xref: /llvm-project/clang/lib/CodeGen/CodeGenFunction.cpp (revision 1d49eb00d97a8e920ae34ff433419d0cd61641fd)
1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-function state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenFunction.h"
14 #include "CGBlocks.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCleanup.h"
18 #include "CGDebugInfo.h"
19 #include "CGOpenMPRuntime.h"
20 #include "CodeGenModule.h"
21 #include "CodeGenPGO.h"
22 #include "TargetInfo.h"
23 #include "clang/AST/ASTContext.h"
24 #include "clang/AST/ASTLambda.h"
25 #include "clang/AST/Attr.h"
26 #include "clang/AST/Decl.h"
27 #include "clang/AST/DeclCXX.h"
28 #include "clang/AST/StmtCXX.h"
29 #include "clang/AST/StmtObjC.h"
30 #include "clang/Basic/Builtins.h"
31 #include "clang/Basic/CodeGenOptions.h"
32 #include "clang/Basic/TargetInfo.h"
33 #include "clang/CodeGen/CGFunctionInfo.h"
34 #include "clang/Frontend/FrontendDiagnostic.h"
35 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
36 #include "llvm/IR/DataLayout.h"
37 #include "llvm/IR/Dominators.h"
38 #include "llvm/IR/FPEnv.h"
39 #include "llvm/IR/IntrinsicInst.h"
40 #include "llvm/IR/Intrinsics.h"
41 #include "llvm/IR/MDBuilder.h"
42 #include "llvm/IR/Operator.h"
43 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
44 using namespace clang;
45 using namespace CodeGen;
46 
47 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time
48 /// markers.
49 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts,
50                                       const LangOptions &LangOpts) {
51   if (CGOpts.DisableLifetimeMarkers)
52     return false;
53 
54   // Sanitizers may use markers.
55   if (CGOpts.SanitizeAddressUseAfterScope ||
56       LangOpts.Sanitize.has(SanitizerKind::HWAddress) ||
57       LangOpts.Sanitize.has(SanitizerKind::Memory))
58     return true;
59 
60   // For now, only in optimized builds.
61   return CGOpts.OptimizationLevel != 0;
62 }
63 
64 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
65     : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
66       Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(),
67               CGBuilderInserterTy(this)),
68       SanOpts(CGM.getLangOpts().Sanitize), DebugInfo(CGM.getModuleDebugInfo()),
69       PGO(cgm), ShouldEmitLifetimeMarkers(shouldEmitLifetimeMarkers(
70                     CGM.getCodeGenOpts(), CGM.getLangOpts())) {
71   if (!suppressNewContext)
72     CGM.getCXXABI().getMangleContext().startNewFunction();
73 
74   llvm::FastMathFlags FMF;
75   if (CGM.getLangOpts().FastMath)
76     FMF.setFast();
77   if (CGM.getLangOpts().FiniteMathOnly) {
78     FMF.setNoNaNs();
79     FMF.setNoInfs();
80   }
81   if (CGM.getCodeGenOpts().NoNaNsFPMath) {
82     FMF.setNoNaNs();
83   }
84   if (CGM.getCodeGenOpts().NoSignedZeros) {
85     FMF.setNoSignedZeros();
86   }
87   if (CGM.getCodeGenOpts().ReciprocalMath) {
88     FMF.setAllowReciprocal();
89   }
90   if (CGM.getCodeGenOpts().Reassociate) {
91     FMF.setAllowReassoc();
92   }
93   Builder.setFastMathFlags(FMF);
94   SetFPModel();
95 }
96 
97 CodeGenFunction::~CodeGenFunction() {
98   assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
99 
100   // If there are any unclaimed block infos, go ahead and destroy them
101   // now.  This can happen if IR-gen gets clever and skips evaluating
102   // something.
103   if (FirstBlockInfo)
104     destroyBlockInfos(FirstBlockInfo);
105 
106   if (getLangOpts().OpenMP && CurFn)
107     CGM.getOpenMPRuntime().functionFinished(*this);
108 
109   // If we have an OpenMPIRBuilder we want to finalize functions (incl.
110   // outlining etc) at some point. Doing it once the function codegen is done
111   // seems to be a reasonable spot. We do it here, as opposed to the deletion
112   // time of the CodeGenModule, because we have to ensure the IR has not yet
113   // been "emitted" to the outside, thus, modifications are still sensible.
114   if (llvm::OpenMPIRBuilder *OMPBuilder = CGM.getOpenMPIRBuilder())
115     OMPBuilder->finalize();
116 }
117 
118 // Map the LangOption for rounding mode into
119 // the corresponding enum in the IR.
120 static llvm::fp::RoundingMode ToConstrainedRoundingMD(
121   LangOptions::FPRoundingModeKind Kind) {
122 
123   switch (Kind) {
124   case LangOptions::FPR_ToNearest:  return llvm::fp::rmToNearest;
125   case LangOptions::FPR_Downward:   return llvm::fp::rmDownward;
126   case LangOptions::FPR_Upward:     return llvm::fp::rmUpward;
127   case LangOptions::FPR_TowardZero: return llvm::fp::rmTowardZero;
128   case LangOptions::FPR_Dynamic:    return llvm::fp::rmDynamic;
129   }
130   llvm_unreachable("Unsupported FP RoundingMode");
131 }
132 
133 // Map the LangOption for exception behavior into
134 // the corresponding enum in the IR.
135 static llvm::fp::ExceptionBehavior ToConstrainedExceptMD(
136   LangOptions::FPExceptionModeKind Kind) {
137 
138   switch (Kind) {
139   case LangOptions::FPE_Ignore:  return llvm::fp::ebIgnore;
140   case LangOptions::FPE_MayTrap: return llvm::fp::ebMayTrap;
141   case LangOptions::FPE_Strict:  return llvm::fp::ebStrict;
142   }
143   llvm_unreachable("Unsupported FP Exception Behavior");
144 }
145 
146 void CodeGenFunction::SetFPModel() {
147   auto fpRoundingMode = ToConstrainedRoundingMD(
148                           getLangOpts().getFPRoundingMode());
149   auto fpExceptionBehavior = ToConstrainedExceptMD(
150                                getLangOpts().getFPExceptionMode());
151 
152   if (fpExceptionBehavior == llvm::fp::ebIgnore &&
153       fpRoundingMode == llvm::fp::rmToNearest)
154     // Constrained intrinsics are not used.
155     ;
156   else {
157     Builder.setIsFPConstrained(true);
158     Builder.setDefaultConstrainedRounding(fpRoundingMode);
159     Builder.setDefaultConstrainedExcept(fpExceptionBehavior);
160   }
161 }
162 
163 CharUnits CodeGenFunction::getNaturalPointeeTypeAlignment(QualType T,
164                                                     LValueBaseInfo *BaseInfo,
165                                                     TBAAAccessInfo *TBAAInfo) {
166   return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
167                                  /* forPointeeType= */ true);
168 }
169 
170 CharUnits CodeGenFunction::getNaturalTypeAlignment(QualType T,
171                                                    LValueBaseInfo *BaseInfo,
172                                                    TBAAAccessInfo *TBAAInfo,
173                                                    bool forPointeeType) {
174   if (TBAAInfo)
175     *TBAAInfo = CGM.getTBAAAccessInfo(T);
176 
177   // Honor alignment typedef attributes even on incomplete types.
178   // We also honor them straight for C++ class types, even as pointees;
179   // there's an expressivity gap here.
180   if (auto TT = T->getAs<TypedefType>()) {
181     if (auto Align = TT->getDecl()->getMaxAlignment()) {
182       if (BaseInfo)
183         *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
184       return getContext().toCharUnitsFromBits(Align);
185     }
186   }
187 
188   if (BaseInfo)
189     *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
190 
191   CharUnits Alignment;
192   if (T->isIncompleteType()) {
193     Alignment = CharUnits::One(); // Shouldn't be used, but pessimistic is best.
194   } else {
195     // For C++ class pointees, we don't know whether we're pointing at a
196     // base or a complete object, so we generally need to use the
197     // non-virtual alignment.
198     const CXXRecordDecl *RD;
199     if (forPointeeType && (RD = T->getAsCXXRecordDecl())) {
200       Alignment = CGM.getClassPointerAlignment(RD);
201     } else {
202       Alignment = getContext().getTypeAlignInChars(T);
203       if (T.getQualifiers().hasUnaligned())
204         Alignment = CharUnits::One();
205     }
206 
207     // Cap to the global maximum type alignment unless the alignment
208     // was somehow explicit on the type.
209     if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
210       if (Alignment.getQuantity() > MaxAlign &&
211           !getContext().isAlignmentRequired(T))
212         Alignment = CharUnits::fromQuantity(MaxAlign);
213     }
214   }
215   return Alignment;
216 }
217 
218 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
219   LValueBaseInfo BaseInfo;
220   TBAAAccessInfo TBAAInfo;
221   CharUnits Alignment = getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo);
222   return LValue::MakeAddr(Address(V, Alignment), T, getContext(), BaseInfo,
223                           TBAAInfo);
224 }
225 
226 /// Given a value of type T* that may not be to a complete object,
227 /// construct an l-value with the natural pointee alignment of T.
228 LValue
229 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) {
230   LValueBaseInfo BaseInfo;
231   TBAAAccessInfo TBAAInfo;
232   CharUnits Align = getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo,
233                                             /* forPointeeType= */ true);
234   return MakeAddrLValue(Address(V, Align), T, BaseInfo, TBAAInfo);
235 }
236 
237 
238 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
239   return CGM.getTypes().ConvertTypeForMem(T);
240 }
241 
242 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
243   return CGM.getTypes().ConvertType(T);
244 }
245 
246 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
247   type = type.getCanonicalType();
248   while (true) {
249     switch (type->getTypeClass()) {
250 #define TYPE(name, parent)
251 #define ABSTRACT_TYPE(name, parent)
252 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
253 #define DEPENDENT_TYPE(name, parent) case Type::name:
254 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
255 #include "clang/AST/TypeNodes.inc"
256       llvm_unreachable("non-canonical or dependent type in IR-generation");
257 
258     case Type::Auto:
259     case Type::DeducedTemplateSpecialization:
260       llvm_unreachable("undeduced type in IR-generation");
261 
262     // Various scalar types.
263     case Type::Builtin:
264     case Type::Pointer:
265     case Type::BlockPointer:
266     case Type::LValueReference:
267     case Type::RValueReference:
268     case Type::MemberPointer:
269     case Type::Vector:
270     case Type::ExtVector:
271     case Type::FunctionProto:
272     case Type::FunctionNoProto:
273     case Type::Enum:
274     case Type::ObjCObjectPointer:
275     case Type::Pipe:
276       return TEK_Scalar;
277 
278     // Complexes.
279     case Type::Complex:
280       return TEK_Complex;
281 
282     // Arrays, records, and Objective-C objects.
283     case Type::ConstantArray:
284     case Type::IncompleteArray:
285     case Type::VariableArray:
286     case Type::Record:
287     case Type::ObjCObject:
288     case Type::ObjCInterface:
289       return TEK_Aggregate;
290 
291     // We operate on atomic values according to their underlying type.
292     case Type::Atomic:
293       type = cast<AtomicType>(type)->getValueType();
294       continue;
295     }
296     llvm_unreachable("unknown type kind!");
297   }
298 }
299 
300 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() {
301   // For cleanliness, we try to avoid emitting the return block for
302   // simple cases.
303   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
304 
305   if (CurBB) {
306     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
307 
308     // We have a valid insert point, reuse it if it is empty or there are no
309     // explicit jumps to the return block.
310     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
311       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
312       delete ReturnBlock.getBlock();
313       ReturnBlock = JumpDest();
314     } else
315       EmitBlock(ReturnBlock.getBlock());
316     return llvm::DebugLoc();
317   }
318 
319   // Otherwise, if the return block is the target of a single direct
320   // branch then we can just put the code in that block instead. This
321   // cleans up functions which started with a unified return block.
322   if (ReturnBlock.getBlock()->hasOneUse()) {
323     llvm::BranchInst *BI =
324       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin());
325     if (BI && BI->isUnconditional() &&
326         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
327       // Record/return the DebugLoc of the simple 'return' expression to be used
328       // later by the actual 'ret' instruction.
329       llvm::DebugLoc Loc = BI->getDebugLoc();
330       Builder.SetInsertPoint(BI->getParent());
331       BI->eraseFromParent();
332       delete ReturnBlock.getBlock();
333       ReturnBlock = JumpDest();
334       return Loc;
335     }
336   }
337 
338   // FIXME: We are at an unreachable point, there is no reason to emit the block
339   // unless it has uses. However, we still need a place to put the debug
340   // region.end for now.
341 
342   EmitBlock(ReturnBlock.getBlock());
343   return llvm::DebugLoc();
344 }
345 
346 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
347   if (!BB) return;
348   if (!BB->use_empty())
349     return CGF.CurFn->getBasicBlockList().push_back(BB);
350   delete BB;
351 }
352 
353 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
354   assert(BreakContinueStack.empty() &&
355          "mismatched push/pop in break/continue stack!");
356 
357   bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
358     && NumSimpleReturnExprs == NumReturnExprs
359     && ReturnBlock.getBlock()->use_empty();
360   // Usually the return expression is evaluated before the cleanup
361   // code.  If the function contains only a simple return statement,
362   // such as a constant, the location before the cleanup code becomes
363   // the last useful breakpoint in the function, because the simple
364   // return expression will be evaluated after the cleanup code. To be
365   // safe, set the debug location for cleanup code to the location of
366   // the return statement.  Otherwise the cleanup code should be at the
367   // end of the function's lexical scope.
368   //
369   // If there are multiple branches to the return block, the branch
370   // instructions will get the location of the return statements and
371   // all will be fine.
372   if (CGDebugInfo *DI = getDebugInfo()) {
373     if (OnlySimpleReturnStmts)
374       DI->EmitLocation(Builder, LastStopPoint);
375     else
376       DI->EmitLocation(Builder, EndLoc);
377   }
378 
379   // Pop any cleanups that might have been associated with the
380   // parameters.  Do this in whatever block we're currently in; it's
381   // important to do this before we enter the return block or return
382   // edges will be *really* confused.
383   bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth;
384   bool HasOnlyLifetimeMarkers =
385       HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth);
386   bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers;
387   if (HasCleanups) {
388     // Make sure the line table doesn't jump back into the body for
389     // the ret after it's been at EndLoc.
390     Optional<ApplyDebugLocation> AL;
391     if (CGDebugInfo *DI = getDebugInfo()) {
392       if (OnlySimpleReturnStmts)
393         DI->EmitLocation(Builder, EndLoc);
394       else
395         // We may not have a valid end location. Try to apply it anyway, and
396         // fall back to an artificial location if needed.
397         AL = ApplyDebugLocation::CreateDefaultArtificial(*this, EndLoc);
398     }
399 
400     PopCleanupBlocks(PrologueCleanupDepth);
401   }
402 
403   // Emit function epilog (to return).
404   llvm::DebugLoc Loc = EmitReturnBlock();
405 
406   if (ShouldInstrumentFunction()) {
407     if (CGM.getCodeGenOpts().InstrumentFunctions)
408       CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit");
409     if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
410       CurFn->addFnAttr("instrument-function-exit-inlined",
411                        "__cyg_profile_func_exit");
412   }
413 
414   // Emit debug descriptor for function end.
415   if (CGDebugInfo *DI = getDebugInfo())
416     DI->EmitFunctionEnd(Builder, CurFn);
417 
418   // Reset the debug location to that of the simple 'return' expression, if any
419   // rather than that of the end of the function's scope '}'.
420   ApplyDebugLocation AL(*this, Loc);
421   EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
422   EmitEndEHSpec(CurCodeDecl);
423 
424   assert(EHStack.empty() &&
425          "did not remove all scopes from cleanup stack!");
426 
427   // If someone did an indirect goto, emit the indirect goto block at the end of
428   // the function.
429   if (IndirectBranch) {
430     EmitBlock(IndirectBranch->getParent());
431     Builder.ClearInsertionPoint();
432   }
433 
434   // If some of our locals escaped, insert a call to llvm.localescape in the
435   // entry block.
436   if (!EscapedLocals.empty()) {
437     // Invert the map from local to index into a simple vector. There should be
438     // no holes.
439     SmallVector<llvm::Value *, 4> EscapeArgs;
440     EscapeArgs.resize(EscapedLocals.size());
441     for (auto &Pair : EscapedLocals)
442       EscapeArgs[Pair.second] = Pair.first;
443     llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration(
444         &CGM.getModule(), llvm::Intrinsic::localescape);
445     CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs);
446   }
447 
448   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
449   llvm::Instruction *Ptr = AllocaInsertPt;
450   AllocaInsertPt = nullptr;
451   Ptr->eraseFromParent();
452 
453   // If someone took the address of a label but never did an indirect goto, we
454   // made a zero entry PHI node, which is illegal, zap it now.
455   if (IndirectBranch) {
456     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
457     if (PN->getNumIncomingValues() == 0) {
458       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
459       PN->eraseFromParent();
460     }
461   }
462 
463   EmitIfUsed(*this, EHResumeBlock);
464   EmitIfUsed(*this, TerminateLandingPad);
465   EmitIfUsed(*this, TerminateHandler);
466   EmitIfUsed(*this, UnreachableBlock);
467 
468   for (const auto &FuncletAndParent : TerminateFunclets)
469     EmitIfUsed(*this, FuncletAndParent.second);
470 
471   if (CGM.getCodeGenOpts().EmitDeclMetadata)
472     EmitDeclMetadata();
473 
474   for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator
475            I = DeferredReplacements.begin(),
476            E = DeferredReplacements.end();
477        I != E; ++I) {
478     I->first->replaceAllUsesWith(I->second);
479     I->first->eraseFromParent();
480   }
481 
482   // Eliminate CleanupDestSlot alloca by replacing it with SSA values and
483   // PHIs if the current function is a coroutine. We don't do it for all
484   // functions as it may result in slight increase in numbers of instructions
485   // if compiled with no optimizations. We do it for coroutine as the lifetime
486   // of CleanupDestSlot alloca make correct coroutine frame building very
487   // difficult.
488   if (NormalCleanupDest.isValid() && isCoroutine()) {
489     llvm::DominatorTree DT(*CurFn);
490     llvm::PromoteMemToReg(
491         cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT);
492     NormalCleanupDest = Address::invalid();
493   }
494 
495   // Scan function arguments for vector width.
496   for (llvm::Argument &A : CurFn->args())
497     if (auto *VT = dyn_cast<llvm::VectorType>(A.getType()))
498       LargestVectorWidth = std::max((uint64_t)LargestVectorWidth,
499                                    VT->getPrimitiveSizeInBits().getFixedSize());
500 
501   // Update vector width based on return type.
502   if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType()))
503     LargestVectorWidth = std::max((uint64_t)LargestVectorWidth,
504                                   VT->getPrimitiveSizeInBits().getFixedSize());
505 
506   // Add the required-vector-width attribute. This contains the max width from:
507   // 1. min-vector-width attribute used in the source program.
508   // 2. Any builtins used that have a vector width specified.
509   // 3. Values passed in and out of inline assembly.
510   // 4. Width of vector arguments and return types for this function.
511   // 5. Width of vector aguments and return types for functions called by this
512   //    function.
513   CurFn->addFnAttr("min-legal-vector-width", llvm::utostr(LargestVectorWidth));
514 
515   // If we generated an unreachable return block, delete it now.
516   if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) {
517     Builder.ClearInsertionPoint();
518     ReturnBlock.getBlock()->eraseFromParent();
519   }
520   if (ReturnValue.isValid()) {
521     auto *RetAlloca = dyn_cast<llvm::AllocaInst>(ReturnValue.getPointer());
522     if (RetAlloca && RetAlloca->use_empty()) {
523       RetAlloca->eraseFromParent();
524       ReturnValue = Address::invalid();
525     }
526   }
527 }
528 
529 /// ShouldInstrumentFunction - Return true if the current function should be
530 /// instrumented with __cyg_profile_func_* calls
531 bool CodeGenFunction::ShouldInstrumentFunction() {
532   if (!CGM.getCodeGenOpts().InstrumentFunctions &&
533       !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining &&
534       !CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
535     return false;
536   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
537     return false;
538   return true;
539 }
540 
541 /// ShouldXRayInstrument - Return true if the current function should be
542 /// instrumented with XRay nop sleds.
543 bool CodeGenFunction::ShouldXRayInstrumentFunction() const {
544   return CGM.getCodeGenOpts().XRayInstrumentFunctions;
545 }
546 
547 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to
548 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation.
549 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const {
550   return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
551          (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents ||
552           CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
553               XRayInstrKind::Custom);
554 }
555 
556 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const {
557   return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
558          (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents ||
559           CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
560               XRayInstrKind::Typed);
561 }
562 
563 llvm::Constant *
564 CodeGenFunction::EncodeAddrForUseInPrologue(llvm::Function *F,
565                                             llvm::Constant *Addr) {
566   // Addresses stored in prologue data can't require run-time fixups and must
567   // be PC-relative. Run-time fixups are undesirable because they necessitate
568   // writable text segments, which are unsafe. And absolute addresses are
569   // undesirable because they break PIE mode.
570 
571   // Add a layer of indirection through a private global. Taking its address
572   // won't result in a run-time fixup, even if Addr has linkonce_odr linkage.
573   auto *GV = new llvm::GlobalVariable(CGM.getModule(), Addr->getType(),
574                                       /*isConstant=*/true,
575                                       llvm::GlobalValue::PrivateLinkage, Addr);
576 
577   // Create a PC-relative address.
578   auto *GOTAsInt = llvm::ConstantExpr::getPtrToInt(GV, IntPtrTy);
579   auto *FuncAsInt = llvm::ConstantExpr::getPtrToInt(F, IntPtrTy);
580   auto *PCRelAsInt = llvm::ConstantExpr::getSub(GOTAsInt, FuncAsInt);
581   return (IntPtrTy == Int32Ty)
582              ? PCRelAsInt
583              : llvm::ConstantExpr::getTrunc(PCRelAsInt, Int32Ty);
584 }
585 
586 llvm::Value *
587 CodeGenFunction::DecodeAddrUsedInPrologue(llvm::Value *F,
588                                           llvm::Value *EncodedAddr) {
589   // Reconstruct the address of the global.
590   auto *PCRelAsInt = Builder.CreateSExt(EncodedAddr, IntPtrTy);
591   auto *FuncAsInt = Builder.CreatePtrToInt(F, IntPtrTy, "func_addr.int");
592   auto *GOTAsInt = Builder.CreateAdd(PCRelAsInt, FuncAsInt, "global_addr.int");
593   auto *GOTAddr = Builder.CreateIntToPtr(GOTAsInt, Int8PtrPtrTy, "global_addr");
594 
595   // Load the original pointer through the global.
596   return Builder.CreateLoad(Address(GOTAddr, getPointerAlign()),
597                             "decoded_addr");
598 }
599 
600 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD,
601                                                llvm::Function *Fn)
602 {
603   if (!FD->hasAttr<OpenCLKernelAttr>())
604     return;
605 
606   llvm::LLVMContext &Context = getLLVMContext();
607 
608   CGM.GenOpenCLArgMetadata(Fn, FD, this);
609 
610   if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
611     QualType HintQTy = A->getTypeHint();
612     const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>();
613     bool IsSignedInteger =
614         HintQTy->isSignedIntegerType() ||
615         (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType());
616     llvm::Metadata *AttrMDArgs[] = {
617         llvm::ConstantAsMetadata::get(llvm::UndefValue::get(
618             CGM.getTypes().ConvertType(A->getTypeHint()))),
619         llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
620             llvm::IntegerType::get(Context, 32),
621             llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))};
622     Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs));
623   }
624 
625   if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
626     llvm::Metadata *AttrMDArgs[] = {
627         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
628         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
629         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
630     Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs));
631   }
632 
633   if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
634     llvm::Metadata *AttrMDArgs[] = {
635         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
636         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
637         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
638     Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs));
639   }
640 
641   if (const OpenCLIntelReqdSubGroupSizeAttr *A =
642           FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) {
643     llvm::Metadata *AttrMDArgs[] = {
644         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))};
645     Fn->setMetadata("intel_reqd_sub_group_size",
646                     llvm::MDNode::get(Context, AttrMDArgs));
647   }
648 }
649 
650 /// Determine whether the function F ends with a return stmt.
651 static bool endsWithReturn(const Decl* F) {
652   const Stmt *Body = nullptr;
653   if (auto *FD = dyn_cast_or_null<FunctionDecl>(F))
654     Body = FD->getBody();
655   else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F))
656     Body = OMD->getBody();
657 
658   if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
659     auto LastStmt = CS->body_rbegin();
660     if (LastStmt != CS->body_rend())
661       return isa<ReturnStmt>(*LastStmt);
662   }
663   return false;
664 }
665 
666 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) {
667   if (SanOpts.has(SanitizerKind::Thread)) {
668     Fn->addFnAttr("sanitize_thread_no_checking_at_run_time");
669     Fn->removeFnAttr(llvm::Attribute::SanitizeThread);
670   }
671 }
672 
673 /// Check if the return value of this function requires sanitization.
674 bool CodeGenFunction::requiresReturnValueCheck() const {
675   return requiresReturnValueNullabilityCheck() ||
676          (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && CurCodeDecl &&
677           CurCodeDecl->getAttr<ReturnsNonNullAttr>());
678 }
679 
680 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) {
681   auto *MD = dyn_cast_or_null<CXXMethodDecl>(D);
682   if (!MD || !MD->getDeclName().getAsIdentifierInfo() ||
683       !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") ||
684       (MD->getNumParams() != 1 && MD->getNumParams() != 2))
685     return false;
686 
687   if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType())
688     return false;
689 
690   if (MD->getNumParams() == 2) {
691     auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>();
692     if (!PT || !PT->isVoidPointerType() ||
693         !PT->getPointeeType().isConstQualified())
694       return false;
695   }
696 
697   return true;
698 }
699 
700 /// Return the UBSan prologue signature for \p FD if one is available.
701 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM,
702                                             const FunctionDecl *FD) {
703   if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
704     if (!MD->isStatic())
705       return nullptr;
706   return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM);
707 }
708 
709 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy,
710                                     llvm::Function *Fn,
711                                     const CGFunctionInfo &FnInfo,
712                                     const FunctionArgList &Args,
713                                     SourceLocation Loc,
714                                     SourceLocation StartLoc) {
715   assert(!CurFn &&
716          "Do not use a CodeGenFunction object for more than one function");
717 
718   const Decl *D = GD.getDecl();
719 
720   DidCallStackSave = false;
721   CurCodeDecl = D;
722   if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D))
723     if (FD->usesSEHTry())
724       CurSEHParent = FD;
725   CurFuncDecl = (D ? D->getNonClosureContext() : nullptr);
726   FnRetTy = RetTy;
727   CurFn = Fn;
728   CurFnInfo = &FnInfo;
729   assert(CurFn->isDeclaration() && "Function already has body?");
730 
731   // If this function has been blacklisted for any of the enabled sanitizers,
732   // disable the sanitizer for the function.
733   do {
734 #define SANITIZER(NAME, ID)                                                    \
735   if (SanOpts.empty())                                                         \
736     break;                                                                     \
737   if (SanOpts.has(SanitizerKind::ID))                                          \
738     if (CGM.isInSanitizerBlacklist(SanitizerKind::ID, Fn, Loc))                \
739       SanOpts.set(SanitizerKind::ID, false);
740 
741 #include "clang/Basic/Sanitizers.def"
742 #undef SANITIZER
743   } while (0);
744 
745   if (D) {
746     // Apply the no_sanitize* attributes to SanOpts.
747     for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) {
748       SanitizerMask mask = Attr->getMask();
749       SanOpts.Mask &= ~mask;
750       if (mask & SanitizerKind::Address)
751         SanOpts.set(SanitizerKind::KernelAddress, false);
752       if (mask & SanitizerKind::KernelAddress)
753         SanOpts.set(SanitizerKind::Address, false);
754       if (mask & SanitizerKind::HWAddress)
755         SanOpts.set(SanitizerKind::KernelHWAddress, false);
756       if (mask & SanitizerKind::KernelHWAddress)
757         SanOpts.set(SanitizerKind::HWAddress, false);
758     }
759   }
760 
761   // Apply sanitizer attributes to the function.
762   if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress))
763     Fn->addFnAttr(llvm::Attribute::SanitizeAddress);
764   if (SanOpts.hasOneOf(SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress))
765     Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress);
766   if (SanOpts.has(SanitizerKind::MemTag))
767     Fn->addFnAttr(llvm::Attribute::SanitizeMemTag);
768   if (SanOpts.has(SanitizerKind::Thread))
769     Fn->addFnAttr(llvm::Attribute::SanitizeThread);
770   if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory))
771     Fn->addFnAttr(llvm::Attribute::SanitizeMemory);
772   if (SanOpts.has(SanitizerKind::SafeStack))
773     Fn->addFnAttr(llvm::Attribute::SafeStack);
774   if (SanOpts.has(SanitizerKind::ShadowCallStack))
775     Fn->addFnAttr(llvm::Attribute::ShadowCallStack);
776 
777   // Apply fuzzing attribute to the function.
778   if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink))
779     Fn->addFnAttr(llvm::Attribute::OptForFuzzing);
780 
781   // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize,
782   // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time.
783   if (SanOpts.has(SanitizerKind::Thread)) {
784     if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) {
785       IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0);
786       if (OMD->getMethodFamily() == OMF_dealloc ||
787           OMD->getMethodFamily() == OMF_initialize ||
788           (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) {
789         markAsIgnoreThreadCheckingAtRuntime(Fn);
790       }
791     }
792   }
793 
794   // Ignore unrelated casts in STL allocate() since the allocator must cast
795   // from void* to T* before object initialization completes. Don't match on the
796   // namespace because not all allocators are in std::
797   if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
798     if (matchesStlAllocatorFn(D, getContext()))
799       SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast;
800   }
801 
802   // Ignore null checks in coroutine functions since the coroutines passes
803   // are not aware of how to move the extra UBSan instructions across the split
804   // coroutine boundaries.
805   if (D && SanOpts.has(SanitizerKind::Null))
806     if (const auto *FD = dyn_cast<FunctionDecl>(D))
807       if (FD->getBody() &&
808           FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass)
809         SanOpts.Mask &= ~SanitizerKind::Null;
810 
811   if (D) {
812     // Apply xray attributes to the function (as a string, for now)
813     if (const auto *XRayAttr = D->getAttr<XRayInstrumentAttr>()) {
814       if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
815               XRayInstrKind::FunctionEntry) ||
816           CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
817               XRayInstrKind::FunctionExit)) {
818         if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction())
819           Fn->addFnAttr("function-instrument", "xray-always");
820         if (XRayAttr->neverXRayInstrument())
821           Fn->addFnAttr("function-instrument", "xray-never");
822         if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>())
823           if (ShouldXRayInstrumentFunction())
824             Fn->addFnAttr("xray-log-args",
825                           llvm::utostr(LogArgs->getArgumentCount()));
826       }
827     } else {
828       if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc))
829         Fn->addFnAttr(
830             "xray-instruction-threshold",
831             llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold));
832     }
833 
834     if (ShouldXRayInstrumentFunction()) {
835       if (CGM.getCodeGenOpts().XRayIgnoreLoops)
836         Fn->addFnAttr("xray-ignore-loops");
837 
838       if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
839               XRayInstrKind::FunctionExit))
840         Fn->addFnAttr("xray-skip-exit");
841 
842       if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
843               XRayInstrKind::FunctionEntry))
844         Fn->addFnAttr("xray-skip-entry");
845     }
846 
847     unsigned Count, Offset;
848     if (const auto *Attr = D->getAttr<PatchableFunctionEntryAttr>()) {
849       Count = Attr->getCount();
850       Offset = Attr->getOffset();
851     } else {
852       Count = CGM.getCodeGenOpts().PatchableFunctionEntryCount;
853       Offset = CGM.getCodeGenOpts().PatchableFunctionEntryOffset;
854     }
855     if (Count && Offset <= Count) {
856       Fn->addFnAttr("patchable-function-entry", std::to_string(Count - Offset));
857       if (Offset)
858         Fn->addFnAttr("patchable-function-prefix", std::to_string(Offset));
859     }
860   }
861 
862   // Add no-jump-tables value.
863   Fn->addFnAttr("no-jump-tables",
864                 llvm::toStringRef(CGM.getCodeGenOpts().NoUseJumpTables));
865 
866   // Add no-inline-line-tables value.
867   if (CGM.getCodeGenOpts().NoInlineLineTables)
868     Fn->addFnAttr("no-inline-line-tables");
869 
870   // Add profile-sample-accurate value.
871   if (CGM.getCodeGenOpts().ProfileSampleAccurate)
872     Fn->addFnAttr("profile-sample-accurate");
873 
874   if (D && D->hasAttr<CFICanonicalJumpTableAttr>())
875     Fn->addFnAttr("cfi-canonical-jump-table");
876 
877   if (getLangOpts().OpenCL) {
878     // Add metadata for a kernel function.
879     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
880       EmitOpenCLKernelMetadata(FD, Fn);
881   }
882 
883   // If we are checking function types, emit a function type signature as
884   // prologue data.
885   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) {
886     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
887       if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) {
888         // Remove any (C++17) exception specifications, to allow calling e.g. a
889         // noexcept function through a non-noexcept pointer.
890         auto ProtoTy =
891           getContext().getFunctionTypeWithExceptionSpec(FD->getType(),
892                                                         EST_None);
893         llvm::Constant *FTRTTIConst =
894             CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true);
895         llvm::Constant *FTRTTIConstEncoded =
896             EncodeAddrForUseInPrologue(Fn, FTRTTIConst);
897         llvm::Constant *PrologueStructElems[] = {PrologueSig,
898                                                  FTRTTIConstEncoded};
899         llvm::Constant *PrologueStructConst =
900             llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true);
901         Fn->setPrologueData(PrologueStructConst);
902       }
903     }
904   }
905 
906   // If we're checking nullability, we need to know whether we can check the
907   // return value. Initialize the flag to 'true' and refine it in EmitParmDecl.
908   if (SanOpts.has(SanitizerKind::NullabilityReturn)) {
909     auto Nullability = FnRetTy->getNullability(getContext());
910     if (Nullability && *Nullability == NullabilityKind::NonNull) {
911       if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) &&
912             CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>()))
913         RetValNullabilityPrecondition =
914             llvm::ConstantInt::getTrue(getLLVMContext());
915     }
916   }
917 
918   // If we're in C++ mode and the function name is "main", it is guaranteed
919   // to be norecurse by the standard (3.6.1.3 "The function main shall not be
920   // used within a program").
921   if (getLangOpts().CPlusPlus)
922     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
923       if (FD->isMain())
924         Fn->addFnAttr(llvm::Attribute::NoRecurse);
925 
926   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
927     if (FD->usesFPIntrin())
928       Fn->addFnAttr(llvm::Attribute::StrictFP);
929 
930   // If a custom alignment is used, force realigning to this alignment on
931   // any main function which certainly will need it.
932   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
933     if ((FD->isMain() || FD->isMSVCRTEntryPoint()) &&
934         CGM.getCodeGenOpts().StackAlignment)
935       Fn->addFnAttr("stackrealign");
936 
937   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
938 
939   // Create a marker to make it easy to insert allocas into the entryblock
940   // later.  Don't create this with the builder, because we don't want it
941   // folded.
942   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
943   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB);
944 
945   ReturnBlock = getJumpDestInCurrentScope("return");
946 
947   Builder.SetInsertPoint(EntryBB);
948 
949   // If we're checking the return value, allocate space for a pointer to a
950   // precise source location of the checked return statement.
951   if (requiresReturnValueCheck()) {
952     ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr");
953     InitTempAlloca(ReturnLocation, llvm::ConstantPointerNull::get(Int8PtrTy));
954   }
955 
956   // Emit subprogram debug descriptor.
957   if (CGDebugInfo *DI = getDebugInfo()) {
958     // Reconstruct the type from the argument list so that implicit parameters,
959     // such as 'this' and 'vtt', show up in the debug info. Preserve the calling
960     // convention.
961     CallingConv CC = CallingConv::CC_C;
962     if (auto *FD = dyn_cast_or_null<FunctionDecl>(D))
963       if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>())
964         CC = SrcFnTy->getCallConv();
965     SmallVector<QualType, 16> ArgTypes;
966     for (const VarDecl *VD : Args)
967       ArgTypes.push_back(VD->getType());
968     QualType FnType = getContext().getFunctionType(
969         RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC));
970     DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, CurFuncIsThunk,
971                           Builder);
972   }
973 
974   if (ShouldInstrumentFunction()) {
975     if (CGM.getCodeGenOpts().InstrumentFunctions)
976       CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter");
977     if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
978       CurFn->addFnAttr("instrument-function-entry-inlined",
979                        "__cyg_profile_func_enter");
980     if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
981       CurFn->addFnAttr("instrument-function-entry-inlined",
982                        "__cyg_profile_func_enter_bare");
983   }
984 
985   // Since emitting the mcount call here impacts optimizations such as function
986   // inlining, we just add an attribute to insert a mcount call in backend.
987   // The attribute "counting-function" is set to mcount function name which is
988   // architecture dependent.
989   if (CGM.getCodeGenOpts().InstrumentForProfiling) {
990     // Calls to fentry/mcount should not be generated if function has
991     // the no_instrument_function attribute.
992     if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) {
993       if (CGM.getCodeGenOpts().CallFEntry)
994         Fn->addFnAttr("fentry-call", "true");
995       else {
996         Fn->addFnAttr("instrument-function-entry-inlined",
997                       getTarget().getMCountName());
998       }
999       if (CGM.getCodeGenOpts().MNopMCount) {
1000         if (!CGM.getCodeGenOpts().CallFEntry)
1001           CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
1002             << "-mnop-mcount" << "-mfentry";
1003         Fn->addFnAttr("mnop-mcount");
1004       }
1005 
1006       if (CGM.getCodeGenOpts().RecordMCount) {
1007         if (!CGM.getCodeGenOpts().CallFEntry)
1008           CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
1009             << "-mrecord-mcount" << "-mfentry";
1010         Fn->addFnAttr("mrecord-mcount");
1011       }
1012     }
1013   }
1014 
1015   if (CGM.getCodeGenOpts().PackedStack) {
1016     if (getContext().getTargetInfo().getTriple().getArch() !=
1017         llvm::Triple::systemz)
1018       CGM.getDiags().Report(diag::err_opt_not_valid_on_target)
1019         << "-mpacked-stack";
1020     Fn->addFnAttr("packed-stack");
1021   }
1022 
1023   if (RetTy->isVoidType()) {
1024     // Void type; nothing to return.
1025     ReturnValue = Address::invalid();
1026 
1027     // Count the implicit return.
1028     if (!endsWithReturn(D))
1029       ++NumReturnExprs;
1030   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) {
1031     // Indirect return; emit returned value directly into sret slot.
1032     // This reduces code size, and affects correctness in C++.
1033     auto AI = CurFn->arg_begin();
1034     if (CurFnInfo->getReturnInfo().isSRetAfterThis())
1035       ++AI;
1036     ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign());
1037     if (!CurFnInfo->getReturnInfo().getIndirectByVal()) {
1038       ReturnValuePointer =
1039           CreateDefaultAlignTempAlloca(Int8PtrTy, "result.ptr");
1040       Builder.CreateStore(Builder.CreatePointerBitCastOrAddrSpaceCast(
1041                               ReturnValue.getPointer(), Int8PtrTy),
1042                           ReturnValuePointer);
1043     }
1044   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca &&
1045              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
1046     // Load the sret pointer from the argument struct and return into that.
1047     unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex();
1048     llvm::Function::arg_iterator EI = CurFn->arg_end();
1049     --EI;
1050     llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx);
1051     ReturnValuePointer = Address(Addr, getPointerAlign());
1052     Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result");
1053     ReturnValue = Address(Addr, getNaturalTypeAlignment(RetTy));
1054   } else {
1055     ReturnValue = CreateIRTemp(RetTy, "retval");
1056 
1057     // Tell the epilog emitter to autorelease the result.  We do this
1058     // now so that various specialized functions can suppress it
1059     // during their IR-generation.
1060     if (getLangOpts().ObjCAutoRefCount &&
1061         !CurFnInfo->isReturnsRetained() &&
1062         RetTy->isObjCRetainableType())
1063       AutoreleaseResult = true;
1064   }
1065 
1066   EmitStartEHSpec(CurCodeDecl);
1067 
1068   PrologueCleanupDepth = EHStack.stable_begin();
1069 
1070   // Emit OpenMP specific initialization of the device functions.
1071   if (getLangOpts().OpenMP && CurCodeDecl)
1072     CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl);
1073 
1074   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
1075 
1076   if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
1077     CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
1078     const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
1079     if (MD->getParent()->isLambda() &&
1080         MD->getOverloadedOperator() == OO_Call) {
1081       // We're in a lambda; figure out the captures.
1082       MD->getParent()->getCaptureFields(LambdaCaptureFields,
1083                                         LambdaThisCaptureField);
1084       if (LambdaThisCaptureField) {
1085         // If the lambda captures the object referred to by '*this' - either by
1086         // value or by reference, make sure CXXThisValue points to the correct
1087         // object.
1088 
1089         // Get the lvalue for the field (which is a copy of the enclosing object
1090         // or contains the address of the enclosing object).
1091         LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
1092         if (!LambdaThisCaptureField->getType()->isPointerType()) {
1093           // If the enclosing object was captured by value, just use its address.
1094           CXXThisValue = ThisFieldLValue.getAddress(*this).getPointer();
1095         } else {
1096           // Load the lvalue pointed to by the field, since '*this' was captured
1097           // by reference.
1098           CXXThisValue =
1099               EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal();
1100         }
1101       }
1102       for (auto *FD : MD->getParent()->fields()) {
1103         if (FD->hasCapturedVLAType()) {
1104           auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD),
1105                                            SourceLocation()).getScalarVal();
1106           auto VAT = FD->getCapturedVLAType();
1107           VLASizeMap[VAT->getSizeExpr()] = ExprArg;
1108         }
1109       }
1110     } else {
1111       // Not in a lambda; just use 'this' from the method.
1112       // FIXME: Should we generate a new load for each use of 'this'?  The
1113       // fast register allocator would be happier...
1114       CXXThisValue = CXXABIThisValue;
1115     }
1116 
1117     // Check the 'this' pointer once per function, if it's available.
1118     if (CXXABIThisValue) {
1119       SanitizerSet SkippedChecks;
1120       SkippedChecks.set(SanitizerKind::ObjectSize, true);
1121       QualType ThisTy = MD->getThisType();
1122 
1123       // If this is the call operator of a lambda with no capture-default, it
1124       // may have a static invoker function, which may call this operator with
1125       // a null 'this' pointer.
1126       if (isLambdaCallOperator(MD) &&
1127           MD->getParent()->getLambdaCaptureDefault() == LCD_None)
1128         SkippedChecks.set(SanitizerKind::Null, true);
1129 
1130       EmitTypeCheck(isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall
1131                                                 : TCK_MemberCall,
1132                     Loc, CXXABIThisValue, ThisTy,
1133                     getContext().getTypeAlignInChars(ThisTy->getPointeeType()),
1134                     SkippedChecks);
1135     }
1136   }
1137 
1138   // If any of the arguments have a variably modified type, make sure to
1139   // emit the type size.
1140   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
1141        i != e; ++i) {
1142     const VarDecl *VD = *i;
1143 
1144     // Dig out the type as written from ParmVarDecls; it's unclear whether
1145     // the standard (C99 6.9.1p10) requires this, but we're following the
1146     // precedent set by gcc.
1147     QualType Ty;
1148     if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
1149       Ty = PVD->getOriginalType();
1150     else
1151       Ty = VD->getType();
1152 
1153     if (Ty->isVariablyModifiedType())
1154       EmitVariablyModifiedType(Ty);
1155   }
1156   // Emit a location at the end of the prologue.
1157   if (CGDebugInfo *DI = getDebugInfo())
1158     DI->EmitLocation(Builder, StartLoc);
1159 
1160   // TODO: Do we need to handle this in two places like we do with
1161   // target-features/target-cpu?
1162   if (CurFuncDecl)
1163     if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>())
1164       LargestVectorWidth = VecWidth->getVectorWidth();
1165 }
1166 
1167 void CodeGenFunction::EmitFunctionBody(const Stmt *Body) {
1168   incrementProfileCounter(Body);
1169   if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
1170     EmitCompoundStmtWithoutScope(*S);
1171   else
1172     EmitStmt(Body);
1173 }
1174 
1175 /// When instrumenting to collect profile data, the counts for some blocks
1176 /// such as switch cases need to not include the fall-through counts, so
1177 /// emit a branch around the instrumentation code. When not instrumenting,
1178 /// this just calls EmitBlock().
1179 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB,
1180                                                const Stmt *S) {
1181   llvm::BasicBlock *SkipCountBB = nullptr;
1182   if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) {
1183     // When instrumenting for profiling, the fallthrough to certain
1184     // statements needs to skip over the instrumentation code so that we
1185     // get an accurate count.
1186     SkipCountBB = createBasicBlock("skipcount");
1187     EmitBranch(SkipCountBB);
1188   }
1189   EmitBlock(BB);
1190   uint64_t CurrentCount = getCurrentProfileCount();
1191   incrementProfileCounter(S);
1192   setCurrentProfileCount(getCurrentProfileCount() + CurrentCount);
1193   if (SkipCountBB)
1194     EmitBlock(SkipCountBB);
1195 }
1196 
1197 /// Tries to mark the given function nounwind based on the
1198 /// non-existence of any throwing calls within it.  We believe this is
1199 /// lightweight enough to do at -O0.
1200 static void TryMarkNoThrow(llvm::Function *F) {
1201   // LLVM treats 'nounwind' on a function as part of the type, so we
1202   // can't do this on functions that can be overwritten.
1203   if (F->isInterposable()) return;
1204 
1205   for (llvm::BasicBlock &BB : *F)
1206     for (llvm::Instruction &I : BB)
1207       if (I.mayThrow())
1208         return;
1209 
1210   F->setDoesNotThrow();
1211 }
1212 
1213 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD,
1214                                                FunctionArgList &Args) {
1215   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1216   QualType ResTy = FD->getReturnType();
1217 
1218   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
1219   if (MD && MD->isInstance()) {
1220     if (CGM.getCXXABI().HasThisReturn(GD))
1221       ResTy = MD->getThisType();
1222     else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
1223       ResTy = CGM.getContext().VoidPtrTy;
1224     CGM.getCXXABI().buildThisParam(*this, Args);
1225   }
1226 
1227   // The base version of an inheriting constructor whose constructed base is a
1228   // virtual base is not passed any arguments (because it doesn't actually call
1229   // the inherited constructor).
1230   bool PassedParams = true;
1231   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
1232     if (auto Inherited = CD->getInheritedConstructor())
1233       PassedParams =
1234           getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType());
1235 
1236   if (PassedParams) {
1237     for (auto *Param : FD->parameters()) {
1238       Args.push_back(Param);
1239       if (!Param->hasAttr<PassObjectSizeAttr>())
1240         continue;
1241 
1242       auto *Implicit = ImplicitParamDecl::Create(
1243           getContext(), Param->getDeclContext(), Param->getLocation(),
1244           /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other);
1245       SizeArguments[Param] = Implicit;
1246       Args.push_back(Implicit);
1247     }
1248   }
1249 
1250   if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
1251     CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args);
1252 
1253   return ResTy;
1254 }
1255 
1256 static bool
1257 shouldUseUndefinedBehaviorReturnOptimization(const FunctionDecl *FD,
1258                                              const ASTContext &Context) {
1259   QualType T = FD->getReturnType();
1260   // Avoid the optimization for functions that return a record type with a
1261   // trivial destructor or another trivially copyable type.
1262   if (const RecordType *RT = T.getCanonicalType()->getAs<RecordType>()) {
1263     if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1264       return !ClassDecl->hasTrivialDestructor();
1265   }
1266   return !T.isTriviallyCopyableType(Context);
1267 }
1268 
1269 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1270                                    const CGFunctionInfo &FnInfo) {
1271   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1272   CurGD = GD;
1273 
1274   FunctionArgList Args;
1275   QualType ResTy = BuildFunctionArgList(GD, Args);
1276 
1277   // Check if we should generate debug info for this function.
1278   if (FD->hasAttr<NoDebugAttr>())
1279     DebugInfo = nullptr; // disable debug info indefinitely for this function
1280 
1281   // The function might not have a body if we're generating thunks for a
1282   // function declaration.
1283   SourceRange BodyRange;
1284   if (Stmt *Body = FD->getBody())
1285     BodyRange = Body->getSourceRange();
1286   else
1287     BodyRange = FD->getLocation();
1288   CurEHLocation = BodyRange.getEnd();
1289 
1290   // Use the location of the start of the function to determine where
1291   // the function definition is located. By default use the location
1292   // of the declaration as the location for the subprogram. A function
1293   // may lack a declaration in the source code if it is created by code
1294   // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
1295   SourceLocation Loc = FD->getLocation();
1296 
1297   // If this is a function specialization then use the pattern body
1298   // as the location for the function.
1299   if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern())
1300     if (SpecDecl->hasBody(SpecDecl))
1301       Loc = SpecDecl->getLocation();
1302 
1303   Stmt *Body = FD->getBody();
1304 
1305   // Initialize helper which will detect jumps which can cause invalid lifetime
1306   // markers.
1307   if (Body && ShouldEmitLifetimeMarkers)
1308     Bypasses.Init(Body);
1309 
1310   // Emit the standard function prologue.
1311   StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin());
1312 
1313   // Generate the body of the function.
1314   PGO.assignRegionCounters(GD, CurFn);
1315   if (isa<CXXDestructorDecl>(FD))
1316     EmitDestructorBody(Args);
1317   else if (isa<CXXConstructorDecl>(FD))
1318     EmitConstructorBody(Args);
1319   else if (getLangOpts().CUDA &&
1320            !getLangOpts().CUDAIsDevice &&
1321            FD->hasAttr<CUDAGlobalAttr>())
1322     CGM.getCUDARuntime().emitDeviceStub(*this, Args);
1323   else if (isa<CXXMethodDecl>(FD) &&
1324            cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
1325     // The lambda static invoker function is special, because it forwards or
1326     // clones the body of the function call operator (but is actually static).
1327     EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD));
1328   } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
1329              (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
1330               cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
1331     // Implicit copy-assignment gets the same special treatment as implicit
1332     // copy-constructors.
1333     emitImplicitAssignmentOperatorBody(Args);
1334   } else if (Body) {
1335     EmitFunctionBody(Body);
1336   } else
1337     llvm_unreachable("no definition for emitted function");
1338 
1339   // C++11 [stmt.return]p2:
1340   //   Flowing off the end of a function [...] results in undefined behavior in
1341   //   a value-returning function.
1342   // C11 6.9.1p12:
1343   //   If the '}' that terminates a function is reached, and the value of the
1344   //   function call is used by the caller, the behavior is undefined.
1345   if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock &&
1346       !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) {
1347     bool ShouldEmitUnreachable =
1348         CGM.getCodeGenOpts().StrictReturn ||
1349         shouldUseUndefinedBehaviorReturnOptimization(FD, getContext());
1350     if (SanOpts.has(SanitizerKind::Return)) {
1351       SanitizerScope SanScope(this);
1352       llvm::Value *IsFalse = Builder.getFalse();
1353       EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return),
1354                 SanitizerHandler::MissingReturn,
1355                 EmitCheckSourceLocation(FD->getLocation()), None);
1356     } else if (ShouldEmitUnreachable) {
1357       if (CGM.getCodeGenOpts().OptimizationLevel == 0)
1358         EmitTrapCall(llvm::Intrinsic::trap);
1359     }
1360     if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) {
1361       Builder.CreateUnreachable();
1362       Builder.ClearInsertionPoint();
1363     }
1364   }
1365 
1366   // Emit the standard function epilogue.
1367   FinishFunction(BodyRange.getEnd());
1368 
1369   // If we haven't marked the function nothrow through other means, do
1370   // a quick pass now to see if we can.
1371   if (!CurFn->doesNotThrow())
1372     TryMarkNoThrow(CurFn);
1373 }
1374 
1375 /// ContainsLabel - Return true if the statement contains a label in it.  If
1376 /// this statement is not executed normally, it not containing a label means
1377 /// that we can just remove the code.
1378 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
1379   // Null statement, not a label!
1380   if (!S) return false;
1381 
1382   // If this is a label, we have to emit the code, consider something like:
1383   // if (0) {  ...  foo:  bar(); }  goto foo;
1384   //
1385   // TODO: If anyone cared, we could track __label__'s, since we know that you
1386   // can't jump to one from outside their declared region.
1387   if (isa<LabelStmt>(S))
1388     return true;
1389 
1390   // If this is a case/default statement, and we haven't seen a switch, we have
1391   // to emit the code.
1392   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
1393     return true;
1394 
1395   // If this is a switch statement, we want to ignore cases below it.
1396   if (isa<SwitchStmt>(S))
1397     IgnoreCaseStmts = true;
1398 
1399   // Scan subexpressions for verboten labels.
1400   for (const Stmt *SubStmt : S->children())
1401     if (ContainsLabel(SubStmt, IgnoreCaseStmts))
1402       return true;
1403 
1404   return false;
1405 }
1406 
1407 /// containsBreak - Return true if the statement contains a break out of it.
1408 /// If the statement (recursively) contains a switch or loop with a break
1409 /// inside of it, this is fine.
1410 bool CodeGenFunction::containsBreak(const Stmt *S) {
1411   // Null statement, not a label!
1412   if (!S) return false;
1413 
1414   // If this is a switch or loop that defines its own break scope, then we can
1415   // include it and anything inside of it.
1416   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
1417       isa<ForStmt>(S))
1418     return false;
1419 
1420   if (isa<BreakStmt>(S))
1421     return true;
1422 
1423   // Scan subexpressions for verboten breaks.
1424   for (const Stmt *SubStmt : S->children())
1425     if (containsBreak(SubStmt))
1426       return true;
1427 
1428   return false;
1429 }
1430 
1431 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) {
1432   if (!S) return false;
1433 
1434   // Some statement kinds add a scope and thus never add a decl to the current
1435   // scope. Note, this list is longer than the list of statements that might
1436   // have an unscoped decl nested within them, but this way is conservatively
1437   // correct even if more statement kinds are added.
1438   if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) ||
1439       isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) ||
1440       isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) ||
1441       isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S))
1442     return false;
1443 
1444   if (isa<DeclStmt>(S))
1445     return true;
1446 
1447   for (const Stmt *SubStmt : S->children())
1448     if (mightAddDeclToScope(SubStmt))
1449       return true;
1450 
1451   return false;
1452 }
1453 
1454 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1455 /// to a constant, or if it does but contains a label, return false.  If it
1456 /// constant folds return true and set the boolean result in Result.
1457 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1458                                                    bool &ResultBool,
1459                                                    bool AllowLabels) {
1460   llvm::APSInt ResultInt;
1461   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels))
1462     return false;
1463 
1464   ResultBool = ResultInt.getBoolValue();
1465   return true;
1466 }
1467 
1468 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1469 /// to a constant, or if it does but contains a label, return false.  If it
1470 /// constant folds return true and set the folded value.
1471 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1472                                                    llvm::APSInt &ResultInt,
1473                                                    bool AllowLabels) {
1474   // FIXME: Rename and handle conversion of other evaluatable things
1475   // to bool.
1476   Expr::EvalResult Result;
1477   if (!Cond->EvaluateAsInt(Result, getContext()))
1478     return false;  // Not foldable, not integer or not fully evaluatable.
1479 
1480   llvm::APSInt Int = Result.Val.getInt();
1481   if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond))
1482     return false;  // Contains a label.
1483 
1484   ResultInt = Int;
1485   return true;
1486 }
1487 
1488 
1489 
1490 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
1491 /// statement) to the specified blocks.  Based on the condition, this might try
1492 /// to simplify the codegen of the conditional based on the branch.
1493 ///
1494 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
1495                                            llvm::BasicBlock *TrueBlock,
1496                                            llvm::BasicBlock *FalseBlock,
1497                                            uint64_t TrueCount) {
1498   Cond = Cond->IgnoreParens();
1499 
1500   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
1501 
1502     // Handle X && Y in a condition.
1503     if (CondBOp->getOpcode() == BO_LAnd) {
1504       // If we have "1 && X", simplify the code.  "0 && X" would have constant
1505       // folded if the case was simple enough.
1506       bool ConstantBool = false;
1507       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1508           ConstantBool) {
1509         // br(1 && X) -> br(X).
1510         incrementProfileCounter(CondBOp);
1511         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1512                                     TrueCount);
1513       }
1514 
1515       // If we have "X && 1", simplify the code to use an uncond branch.
1516       // "X && 0" would have been constant folded to 0.
1517       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1518           ConstantBool) {
1519         // br(X && 1) -> br(X).
1520         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1521                                     TrueCount);
1522       }
1523 
1524       // Emit the LHS as a conditional.  If the LHS conditional is false, we
1525       // want to jump to the FalseBlock.
1526       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
1527       // The counter tells us how often we evaluate RHS, and all of TrueCount
1528       // can be propagated to that branch.
1529       uint64_t RHSCount = getProfileCount(CondBOp->getRHS());
1530 
1531       ConditionalEvaluation eval(*this);
1532       {
1533         ApplyDebugLocation DL(*this, Cond);
1534         EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount);
1535         EmitBlock(LHSTrue);
1536       }
1537 
1538       incrementProfileCounter(CondBOp);
1539       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1540 
1541       // Any temporaries created here are conditional.
1542       eval.begin(*this);
1543       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount);
1544       eval.end(*this);
1545 
1546       return;
1547     }
1548 
1549     if (CondBOp->getOpcode() == BO_LOr) {
1550       // If we have "0 || X", simplify the code.  "1 || X" would have constant
1551       // folded if the case was simple enough.
1552       bool ConstantBool = false;
1553       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1554           !ConstantBool) {
1555         // br(0 || X) -> br(X).
1556         incrementProfileCounter(CondBOp);
1557         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1558                                     TrueCount);
1559       }
1560 
1561       // If we have "X || 0", simplify the code to use an uncond branch.
1562       // "X || 1" would have been constant folded to 1.
1563       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1564           !ConstantBool) {
1565         // br(X || 0) -> br(X).
1566         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1567                                     TrueCount);
1568       }
1569 
1570       // Emit the LHS as a conditional.  If the LHS conditional is true, we
1571       // want to jump to the TrueBlock.
1572       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
1573       // We have the count for entry to the RHS and for the whole expression
1574       // being true, so we can divy up True count between the short circuit and
1575       // the RHS.
1576       uint64_t LHSCount =
1577           getCurrentProfileCount() - getProfileCount(CondBOp->getRHS());
1578       uint64_t RHSCount = TrueCount - LHSCount;
1579 
1580       ConditionalEvaluation eval(*this);
1581       {
1582         ApplyDebugLocation DL(*this, Cond);
1583         EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount);
1584         EmitBlock(LHSFalse);
1585       }
1586 
1587       incrementProfileCounter(CondBOp);
1588       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1589 
1590       // Any temporaries created here are conditional.
1591       eval.begin(*this);
1592       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount);
1593 
1594       eval.end(*this);
1595 
1596       return;
1597     }
1598   }
1599 
1600   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
1601     // br(!x, t, f) -> br(x, f, t)
1602     if (CondUOp->getOpcode() == UO_LNot) {
1603       // Negate the count.
1604       uint64_t FalseCount = getCurrentProfileCount() - TrueCount;
1605       // Negate the condition and swap the destination blocks.
1606       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock,
1607                                   FalseCount);
1608     }
1609   }
1610 
1611   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
1612     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
1613     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
1614     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
1615 
1616     ConditionalEvaluation cond(*this);
1617     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock,
1618                          getProfileCount(CondOp));
1619 
1620     // When computing PGO branch weights, we only know the overall count for
1621     // the true block. This code is essentially doing tail duplication of the
1622     // naive code-gen, introducing new edges for which counts are not
1623     // available. Divide the counts proportionally between the LHS and RHS of
1624     // the conditional operator.
1625     uint64_t LHSScaledTrueCount = 0;
1626     if (TrueCount) {
1627       double LHSRatio =
1628           getProfileCount(CondOp) / (double)getCurrentProfileCount();
1629       LHSScaledTrueCount = TrueCount * LHSRatio;
1630     }
1631 
1632     cond.begin(*this);
1633     EmitBlock(LHSBlock);
1634     incrementProfileCounter(CondOp);
1635     {
1636       ApplyDebugLocation DL(*this, Cond);
1637       EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock,
1638                            LHSScaledTrueCount);
1639     }
1640     cond.end(*this);
1641 
1642     cond.begin(*this);
1643     EmitBlock(RHSBlock);
1644     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock,
1645                          TrueCount - LHSScaledTrueCount);
1646     cond.end(*this);
1647 
1648     return;
1649   }
1650 
1651   if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
1652     // Conditional operator handling can give us a throw expression as a
1653     // condition for a case like:
1654     //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
1655     // Fold this to:
1656     //   br(c, throw x, br(y, t, f))
1657     EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
1658     return;
1659   }
1660 
1661   // If the branch has a condition wrapped by __builtin_unpredictable,
1662   // create metadata that specifies that the branch is unpredictable.
1663   // Don't bother if not optimizing because that metadata would not be used.
1664   llvm::MDNode *Unpredictable = nullptr;
1665   auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts());
1666   if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
1667     auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
1668     if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
1669       llvm::MDBuilder MDHelper(getLLVMContext());
1670       Unpredictable = MDHelper.createUnpredictable();
1671     }
1672   }
1673 
1674   // Create branch weights based on the number of times we get here and the
1675   // number of times the condition should be true.
1676   uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount);
1677   llvm::MDNode *Weights =
1678       createProfileWeights(TrueCount, CurrentCount - TrueCount);
1679 
1680   // Emit the code with the fully general case.
1681   llvm::Value *CondV;
1682   {
1683     ApplyDebugLocation DL(*this, Cond);
1684     CondV = EvaluateExprAsBool(Cond);
1685   }
1686   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable);
1687 }
1688 
1689 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1690 /// specified stmt yet.
1691 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
1692   CGM.ErrorUnsupported(S, Type);
1693 }
1694 
1695 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
1696 /// variable-length array whose elements have a non-zero bit-pattern.
1697 ///
1698 /// \param baseType the inner-most element type of the array
1699 /// \param src - a char* pointing to the bit-pattern for a single
1700 /// base element of the array
1701 /// \param sizeInChars - the total size of the VLA, in chars
1702 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
1703                                Address dest, Address src,
1704                                llvm::Value *sizeInChars) {
1705   CGBuilderTy &Builder = CGF.Builder;
1706 
1707   CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType);
1708   llvm::Value *baseSizeInChars
1709     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity());
1710 
1711   Address begin =
1712     Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin");
1713   llvm::Value *end =
1714     Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end");
1715 
1716   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
1717   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
1718   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
1719 
1720   // Make a loop over the VLA.  C99 guarantees that the VLA element
1721   // count must be nonzero.
1722   CGF.EmitBlock(loopBB);
1723 
1724   llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur");
1725   cur->addIncoming(begin.getPointer(), originBB);
1726 
1727   CharUnits curAlign =
1728     dest.getAlignment().alignmentOfArrayElement(baseSize);
1729 
1730   // memcpy the individual element bit-pattern.
1731   Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars,
1732                        /*volatile*/ false);
1733 
1734   // Go to the next element.
1735   llvm::Value *next =
1736     Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next");
1737 
1738   // Leave if that's the end of the VLA.
1739   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
1740   Builder.CreateCondBr(done, contBB, loopBB);
1741   cur->addIncoming(next, loopBB);
1742 
1743   CGF.EmitBlock(contBB);
1744 }
1745 
1746 void
1747 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) {
1748   // Ignore empty classes in C++.
1749   if (getLangOpts().CPlusPlus) {
1750     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1751       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
1752         return;
1753     }
1754   }
1755 
1756   // Cast the dest ptr to the appropriate i8 pointer type.
1757   if (DestPtr.getElementType() != Int8Ty)
1758     DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty);
1759 
1760   // Get size and alignment info for this aggregate.
1761   CharUnits size = getContext().getTypeSizeInChars(Ty);
1762 
1763   llvm::Value *SizeVal;
1764   const VariableArrayType *vla;
1765 
1766   // Don't bother emitting a zero-byte memset.
1767   if (size.isZero()) {
1768     // But note that getTypeInfo returns 0 for a VLA.
1769     if (const VariableArrayType *vlaType =
1770           dyn_cast_or_null<VariableArrayType>(
1771                                           getContext().getAsArrayType(Ty))) {
1772       auto VlaSize = getVLASize(vlaType);
1773       SizeVal = VlaSize.NumElts;
1774       CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type);
1775       if (!eltSize.isOne())
1776         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
1777       vla = vlaType;
1778     } else {
1779       return;
1780     }
1781   } else {
1782     SizeVal = CGM.getSize(size);
1783     vla = nullptr;
1784   }
1785 
1786   // If the type contains a pointer to data member we can't memset it to zero.
1787   // Instead, create a null constant and copy it to the destination.
1788   // TODO: there are other patterns besides zero that we can usefully memset,
1789   // like -1, which happens to be the pattern used by member-pointers.
1790   if (!CGM.getTypes().isZeroInitializable(Ty)) {
1791     // For a VLA, emit a single element, then splat that over the VLA.
1792     if (vla) Ty = getContext().getBaseElementType(vla);
1793 
1794     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
1795 
1796     llvm::GlobalVariable *NullVariable =
1797       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
1798                                /*isConstant=*/true,
1799                                llvm::GlobalVariable::PrivateLinkage,
1800                                NullConstant, Twine());
1801     CharUnits NullAlign = DestPtr.getAlignment();
1802     NullVariable->setAlignment(NullAlign.getAsAlign());
1803     Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()),
1804                    NullAlign);
1805 
1806     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
1807 
1808     // Get and call the appropriate llvm.memcpy overload.
1809     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false);
1810     return;
1811   }
1812 
1813   // Otherwise, just memset the whole thing to zero.  This is legal
1814   // because in LLVM, all default initializers (other than the ones we just
1815   // handled above) are guaranteed to have a bit pattern of all zeros.
1816   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false);
1817 }
1818 
1819 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
1820   // Make sure that there is a block for the indirect goto.
1821   if (!IndirectBranch)
1822     GetIndirectGotoBlock();
1823 
1824   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
1825 
1826   // Make sure the indirect branch includes all of the address-taken blocks.
1827   IndirectBranch->addDestination(BB);
1828   return llvm::BlockAddress::get(CurFn, BB);
1829 }
1830 
1831 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
1832   // If we already made the indirect branch for indirect goto, return its block.
1833   if (IndirectBranch) return IndirectBranch->getParent();
1834 
1835   CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto"));
1836 
1837   // Create the PHI node that indirect gotos will add entries to.
1838   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
1839                                               "indirect.goto.dest");
1840 
1841   // Create the indirect branch instruction.
1842   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
1843   return IndirectBranch->getParent();
1844 }
1845 
1846 /// Computes the length of an array in elements, as well as the base
1847 /// element type and a properly-typed first element pointer.
1848 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
1849                                               QualType &baseType,
1850                                               Address &addr) {
1851   const ArrayType *arrayType = origArrayType;
1852 
1853   // If it's a VLA, we have to load the stored size.  Note that
1854   // this is the size of the VLA in bytes, not its size in elements.
1855   llvm::Value *numVLAElements = nullptr;
1856   if (isa<VariableArrayType>(arrayType)) {
1857     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts;
1858 
1859     // Walk into all VLAs.  This doesn't require changes to addr,
1860     // which has type T* where T is the first non-VLA element type.
1861     do {
1862       QualType elementType = arrayType->getElementType();
1863       arrayType = getContext().getAsArrayType(elementType);
1864 
1865       // If we only have VLA components, 'addr' requires no adjustment.
1866       if (!arrayType) {
1867         baseType = elementType;
1868         return numVLAElements;
1869       }
1870     } while (isa<VariableArrayType>(arrayType));
1871 
1872     // We get out here only if we find a constant array type
1873     // inside the VLA.
1874   }
1875 
1876   // We have some number of constant-length arrays, so addr should
1877   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
1878   // down to the first element of addr.
1879   SmallVector<llvm::Value*, 8> gepIndices;
1880 
1881   // GEP down to the array type.
1882   llvm::ConstantInt *zero = Builder.getInt32(0);
1883   gepIndices.push_back(zero);
1884 
1885   uint64_t countFromCLAs = 1;
1886   QualType eltType;
1887 
1888   llvm::ArrayType *llvmArrayType =
1889     dyn_cast<llvm::ArrayType>(addr.getElementType());
1890   while (llvmArrayType) {
1891     assert(isa<ConstantArrayType>(arrayType));
1892     assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
1893              == llvmArrayType->getNumElements());
1894 
1895     gepIndices.push_back(zero);
1896     countFromCLAs *= llvmArrayType->getNumElements();
1897     eltType = arrayType->getElementType();
1898 
1899     llvmArrayType =
1900       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
1901     arrayType = getContext().getAsArrayType(arrayType->getElementType());
1902     assert((!llvmArrayType || arrayType) &&
1903            "LLVM and Clang types are out-of-synch");
1904   }
1905 
1906   if (arrayType) {
1907     // From this point onwards, the Clang array type has been emitted
1908     // as some other type (probably a packed struct). Compute the array
1909     // size, and just emit the 'begin' expression as a bitcast.
1910     while (arrayType) {
1911       countFromCLAs *=
1912           cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
1913       eltType = arrayType->getElementType();
1914       arrayType = getContext().getAsArrayType(eltType);
1915     }
1916 
1917     llvm::Type *baseType = ConvertType(eltType);
1918     addr = Builder.CreateElementBitCast(addr, baseType, "array.begin");
1919   } else {
1920     // Create the actual GEP.
1921     addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(),
1922                                              gepIndices, "array.begin"),
1923                    addr.getAlignment());
1924   }
1925 
1926   baseType = eltType;
1927 
1928   llvm::Value *numElements
1929     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
1930 
1931   // If we had any VLA dimensions, factor them in.
1932   if (numVLAElements)
1933     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
1934 
1935   return numElements;
1936 }
1937 
1938 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) {
1939   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
1940   assert(vla && "type was not a variable array type!");
1941   return getVLASize(vla);
1942 }
1943 
1944 CodeGenFunction::VlaSizePair
1945 CodeGenFunction::getVLASize(const VariableArrayType *type) {
1946   // The number of elements so far; always size_t.
1947   llvm::Value *numElements = nullptr;
1948 
1949   QualType elementType;
1950   do {
1951     elementType = type->getElementType();
1952     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
1953     assert(vlaSize && "no size for VLA!");
1954     assert(vlaSize->getType() == SizeTy);
1955 
1956     if (!numElements) {
1957       numElements = vlaSize;
1958     } else {
1959       // It's undefined behavior if this wraps around, so mark it that way.
1960       // FIXME: Teach -fsanitize=undefined to trap this.
1961       numElements = Builder.CreateNUWMul(numElements, vlaSize);
1962     }
1963   } while ((type = getContext().getAsVariableArrayType(elementType)));
1964 
1965   return { numElements, elementType };
1966 }
1967 
1968 CodeGenFunction::VlaSizePair
1969 CodeGenFunction::getVLAElements1D(QualType type) {
1970   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
1971   assert(vla && "type was not a variable array type!");
1972   return getVLAElements1D(vla);
1973 }
1974 
1975 CodeGenFunction::VlaSizePair
1976 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) {
1977   llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()];
1978   assert(VlaSize && "no size for VLA!");
1979   assert(VlaSize->getType() == SizeTy);
1980   return { VlaSize, Vla->getElementType() };
1981 }
1982 
1983 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
1984   assert(type->isVariablyModifiedType() &&
1985          "Must pass variably modified type to EmitVLASizes!");
1986 
1987   EnsureInsertPoint();
1988 
1989   // We're going to walk down into the type and look for VLA
1990   // expressions.
1991   do {
1992     assert(type->isVariablyModifiedType());
1993 
1994     const Type *ty = type.getTypePtr();
1995     switch (ty->getTypeClass()) {
1996 
1997 #define TYPE(Class, Base)
1998 #define ABSTRACT_TYPE(Class, Base)
1999 #define NON_CANONICAL_TYPE(Class, Base)
2000 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
2001 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
2002 #include "clang/AST/TypeNodes.inc"
2003       llvm_unreachable("unexpected dependent type!");
2004 
2005     // These types are never variably-modified.
2006     case Type::Builtin:
2007     case Type::Complex:
2008     case Type::Vector:
2009     case Type::ExtVector:
2010     case Type::Record:
2011     case Type::Enum:
2012     case Type::Elaborated:
2013     case Type::TemplateSpecialization:
2014     case Type::ObjCTypeParam:
2015     case Type::ObjCObject:
2016     case Type::ObjCInterface:
2017     case Type::ObjCObjectPointer:
2018       llvm_unreachable("type class is never variably-modified!");
2019 
2020     case Type::Adjusted:
2021       type = cast<AdjustedType>(ty)->getAdjustedType();
2022       break;
2023 
2024     case Type::Decayed:
2025       type = cast<DecayedType>(ty)->getPointeeType();
2026       break;
2027 
2028     case Type::Pointer:
2029       type = cast<PointerType>(ty)->getPointeeType();
2030       break;
2031 
2032     case Type::BlockPointer:
2033       type = cast<BlockPointerType>(ty)->getPointeeType();
2034       break;
2035 
2036     case Type::LValueReference:
2037     case Type::RValueReference:
2038       type = cast<ReferenceType>(ty)->getPointeeType();
2039       break;
2040 
2041     case Type::MemberPointer:
2042       type = cast<MemberPointerType>(ty)->getPointeeType();
2043       break;
2044 
2045     case Type::ConstantArray:
2046     case Type::IncompleteArray:
2047       // Losing element qualification here is fine.
2048       type = cast<ArrayType>(ty)->getElementType();
2049       break;
2050 
2051     case Type::VariableArray: {
2052       // Losing element qualification here is fine.
2053       const VariableArrayType *vat = cast<VariableArrayType>(ty);
2054 
2055       // Unknown size indication requires no size computation.
2056       // Otherwise, evaluate and record it.
2057       if (const Expr *size = vat->getSizeExpr()) {
2058         // It's possible that we might have emitted this already,
2059         // e.g. with a typedef and a pointer to it.
2060         llvm::Value *&entry = VLASizeMap[size];
2061         if (!entry) {
2062           llvm::Value *Size = EmitScalarExpr(size);
2063 
2064           // C11 6.7.6.2p5:
2065           //   If the size is an expression that is not an integer constant
2066           //   expression [...] each time it is evaluated it shall have a value
2067           //   greater than zero.
2068           if (SanOpts.has(SanitizerKind::VLABound) &&
2069               size->getType()->isSignedIntegerType()) {
2070             SanitizerScope SanScope(this);
2071             llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType());
2072             llvm::Constant *StaticArgs[] = {
2073                 EmitCheckSourceLocation(size->getBeginLoc()),
2074                 EmitCheckTypeDescriptor(size->getType())};
2075             EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero),
2076                                      SanitizerKind::VLABound),
2077                       SanitizerHandler::VLABoundNotPositive, StaticArgs, Size);
2078           }
2079 
2080           // Always zexting here would be wrong if it weren't
2081           // undefined behavior to have a negative bound.
2082           entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false);
2083         }
2084       }
2085       type = vat->getElementType();
2086       break;
2087     }
2088 
2089     case Type::FunctionProto:
2090     case Type::FunctionNoProto:
2091       type = cast<FunctionType>(ty)->getReturnType();
2092       break;
2093 
2094     case Type::Paren:
2095     case Type::TypeOf:
2096     case Type::UnaryTransform:
2097     case Type::Attributed:
2098     case Type::SubstTemplateTypeParm:
2099     case Type::PackExpansion:
2100     case Type::MacroQualified:
2101       // Keep walking after single level desugaring.
2102       type = type.getSingleStepDesugaredType(getContext());
2103       break;
2104 
2105     case Type::Typedef:
2106     case Type::Decltype:
2107     case Type::Auto:
2108     case Type::DeducedTemplateSpecialization:
2109       // Stop walking: nothing to do.
2110       return;
2111 
2112     case Type::TypeOfExpr:
2113       // Stop walking: emit typeof expression.
2114       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
2115       return;
2116 
2117     case Type::Atomic:
2118       type = cast<AtomicType>(ty)->getValueType();
2119       break;
2120 
2121     case Type::Pipe:
2122       type = cast<PipeType>(ty)->getElementType();
2123       break;
2124     }
2125   } while (type->isVariablyModifiedType());
2126 }
2127 
2128 Address CodeGenFunction::EmitVAListRef(const Expr* E) {
2129   if (getContext().getBuiltinVaListType()->isArrayType())
2130     return EmitPointerWithAlignment(E);
2131   return EmitLValue(E).getAddress(*this);
2132 }
2133 
2134 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) {
2135   return EmitLValue(E).getAddress(*this);
2136 }
2137 
2138 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
2139                                               const APValue &Init) {
2140   assert(Init.hasValue() && "Invalid DeclRefExpr initializer!");
2141   if (CGDebugInfo *Dbg = getDebugInfo())
2142     if (CGM.getCodeGenOpts().hasReducedDebugInfo())
2143       Dbg->EmitGlobalVariable(E->getDecl(), Init);
2144 }
2145 
2146 CodeGenFunction::PeepholeProtection
2147 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
2148   // At the moment, the only aggressive peephole we do in IR gen
2149   // is trunc(zext) folding, but if we add more, we can easily
2150   // extend this protection.
2151 
2152   if (!rvalue.isScalar()) return PeepholeProtection();
2153   llvm::Value *value = rvalue.getScalarVal();
2154   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
2155 
2156   // Just make an extra bitcast.
2157   assert(HaveInsertPoint());
2158   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
2159                                                   Builder.GetInsertBlock());
2160 
2161   PeepholeProtection protection;
2162   protection.Inst = inst;
2163   return protection;
2164 }
2165 
2166 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
2167   if (!protection.Inst) return;
2168 
2169   // In theory, we could try to duplicate the peepholes now, but whatever.
2170   protection.Inst->eraseFromParent();
2171 }
2172 
2173 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue,
2174                                               QualType Ty, SourceLocation Loc,
2175                                               SourceLocation AssumptionLoc,
2176                                               llvm::Value *Alignment,
2177                                               llvm::Value *OffsetValue) {
2178   llvm::Value *TheCheck;
2179   llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption(
2180       CGM.getDataLayout(), PtrValue, Alignment, OffsetValue, &TheCheck);
2181   if (SanOpts.has(SanitizerKind::Alignment)) {
2182     emitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2183                                  OffsetValue, TheCheck, Assumption);
2184   }
2185 }
2186 
2187 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue,
2188                                               const Expr *E,
2189                                               SourceLocation AssumptionLoc,
2190                                               llvm::Value *Alignment,
2191                                               llvm::Value *OffsetValue) {
2192   if (auto *CE = dyn_cast<CastExpr>(E))
2193     E = CE->getSubExprAsWritten();
2194   QualType Ty = E->getType();
2195   SourceLocation Loc = E->getExprLoc();
2196 
2197   emitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2198                           OffsetValue);
2199 }
2200 
2201 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn,
2202                                                  llvm::Value *AnnotatedVal,
2203                                                  StringRef AnnotationStr,
2204                                                  SourceLocation Location) {
2205   llvm::Value *Args[4] = {
2206     AnnotatedVal,
2207     Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
2208     Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
2209     CGM.EmitAnnotationLineNo(Location)
2210   };
2211   return Builder.CreateCall(AnnotationFn, Args);
2212 }
2213 
2214 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
2215   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2216   // FIXME We create a new bitcast for every annotation because that's what
2217   // llvm-gcc was doing.
2218   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2219     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
2220                        Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
2221                        I->getAnnotation(), D->getLocation());
2222 }
2223 
2224 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
2225                                               Address Addr) {
2226   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2227   llvm::Value *V = Addr.getPointer();
2228   llvm::Type *VTy = V->getType();
2229   llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
2230                                     CGM.Int8PtrTy);
2231 
2232   for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
2233     // FIXME Always emit the cast inst so we can differentiate between
2234     // annotation on the first field of a struct and annotation on the struct
2235     // itself.
2236     if (VTy != CGM.Int8PtrTy)
2237       V = Builder.CreateBitCast(V, CGM.Int8PtrTy);
2238     V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation());
2239     V = Builder.CreateBitCast(V, VTy);
2240   }
2241 
2242   return Address(V, Addr.getAlignment());
2243 }
2244 
2245 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
2246 
2247 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF)
2248     : CGF(CGF) {
2249   assert(!CGF->IsSanitizerScope);
2250   CGF->IsSanitizerScope = true;
2251 }
2252 
2253 CodeGenFunction::SanitizerScope::~SanitizerScope() {
2254   CGF->IsSanitizerScope = false;
2255 }
2256 
2257 void CodeGenFunction::InsertHelper(llvm::Instruction *I,
2258                                    const llvm::Twine &Name,
2259                                    llvm::BasicBlock *BB,
2260                                    llvm::BasicBlock::iterator InsertPt) const {
2261   LoopStack.InsertHelper(I);
2262   if (IsSanitizerScope)
2263     CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I);
2264 }
2265 
2266 void CGBuilderInserter::InsertHelper(
2267     llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB,
2268     llvm::BasicBlock::iterator InsertPt) const {
2269   llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt);
2270   if (CGF)
2271     CGF->InsertHelper(I, Name, BB, InsertPt);
2272 }
2273 
2274 static bool hasRequiredFeatures(const SmallVectorImpl<StringRef> &ReqFeatures,
2275                                 CodeGenModule &CGM, const FunctionDecl *FD,
2276                                 std::string &FirstMissing) {
2277   // If there aren't any required features listed then go ahead and return.
2278   if (ReqFeatures.empty())
2279     return false;
2280 
2281   // Now build up the set of caller features and verify that all the required
2282   // features are there.
2283   llvm::StringMap<bool> CallerFeatureMap;
2284   CGM.getContext().getFunctionFeatureMap(CallerFeatureMap, FD);
2285 
2286   // If we have at least one of the features in the feature list return
2287   // true, otherwise return false.
2288   return std::all_of(
2289       ReqFeatures.begin(), ReqFeatures.end(), [&](StringRef Feature) {
2290         SmallVector<StringRef, 1> OrFeatures;
2291         Feature.split(OrFeatures, '|');
2292         return llvm::any_of(OrFeatures, [&](StringRef Feature) {
2293           if (!CallerFeatureMap.lookup(Feature)) {
2294             FirstMissing = Feature.str();
2295             return false;
2296           }
2297           return true;
2298         });
2299       });
2300 }
2301 
2302 // Emits an error if we don't have a valid set of target features for the
2303 // called function.
2304 void CodeGenFunction::checkTargetFeatures(const CallExpr *E,
2305                                           const FunctionDecl *TargetDecl) {
2306   return checkTargetFeatures(E->getBeginLoc(), TargetDecl);
2307 }
2308 
2309 // Emits an error if we don't have a valid set of target features for the
2310 // called function.
2311 void CodeGenFunction::checkTargetFeatures(SourceLocation Loc,
2312                                           const FunctionDecl *TargetDecl) {
2313   // Early exit if this is an indirect call.
2314   if (!TargetDecl)
2315     return;
2316 
2317   // Get the current enclosing function if it exists. If it doesn't
2318   // we can't check the target features anyhow.
2319   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl);
2320   if (!FD)
2321     return;
2322 
2323   // Grab the required features for the call. For a builtin this is listed in
2324   // the td file with the default cpu, for an always_inline function this is any
2325   // listed cpu and any listed features.
2326   unsigned BuiltinID = TargetDecl->getBuiltinID();
2327   std::string MissingFeature;
2328   if (BuiltinID) {
2329     SmallVector<StringRef, 1> ReqFeatures;
2330     const char *FeatureList =
2331         CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID);
2332     // Return if the builtin doesn't have any required features.
2333     if (!FeatureList || StringRef(FeatureList) == "")
2334       return;
2335     StringRef(FeatureList).split(ReqFeatures, ',');
2336     if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature))
2337       CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature)
2338           << TargetDecl->getDeclName()
2339           << CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID);
2340 
2341   } else if (!TargetDecl->isMultiVersion() &&
2342              TargetDecl->hasAttr<TargetAttr>()) {
2343     // Get the required features for the callee.
2344 
2345     const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>();
2346     ParsedTargetAttr ParsedAttr =
2347         CGM.getContext().filterFunctionTargetAttrs(TD);
2348 
2349     SmallVector<StringRef, 1> ReqFeatures;
2350     llvm::StringMap<bool> CalleeFeatureMap;
2351     CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap,
2352                                            GlobalDecl(TargetDecl));
2353 
2354     for (const auto &F : ParsedAttr.Features) {
2355       if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1)))
2356         ReqFeatures.push_back(StringRef(F).substr(1));
2357     }
2358 
2359     for (const auto &F : CalleeFeatureMap) {
2360       // Only positive features are "required".
2361       if (F.getValue())
2362         ReqFeatures.push_back(F.getKey());
2363     }
2364     if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature))
2365       CGM.getDiags().Report(Loc, diag::err_function_needs_feature)
2366           << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature;
2367   }
2368 }
2369 
2370 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) {
2371   if (!CGM.getCodeGenOpts().SanitizeStats)
2372     return;
2373 
2374   llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint());
2375   IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation());
2376   CGM.getSanStats().create(IRB, SSK);
2377 }
2378 
2379 llvm::Value *
2380 CodeGenFunction::FormResolverCondition(const MultiVersionResolverOption &RO) {
2381   llvm::Value *Condition = nullptr;
2382 
2383   if (!RO.Conditions.Architecture.empty())
2384     Condition = EmitX86CpuIs(RO.Conditions.Architecture);
2385 
2386   if (!RO.Conditions.Features.empty()) {
2387     llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features);
2388     Condition =
2389         Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond;
2390   }
2391   return Condition;
2392 }
2393 
2394 static void CreateMultiVersionResolverReturn(CodeGenModule &CGM,
2395                                              llvm::Function *Resolver,
2396                                              CGBuilderTy &Builder,
2397                                              llvm::Function *FuncToReturn,
2398                                              bool SupportsIFunc) {
2399   if (SupportsIFunc) {
2400     Builder.CreateRet(FuncToReturn);
2401     return;
2402   }
2403 
2404   llvm::SmallVector<llvm::Value *, 10> Args;
2405   llvm::for_each(Resolver->args(),
2406                  [&](llvm::Argument &Arg) { Args.push_back(&Arg); });
2407 
2408   llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args);
2409   Result->setTailCallKind(llvm::CallInst::TCK_MustTail);
2410 
2411   if (Resolver->getReturnType()->isVoidTy())
2412     Builder.CreateRetVoid();
2413   else
2414     Builder.CreateRet(Result);
2415 }
2416 
2417 void CodeGenFunction::EmitMultiVersionResolver(
2418     llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) {
2419   assert(getContext().getTargetInfo().getTriple().isX86() &&
2420          "Only implemented for x86 targets");
2421 
2422   bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc();
2423 
2424   // Main function's basic block.
2425   llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver);
2426   Builder.SetInsertPoint(CurBlock);
2427   EmitX86CpuInit();
2428 
2429   for (const MultiVersionResolverOption &RO : Options) {
2430     Builder.SetInsertPoint(CurBlock);
2431     llvm::Value *Condition = FormResolverCondition(RO);
2432 
2433     // The 'default' or 'generic' case.
2434     if (!Condition) {
2435       assert(&RO == Options.end() - 1 &&
2436              "Default or Generic case must be last");
2437       CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function,
2438                                        SupportsIFunc);
2439       return;
2440     }
2441 
2442     llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver);
2443     CGBuilderTy RetBuilder(*this, RetBlock);
2444     CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function,
2445                                      SupportsIFunc);
2446     CurBlock = createBasicBlock("resolver_else", Resolver);
2447     Builder.CreateCondBr(Condition, RetBlock, CurBlock);
2448   }
2449 
2450   // If no generic/default, emit an unreachable.
2451   Builder.SetInsertPoint(CurBlock);
2452   llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
2453   TrapCall->setDoesNotReturn();
2454   TrapCall->setDoesNotThrow();
2455   Builder.CreateUnreachable();
2456   Builder.ClearInsertionPoint();
2457 }
2458 
2459 // Loc - where the diagnostic will point, where in the source code this
2460 //  alignment has failed.
2461 // SecondaryLoc - if present (will be present if sufficiently different from
2462 //  Loc), the diagnostic will additionally point a "Note:" to this location.
2463 //  It should be the location where the __attribute__((assume_aligned))
2464 //  was written e.g.
2465 void CodeGenFunction::emitAlignmentAssumptionCheck(
2466     llvm::Value *Ptr, QualType Ty, SourceLocation Loc,
2467     SourceLocation SecondaryLoc, llvm::Value *Alignment,
2468     llvm::Value *OffsetValue, llvm::Value *TheCheck,
2469     llvm::Instruction *Assumption) {
2470   assert(Assumption && isa<llvm::CallInst>(Assumption) &&
2471          cast<llvm::CallInst>(Assumption)->getCalledValue() ==
2472              llvm::Intrinsic::getDeclaration(
2473                  Builder.GetInsertBlock()->getParent()->getParent(),
2474                  llvm::Intrinsic::assume) &&
2475          "Assumption should be a call to llvm.assume().");
2476   assert(&(Builder.GetInsertBlock()->back()) == Assumption &&
2477          "Assumption should be the last instruction of the basic block, "
2478          "since the basic block is still being generated.");
2479 
2480   if (!SanOpts.has(SanitizerKind::Alignment))
2481     return;
2482 
2483   // Don't check pointers to volatile data. The behavior here is implementation-
2484   // defined.
2485   if (Ty->getPointeeType().isVolatileQualified())
2486     return;
2487 
2488   // We need to temorairly remove the assumption so we can insert the
2489   // sanitizer check before it, else the check will be dropped by optimizations.
2490   Assumption->removeFromParent();
2491 
2492   {
2493     SanitizerScope SanScope(this);
2494 
2495     if (!OffsetValue)
2496       OffsetValue = Builder.getInt1(0); // no offset.
2497 
2498     llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc),
2499                                     EmitCheckSourceLocation(SecondaryLoc),
2500                                     EmitCheckTypeDescriptor(Ty)};
2501     llvm::Value *DynamicData[] = {EmitCheckValue(Ptr),
2502                                   EmitCheckValue(Alignment),
2503                                   EmitCheckValue(OffsetValue)};
2504     EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)},
2505               SanitizerHandler::AlignmentAssumption, StaticData, DynamicData);
2506   }
2507 
2508   // We are now in the (new, empty) "cont" basic block.
2509   // Reintroduce the assumption.
2510   Builder.Insert(Assumption);
2511   // FIXME: Assumption still has it's original basic block as it's Parent.
2512 }
2513 
2514 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) {
2515   if (CGDebugInfo *DI = getDebugInfo())
2516     return DI->SourceLocToDebugLoc(Location);
2517 
2518   return llvm::DebugLoc();
2519 }
2520