1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-function state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGDebugInfo.h" 18 #include "CGOpenMPRuntime.h" 19 #include "CodeGenModule.h" 20 #include "CodeGenPGO.h" 21 #include "TargetInfo.h" 22 #include "clang/AST/ASTContext.h" 23 #include "clang/AST/Decl.h" 24 #include "clang/AST/DeclCXX.h" 25 #include "clang/AST/StmtCXX.h" 26 #include "clang/Basic/TargetInfo.h" 27 #include "clang/CodeGen/CGFunctionInfo.h" 28 #include "clang/Frontend/CodeGenOptions.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/Intrinsics.h" 31 #include "llvm/IR/MDBuilder.h" 32 #include "llvm/IR/Operator.h" 33 using namespace clang; 34 using namespace CodeGen; 35 36 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 37 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 38 Builder(cgm.getModule().getContext(), llvm::ConstantFolder(), 39 CGBuilderInserterTy(this)), 40 CurFn(nullptr), CapturedStmtInfo(nullptr), 41 SanOpts(CGM.getLangOpts().Sanitize), IsSanitizerScope(false), 42 CurFuncIsThunk(false), AutoreleaseResult(false), SawAsmBlock(false), 43 BlockInfo(nullptr), BlockPointer(nullptr), 44 LambdaThisCaptureField(nullptr), NormalCleanupDest(nullptr), 45 NextCleanupDestIndex(1), FirstBlockInfo(nullptr), EHResumeBlock(nullptr), 46 ExceptionSlot(nullptr), EHSelectorSlot(nullptr), 47 DebugInfo(CGM.getModuleDebugInfo()), DisableDebugInfo(false), 48 DidCallStackSave(false), IndirectBranch(nullptr), PGO(cgm), 49 SwitchInsn(nullptr), SwitchWeights(nullptr), CaseRangeBlock(nullptr), 50 UnreachableBlock(nullptr), NumReturnExprs(0), NumSimpleReturnExprs(0), 51 CXXABIThisDecl(nullptr), CXXABIThisValue(nullptr), CXXThisValue(nullptr), 52 CXXDefaultInitExprThis(nullptr), CXXStructorImplicitParamDecl(nullptr), 53 CXXStructorImplicitParamValue(nullptr), OutermostConditional(nullptr), 54 CurLexicalScope(nullptr), TerminateLandingPad(nullptr), 55 TerminateHandler(nullptr), TrapBB(nullptr) { 56 if (!suppressNewContext) 57 CGM.getCXXABI().getMangleContext().startNewFunction(); 58 59 llvm::FastMathFlags FMF; 60 if (CGM.getLangOpts().FastMath) 61 FMF.setUnsafeAlgebra(); 62 if (CGM.getLangOpts().FiniteMathOnly) { 63 FMF.setNoNaNs(); 64 FMF.setNoInfs(); 65 } 66 Builder.SetFastMathFlags(FMF); 67 } 68 69 CodeGenFunction::~CodeGenFunction() { 70 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 71 72 // If there are any unclaimed block infos, go ahead and destroy them 73 // now. This can happen if IR-gen gets clever and skips evaluating 74 // something. 75 if (FirstBlockInfo) 76 destroyBlockInfos(FirstBlockInfo); 77 78 if (getLangOpts().OpenMP) { 79 CGM.getOpenMPRuntime().FunctionFinished(*this); 80 } 81 } 82 83 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { 84 CharUnits Alignment; 85 if (CGM.getCXXABI().isTypeInfoCalculable(T)) { 86 Alignment = getContext().getTypeAlignInChars(T); 87 unsigned MaxAlign = getContext().getLangOpts().MaxTypeAlign; 88 if (MaxAlign && Alignment.getQuantity() > MaxAlign && 89 !getContext().isAlignmentRequired(T)) 90 Alignment = CharUnits::fromQuantity(MaxAlign); 91 } 92 return LValue::MakeAddr(V, T, Alignment, getContext(), CGM.getTBAAInfo(T)); 93 } 94 95 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 96 return CGM.getTypes().ConvertTypeForMem(T); 97 } 98 99 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 100 return CGM.getTypes().ConvertType(T); 101 } 102 103 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 104 type = type.getCanonicalType(); 105 while (true) { 106 switch (type->getTypeClass()) { 107 #define TYPE(name, parent) 108 #define ABSTRACT_TYPE(name, parent) 109 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 110 #define DEPENDENT_TYPE(name, parent) case Type::name: 111 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 112 #include "clang/AST/TypeNodes.def" 113 llvm_unreachable("non-canonical or dependent type in IR-generation"); 114 115 case Type::Auto: 116 llvm_unreachable("undeduced auto type in IR-generation"); 117 118 // Various scalar types. 119 case Type::Builtin: 120 case Type::Pointer: 121 case Type::BlockPointer: 122 case Type::LValueReference: 123 case Type::RValueReference: 124 case Type::MemberPointer: 125 case Type::Vector: 126 case Type::ExtVector: 127 case Type::FunctionProto: 128 case Type::FunctionNoProto: 129 case Type::Enum: 130 case Type::ObjCObjectPointer: 131 return TEK_Scalar; 132 133 // Complexes. 134 case Type::Complex: 135 return TEK_Complex; 136 137 // Arrays, records, and Objective-C objects. 138 case Type::ConstantArray: 139 case Type::IncompleteArray: 140 case Type::VariableArray: 141 case Type::Record: 142 case Type::ObjCObject: 143 case Type::ObjCInterface: 144 return TEK_Aggregate; 145 146 // We operate on atomic values according to their underlying type. 147 case Type::Atomic: 148 type = cast<AtomicType>(type)->getValueType(); 149 continue; 150 } 151 llvm_unreachable("unknown type kind!"); 152 } 153 } 154 155 void CodeGenFunction::EmitReturnBlock() { 156 // For cleanliness, we try to avoid emitting the return block for 157 // simple cases. 158 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 159 160 if (CurBB) { 161 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 162 163 // We have a valid insert point, reuse it if it is empty or there are no 164 // explicit jumps to the return block. 165 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 166 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 167 delete ReturnBlock.getBlock(); 168 } else 169 EmitBlock(ReturnBlock.getBlock()); 170 return; 171 } 172 173 // Otherwise, if the return block is the target of a single direct 174 // branch then we can just put the code in that block instead. This 175 // cleans up functions which started with a unified return block. 176 if (ReturnBlock.getBlock()->hasOneUse()) { 177 llvm::BranchInst *BI = 178 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin()); 179 if (BI && BI->isUnconditional() && 180 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 181 // Reset insertion point, including debug location, and delete the 182 // branch. This is really subtle and only works because the next change 183 // in location will hit the caching in CGDebugInfo::EmitLocation and not 184 // override this. 185 Builder.SetCurrentDebugLocation(BI->getDebugLoc()); 186 Builder.SetInsertPoint(BI->getParent()); 187 BI->eraseFromParent(); 188 delete ReturnBlock.getBlock(); 189 return; 190 } 191 } 192 193 // FIXME: We are at an unreachable point, there is no reason to emit the block 194 // unless it has uses. However, we still need a place to put the debug 195 // region.end for now. 196 197 EmitBlock(ReturnBlock.getBlock()); 198 } 199 200 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 201 if (!BB) return; 202 if (!BB->use_empty()) 203 return CGF.CurFn->getBasicBlockList().push_back(BB); 204 delete BB; 205 } 206 207 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 208 assert(BreakContinueStack.empty() && 209 "mismatched push/pop in break/continue stack!"); 210 211 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 212 && NumSimpleReturnExprs == NumReturnExprs 213 && ReturnBlock.getBlock()->use_empty(); 214 // Usually the return expression is evaluated before the cleanup 215 // code. If the function contains only a simple return statement, 216 // such as a constant, the location before the cleanup code becomes 217 // the last useful breakpoint in the function, because the simple 218 // return expression will be evaluated after the cleanup code. To be 219 // safe, set the debug location for cleanup code to the location of 220 // the return statement. Otherwise the cleanup code should be at the 221 // end of the function's lexical scope. 222 // 223 // If there are multiple branches to the return block, the branch 224 // instructions will get the location of the return statements and 225 // all will be fine. 226 if (CGDebugInfo *DI = getDebugInfo()) { 227 if (OnlySimpleReturnStmts) 228 DI->EmitLocation(Builder, LastStopPoint); 229 else 230 DI->EmitLocation(Builder, EndLoc); 231 } 232 233 // Pop any cleanups that might have been associated with the 234 // parameters. Do this in whatever block we're currently in; it's 235 // important to do this before we enter the return block or return 236 // edges will be *really* confused. 237 bool EmitRetDbgLoc = true; 238 if (EHStack.stable_begin() != PrologueCleanupDepth) { 239 PopCleanupBlocks(PrologueCleanupDepth); 240 241 // Make sure the line table doesn't jump back into the body for 242 // the ret after it's been at EndLoc. 243 EmitRetDbgLoc = false; 244 245 if (CGDebugInfo *DI = getDebugInfo()) 246 if (OnlySimpleReturnStmts) 247 DI->EmitLocation(Builder, EndLoc); 248 } 249 250 // Emit function epilog (to return). 251 EmitReturnBlock(); 252 253 if (ShouldInstrumentFunction()) 254 EmitFunctionInstrumentation("__cyg_profile_func_exit"); 255 256 // Emit debug descriptor for function end. 257 if (CGDebugInfo *DI = getDebugInfo()) { 258 DI->EmitFunctionEnd(Builder); 259 } 260 261 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 262 EmitEndEHSpec(CurCodeDecl); 263 264 assert(EHStack.empty() && 265 "did not remove all scopes from cleanup stack!"); 266 267 // If someone did an indirect goto, emit the indirect goto block at the end of 268 // the function. 269 if (IndirectBranch) { 270 EmitBlock(IndirectBranch->getParent()); 271 Builder.ClearInsertionPoint(); 272 } 273 274 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 275 llvm::Instruction *Ptr = AllocaInsertPt; 276 AllocaInsertPt = nullptr; 277 Ptr->eraseFromParent(); 278 279 // If someone took the address of a label but never did an indirect goto, we 280 // made a zero entry PHI node, which is illegal, zap it now. 281 if (IndirectBranch) { 282 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 283 if (PN->getNumIncomingValues() == 0) { 284 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 285 PN->eraseFromParent(); 286 } 287 } 288 289 EmitIfUsed(*this, EHResumeBlock); 290 EmitIfUsed(*this, TerminateLandingPad); 291 EmitIfUsed(*this, TerminateHandler); 292 EmitIfUsed(*this, UnreachableBlock); 293 294 if (CGM.getCodeGenOpts().EmitDeclMetadata) 295 EmitDeclMetadata(); 296 297 for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator 298 I = DeferredReplacements.begin(), 299 E = DeferredReplacements.end(); 300 I != E; ++I) { 301 I->first->replaceAllUsesWith(I->second); 302 I->first->eraseFromParent(); 303 } 304 } 305 306 /// ShouldInstrumentFunction - Return true if the current function should be 307 /// instrumented with __cyg_profile_func_* calls 308 bool CodeGenFunction::ShouldInstrumentFunction() { 309 if (!CGM.getCodeGenOpts().InstrumentFunctions) 310 return false; 311 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 312 return false; 313 return true; 314 } 315 316 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 317 /// instrumentation function with the current function and the call site, if 318 /// function instrumentation is enabled. 319 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) { 320 // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site); 321 llvm::PointerType *PointerTy = Int8PtrTy; 322 llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy }; 323 llvm::FunctionType *FunctionTy = 324 llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false); 325 326 llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn); 327 llvm::CallInst *CallSite = Builder.CreateCall( 328 CGM.getIntrinsic(llvm::Intrinsic::returnaddress), 329 llvm::ConstantInt::get(Int32Ty, 0), 330 "callsite"); 331 332 llvm::Value *args[] = { 333 llvm::ConstantExpr::getBitCast(CurFn, PointerTy), 334 CallSite 335 }; 336 337 EmitNounwindRuntimeCall(F, args); 338 } 339 340 void CodeGenFunction::EmitMCountInstrumentation() { 341 llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false); 342 343 llvm::Constant *MCountFn = 344 CGM.CreateRuntimeFunction(FTy, getTarget().getMCountName()); 345 EmitNounwindRuntimeCall(MCountFn); 346 } 347 348 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument 349 // information in the program executable. The argument information stored 350 // includes the argument name, its type, the address and access qualifiers used. 351 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn, 352 CodeGenModule &CGM,llvm::LLVMContext &Context, 353 SmallVector <llvm::Value*, 5> &kernelMDArgs, 354 CGBuilderTy& Builder, ASTContext &ASTCtx) { 355 // Create MDNodes that represent the kernel arg metadata. 356 // Each MDNode is a list in the form of "key", N number of values which is 357 // the same number of values as their are kernel arguments. 358 359 const PrintingPolicy &Policy = ASTCtx.getPrintingPolicy(); 360 361 // MDNode for the kernel argument address space qualifiers. 362 SmallVector<llvm::Value*, 8> addressQuals; 363 addressQuals.push_back(llvm::MDString::get(Context, "kernel_arg_addr_space")); 364 365 // MDNode for the kernel argument access qualifiers (images only). 366 SmallVector<llvm::Value*, 8> accessQuals; 367 accessQuals.push_back(llvm::MDString::get(Context, "kernel_arg_access_qual")); 368 369 // MDNode for the kernel argument type names. 370 SmallVector<llvm::Value*, 8> argTypeNames; 371 argTypeNames.push_back(llvm::MDString::get(Context, "kernel_arg_type")); 372 373 // MDNode for the kernel argument base type names. 374 SmallVector<llvm::Value*, 8> argBaseTypeNames; 375 argBaseTypeNames.push_back( 376 llvm::MDString::get(Context, "kernel_arg_base_type")); 377 378 // MDNode for the kernel argument type qualifiers. 379 SmallVector<llvm::Value*, 8> argTypeQuals; 380 argTypeQuals.push_back(llvm::MDString::get(Context, "kernel_arg_type_qual")); 381 382 // MDNode for the kernel argument names. 383 SmallVector<llvm::Value*, 8> argNames; 384 argNames.push_back(llvm::MDString::get(Context, "kernel_arg_name")); 385 386 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 387 const ParmVarDecl *parm = FD->getParamDecl(i); 388 QualType ty = parm->getType(); 389 std::string typeQuals; 390 391 if (ty->isPointerType()) { 392 QualType pointeeTy = ty->getPointeeType(); 393 394 // Get address qualifier. 395 addressQuals.push_back(Builder.getInt32(ASTCtx.getTargetAddressSpace( 396 pointeeTy.getAddressSpace()))); 397 398 // Get argument type name. 399 std::string typeName = 400 pointeeTy.getUnqualifiedType().getAsString(Policy) + "*"; 401 402 // Turn "unsigned type" to "utype" 403 std::string::size_type pos = typeName.find("unsigned"); 404 if (pointeeTy.isCanonical() && pos != std::string::npos) 405 typeName.erase(pos+1, 8); 406 407 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 408 409 std::string baseTypeName = 410 pointeeTy.getUnqualifiedType().getCanonicalType().getAsString( 411 Policy) + 412 "*"; 413 414 // Turn "unsigned type" to "utype" 415 pos = baseTypeName.find("unsigned"); 416 if (pos != std::string::npos) 417 baseTypeName.erase(pos+1, 8); 418 419 argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName)); 420 421 // Get argument type qualifiers: 422 if (ty.isRestrictQualified()) 423 typeQuals = "restrict"; 424 if (pointeeTy.isConstQualified() || 425 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 426 typeQuals += typeQuals.empty() ? "const" : " const"; 427 if (pointeeTy.isVolatileQualified()) 428 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 429 } else { 430 uint32_t AddrSpc = 0; 431 if (ty->isImageType()) 432 AddrSpc = 433 CGM.getContext().getTargetAddressSpace(LangAS::opencl_global); 434 435 addressQuals.push_back(Builder.getInt32(AddrSpc)); 436 437 // Get argument type name. 438 std::string typeName = ty.getUnqualifiedType().getAsString(Policy); 439 440 // Turn "unsigned type" to "utype" 441 std::string::size_type pos = typeName.find("unsigned"); 442 if (ty.isCanonical() && pos != std::string::npos) 443 typeName.erase(pos+1, 8); 444 445 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 446 447 std::string baseTypeName = 448 ty.getUnqualifiedType().getCanonicalType().getAsString(Policy); 449 450 // Turn "unsigned type" to "utype" 451 pos = baseTypeName.find("unsigned"); 452 if (pos != std::string::npos) 453 baseTypeName.erase(pos+1, 8); 454 455 argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName)); 456 457 // Get argument type qualifiers: 458 if (ty.isConstQualified()) 459 typeQuals = "const"; 460 if (ty.isVolatileQualified()) 461 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 462 } 463 464 argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals)); 465 466 // Get image access qualifier: 467 if (ty->isImageType()) { 468 const OpenCLImageAccessAttr *A = parm->getAttr<OpenCLImageAccessAttr>(); 469 if (A && A->isWriteOnly()) 470 accessQuals.push_back(llvm::MDString::get(Context, "write_only")); 471 else 472 accessQuals.push_back(llvm::MDString::get(Context, "read_only")); 473 // FIXME: what about read_write? 474 } else 475 accessQuals.push_back(llvm::MDString::get(Context, "none")); 476 477 // Get argument name. 478 argNames.push_back(llvm::MDString::get(Context, parm->getName())); 479 } 480 481 kernelMDArgs.push_back(llvm::MDNode::get(Context, addressQuals)); 482 kernelMDArgs.push_back(llvm::MDNode::get(Context, accessQuals)); 483 kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeNames)); 484 kernelMDArgs.push_back(llvm::MDNode::get(Context, argBaseTypeNames)); 485 kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeQuals)); 486 kernelMDArgs.push_back(llvm::MDNode::get(Context, argNames)); 487 } 488 489 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 490 llvm::Function *Fn) 491 { 492 if (!FD->hasAttr<OpenCLKernelAttr>()) 493 return; 494 495 llvm::LLVMContext &Context = getLLVMContext(); 496 497 SmallVector <llvm::Value*, 5> kernelMDArgs; 498 kernelMDArgs.push_back(Fn); 499 500 if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 501 GenOpenCLArgMetadata(FD, Fn, CGM, Context, kernelMDArgs, 502 Builder, getContext()); 503 504 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { 505 QualType hintQTy = A->getTypeHint(); 506 const ExtVectorType *hintEltQTy = hintQTy->getAs<ExtVectorType>(); 507 bool isSignedInteger = 508 hintQTy->isSignedIntegerType() || 509 (hintEltQTy && hintEltQTy->getElementType()->isSignedIntegerType()); 510 llvm::Value *attrMDArgs[] = { 511 llvm::MDString::get(Context, "vec_type_hint"), 512 llvm::UndefValue::get(CGM.getTypes().ConvertType(A->getTypeHint())), 513 llvm::ConstantInt::get( 514 llvm::IntegerType::get(Context, 32), 515 llvm::APInt(32, (uint64_t)(isSignedInteger ? 1 : 0))) 516 }; 517 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 518 } 519 520 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { 521 llvm::Value *attrMDArgs[] = { 522 llvm::MDString::get(Context, "work_group_size_hint"), 523 Builder.getInt32(A->getXDim()), 524 Builder.getInt32(A->getYDim()), 525 Builder.getInt32(A->getZDim()) 526 }; 527 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 528 } 529 530 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { 531 llvm::Value *attrMDArgs[] = { 532 llvm::MDString::get(Context, "reqd_work_group_size"), 533 Builder.getInt32(A->getXDim()), 534 Builder.getInt32(A->getYDim()), 535 Builder.getInt32(A->getZDim()) 536 }; 537 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 538 } 539 540 llvm::MDNode *kernelMDNode = llvm::MDNode::get(Context, kernelMDArgs); 541 llvm::NamedMDNode *OpenCLKernelMetadata = 542 CGM.getModule().getOrInsertNamedMetadata("opencl.kernels"); 543 OpenCLKernelMetadata->addOperand(kernelMDNode); 544 } 545 546 /// Determine whether the function F ends with a return stmt. 547 static bool endsWithReturn(const Decl* F) { 548 const Stmt *Body = nullptr; 549 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F)) 550 Body = FD->getBody(); 551 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F)) 552 Body = OMD->getBody(); 553 554 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 555 auto LastStmt = CS->body_rbegin(); 556 if (LastStmt != CS->body_rend()) 557 return isa<ReturnStmt>(*LastStmt); 558 } 559 return false; 560 } 561 562 void CodeGenFunction::StartFunction(GlobalDecl GD, 563 QualType RetTy, 564 llvm::Function *Fn, 565 const CGFunctionInfo &FnInfo, 566 const FunctionArgList &Args, 567 SourceLocation Loc, 568 SourceLocation StartLoc) { 569 assert(!CurFn && 570 "Do not use a CodeGenFunction object for more than one function"); 571 572 const Decl *D = GD.getDecl(); 573 574 DidCallStackSave = false; 575 CurCodeDecl = D; 576 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr); 577 FnRetTy = RetTy; 578 CurFn = Fn; 579 CurFnInfo = &FnInfo; 580 assert(CurFn->isDeclaration() && "Function already has body?"); 581 582 if (CGM.isInSanitizerBlacklist(Fn, Loc)) 583 SanOpts.clear(); 584 585 // Pass inline keyword to optimizer if it appears explicitly on any 586 // declaration. Also, in the case of -fno-inline attach NoInline 587 // attribute to all function that are not marked AlwaysInline. 588 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 589 if (!CGM.getCodeGenOpts().NoInline) { 590 for (auto RI : FD->redecls()) 591 if (RI->isInlineSpecified()) { 592 Fn->addFnAttr(llvm::Attribute::InlineHint); 593 break; 594 } 595 } else if (!FD->hasAttr<AlwaysInlineAttr>()) 596 Fn->addFnAttr(llvm::Attribute::NoInline); 597 } 598 599 if (getLangOpts().OpenCL) { 600 // Add metadata for a kernel function. 601 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 602 EmitOpenCLKernelMetadata(FD, Fn); 603 } 604 605 // If we are checking function types, emit a function type signature as 606 // prologue data. 607 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) { 608 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 609 if (llvm::Constant *PrologueSig = 610 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { 611 llvm::Constant *FTRTTIConst = 612 CGM.GetAddrOfRTTIDescriptor(FD->getType(), /*ForEH=*/true); 613 llvm::Constant *PrologueStructElems[] = { PrologueSig, FTRTTIConst }; 614 llvm::Constant *PrologueStructConst = 615 llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true); 616 Fn->setPrologueData(PrologueStructConst); 617 } 618 } 619 } 620 621 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 622 623 // Create a marker to make it easy to insert allocas into the entryblock 624 // later. Don't create this with the builder, because we don't want it 625 // folded. 626 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 627 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB); 628 if (Builder.isNamePreserving()) 629 AllocaInsertPt->setName("allocapt"); 630 631 ReturnBlock = getJumpDestInCurrentScope("return"); 632 633 Builder.SetInsertPoint(EntryBB); 634 635 // Emit subprogram debug descriptor. 636 if (CGDebugInfo *DI = getDebugInfo()) { 637 SmallVector<QualType, 16> ArgTypes; 638 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 639 i != e; ++i) { 640 ArgTypes.push_back((*i)->getType()); 641 } 642 643 QualType FnType = 644 getContext().getFunctionType(RetTy, ArgTypes, 645 FunctionProtoType::ExtProtoInfo()); 646 DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, Builder); 647 } 648 649 if (ShouldInstrumentFunction()) 650 EmitFunctionInstrumentation("__cyg_profile_func_enter"); 651 652 if (CGM.getCodeGenOpts().InstrumentForProfiling) 653 EmitMCountInstrumentation(); 654 655 if (RetTy->isVoidType()) { 656 // Void type; nothing to return. 657 ReturnValue = nullptr; 658 659 // Count the implicit return. 660 if (!endsWithReturn(D)) 661 ++NumReturnExprs; 662 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect && 663 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 664 // Indirect aggregate return; emit returned value directly into sret slot. 665 // This reduces code size, and affects correctness in C++. 666 auto AI = CurFn->arg_begin(); 667 if (CurFnInfo->getReturnInfo().isSRetAfterThis()) 668 ++AI; 669 ReturnValue = AI; 670 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && 671 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 672 // Load the sret pointer from the argument struct and return into that. 673 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); 674 llvm::Function::arg_iterator EI = CurFn->arg_end(); 675 --EI; 676 llvm::Value *Addr = Builder.CreateStructGEP(EI, Idx); 677 ReturnValue = Builder.CreateLoad(Addr, "agg.result"); 678 } else { 679 ReturnValue = CreateIRTemp(RetTy, "retval"); 680 681 // Tell the epilog emitter to autorelease the result. We do this 682 // now so that various specialized functions can suppress it 683 // during their IR-generation. 684 if (getLangOpts().ObjCAutoRefCount && 685 !CurFnInfo->isReturnsRetained() && 686 RetTy->isObjCRetainableType()) 687 AutoreleaseResult = true; 688 } 689 690 EmitStartEHSpec(CurCodeDecl); 691 692 PrologueCleanupDepth = EHStack.stable_begin(); 693 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 694 695 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 696 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 697 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 698 if (MD->getParent()->isLambda() && 699 MD->getOverloadedOperator() == OO_Call) { 700 // We're in a lambda; figure out the captures. 701 MD->getParent()->getCaptureFields(LambdaCaptureFields, 702 LambdaThisCaptureField); 703 if (LambdaThisCaptureField) { 704 // If this lambda captures this, load it. 705 LValue ThisLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 706 CXXThisValue = EmitLoadOfLValue(ThisLValue, 707 SourceLocation()).getScalarVal(); 708 } 709 for (auto *FD : MD->getParent()->fields()) { 710 if (FD->hasCapturedVLAType()) { 711 auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD), 712 SourceLocation()).getScalarVal(); 713 auto VAT = FD->getCapturedVLAType(); 714 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 715 } 716 } 717 } else { 718 // Not in a lambda; just use 'this' from the method. 719 // FIXME: Should we generate a new load for each use of 'this'? The 720 // fast register allocator would be happier... 721 CXXThisValue = CXXABIThisValue; 722 } 723 } 724 725 // If any of the arguments have a variably modified type, make sure to 726 // emit the type size. 727 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 728 i != e; ++i) { 729 const VarDecl *VD = *i; 730 731 // Dig out the type as written from ParmVarDecls; it's unclear whether 732 // the standard (C99 6.9.1p10) requires this, but we're following the 733 // precedent set by gcc. 734 QualType Ty; 735 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 736 Ty = PVD->getOriginalType(); 737 else 738 Ty = VD->getType(); 739 740 if (Ty->isVariablyModifiedType()) 741 EmitVariablyModifiedType(Ty); 742 } 743 // Emit a location at the end of the prologue. 744 if (CGDebugInfo *DI = getDebugInfo()) 745 DI->EmitLocation(Builder, StartLoc); 746 } 747 748 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args, 749 const Stmt *Body) { 750 RegionCounter Cnt = getPGORegionCounter(Body); 751 Cnt.beginRegion(Builder); 752 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 753 EmitCompoundStmtWithoutScope(*S); 754 else 755 EmitStmt(Body); 756 } 757 758 /// When instrumenting to collect profile data, the counts for some blocks 759 /// such as switch cases need to not include the fall-through counts, so 760 /// emit a branch around the instrumentation code. When not instrumenting, 761 /// this just calls EmitBlock(). 762 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, 763 RegionCounter &Cnt) { 764 llvm::BasicBlock *SkipCountBB = nullptr; 765 if (HaveInsertPoint() && CGM.getCodeGenOpts().ProfileInstrGenerate) { 766 // When instrumenting for profiling, the fallthrough to certain 767 // statements needs to skip over the instrumentation code so that we 768 // get an accurate count. 769 SkipCountBB = createBasicBlock("skipcount"); 770 EmitBranch(SkipCountBB); 771 } 772 EmitBlock(BB); 773 Cnt.beginRegion(Builder, /*AddIncomingFallThrough=*/true); 774 if (SkipCountBB) 775 EmitBlock(SkipCountBB); 776 } 777 778 /// Tries to mark the given function nounwind based on the 779 /// non-existence of any throwing calls within it. We believe this is 780 /// lightweight enough to do at -O0. 781 static void TryMarkNoThrow(llvm::Function *F) { 782 // LLVM treats 'nounwind' on a function as part of the type, so we 783 // can't do this on functions that can be overwritten. 784 if (F->mayBeOverridden()) return; 785 786 for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI) 787 for (llvm::BasicBlock::iterator 788 BI = FI->begin(), BE = FI->end(); BI != BE; ++BI) 789 if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI)) { 790 if (!Call->doesNotThrow()) 791 return; 792 } else if (isa<llvm::ResumeInst>(&*BI)) { 793 return; 794 } 795 F->setDoesNotThrow(); 796 } 797 798 static void EmitSizedDeallocationFunction(CodeGenFunction &CGF, 799 const FunctionDecl *UnsizedDealloc) { 800 // This is a weak discardable definition of the sized deallocation function. 801 CGF.CurFn->setLinkage(llvm::Function::LinkOnceAnyLinkage); 802 803 // Call the unsized deallocation function and forward the first argument 804 // unchanged. 805 llvm::Constant *Unsized = CGF.CGM.GetAddrOfFunction(UnsizedDealloc); 806 CGF.Builder.CreateCall(Unsized, &*CGF.CurFn->arg_begin()); 807 } 808 809 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 810 const CGFunctionInfo &FnInfo) { 811 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 812 813 // Check if we should generate debug info for this function. 814 if (FD->hasAttr<NoDebugAttr>()) 815 DebugInfo = nullptr; // disable debug info indefinitely for this function 816 817 FunctionArgList Args; 818 QualType ResTy = FD->getReturnType(); 819 820 CurGD = GD; 821 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 822 if (MD && MD->isInstance()) { 823 if (CGM.getCXXABI().HasThisReturn(GD)) 824 ResTy = MD->getThisType(getContext()); 825 else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) 826 ResTy = CGM.getContext().VoidPtrTy; 827 CGM.getCXXABI().buildThisParam(*this, Args); 828 } 829 830 Args.append(FD->param_begin(), FD->param_end()); 831 832 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 833 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 834 835 SourceRange BodyRange; 836 if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange(); 837 CurEHLocation = BodyRange.getEnd(); 838 839 // Use the location of the start of the function to determine where 840 // the function definition is located. By default use the location 841 // of the declaration as the location for the subprogram. A function 842 // may lack a declaration in the source code if it is created by code 843 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). 844 SourceLocation Loc = FD->getLocation(); 845 846 // If this is a function specialization then use the pattern body 847 // as the location for the function. 848 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) 849 if (SpecDecl->hasBody(SpecDecl)) 850 Loc = SpecDecl->getLocation(); 851 852 // Emit the standard function prologue. 853 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin()); 854 855 // Generate the body of the function. 856 PGO.checkGlobalDecl(GD); 857 PGO.assignRegionCounters(GD.getDecl(), CurFn); 858 if (isa<CXXDestructorDecl>(FD)) 859 EmitDestructorBody(Args); 860 else if (isa<CXXConstructorDecl>(FD)) 861 EmitConstructorBody(Args); 862 else if (getLangOpts().CUDA && 863 !CGM.getCodeGenOpts().CUDAIsDevice && 864 FD->hasAttr<CUDAGlobalAttr>()) 865 CGM.getCUDARuntime().EmitDeviceStubBody(*this, Args); 866 else if (isa<CXXConversionDecl>(FD) && 867 cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) { 868 // The lambda conversion to block pointer is special; the semantics can't be 869 // expressed in the AST, so IRGen needs to special-case it. 870 EmitLambdaToBlockPointerBody(Args); 871 } else if (isa<CXXMethodDecl>(FD) && 872 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 873 // The lambda static invoker function is special, because it forwards or 874 // clones the body of the function call operator (but is actually static). 875 EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD)); 876 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 877 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 878 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 879 // Implicit copy-assignment gets the same special treatment as implicit 880 // copy-constructors. 881 emitImplicitAssignmentOperatorBody(Args); 882 } else if (Stmt *Body = FD->getBody()) { 883 EmitFunctionBody(Args, Body); 884 } else if (FunctionDecl *UnsizedDealloc = 885 FD->getCorrespondingUnsizedGlobalDeallocationFunction()) { 886 // Global sized deallocation functions get an implicit weak definition if 887 // they don't have an explicit definition. 888 EmitSizedDeallocationFunction(*this, UnsizedDealloc); 889 } else 890 llvm_unreachable("no definition for emitted function"); 891 892 // C++11 [stmt.return]p2: 893 // Flowing off the end of a function [...] results in undefined behavior in 894 // a value-returning function. 895 // C11 6.9.1p12: 896 // If the '}' that terminates a function is reached, and the value of the 897 // function call is used by the caller, the behavior is undefined. 898 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock && 899 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { 900 if (SanOpts.has(SanitizerKind::Return)) { 901 SanitizerScope SanScope(this); 902 llvm::Value *IsFalse = Builder.getFalse(); 903 EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return), 904 "missing_return", EmitCheckSourceLocation(FD->getLocation()), 905 None); 906 } else if (CGM.getCodeGenOpts().OptimizationLevel == 0) 907 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::trap)); 908 Builder.CreateUnreachable(); 909 Builder.ClearInsertionPoint(); 910 } 911 912 // Emit the standard function epilogue. 913 FinishFunction(BodyRange.getEnd()); 914 915 // If we haven't marked the function nothrow through other means, do 916 // a quick pass now to see if we can. 917 if (!CurFn->doesNotThrow()) 918 TryMarkNoThrow(CurFn); 919 920 PGO.emitInstrumentationData(); 921 PGO.destroyRegionCounters(); 922 } 923 924 /// ContainsLabel - Return true if the statement contains a label in it. If 925 /// this statement is not executed normally, it not containing a label means 926 /// that we can just remove the code. 927 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 928 // Null statement, not a label! 929 if (!S) return false; 930 931 // If this is a label, we have to emit the code, consider something like: 932 // if (0) { ... foo: bar(); } goto foo; 933 // 934 // TODO: If anyone cared, we could track __label__'s, since we know that you 935 // can't jump to one from outside their declared region. 936 if (isa<LabelStmt>(S)) 937 return true; 938 939 // If this is a case/default statement, and we haven't seen a switch, we have 940 // to emit the code. 941 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 942 return true; 943 944 // If this is a switch statement, we want to ignore cases below it. 945 if (isa<SwitchStmt>(S)) 946 IgnoreCaseStmts = true; 947 948 // Scan subexpressions for verboten labels. 949 for (Stmt::const_child_range I = S->children(); I; ++I) 950 if (ContainsLabel(*I, IgnoreCaseStmts)) 951 return true; 952 953 return false; 954 } 955 956 /// containsBreak - Return true if the statement contains a break out of it. 957 /// If the statement (recursively) contains a switch or loop with a break 958 /// inside of it, this is fine. 959 bool CodeGenFunction::containsBreak(const Stmt *S) { 960 // Null statement, not a label! 961 if (!S) return false; 962 963 // If this is a switch or loop that defines its own break scope, then we can 964 // include it and anything inside of it. 965 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 966 isa<ForStmt>(S)) 967 return false; 968 969 if (isa<BreakStmt>(S)) 970 return true; 971 972 // Scan subexpressions for verboten breaks. 973 for (Stmt::const_child_range I = S->children(); I; ++I) 974 if (containsBreak(*I)) 975 return true; 976 977 return false; 978 } 979 980 981 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 982 /// to a constant, or if it does but contains a label, return false. If it 983 /// constant folds return true and set the boolean result in Result. 984 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 985 bool &ResultBool) { 986 llvm::APSInt ResultInt; 987 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt)) 988 return false; 989 990 ResultBool = ResultInt.getBoolValue(); 991 return true; 992 } 993 994 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 995 /// to a constant, or if it does but contains a label, return false. If it 996 /// constant folds return true and set the folded value. 997 bool CodeGenFunction:: 998 ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &ResultInt) { 999 // FIXME: Rename and handle conversion of other evaluatable things 1000 // to bool. 1001 llvm::APSInt Int; 1002 if (!Cond->EvaluateAsInt(Int, getContext())) 1003 return false; // Not foldable, not integer or not fully evaluatable. 1004 1005 if (CodeGenFunction::ContainsLabel(Cond)) 1006 return false; // Contains a label. 1007 1008 ResultInt = Int; 1009 return true; 1010 } 1011 1012 1013 1014 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 1015 /// statement) to the specified blocks. Based on the condition, this might try 1016 /// to simplify the codegen of the conditional based on the branch. 1017 /// 1018 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 1019 llvm::BasicBlock *TrueBlock, 1020 llvm::BasicBlock *FalseBlock, 1021 uint64_t TrueCount) { 1022 Cond = Cond->IgnoreParens(); 1023 1024 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 1025 1026 // Handle X && Y in a condition. 1027 if (CondBOp->getOpcode() == BO_LAnd) { 1028 RegionCounter Cnt = getPGORegionCounter(CondBOp); 1029 1030 // If we have "1 && X", simplify the code. "0 && X" would have constant 1031 // folded if the case was simple enough. 1032 bool ConstantBool = false; 1033 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1034 ConstantBool) { 1035 // br(1 && X) -> br(X). 1036 Cnt.beginRegion(Builder); 1037 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1038 TrueCount); 1039 } 1040 1041 // If we have "X && 1", simplify the code to use an uncond branch. 1042 // "X && 0" would have been constant folded to 0. 1043 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1044 ConstantBool) { 1045 // br(X && 1) -> br(X). 1046 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1047 TrueCount); 1048 } 1049 1050 // Emit the LHS as a conditional. If the LHS conditional is false, we 1051 // want to jump to the FalseBlock. 1052 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 1053 // The counter tells us how often we evaluate RHS, and all of TrueCount 1054 // can be propagated to that branch. 1055 uint64_t RHSCount = Cnt.getCount(); 1056 1057 ConditionalEvaluation eval(*this); 1058 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount); 1059 EmitBlock(LHSTrue); 1060 1061 // Any temporaries created here are conditional. 1062 Cnt.beginRegion(Builder); 1063 eval.begin(*this); 1064 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount); 1065 eval.end(*this); 1066 1067 return; 1068 } 1069 1070 if (CondBOp->getOpcode() == BO_LOr) { 1071 RegionCounter Cnt = getPGORegionCounter(CondBOp); 1072 1073 // If we have "0 || X", simplify the code. "1 || X" would have constant 1074 // folded if the case was simple enough. 1075 bool ConstantBool = false; 1076 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1077 !ConstantBool) { 1078 // br(0 || X) -> br(X). 1079 Cnt.beginRegion(Builder); 1080 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1081 TrueCount); 1082 } 1083 1084 // If we have "X || 0", simplify the code to use an uncond branch. 1085 // "X || 1" would have been constant folded to 1. 1086 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1087 !ConstantBool) { 1088 // br(X || 0) -> br(X). 1089 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1090 TrueCount); 1091 } 1092 1093 // Emit the LHS as a conditional. If the LHS conditional is true, we 1094 // want to jump to the TrueBlock. 1095 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 1096 // We have the count for entry to the RHS and for the whole expression 1097 // being true, so we can divy up True count between the short circuit and 1098 // the RHS. 1099 uint64_t LHSCount = Cnt.getParentCount() - Cnt.getCount(); 1100 uint64_t RHSCount = TrueCount - LHSCount; 1101 1102 ConditionalEvaluation eval(*this); 1103 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount); 1104 EmitBlock(LHSFalse); 1105 1106 // Any temporaries created here are conditional. 1107 Cnt.beginRegion(Builder); 1108 eval.begin(*this); 1109 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount); 1110 1111 eval.end(*this); 1112 1113 return; 1114 } 1115 } 1116 1117 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 1118 // br(!x, t, f) -> br(x, f, t) 1119 if (CondUOp->getOpcode() == UO_LNot) { 1120 // Negate the count. 1121 uint64_t FalseCount = PGO.getCurrentRegionCount() - TrueCount; 1122 // Negate the condition and swap the destination blocks. 1123 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, 1124 FalseCount); 1125 } 1126 } 1127 1128 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 1129 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 1130 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1131 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1132 1133 RegionCounter Cnt = getPGORegionCounter(CondOp); 1134 ConditionalEvaluation cond(*this); 1135 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, Cnt.getCount()); 1136 1137 // When computing PGO branch weights, we only know the overall count for 1138 // the true block. This code is essentially doing tail duplication of the 1139 // naive code-gen, introducing new edges for which counts are not 1140 // available. Divide the counts proportionally between the LHS and RHS of 1141 // the conditional operator. 1142 uint64_t LHSScaledTrueCount = 0; 1143 if (TrueCount) { 1144 double LHSRatio = Cnt.getCount() / (double) Cnt.getParentCount(); 1145 LHSScaledTrueCount = TrueCount * LHSRatio; 1146 } 1147 1148 cond.begin(*this); 1149 EmitBlock(LHSBlock); 1150 Cnt.beginRegion(Builder); 1151 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, 1152 LHSScaledTrueCount); 1153 cond.end(*this); 1154 1155 cond.begin(*this); 1156 EmitBlock(RHSBlock); 1157 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, 1158 TrueCount - LHSScaledTrueCount); 1159 cond.end(*this); 1160 1161 return; 1162 } 1163 1164 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 1165 // Conditional operator handling can give us a throw expression as a 1166 // condition for a case like: 1167 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 1168 // Fold this to: 1169 // br(c, throw x, br(y, t, f)) 1170 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 1171 return; 1172 } 1173 1174 // Create branch weights based on the number of times we get here and the 1175 // number of times the condition should be true. 1176 uint64_t CurrentCount = std::max(PGO.getCurrentRegionCount(), TrueCount); 1177 llvm::MDNode *Weights = PGO.createBranchWeights(TrueCount, 1178 CurrentCount - TrueCount); 1179 1180 // Emit the code with the fully general case. 1181 llvm::Value *CondV = EvaluateExprAsBool(Cond); 1182 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights); 1183 } 1184 1185 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1186 /// specified stmt yet. 1187 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 1188 CGM.ErrorUnsupported(S, Type); 1189 } 1190 1191 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 1192 /// variable-length array whose elements have a non-zero bit-pattern. 1193 /// 1194 /// \param baseType the inner-most element type of the array 1195 /// \param src - a char* pointing to the bit-pattern for a single 1196 /// base element of the array 1197 /// \param sizeInChars - the total size of the VLA, in chars 1198 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 1199 llvm::Value *dest, llvm::Value *src, 1200 llvm::Value *sizeInChars) { 1201 std::pair<CharUnits,CharUnits> baseSizeAndAlign 1202 = CGF.getContext().getTypeInfoInChars(baseType); 1203 1204 CGBuilderTy &Builder = CGF.Builder; 1205 1206 llvm::Value *baseSizeInChars 1207 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSizeAndAlign.first.getQuantity()); 1208 1209 llvm::Type *i8p = Builder.getInt8PtrTy(); 1210 1211 llvm::Value *begin = Builder.CreateBitCast(dest, i8p, "vla.begin"); 1212 llvm::Value *end = Builder.CreateInBoundsGEP(dest, sizeInChars, "vla.end"); 1213 1214 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 1215 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 1216 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 1217 1218 // Make a loop over the VLA. C99 guarantees that the VLA element 1219 // count must be nonzero. 1220 CGF.EmitBlock(loopBB); 1221 1222 llvm::PHINode *cur = Builder.CreatePHI(i8p, 2, "vla.cur"); 1223 cur->addIncoming(begin, originBB); 1224 1225 // memcpy the individual element bit-pattern. 1226 Builder.CreateMemCpy(cur, src, baseSizeInChars, 1227 baseSizeAndAlign.second.getQuantity(), 1228 /*volatile*/ false); 1229 1230 // Go to the next element. 1231 llvm::Value *next = Builder.CreateConstInBoundsGEP1_32(cur, 1, "vla.next"); 1232 1233 // Leave if that's the end of the VLA. 1234 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 1235 Builder.CreateCondBr(done, contBB, loopBB); 1236 cur->addIncoming(next, loopBB); 1237 1238 CGF.EmitBlock(contBB); 1239 } 1240 1241 void 1242 CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) { 1243 // Ignore empty classes in C++. 1244 if (getLangOpts().CPlusPlus) { 1245 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1246 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 1247 return; 1248 } 1249 } 1250 1251 // Cast the dest ptr to the appropriate i8 pointer type. 1252 unsigned DestAS = 1253 cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace(); 1254 llvm::Type *BP = Builder.getInt8PtrTy(DestAS); 1255 if (DestPtr->getType() != BP) 1256 DestPtr = Builder.CreateBitCast(DestPtr, BP); 1257 1258 // Get size and alignment info for this aggregate. 1259 std::pair<CharUnits, CharUnits> TypeInfo = 1260 getContext().getTypeInfoInChars(Ty); 1261 CharUnits Size = TypeInfo.first; 1262 CharUnits Align = TypeInfo.second; 1263 1264 llvm::Value *SizeVal; 1265 const VariableArrayType *vla; 1266 1267 // Don't bother emitting a zero-byte memset. 1268 if (Size.isZero()) { 1269 // But note that getTypeInfo returns 0 for a VLA. 1270 if (const VariableArrayType *vlaType = 1271 dyn_cast_or_null<VariableArrayType>( 1272 getContext().getAsArrayType(Ty))) { 1273 QualType eltType; 1274 llvm::Value *numElts; 1275 std::tie(numElts, eltType) = getVLASize(vlaType); 1276 1277 SizeVal = numElts; 1278 CharUnits eltSize = getContext().getTypeSizeInChars(eltType); 1279 if (!eltSize.isOne()) 1280 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 1281 vla = vlaType; 1282 } else { 1283 return; 1284 } 1285 } else { 1286 SizeVal = CGM.getSize(Size); 1287 vla = nullptr; 1288 } 1289 1290 // If the type contains a pointer to data member we can't memset it to zero. 1291 // Instead, create a null constant and copy it to the destination. 1292 // TODO: there are other patterns besides zero that we can usefully memset, 1293 // like -1, which happens to be the pattern used by member-pointers. 1294 if (!CGM.getTypes().isZeroInitializable(Ty)) { 1295 // For a VLA, emit a single element, then splat that over the VLA. 1296 if (vla) Ty = getContext().getBaseElementType(vla); 1297 1298 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 1299 1300 llvm::GlobalVariable *NullVariable = 1301 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 1302 /*isConstant=*/true, 1303 llvm::GlobalVariable::PrivateLinkage, 1304 NullConstant, Twine()); 1305 llvm::Value *SrcPtr = 1306 Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()); 1307 1308 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 1309 1310 // Get and call the appropriate llvm.memcpy overload. 1311 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity(), false); 1312 return; 1313 } 1314 1315 // Otherwise, just memset the whole thing to zero. This is legal 1316 // because in LLVM, all default initializers (other than the ones we just 1317 // handled above) are guaranteed to have a bit pattern of all zeros. 1318 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, 1319 Align.getQuantity(), false); 1320 } 1321 1322 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 1323 // Make sure that there is a block for the indirect goto. 1324 if (!IndirectBranch) 1325 GetIndirectGotoBlock(); 1326 1327 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 1328 1329 // Make sure the indirect branch includes all of the address-taken blocks. 1330 IndirectBranch->addDestination(BB); 1331 return llvm::BlockAddress::get(CurFn, BB); 1332 } 1333 1334 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 1335 // If we already made the indirect branch for indirect goto, return its block. 1336 if (IndirectBranch) return IndirectBranch->getParent(); 1337 1338 CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto")); 1339 1340 // Create the PHI node that indirect gotos will add entries to. 1341 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 1342 "indirect.goto.dest"); 1343 1344 // Create the indirect branch instruction. 1345 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 1346 return IndirectBranch->getParent(); 1347 } 1348 1349 /// Computes the length of an array in elements, as well as the base 1350 /// element type and a properly-typed first element pointer. 1351 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 1352 QualType &baseType, 1353 llvm::Value *&addr) { 1354 const ArrayType *arrayType = origArrayType; 1355 1356 // If it's a VLA, we have to load the stored size. Note that 1357 // this is the size of the VLA in bytes, not its size in elements. 1358 llvm::Value *numVLAElements = nullptr; 1359 if (isa<VariableArrayType>(arrayType)) { 1360 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first; 1361 1362 // Walk into all VLAs. This doesn't require changes to addr, 1363 // which has type T* where T is the first non-VLA element type. 1364 do { 1365 QualType elementType = arrayType->getElementType(); 1366 arrayType = getContext().getAsArrayType(elementType); 1367 1368 // If we only have VLA components, 'addr' requires no adjustment. 1369 if (!arrayType) { 1370 baseType = elementType; 1371 return numVLAElements; 1372 } 1373 } while (isa<VariableArrayType>(arrayType)); 1374 1375 // We get out here only if we find a constant array type 1376 // inside the VLA. 1377 } 1378 1379 // We have some number of constant-length arrays, so addr should 1380 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 1381 // down to the first element of addr. 1382 SmallVector<llvm::Value*, 8> gepIndices; 1383 1384 // GEP down to the array type. 1385 llvm::ConstantInt *zero = Builder.getInt32(0); 1386 gepIndices.push_back(zero); 1387 1388 uint64_t countFromCLAs = 1; 1389 QualType eltType; 1390 1391 llvm::ArrayType *llvmArrayType = 1392 dyn_cast<llvm::ArrayType>( 1393 cast<llvm::PointerType>(addr->getType())->getElementType()); 1394 while (llvmArrayType) { 1395 assert(isa<ConstantArrayType>(arrayType)); 1396 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 1397 == llvmArrayType->getNumElements()); 1398 1399 gepIndices.push_back(zero); 1400 countFromCLAs *= llvmArrayType->getNumElements(); 1401 eltType = arrayType->getElementType(); 1402 1403 llvmArrayType = 1404 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 1405 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 1406 assert((!llvmArrayType || arrayType) && 1407 "LLVM and Clang types are out-of-synch"); 1408 } 1409 1410 if (arrayType) { 1411 // From this point onwards, the Clang array type has been emitted 1412 // as some other type (probably a packed struct). Compute the array 1413 // size, and just emit the 'begin' expression as a bitcast. 1414 while (arrayType) { 1415 countFromCLAs *= 1416 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 1417 eltType = arrayType->getElementType(); 1418 arrayType = getContext().getAsArrayType(eltType); 1419 } 1420 1421 unsigned AddressSpace = addr->getType()->getPointerAddressSpace(); 1422 llvm::Type *BaseType = ConvertType(eltType)->getPointerTo(AddressSpace); 1423 addr = Builder.CreateBitCast(addr, BaseType, "array.begin"); 1424 } else { 1425 // Create the actual GEP. 1426 addr = Builder.CreateInBoundsGEP(addr, gepIndices, "array.begin"); 1427 } 1428 1429 baseType = eltType; 1430 1431 llvm::Value *numElements 1432 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 1433 1434 // If we had any VLA dimensions, factor them in. 1435 if (numVLAElements) 1436 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 1437 1438 return numElements; 1439 } 1440 1441 std::pair<llvm::Value*, QualType> 1442 CodeGenFunction::getVLASize(QualType type) { 1443 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1444 assert(vla && "type was not a variable array type!"); 1445 return getVLASize(vla); 1446 } 1447 1448 std::pair<llvm::Value*, QualType> 1449 CodeGenFunction::getVLASize(const VariableArrayType *type) { 1450 // The number of elements so far; always size_t. 1451 llvm::Value *numElements = nullptr; 1452 1453 QualType elementType; 1454 do { 1455 elementType = type->getElementType(); 1456 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 1457 assert(vlaSize && "no size for VLA!"); 1458 assert(vlaSize->getType() == SizeTy); 1459 1460 if (!numElements) { 1461 numElements = vlaSize; 1462 } else { 1463 // It's undefined behavior if this wraps around, so mark it that way. 1464 // FIXME: Teach -fsanitize=undefined to trap this. 1465 numElements = Builder.CreateNUWMul(numElements, vlaSize); 1466 } 1467 } while ((type = getContext().getAsVariableArrayType(elementType))); 1468 1469 return std::pair<llvm::Value*,QualType>(numElements, elementType); 1470 } 1471 1472 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 1473 assert(type->isVariablyModifiedType() && 1474 "Must pass variably modified type to EmitVLASizes!"); 1475 1476 EnsureInsertPoint(); 1477 1478 // We're going to walk down into the type and look for VLA 1479 // expressions. 1480 do { 1481 assert(type->isVariablyModifiedType()); 1482 1483 const Type *ty = type.getTypePtr(); 1484 switch (ty->getTypeClass()) { 1485 1486 #define TYPE(Class, Base) 1487 #define ABSTRACT_TYPE(Class, Base) 1488 #define NON_CANONICAL_TYPE(Class, Base) 1489 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 1490 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 1491 #include "clang/AST/TypeNodes.def" 1492 llvm_unreachable("unexpected dependent type!"); 1493 1494 // These types are never variably-modified. 1495 case Type::Builtin: 1496 case Type::Complex: 1497 case Type::Vector: 1498 case Type::ExtVector: 1499 case Type::Record: 1500 case Type::Enum: 1501 case Type::Elaborated: 1502 case Type::TemplateSpecialization: 1503 case Type::ObjCObject: 1504 case Type::ObjCInterface: 1505 case Type::ObjCObjectPointer: 1506 llvm_unreachable("type class is never variably-modified!"); 1507 1508 case Type::Adjusted: 1509 type = cast<AdjustedType>(ty)->getAdjustedType(); 1510 break; 1511 1512 case Type::Decayed: 1513 type = cast<DecayedType>(ty)->getPointeeType(); 1514 break; 1515 1516 case Type::Pointer: 1517 type = cast<PointerType>(ty)->getPointeeType(); 1518 break; 1519 1520 case Type::BlockPointer: 1521 type = cast<BlockPointerType>(ty)->getPointeeType(); 1522 break; 1523 1524 case Type::LValueReference: 1525 case Type::RValueReference: 1526 type = cast<ReferenceType>(ty)->getPointeeType(); 1527 break; 1528 1529 case Type::MemberPointer: 1530 type = cast<MemberPointerType>(ty)->getPointeeType(); 1531 break; 1532 1533 case Type::ConstantArray: 1534 case Type::IncompleteArray: 1535 // Losing element qualification here is fine. 1536 type = cast<ArrayType>(ty)->getElementType(); 1537 break; 1538 1539 case Type::VariableArray: { 1540 // Losing element qualification here is fine. 1541 const VariableArrayType *vat = cast<VariableArrayType>(ty); 1542 1543 // Unknown size indication requires no size computation. 1544 // Otherwise, evaluate and record it. 1545 if (const Expr *size = vat->getSizeExpr()) { 1546 // It's possible that we might have emitted this already, 1547 // e.g. with a typedef and a pointer to it. 1548 llvm::Value *&entry = VLASizeMap[size]; 1549 if (!entry) { 1550 llvm::Value *Size = EmitScalarExpr(size); 1551 1552 // C11 6.7.6.2p5: 1553 // If the size is an expression that is not an integer constant 1554 // expression [...] each time it is evaluated it shall have a value 1555 // greater than zero. 1556 if (SanOpts.has(SanitizerKind::VLABound) && 1557 size->getType()->isSignedIntegerType()) { 1558 SanitizerScope SanScope(this); 1559 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); 1560 llvm::Constant *StaticArgs[] = { 1561 EmitCheckSourceLocation(size->getLocStart()), 1562 EmitCheckTypeDescriptor(size->getType()) 1563 }; 1564 EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero), 1565 SanitizerKind::VLABound), 1566 "vla_bound_not_positive", StaticArgs, Size); 1567 } 1568 1569 // Always zexting here would be wrong if it weren't 1570 // undefined behavior to have a negative bound. 1571 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); 1572 } 1573 } 1574 type = vat->getElementType(); 1575 break; 1576 } 1577 1578 case Type::FunctionProto: 1579 case Type::FunctionNoProto: 1580 type = cast<FunctionType>(ty)->getReturnType(); 1581 break; 1582 1583 case Type::Paren: 1584 case Type::TypeOf: 1585 case Type::UnaryTransform: 1586 case Type::Attributed: 1587 case Type::SubstTemplateTypeParm: 1588 case Type::PackExpansion: 1589 // Keep walking after single level desugaring. 1590 type = type.getSingleStepDesugaredType(getContext()); 1591 break; 1592 1593 case Type::Typedef: 1594 case Type::Decltype: 1595 case Type::Auto: 1596 // Stop walking: nothing to do. 1597 return; 1598 1599 case Type::TypeOfExpr: 1600 // Stop walking: emit typeof expression. 1601 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 1602 return; 1603 1604 case Type::Atomic: 1605 type = cast<AtomicType>(ty)->getValueType(); 1606 break; 1607 } 1608 } while (type->isVariablyModifiedType()); 1609 } 1610 1611 llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) { 1612 if (getContext().getBuiltinVaListType()->isArrayType()) 1613 return EmitScalarExpr(E); 1614 return EmitLValue(E).getAddress(); 1615 } 1616 1617 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 1618 llvm::Constant *Init) { 1619 assert (Init && "Invalid DeclRefExpr initializer!"); 1620 if (CGDebugInfo *Dbg = getDebugInfo()) 1621 if (CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 1622 Dbg->EmitGlobalVariable(E->getDecl(), Init); 1623 } 1624 1625 CodeGenFunction::PeepholeProtection 1626 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 1627 // At the moment, the only aggressive peephole we do in IR gen 1628 // is trunc(zext) folding, but if we add more, we can easily 1629 // extend this protection. 1630 1631 if (!rvalue.isScalar()) return PeepholeProtection(); 1632 llvm::Value *value = rvalue.getScalarVal(); 1633 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 1634 1635 // Just make an extra bitcast. 1636 assert(HaveInsertPoint()); 1637 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 1638 Builder.GetInsertBlock()); 1639 1640 PeepholeProtection protection; 1641 protection.Inst = inst; 1642 return protection; 1643 } 1644 1645 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 1646 if (!protection.Inst) return; 1647 1648 // In theory, we could try to duplicate the peepholes now, but whatever. 1649 protection.Inst->eraseFromParent(); 1650 } 1651 1652 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn, 1653 llvm::Value *AnnotatedVal, 1654 StringRef AnnotationStr, 1655 SourceLocation Location) { 1656 llvm::Value *Args[4] = { 1657 AnnotatedVal, 1658 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 1659 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 1660 CGM.EmitAnnotationLineNo(Location) 1661 }; 1662 return Builder.CreateCall(AnnotationFn, Args); 1663 } 1664 1665 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 1666 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1667 // FIXME We create a new bitcast for every annotation because that's what 1668 // llvm-gcc was doing. 1669 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1670 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 1671 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 1672 I->getAnnotation(), D->getLocation()); 1673 } 1674 1675 llvm::Value *CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 1676 llvm::Value *V) { 1677 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1678 llvm::Type *VTy = V->getType(); 1679 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 1680 CGM.Int8PtrTy); 1681 1682 for (const auto *I : D->specific_attrs<AnnotateAttr>()) { 1683 // FIXME Always emit the cast inst so we can differentiate between 1684 // annotation on the first field of a struct and annotation on the struct 1685 // itself. 1686 if (VTy != CGM.Int8PtrTy) 1687 V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy)); 1688 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation()); 1689 V = Builder.CreateBitCast(V, VTy); 1690 } 1691 1692 return V; 1693 } 1694 1695 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 1696 1697 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF) 1698 : CGF(CGF) { 1699 assert(!CGF->IsSanitizerScope); 1700 CGF->IsSanitizerScope = true; 1701 } 1702 1703 CodeGenFunction::SanitizerScope::~SanitizerScope() { 1704 CGF->IsSanitizerScope = false; 1705 } 1706 1707 void CodeGenFunction::InsertHelper(llvm::Instruction *I, 1708 const llvm::Twine &Name, 1709 llvm::BasicBlock *BB, 1710 llvm::BasicBlock::iterator InsertPt) const { 1711 LoopStack.InsertHelper(I); 1712 if (IsSanitizerScope) 1713 CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I); 1714 } 1715 1716 template <bool PreserveNames> 1717 void CGBuilderInserter<PreserveNames>::InsertHelper( 1718 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, 1719 llvm::BasicBlock::iterator InsertPt) const { 1720 llvm::IRBuilderDefaultInserter<PreserveNames>::InsertHelper(I, Name, BB, 1721 InsertPt); 1722 if (CGF) 1723 CGF->InsertHelper(I, Name, BB, InsertPt); 1724 } 1725 1726 #ifdef NDEBUG 1727 #define PreserveNames false 1728 #else 1729 #define PreserveNames true 1730 #endif 1731 template void CGBuilderInserter<PreserveNames>::InsertHelper( 1732 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, 1733 llvm::BasicBlock::iterator InsertPt) const; 1734 #undef PreserveNames 1735