xref: /llvm-project/clang/lib/CodeGen/CodeGenFunction.cpp (revision 2fe531cb0756aa85c09f016ede88a94bc0818a5c)
1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-function state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGDebugInfo.h"
18 #include "CodeGenModule.h"
19 #include "CodeGenPGO.h"
20 #include "TargetInfo.h"
21 #include "clang/AST/ASTContext.h"
22 #include "clang/AST/Decl.h"
23 #include "clang/AST/DeclCXX.h"
24 #include "clang/AST/StmtCXX.h"
25 #include "clang/Basic/TargetInfo.h"
26 #include "clang/CodeGen/CGFunctionInfo.h"
27 #include "clang/Frontend/CodeGenOptions.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/Intrinsics.h"
30 #include "llvm/IR/MDBuilder.h"
31 #include "llvm/IR/Operator.h"
32 using namespace clang;
33 using namespace CodeGen;
34 
35 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
36     : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
37       Builder(cgm.getModule().getContext()), CapturedStmtInfo(0),
38       SanitizePerformTypeCheck(CGM.getSanOpts().Null |
39                                CGM.getSanOpts().Alignment |
40                                CGM.getSanOpts().ObjectSize |
41                                CGM.getSanOpts().Vptr),
42       SanOpts(&CGM.getSanOpts()), AutoreleaseResult(false), BlockInfo(0),
43       BlockPointer(0), LambdaThisCaptureField(0), NormalCleanupDest(0),
44       NextCleanupDestIndex(1), FirstBlockInfo(0), EHResumeBlock(0),
45       ExceptionSlot(0), EHSelectorSlot(0), DebugInfo(CGM.getModuleDebugInfo()),
46       DisableDebugInfo(false), DidCallStackSave(false), IndirectBranch(0),
47       PGO(cgm), SwitchInsn(0), SwitchWeights(0),
48       CaseRangeBlock(0), UnreachableBlock(0), NumReturnExprs(0),
49       NumSimpleReturnExprs(0), CXXABIThisDecl(0), CXXABIThisValue(0),
50       CXXThisValue(0), CXXDefaultInitExprThis(0),
51       CXXStructorImplicitParamDecl(0), CXXStructorImplicitParamValue(0),
52       OutermostConditional(0), CurLexicalScope(0), TerminateLandingPad(0),
53       TerminateHandler(0), TrapBB(0) {
54   if (!suppressNewContext)
55     CGM.getCXXABI().getMangleContext().startNewFunction();
56 
57   llvm::FastMathFlags FMF;
58   if (CGM.getLangOpts().FastMath)
59     FMF.setUnsafeAlgebra();
60   if (CGM.getLangOpts().FiniteMathOnly) {
61     FMF.setNoNaNs();
62     FMF.setNoInfs();
63   }
64   Builder.SetFastMathFlags(FMF);
65 }
66 
67 CodeGenFunction::~CodeGenFunction() {
68   assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
69 
70   // If there are any unclaimed block infos, go ahead and destroy them
71   // now.  This can happen if IR-gen gets clever and skips evaluating
72   // something.
73   if (FirstBlockInfo)
74     destroyBlockInfos(FirstBlockInfo);
75 }
76 
77 
78 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
79   return CGM.getTypes().ConvertTypeForMem(T);
80 }
81 
82 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
83   return CGM.getTypes().ConvertType(T);
84 }
85 
86 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
87   type = type.getCanonicalType();
88   while (true) {
89     switch (type->getTypeClass()) {
90 #define TYPE(name, parent)
91 #define ABSTRACT_TYPE(name, parent)
92 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
93 #define DEPENDENT_TYPE(name, parent) case Type::name:
94 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
95 #include "clang/AST/TypeNodes.def"
96       llvm_unreachable("non-canonical or dependent type in IR-generation");
97 
98     case Type::Auto:
99       llvm_unreachable("undeduced auto type in IR-generation");
100 
101     // Various scalar types.
102     case Type::Builtin:
103     case Type::Pointer:
104     case Type::BlockPointer:
105     case Type::LValueReference:
106     case Type::RValueReference:
107     case Type::MemberPointer:
108     case Type::Vector:
109     case Type::ExtVector:
110     case Type::FunctionProto:
111     case Type::FunctionNoProto:
112     case Type::Enum:
113     case Type::ObjCObjectPointer:
114       return TEK_Scalar;
115 
116     // Complexes.
117     case Type::Complex:
118       return TEK_Complex;
119 
120     // Arrays, records, and Objective-C objects.
121     case Type::ConstantArray:
122     case Type::IncompleteArray:
123     case Type::VariableArray:
124     case Type::Record:
125     case Type::ObjCObject:
126     case Type::ObjCInterface:
127       return TEK_Aggregate;
128 
129     // We operate on atomic values according to their underlying type.
130     case Type::Atomic:
131       type = cast<AtomicType>(type)->getValueType();
132       continue;
133     }
134     llvm_unreachable("unknown type kind!");
135   }
136 }
137 
138 void CodeGenFunction::EmitReturnBlock() {
139   // For cleanliness, we try to avoid emitting the return block for
140   // simple cases.
141   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
142 
143   if (CurBB) {
144     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
145 
146     // We have a valid insert point, reuse it if it is empty or there are no
147     // explicit jumps to the return block.
148     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
149       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
150       delete ReturnBlock.getBlock();
151     } else
152       EmitBlock(ReturnBlock.getBlock());
153     return;
154   }
155 
156   // Otherwise, if the return block is the target of a single direct
157   // branch then we can just put the code in that block instead. This
158   // cleans up functions which started with a unified return block.
159   if (ReturnBlock.getBlock()->hasOneUse()) {
160     llvm::BranchInst *BI =
161       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin());
162     if (BI && BI->isUnconditional() &&
163         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
164       // Reset insertion point, including debug location, and delete the
165       // branch.  This is really subtle and only works because the next change
166       // in location will hit the caching in CGDebugInfo::EmitLocation and not
167       // override this.
168       Builder.SetCurrentDebugLocation(BI->getDebugLoc());
169       Builder.SetInsertPoint(BI->getParent());
170       BI->eraseFromParent();
171       delete ReturnBlock.getBlock();
172       return;
173     }
174   }
175 
176   // FIXME: We are at an unreachable point, there is no reason to emit the block
177   // unless it has uses. However, we still need a place to put the debug
178   // region.end for now.
179 
180   EmitBlock(ReturnBlock.getBlock());
181 }
182 
183 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
184   if (!BB) return;
185   if (!BB->use_empty())
186     return CGF.CurFn->getBasicBlockList().push_back(BB);
187   delete BB;
188 }
189 
190 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
191   assert(BreakContinueStack.empty() &&
192          "mismatched push/pop in break/continue stack!");
193 
194   bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
195     && NumSimpleReturnExprs == NumReturnExprs
196     && ReturnBlock.getBlock()->use_empty();
197   // Usually the return expression is evaluated before the cleanup
198   // code.  If the function contains only a simple return statement,
199   // such as a constant, the location before the cleanup code becomes
200   // the last useful breakpoint in the function, because the simple
201   // return expression will be evaluated after the cleanup code. To be
202   // safe, set the debug location for cleanup code to the location of
203   // the return statement.  Otherwise the cleanup code should be at the
204   // end of the function's lexical scope.
205   //
206   // If there are multiple branches to the return block, the branch
207   // instructions will get the location of the return statements and
208   // all will be fine.
209   if (CGDebugInfo *DI = getDebugInfo()) {
210     if (OnlySimpleReturnStmts)
211       DI->EmitLocation(Builder, LastStopPoint);
212     else
213       DI->EmitLocation(Builder, EndLoc);
214   }
215 
216   // Pop any cleanups that might have been associated with the
217   // parameters.  Do this in whatever block we're currently in; it's
218   // important to do this before we enter the return block or return
219   // edges will be *really* confused.
220   bool EmitRetDbgLoc = true;
221   if (EHStack.stable_begin() != PrologueCleanupDepth) {
222     PopCleanupBlocks(PrologueCleanupDepth);
223 
224     // Make sure the line table doesn't jump back into the body for
225     // the ret after it's been at EndLoc.
226     EmitRetDbgLoc = false;
227 
228     if (CGDebugInfo *DI = getDebugInfo())
229       if (OnlySimpleReturnStmts)
230         DI->EmitLocation(Builder, EndLoc);
231   }
232 
233   // Emit function epilog (to return).
234   EmitReturnBlock();
235 
236   if (ShouldInstrumentFunction())
237     EmitFunctionInstrumentation("__cyg_profile_func_exit");
238 
239   // Emit debug descriptor for function end.
240   if (CGDebugInfo *DI = getDebugInfo()) {
241     DI->EmitFunctionEnd(Builder);
242   }
243 
244   EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
245   EmitEndEHSpec(CurCodeDecl);
246 
247   assert(EHStack.empty() &&
248          "did not remove all scopes from cleanup stack!");
249 
250   // If someone did an indirect goto, emit the indirect goto block at the end of
251   // the function.
252   if (IndirectBranch) {
253     EmitBlock(IndirectBranch->getParent());
254     Builder.ClearInsertionPoint();
255   }
256 
257   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
258   llvm::Instruction *Ptr = AllocaInsertPt;
259   AllocaInsertPt = 0;
260   Ptr->eraseFromParent();
261 
262   // If someone took the address of a label but never did an indirect goto, we
263   // made a zero entry PHI node, which is illegal, zap it now.
264   if (IndirectBranch) {
265     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
266     if (PN->getNumIncomingValues() == 0) {
267       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
268       PN->eraseFromParent();
269     }
270   }
271 
272   EmitIfUsed(*this, EHResumeBlock);
273   EmitIfUsed(*this, TerminateLandingPad);
274   EmitIfUsed(*this, TerminateHandler);
275   EmitIfUsed(*this, UnreachableBlock);
276 
277   if (CGM.getCodeGenOpts().EmitDeclMetadata)
278     EmitDeclMetadata();
279 
280   for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator
281            I = DeferredReplacements.begin(),
282            E = DeferredReplacements.end();
283        I != E; ++I) {
284     I->first->replaceAllUsesWith(I->second);
285     I->first->eraseFromParent();
286   }
287 }
288 
289 /// ShouldInstrumentFunction - Return true if the current function should be
290 /// instrumented with __cyg_profile_func_* calls
291 bool CodeGenFunction::ShouldInstrumentFunction() {
292   if (!CGM.getCodeGenOpts().InstrumentFunctions)
293     return false;
294   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
295     return false;
296   return true;
297 }
298 
299 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
300 /// instrumentation function with the current function and the call site, if
301 /// function instrumentation is enabled.
302 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) {
303   // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site);
304   llvm::PointerType *PointerTy = Int8PtrTy;
305   llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy };
306   llvm::FunctionType *FunctionTy =
307     llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false);
308 
309   llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn);
310   llvm::CallInst *CallSite = Builder.CreateCall(
311     CGM.getIntrinsic(llvm::Intrinsic::returnaddress),
312     llvm::ConstantInt::get(Int32Ty, 0),
313     "callsite");
314 
315   llvm::Value *args[] = {
316     llvm::ConstantExpr::getBitCast(CurFn, PointerTy),
317     CallSite
318   };
319 
320   EmitNounwindRuntimeCall(F, args);
321 }
322 
323 void CodeGenFunction::EmitMCountInstrumentation() {
324   llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false);
325 
326   llvm::Constant *MCountFn =
327     CGM.CreateRuntimeFunction(FTy, getTarget().getMCountName());
328   EmitNounwindRuntimeCall(MCountFn);
329 }
330 
331 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument
332 // information in the program executable. The argument information stored
333 // includes the argument name, its type, the address and access qualifiers used.
334 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn,
335                                  CodeGenModule &CGM,llvm::LLVMContext &Context,
336                                  SmallVector <llvm::Value*, 5> &kernelMDArgs,
337                                  CGBuilderTy& Builder, ASTContext &ASTCtx) {
338   // Create MDNodes that represent the kernel arg metadata.
339   // Each MDNode is a list in the form of "key", N number of values which is
340   // the same number of values as their are kernel arguments.
341 
342   // MDNode for the kernel argument address space qualifiers.
343   SmallVector<llvm::Value*, 8> addressQuals;
344   addressQuals.push_back(llvm::MDString::get(Context, "kernel_arg_addr_space"));
345 
346   // MDNode for the kernel argument access qualifiers (images only).
347   SmallVector<llvm::Value*, 8> accessQuals;
348   accessQuals.push_back(llvm::MDString::get(Context, "kernel_arg_access_qual"));
349 
350   // MDNode for the kernel argument type names.
351   SmallVector<llvm::Value*, 8> argTypeNames;
352   argTypeNames.push_back(llvm::MDString::get(Context, "kernel_arg_type"));
353 
354   // MDNode for the kernel argument type qualifiers.
355   SmallVector<llvm::Value*, 8> argTypeQuals;
356   argTypeQuals.push_back(llvm::MDString::get(Context, "kernel_arg_type_qual"));
357 
358   // MDNode for the kernel argument names.
359   SmallVector<llvm::Value*, 8> argNames;
360   argNames.push_back(llvm::MDString::get(Context, "kernel_arg_name"));
361 
362   for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
363     const ParmVarDecl *parm = FD->getParamDecl(i);
364     QualType ty = parm->getType();
365     std::string typeQuals;
366 
367     if (ty->isPointerType()) {
368       QualType pointeeTy = ty->getPointeeType();
369 
370       // Get address qualifier.
371       addressQuals.push_back(Builder.getInt32(ASTCtx.getTargetAddressSpace(
372         pointeeTy.getAddressSpace())));
373 
374       // Get argument type name.
375       std::string typeName = pointeeTy.getUnqualifiedType().getAsString() + "*";
376 
377       // Turn "unsigned type" to "utype"
378       std::string::size_type pos = typeName.find("unsigned");
379       if (pos != std::string::npos)
380         typeName.erase(pos+1, 8);
381 
382       argTypeNames.push_back(llvm::MDString::get(Context, typeName));
383 
384       // Get argument type qualifiers:
385       if (ty.isRestrictQualified())
386         typeQuals = "restrict";
387       if (pointeeTy.isConstQualified() ||
388           (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
389         typeQuals += typeQuals.empty() ? "const" : " const";
390       if (pointeeTy.isVolatileQualified())
391         typeQuals += typeQuals.empty() ? "volatile" : " volatile";
392     } else {
393       uint32_t AddrSpc = 0;
394       if (ty->isImageType())
395         AddrSpc =
396           CGM.getContext().getTargetAddressSpace(LangAS::opencl_global);
397 
398       addressQuals.push_back(Builder.getInt32(AddrSpc));
399 
400       // Get argument type name.
401       std::string typeName = ty.getUnqualifiedType().getAsString();
402 
403       // Turn "unsigned type" to "utype"
404       std::string::size_type pos = typeName.find("unsigned");
405       if (pos != std::string::npos)
406         typeName.erase(pos+1, 8);
407 
408       argTypeNames.push_back(llvm::MDString::get(Context, typeName));
409 
410       // Get argument type qualifiers:
411       if (ty.isConstQualified())
412         typeQuals = "const";
413       if (ty.isVolatileQualified())
414         typeQuals += typeQuals.empty() ? "volatile" : " volatile";
415     }
416 
417     argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals));
418 
419     // Get image access qualifier:
420     if (ty->isImageType()) {
421       const OpenCLImageAccessAttr *A = parm->getAttr<OpenCLImageAccessAttr>();
422       if (A && A->isWriteOnly())
423         accessQuals.push_back(llvm::MDString::get(Context, "write_only"));
424       else
425         accessQuals.push_back(llvm::MDString::get(Context, "read_only"));
426       // FIXME: what about read_write?
427     } else
428       accessQuals.push_back(llvm::MDString::get(Context, "none"));
429 
430     // Get argument name.
431     argNames.push_back(llvm::MDString::get(Context, parm->getName()));
432   }
433 
434   kernelMDArgs.push_back(llvm::MDNode::get(Context, addressQuals));
435   kernelMDArgs.push_back(llvm::MDNode::get(Context, accessQuals));
436   kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeNames));
437   kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeQuals));
438   kernelMDArgs.push_back(llvm::MDNode::get(Context, argNames));
439 }
440 
441 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD,
442                                                llvm::Function *Fn)
443 {
444   if (!FD->hasAttr<OpenCLKernelAttr>())
445     return;
446 
447   llvm::LLVMContext &Context = getLLVMContext();
448 
449   SmallVector <llvm::Value*, 5> kernelMDArgs;
450   kernelMDArgs.push_back(Fn);
451 
452   if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
453     GenOpenCLArgMetadata(FD, Fn, CGM, Context, kernelMDArgs,
454                          Builder, getContext());
455 
456   if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
457     QualType hintQTy = A->getTypeHint();
458     const ExtVectorType *hintEltQTy = hintQTy->getAs<ExtVectorType>();
459     bool isSignedInteger =
460         hintQTy->isSignedIntegerType() ||
461         (hintEltQTy && hintEltQTy->getElementType()->isSignedIntegerType());
462     llvm::Value *attrMDArgs[] = {
463       llvm::MDString::get(Context, "vec_type_hint"),
464       llvm::UndefValue::get(CGM.getTypes().ConvertType(A->getTypeHint())),
465       llvm::ConstantInt::get(
466           llvm::IntegerType::get(Context, 32),
467           llvm::APInt(32, (uint64_t)(isSignedInteger ? 1 : 0)))
468     };
469     kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
470   }
471 
472   if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
473     llvm::Value *attrMDArgs[] = {
474       llvm::MDString::get(Context, "work_group_size_hint"),
475       Builder.getInt32(A->getXDim()),
476       Builder.getInt32(A->getYDim()),
477       Builder.getInt32(A->getZDim())
478     };
479     kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
480   }
481 
482   if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
483     llvm::Value *attrMDArgs[] = {
484       llvm::MDString::get(Context, "reqd_work_group_size"),
485       Builder.getInt32(A->getXDim()),
486       Builder.getInt32(A->getYDim()),
487       Builder.getInt32(A->getZDim())
488     };
489     kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
490   }
491 
492   llvm::MDNode *kernelMDNode = llvm::MDNode::get(Context, kernelMDArgs);
493   llvm::NamedMDNode *OpenCLKernelMetadata =
494     CGM.getModule().getOrInsertNamedMetadata("opencl.kernels");
495   OpenCLKernelMetadata->addOperand(kernelMDNode);
496 }
497 
498 void CodeGenFunction::StartFunction(GlobalDecl GD,
499                                     QualType RetTy,
500                                     llvm::Function *Fn,
501                                     const CGFunctionInfo &FnInfo,
502                                     const FunctionArgList &Args,
503                                     SourceLocation StartLoc) {
504   const Decl *D = GD.getDecl();
505 
506   DidCallStackSave = false;
507   CurCodeDecl = D;
508   CurFuncDecl = (D ? D->getNonClosureContext() : 0);
509   FnRetTy = RetTy;
510   CurFn = Fn;
511   CurFnInfo = &FnInfo;
512   assert(CurFn->isDeclaration() && "Function already has body?");
513 
514   if (CGM.getSanitizerBlacklist().isIn(*Fn)) {
515     SanOpts = &SanitizerOptions::Disabled;
516     SanitizePerformTypeCheck = false;
517   }
518 
519   // Pass inline keyword to optimizer if it appears explicitly on any
520   // declaration. Also, in the case of -fno-inline attach NoInline
521   // attribute to all function that are not marked AlwaysInline.
522   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
523     if (!CGM.getCodeGenOpts().NoInline) {
524       for (auto RI : FD->redecls())
525         if (RI->isInlineSpecified()) {
526           Fn->addFnAttr(llvm::Attribute::InlineHint);
527           break;
528         }
529     } else if (!FD->hasAttr<AlwaysInlineAttr>())
530       Fn->addFnAttr(llvm::Attribute::NoInline);
531   }
532 
533   if (getLangOpts().OpenCL) {
534     // Add metadata for a kernel function.
535     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
536       EmitOpenCLKernelMetadata(FD, Fn);
537   }
538 
539   // If we are checking function types, emit a function type signature as
540   // prefix data.
541   if (getLangOpts().CPlusPlus && SanOpts->Function) {
542     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
543       if (llvm::Constant *PrefixSig =
544               CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
545         llvm::Constant *FTRTTIConst =
546             CGM.GetAddrOfRTTIDescriptor(FD->getType(), /*ForEH=*/true);
547         llvm::Constant *PrefixStructElems[] = { PrefixSig, FTRTTIConst };
548         llvm::Constant *PrefixStructConst =
549             llvm::ConstantStruct::getAnon(PrefixStructElems, /*Packed=*/true);
550         Fn->setPrefixData(PrefixStructConst);
551       }
552     }
553   }
554 
555   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
556 
557   // Create a marker to make it easy to insert allocas into the entryblock
558   // later.  Don't create this with the builder, because we don't want it
559   // folded.
560   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
561   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB);
562   if (Builder.isNamePreserving())
563     AllocaInsertPt->setName("allocapt");
564 
565   ReturnBlock = getJumpDestInCurrentScope("return");
566 
567   Builder.SetInsertPoint(EntryBB);
568 
569   // Emit subprogram debug descriptor.
570   if (CGDebugInfo *DI = getDebugInfo()) {
571     SmallVector<QualType, 16> ArgTypes;
572     for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
573 	 i != e; ++i) {
574       ArgTypes.push_back((*i)->getType());
575     }
576 
577     QualType FnType =
578       getContext().getFunctionType(RetTy, ArgTypes,
579                                    FunctionProtoType::ExtProtoInfo());
580 
581     DI->setLocation(StartLoc);
582     DI->EmitFunctionStart(GD, FnType, CurFn, Builder);
583   }
584 
585   if (ShouldInstrumentFunction())
586     EmitFunctionInstrumentation("__cyg_profile_func_enter");
587 
588   if (CGM.getCodeGenOpts().InstrumentForProfiling)
589     EmitMCountInstrumentation();
590 
591   if (RetTy->isVoidType()) {
592     // Void type; nothing to return.
593     ReturnValue = 0;
594   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
595              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
596     // Indirect aggregate return; emit returned value directly into sret slot.
597     // This reduces code size, and affects correctness in C++.
598     ReturnValue = CurFn->arg_begin();
599   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca &&
600              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
601     // Load the sret pointer from the argument struct and return into that.
602     unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex();
603     llvm::Function::arg_iterator EI = CurFn->arg_end();
604     --EI;
605     llvm::Value *Addr = Builder.CreateStructGEP(EI, Idx);
606     ReturnValue = Builder.CreateLoad(Addr, "agg.result");
607   } else {
608     ReturnValue = CreateIRTemp(RetTy, "retval");
609 
610     // Tell the epilog emitter to autorelease the result.  We do this
611     // now so that various specialized functions can suppress it
612     // during their IR-generation.
613     if (getLangOpts().ObjCAutoRefCount &&
614         !CurFnInfo->isReturnsRetained() &&
615         RetTy->isObjCRetainableType())
616       AutoreleaseResult = true;
617   }
618 
619   EmitStartEHSpec(CurCodeDecl);
620 
621   PrologueCleanupDepth = EHStack.stable_begin();
622   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
623 
624   if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
625     CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
626     const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
627     if (MD->getParent()->isLambda() &&
628         MD->getOverloadedOperator() == OO_Call) {
629       // We're in a lambda; figure out the captures.
630       MD->getParent()->getCaptureFields(LambdaCaptureFields,
631                                         LambdaThisCaptureField);
632       if (LambdaThisCaptureField) {
633         // If this lambda captures this, load it.
634         LValue ThisLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
635         CXXThisValue = EmitLoadOfLValue(ThisLValue,
636                                         SourceLocation()).getScalarVal();
637       }
638     } else {
639       // Not in a lambda; just use 'this' from the method.
640       // FIXME: Should we generate a new load for each use of 'this'?  The
641       // fast register allocator would be happier...
642       CXXThisValue = CXXABIThisValue;
643     }
644   }
645 
646   // If any of the arguments have a variably modified type, make sure to
647   // emit the type size.
648   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
649        i != e; ++i) {
650     const VarDecl *VD = *i;
651 
652     // Dig out the type as written from ParmVarDecls; it's unclear whether
653     // the standard (C99 6.9.1p10) requires this, but we're following the
654     // precedent set by gcc.
655     QualType Ty;
656     if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
657       Ty = PVD->getOriginalType();
658     else
659       Ty = VD->getType();
660 
661     if (Ty->isVariablyModifiedType())
662       EmitVariablyModifiedType(Ty);
663   }
664   // Emit a location at the end of the prologue.
665   if (CGDebugInfo *DI = getDebugInfo())
666     DI->EmitLocation(Builder, StartLoc);
667 }
668 
669 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args,
670                                        const Stmt *Body) {
671   RegionCounter Cnt = getPGORegionCounter(Body);
672   Cnt.beginRegion(Builder);
673   if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
674     EmitCompoundStmtWithoutScope(*S);
675   else
676     EmitStmt(Body);
677 }
678 
679 /// When instrumenting to collect profile data, the counts for some blocks
680 /// such as switch cases need to not include the fall-through counts, so
681 /// emit a branch around the instrumentation code. When not instrumenting,
682 /// this just calls EmitBlock().
683 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB,
684                                                RegionCounter &Cnt) {
685   llvm::BasicBlock *SkipCountBB = 0;
686   if (HaveInsertPoint() && CGM.getCodeGenOpts().ProfileInstrGenerate) {
687     // When instrumenting for profiling, the fallthrough to certain
688     // statements needs to skip over the instrumentation code so that we
689     // get an accurate count.
690     SkipCountBB = createBasicBlock("skipcount");
691     EmitBranch(SkipCountBB);
692   }
693   EmitBlock(BB);
694   Cnt.beginRegion(Builder, /*AddIncomingFallThrough=*/true);
695   if (SkipCountBB)
696     EmitBlock(SkipCountBB);
697 }
698 
699 /// Tries to mark the given function nounwind based on the
700 /// non-existence of any throwing calls within it.  We believe this is
701 /// lightweight enough to do at -O0.
702 static void TryMarkNoThrow(llvm::Function *F) {
703   // LLVM treats 'nounwind' on a function as part of the type, so we
704   // can't do this on functions that can be overwritten.
705   if (F->mayBeOverridden()) return;
706 
707   for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI)
708     for (llvm::BasicBlock::iterator
709            BI = FI->begin(), BE = FI->end(); BI != BE; ++BI)
710       if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI)) {
711         if (!Call->doesNotThrow())
712           return;
713       } else if (isa<llvm::ResumeInst>(&*BI)) {
714         return;
715       }
716   F->setDoesNotThrow();
717 }
718 
719 static void EmitSizedDeallocationFunction(CodeGenFunction &CGF,
720                                           const FunctionDecl *UnsizedDealloc) {
721   // This is a weak discardable definition of the sized deallocation function.
722   CGF.CurFn->setLinkage(llvm::Function::LinkOnceAnyLinkage);
723 
724   // Call the unsized deallocation function and forward the first argument
725   // unchanged.
726   llvm::Constant *Unsized = CGF.CGM.GetAddrOfFunction(UnsizedDealloc);
727   CGF.Builder.CreateCall(Unsized, &*CGF.CurFn->arg_begin());
728 }
729 
730 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
731                                    const CGFunctionInfo &FnInfo) {
732   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
733 
734   // Check if we should generate debug info for this function.
735   if (FD->hasAttr<NoDebugAttr>())
736     DebugInfo = NULL; // disable debug info indefinitely for this function
737 
738   FunctionArgList Args;
739   QualType ResTy = FD->getReturnType();
740 
741   CurGD = GD;
742   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
743   if (MD && MD->isInstance()) {
744     if (CGM.getCXXABI().HasThisReturn(GD))
745       ResTy = MD->getThisType(getContext());
746     CGM.getCXXABI().buildThisParam(*this, Args);
747   }
748 
749   for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i)
750     Args.push_back(FD->getParamDecl(i));
751 
752   if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
753     CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args);
754 
755   SourceRange BodyRange;
756   if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange();
757   CurEHLocation = BodyRange.getEnd();
758 
759   // Emit the standard function prologue.
760   StartFunction(GD, ResTy, Fn, FnInfo, Args, BodyRange.getBegin());
761 
762   // Generate the body of the function.
763   PGO.assignRegionCounters(GD.getDecl(), CurFn);
764   if (isa<CXXDestructorDecl>(FD))
765     EmitDestructorBody(Args);
766   else if (isa<CXXConstructorDecl>(FD))
767     EmitConstructorBody(Args);
768   else if (getLangOpts().CUDA &&
769            !CGM.getCodeGenOpts().CUDAIsDevice &&
770            FD->hasAttr<CUDAGlobalAttr>())
771     CGM.getCUDARuntime().EmitDeviceStubBody(*this, Args);
772   else if (isa<CXXConversionDecl>(FD) &&
773            cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) {
774     // The lambda conversion to block pointer is special; the semantics can't be
775     // expressed in the AST, so IRGen needs to special-case it.
776     EmitLambdaToBlockPointerBody(Args);
777   } else if (isa<CXXMethodDecl>(FD) &&
778              cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
779     // The lambda static invoker function is special, because it forwards or
780     // clones the body of the function call operator (but is actually static).
781     EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD));
782   } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
783              (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
784               cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
785     // Implicit copy-assignment gets the same special treatment as implicit
786     // copy-constructors.
787     emitImplicitAssignmentOperatorBody(Args);
788   } else if (Stmt *Body = FD->getBody()) {
789     EmitFunctionBody(Args, Body);
790   } else if (FunctionDecl *UnsizedDealloc =
791                  FD->getCorrespondingUnsizedGlobalDeallocationFunction()) {
792     // Global sized deallocation functions get an implicit weak definition if
793     // they don't have an explicit definition.
794     EmitSizedDeallocationFunction(*this, UnsizedDealloc);
795   } else
796     llvm_unreachable("no definition for emitted function");
797 
798   // C++11 [stmt.return]p2:
799   //   Flowing off the end of a function [...] results in undefined behavior in
800   //   a value-returning function.
801   // C11 6.9.1p12:
802   //   If the '}' that terminates a function is reached, and the value of the
803   //   function call is used by the caller, the behavior is undefined.
804   if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() &&
805       !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) {
806     if (SanOpts->Return)
807       EmitCheck(Builder.getFalse(), "missing_return",
808                 EmitCheckSourceLocation(FD->getLocation()),
809                 ArrayRef<llvm::Value *>(), CRK_Unrecoverable);
810     else if (CGM.getCodeGenOpts().OptimizationLevel == 0)
811       Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::trap));
812     Builder.CreateUnreachable();
813     Builder.ClearInsertionPoint();
814   }
815 
816   // Emit the standard function epilogue.
817   FinishFunction(BodyRange.getEnd());
818 
819   // If we haven't marked the function nothrow through other means, do
820   // a quick pass now to see if we can.
821   if (!CurFn->doesNotThrow())
822     TryMarkNoThrow(CurFn);
823 
824   PGO.emitInstrumentationData();
825   PGO.destroyRegionCounters();
826 }
827 
828 /// ContainsLabel - Return true if the statement contains a label in it.  If
829 /// this statement is not executed normally, it not containing a label means
830 /// that we can just remove the code.
831 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
832   // Null statement, not a label!
833   if (S == 0) return false;
834 
835   // If this is a label, we have to emit the code, consider something like:
836   // if (0) {  ...  foo:  bar(); }  goto foo;
837   //
838   // TODO: If anyone cared, we could track __label__'s, since we know that you
839   // can't jump to one from outside their declared region.
840   if (isa<LabelStmt>(S))
841     return true;
842 
843   // If this is a case/default statement, and we haven't seen a switch, we have
844   // to emit the code.
845   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
846     return true;
847 
848   // If this is a switch statement, we want to ignore cases below it.
849   if (isa<SwitchStmt>(S))
850     IgnoreCaseStmts = true;
851 
852   // Scan subexpressions for verboten labels.
853   for (Stmt::const_child_range I = S->children(); I; ++I)
854     if (ContainsLabel(*I, IgnoreCaseStmts))
855       return true;
856 
857   return false;
858 }
859 
860 /// containsBreak - Return true if the statement contains a break out of it.
861 /// If the statement (recursively) contains a switch or loop with a break
862 /// inside of it, this is fine.
863 bool CodeGenFunction::containsBreak(const Stmt *S) {
864   // Null statement, not a label!
865   if (S == 0) return false;
866 
867   // If this is a switch or loop that defines its own break scope, then we can
868   // include it and anything inside of it.
869   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
870       isa<ForStmt>(S))
871     return false;
872 
873   if (isa<BreakStmt>(S))
874     return true;
875 
876   // Scan subexpressions for verboten breaks.
877   for (Stmt::const_child_range I = S->children(); I; ++I)
878     if (containsBreak(*I))
879       return true;
880 
881   return false;
882 }
883 
884 
885 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
886 /// to a constant, or if it does but contains a label, return false.  If it
887 /// constant folds return true and set the boolean result in Result.
888 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
889                                                    bool &ResultBool) {
890   llvm::APSInt ResultInt;
891   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt))
892     return false;
893 
894   ResultBool = ResultInt.getBoolValue();
895   return true;
896 }
897 
898 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
899 /// to a constant, or if it does but contains a label, return false.  If it
900 /// constant folds return true and set the folded value.
901 bool CodeGenFunction::
902 ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &ResultInt) {
903   // FIXME: Rename and handle conversion of other evaluatable things
904   // to bool.
905   llvm::APSInt Int;
906   if (!Cond->EvaluateAsInt(Int, getContext()))
907     return false;  // Not foldable, not integer or not fully evaluatable.
908 
909   if (CodeGenFunction::ContainsLabel(Cond))
910     return false;  // Contains a label.
911 
912   ResultInt = Int;
913   return true;
914 }
915 
916 
917 
918 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
919 /// statement) to the specified blocks.  Based on the condition, this might try
920 /// to simplify the codegen of the conditional based on the branch.
921 ///
922 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
923                                            llvm::BasicBlock *TrueBlock,
924                                            llvm::BasicBlock *FalseBlock,
925                                            uint64_t TrueCount) {
926   Cond = Cond->IgnoreParens();
927 
928   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
929 
930     // Handle X && Y in a condition.
931     if (CondBOp->getOpcode() == BO_LAnd) {
932       RegionCounter Cnt = getPGORegionCounter(CondBOp);
933 
934       // If we have "1 && X", simplify the code.  "0 && X" would have constant
935       // folded if the case was simple enough.
936       bool ConstantBool = false;
937       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
938           ConstantBool) {
939         // br(1 && X) -> br(X).
940         Cnt.beginRegion(Builder);
941         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
942                                     TrueCount);
943       }
944 
945       // If we have "X && 1", simplify the code to use an uncond branch.
946       // "X && 0" would have been constant folded to 0.
947       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
948           ConstantBool) {
949         // br(X && 1) -> br(X).
950         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
951                                     TrueCount);
952       }
953 
954       // Emit the LHS as a conditional.  If the LHS conditional is false, we
955       // want to jump to the FalseBlock.
956       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
957       // The counter tells us how often we evaluate RHS, and all of TrueCount
958       // can be propagated to that branch.
959       uint64_t RHSCount = Cnt.getCount();
960 
961       ConditionalEvaluation eval(*this);
962       EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount);
963       EmitBlock(LHSTrue);
964 
965       // Any temporaries created here are conditional.
966       Cnt.beginRegion(Builder);
967       eval.begin(*this);
968       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount);
969       eval.end(*this);
970 
971       return;
972     }
973 
974     if (CondBOp->getOpcode() == BO_LOr) {
975       RegionCounter Cnt = getPGORegionCounter(CondBOp);
976 
977       // If we have "0 || X", simplify the code.  "1 || X" would have constant
978       // folded if the case was simple enough.
979       bool ConstantBool = false;
980       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
981           !ConstantBool) {
982         // br(0 || X) -> br(X).
983         Cnt.beginRegion(Builder);
984         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
985                                     TrueCount);
986       }
987 
988       // If we have "X || 0", simplify the code to use an uncond branch.
989       // "X || 1" would have been constant folded to 1.
990       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
991           !ConstantBool) {
992         // br(X || 0) -> br(X).
993         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
994                                     TrueCount);
995       }
996 
997       // Emit the LHS as a conditional.  If the LHS conditional is true, we
998       // want to jump to the TrueBlock.
999       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
1000       // We have the count for entry to the RHS and for the whole expression
1001       // being true, so we can divy up True count between the short circuit and
1002       // the RHS.
1003       uint64_t LHSCount = Cnt.getParentCount() - Cnt.getCount();
1004       uint64_t RHSCount = TrueCount - LHSCount;
1005 
1006       ConditionalEvaluation eval(*this);
1007       EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount);
1008       EmitBlock(LHSFalse);
1009 
1010       // Any temporaries created here are conditional.
1011       Cnt.beginRegion(Builder);
1012       eval.begin(*this);
1013       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount);
1014 
1015       eval.end(*this);
1016 
1017       return;
1018     }
1019   }
1020 
1021   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
1022     // br(!x, t, f) -> br(x, f, t)
1023     if (CondUOp->getOpcode() == UO_LNot) {
1024       // Negate the count.
1025       uint64_t FalseCount = PGO.getCurrentRegionCount() - TrueCount;
1026       // Negate the condition and swap the destination blocks.
1027       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock,
1028                                   FalseCount);
1029     }
1030   }
1031 
1032   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
1033     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
1034     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
1035     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
1036 
1037     RegionCounter Cnt = getPGORegionCounter(CondOp);
1038     ConditionalEvaluation cond(*this);
1039     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, Cnt.getCount());
1040 
1041     // When computing PGO branch weights, we only know the overall count for
1042     // the true block. This code is essentially doing tail duplication of the
1043     // naive code-gen, introducing new edges for which counts are not
1044     // available. Divide the counts proportionally between the LHS and RHS of
1045     // the conditional operator.
1046     uint64_t LHSScaledTrueCount = 0;
1047     if (TrueCount) {
1048       double LHSRatio = Cnt.getCount() / (double) Cnt.getParentCount();
1049       LHSScaledTrueCount = TrueCount * LHSRatio;
1050     }
1051 
1052     cond.begin(*this);
1053     EmitBlock(LHSBlock);
1054     Cnt.beginRegion(Builder);
1055     EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock,
1056                          LHSScaledTrueCount);
1057     cond.end(*this);
1058 
1059     cond.begin(*this);
1060     EmitBlock(RHSBlock);
1061     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock,
1062                          TrueCount - LHSScaledTrueCount);
1063     cond.end(*this);
1064 
1065     return;
1066   }
1067 
1068   if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
1069     // Conditional operator handling can give us a throw expression as a
1070     // condition for a case like:
1071     //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
1072     // Fold this to:
1073     //   br(c, throw x, br(y, t, f))
1074     EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
1075     return;
1076   }
1077 
1078   // Create branch weights based on the number of times we get here and the
1079   // number of times the condition should be true.
1080   uint64_t CurrentCount = std::max(PGO.getCurrentRegionCount(), TrueCount);
1081   llvm::MDNode *Weights = PGO.createBranchWeights(TrueCount,
1082                                                   CurrentCount - TrueCount);
1083 
1084   // Emit the code with the fully general case.
1085   llvm::Value *CondV = EvaluateExprAsBool(Cond);
1086   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights);
1087 }
1088 
1089 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1090 /// specified stmt yet.
1091 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
1092   CGM.ErrorUnsupported(S, Type);
1093 }
1094 
1095 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
1096 /// variable-length array whose elements have a non-zero bit-pattern.
1097 ///
1098 /// \param baseType the inner-most element type of the array
1099 /// \param src - a char* pointing to the bit-pattern for a single
1100 /// base element of the array
1101 /// \param sizeInChars - the total size of the VLA, in chars
1102 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
1103                                llvm::Value *dest, llvm::Value *src,
1104                                llvm::Value *sizeInChars) {
1105   std::pair<CharUnits,CharUnits> baseSizeAndAlign
1106     = CGF.getContext().getTypeInfoInChars(baseType);
1107 
1108   CGBuilderTy &Builder = CGF.Builder;
1109 
1110   llvm::Value *baseSizeInChars
1111     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSizeAndAlign.first.getQuantity());
1112 
1113   llvm::Type *i8p = Builder.getInt8PtrTy();
1114 
1115   llvm::Value *begin = Builder.CreateBitCast(dest, i8p, "vla.begin");
1116   llvm::Value *end = Builder.CreateInBoundsGEP(dest, sizeInChars, "vla.end");
1117 
1118   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
1119   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
1120   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
1121 
1122   // Make a loop over the VLA.  C99 guarantees that the VLA element
1123   // count must be nonzero.
1124   CGF.EmitBlock(loopBB);
1125 
1126   llvm::PHINode *cur = Builder.CreatePHI(i8p, 2, "vla.cur");
1127   cur->addIncoming(begin, originBB);
1128 
1129   // memcpy the individual element bit-pattern.
1130   Builder.CreateMemCpy(cur, src, baseSizeInChars,
1131                        baseSizeAndAlign.second.getQuantity(),
1132                        /*volatile*/ false);
1133 
1134   // Go to the next element.
1135   llvm::Value *next = Builder.CreateConstInBoundsGEP1_32(cur, 1, "vla.next");
1136 
1137   // Leave if that's the end of the VLA.
1138   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
1139   Builder.CreateCondBr(done, contBB, loopBB);
1140   cur->addIncoming(next, loopBB);
1141 
1142   CGF.EmitBlock(contBB);
1143 }
1144 
1145 void
1146 CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) {
1147   // Ignore empty classes in C++.
1148   if (getLangOpts().CPlusPlus) {
1149     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1150       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
1151         return;
1152     }
1153   }
1154 
1155   // Cast the dest ptr to the appropriate i8 pointer type.
1156   unsigned DestAS =
1157     cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace();
1158   llvm::Type *BP = Builder.getInt8PtrTy(DestAS);
1159   if (DestPtr->getType() != BP)
1160     DestPtr = Builder.CreateBitCast(DestPtr, BP);
1161 
1162   // Get size and alignment info for this aggregate.
1163   std::pair<CharUnits, CharUnits> TypeInfo =
1164     getContext().getTypeInfoInChars(Ty);
1165   CharUnits Size = TypeInfo.first;
1166   CharUnits Align = TypeInfo.second;
1167 
1168   llvm::Value *SizeVal;
1169   const VariableArrayType *vla;
1170 
1171   // Don't bother emitting a zero-byte memset.
1172   if (Size.isZero()) {
1173     // But note that getTypeInfo returns 0 for a VLA.
1174     if (const VariableArrayType *vlaType =
1175           dyn_cast_or_null<VariableArrayType>(
1176                                           getContext().getAsArrayType(Ty))) {
1177       QualType eltType;
1178       llvm::Value *numElts;
1179       std::tie(numElts, eltType) = getVLASize(vlaType);
1180 
1181       SizeVal = numElts;
1182       CharUnits eltSize = getContext().getTypeSizeInChars(eltType);
1183       if (!eltSize.isOne())
1184         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
1185       vla = vlaType;
1186     } else {
1187       return;
1188     }
1189   } else {
1190     SizeVal = CGM.getSize(Size);
1191     vla = 0;
1192   }
1193 
1194   // If the type contains a pointer to data member we can't memset it to zero.
1195   // Instead, create a null constant and copy it to the destination.
1196   // TODO: there are other patterns besides zero that we can usefully memset,
1197   // like -1, which happens to be the pattern used by member-pointers.
1198   if (!CGM.getTypes().isZeroInitializable(Ty)) {
1199     // For a VLA, emit a single element, then splat that over the VLA.
1200     if (vla) Ty = getContext().getBaseElementType(vla);
1201 
1202     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
1203 
1204     llvm::GlobalVariable *NullVariable =
1205       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
1206                                /*isConstant=*/true,
1207                                llvm::GlobalVariable::PrivateLinkage,
1208                                NullConstant, Twine());
1209     llvm::Value *SrcPtr =
1210       Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy());
1211 
1212     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
1213 
1214     // Get and call the appropriate llvm.memcpy overload.
1215     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity(), false);
1216     return;
1217   }
1218 
1219   // Otherwise, just memset the whole thing to zero.  This is legal
1220   // because in LLVM, all default initializers (other than the ones we just
1221   // handled above) are guaranteed to have a bit pattern of all zeros.
1222   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal,
1223                        Align.getQuantity(), false);
1224 }
1225 
1226 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
1227   // Make sure that there is a block for the indirect goto.
1228   if (IndirectBranch == 0)
1229     GetIndirectGotoBlock();
1230 
1231   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
1232 
1233   // Make sure the indirect branch includes all of the address-taken blocks.
1234   IndirectBranch->addDestination(BB);
1235   return llvm::BlockAddress::get(CurFn, BB);
1236 }
1237 
1238 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
1239   // If we already made the indirect branch for indirect goto, return its block.
1240   if (IndirectBranch) return IndirectBranch->getParent();
1241 
1242   CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto"));
1243 
1244   // Create the PHI node that indirect gotos will add entries to.
1245   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
1246                                               "indirect.goto.dest");
1247 
1248   // Create the indirect branch instruction.
1249   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
1250   return IndirectBranch->getParent();
1251 }
1252 
1253 /// Computes the length of an array in elements, as well as the base
1254 /// element type and a properly-typed first element pointer.
1255 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
1256                                               QualType &baseType,
1257                                               llvm::Value *&addr) {
1258   const ArrayType *arrayType = origArrayType;
1259 
1260   // If it's a VLA, we have to load the stored size.  Note that
1261   // this is the size of the VLA in bytes, not its size in elements.
1262   llvm::Value *numVLAElements = 0;
1263   if (isa<VariableArrayType>(arrayType)) {
1264     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first;
1265 
1266     // Walk into all VLAs.  This doesn't require changes to addr,
1267     // which has type T* where T is the first non-VLA element type.
1268     do {
1269       QualType elementType = arrayType->getElementType();
1270       arrayType = getContext().getAsArrayType(elementType);
1271 
1272       // If we only have VLA components, 'addr' requires no adjustment.
1273       if (!arrayType) {
1274         baseType = elementType;
1275         return numVLAElements;
1276       }
1277     } while (isa<VariableArrayType>(arrayType));
1278 
1279     // We get out here only if we find a constant array type
1280     // inside the VLA.
1281   }
1282 
1283   // We have some number of constant-length arrays, so addr should
1284   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
1285   // down to the first element of addr.
1286   SmallVector<llvm::Value*, 8> gepIndices;
1287 
1288   // GEP down to the array type.
1289   llvm::ConstantInt *zero = Builder.getInt32(0);
1290   gepIndices.push_back(zero);
1291 
1292   uint64_t countFromCLAs = 1;
1293   QualType eltType;
1294 
1295   llvm::ArrayType *llvmArrayType =
1296     dyn_cast<llvm::ArrayType>(
1297       cast<llvm::PointerType>(addr->getType())->getElementType());
1298   while (llvmArrayType) {
1299     assert(isa<ConstantArrayType>(arrayType));
1300     assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
1301              == llvmArrayType->getNumElements());
1302 
1303     gepIndices.push_back(zero);
1304     countFromCLAs *= llvmArrayType->getNumElements();
1305     eltType = arrayType->getElementType();
1306 
1307     llvmArrayType =
1308       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
1309     arrayType = getContext().getAsArrayType(arrayType->getElementType());
1310     assert((!llvmArrayType || arrayType) &&
1311            "LLVM and Clang types are out-of-synch");
1312   }
1313 
1314   if (arrayType) {
1315     // From this point onwards, the Clang array type has been emitted
1316     // as some other type (probably a packed struct). Compute the array
1317     // size, and just emit the 'begin' expression as a bitcast.
1318     while (arrayType) {
1319       countFromCLAs *=
1320           cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
1321       eltType = arrayType->getElementType();
1322       arrayType = getContext().getAsArrayType(eltType);
1323     }
1324 
1325     unsigned AddressSpace = addr->getType()->getPointerAddressSpace();
1326     llvm::Type *BaseType = ConvertType(eltType)->getPointerTo(AddressSpace);
1327     addr = Builder.CreateBitCast(addr, BaseType, "array.begin");
1328   } else {
1329     // Create the actual GEP.
1330     addr = Builder.CreateInBoundsGEP(addr, gepIndices, "array.begin");
1331   }
1332 
1333   baseType = eltType;
1334 
1335   llvm::Value *numElements
1336     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
1337 
1338   // If we had any VLA dimensions, factor them in.
1339   if (numVLAElements)
1340     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
1341 
1342   return numElements;
1343 }
1344 
1345 std::pair<llvm::Value*, QualType>
1346 CodeGenFunction::getVLASize(QualType type) {
1347   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
1348   assert(vla && "type was not a variable array type!");
1349   return getVLASize(vla);
1350 }
1351 
1352 std::pair<llvm::Value*, QualType>
1353 CodeGenFunction::getVLASize(const VariableArrayType *type) {
1354   // The number of elements so far; always size_t.
1355   llvm::Value *numElements = 0;
1356 
1357   QualType elementType;
1358   do {
1359     elementType = type->getElementType();
1360     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
1361     assert(vlaSize && "no size for VLA!");
1362     assert(vlaSize->getType() == SizeTy);
1363 
1364     if (!numElements) {
1365       numElements = vlaSize;
1366     } else {
1367       // It's undefined behavior if this wraps around, so mark it that way.
1368       // FIXME: Teach -fcatch-undefined-behavior to trap this.
1369       numElements = Builder.CreateNUWMul(numElements, vlaSize);
1370     }
1371   } while ((type = getContext().getAsVariableArrayType(elementType)));
1372 
1373   return std::pair<llvm::Value*,QualType>(numElements, elementType);
1374 }
1375 
1376 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
1377   assert(type->isVariablyModifiedType() &&
1378          "Must pass variably modified type to EmitVLASizes!");
1379 
1380   EnsureInsertPoint();
1381 
1382   // We're going to walk down into the type and look for VLA
1383   // expressions.
1384   do {
1385     assert(type->isVariablyModifiedType());
1386 
1387     const Type *ty = type.getTypePtr();
1388     switch (ty->getTypeClass()) {
1389 
1390 #define TYPE(Class, Base)
1391 #define ABSTRACT_TYPE(Class, Base)
1392 #define NON_CANONICAL_TYPE(Class, Base)
1393 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
1394 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
1395 #include "clang/AST/TypeNodes.def"
1396       llvm_unreachable("unexpected dependent type!");
1397 
1398     // These types are never variably-modified.
1399     case Type::Builtin:
1400     case Type::Complex:
1401     case Type::Vector:
1402     case Type::ExtVector:
1403     case Type::Record:
1404     case Type::Enum:
1405     case Type::Elaborated:
1406     case Type::TemplateSpecialization:
1407     case Type::ObjCObject:
1408     case Type::ObjCInterface:
1409     case Type::ObjCObjectPointer:
1410       llvm_unreachable("type class is never variably-modified!");
1411 
1412     case Type::Adjusted:
1413       type = cast<AdjustedType>(ty)->getAdjustedType();
1414       break;
1415 
1416     case Type::Decayed:
1417       type = cast<DecayedType>(ty)->getPointeeType();
1418       break;
1419 
1420     case Type::Pointer:
1421       type = cast<PointerType>(ty)->getPointeeType();
1422       break;
1423 
1424     case Type::BlockPointer:
1425       type = cast<BlockPointerType>(ty)->getPointeeType();
1426       break;
1427 
1428     case Type::LValueReference:
1429     case Type::RValueReference:
1430       type = cast<ReferenceType>(ty)->getPointeeType();
1431       break;
1432 
1433     case Type::MemberPointer:
1434       type = cast<MemberPointerType>(ty)->getPointeeType();
1435       break;
1436 
1437     case Type::ConstantArray:
1438     case Type::IncompleteArray:
1439       // Losing element qualification here is fine.
1440       type = cast<ArrayType>(ty)->getElementType();
1441       break;
1442 
1443     case Type::VariableArray: {
1444       // Losing element qualification here is fine.
1445       const VariableArrayType *vat = cast<VariableArrayType>(ty);
1446 
1447       // Unknown size indication requires no size computation.
1448       // Otherwise, evaluate and record it.
1449       if (const Expr *size = vat->getSizeExpr()) {
1450         // It's possible that we might have emitted this already,
1451         // e.g. with a typedef and a pointer to it.
1452         llvm::Value *&entry = VLASizeMap[size];
1453         if (!entry) {
1454           llvm::Value *Size = EmitScalarExpr(size);
1455 
1456           // C11 6.7.6.2p5:
1457           //   If the size is an expression that is not an integer constant
1458           //   expression [...] each time it is evaluated it shall have a value
1459           //   greater than zero.
1460           if (SanOpts->VLABound &&
1461               size->getType()->isSignedIntegerType()) {
1462             llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType());
1463             llvm::Constant *StaticArgs[] = {
1464               EmitCheckSourceLocation(size->getLocStart()),
1465               EmitCheckTypeDescriptor(size->getType())
1466             };
1467             EmitCheck(Builder.CreateICmpSGT(Size, Zero),
1468                       "vla_bound_not_positive", StaticArgs, Size,
1469                       CRK_Recoverable);
1470           }
1471 
1472           // Always zexting here would be wrong if it weren't
1473           // undefined behavior to have a negative bound.
1474           entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false);
1475         }
1476       }
1477       type = vat->getElementType();
1478       break;
1479     }
1480 
1481     case Type::FunctionProto:
1482     case Type::FunctionNoProto:
1483       type = cast<FunctionType>(ty)->getReturnType();
1484       break;
1485 
1486     case Type::Paren:
1487     case Type::TypeOf:
1488     case Type::UnaryTransform:
1489     case Type::Attributed:
1490     case Type::SubstTemplateTypeParm:
1491     case Type::PackExpansion:
1492       // Keep walking after single level desugaring.
1493       type = type.getSingleStepDesugaredType(getContext());
1494       break;
1495 
1496     case Type::Typedef:
1497     case Type::Decltype:
1498     case Type::Auto:
1499       // Stop walking: nothing to do.
1500       return;
1501 
1502     case Type::TypeOfExpr:
1503       // Stop walking: emit typeof expression.
1504       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
1505       return;
1506 
1507     case Type::Atomic:
1508       type = cast<AtomicType>(ty)->getValueType();
1509       break;
1510     }
1511   } while (type->isVariablyModifiedType());
1512 }
1513 
1514 llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) {
1515   if (getContext().getBuiltinVaListType()->isArrayType())
1516     return EmitScalarExpr(E);
1517   return EmitLValue(E).getAddress();
1518 }
1519 
1520 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
1521                                               llvm::Constant *Init) {
1522   assert (Init && "Invalid DeclRefExpr initializer!");
1523   if (CGDebugInfo *Dbg = getDebugInfo())
1524     if (CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
1525       Dbg->EmitGlobalVariable(E->getDecl(), Init);
1526 }
1527 
1528 CodeGenFunction::PeepholeProtection
1529 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
1530   // At the moment, the only aggressive peephole we do in IR gen
1531   // is trunc(zext) folding, but if we add more, we can easily
1532   // extend this protection.
1533 
1534   if (!rvalue.isScalar()) return PeepholeProtection();
1535   llvm::Value *value = rvalue.getScalarVal();
1536   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
1537 
1538   // Just make an extra bitcast.
1539   assert(HaveInsertPoint());
1540   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
1541                                                   Builder.GetInsertBlock());
1542 
1543   PeepholeProtection protection;
1544   protection.Inst = inst;
1545   return protection;
1546 }
1547 
1548 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
1549   if (!protection.Inst) return;
1550 
1551   // In theory, we could try to duplicate the peepholes now, but whatever.
1552   protection.Inst->eraseFromParent();
1553 }
1554 
1555 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn,
1556                                                  llvm::Value *AnnotatedVal,
1557                                                  StringRef AnnotationStr,
1558                                                  SourceLocation Location) {
1559   llvm::Value *Args[4] = {
1560     AnnotatedVal,
1561     Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
1562     Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
1563     CGM.EmitAnnotationLineNo(Location)
1564   };
1565   return Builder.CreateCall(AnnotationFn, Args);
1566 }
1567 
1568 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
1569   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1570   // FIXME We create a new bitcast for every annotation because that's what
1571   // llvm-gcc was doing.
1572   for (const auto *I : D->specific_attrs<AnnotateAttr>())
1573     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
1574                        Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
1575                        I->getAnnotation(), D->getLocation());
1576 }
1577 
1578 llvm::Value *CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
1579                                                    llvm::Value *V) {
1580   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1581   llvm::Type *VTy = V->getType();
1582   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
1583                                     CGM.Int8PtrTy);
1584 
1585   for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
1586     // FIXME Always emit the cast inst so we can differentiate between
1587     // annotation on the first field of a struct and annotation on the struct
1588     // itself.
1589     if (VTy != CGM.Int8PtrTy)
1590       V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy));
1591     V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation());
1592     V = Builder.CreateBitCast(V, VTy);
1593   }
1594 
1595   return V;
1596 }
1597 
1598 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
1599