto &F : CalleeFeatureMap) { 2095 // Only positive features are "required". 2096 if (F.getValue()) 2097 ReqFeatures.push_back(F.getKey()); 2098 } 2099 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 2100 CGM.getDiags().Report(E->getLocStart(), diag::err_function_needs_feature) 2101 << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature; 2102 } 2103 } 2104 2105 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) { 2106 if (!CGM.getCodeGenOpts().SanitizeStats) 2107 return; 2108 2109 llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint()); 2110 IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation()); 2111 CGM.getSanStats().create(IRB, SSK); 2112 } 2113 2114 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) { 2115 if (CGDebugInfo *DI = getDebugInfo()) 2116 return DI->SourceLocToDebugLoc(Location); 2117 2118 return llvm::DebugLoc(); 2119 } 2120