1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-function state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGDebugInfo.h" 18 #include "CodeGenModule.h" 19 #include "CodeGenPGO.h" 20 #include "TargetInfo.h" 21 #include "clang/AST/ASTContext.h" 22 #include "clang/AST/Decl.h" 23 #include "clang/AST/DeclCXX.h" 24 #include "clang/AST/StmtCXX.h" 25 #include "clang/Basic/TargetInfo.h" 26 #include "clang/CodeGen/CGFunctionInfo.h" 27 #include "clang/Frontend/CodeGenOptions.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/Intrinsics.h" 30 #include "llvm/IR/MDBuilder.h" 31 #include "llvm/IR/Operator.h" 32 using namespace clang; 33 using namespace CodeGen; 34 35 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 36 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 37 Builder(cgm.getModule().getContext()), CapturedStmtInfo(0), 38 SanitizePerformTypeCheck(CGM.getSanOpts().Null | 39 CGM.getSanOpts().Alignment | 40 CGM.getSanOpts().ObjectSize | 41 CGM.getSanOpts().Vptr), 42 SanOpts(&CGM.getSanOpts()), AutoreleaseResult(false), BlockInfo(0), 43 BlockPointer(0), LambdaThisCaptureField(0), NormalCleanupDest(0), 44 NextCleanupDestIndex(1), FirstBlockInfo(0), EHResumeBlock(0), 45 ExceptionSlot(0), EHSelectorSlot(0), DebugInfo(CGM.getModuleDebugInfo()), 46 DisableDebugInfo(false), DidCallStackSave(false), IndirectBranch(0), 47 PGO(cgm), SwitchInsn(0), SwitchWeights(0), 48 CaseRangeBlock(0), UnreachableBlock(0), NumReturnExprs(0), 49 NumSimpleReturnExprs(0), CXXABIThisDecl(0), CXXABIThisValue(0), 50 CXXThisValue(0), CXXDefaultInitExprThis(0), 51 CXXStructorImplicitParamDecl(0), CXXStructorImplicitParamValue(0), 52 OutermostConditional(0), CurLexicalScope(0), TerminateLandingPad(0), 53 TerminateHandler(0), TrapBB(0) { 54 if (!suppressNewContext) 55 CGM.getCXXABI().getMangleContext().startNewFunction(); 56 57 llvm::FastMathFlags FMF; 58 if (CGM.getLangOpts().FastMath) 59 FMF.setUnsafeAlgebra(); 60 if (CGM.getLangOpts().FiniteMathOnly) { 61 FMF.setNoNaNs(); 62 FMF.setNoInfs(); 63 } 64 Builder.SetFastMathFlags(FMF); 65 } 66 67 CodeGenFunction::~CodeGenFunction() { 68 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 69 70 // If there are any unclaimed block infos, go ahead and destroy them 71 // now. This can happen if IR-gen gets clever and skips evaluating 72 // something. 73 if (FirstBlockInfo) 74 destroyBlockInfos(FirstBlockInfo); 75 } 76 77 78 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 79 return CGM.getTypes().ConvertTypeForMem(T); 80 } 81 82 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 83 return CGM.getTypes().ConvertType(T); 84 } 85 86 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 87 type = type.getCanonicalType(); 88 while (true) { 89 switch (type->getTypeClass()) { 90 #define TYPE(name, parent) 91 #define ABSTRACT_TYPE(name, parent) 92 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 93 #define DEPENDENT_TYPE(name, parent) case Type::name: 94 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 95 #include "clang/AST/TypeNodes.def" 96 llvm_unreachable("non-canonical or dependent type in IR-generation"); 97 98 case Type::Auto: 99 llvm_unreachable("undeduced auto type in IR-generation"); 100 101 // Various scalar types. 102 case Type::Builtin: 103 case Type::Pointer: 104 case Type::BlockPointer: 105 case Type::LValueReference: 106 case Type::RValueReference: 107 case Type::MemberPointer: 108 case Type::Vector: 109 case Type::ExtVector: 110 case Type::FunctionProto: 111 case Type::FunctionNoProto: 112 case Type::Enum: 113 case Type::ObjCObjectPointer: 114 return TEK_Scalar; 115 116 // Complexes. 117 case Type::Complex: 118 return TEK_Complex; 119 120 // Arrays, records, and Objective-C objects. 121 case Type::ConstantArray: 122 case Type::IncompleteArray: 123 case Type::VariableArray: 124 case Type::Record: 125 case Type::ObjCObject: 126 case Type::ObjCInterface: 127 return TEK_Aggregate; 128 129 // We operate on atomic values according to their underlying type. 130 case Type::Atomic: 131 type = cast<AtomicType>(type)->getValueType(); 132 continue; 133 } 134 llvm_unreachable("unknown type kind!"); 135 } 136 } 137 138 void CodeGenFunction::EmitReturnBlock() { 139 // For cleanliness, we try to avoid emitting the return block for 140 // simple cases. 141 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 142 143 if (CurBB) { 144 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 145 146 // We have a valid insert point, reuse it if it is empty or there are no 147 // explicit jumps to the return block. 148 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 149 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 150 delete ReturnBlock.getBlock(); 151 } else 152 EmitBlock(ReturnBlock.getBlock()); 153 return; 154 } 155 156 // Otherwise, if the return block is the target of a single direct 157 // branch then we can just put the code in that block instead. This 158 // cleans up functions which started with a unified return block. 159 if (ReturnBlock.getBlock()->hasOneUse()) { 160 llvm::BranchInst *BI = 161 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin()); 162 if (BI && BI->isUnconditional() && 163 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 164 // Reset insertion point, including debug location, and delete the 165 // branch. This is really subtle and only works because the next change 166 // in location will hit the caching in CGDebugInfo::EmitLocation and not 167 // override this. 168 Builder.SetCurrentDebugLocation(BI->getDebugLoc()); 169 Builder.SetInsertPoint(BI->getParent()); 170 BI->eraseFromParent(); 171 delete ReturnBlock.getBlock(); 172 return; 173 } 174 } 175 176 // FIXME: We are at an unreachable point, there is no reason to emit the block 177 // unless it has uses. However, we still need a place to put the debug 178 // region.end for now. 179 180 EmitBlock(ReturnBlock.getBlock()); 181 } 182 183 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 184 if (!BB) return; 185 if (!BB->use_empty()) 186 return CGF.CurFn->getBasicBlockList().push_back(BB); 187 delete BB; 188 } 189 190 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 191 assert(BreakContinueStack.empty() && 192 "mismatched push/pop in break/continue stack!"); 193 194 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 195 && NumSimpleReturnExprs == NumReturnExprs 196 && ReturnBlock.getBlock()->use_empty(); 197 // Usually the return expression is evaluated before the cleanup 198 // code. If the function contains only a simple return statement, 199 // such as a constant, the location before the cleanup code becomes 200 // the last useful breakpoint in the function, because the simple 201 // return expression will be evaluated after the cleanup code. To be 202 // safe, set the debug location for cleanup code to the location of 203 // the return statement. Otherwise the cleanup code should be at the 204 // end of the function's lexical scope. 205 // 206 // If there are multiple branches to the return block, the branch 207 // instructions will get the location of the return statements and 208 // all will be fine. 209 if (CGDebugInfo *DI = getDebugInfo()) { 210 if (OnlySimpleReturnStmts) 211 DI->EmitLocation(Builder, LastStopPoint); 212 else 213 DI->EmitLocation(Builder, EndLoc); 214 } 215 216 // Pop any cleanups that might have been associated with the 217 // parameters. Do this in whatever block we're currently in; it's 218 // important to do this before we enter the return block or return 219 // edges will be *really* confused. 220 bool EmitRetDbgLoc = true; 221 if (EHStack.stable_begin() != PrologueCleanupDepth) { 222 PopCleanupBlocks(PrologueCleanupDepth); 223 224 // Make sure the line table doesn't jump back into the body for 225 // the ret after it's been at EndLoc. 226 EmitRetDbgLoc = false; 227 228 if (CGDebugInfo *DI = getDebugInfo()) 229 if (OnlySimpleReturnStmts) 230 DI->EmitLocation(Builder, EndLoc); 231 } 232 233 // Emit function epilog (to return). 234 EmitReturnBlock(); 235 236 if (ShouldInstrumentFunction()) 237 EmitFunctionInstrumentation("__cyg_profile_func_exit"); 238 239 // Emit debug descriptor for function end. 240 if (CGDebugInfo *DI = getDebugInfo()) { 241 DI->EmitFunctionEnd(Builder); 242 } 243 244 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 245 EmitEndEHSpec(CurCodeDecl); 246 247 assert(EHStack.empty() && 248 "did not remove all scopes from cleanup stack!"); 249 250 // If someone did an indirect goto, emit the indirect goto block at the end of 251 // the function. 252 if (IndirectBranch) { 253 EmitBlock(IndirectBranch->getParent()); 254 Builder.ClearInsertionPoint(); 255 } 256 257 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 258 llvm::Instruction *Ptr = AllocaInsertPt; 259 AllocaInsertPt = 0; 260 Ptr->eraseFromParent(); 261 262 // If someone took the address of a label but never did an indirect goto, we 263 // made a zero entry PHI node, which is illegal, zap it now. 264 if (IndirectBranch) { 265 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 266 if (PN->getNumIncomingValues() == 0) { 267 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 268 PN->eraseFromParent(); 269 } 270 } 271 272 EmitIfUsed(*this, EHResumeBlock); 273 EmitIfUsed(*this, TerminateLandingPad); 274 EmitIfUsed(*this, TerminateHandler); 275 EmitIfUsed(*this, UnreachableBlock); 276 277 if (CGM.getCodeGenOpts().EmitDeclMetadata) 278 EmitDeclMetadata(); 279 280 for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator 281 I = DeferredReplacements.begin(), 282 E = DeferredReplacements.end(); 283 I != E; ++I) { 284 I->first->replaceAllUsesWith(I->second); 285 I->first->eraseFromParent(); 286 } 287 } 288 289 /// ShouldInstrumentFunction - Return true if the current function should be 290 /// instrumented with __cyg_profile_func_* calls 291 bool CodeGenFunction::ShouldInstrumentFunction() { 292 if (!CGM.getCodeGenOpts().InstrumentFunctions) 293 return false; 294 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 295 return false; 296 return true; 297 } 298 299 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 300 /// instrumentation function with the current function and the call site, if 301 /// function instrumentation is enabled. 302 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) { 303 // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site); 304 llvm::PointerType *PointerTy = Int8PtrTy; 305 llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy }; 306 llvm::FunctionType *FunctionTy = 307 llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false); 308 309 llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn); 310 llvm::CallInst *CallSite = Builder.CreateCall( 311 CGM.getIntrinsic(llvm::Intrinsic::returnaddress), 312 llvm::ConstantInt::get(Int32Ty, 0), 313 "callsite"); 314 315 llvm::Value *args[] = { 316 llvm::ConstantExpr::getBitCast(CurFn, PointerTy), 317 CallSite 318 }; 319 320 EmitNounwindRuntimeCall(F, args); 321 } 322 323 void CodeGenFunction::EmitMCountInstrumentation() { 324 llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false); 325 326 llvm::Constant *MCountFn = 327 CGM.CreateRuntimeFunction(FTy, getTarget().getMCountName()); 328 EmitNounwindRuntimeCall(MCountFn); 329 } 330 331 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument 332 // information in the program executable. The argument information stored 333 // includes the argument name, its type, the address and access qualifiers used. 334 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn, 335 CodeGenModule &CGM,llvm::LLVMContext &Context, 336 SmallVector <llvm::Value*, 5> &kernelMDArgs, 337 CGBuilderTy& Builder, ASTContext &ASTCtx) { 338 // Create MDNodes that represent the kernel arg metadata. 339 // Each MDNode is a list in the form of "key", N number of values which is 340 // the same number of values as their are kernel arguments. 341 342 // MDNode for the kernel argument address space qualifiers. 343 SmallVector<llvm::Value*, 8> addressQuals; 344 addressQuals.push_back(llvm::MDString::get(Context, "kernel_arg_addr_space")); 345 346 // MDNode for the kernel argument access qualifiers (images only). 347 SmallVector<llvm::Value*, 8> accessQuals; 348 accessQuals.push_back(llvm::MDString::get(Context, "kernel_arg_access_qual")); 349 350 // MDNode for the kernel argument type names. 351 SmallVector<llvm::Value*, 8> argTypeNames; 352 argTypeNames.push_back(llvm::MDString::get(Context, "kernel_arg_type")); 353 354 // MDNode for the kernel argument type qualifiers. 355 SmallVector<llvm::Value*, 8> argTypeQuals; 356 argTypeQuals.push_back(llvm::MDString::get(Context, "kernel_arg_type_qual")); 357 358 // MDNode for the kernel argument names. 359 SmallVector<llvm::Value*, 8> argNames; 360 argNames.push_back(llvm::MDString::get(Context, "kernel_arg_name")); 361 362 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 363 const ParmVarDecl *parm = FD->getParamDecl(i); 364 QualType ty = parm->getType(); 365 std::string typeQuals; 366 367 if (ty->isPointerType()) { 368 QualType pointeeTy = ty->getPointeeType(); 369 370 // Get address qualifier. 371 addressQuals.push_back(Builder.getInt32(ASTCtx.getTargetAddressSpace( 372 pointeeTy.getAddressSpace()))); 373 374 // Get argument type name. 375 std::string typeName = pointeeTy.getUnqualifiedType().getAsString() + "*"; 376 377 // Turn "unsigned type" to "utype" 378 std::string::size_type pos = typeName.find("unsigned"); 379 if (pos != std::string::npos) 380 typeName.erase(pos+1, 8); 381 382 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 383 384 // Get argument type qualifiers: 385 if (ty.isRestrictQualified()) 386 typeQuals = "restrict"; 387 if (pointeeTy.isConstQualified() || 388 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 389 typeQuals += typeQuals.empty() ? "const" : " const"; 390 if (pointeeTy.isVolatileQualified()) 391 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 392 } else { 393 uint32_t AddrSpc = 0; 394 if (ty->isImageType()) 395 AddrSpc = 396 CGM.getContext().getTargetAddressSpace(LangAS::opencl_global); 397 398 addressQuals.push_back(Builder.getInt32(AddrSpc)); 399 400 // Get argument type name. 401 std::string typeName = ty.getUnqualifiedType().getAsString(); 402 403 // Turn "unsigned type" to "utype" 404 std::string::size_type pos = typeName.find("unsigned"); 405 if (pos != std::string::npos) 406 typeName.erase(pos+1, 8); 407 408 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 409 410 // Get argument type qualifiers: 411 if (ty.isConstQualified()) 412 typeQuals = "const"; 413 if (ty.isVolatileQualified()) 414 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 415 } 416 417 argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals)); 418 419 // Get image access qualifier: 420 if (ty->isImageType()) { 421 const OpenCLImageAccessAttr *A = parm->getAttr<OpenCLImageAccessAttr>(); 422 if (A && A->isWriteOnly()) 423 accessQuals.push_back(llvm::MDString::get(Context, "write_only")); 424 else 425 accessQuals.push_back(llvm::MDString::get(Context, "read_only")); 426 // FIXME: what about read_write? 427 } else 428 accessQuals.push_back(llvm::MDString::get(Context, "none")); 429 430 // Get argument name. 431 argNames.push_back(llvm::MDString::get(Context, parm->getName())); 432 } 433 434 kernelMDArgs.push_back(llvm::MDNode::get(Context, addressQuals)); 435 kernelMDArgs.push_back(llvm::MDNode::get(Context, accessQuals)); 436 kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeNames)); 437 kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeQuals)); 438 kernelMDArgs.push_back(llvm::MDNode::get(Context, argNames)); 439 } 440 441 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 442 llvm::Function *Fn) 443 { 444 if (!FD->hasAttr<OpenCLKernelAttr>()) 445 return; 446 447 llvm::LLVMContext &Context = getLLVMContext(); 448 449 SmallVector <llvm::Value*, 5> kernelMDArgs; 450 kernelMDArgs.push_back(Fn); 451 452 if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 453 GenOpenCLArgMetadata(FD, Fn, CGM, Context, kernelMDArgs, 454 Builder, getContext()); 455 456 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { 457 QualType hintQTy = A->getTypeHint(); 458 const ExtVectorType *hintEltQTy = hintQTy->getAs<ExtVectorType>(); 459 bool isSignedInteger = 460 hintQTy->isSignedIntegerType() || 461 (hintEltQTy && hintEltQTy->getElementType()->isSignedIntegerType()); 462 llvm::Value *attrMDArgs[] = { 463 llvm::MDString::get(Context, "vec_type_hint"), 464 llvm::UndefValue::get(CGM.getTypes().ConvertType(A->getTypeHint())), 465 llvm::ConstantInt::get( 466 llvm::IntegerType::get(Context, 32), 467 llvm::APInt(32, (uint64_t)(isSignedInteger ? 1 : 0))) 468 }; 469 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 470 } 471 472 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { 473 llvm::Value *attrMDArgs[] = { 474 llvm::MDString::get(Context, "work_group_size_hint"), 475 Builder.getInt32(A->getXDim()), 476 Builder.getInt32(A->getYDim()), 477 Builder.getInt32(A->getZDim()) 478 }; 479 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 480 } 481 482 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { 483 llvm::Value *attrMDArgs[] = { 484 llvm::MDString::get(Context, "reqd_work_group_size"), 485 Builder.getInt32(A->getXDim()), 486 Builder.getInt32(A->getYDim()), 487 Builder.getInt32(A->getZDim()) 488 }; 489 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 490 } 491 492 llvm::MDNode *kernelMDNode = llvm::MDNode::get(Context, kernelMDArgs); 493 llvm::NamedMDNode *OpenCLKernelMetadata = 494 CGM.getModule().getOrInsertNamedMetadata("opencl.kernels"); 495 OpenCLKernelMetadata->addOperand(kernelMDNode); 496 } 497 498 void CodeGenFunction::StartFunction(GlobalDecl GD, 499 QualType RetTy, 500 llvm::Function *Fn, 501 const CGFunctionInfo &FnInfo, 502 const FunctionArgList &Args, 503 SourceLocation StartLoc) { 504 const Decl *D = GD.getDecl(); 505 506 DidCallStackSave = false; 507 CurCodeDecl = D; 508 CurFuncDecl = (D ? D->getNonClosureContext() : 0); 509 FnRetTy = RetTy; 510 CurFn = Fn; 511 CurFnInfo = &FnInfo; 512 assert(CurFn->isDeclaration() && "Function already has body?"); 513 514 if (CGM.getSanitizerBlacklist().isIn(*Fn)) { 515 SanOpts = &SanitizerOptions::Disabled; 516 SanitizePerformTypeCheck = false; 517 } 518 519 // Pass inline keyword to optimizer if it appears explicitly on any 520 // declaration. Also, in the case of -fno-inline attach NoInline 521 // attribute to all function that are not marked AlwaysInline. 522 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 523 if (!CGM.getCodeGenOpts().NoInline) { 524 for (auto RI : FD->redecls()) 525 if (RI->isInlineSpecified()) { 526 Fn->addFnAttr(llvm::Attribute::InlineHint); 527 break; 528 } 529 } else if (!FD->hasAttr<AlwaysInlineAttr>()) 530 Fn->addFnAttr(llvm::Attribute::NoInline); 531 } 532 533 if (getLangOpts().OpenCL) { 534 // Add metadata for a kernel function. 535 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 536 EmitOpenCLKernelMetadata(FD, Fn); 537 } 538 539 // If we are checking function types, emit a function type signature as 540 // prefix data. 541 if (getLangOpts().CPlusPlus && SanOpts->Function) { 542 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 543 if (llvm::Constant *PrefixSig = 544 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { 545 llvm::Constant *FTRTTIConst = 546 CGM.GetAddrOfRTTIDescriptor(FD->getType(), /*ForEH=*/true); 547 llvm::Constant *PrefixStructElems[] = { PrefixSig, FTRTTIConst }; 548 llvm::Constant *PrefixStructConst = 549 llvm::ConstantStruct::getAnon(PrefixStructElems, /*Packed=*/true); 550 Fn->setPrefixData(PrefixStructConst); 551 } 552 } 553 } 554 555 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 556 557 // Create a marker to make it easy to insert allocas into the entryblock 558 // later. Don't create this with the builder, because we don't want it 559 // folded. 560 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 561 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB); 562 if (Builder.isNamePreserving()) 563 AllocaInsertPt->setName("allocapt"); 564 565 ReturnBlock = getJumpDestInCurrentScope("return"); 566 567 Builder.SetInsertPoint(EntryBB); 568 569 // Emit subprogram debug descriptor. 570 if (CGDebugInfo *DI = getDebugInfo()) { 571 SmallVector<QualType, 16> ArgTypes; 572 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 573 i != e; ++i) { 574 ArgTypes.push_back((*i)->getType()); 575 } 576 577 QualType FnType = 578 getContext().getFunctionType(RetTy, ArgTypes, 579 FunctionProtoType::ExtProtoInfo()); 580 581 DI->setLocation(StartLoc); 582 DI->EmitFunctionStart(GD, FnType, CurFn, Builder); 583 } 584 585 if (ShouldInstrumentFunction()) 586 EmitFunctionInstrumentation("__cyg_profile_func_enter"); 587 588 if (CGM.getCodeGenOpts().InstrumentForProfiling) 589 EmitMCountInstrumentation(); 590 591 if (RetTy->isVoidType()) { 592 // Void type; nothing to return. 593 ReturnValue = 0; 594 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect && 595 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 596 // Indirect aggregate return; emit returned value directly into sret slot. 597 // This reduces code size, and affects correctness in C++. 598 ReturnValue = CurFn->arg_begin(); 599 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && 600 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 601 // Load the sret pointer from the argument struct and return into that. 602 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); 603 llvm::Function::arg_iterator EI = CurFn->arg_end(); 604 --EI; 605 llvm::Value *Addr = Builder.CreateStructGEP(EI, Idx); 606 ReturnValue = Builder.CreateLoad(Addr, "agg.result"); 607 } else { 608 ReturnValue = CreateIRTemp(RetTy, "retval"); 609 610 // Tell the epilog emitter to autorelease the result. We do this 611 // now so that various specialized functions can suppress it 612 // during their IR-generation. 613 if (getLangOpts().ObjCAutoRefCount && 614 !CurFnInfo->isReturnsRetained() && 615 RetTy->isObjCRetainableType()) 616 AutoreleaseResult = true; 617 } 618 619 EmitStartEHSpec(CurCodeDecl); 620 621 PrologueCleanupDepth = EHStack.stable_begin(); 622 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 623 624 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 625 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 626 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 627 if (MD->getParent()->isLambda() && 628 MD->getOverloadedOperator() == OO_Call) { 629 // We're in a lambda; figure out the captures. 630 MD->getParent()->getCaptureFields(LambdaCaptureFields, 631 LambdaThisCaptureField); 632 if (LambdaThisCaptureField) { 633 // If this lambda captures this, load it. 634 LValue ThisLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 635 CXXThisValue = EmitLoadOfLValue(ThisLValue, 636 SourceLocation()).getScalarVal(); 637 } 638 } else { 639 // Not in a lambda; just use 'this' from the method. 640 // FIXME: Should we generate a new load for each use of 'this'? The 641 // fast register allocator would be happier... 642 CXXThisValue = CXXABIThisValue; 643 } 644 } 645 646 // If any of the arguments have a variably modified type, make sure to 647 // emit the type size. 648 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 649 i != e; ++i) { 650 const VarDecl *VD = *i; 651 652 // Dig out the type as written from ParmVarDecls; it's unclear whether 653 // the standard (C99 6.9.1p10) requires this, but we're following the 654 // precedent set by gcc. 655 QualType Ty; 656 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 657 Ty = PVD->getOriginalType(); 658 else 659 Ty = VD->getType(); 660 661 if (Ty->isVariablyModifiedType()) 662 EmitVariablyModifiedType(Ty); 663 } 664 // Emit a location at the end of the prologue. 665 if (CGDebugInfo *DI = getDebugInfo()) 666 DI->EmitLocation(Builder, StartLoc); 667 } 668 669 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args, 670 const Stmt *Body) { 671 RegionCounter Cnt = getPGORegionCounter(Body); 672 Cnt.beginRegion(Builder); 673 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 674 EmitCompoundStmtWithoutScope(*S); 675 else 676 EmitStmt(Body); 677 } 678 679 /// When instrumenting to collect profile data, the counts for some blocks 680 /// such as switch cases need to not include the fall-through counts, so 681 /// emit a branch around the instrumentation code. When not instrumenting, 682 /// this just calls EmitBlock(). 683 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, 684 RegionCounter &Cnt) { 685 llvm::BasicBlock *SkipCountBB = 0; 686 if (HaveInsertPoint() && CGM.getCodeGenOpts().ProfileInstrGenerate) { 687 // When instrumenting for profiling, the fallthrough to certain 688 // statements needs to skip over the instrumentation code so that we 689 // get an accurate count. 690 SkipCountBB = createBasicBlock("skipcount"); 691 EmitBranch(SkipCountBB); 692 } 693 EmitBlock(BB); 694 Cnt.beginRegion(Builder, /*AddIncomingFallThrough=*/true); 695 if (SkipCountBB) 696 EmitBlock(SkipCountBB); 697 } 698 699 /// Tries to mark the given function nounwind based on the 700 /// non-existence of any throwing calls within it. We believe this is 701 /// lightweight enough to do at -O0. 702 static void TryMarkNoThrow(llvm::Function *F) { 703 // LLVM treats 'nounwind' on a function as part of the type, so we 704 // can't do this on functions that can be overwritten. 705 if (F->mayBeOverridden()) return; 706 707 for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI) 708 for (llvm::BasicBlock::iterator 709 BI = FI->begin(), BE = FI->end(); BI != BE; ++BI) 710 if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI)) { 711 if (!Call->doesNotThrow()) 712 return; 713 } else if (isa<llvm::ResumeInst>(&*BI)) { 714 return; 715 } 716 F->setDoesNotThrow(); 717 } 718 719 static void EmitSizedDeallocationFunction(CodeGenFunction &CGF, 720 const FunctionDecl *UnsizedDealloc) { 721 // This is a weak discardable definition of the sized deallocation function. 722 CGF.CurFn->setLinkage(llvm::Function::LinkOnceAnyLinkage); 723 724 // Call the unsized deallocation function and forward the first argument 725 // unchanged. 726 llvm::Constant *Unsized = CGF.CGM.GetAddrOfFunction(UnsizedDealloc); 727 CGF.Builder.CreateCall(Unsized, &*CGF.CurFn->arg_begin()); 728 } 729 730 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 731 const CGFunctionInfo &FnInfo) { 732 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 733 734 // Check if we should generate debug info for this function. 735 if (FD->hasAttr<NoDebugAttr>()) 736 DebugInfo = NULL; // disable debug info indefinitely for this function 737 738 FunctionArgList Args; 739 QualType ResTy = FD->getReturnType(); 740 741 CurGD = GD; 742 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 743 if (MD && MD->isInstance()) { 744 if (CGM.getCXXABI().HasThisReturn(GD)) 745 ResTy = MD->getThisType(getContext()); 746 CGM.getCXXABI().buildThisParam(*this, Args); 747 } 748 749 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) 750 Args.push_back(FD->getParamDecl(i)); 751 752 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 753 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 754 755 SourceRange BodyRange; 756 if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange(); 757 CurEHLocation = BodyRange.getEnd(); 758 759 // Emit the standard function prologue. 760 StartFunction(GD, ResTy, Fn, FnInfo, Args, BodyRange.getBegin()); 761 762 // Generate the body of the function. 763 PGO.assignRegionCounters(GD.getDecl(), CurFn); 764 if (isa<CXXDestructorDecl>(FD)) 765 EmitDestructorBody(Args); 766 else if (isa<CXXConstructorDecl>(FD)) 767 EmitConstructorBody(Args); 768 else if (getLangOpts().CUDA && 769 !CGM.getCodeGenOpts().CUDAIsDevice && 770 FD->hasAttr<CUDAGlobalAttr>()) 771 CGM.getCUDARuntime().EmitDeviceStubBody(*this, Args); 772 else if (isa<CXXConversionDecl>(FD) && 773 cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) { 774 // The lambda conversion to block pointer is special; the semantics can't be 775 // expressed in the AST, so IRGen needs to special-case it. 776 EmitLambdaToBlockPointerBody(Args); 777 } else if (isa<CXXMethodDecl>(FD) && 778 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 779 // The lambda static invoker function is special, because it forwards or 780 // clones the body of the function call operator (but is actually static). 781 EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD)); 782 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 783 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 784 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 785 // Implicit copy-assignment gets the same special treatment as implicit 786 // copy-constructors. 787 emitImplicitAssignmentOperatorBody(Args); 788 } else if (Stmt *Body = FD->getBody()) { 789 EmitFunctionBody(Args, Body); 790 } else if (FunctionDecl *UnsizedDealloc = 791 FD->getCorrespondingUnsizedGlobalDeallocationFunction()) { 792 // Global sized deallocation functions get an implicit weak definition if 793 // they don't have an explicit definition. 794 EmitSizedDeallocationFunction(*this, UnsizedDealloc); 795 } else 796 llvm_unreachable("no definition for emitted function"); 797 798 // C++11 [stmt.return]p2: 799 // Flowing off the end of a function [...] results in undefined behavior in 800 // a value-returning function. 801 // C11 6.9.1p12: 802 // If the '}' that terminates a function is reached, and the value of the 803 // function call is used by the caller, the behavior is undefined. 804 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && 805 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { 806 if (SanOpts->Return) 807 EmitCheck(Builder.getFalse(), "missing_return", 808 EmitCheckSourceLocation(FD->getLocation()), 809 ArrayRef<llvm::Value *>(), CRK_Unrecoverable); 810 else if (CGM.getCodeGenOpts().OptimizationLevel == 0) 811 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::trap)); 812 Builder.CreateUnreachable(); 813 Builder.ClearInsertionPoint(); 814 } 815 816 // Emit the standard function epilogue. 817 FinishFunction(BodyRange.getEnd()); 818 819 // If we haven't marked the function nothrow through other means, do 820 // a quick pass now to see if we can. 821 if (!CurFn->doesNotThrow()) 822 TryMarkNoThrow(CurFn); 823 824 PGO.emitInstrumentationData(); 825 PGO.destroyRegionCounters(); 826 } 827 828 /// ContainsLabel - Return true if the statement contains a label in it. If 829 /// this statement is not executed normally, it not containing a label means 830 /// that we can just remove the code. 831 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 832 // Null statement, not a label! 833 if (S == 0) return false; 834 835 // If this is a label, we have to emit the code, consider something like: 836 // if (0) { ... foo: bar(); } goto foo; 837 // 838 // TODO: If anyone cared, we could track __label__'s, since we know that you 839 // can't jump to one from outside their declared region. 840 if (isa<LabelStmt>(S)) 841 return true; 842 843 // If this is a case/default statement, and we haven't seen a switch, we have 844 // to emit the code. 845 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 846 return true; 847 848 // If this is a switch statement, we want to ignore cases below it. 849 if (isa<SwitchStmt>(S)) 850 IgnoreCaseStmts = true; 851 852 // Scan subexpressions for verboten labels. 853 for (Stmt::const_child_range I = S->children(); I; ++I) 854 if (ContainsLabel(*I, IgnoreCaseStmts)) 855 return true; 856 857 return false; 858 } 859 860 /// containsBreak - Return true if the statement contains a break out of it. 861 /// If the statement (recursively) contains a switch or loop with a break 862 /// inside of it, this is fine. 863 bool CodeGenFunction::containsBreak(const Stmt *S) { 864 // Null statement, not a label! 865 if (S == 0) return false; 866 867 // If this is a switch or loop that defines its own break scope, then we can 868 // include it and anything inside of it. 869 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 870 isa<ForStmt>(S)) 871 return false; 872 873 if (isa<BreakStmt>(S)) 874 return true; 875 876 // Scan subexpressions for verboten breaks. 877 for (Stmt::const_child_range I = S->children(); I; ++I) 878 if (containsBreak(*I)) 879 return true; 880 881 return false; 882 } 883 884 885 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 886 /// to a constant, or if it does but contains a label, return false. If it 887 /// constant folds return true and set the boolean result in Result. 888 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 889 bool &ResultBool) { 890 llvm::APSInt ResultInt; 891 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt)) 892 return false; 893 894 ResultBool = ResultInt.getBoolValue(); 895 return true; 896 } 897 898 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 899 /// to a constant, or if it does but contains a label, return false. If it 900 /// constant folds return true and set the folded value. 901 bool CodeGenFunction:: 902 ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &ResultInt) { 903 // FIXME: Rename and handle conversion of other evaluatable things 904 // to bool. 905 llvm::APSInt Int; 906 if (!Cond->EvaluateAsInt(Int, getContext())) 907 return false; // Not foldable, not integer or not fully evaluatable. 908 909 if (CodeGenFunction::ContainsLabel(Cond)) 910 return false; // Contains a label. 911 912 ResultInt = Int; 913 return true; 914 } 915 916 917 918 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 919 /// statement) to the specified blocks. Based on the condition, this might try 920 /// to simplify the codegen of the conditional based on the branch. 921 /// 922 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 923 llvm::BasicBlock *TrueBlock, 924 llvm::BasicBlock *FalseBlock, 925 uint64_t TrueCount) { 926 Cond = Cond->IgnoreParens(); 927 928 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 929 930 // Handle X && Y in a condition. 931 if (CondBOp->getOpcode() == BO_LAnd) { 932 RegionCounter Cnt = getPGORegionCounter(CondBOp); 933 934 // If we have "1 && X", simplify the code. "0 && X" would have constant 935 // folded if the case was simple enough. 936 bool ConstantBool = false; 937 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 938 ConstantBool) { 939 // br(1 && X) -> br(X). 940 Cnt.beginRegion(Builder); 941 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 942 TrueCount); 943 } 944 945 // If we have "X && 1", simplify the code to use an uncond branch. 946 // "X && 0" would have been constant folded to 0. 947 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 948 ConstantBool) { 949 // br(X && 1) -> br(X). 950 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 951 TrueCount); 952 } 953 954 // Emit the LHS as a conditional. If the LHS conditional is false, we 955 // want to jump to the FalseBlock. 956 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 957 // The counter tells us how often we evaluate RHS, and all of TrueCount 958 // can be propagated to that branch. 959 uint64_t RHSCount = Cnt.getCount(); 960 961 ConditionalEvaluation eval(*this); 962 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount); 963 EmitBlock(LHSTrue); 964 965 // Any temporaries created here are conditional. 966 Cnt.beginRegion(Builder); 967 eval.begin(*this); 968 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount); 969 eval.end(*this); 970 971 return; 972 } 973 974 if (CondBOp->getOpcode() == BO_LOr) { 975 RegionCounter Cnt = getPGORegionCounter(CondBOp); 976 977 // If we have "0 || X", simplify the code. "1 || X" would have constant 978 // folded if the case was simple enough. 979 bool ConstantBool = false; 980 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 981 !ConstantBool) { 982 // br(0 || X) -> br(X). 983 Cnt.beginRegion(Builder); 984 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 985 TrueCount); 986 } 987 988 // If we have "X || 0", simplify the code to use an uncond branch. 989 // "X || 1" would have been constant folded to 1. 990 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 991 !ConstantBool) { 992 // br(X || 0) -> br(X). 993 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 994 TrueCount); 995 } 996 997 // Emit the LHS as a conditional. If the LHS conditional is true, we 998 // want to jump to the TrueBlock. 999 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 1000 // We have the count for entry to the RHS and for the whole expression 1001 // being true, so we can divy up True count between the short circuit and 1002 // the RHS. 1003 uint64_t LHSCount = Cnt.getParentCount() - Cnt.getCount(); 1004 uint64_t RHSCount = TrueCount - LHSCount; 1005 1006 ConditionalEvaluation eval(*this); 1007 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount); 1008 EmitBlock(LHSFalse); 1009 1010 // Any temporaries created here are conditional. 1011 Cnt.beginRegion(Builder); 1012 eval.begin(*this); 1013 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount); 1014 1015 eval.end(*this); 1016 1017 return; 1018 } 1019 } 1020 1021 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 1022 // br(!x, t, f) -> br(x, f, t) 1023 if (CondUOp->getOpcode() == UO_LNot) { 1024 // Negate the count. 1025 uint64_t FalseCount = PGO.getCurrentRegionCount() - TrueCount; 1026 // Negate the condition and swap the destination blocks. 1027 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, 1028 FalseCount); 1029 } 1030 } 1031 1032 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 1033 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 1034 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1035 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1036 1037 RegionCounter Cnt = getPGORegionCounter(CondOp); 1038 ConditionalEvaluation cond(*this); 1039 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, Cnt.getCount()); 1040 1041 // When computing PGO branch weights, we only know the overall count for 1042 // the true block. This code is essentially doing tail duplication of the 1043 // naive code-gen, introducing new edges for which counts are not 1044 // available. Divide the counts proportionally between the LHS and RHS of 1045 // the conditional operator. 1046 uint64_t LHSScaledTrueCount = 0; 1047 if (TrueCount) { 1048 double LHSRatio = Cnt.getCount() / (double) Cnt.getParentCount(); 1049 LHSScaledTrueCount = TrueCount * LHSRatio; 1050 } 1051 1052 cond.begin(*this); 1053 EmitBlock(LHSBlock); 1054 Cnt.beginRegion(Builder); 1055 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, 1056 LHSScaledTrueCount); 1057 cond.end(*this); 1058 1059 cond.begin(*this); 1060 EmitBlock(RHSBlock); 1061 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, 1062 TrueCount - LHSScaledTrueCount); 1063 cond.end(*this); 1064 1065 return; 1066 } 1067 1068 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 1069 // Conditional operator handling can give us a throw expression as a 1070 // condition for a case like: 1071 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 1072 // Fold this to: 1073 // br(c, throw x, br(y, t, f)) 1074 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 1075 return; 1076 } 1077 1078 // Create branch weights based on the number of times we get here and the 1079 // number of times the condition should be true. 1080 uint64_t CurrentCount = std::max(PGO.getCurrentRegionCount(), TrueCount); 1081 llvm::MDNode *Weights = PGO.createBranchWeights(TrueCount, 1082 CurrentCount - TrueCount); 1083 1084 // Emit the code with the fully general case. 1085 llvm::Value *CondV = EvaluateExprAsBool(Cond); 1086 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights); 1087 } 1088 1089 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1090 /// specified stmt yet. 1091 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 1092 CGM.ErrorUnsupported(S, Type); 1093 } 1094 1095 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 1096 /// variable-length array whose elements have a non-zero bit-pattern. 1097 /// 1098 /// \param baseType the inner-most element type of the array 1099 /// \param src - a char* pointing to the bit-pattern for a single 1100 /// base element of the array 1101 /// \param sizeInChars - the total size of the VLA, in chars 1102 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 1103 llvm::Value *dest, llvm::Value *src, 1104 llvm::Value *sizeInChars) { 1105 std::pair<CharUnits,CharUnits> baseSizeAndAlign 1106 = CGF.getContext().getTypeInfoInChars(baseType); 1107 1108 CGBuilderTy &Builder = CGF.Builder; 1109 1110 llvm::Value *baseSizeInChars 1111 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSizeAndAlign.first.getQuantity()); 1112 1113 llvm::Type *i8p = Builder.getInt8PtrTy(); 1114 1115 llvm::Value *begin = Builder.CreateBitCast(dest, i8p, "vla.begin"); 1116 llvm::Value *end = Builder.CreateInBoundsGEP(dest, sizeInChars, "vla.end"); 1117 1118 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 1119 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 1120 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 1121 1122 // Make a loop over the VLA. C99 guarantees that the VLA element 1123 // count must be nonzero. 1124 CGF.EmitBlock(loopBB); 1125 1126 llvm::PHINode *cur = Builder.CreatePHI(i8p, 2, "vla.cur"); 1127 cur->addIncoming(begin, originBB); 1128 1129 // memcpy the individual element bit-pattern. 1130 Builder.CreateMemCpy(cur, src, baseSizeInChars, 1131 baseSizeAndAlign.second.getQuantity(), 1132 /*volatile*/ false); 1133 1134 // Go to the next element. 1135 llvm::Value *next = Builder.CreateConstInBoundsGEP1_32(cur, 1, "vla.next"); 1136 1137 // Leave if that's the end of the VLA. 1138 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 1139 Builder.CreateCondBr(done, contBB, loopBB); 1140 cur->addIncoming(next, loopBB); 1141 1142 CGF.EmitBlock(contBB); 1143 } 1144 1145 void 1146 CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) { 1147 // Ignore empty classes in C++. 1148 if (getLangOpts().CPlusPlus) { 1149 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1150 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 1151 return; 1152 } 1153 } 1154 1155 // Cast the dest ptr to the appropriate i8 pointer type. 1156 unsigned DestAS = 1157 cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace(); 1158 llvm::Type *BP = Builder.getInt8PtrTy(DestAS); 1159 if (DestPtr->getType() != BP) 1160 DestPtr = Builder.CreateBitCast(DestPtr, BP); 1161 1162 // Get size and alignment info for this aggregate. 1163 std::pair<CharUnits, CharUnits> TypeInfo = 1164 getContext().getTypeInfoInChars(Ty); 1165 CharUnits Size = TypeInfo.first; 1166 CharUnits Align = TypeInfo.second; 1167 1168 llvm::Value *SizeVal; 1169 const VariableArrayType *vla; 1170 1171 // Don't bother emitting a zero-byte memset. 1172 if (Size.isZero()) { 1173 // But note that getTypeInfo returns 0 for a VLA. 1174 if (const VariableArrayType *vlaType = 1175 dyn_cast_or_null<VariableArrayType>( 1176 getContext().getAsArrayType(Ty))) { 1177 QualType eltType; 1178 llvm::Value *numElts; 1179 std::tie(numElts, eltType) = getVLASize(vlaType); 1180 1181 SizeVal = numElts; 1182 CharUnits eltSize = getContext().getTypeSizeInChars(eltType); 1183 if (!eltSize.isOne()) 1184 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 1185 vla = vlaType; 1186 } else { 1187 return; 1188 } 1189 } else { 1190 SizeVal = CGM.getSize(Size); 1191 vla = 0; 1192 } 1193 1194 // If the type contains a pointer to data member we can't memset it to zero. 1195 // Instead, create a null constant and copy it to the destination. 1196 // TODO: there are other patterns besides zero that we can usefully memset, 1197 // like -1, which happens to be the pattern used by member-pointers. 1198 if (!CGM.getTypes().isZeroInitializable(Ty)) { 1199 // For a VLA, emit a single element, then splat that over the VLA. 1200 if (vla) Ty = getContext().getBaseElementType(vla); 1201 1202 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 1203 1204 llvm::GlobalVariable *NullVariable = 1205 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 1206 /*isConstant=*/true, 1207 llvm::GlobalVariable::PrivateLinkage, 1208 NullConstant, Twine()); 1209 llvm::Value *SrcPtr = 1210 Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()); 1211 1212 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 1213 1214 // Get and call the appropriate llvm.memcpy overload. 1215 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity(), false); 1216 return; 1217 } 1218 1219 // Otherwise, just memset the whole thing to zero. This is legal 1220 // because in LLVM, all default initializers (other than the ones we just 1221 // handled above) are guaranteed to have a bit pattern of all zeros. 1222 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, 1223 Align.getQuantity(), false); 1224 } 1225 1226 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 1227 // Make sure that there is a block for the indirect goto. 1228 if (IndirectBranch == 0) 1229 GetIndirectGotoBlock(); 1230 1231 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 1232 1233 // Make sure the indirect branch includes all of the address-taken blocks. 1234 IndirectBranch->addDestination(BB); 1235 return llvm::BlockAddress::get(CurFn, BB); 1236 } 1237 1238 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 1239 // If we already made the indirect branch for indirect goto, return its block. 1240 if (IndirectBranch) return IndirectBranch->getParent(); 1241 1242 CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto")); 1243 1244 // Create the PHI node that indirect gotos will add entries to. 1245 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 1246 "indirect.goto.dest"); 1247 1248 // Create the indirect branch instruction. 1249 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 1250 return IndirectBranch->getParent(); 1251 } 1252 1253 /// Computes the length of an array in elements, as well as the base 1254 /// element type and a properly-typed first element pointer. 1255 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 1256 QualType &baseType, 1257 llvm::Value *&addr) { 1258 const ArrayType *arrayType = origArrayType; 1259 1260 // If it's a VLA, we have to load the stored size. Note that 1261 // this is the size of the VLA in bytes, not its size in elements. 1262 llvm::Value *numVLAElements = 0; 1263 if (isa<VariableArrayType>(arrayType)) { 1264 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first; 1265 1266 // Walk into all VLAs. This doesn't require changes to addr, 1267 // which has type T* where T is the first non-VLA element type. 1268 do { 1269 QualType elementType = arrayType->getElementType(); 1270 arrayType = getContext().getAsArrayType(elementType); 1271 1272 // If we only have VLA components, 'addr' requires no adjustment. 1273 if (!arrayType) { 1274 baseType = elementType; 1275 return numVLAElements; 1276 } 1277 } while (isa<VariableArrayType>(arrayType)); 1278 1279 // We get out here only if we find a constant array type 1280 // inside the VLA. 1281 } 1282 1283 // We have some number of constant-length arrays, so addr should 1284 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 1285 // down to the first element of addr. 1286 SmallVector<llvm::Value*, 8> gepIndices; 1287 1288 // GEP down to the array type. 1289 llvm::ConstantInt *zero = Builder.getInt32(0); 1290 gepIndices.push_back(zero); 1291 1292 uint64_t countFromCLAs = 1; 1293 QualType eltType; 1294 1295 llvm::ArrayType *llvmArrayType = 1296 dyn_cast<llvm::ArrayType>( 1297 cast<llvm::PointerType>(addr->getType())->getElementType()); 1298 while (llvmArrayType) { 1299 assert(isa<ConstantArrayType>(arrayType)); 1300 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 1301 == llvmArrayType->getNumElements()); 1302 1303 gepIndices.push_back(zero); 1304 countFromCLAs *= llvmArrayType->getNumElements(); 1305 eltType = arrayType->getElementType(); 1306 1307 llvmArrayType = 1308 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 1309 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 1310 assert((!llvmArrayType || arrayType) && 1311 "LLVM and Clang types are out-of-synch"); 1312 } 1313 1314 if (arrayType) { 1315 // From this point onwards, the Clang array type has been emitted 1316 // as some other type (probably a packed struct). Compute the array 1317 // size, and just emit the 'begin' expression as a bitcast. 1318 while (arrayType) { 1319 countFromCLAs *= 1320 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 1321 eltType = arrayType->getElementType(); 1322 arrayType = getContext().getAsArrayType(eltType); 1323 } 1324 1325 unsigned AddressSpace = addr->getType()->getPointerAddressSpace(); 1326 llvm::Type *BaseType = ConvertType(eltType)->getPointerTo(AddressSpace); 1327 addr = Builder.CreateBitCast(addr, BaseType, "array.begin"); 1328 } else { 1329 // Create the actual GEP. 1330 addr = Builder.CreateInBoundsGEP(addr, gepIndices, "array.begin"); 1331 } 1332 1333 baseType = eltType; 1334 1335 llvm::Value *numElements 1336 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 1337 1338 // If we had any VLA dimensions, factor them in. 1339 if (numVLAElements) 1340 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 1341 1342 return numElements; 1343 } 1344 1345 std::pair<llvm::Value*, QualType> 1346 CodeGenFunction::getVLASize(QualType type) { 1347 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1348 assert(vla && "type was not a variable array type!"); 1349 return getVLASize(vla); 1350 } 1351 1352 std::pair<llvm::Value*, QualType> 1353 CodeGenFunction::getVLASize(const VariableArrayType *type) { 1354 // The number of elements so far; always size_t. 1355 llvm::Value *numElements = 0; 1356 1357 QualType elementType; 1358 do { 1359 elementType = type->getElementType(); 1360 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 1361 assert(vlaSize && "no size for VLA!"); 1362 assert(vlaSize->getType() == SizeTy); 1363 1364 if (!numElements) { 1365 numElements = vlaSize; 1366 } else { 1367 // It's undefined behavior if this wraps around, so mark it that way. 1368 // FIXME: Teach -fcatch-undefined-behavior to trap this. 1369 numElements = Builder.CreateNUWMul(numElements, vlaSize); 1370 } 1371 } while ((type = getContext().getAsVariableArrayType(elementType))); 1372 1373 return std::pair<llvm::Value*,QualType>(numElements, elementType); 1374 } 1375 1376 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 1377 assert(type->isVariablyModifiedType() && 1378 "Must pass variably modified type to EmitVLASizes!"); 1379 1380 EnsureInsertPoint(); 1381 1382 // We're going to walk down into the type and look for VLA 1383 // expressions. 1384 do { 1385 assert(type->isVariablyModifiedType()); 1386 1387 const Type *ty = type.getTypePtr(); 1388 switch (ty->getTypeClass()) { 1389 1390 #define TYPE(Class, Base) 1391 #define ABSTRACT_TYPE(Class, Base) 1392 #define NON_CANONICAL_TYPE(Class, Base) 1393 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 1394 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 1395 #include "clang/AST/TypeNodes.def" 1396 llvm_unreachable("unexpected dependent type!"); 1397 1398 // These types are never variably-modified. 1399 case Type::Builtin: 1400 case Type::Complex: 1401 case Type::Vector: 1402 case Type::ExtVector: 1403 case Type::Record: 1404 case Type::Enum: 1405 case Type::Elaborated: 1406 case Type::TemplateSpecialization: 1407 case Type::ObjCObject: 1408 case Type::ObjCInterface: 1409 case Type::ObjCObjectPointer: 1410 llvm_unreachable("type class is never variably-modified!"); 1411 1412 case Type::Adjusted: 1413 type = cast<AdjustedType>(ty)->getAdjustedType(); 1414 break; 1415 1416 case Type::Decayed: 1417 type = cast<DecayedType>(ty)->getPointeeType(); 1418 break; 1419 1420 case Type::Pointer: 1421 type = cast<PointerType>(ty)->getPointeeType(); 1422 break; 1423 1424 case Type::BlockPointer: 1425 type = cast<BlockPointerType>(ty)->getPointeeType(); 1426 break; 1427 1428 case Type::LValueReference: 1429 case Type::RValueReference: 1430 type = cast<ReferenceType>(ty)->getPointeeType(); 1431 break; 1432 1433 case Type::MemberPointer: 1434 type = cast<MemberPointerType>(ty)->getPointeeType(); 1435 break; 1436 1437 case Type::ConstantArray: 1438 case Type::IncompleteArray: 1439 // Losing element qualification here is fine. 1440 type = cast<ArrayType>(ty)->getElementType(); 1441 break; 1442 1443 case Type::VariableArray: { 1444 // Losing element qualification here is fine. 1445 const VariableArrayType *vat = cast<VariableArrayType>(ty); 1446 1447 // Unknown size indication requires no size computation. 1448 // Otherwise, evaluate and record it. 1449 if (const Expr *size = vat->getSizeExpr()) { 1450 // It's possible that we might have emitted this already, 1451 // e.g. with a typedef and a pointer to it. 1452 llvm::Value *&entry = VLASizeMap[size]; 1453 if (!entry) { 1454 llvm::Value *Size = EmitScalarExpr(size); 1455 1456 // C11 6.7.6.2p5: 1457 // If the size is an expression that is not an integer constant 1458 // expression [...] each time it is evaluated it shall have a value 1459 // greater than zero. 1460 if (SanOpts->VLABound && 1461 size->getType()->isSignedIntegerType()) { 1462 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); 1463 llvm::Constant *StaticArgs[] = { 1464 EmitCheckSourceLocation(size->getLocStart()), 1465 EmitCheckTypeDescriptor(size->getType()) 1466 }; 1467 EmitCheck(Builder.CreateICmpSGT(Size, Zero), 1468 "vla_bound_not_positive", StaticArgs, Size, 1469 CRK_Recoverable); 1470 } 1471 1472 // Always zexting here would be wrong if it weren't 1473 // undefined behavior to have a negative bound. 1474 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); 1475 } 1476 } 1477 type = vat->getElementType(); 1478 break; 1479 } 1480 1481 case Type::FunctionProto: 1482 case Type::FunctionNoProto: 1483 type = cast<FunctionType>(ty)->getReturnType(); 1484 break; 1485 1486 case Type::Paren: 1487 case Type::TypeOf: 1488 case Type::UnaryTransform: 1489 case Type::Attributed: 1490 case Type::SubstTemplateTypeParm: 1491 case Type::PackExpansion: 1492 // Keep walking after single level desugaring. 1493 type = type.getSingleStepDesugaredType(getContext()); 1494 break; 1495 1496 case Type::Typedef: 1497 case Type::Decltype: 1498 case Type::Auto: 1499 // Stop walking: nothing to do. 1500 return; 1501 1502 case Type::TypeOfExpr: 1503 // Stop walking: emit typeof expression. 1504 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 1505 return; 1506 1507 case Type::Atomic: 1508 type = cast<AtomicType>(ty)->getValueType(); 1509 break; 1510 } 1511 } while (type->isVariablyModifiedType()); 1512 } 1513 1514 llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) { 1515 if (getContext().getBuiltinVaListType()->isArrayType()) 1516 return EmitScalarExpr(E); 1517 return EmitLValue(E).getAddress(); 1518 } 1519 1520 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 1521 llvm::Constant *Init) { 1522 assert (Init && "Invalid DeclRefExpr initializer!"); 1523 if (CGDebugInfo *Dbg = getDebugInfo()) 1524 if (CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 1525 Dbg->EmitGlobalVariable(E->getDecl(), Init); 1526 } 1527 1528 CodeGenFunction::PeepholeProtection 1529 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 1530 // At the moment, the only aggressive peephole we do in IR gen 1531 // is trunc(zext) folding, but if we add more, we can easily 1532 // extend this protection. 1533 1534 if (!rvalue.isScalar()) return PeepholeProtection(); 1535 llvm::Value *value = rvalue.getScalarVal(); 1536 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 1537 1538 // Just make an extra bitcast. 1539 assert(HaveInsertPoint()); 1540 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 1541 Builder.GetInsertBlock()); 1542 1543 PeepholeProtection protection; 1544 protection.Inst = inst; 1545 return protection; 1546 } 1547 1548 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 1549 if (!protection.Inst) return; 1550 1551 // In theory, we could try to duplicate the peepholes now, but whatever. 1552 protection.Inst->eraseFromParent(); 1553 } 1554 1555 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn, 1556 llvm::Value *AnnotatedVal, 1557 StringRef AnnotationStr, 1558 SourceLocation Location) { 1559 llvm::Value *Args[4] = { 1560 AnnotatedVal, 1561 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 1562 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 1563 CGM.EmitAnnotationLineNo(Location) 1564 }; 1565 return Builder.CreateCall(AnnotationFn, Args); 1566 } 1567 1568 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 1569 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1570 // FIXME We create a new bitcast for every annotation because that's what 1571 // llvm-gcc was doing. 1572 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1573 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 1574 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 1575 I->getAnnotation(), D->getLocation()); 1576 } 1577 1578 llvm::Value *CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 1579 llvm::Value *V) { 1580 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1581 llvm::Type *VTy = V->getType(); 1582 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 1583 CGM.Int8PtrTy); 1584 1585 for (const auto *I : D->specific_attrs<AnnotateAttr>()) { 1586 // FIXME Always emit the cast inst so we can differentiate between 1587 // annotation on the first field of a struct and annotation on the struct 1588 // itself. 1589 if (VTy != CGM.Int8PtrTy) 1590 V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy)); 1591 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation()); 1592 V = Builder.CreateBitCast(V, VTy); 1593 } 1594 1595 return V; 1596 } 1597 1598 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 1599