1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-function state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CodeGenModule.h" 16 #include "CGDebugInfo.h" 17 #include "clang/Basic/TargetInfo.h" 18 #include "clang/AST/APValue.h" 19 #include "clang/AST/ASTContext.h" 20 #include "clang/AST/Decl.h" 21 #include "clang/AST/DeclCXX.h" 22 #include "llvm/Target/TargetData.h" 23 using namespace clang; 24 using namespace CodeGen; 25 26 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm) 27 : BlockFunction(cgm, *this, Builder), CGM(cgm), 28 Target(CGM.getContext().Target), 29 Builder(cgm.getModule().getContext()), 30 DebugInfo(0), IndirectGotoSwitch(0), 31 SwitchInsn(0), CaseRangeBlock(0), InvokeDest(0), 32 CXXThisDecl(0) { 33 LLVMIntTy = ConvertType(getContext().IntTy); 34 LLVMPointerWidth = Target.getPointerWidth(0); 35 } 36 37 ASTContext &CodeGenFunction::getContext() const { 38 return CGM.getContext(); 39 } 40 41 42 llvm::BasicBlock *CodeGenFunction::getBasicBlockForLabel(const LabelStmt *S) { 43 llvm::BasicBlock *&BB = LabelMap[S]; 44 if (BB) return BB; 45 46 // Create, but don't insert, the new block. 47 return BB = createBasicBlock(S->getName()); 48 } 49 50 llvm::Value *CodeGenFunction::GetAddrOfLocalVar(const VarDecl *VD) { 51 llvm::Value *Res = LocalDeclMap[VD]; 52 assert(Res && "Invalid argument to GetAddrOfLocalVar(), no decl!"); 53 return Res; 54 } 55 56 llvm::Constant * 57 CodeGenFunction::GetAddrOfStaticLocalVar(const VarDecl *BVD) { 58 return cast<llvm::Constant>(GetAddrOfLocalVar(BVD)); 59 } 60 61 const llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 62 return CGM.getTypes().ConvertTypeForMem(T); 63 } 64 65 const llvm::Type *CodeGenFunction::ConvertType(QualType T) { 66 return CGM.getTypes().ConvertType(T); 67 } 68 69 bool CodeGenFunction::hasAggregateLLVMType(QualType T) { 70 return T->isRecordType() || T->isArrayType() || T->isAnyComplexType() || 71 T->isMemberFunctionPointerType(); 72 } 73 74 void CodeGenFunction::EmitReturnBlock() { 75 // For cleanliness, we try to avoid emitting the return block for 76 // simple cases. 77 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 78 79 if (CurBB) { 80 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 81 82 // We have a valid insert point, reuse it if it is empty or there are no 83 // explicit jumps to the return block. 84 if (CurBB->empty() || ReturnBlock->use_empty()) { 85 ReturnBlock->replaceAllUsesWith(CurBB); 86 delete ReturnBlock; 87 } else 88 EmitBlock(ReturnBlock); 89 return; 90 } 91 92 // Otherwise, if the return block is the target of a single direct 93 // branch then we can just put the code in that block instead. This 94 // cleans up functions which started with a unified return block. 95 if (ReturnBlock->hasOneUse()) { 96 llvm::BranchInst *BI = 97 dyn_cast<llvm::BranchInst>(*ReturnBlock->use_begin()); 98 if (BI && BI->isUnconditional() && BI->getSuccessor(0) == ReturnBlock) { 99 // Reset insertion point and delete the branch. 100 Builder.SetInsertPoint(BI->getParent()); 101 BI->eraseFromParent(); 102 delete ReturnBlock; 103 return; 104 } 105 } 106 107 // FIXME: We are at an unreachable point, there is no reason to emit the block 108 // unless it has uses. However, we still need a place to put the debug 109 // region.end for now. 110 111 EmitBlock(ReturnBlock); 112 } 113 114 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 115 assert(BreakContinueStack.empty() && 116 "mismatched push/pop in break/continue stack!"); 117 assert(BlockScopes.empty() && 118 "did not remove all blocks from block scope map!"); 119 assert(CleanupEntries.empty() && 120 "mismatched push/pop in cleanup stack!"); 121 122 // Emit function epilog (to return). 123 EmitReturnBlock(); 124 125 // Emit debug descriptor for function end. 126 if (CGDebugInfo *DI = getDebugInfo()) { 127 DI->setLocation(EndLoc); 128 DI->EmitRegionEnd(CurFn, Builder); 129 } 130 131 EmitFunctionEpilog(*CurFnInfo, ReturnValue); 132 133 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 134 llvm::Instruction *Ptr = AllocaInsertPt; 135 AllocaInsertPt = 0; 136 Ptr->eraseFromParent(); 137 } 138 139 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy, 140 llvm::Function *Fn, 141 const FunctionArgList &Args, 142 SourceLocation StartLoc) { 143 const Decl *D = GD.getDecl(); 144 145 DidCallStackSave = false; 146 CurCodeDecl = CurFuncDecl = D; 147 FnRetTy = RetTy; 148 CurFn = Fn; 149 assert(CurFn->isDeclaration() && "Function already has body?"); 150 151 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 152 153 // Create a marker to make it easy to insert allocas into the entryblock 154 // later. Don't create this with the builder, because we don't want it 155 // folded. 156 llvm::Value *Undef = llvm::UndefValue::get(llvm::Type::getInt32Ty(VMContext)); 157 AllocaInsertPt = new llvm::BitCastInst(Undef, 158 llvm::Type::getInt32Ty(VMContext), "", 159 EntryBB); 160 if (Builder.isNamePreserving()) 161 AllocaInsertPt->setName("allocapt"); 162 163 ReturnBlock = createBasicBlock("return"); 164 ReturnValue = 0; 165 if (!RetTy->isVoidType()) 166 ReturnValue = CreateTempAlloca(ConvertType(RetTy), "retval"); 167 168 Builder.SetInsertPoint(EntryBB); 169 170 // Emit subprogram debug descriptor. 171 // FIXME: The cast here is a huge hack. 172 if (CGDebugInfo *DI = getDebugInfo()) { 173 DI->setLocation(StartLoc); 174 if (isa<FunctionDecl>(D)) { 175 DI->EmitFunctionStart(CGM.getMangledName(GD), RetTy, CurFn, Builder); 176 } else { 177 // Just use LLVM function name. 178 179 // FIXME: Remove unnecessary conversion to std::string when API settles. 180 DI->EmitFunctionStart(std::string(Fn->getName()).c_str(), 181 RetTy, CurFn, Builder); 182 } 183 } 184 185 // FIXME: Leaked. 186 CurFnInfo = &CGM.getTypes().getFunctionInfo(FnRetTy, Args); 187 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 188 189 // If any of the arguments have a variably modified type, make sure to 190 // emit the type size. 191 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 192 i != e; ++i) { 193 QualType Ty = i->second; 194 195 if (Ty->isVariablyModifiedType()) 196 EmitVLASize(Ty); 197 } 198 } 199 200 void CodeGenFunction::GenerateCode(GlobalDecl GD, 201 llvm::Function *Fn) { 202 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 203 204 // Check if we should generate debug info for this function. 205 if (CGM.getDebugInfo() && !FD->hasAttr<NoDebugAttr>()) 206 DebugInfo = CGM.getDebugInfo(); 207 208 FunctionArgList Args; 209 210 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 211 if (MD->isInstance()) { 212 // Create the implicit 'this' decl. 213 // FIXME: I'm not entirely sure I like using a fake decl just for code 214 // generation. Maybe we can come up with a better way? 215 CXXThisDecl = ImplicitParamDecl::Create(getContext(), 0, SourceLocation(), 216 &getContext().Idents.get("this"), 217 MD->getThisType(getContext())); 218 Args.push_back(std::make_pair(CXXThisDecl, CXXThisDecl->getType())); 219 } 220 } 221 222 if (FD->getNumParams()) { 223 const FunctionProtoType* FProto = FD->getType()->getAs<FunctionProtoType>(); 224 assert(FProto && "Function def must have prototype!"); 225 226 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) 227 Args.push_back(std::make_pair(FD->getParamDecl(i), 228 FProto->getArgType(i))); 229 } 230 231 // FIXME: Support CXXTryStmt here, too. 232 if (const CompoundStmt *S = FD->getCompoundBody()) { 233 StartFunction(GD, FD->getResultType(), Fn, Args, S->getLBracLoc()); 234 const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD); 235 llvm::BasicBlock *DtorEpilogue = 0; 236 if (DD) { 237 DtorEpilogue = createBasicBlock("dtor.epilogue"); 238 239 PushCleanupBlock(DtorEpilogue); 240 } 241 242 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 243 EmitCtorPrologue(CD, GD.getCtorType()); 244 EmitStmt(S); 245 246 if (DD) { 247 CleanupBlockInfo Info = PopCleanupBlock(); 248 249 assert(Info.CleanupBlock == DtorEpilogue && "Block mismatch!"); 250 EmitBlock(DtorEpilogue); 251 EmitDtorEpilogue(DD, GD.getDtorType()); 252 253 if (Info.SwitchBlock) 254 EmitBlock(Info.SwitchBlock); 255 if (Info.EndBlock) 256 EmitBlock(Info.EndBlock); 257 } 258 FinishFunction(S->getRBracLoc()); 259 } else if (FD->isImplicit()) { 260 const CXXRecordDecl *ClassDecl = 261 cast<CXXRecordDecl>(FD->getDeclContext()); 262 (void) ClassDecl; 263 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) { 264 // FIXME: For C++0x, we want to look for implicit *definitions* of 265 // these special member functions, rather than implicit *declarations*. 266 if (CD->isCopyConstructor(getContext())) { 267 assert(!ClassDecl->hasUserDeclaredCopyConstructor() && 268 "Cannot synthesize a non-implicit copy constructor"); 269 SynthesizeCXXCopyConstructor(CD, GD.getCtorType(), Fn, Args); 270 } else if (CD->isDefaultConstructor()) { 271 assert(!ClassDecl->hasUserDeclaredConstructor() && 272 "Cannot synthesize a non-implicit default constructor."); 273 SynthesizeDefaultConstructor(CD, GD.getCtorType(), Fn, Args); 274 } else { 275 assert(false && "Implicit constructor cannot be synthesized"); 276 } 277 } else if (const CXXDestructorDecl *CD = dyn_cast<CXXDestructorDecl>(FD)) { 278 assert(!ClassDecl->hasUserDeclaredDestructor() && 279 "Cannot synthesize a non-implicit destructor"); 280 SynthesizeDefaultDestructor(CD, GD.getDtorType(), Fn, Args); 281 } else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 282 assert(MD->isCopyAssignment() && 283 !ClassDecl->hasUserDeclaredCopyAssignment() && 284 "Cannot synthesize a method that is not an implicit-defined " 285 "copy constructor"); 286 SynthesizeCXXCopyAssignment(MD, Fn, Args); 287 } else { 288 assert(false && "Cannot synthesize unknown implicit function"); 289 } 290 } 291 292 // Destroy the 'this' declaration. 293 if (CXXThisDecl) 294 CXXThisDecl->Destroy(getContext()); 295 } 296 297 /// ContainsLabel - Return true if the statement contains a label in it. If 298 /// this statement is not executed normally, it not containing a label means 299 /// that we can just remove the code. 300 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 301 // Null statement, not a label! 302 if (S == 0) return false; 303 304 // If this is a label, we have to emit the code, consider something like: 305 // if (0) { ... foo: bar(); } goto foo; 306 if (isa<LabelStmt>(S)) 307 return true; 308 309 // If this is a case/default statement, and we haven't seen a switch, we have 310 // to emit the code. 311 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 312 return true; 313 314 // If this is a switch statement, we want to ignore cases below it. 315 if (isa<SwitchStmt>(S)) 316 IgnoreCaseStmts = true; 317 318 // Scan subexpressions for verboten labels. 319 for (Stmt::const_child_iterator I = S->child_begin(), E = S->child_end(); 320 I != E; ++I) 321 if (ContainsLabel(*I, IgnoreCaseStmts)) 322 return true; 323 324 return false; 325 } 326 327 328 /// ConstantFoldsToSimpleInteger - If the sepcified expression does not fold to 329 /// a constant, or if it does but contains a label, return 0. If it constant 330 /// folds to 'true' and does not contain a label, return 1, if it constant folds 331 /// to 'false' and does not contain a label, return -1. 332 int CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond) { 333 // FIXME: Rename and handle conversion of other evaluatable things 334 // to bool. 335 Expr::EvalResult Result; 336 if (!Cond->Evaluate(Result, getContext()) || !Result.Val.isInt() || 337 Result.HasSideEffects) 338 return 0; // Not foldable, not integer or not fully evaluatable. 339 340 if (CodeGenFunction::ContainsLabel(Cond)) 341 return 0; // Contains a label. 342 343 return Result.Val.getInt().getBoolValue() ? 1 : -1; 344 } 345 346 347 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 348 /// statement) to the specified blocks. Based on the condition, this might try 349 /// to simplify the codegen of the conditional based on the branch. 350 /// 351 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 352 llvm::BasicBlock *TrueBlock, 353 llvm::BasicBlock *FalseBlock) { 354 if (const ParenExpr *PE = dyn_cast<ParenExpr>(Cond)) 355 return EmitBranchOnBoolExpr(PE->getSubExpr(), TrueBlock, FalseBlock); 356 357 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 358 // Handle X && Y in a condition. 359 if (CondBOp->getOpcode() == BinaryOperator::LAnd) { 360 // If we have "1 && X", simplify the code. "0 && X" would have constant 361 // folded if the case was simple enough. 362 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS()) == 1) { 363 // br(1 && X) -> br(X). 364 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 365 } 366 367 // If we have "X && 1", simplify the code to use an uncond branch. 368 // "X && 0" would have been constant folded to 0. 369 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS()) == 1) { 370 // br(X && 1) -> br(X). 371 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock); 372 } 373 374 // Emit the LHS as a conditional. If the LHS conditional is false, we 375 // want to jump to the FalseBlock. 376 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 377 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock); 378 EmitBlock(LHSTrue); 379 380 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 381 return; 382 } else if (CondBOp->getOpcode() == BinaryOperator::LOr) { 383 // If we have "0 || X", simplify the code. "1 || X" would have constant 384 // folded if the case was simple enough. 385 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS()) == -1) { 386 // br(0 || X) -> br(X). 387 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 388 } 389 390 // If we have "X || 0", simplify the code to use an uncond branch. 391 // "X || 1" would have been constant folded to 1. 392 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS()) == -1) { 393 // br(X || 0) -> br(X). 394 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock); 395 } 396 397 // Emit the LHS as a conditional. If the LHS conditional is true, we 398 // want to jump to the TrueBlock. 399 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 400 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse); 401 EmitBlock(LHSFalse); 402 403 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 404 return; 405 } 406 } 407 408 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 409 // br(!x, t, f) -> br(x, f, t) 410 if (CondUOp->getOpcode() == UnaryOperator::LNot) 411 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock); 412 } 413 414 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 415 // Handle ?: operator. 416 417 // Just ignore GNU ?: extension. 418 if (CondOp->getLHS()) { 419 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 420 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 421 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 422 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock); 423 EmitBlock(LHSBlock); 424 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock); 425 EmitBlock(RHSBlock); 426 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock); 427 return; 428 } 429 } 430 431 // Emit the code with the fully general case. 432 llvm::Value *CondV = EvaluateExprAsBool(Cond); 433 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock); 434 } 435 436 /// ErrorUnsupported - Print out an error that codegen doesn't support the 437 /// specified stmt yet. 438 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type, 439 bool OmitOnError) { 440 CGM.ErrorUnsupported(S, Type, OmitOnError); 441 } 442 443 void CodeGenFunction::EmitMemSetToZero(llvm::Value *DestPtr, QualType Ty) { 444 const llvm::Type *BP = llvm::Type::getInt8PtrTy(VMContext); 445 if (DestPtr->getType() != BP) 446 DestPtr = Builder.CreateBitCast(DestPtr, BP, "tmp"); 447 448 // Get size and alignment info for this aggregate. 449 std::pair<uint64_t, unsigned> TypeInfo = getContext().getTypeInfo(Ty); 450 451 // Don't bother emitting a zero-byte memset. 452 if (TypeInfo.first == 0) 453 return; 454 455 // FIXME: Handle variable sized types. 456 const llvm::Type *IntPtr = llvm::IntegerType::get(VMContext, 457 LLVMPointerWidth); 458 459 Builder.CreateCall4(CGM.getMemSetFn(), DestPtr, 460 llvm::Constant::getNullValue(llvm::Type::getInt8Ty(VMContext)), 461 // TypeInfo.first describes size in bits. 462 llvm::ConstantInt::get(IntPtr, TypeInfo.first/8), 463 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 464 TypeInfo.second/8)); 465 } 466 467 unsigned CodeGenFunction::GetIDForAddrOfLabel(const LabelStmt *L) { 468 // Use LabelIDs.size()+1 as the new ID if one hasn't been assigned. 469 unsigned &Entry = LabelIDs[L]; 470 if (Entry) return Entry; 471 472 Entry = LabelIDs.size(); 473 474 // If this is the first "address taken" of a label and the indirect goto has 475 // already been seen, add this to it. 476 if (IndirectGotoSwitch) { 477 // If this is the first address-taken label, set it as the default dest. 478 if (Entry == 1) 479 IndirectGotoSwitch->setSuccessor(0, getBasicBlockForLabel(L)); 480 else { 481 // Otherwise add it to the switch as a new dest. 482 const llvm::IntegerType *Int32Ty = llvm::Type::getInt32Ty(VMContext); 483 IndirectGotoSwitch->addCase(llvm::ConstantInt::get(Int32Ty, Entry), 484 getBasicBlockForLabel(L)); 485 } 486 } 487 488 return Entry; 489 } 490 491 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 492 // If we already made the switch stmt for indirect goto, return its block. 493 if (IndirectGotoSwitch) return IndirectGotoSwitch->getParent(); 494 495 EmitBlock(createBasicBlock("indirectgoto")); 496 497 // Create the PHI node that indirect gotos will add entries to. 498 llvm::Value *DestVal = 499 Builder.CreatePHI(llvm::Type::getInt32Ty(VMContext), "indirect.goto.dest"); 500 501 // Create the switch instruction. For now, set the insert block to this block 502 // which will be fixed as labels are added. 503 IndirectGotoSwitch = Builder.CreateSwitch(DestVal, Builder.GetInsertBlock()); 504 505 // Clear the insertion point to indicate we are in unreachable code. 506 Builder.ClearInsertionPoint(); 507 508 // If we already have labels created, add them. 509 if (!LabelIDs.empty()) { 510 // Invert LabelID's so that the order is determinstic. 511 std::vector<const LabelStmt*> AddrTakenLabelsByID; 512 AddrTakenLabelsByID.resize(LabelIDs.size()); 513 514 for (std::map<const LabelStmt*,unsigned>::iterator 515 LI = LabelIDs.begin(), LE = LabelIDs.end(); LI != LE; ++LI) { 516 assert(LI->second-1 < AddrTakenLabelsByID.size() && 517 "Numbering inconsistent"); 518 AddrTakenLabelsByID[LI->second-1] = LI->first; 519 } 520 521 // Set the default entry as the first block. 522 IndirectGotoSwitch->setSuccessor(0, 523 getBasicBlockForLabel(AddrTakenLabelsByID[0])); 524 525 const llvm::IntegerType *Int32Ty = llvm::Type::getInt32Ty(VMContext); 526 527 // FIXME: The iteration order of this is nondeterminstic! 528 for (unsigned i = 1, e = AddrTakenLabelsByID.size(); i != e; ++i) 529 IndirectGotoSwitch->addCase(llvm::ConstantInt::get(Int32Ty, i+1), 530 getBasicBlockForLabel(AddrTakenLabelsByID[i])); 531 } else { 532 // Otherwise, create a dead block and set it as the default dest. This will 533 // be removed by the optimizers after the indirect goto is set up. 534 llvm::BasicBlock *Dummy = createBasicBlock("indgoto.dummy"); 535 EmitBlock(Dummy); 536 IndirectGotoSwitch->setSuccessor(0, Dummy); 537 Builder.CreateUnreachable(); 538 Builder.ClearInsertionPoint(); 539 } 540 541 return IndirectGotoSwitch->getParent(); 542 } 543 544 llvm::Value *CodeGenFunction::GetVLASize(const VariableArrayType *VAT) { 545 llvm::Value *&SizeEntry = VLASizeMap[VAT->getSizeExpr()]; 546 547 assert(SizeEntry && "Did not emit size for type"); 548 return SizeEntry; 549 } 550 551 llvm::Value *CodeGenFunction::EmitVLASize(QualType Ty) { 552 assert(Ty->isVariablyModifiedType() && 553 "Must pass variably modified type to EmitVLASizes!"); 554 555 EnsureInsertPoint(); 556 557 if (const VariableArrayType *VAT = getContext().getAsVariableArrayType(Ty)) { 558 llvm::Value *&SizeEntry = VLASizeMap[VAT->getSizeExpr()]; 559 560 if (!SizeEntry) { 561 const llvm::Type *SizeTy = ConvertType(getContext().getSizeType()); 562 563 // Get the element size; 564 QualType ElemTy = VAT->getElementType(); 565 llvm::Value *ElemSize; 566 if (ElemTy->isVariableArrayType()) 567 ElemSize = EmitVLASize(ElemTy); 568 else 569 ElemSize = llvm::ConstantInt::get(SizeTy, 570 getContext().getTypeSize(ElemTy) / 8); 571 572 llvm::Value *NumElements = EmitScalarExpr(VAT->getSizeExpr()); 573 NumElements = Builder.CreateIntCast(NumElements, SizeTy, false, "tmp"); 574 575 SizeEntry = Builder.CreateMul(ElemSize, NumElements); 576 } 577 578 return SizeEntry; 579 } 580 581 if (const ArrayType *AT = dyn_cast<ArrayType>(Ty)) { 582 EmitVLASize(AT->getElementType()); 583 return 0; 584 } 585 586 const PointerType *PT = Ty->getAs<PointerType>(); 587 assert(PT && "unknown VM type!"); 588 EmitVLASize(PT->getPointeeType()); 589 return 0; 590 } 591 592 llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) { 593 if (CGM.getContext().getBuiltinVaListType()->isArrayType()) { 594 return EmitScalarExpr(E); 595 } 596 return EmitLValue(E).getAddress(); 597 } 598 599 void CodeGenFunction::PushCleanupBlock(llvm::BasicBlock *CleanupBlock) { 600 CleanupEntries.push_back(CleanupEntry(CleanupBlock)); 601 } 602 603 void CodeGenFunction::EmitCleanupBlocks(size_t OldCleanupStackSize) { 604 assert(CleanupEntries.size() >= OldCleanupStackSize && 605 "Cleanup stack mismatch!"); 606 607 while (CleanupEntries.size() > OldCleanupStackSize) 608 EmitCleanupBlock(); 609 } 610 611 CodeGenFunction::CleanupBlockInfo CodeGenFunction::PopCleanupBlock() { 612 CleanupEntry &CE = CleanupEntries.back(); 613 614 llvm::BasicBlock *CleanupBlock = CE.CleanupBlock; 615 616 std::vector<llvm::BasicBlock *> Blocks; 617 std::swap(Blocks, CE.Blocks); 618 619 std::vector<llvm::BranchInst *> BranchFixups; 620 std::swap(BranchFixups, CE.BranchFixups); 621 622 CleanupEntries.pop_back(); 623 624 // Check if any branch fixups pointed to the scope we just popped. If so, 625 // we can remove them. 626 for (size_t i = 0, e = BranchFixups.size(); i != e; ++i) { 627 llvm::BasicBlock *Dest = BranchFixups[i]->getSuccessor(0); 628 BlockScopeMap::iterator I = BlockScopes.find(Dest); 629 630 if (I == BlockScopes.end()) 631 continue; 632 633 assert(I->second <= CleanupEntries.size() && "Invalid branch fixup!"); 634 635 if (I->second == CleanupEntries.size()) { 636 // We don't need to do this branch fixup. 637 BranchFixups[i] = BranchFixups.back(); 638 BranchFixups.pop_back(); 639 i--; 640 e--; 641 continue; 642 } 643 } 644 645 llvm::BasicBlock *SwitchBlock = 0; 646 llvm::BasicBlock *EndBlock = 0; 647 if (!BranchFixups.empty()) { 648 SwitchBlock = createBasicBlock("cleanup.switch"); 649 EndBlock = createBasicBlock("cleanup.end"); 650 651 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 652 653 Builder.SetInsertPoint(SwitchBlock); 654 655 llvm::Value *DestCodePtr = CreateTempAlloca(llvm::Type::getInt32Ty(VMContext), 656 "cleanup.dst"); 657 llvm::Value *DestCode = Builder.CreateLoad(DestCodePtr, "tmp"); 658 659 // Create a switch instruction to determine where to jump next. 660 llvm::SwitchInst *SI = Builder.CreateSwitch(DestCode, EndBlock, 661 BranchFixups.size()); 662 663 // Restore the current basic block (if any) 664 if (CurBB) { 665 Builder.SetInsertPoint(CurBB); 666 667 // If we had a current basic block, we also need to emit an instruction 668 // to initialize the cleanup destination. 669 Builder.CreateStore(llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)), 670 DestCodePtr); 671 } else 672 Builder.ClearInsertionPoint(); 673 674 for (size_t i = 0, e = BranchFixups.size(); i != e; ++i) { 675 llvm::BranchInst *BI = BranchFixups[i]; 676 llvm::BasicBlock *Dest = BI->getSuccessor(0); 677 678 // Fixup the branch instruction to point to the cleanup block. 679 BI->setSuccessor(0, CleanupBlock); 680 681 if (CleanupEntries.empty()) { 682 llvm::ConstantInt *ID; 683 684 // Check if we already have a destination for this block. 685 if (Dest == SI->getDefaultDest()) 686 ID = llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 0); 687 else { 688 ID = SI->findCaseDest(Dest); 689 if (!ID) { 690 // No code found, get a new unique one by using the number of 691 // switch successors. 692 ID = llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 693 SI->getNumSuccessors()); 694 SI->addCase(ID, Dest); 695 } 696 } 697 698 // Store the jump destination before the branch instruction. 699 new llvm::StoreInst(ID, DestCodePtr, BI); 700 } else { 701 // We need to jump through another cleanup block. Create a pad block 702 // with a branch instruction that jumps to the final destination and 703 // add it as a branch fixup to the current cleanup scope. 704 705 // Create the pad block. 706 llvm::BasicBlock *CleanupPad = createBasicBlock("cleanup.pad", CurFn); 707 708 // Create a unique case ID. 709 llvm::ConstantInt *ID = llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 710 SI->getNumSuccessors()); 711 712 // Store the jump destination before the branch instruction. 713 new llvm::StoreInst(ID, DestCodePtr, BI); 714 715 // Add it as the destination. 716 SI->addCase(ID, CleanupPad); 717 718 // Create the branch to the final destination. 719 llvm::BranchInst *BI = llvm::BranchInst::Create(Dest); 720 CleanupPad->getInstList().push_back(BI); 721 722 // And add it as a branch fixup. 723 CleanupEntries.back().BranchFixups.push_back(BI); 724 } 725 } 726 } 727 728 // Remove all blocks from the block scope map. 729 for (size_t i = 0, e = Blocks.size(); i != e; ++i) { 730 assert(BlockScopes.count(Blocks[i]) && 731 "Did not find block in scope map!"); 732 733 BlockScopes.erase(Blocks[i]); 734 } 735 736 return CleanupBlockInfo(CleanupBlock, SwitchBlock, EndBlock); 737 } 738 739 void CodeGenFunction::EmitCleanupBlock() { 740 CleanupBlockInfo Info = PopCleanupBlock(); 741 742 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 743 if (CurBB && !CurBB->getTerminator() && 744 Info.CleanupBlock->getNumUses() == 0) { 745 CurBB->getInstList().splice(CurBB->end(), Info.CleanupBlock->getInstList()); 746 delete Info.CleanupBlock; 747 } else 748 EmitBlock(Info.CleanupBlock); 749 750 if (Info.SwitchBlock) 751 EmitBlock(Info.SwitchBlock); 752 if (Info.EndBlock) 753 EmitBlock(Info.EndBlock); 754 } 755 756 void CodeGenFunction::AddBranchFixup(llvm::BranchInst *BI) { 757 assert(!CleanupEntries.empty() && 758 "Trying to add branch fixup without cleanup block!"); 759 760 // FIXME: We could be more clever here and check if there's already a branch 761 // fixup for this destination and recycle it. 762 CleanupEntries.back().BranchFixups.push_back(BI); 763 } 764 765 void CodeGenFunction::EmitBranchThroughCleanup(llvm::BasicBlock *Dest) { 766 if (!HaveInsertPoint()) 767 return; 768 769 llvm::BranchInst* BI = Builder.CreateBr(Dest); 770 771 Builder.ClearInsertionPoint(); 772 773 // The stack is empty, no need to do any cleanup. 774 if (CleanupEntries.empty()) 775 return; 776 777 if (!Dest->getParent()) { 778 // We are trying to branch to a block that hasn't been inserted yet. 779 AddBranchFixup(BI); 780 return; 781 } 782 783 BlockScopeMap::iterator I = BlockScopes.find(Dest); 784 if (I == BlockScopes.end()) { 785 // We are trying to jump to a block that is outside of any cleanup scope. 786 AddBranchFixup(BI); 787 return; 788 } 789 790 assert(I->second < CleanupEntries.size() && 791 "Trying to branch into cleanup region"); 792 793 if (I->second == CleanupEntries.size() - 1) { 794 // We have a branch to a block in the same scope. 795 return; 796 } 797 798 AddBranchFixup(BI); 799 } 800