xref: /illumos-gate/usr/src/lib/libctf/common/ctf_dwarf.c (revision 3dd4cd56e7843e01a8ab147a0d102cd4f6d732c1)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 /*
26  * Copyright 2012 Jason King.  All rights reserved.
27  * Use is subject to license terms.
28  */
29 
30 /*
31  * Copyright 2020 Joyent, Inc.
32  * Copyright 2020 Robert Mustacchi
33  * Copyright 2020 OmniOS Community Edition (OmniOSce) Association.
34  */
35 
36 /*
37  * CTF DWARF conversion theory.
38  *
39  * DWARF data contains a series of compilation units. Each compilation unit
40  * generally refers to an object file or what once was, in the case of linked
41  * binaries and shared objects. Each compilation unit has a series of what DWARF
42  * calls a DIE (Debugging Information Entry). The set of entries that we care
43  * about have type information stored in a series of attributes. Each DIE also
44  * has a tag that identifies the kind of attributes that it has.
45  *
46  * A given DIE may itself have children. For example, a DIE that represents a
47  * structure has children which represent members. Whenever we encounter a DIE
48  * that has children or other values or types associated with it, we recursively
49  * process those children first so that way we can then refer to the generated
50  * CTF type id while processing its parent. This reduces the amount of unknowns
51  * and fixups that we need. It also ensures that we don't accidentally add types
52  * that an overzealous compiler might add to the DWARF data but aren't used by
53  * anything in the system.
54  *
55  * Once we do a conversion, we store a mapping in an AVL tree that goes from the
56  * DWARF's die offset, which is relative to the given compilation unit, to a
57  * ctf_id_t.
58  *
59  * Unfortunately, some compilers actually will emit duplicate entries for a
60  * given type that look similar, but aren't quite. To that end, we go through
61  * and do a variant on a merge once we're done processing a single compilation
62  * unit which deduplicates all of the types that are in the unit.
63  *
64  * Finally, if we encounter an object that has multiple compilation units, then
65  * we'll convert all of the compilation units separately and then do a merge, so
66  * that way we can result in one single ctf_file_t that represents everything
67  * for the object.
68  *
69  * Conversion Steps
70  * ----------------
71  *
72  * Because a given object we've been given to convert may have multiple
73  * compilation units, we break the work into two halves. The first half
74  * processes each compilation unit (potentially in parallel) and then the second
75  * half optionally merges all of the dies in the first half. First, we'll cover
76  * what's involved in converting a single ctf_cu_t's dwarf to CTF. This covers
77  * the work done in ctf_dwarf_convert_one().
78  *
79  * An individual ctf_cu_t, which represents a compilation unit, is converted to
80  * CTF in a series of multiple passes.
81  *
82  * Pass 1: During the first pass we walk all of the top-level dies and if we
83  * find a function, variable, struct, union, enum or typedef, we recursively
84  * transform all of its types. We don't recurse or process everything, because
85  * we don't want to add some of the types that compilers may add which are
86  * effectively unused.
87  *
88  * During pass 1, if we encounter any structures or unions we mark them for
89  * fixing up later. This is necessary because we may not be able to determine
90  * the full size of a structure at the beginning of time. This will happen if
91  * the DWARF attribute DW_AT_byte_size is not present for a member. Because of
92  * this possibility we defer adding members to structures or even converting
93  * them during pass 1 and save that for pass 2. Adding all of the base
94  * structures without any of their members helps deal with any circular
95  * dependencies that we might encounter.
96  *
97  * Pass 2: This pass is used to do the first half of fixing up structures and
98  * unions. Rather than walk the entire type space again, we actually walk the
99  * list of structures and unions that we marked for later fixing up. Here, we
100  * iterate over every structure and add members to the underlying ctf_file_t,
101  * but not to the structs themselves. One might wonder why we don't, and the
102  * main reason is that libctf requires a ctf_update() be done before adding the
103  * members to structures or unions.
104  *
105  * Pass 3: This pass is used to do the second half of fixing up structures and
106  * unions. During this part we always go through and add members to structures
107  * and unions that we added to the container in the previous pass. In addition,
108  * we set the structure and union's actual size, which may have additional
109  * padding added by the compiler, it isn't simply the last offset. DWARF always
110  * guarantees an attribute exists for this. Importantly no ctf_id_t's change
111  * during pass 2.
112  *
113  * Pass 4: The next phase is to add CTF entries for all of the symbols and
114  * variables that are present in this die. During pass 1 we added entries to a
115  * map for each variable and function. During this pass, we iterate over the
116  * symbol table and when we encounter a symbol that we have in our lists of
117  * translated information which matches, we then add it to the ctf_file_t.
118  *
119  * Pass 5: Here we go and look for any weak symbols and functions and see if
120  * they match anything that we recognize. If so, then we add type information
121  * for them at this point based on the matching type.
122  *
123  * Pass 6: This pass is actually a variant on a merge. The traditional merge
124  * process expects there to be no duplicate types. As such, at the end of
125  * conversion, we do a dedup on all of the types in the system. The
126  * deduplication process is described in lib/libctf/common/ctf_merge.c.
127  *
128  * Once pass 6 is done, we've finished processing the individual compilation
129  * unit.
130  *
131  * The following steps reflect the general process of doing a conversion.
132  *
133  * 1) Walk the dwarf section and determine the number of compilation units
134  * 2) Create a ctf_cu_t for each compilation unit
135  * 3) Add all ctf_cu_t's to a workq
136  * 4) Have the workq process each die with ctf_dwarf_convert_one. This itself
137  *    is comprised of several steps, which were already enumerated.
138  * 5) If we have multiple cu's, we do a ctf merge of all the dies. The mechanics
139  *    of the merge are discussed in lib/libctf/common/ctf_merge.c.
140  * 6) Free everything up and return a ctf_file_t to the user. If we only had a
141  *    single compilation unit, then we give that to the user. Otherwise, we
142  *    return the merged ctf_file_t.
143  *
144  * Threading
145  * ---------
146  *
147  * The process has been designed to be amenable to threading. Each compilation
148  * unit has its own type stream, therefore the logical place to divide and
149  * conquer is at the compilation unit. Each ctf_cu_t has been built to be able
150  * to be processed independently of the others. It has its own libdwarf handle,
151  * as a given libdwarf handle may only be used by a single thread at a time.
152  * This allows the various ctf_cu_t's to be processed in parallel by different
153  * threads.
154  *
155  * All of the ctf_cu_t's are loaded into a workq which allows for a number of
156  * threads to be specified and used as a thread pool to process all of the
157  * queued work. We set the number of threads to use in the workq equal to the
158  * number of threads that the user has specified.
159  *
160  * After all of the compilation units have been drained, we use the same number
161  * of threads when performing a merge of multiple compilation units, if they
162  * exist.
163  *
164  * While all of these different parts do support and allow for multiple threads,
165  * it's important that when only a single thread is specified, that it be the
166  * calling thread. This allows the conversion routines to be used in a context
167  * that doesn't allow additional threads, such as rtld.
168  *
169  * Common DWARF Mechanics and Notes
170  * --------------------------------
171  *
172  * At this time, we really only support DWARFv2, though support for DWARFv4 is
173  * mostly there. There is no intent to support DWARFv3.
174  *
175  * Generally types for something are stored in the DW_AT_type attribute. For
176  * example, a function's return type will be stored in the local DW_AT_type
177  * attribute while the arguments will be in child DIEs. There are also various
178  * times when we don't have any DW_AT_type. In that case, the lack of a type
179  * implies, at least for C, that its C type is void. Because DWARF doesn't emit
180  * one, we have a synthetic void type that we create and manipulate instead and
181  * pass it off to consumers on an as-needed basis. If nothing has a void type,
182  * it will not be emitted.
183  *
184  * Architecture Specific Parts
185  * ---------------------------
186  *
187  * The CTF tooling encodes various information about the various architectures
188  * in the system. Importantly, the tool assumes that every architecture has a
189  * data model where long and pointer are the same size. This is currently the
190  * case, as the two data models illumos supports are ILP32 and LP64.
191  *
192  * In addition, we encode the mapping of various floating point sizes to various
193  * types for each architecture. If a new architecture is being added, it should
194  * be added to the list. The general design of the ctf conversion tools is to be
195  * architecture independent. eg. any of the tools here should be able to convert
196  * any architecture's DWARF into ctf; however, this has not been rigorously
197  * tested and more importantly, the ctf routines don't currently write out the
198  * data in an endian-aware form, they only use that of the currently running
199  * library.
200  */
201 
202 #include <libctf_impl.h>
203 #include <sys/avl.h>
204 #include <sys/debug.h>
205 #include <gelf.h>
206 #include <libdwarf.h>
207 #include <dwarf.h>
208 #include <libgen.h>
209 #include <workq.h>
210 #include <thread.h>
211 #include <macros.h>
212 #include <errno.h>
213 
214 #define	DWARF_VERSION_TWO	2
215 #define	DWARF_VERSION_FOUR	4
216 #define	DWARF_VARARGS_NAME	"..."
217 
218 /*
219  * Dwarf may refer recursively to other types that we've already processed. To
220  * see if we've already converted them, we look them up in an AVL tree that's
221  * sorted by the DWARF id.
222  */
223 typedef struct ctf_dwmap {
224 	avl_node_t	cdm_avl;
225 	Dwarf_Off	cdm_off;
226 	Dwarf_Die	cdm_die;
227 	ctf_id_t	cdm_id;
228 	boolean_t	cdm_fix;
229 } ctf_dwmap_t;
230 
231 typedef struct ctf_dwvar {
232 	ctf_list_t	cdv_list;
233 	char		*cdv_name;
234 	ctf_id_t	cdv_type;
235 	boolean_t	cdv_global;
236 } ctf_dwvar_t;
237 
238 typedef struct ctf_dwfunc {
239 	ctf_list_t	cdf_list;
240 	char		*cdf_name;
241 	ctf_funcinfo_t	cdf_fip;
242 	ctf_id_t	*cdf_argv;
243 	boolean_t	cdf_global;
244 } ctf_dwfunc_t;
245 
246 typedef struct ctf_dwbitf {
247 	ctf_list_t	cdb_list;
248 	ctf_id_t	cdb_base;
249 	uint_t		cdb_nbits;
250 	ctf_id_t	cdb_id;
251 } ctf_dwbitf_t;
252 
253 /*
254  * The ctf_cu_t represents a single top-level DWARF die unit. While generally,
255  * the typical object file has only a single die, if we're asked to convert
256  * something that's been linked from multiple sources, multiple dies will exist.
257  */
258 typedef struct ctf_die {
259 	Elf		*cu_elf;	/* shared libelf handle */
260 	int		cu_fd;		/* shared file descriptor */
261 	char		*cu_name;	/* basename of the DIE */
262 	ctf_merge_t	*cu_cmh;	/* merge handle */
263 	ctf_list_t	cu_vars;	/* List of variables */
264 	ctf_list_t	cu_funcs;	/* List of functions */
265 	ctf_list_t	cu_bitfields;	/* Bit field members */
266 	Dwarf_Debug	cu_dwarf;	/* libdwarf handle */
267 	mutex_t		*cu_dwlock;	/* libdwarf lock */
268 	Dwarf_Die	cu_cu;		/* libdwarf compilation unit */
269 	Dwarf_Off	cu_cuoff;	/* cu's offset */
270 	Dwarf_Off	cu_maxoff;	/* maximum offset */
271 	Dwarf_Half	cu_vers;	/* Dwarf Version */
272 	Dwarf_Half	cu_addrsz;	/* Dwarf Address Size */
273 	ctf_file_t	*cu_ctfp;	/* output CTF file */
274 	avl_tree_t	cu_map;		/* map die offsets to CTF types */
275 	char		*cu_errbuf;	/* error message buffer */
276 	size_t		cu_errlen;	/* error message buffer length */
277 	ctf_convert_t	*cu_handle;	/* ctf convert handle */
278 	size_t		cu_ptrsz;	/* object's pointer size */
279 	boolean_t	cu_bigend;	/* is it big endian */
280 	boolean_t	cu_doweaks;	/* should we convert weak symbols? */
281 	uint_t		cu_mach;	/* machine type */
282 	ctf_id_t	cu_voidtid;	/* void pointer */
283 	ctf_id_t	cu_longtid;	/* id for a 'long' */
284 } ctf_cu_t;
285 
286 static int ctf_dwarf_init_die(ctf_cu_t *);
287 static int ctf_dwarf_offset(ctf_cu_t *, Dwarf_Die, Dwarf_Off *);
288 static int ctf_dwarf_convert_die(ctf_cu_t *, Dwarf_Die);
289 static int ctf_dwarf_convert_type(ctf_cu_t *, Dwarf_Die, ctf_id_t *, int);
290 
291 static int ctf_dwarf_function_count(ctf_cu_t *, Dwarf_Die, ctf_funcinfo_t *,
292     boolean_t);
293 static int ctf_dwarf_convert_fargs(ctf_cu_t *, Dwarf_Die, ctf_funcinfo_t *,
294     ctf_id_t *);
295 
296 #define	DWARF_LOCK(cup) \
297 	if ((cup)->cu_dwlock != NULL) \
298 		mutex_enter((cup)->cu_dwlock)
299 #define	DWARF_UNLOCK(cup) \
300 	if ((cup)->cu_dwlock != NULL) \
301 		mutex_exit((cup)->cu_dwlock)
302 
303 /*
304  * This is a generic way to set a CTF Conversion backend error depending on what
305  * we were doing. Unless it was one of a specific set of errors that don't
306  * indicate a programming / translation bug, eg. ENOMEM, then we transform it
307  * into a CTF backend error and fill in the error buffer.
308  */
309 static int
310 ctf_dwarf_error(ctf_cu_t *cup, ctf_file_t *cfp, int err, const char *fmt, ...)
311 {
312 	va_list ap;
313 	int ret;
314 	size_t off = 0;
315 	ssize_t rem = cup->cu_errlen;
316 	if (cfp != NULL)
317 		err = ctf_errno(cfp);
318 
319 	if (err == ENOMEM)
320 		return (err);
321 
322 	ret = snprintf(cup->cu_errbuf, rem, "die %s: ",
323 	    cup->cu_name != NULL ? cup->cu_name : "NULL");
324 	if (ret < 0)
325 		goto err;
326 	off += ret;
327 	rem = MAX(rem - ret, 0);
328 
329 	va_start(ap, fmt);
330 	ret = vsnprintf(cup->cu_errbuf + off, rem, fmt, ap);
331 	va_end(ap);
332 	if (ret < 0)
333 		goto err;
334 
335 	off += ret;
336 	rem = MAX(rem - ret, 0);
337 	if (fmt[strlen(fmt) - 1] != '\n') {
338 		(void) snprintf(cup->cu_errbuf + off, rem,
339 		    ": %s\n", ctf_errmsg(err));
340 	}
341 	va_end(ap);
342 	return (ECTF_CONVBKERR);
343 
344 err:
345 	cup->cu_errbuf[0] = '\0';
346 	return (ECTF_CONVBKERR);
347 }
348 
349 /*
350  * DWARF often opts to put no explicit type to describe a void type. eg. if we
351  * have a reference type whose DW_AT_type member doesn't exist, then we should
352  * instead assume it points to void. Because this isn't represented, we
353  * instead cause it to come into existence.
354  */
355 static ctf_id_t
356 ctf_dwarf_void(ctf_cu_t *cup)
357 {
358 	if (cup->cu_voidtid == CTF_ERR) {
359 		ctf_encoding_t enc = { CTF_INT_SIGNED, 0, 0 };
360 		cup->cu_voidtid = ctf_add_integer(cup->cu_ctfp, CTF_ADD_ROOT,
361 		    "void", &enc);
362 		if (cup->cu_voidtid == CTF_ERR) {
363 			(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
364 			    "failed to create void type: %s\n",
365 			    ctf_errmsg(ctf_errno(cup->cu_ctfp)));
366 		}
367 	}
368 
369 	return (cup->cu_voidtid);
370 }
371 
372 /*
373  * There are many different forms that an array index may take. However, we just
374  * always force it to be of a type long no matter what. Therefore we use this to
375  * have a single instance of long across everything.
376  */
377 static ctf_id_t
378 ctf_dwarf_long(ctf_cu_t *cup)
379 {
380 	if (cup->cu_longtid == CTF_ERR) {
381 		ctf_encoding_t enc;
382 
383 		enc.cte_format = CTF_INT_SIGNED;
384 		enc.cte_offset = 0;
385 		/* All illumos systems are LP */
386 		enc.cte_bits = cup->cu_ptrsz * 8;
387 		cup->cu_longtid = ctf_add_integer(cup->cu_ctfp, CTF_ADD_NONROOT,
388 		    "long", &enc);
389 		if (cup->cu_longtid == CTF_ERR) {
390 			(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
391 			    "failed to create long type: %s\n",
392 			    ctf_errmsg(ctf_errno(cup->cu_ctfp)));
393 		}
394 
395 	}
396 
397 	return (cup->cu_longtid);
398 }
399 
400 static int
401 ctf_dwmap_comp(const void *a, const void *b)
402 {
403 	const ctf_dwmap_t *ca = a;
404 	const ctf_dwmap_t *cb = b;
405 
406 	if (ca->cdm_off > cb->cdm_off)
407 		return (1);
408 	if (ca->cdm_off < cb->cdm_off)
409 		return (-1);
410 	return (0);
411 }
412 
413 static int
414 ctf_dwmap_add(ctf_cu_t *cup, ctf_id_t id, Dwarf_Die die, boolean_t fix)
415 {
416 	int ret;
417 	avl_index_t index;
418 	ctf_dwmap_t *dwmap;
419 	Dwarf_Off off;
420 
421 	VERIFY(id > 0 && id < CTF_MAX_TYPE);
422 
423 	if ((ret = ctf_dwarf_offset(cup, die, &off)) != 0)
424 		return (ret);
425 
426 	if ((dwmap = ctf_alloc(sizeof (ctf_dwmap_t))) == NULL)
427 		return (ENOMEM);
428 
429 	dwmap->cdm_die = die;
430 	dwmap->cdm_off = off;
431 	dwmap->cdm_id = id;
432 	dwmap->cdm_fix = fix;
433 
434 	ctf_dprintf("dwmap: %p %" DW_PR_DUx "->%d\n", dwmap, off, id);
435 	VERIFY(avl_find(&cup->cu_map, dwmap, &index) == NULL);
436 	avl_insert(&cup->cu_map, dwmap, index);
437 	return (0);
438 }
439 
440 static int
441 ctf_dwarf_attribute(ctf_cu_t *cup, Dwarf_Die die, Dwarf_Half name,
442     Dwarf_Attribute *attrp)
443 {
444 	int ret;
445 	Dwarf_Error derr;
446 
447 	DWARF_LOCK(cup);
448 	ret = dwarf_attr(die, name, attrp, &derr);
449 	DWARF_UNLOCK(cup);
450 	if (ret == DW_DLV_OK)
451 		return (0);
452 	if (ret == DW_DLV_NO_ENTRY) {
453 		*attrp = NULL;
454 		return (ENOENT);
455 	}
456 	(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
457 	    "failed to get attribute for type: %s\n",
458 	    dwarf_errmsg(derr));
459 	return (ECTF_CONVBKERR);
460 }
461 
462 static void
463 ctf_dwarf_dealloc(ctf_cu_t *cup, Dwarf_Ptr ptr, Dwarf_Unsigned type)
464 {
465 	DWARF_LOCK(cup);
466 	dwarf_dealloc(cup->cu_dwarf, ptr, type);
467 	DWARF_UNLOCK(cup);
468 }
469 
470 static int
471 ctf_dwarf_ref(ctf_cu_t *cup, Dwarf_Die die, Dwarf_Half name, Dwarf_Off *refp)
472 {
473 	int ret;
474 	Dwarf_Attribute attr;
475 	Dwarf_Error derr;
476 
477 	if ((ret = ctf_dwarf_attribute(cup, die, name, &attr)) != 0)
478 		return (ret);
479 
480 	DWARF_LOCK(cup);
481 	ret = dwarf_formref(attr, refp, &derr);
482 	DWARF_UNLOCK(cup);
483 	if (ret == DW_DLV_OK) {
484 		ctf_dwarf_dealloc(cup, attr, DW_DLA_ATTR);
485 		return (0);
486 	}
487 
488 	(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
489 	    "failed to get attribute descriptor offset: %s\n",
490 	    dwarf_errmsg(derr));
491 	return (ECTF_CONVBKERR);
492 }
493 
494 static int
495 ctf_dwarf_refdie(ctf_cu_t *cup, Dwarf_Die die, Dwarf_Half name,
496     Dwarf_Die *diep)
497 {
498 	int ret;
499 	Dwarf_Off off;
500 	Dwarf_Error derr;
501 
502 	if ((ret = ctf_dwarf_ref(cup, die, name, &off)) != 0)
503 		return (ret);
504 
505 	off += cup->cu_cuoff;
506 	DWARF_LOCK(cup);
507 	ret = dwarf_offdie(cup->cu_dwarf, off, diep, &derr);
508 	DWARF_UNLOCK(cup);
509 	if (ret != DW_DLV_OK) {
510 		(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
511 		    "failed to get die from offset %" DW_PR_DUu ": %s\n",
512 		    off, dwarf_errmsg(derr));
513 		return (ECTF_CONVBKERR);
514 	}
515 
516 	return (0);
517 }
518 
519 static int
520 ctf_dwarf_signed(ctf_cu_t *cup, Dwarf_Die die, Dwarf_Half name,
521     Dwarf_Signed *valp)
522 {
523 	int ret;
524 	Dwarf_Attribute attr;
525 	Dwarf_Error derr;
526 
527 	if ((ret = ctf_dwarf_attribute(cup, die, name, &attr)) != 0)
528 		return (ret);
529 
530 	DWARF_LOCK(cup);
531 	ret = dwarf_formsdata(attr, valp, &derr);
532 	DWARF_UNLOCK(cup);
533 	if (ret == DW_DLV_OK) {
534 		ctf_dwarf_dealloc(cup, attr, DW_DLA_ATTR);
535 		return (0);
536 	}
537 
538 	(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
539 	    "failed to get signed attribute for type: %s\n",
540 	    dwarf_errmsg(derr));
541 	return (ECTF_CONVBKERR);
542 }
543 
544 static int
545 ctf_dwarf_unsigned(ctf_cu_t *cup, Dwarf_Die die, Dwarf_Half name,
546     Dwarf_Unsigned *valp)
547 {
548 	int ret;
549 	Dwarf_Attribute attr;
550 	Dwarf_Error derr;
551 
552 	if ((ret = ctf_dwarf_attribute(cup, die, name, &attr)) != 0)
553 		return (ret);
554 
555 	DWARF_LOCK(cup);
556 	ret = dwarf_formudata(attr, valp, &derr);
557 	DWARF_UNLOCK(cup);
558 	if (ret == DW_DLV_OK) {
559 		ctf_dwarf_dealloc(cup, attr, DW_DLA_ATTR);
560 		return (0);
561 	}
562 
563 	(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
564 	    "failed to get unsigned attribute for type: %s\n",
565 	    dwarf_errmsg(derr));
566 	return (ECTF_CONVBKERR);
567 }
568 
569 static int
570 ctf_dwarf_boolean(ctf_cu_t *cup, Dwarf_Die die, Dwarf_Half name,
571     Dwarf_Bool *val)
572 {
573 	int ret;
574 	Dwarf_Attribute attr;
575 	Dwarf_Error derr;
576 
577 	if ((ret = ctf_dwarf_attribute(cup, die, name, &attr)) != 0)
578 		return (ret);
579 
580 	DWARF_LOCK(cup);
581 	ret = dwarf_formflag(attr, val, &derr);
582 	DWARF_UNLOCK(cup);
583 	if (ret == DW_DLV_OK) {
584 		ctf_dwarf_dealloc(cup, attr, DW_DLA_ATTR);
585 		return (0);
586 	}
587 
588 	(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
589 	    "failed to get boolean attribute for type: %s\n",
590 	    dwarf_errmsg(derr));
591 
592 	return (ECTF_CONVBKERR);
593 }
594 
595 static int
596 ctf_dwarf_string(ctf_cu_t *cup, Dwarf_Die die, Dwarf_Half name, char **strp)
597 {
598 	int ret;
599 	char *s;
600 	Dwarf_Attribute attr;
601 	Dwarf_Error derr;
602 
603 	*strp = NULL;
604 	if ((ret = ctf_dwarf_attribute(cup, die, name, &attr)) != 0)
605 		return (ret);
606 
607 	DWARF_LOCK(cup);
608 	ret = dwarf_formstring(attr, &s, &derr);
609 	DWARF_UNLOCK(cup);
610 	if (ret == DW_DLV_OK) {
611 		if ((*strp = ctf_strdup(s)) == NULL)
612 			ret = ENOMEM;
613 		else
614 			ret = 0;
615 		ctf_dwarf_dealloc(cup, attr, DW_DLA_ATTR);
616 		return (ret);
617 	}
618 
619 	(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
620 	    "failed to get string attribute for type: %s\n",
621 	    dwarf_errmsg(derr));
622 	return (ECTF_CONVBKERR);
623 }
624 
625 /*
626  * The encoding of a DW_AT_data_member_location has changed between different
627  * revisions of the specification. It may be a general udata form or it may be
628  * location data information. In DWARF 2, it is only the latter. In later
629  * revisions of the spec, it may be either. To determine the form, we ask the
630  * class, which will be of type CONSTANT.
631  */
632 static int
633 ctf_dwarf_member_location(ctf_cu_t *cup, Dwarf_Die die, Dwarf_Unsigned *valp)
634 {
635 	int ret;
636 	Dwarf_Error derr;
637 	Dwarf_Attribute attr;
638 	Dwarf_Locdesc *loc;
639 	Dwarf_Signed locnum;
640 	Dwarf_Half form;
641 	enum Dwarf_Form_Class class;
642 
643 	if ((ret = ctf_dwarf_attribute(cup, die, DW_AT_data_member_location,
644 	    &attr)) != 0) {
645 		return (ret);
646 	}
647 
648 	DWARF_LOCK(cup);
649 	ret = dwarf_whatform(attr, &form, &derr);
650 	DWARF_UNLOCK(cup);
651 	if (ret != DW_DLV_OK) {
652 		(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
653 		    "failed to get dwarf attribute for for member "
654 		    "location: %s\n",
655 		    dwarf_errmsg(derr));
656 		ctf_dwarf_dealloc(cup, attr, DW_DLA_ATTR);
657 		return (ECTF_CONVBKERR);
658 	}
659 
660 	DWARF_LOCK(cup);
661 	class = dwarf_get_form_class(cup->cu_vers, DW_AT_data_member_location,
662 	    cup->cu_addrsz, form);
663 	if (class == DW_FORM_CLASS_CONSTANT) {
664 		Dwarf_Signed sign;
665 
666 		/*
667 		 * We have a constant. We need to try to get both this as signed
668 		 * and unsigned data, as unfortunately, DWARF doesn't define the
669 		 * sign. Which is a joy. We try unsigned first. If neither
670 		 * match, fall through to the normal path.
671 		 */
672 		if (dwarf_formudata(attr, valp, &derr) == DW_DLV_OK) {
673 			DWARF_UNLOCK(cup);
674 			ctf_dwarf_dealloc(cup, attr, DW_DLA_ATTR);
675 			return (0);
676 		}
677 
678 		if (dwarf_formsdata(attr, &sign, &derr) == DW_DLV_OK) {
679 			DWARF_UNLOCK(cup);
680 			ctf_dwarf_dealloc(cup, attr, DW_DLA_ATTR);
681 			if (sign < 0) {
682 				(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
683 				    "encountered negative member data "
684 				    "location: %lld\n", sign);
685 			}
686 			*valp = (Dwarf_Unsigned)sign;
687 			return (0);
688 		}
689 	}
690 
691 	if (dwarf_loclist(attr, &loc, &locnum, &derr) != DW_DLV_OK) {
692 		DWARF_UNLOCK(cup);
693 		(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
694 		    "failed to obtain location list for member offset: %s\n",
695 		    dwarf_errmsg(derr));
696 		ctf_dwarf_dealloc(cup, attr, DW_DLA_ATTR);
697 		return (ECTF_CONVBKERR);
698 	}
699 	DWARF_UNLOCK(cup);
700 	ctf_dwarf_dealloc(cup, attr, DW_DLA_ATTR);
701 
702 	if (locnum != 1 || loc->ld_s->lr_atom != DW_OP_plus_uconst) {
703 		(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
704 		    "failed to parse location structure for member\n");
705 		ctf_dwarf_dealloc(cup, loc->ld_s, DW_DLA_LOC_BLOCK);
706 		ctf_dwarf_dealloc(cup, loc, DW_DLA_LOCDESC);
707 		return (ECTF_CONVBKERR);
708 	}
709 
710 	*valp = loc->ld_s->lr_number;
711 
712 	ctf_dwarf_dealloc(cup, loc->ld_s, DW_DLA_LOC_BLOCK);
713 	ctf_dwarf_dealloc(cup, loc, DW_DLA_LOCDESC);
714 	return (0);
715 }
716 
717 
718 static int
719 ctf_dwarf_offset(ctf_cu_t *cup, Dwarf_Die die, Dwarf_Off *offsetp)
720 {
721 	Dwarf_Error derr;
722 	int ret;
723 
724 	DWARF_LOCK(cup);
725 	ret = dwarf_dieoffset(die, offsetp, &derr);
726 	DWARF_UNLOCK(cup);
727 	if (ret == DW_DLV_OK)
728 		return (0);
729 
730 	(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
731 	    "failed to get die offset: %s\n",
732 	    dwarf_errmsg(derr));
733 	return (ECTF_CONVBKERR);
734 }
735 
736 /* simpler variant for debugging output */
737 static Dwarf_Off
738 ctf_die_offset(ctf_cu_t *cup, Dwarf_Die die)
739 {
740 	Dwarf_Off off = -1;
741 	Dwarf_Error derr;
742 
743 	DWARF_LOCK(cup);
744 	(void) dwarf_dieoffset(die, &off, &derr);
745 	DWARF_UNLOCK(cup);
746 	return (off);
747 }
748 
749 static int
750 ctf_dwarf_tag(ctf_cu_t *cup, Dwarf_Die die, Dwarf_Half *tagp)
751 {
752 	Dwarf_Error derr;
753 	int ret;
754 
755 	DWARF_LOCK(cup);
756 	ret = dwarf_tag(die, tagp, &derr);
757 	DWARF_UNLOCK(cup);
758 	if (ret == DW_DLV_OK)
759 		return (0);
760 
761 	(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
762 	    "failed to get tag type: %s\n",
763 	    dwarf_errmsg(derr));
764 	return (ECTF_CONVBKERR);
765 }
766 
767 static int
768 ctf_dwarf_sib(ctf_cu_t *cup, Dwarf_Die base, Dwarf_Die *sibp)
769 {
770 	Dwarf_Error derr;
771 	int ret;
772 
773 	*sibp = NULL;
774 	DWARF_LOCK(cup);
775 	ret = dwarf_siblingof(cup->cu_dwarf, base, sibp, &derr);
776 	DWARF_UNLOCK(cup);
777 	if (ret == DW_DLV_OK || ret == DW_DLV_NO_ENTRY)
778 		return (0);
779 
780 	(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
781 	    "failed to sibling from die: %s\n",
782 	    dwarf_errmsg(derr));
783 	return (ECTF_CONVBKERR);
784 }
785 
786 static int
787 ctf_dwarf_child(ctf_cu_t *cup, Dwarf_Die base, Dwarf_Die *childp)
788 {
789 	Dwarf_Error derr;
790 	int ret;
791 
792 	*childp = NULL;
793 	DWARF_LOCK(cup);
794 	ret = dwarf_child(base, childp, &derr);
795 	DWARF_UNLOCK(cup);
796 	if (ret == DW_DLV_OK || ret == DW_DLV_NO_ENTRY)
797 		return (0);
798 
799 	(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
800 	    "failed to child from die: %s\n",
801 	    dwarf_errmsg(derr));
802 	return (ECTF_CONVBKERR);
803 }
804 
805 /*
806  * Compilers disagree on what to do to determine if something has global
807  * visiblity. Traditionally gcc has used DW_AT_external to indicate this while
808  * Studio has used DW_AT_visibility. We check DW_AT_visibility first and then
809  * fall back to DW_AT_external. Lack of DW_AT_external implies that it is not.
810  */
811 static int
812 ctf_dwarf_isglobal(ctf_cu_t *cup, Dwarf_Die die, boolean_t *igp)
813 {
814 	int ret;
815 	Dwarf_Signed vis;
816 	Dwarf_Bool ext;
817 
818 	if ((ret = ctf_dwarf_signed(cup, die, DW_AT_visibility, &vis)) == 0) {
819 		*igp = vis == DW_VIS_exported;
820 		return (0);
821 	} else if (ret != ENOENT) {
822 		return (ret);
823 	}
824 
825 	if ((ret = ctf_dwarf_boolean(cup, die, DW_AT_external, &ext)) != 0) {
826 		if (ret == ENOENT) {
827 			*igp = B_FALSE;
828 			return (0);
829 		}
830 		return (ret);
831 	}
832 	*igp = ext != 0 ? B_TRUE : B_FALSE;
833 	return (0);
834 }
835 
836 static int
837 ctf_dwarf_die_elfenc(Elf *elf, ctf_cu_t *cup, char *errbuf, size_t errlen)
838 {
839 	GElf_Ehdr ehdr;
840 
841 	if (gelf_getehdr(elf, &ehdr) == NULL) {
842 		(void) snprintf(errbuf, errlen,
843 		    "failed to get ELF header: %s\n",
844 		    elf_errmsg(elf_errno()));
845 		return (ECTF_CONVBKERR);
846 	}
847 
848 	cup->cu_mach = ehdr.e_machine;
849 
850 	if (ehdr.e_ident[EI_CLASS] == ELFCLASS32) {
851 		cup->cu_ptrsz = 4;
852 		VERIFY(ctf_setmodel(cup->cu_ctfp, CTF_MODEL_ILP32) == 0);
853 	} else if (ehdr.e_ident[EI_CLASS] == ELFCLASS64) {
854 		cup->cu_ptrsz = 8;
855 		VERIFY(ctf_setmodel(cup->cu_ctfp, CTF_MODEL_LP64) == 0);
856 	} else {
857 		(void) snprintf(errbuf, errlen,
858 		    "unknown ELF class %d\n", ehdr.e_ident[EI_CLASS]);
859 		return (ECTF_CONVBKERR);
860 	}
861 
862 	if (ehdr.e_ident[EI_DATA] == ELFDATA2LSB) {
863 		cup->cu_bigend = B_FALSE;
864 	} else if (ehdr.e_ident[EI_DATA] == ELFDATA2MSB) {
865 		cup->cu_bigend = B_TRUE;
866 	} else {
867 		(void) snprintf(errbuf, errlen,
868 		    "unknown ELF data encoding: %hhu\n", ehdr.e_ident[EI_DATA]);
869 		return (ECTF_CONVBKERR);
870 	}
871 
872 	return (0);
873 }
874 
875 typedef struct ctf_dwarf_fpent {
876 	size_t	cdfe_size;
877 	uint_t	cdfe_enc[3];
878 } ctf_dwarf_fpent_t;
879 
880 typedef struct ctf_dwarf_fpmap {
881 	uint_t			cdf_mach;
882 	ctf_dwarf_fpent_t	cdf_ents[5];
883 } ctf_dwarf_fpmap_t;
884 
885 static const ctf_dwarf_fpmap_t ctf_dwarf_fpmaps[] = {
886 	{ EM_SPARC, {
887 		{ 4, { CTF_FP_SINGLE, CTF_FP_CPLX, CTF_FP_IMAGRY } },
888 		{ 8, { CTF_FP_DOUBLE, CTF_FP_DCPLX, CTF_FP_DIMAGRY } },
889 		{ 16, { CTF_FP_LDOUBLE, CTF_FP_LDCPLX, CTF_FP_LDIMAGRY } },
890 		{ 0, { 0 } }
891 	} },
892 	{ EM_SPARC32PLUS, {
893 		{ 4, { CTF_FP_SINGLE, CTF_FP_CPLX, CTF_FP_IMAGRY } },
894 		{ 8, { CTF_FP_DOUBLE, CTF_FP_DCPLX, CTF_FP_DIMAGRY } },
895 		{ 16, { CTF_FP_LDOUBLE, CTF_FP_LDCPLX, CTF_FP_LDIMAGRY } },
896 		{ 0, { 0 } }
897 	} },
898 	{ EM_SPARCV9, {
899 		{ 4, { CTF_FP_SINGLE, CTF_FP_CPLX, CTF_FP_IMAGRY } },
900 		{ 8, { CTF_FP_DOUBLE, CTF_FP_DCPLX, CTF_FP_DIMAGRY } },
901 		{ 16, { CTF_FP_LDOUBLE, CTF_FP_LDCPLX, CTF_FP_LDIMAGRY } },
902 		{ 0, { 0 } }
903 	} },
904 	{ EM_386, {
905 		{ 4, { CTF_FP_SINGLE, CTF_FP_CPLX, CTF_FP_IMAGRY } },
906 		{ 8, { CTF_FP_DOUBLE, CTF_FP_DCPLX, CTF_FP_DIMAGRY } },
907 		{ 12, { CTF_FP_LDOUBLE, CTF_FP_LDCPLX, CTF_FP_LDIMAGRY } },
908 		/*
909 		 * ISO/IEC TS-18661-3:2015 defines several types with analogues
910 		 * to existing C types. However, in the i386 ABI there is no
911 		 * corresponding type for a _Float128. While, ideally we would
912 		 * add this as a discrete type, when C2x formally standardizes
913 		 * this and a number of additional extensions, we'll want to
914 		 * change that around. In the interim, we'll encode it as a
915 		 * weirdly sized long-double, even though not all the tools
916 		 * will expect an off-abi encoding.
917 		 */
918 		{ 16, { CTF_FP_LDOUBLE, CTF_FP_LDCPLX, CTF_FP_LDIMAGRY } },
919 		{ 0, { 0 } }
920 	} },
921 	{ EM_X86_64, {
922 		{ 4, { CTF_FP_SINGLE, CTF_FP_CPLX, CTF_FP_IMAGRY } },
923 		{ 8, { CTF_FP_DOUBLE, CTF_FP_DCPLX, CTF_FP_DIMAGRY } },
924 		{ 16, { CTF_FP_LDOUBLE, CTF_FP_LDCPLX, CTF_FP_LDIMAGRY } },
925 		{ 0, { 0 } }
926 	} },
927 	{ EM_NONE }
928 };
929 
930 /*
931  * We want to normalize the type names that are used between compilers in the
932  * case of complex. gcc prefixes things with types like 'long complex' where as
933  * clang only calls them 'complex' in the dwarf even if in the C they are long
934  * complex or similar.
935  */
936 static int
937 ctf_dwarf_fixup_complex(ctf_cu_t *cup, ctf_encoding_t *enc, char **namep)
938 {
939 	const char *name;
940 	*namep = NULL;
941 
942 	switch (enc->cte_format) {
943 	case CTF_FP_CPLX:
944 		name = "complex float";
945 		break;
946 	case CTF_FP_DCPLX:
947 		name = "complex double";
948 		break;
949 	case CTF_FP_LDCPLX:
950 		name = "complex long double";
951 		break;
952 	default:
953 		return (0);
954 	}
955 
956 	*namep = ctf_strdup(name);
957 	if (*namep == NULL) {
958 		return (ENOMEM);
959 	}
960 
961 	return (0);
962 }
963 
964 static int
965 ctf_dwarf_float_base(ctf_cu_t *cup, Dwarf_Signed type, ctf_encoding_t *enc)
966 {
967 	const ctf_dwarf_fpmap_t *map = &ctf_dwarf_fpmaps[0];
968 	const ctf_dwarf_fpent_t *ent;
969 	uint_t col = 0, mult = 1;
970 
971 	for (map = &ctf_dwarf_fpmaps[0]; map->cdf_mach != EM_NONE; map++) {
972 		if (map->cdf_mach == cup->cu_mach)
973 			break;
974 	}
975 
976 	if (map->cdf_mach == EM_NONE) {
977 		(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
978 		    "Unsupported machine type: %d\n", cup->cu_mach);
979 		return (ENOTSUP);
980 	}
981 
982 	if (type == DW_ATE_complex_float) {
983 		mult = 2;
984 		col = 1;
985 	} else if (type == DW_ATE_imaginary_float ||
986 	    type == DW_ATE_SUN_imaginary_float) {
987 		col = 2;
988 	}
989 
990 	ent = &map->cdf_ents[0];
991 	for (ent = &map->cdf_ents[0]; ent->cdfe_size != 0; ent++) {
992 		if (ent->cdfe_size * mult * 8 == enc->cte_bits) {
993 			enc->cte_format = ent->cdfe_enc[col];
994 			return (0);
995 		}
996 	}
997 
998 	(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
999 	    "failed to find valid fp mapping for encoding %lld, size %d bits\n",
1000 	    type, enc->cte_bits);
1001 	return (EINVAL);
1002 }
1003 
1004 static int
1005 ctf_dwarf_dwarf_base(ctf_cu_t *cup, Dwarf_Die die, int *kindp,
1006     ctf_encoding_t *enc)
1007 {
1008 	int ret;
1009 	Dwarf_Signed type;
1010 
1011 	if ((ret = ctf_dwarf_signed(cup, die, DW_AT_encoding, &type)) != 0)
1012 		return (ret);
1013 
1014 	switch (type) {
1015 	case DW_ATE_unsigned:
1016 	case DW_ATE_address:
1017 		*kindp = CTF_K_INTEGER;
1018 		enc->cte_format = 0;
1019 		break;
1020 	case DW_ATE_unsigned_char:
1021 		*kindp = CTF_K_INTEGER;
1022 		enc->cte_format = CTF_INT_CHAR;
1023 		break;
1024 	case DW_ATE_signed:
1025 		*kindp = CTF_K_INTEGER;
1026 		enc->cte_format = CTF_INT_SIGNED;
1027 		break;
1028 	case DW_ATE_signed_char:
1029 		*kindp = CTF_K_INTEGER;
1030 		enc->cte_format = CTF_INT_SIGNED | CTF_INT_CHAR;
1031 		break;
1032 	case DW_ATE_boolean:
1033 		*kindp = CTF_K_INTEGER;
1034 		enc->cte_format = CTF_INT_SIGNED | CTF_INT_BOOL;
1035 		break;
1036 	case DW_ATE_float:
1037 	case DW_ATE_complex_float:
1038 	case DW_ATE_imaginary_float:
1039 	case DW_ATE_SUN_imaginary_float:
1040 	case DW_ATE_SUN_interval_float:
1041 		*kindp = CTF_K_FLOAT;
1042 		if ((ret = ctf_dwarf_float_base(cup, type, enc)) != 0)
1043 			return (ret);
1044 		break;
1045 	default:
1046 		(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
1047 		    "encountered unknown DWARF encoding: %lld\n", type);
1048 		return (ECTF_CONVBKERR);
1049 	}
1050 
1051 	return (0);
1052 }
1053 
1054 /*
1055  * Different compilers (at least GCC and Studio) use different names for types.
1056  * This parses the types and attempts to unify them. If this fails, we just fall
1057  * back to using the DWARF itself.
1058  */
1059 static int
1060 ctf_dwarf_parse_int(const char *name, int *kindp, ctf_encoding_t *enc,
1061     char **newnamep)
1062 {
1063 	char buf[256];
1064 	char *base, *c, *last;
1065 	int nlong = 0, nshort = 0, nchar = 0, nint = 0;
1066 	int sign = 1;
1067 
1068 	if (strlen(name) + 1 > sizeof (buf))
1069 		return (EINVAL);
1070 
1071 	(void) strlcpy(buf, name, sizeof (buf));
1072 	for (c = strtok_r(buf, " ", &last); c != NULL;
1073 	    c = strtok_r(NULL, " ", &last)) {
1074 		if (strcmp(c, "signed") == 0) {
1075 			sign = 1;
1076 		} else if (strcmp(c, "unsigned") == 0) {
1077 			sign = 0;
1078 		} else if (strcmp(c, "long") == 0) {
1079 			nlong++;
1080 		} else if (strcmp(c, "char") == 0) {
1081 			nchar++;
1082 		} else if (strcmp(c, "short") == 0) {
1083 			nshort++;
1084 		} else if (strcmp(c, "int") == 0) {
1085 			nint++;
1086 		} else {
1087 			/*
1088 			 * If we don't recognize any of the tokens, we'll tell
1089 			 * the caller to fall back to the dwarf-provided
1090 			 * encoding information.
1091 			 */
1092 			return (EINVAL);
1093 		}
1094 	}
1095 
1096 	if (nchar > 1 || nshort > 1 || nint > 1 || nlong > 2)
1097 		return (EINVAL);
1098 
1099 	if (nchar > 0) {
1100 		if (nlong > 0 || nshort > 0 || nint > 0)
1101 			return (EINVAL);
1102 		base = "char";
1103 	} else if (nshort > 0) {
1104 		if (nlong > 0)
1105 			return (EINVAL);
1106 		base = "short";
1107 	} else if (nlong > 0) {
1108 		base = "long";
1109 	} else {
1110 		base = "int";
1111 	}
1112 
1113 	if (nchar > 0)
1114 		enc->cte_format = CTF_INT_CHAR;
1115 	else
1116 		enc->cte_format = 0;
1117 
1118 	if (sign > 0)
1119 		enc->cte_format |= CTF_INT_SIGNED;
1120 
1121 	(void) snprintf(buf, sizeof (buf), "%s%s%s",
1122 	    (sign ? "" : "unsigned "),
1123 	    (nlong > 1 ? "long " : ""),
1124 	    base);
1125 
1126 	*newnamep = ctf_strdup(buf);
1127 	if (*newnamep == NULL)
1128 		return (ENOMEM);
1129 	*kindp = CTF_K_INTEGER;
1130 	return (0);
1131 }
1132 
1133 static int
1134 ctf_dwarf_create_base(ctf_cu_t *cup, Dwarf_Die die, ctf_id_t *idp, int isroot,
1135     Dwarf_Off off)
1136 {
1137 	int ret;
1138 	char *name, *nname = NULL;
1139 	Dwarf_Unsigned sz;
1140 	int kind;
1141 	ctf_encoding_t enc;
1142 	ctf_id_t id;
1143 
1144 	if ((ret = ctf_dwarf_string(cup, die, DW_AT_name, &name)) != 0)
1145 		return (ret);
1146 	if ((ret = ctf_dwarf_unsigned(cup, die, DW_AT_byte_size, &sz)) != 0) {
1147 		goto out;
1148 	}
1149 	ctf_dprintf("Creating base type %s from off %llu, size: %d\n", name,
1150 	    off, sz);
1151 
1152 	bzero(&enc, sizeof (ctf_encoding_t));
1153 	enc.cte_bits = sz * 8;
1154 	if ((ret = ctf_dwarf_parse_int(name, &kind, &enc, &nname)) == 0) {
1155 		ctf_free(name, strlen(name) + 1);
1156 		name = nname;
1157 	} else {
1158 		if (ret != EINVAL) {
1159 			goto out;
1160 		}
1161 		ctf_dprintf("falling back to dwarf for base type %s\n", name);
1162 		if ((ret = ctf_dwarf_dwarf_base(cup, die, &kind, &enc)) != 0) {
1163 			goto out;
1164 		}
1165 
1166 		if (kind == CTF_K_FLOAT && (ret = ctf_dwarf_fixup_complex(cup,
1167 		    &enc, &nname)) != 0) {
1168 			goto out;
1169 		} else if (nname != NULL) {
1170 			ctf_free(name, strlen(name) + 1);
1171 			name = nname;
1172 		}
1173 	}
1174 
1175 	id = ctf_add_encoded(cup->cu_ctfp, isroot, name, &enc, kind);
1176 	if (id == CTF_ERR) {
1177 		ret = ctf_errno(cup->cu_ctfp);
1178 	} else {
1179 		*idp = id;
1180 		ret = ctf_dwmap_add(cup, id, die, B_FALSE);
1181 	}
1182 out:
1183 	ctf_free(name, strlen(name) + 1);
1184 	return (ret);
1185 }
1186 
1187 /*
1188  * Getting a member's offset is a surprisingly intricate dance. It works as
1189  * follows:
1190  *
1191  * 1) If we're in DWARFv4, then we either have a DW_AT_data_bit_offset or we
1192  * have a DW_AT_data_member_location. We won't have both. Thus we check first
1193  * for DW_AT_data_bit_offset, and if it exists, we're set.
1194  *
1195  * Next, if we have a bitfield and we don't have a DW_AT_data_bit_offset, then
1196  * we have to grab the data location and use the following dance:
1197  *
1198  * 2) Gather the set of DW_AT_byte_size, DW_AT_bit_offset, and DW_AT_bit_size.
1199  * Of course, the DW_AT_byte_size may be omitted, even though it isn't always.
1200  * When it's been omitted, we then have to say that the size is that of the
1201  * underlying type, which forces that to be after a ctf_update(). Here, we have
1202  * to do different things based on whether or not we're using big endian or
1203  * little endian to obtain the proper offset.
1204  */
1205 static int
1206 ctf_dwarf_member_offset(ctf_cu_t *cup, Dwarf_Die die, ctf_id_t mid,
1207     ulong_t *offp)
1208 {
1209 	int ret;
1210 	Dwarf_Unsigned loc, bitsz, bytesz;
1211 	Dwarf_Signed bitoff;
1212 	size_t off;
1213 	ssize_t tsz;
1214 
1215 	if ((ret = ctf_dwarf_unsigned(cup, die, DW_AT_data_bit_offset,
1216 	    &loc)) == 0) {
1217 		*offp = loc;
1218 		return (0);
1219 	} else if (ret != ENOENT) {
1220 		return (ret);
1221 	}
1222 
1223 	if ((ret = ctf_dwarf_member_location(cup, die, &loc)) != 0)
1224 		return (ret);
1225 	off = loc * 8;
1226 
1227 	if ((ret = ctf_dwarf_signed(cup, die, DW_AT_bit_offset,
1228 	    &bitoff)) != 0) {
1229 		if (ret != ENOENT)
1230 			return (ret);
1231 		*offp = off;
1232 		return (0);
1233 	}
1234 
1235 	/* At this point we have to have DW_AT_bit_size */
1236 	if ((ret = ctf_dwarf_unsigned(cup, die, DW_AT_bit_size, &bitsz)) != 0)
1237 		return (ret);
1238 
1239 	if ((ret = ctf_dwarf_unsigned(cup, die, DW_AT_byte_size,
1240 	    &bytesz)) != 0) {
1241 		if (ret != ENOENT)
1242 			return (ret);
1243 		if ((tsz = ctf_type_size(cup->cu_ctfp, mid)) == CTF_ERR) {
1244 			int e = ctf_errno(cup->cu_ctfp);
1245 			(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
1246 			    "failed to get type size: %s\n", ctf_errmsg(e));
1247 			return (ECTF_CONVBKERR);
1248 		}
1249 	} else {
1250 		tsz = bytesz;
1251 	}
1252 	tsz *= 8;
1253 	if (cup->cu_bigend == B_TRUE) {
1254 		*offp = off + bitoff;
1255 	} else {
1256 		*offp = off + tsz - bitoff - bitsz;
1257 	}
1258 
1259 	return (0);
1260 }
1261 
1262 /*
1263  * We need to determine if the member in question is a bitfield. If it is, then
1264  * we need to go through and create a new type that's based on the actual base
1265  * type, but has a different size. We also rename the type as a result to help
1266  * deal with future collisions.
1267  *
1268  * Here we need to look and see if we have a DW_AT_bit_size value. If we have a
1269  * bit size member and it does not equal the byte size member, then we need to
1270  * create a bitfield type based on this.
1271  *
1272  * Note: When we support DWARFv4, there may be a chance that we need to also
1273  * search for the DW_AT_byte_size if we don't have a DW_AT_bit_size member.
1274  */
1275 static int
1276 ctf_dwarf_member_bitfield(ctf_cu_t *cup, Dwarf_Die die, ctf_id_t *idp)
1277 {
1278 	int ret;
1279 	Dwarf_Unsigned bitsz;
1280 	ctf_encoding_t e;
1281 	ctf_dwbitf_t *cdb;
1282 	ctf_dtdef_t *dtd;
1283 	ctf_id_t base = *idp;
1284 	int kind;
1285 
1286 	if ((ret = ctf_dwarf_unsigned(cup, die, DW_AT_bit_size, &bitsz)) != 0) {
1287 		if (ret == ENOENT)
1288 			return (0);
1289 		return (ret);
1290 	}
1291 
1292 	ctf_dprintf("Trying to deal with bitfields on %d:%d\n", base, bitsz);
1293 	/*
1294 	 * Given that we now have a bitsize, time to go do something about it.
1295 	 * We're going to create a new type based on the current one, but first
1296 	 * we need to find the base type. This means we need to traverse any
1297 	 * typedef's, consts, and volatiles until we get to what should be
1298 	 * something of type integer or enumeration.
1299 	 */
1300 	VERIFY(bitsz < UINT32_MAX);
1301 	dtd = ctf_dtd_lookup(cup->cu_ctfp, base);
1302 	VERIFY(dtd != NULL);
1303 	kind = CTF_INFO_KIND(dtd->dtd_data.ctt_info);
1304 	while (kind == CTF_K_TYPEDEF || kind == CTF_K_CONST ||
1305 	    kind == CTF_K_VOLATILE) {
1306 		dtd = ctf_dtd_lookup(cup->cu_ctfp, dtd->dtd_data.ctt_type);
1307 		VERIFY(dtd != NULL);
1308 		kind = CTF_INFO_KIND(dtd->dtd_data.ctt_info);
1309 	}
1310 	ctf_dprintf("got kind %d\n", kind);
1311 	VERIFY(kind == CTF_K_INTEGER || kind == CTF_K_ENUM);
1312 
1313 	/*
1314 	 * As surprising as it may be, it is strictly possible to create a
1315 	 * bitfield that is based on an enum. Of course, the C standard leaves
1316 	 * enums sizing as an ABI concern more or less. To that effect, today on
1317 	 * all illumos platforms the size of an enum is generally that of an
1318 	 * int as our supported data models and ABIs all agree on that. So what
1319 	 * we'll do is fake up a CTF encoding here to use. In this case, we'll
1320 	 * treat it as an unsigned value of whatever size the underlying enum
1321 	 * currently has (which is in the ctt_size member of its dynamic type
1322 	 * data).
1323 	 */
1324 	if (kind == CTF_K_INTEGER) {
1325 		e = dtd->dtd_u.dtu_enc;
1326 	} else {
1327 		bzero(&e, sizeof (ctf_encoding_t));
1328 		e.cte_bits = dtd->dtd_data.ctt_size * NBBY;
1329 	}
1330 
1331 	for (cdb = ctf_list_next(&cup->cu_bitfields); cdb != NULL;
1332 	    cdb = ctf_list_next(cdb)) {
1333 		if (cdb->cdb_base == base && cdb->cdb_nbits == bitsz)
1334 			break;
1335 	}
1336 
1337 	/*
1338 	 * Create a new type if none exists. We name all types in a way that is
1339 	 * guaranteed not to conflict with the corresponding C type. We do this
1340 	 * by using the ':' operator.
1341 	 */
1342 	if (cdb == NULL) {
1343 		size_t namesz;
1344 		char *name;
1345 
1346 		e.cte_bits = bitsz;
1347 		namesz = snprintf(NULL, 0, "%s:%d", dtd->dtd_name,
1348 		    (uint32_t)bitsz);
1349 		name = ctf_alloc(namesz + 1);
1350 		if (name == NULL)
1351 			return (ENOMEM);
1352 		cdb = ctf_alloc(sizeof (ctf_dwbitf_t));
1353 		if (cdb == NULL) {
1354 			ctf_free(name, namesz + 1);
1355 			return (ENOMEM);
1356 		}
1357 		(void) snprintf(name, namesz + 1, "%s:%d", dtd->dtd_name,
1358 		    (uint32_t)bitsz);
1359 
1360 		cdb->cdb_base = base;
1361 		cdb->cdb_nbits = bitsz;
1362 		cdb->cdb_id = ctf_add_integer(cup->cu_ctfp, CTF_ADD_NONROOT,
1363 		    name, &e);
1364 		if (cdb->cdb_id == CTF_ERR) {
1365 			(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
1366 			    "failed to get add bitfield type %s: %s\n", name,
1367 			    ctf_errmsg(ctf_errno(cup->cu_ctfp)));
1368 			ctf_free(name, namesz + 1);
1369 			ctf_free(cdb, sizeof (ctf_dwbitf_t));
1370 			return (ECTF_CONVBKERR);
1371 		}
1372 		ctf_free(name, namesz + 1);
1373 		ctf_list_append(&cup->cu_bitfields, cdb);
1374 	}
1375 
1376 	*idp = cdb->cdb_id;
1377 
1378 	return (0);
1379 }
1380 
1381 static int
1382 ctf_dwarf_fixup_sou(ctf_cu_t *cup, Dwarf_Die die, ctf_id_t base, boolean_t add)
1383 {
1384 	int ret, kind;
1385 	Dwarf_Die child, memb;
1386 	Dwarf_Unsigned size;
1387 
1388 	kind = ctf_type_kind(cup->cu_ctfp, base);
1389 	VERIFY(kind != CTF_ERR);
1390 	VERIFY(kind == CTF_K_STRUCT || kind == CTF_K_UNION);
1391 
1392 	/*
1393 	 * Members are in children. However, gcc also allows empty ones.
1394 	 */
1395 	if ((ret = ctf_dwarf_child(cup, die, &child)) != 0)
1396 		return (ret);
1397 	if (child == NULL)
1398 		return (0);
1399 
1400 	memb = child;
1401 	while (memb != NULL) {
1402 		Dwarf_Die sib, tdie;
1403 		Dwarf_Half tag;
1404 		ctf_id_t mid;
1405 		char *mname;
1406 		ulong_t memboff = 0;
1407 
1408 		if ((ret = ctf_dwarf_tag(cup, memb, &tag)) != 0)
1409 			return (ret);
1410 
1411 		if (tag != DW_TAG_member)
1412 			goto next;
1413 
1414 		if ((ret = ctf_dwarf_refdie(cup, memb, DW_AT_type, &tdie)) != 0)
1415 			return (ret);
1416 
1417 		if ((ret = ctf_dwarf_convert_type(cup, tdie, &mid,
1418 		    CTF_ADD_NONROOT)) != 0)
1419 			return (ret);
1420 		ctf_dprintf("Got back type id: %d\n", mid);
1421 
1422 		/*
1423 		 * If we're not adding a member, just go ahead and return.
1424 		 */
1425 		if (add == B_FALSE) {
1426 			if ((ret = ctf_dwarf_member_bitfield(cup, memb,
1427 			    &mid)) != 0)
1428 				return (ret);
1429 			goto next;
1430 		}
1431 
1432 		if ((ret = ctf_dwarf_string(cup, memb, DW_AT_name,
1433 		    &mname)) != 0 && ret != ENOENT)
1434 			return (ret);
1435 		if (ret == ENOENT)
1436 			mname = NULL;
1437 
1438 		if (kind == CTF_K_UNION) {
1439 			memboff = 0;
1440 		} else if ((ret = ctf_dwarf_member_offset(cup, memb, mid,
1441 		    &memboff)) != 0) {
1442 			if (mname != NULL)
1443 				ctf_free(mname, strlen(mname) + 1);
1444 			return (ret);
1445 		}
1446 
1447 		if ((ret = ctf_dwarf_member_bitfield(cup, memb, &mid)) != 0)
1448 			return (ret);
1449 
1450 		ret = ctf_add_member(cup->cu_ctfp, base, mname, mid, memboff);
1451 		if (ret == CTF_ERR) {
1452 			(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
1453 			    "failed to add member %s: %s\n",
1454 			    mname, ctf_errmsg(ctf_errno(cup->cu_ctfp)));
1455 			if (mname != NULL)
1456 				ctf_free(mname, strlen(mname) + 1);
1457 			return (ECTF_CONVBKERR);
1458 		}
1459 
1460 		if (mname != NULL)
1461 			ctf_free(mname, strlen(mname) + 1);
1462 
1463 next:
1464 		if ((ret = ctf_dwarf_sib(cup, memb, &sib)) != 0)
1465 			return (ret);
1466 		memb = sib;
1467 	}
1468 
1469 	/*
1470 	 * If we're not adding members, then we don't know the final size of the
1471 	 * structure, so end here.
1472 	 */
1473 	if (add == B_FALSE)
1474 		return (0);
1475 
1476 	/* Finally set the size of the structure to the actual byte size */
1477 	if ((ret = ctf_dwarf_unsigned(cup, die, DW_AT_byte_size, &size)) != 0)
1478 		return (ret);
1479 	if ((ctf_set_size(cup->cu_ctfp, base, size)) == CTF_ERR) {
1480 		int e = ctf_errno(cup->cu_ctfp);
1481 		(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
1482 		    "failed to set type size for %d to 0x%x: %s\n", base,
1483 		    (uint32_t)size, ctf_errmsg(e));
1484 		return (ECTF_CONVBKERR);
1485 	}
1486 
1487 	return (0);
1488 }
1489 
1490 static int
1491 ctf_dwarf_create_sou(ctf_cu_t *cup, Dwarf_Die die, ctf_id_t *idp,
1492     int kind, int isroot)
1493 {
1494 	int ret;
1495 	char *name;
1496 	ctf_id_t base;
1497 	Dwarf_Die child;
1498 	Dwarf_Bool decl;
1499 
1500 	/*
1501 	 * Deal with the terribly annoying case of anonymous structs and unions.
1502 	 * If they don't have a name, set the name to the empty string.
1503 	 */
1504 	if ((ret = ctf_dwarf_string(cup, die, DW_AT_name, &name)) != 0 &&
1505 	    ret != ENOENT)
1506 		return (ret);
1507 	if (ret == ENOENT)
1508 		name = NULL;
1509 
1510 	/*
1511 	 * We need to check if we just have a declaration here. If we do, then
1512 	 * instead of creating an actual structure or union, we're just going to
1513 	 * go ahead and create a forward. During a dedup or merge, the forward
1514 	 * will be replaced with the real thing.
1515 	 */
1516 	if ((ret = ctf_dwarf_boolean(cup, die, DW_AT_declaration,
1517 	    &decl)) != 0) {
1518 		if (ret != ENOENT)
1519 			return (ret);
1520 		decl = 0;
1521 	}
1522 
1523 	if (decl == B_TRUE) {
1524 		base = ctf_add_forward(cup->cu_ctfp, isroot, name, kind);
1525 	} else if (kind == CTF_K_STRUCT) {
1526 		base = ctf_add_struct(cup->cu_ctfp, isroot, name);
1527 	} else {
1528 		base = ctf_add_union(cup->cu_ctfp, isroot, name);
1529 	}
1530 	ctf_dprintf("added sou %s (%d) (%ld) forward=%d\n",
1531 	    name, kind, base, decl == B_TRUE);
1532 	if (name != NULL)
1533 		ctf_free(name, strlen(name) + 1);
1534 	if (base == CTF_ERR)
1535 		return (ctf_errno(cup->cu_ctfp));
1536 	*idp = base;
1537 
1538 	/*
1539 	 * If it's just a declaration, we're not going to mark it for fix up or
1540 	 * do anything else.
1541 	 */
1542 	if (decl == B_TRUE)
1543 		return (ctf_dwmap_add(cup, base, die, B_FALSE));
1544 	if ((ret = ctf_dwmap_add(cup, base, die, B_TRUE)) != 0)
1545 		return (ret);
1546 
1547 	/*
1548 	 * The children of a structure or union are generally members. However,
1549 	 * some compilers actually insert structs and unions there and not as a
1550 	 * top-level die. Therefore, to make sure we honor our pass 1 contract
1551 	 * of having all the base types, but not members, we need to walk this
1552 	 * for instances of a DW_TAG_union_type.
1553 	 */
1554 	if ((ret = ctf_dwarf_child(cup, die, &child)) != 0)
1555 		return (ret);
1556 
1557 	while (child != NULL) {
1558 		Dwarf_Half tag;
1559 		Dwarf_Die sib;
1560 
1561 		if ((ret = ctf_dwarf_tag(cup, child, &tag)) != 0)
1562 			return (ret);
1563 
1564 		switch (tag) {
1565 		case DW_TAG_union_type:
1566 		case DW_TAG_structure_type:
1567 			ret = ctf_dwarf_convert_type(cup, child, NULL,
1568 			    CTF_ADD_NONROOT);
1569 			if (ret != 0) {
1570 				return (ret);
1571 			}
1572 			break;
1573 		default:
1574 			break;
1575 		}
1576 
1577 		if ((ret = ctf_dwarf_sib(cup, child, &sib)) != 0)
1578 			return (ret);
1579 		child = sib;
1580 	}
1581 
1582 	return (0);
1583 }
1584 
1585 static int
1586 ctf_dwarf_array_upper_bound(ctf_cu_t *cup, Dwarf_Die range, ctf_arinfo_t *ar)
1587 {
1588 	Dwarf_Attribute attr;
1589 	Dwarf_Unsigned uval;
1590 	Dwarf_Signed sval;
1591 	Dwarf_Half form;
1592 	Dwarf_Error derr;
1593 	const char *formstr = NULL;
1594 	uint_t adj = 0;
1595 	int ret = 0;
1596 
1597 	ctf_dprintf("setting array upper bound\n");
1598 
1599 	ar->ctr_nelems = 0;
1600 
1601 	/*
1602 	 * Different compilers use different attributes to indicate the size of
1603 	 * an array. GCC has traditionally used DW_AT_upper_bound, while Clang
1604 	 * uses DW_AT_count. They have slightly different semantics. DW_AT_count
1605 	 * indicates the total number of elements that are present, while
1606 	 * DW_AT_upper_bound indicates the last index, hence we need to add one
1607 	 * to that index to get the count.
1608 	 *
1609 	 * We first search for DW_AT_count and then for DW_AT_upper_bound. If we
1610 	 * find neither, then we treat the lack of this as a zero element array.
1611 	 * Our value is initialized assuming we find a DW_AT_count value.
1612 	 */
1613 	ret = ctf_dwarf_attribute(cup, range, DW_AT_count, &attr);
1614 	if (ret != 0 && ret != ENOENT) {
1615 		return (ret);
1616 	} else if (ret == ENOENT) {
1617 		ret = ctf_dwarf_attribute(cup, range, DW_AT_upper_bound, &attr);
1618 		if (ret != 0 && ret != ENOENT) {
1619 			return (ret);
1620 		} else if (ret == ENOENT) {
1621 			return (0);
1622 		} else {
1623 			adj = 1;
1624 		}
1625 	}
1626 
1627 	DWARF_LOCK(cup);
1628 	ret = dwarf_whatform(attr, &form, &derr);
1629 	if (ret != DW_DLV_OK) {
1630 		(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
1631 		    "failed to get DW_AT_upper_bound attribute form: %s\n",
1632 		    dwarf_errmsg(derr));
1633 		ret = ECTF_CONVBKERR;
1634 		goto done;
1635 	}
1636 
1637 	/*
1638 	 * Compilers can indicate array bounds using signed or unsigned values.
1639 	 * Additionally, some compilers may also store the array bounds
1640 	 * using as DW_FORM_data{1,2,4,8} (which DWARF treats as raw data and
1641 	 * expects the caller to understand how to interpret the value).
1642 	 *
1643 	 * GCC 4.4.4 appears to always use unsigned values to encode the
1644 	 * array size (using '(unsigned)-1' to represent a zero-length or
1645 	 * unknown length array). Later versions of GCC use a signed value of
1646 	 * -1 for zero/unknown length arrays, and unsigned values to encode
1647 	 * known array sizes.
1648 	 *
1649 	 * Both dwarf_formsdata() and dwarf_formudata() will retrieve values
1650 	 * as their respective signed/unsigned forms, but both will also
1651 	 * retreive DW_FORM_data{1,2,4,8} values and treat them as signed or
1652 	 * unsigned integers (i.e. dwarf_formsdata() treats DW_FORM_dataXX
1653 	 * as signed integers and dwarf_formudata() treats DW_FORM_dataXX as
1654 	 * unsigned integers). Both will return an error if the form is not
1655 	 * their respective signed/unsigned form, or DW_FORM_dataXX.
1656 	 *
1657 	 * To obtain the upper bound, we use the appropriate
1658 	 * dwarf_form[su]data() function based on the form of DW_AT_upper_bound.
1659 	 * Additionally, we let dwarf_formudata() handle the DW_FORM_dataXX
1660 	 * forms (via the default option in the switch). If the value is in an
1661 	 * unexpected form (i.e. not DW_FORM_udata or DW_FORM_dataXX),
1662 	 * dwarf_formudata() will return failure (i.e. not DW_DLV_OK) and set
1663 	 * derr with the specific error value.
1664 	 */
1665 	switch (form) {
1666 	case DW_FORM_sdata:
1667 		if (dwarf_formsdata(attr, &sval, &derr) == DW_DLV_OK) {
1668 			ar->ctr_nelems = sval + adj;
1669 			goto done;
1670 		}
1671 		break;
1672 	case DW_FORM_udata:
1673 	default:
1674 		if (dwarf_formudata(attr, &uval, &derr) == DW_DLV_OK) {
1675 			ar->ctr_nelems = uval + adj;
1676 			goto done;
1677 		}
1678 		break;
1679 	}
1680 
1681 	if (dwarf_get_FORM_name(form, &formstr) != DW_DLV_OK)
1682 		formstr = "unknown DWARF form";
1683 
1684 	(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
1685 	    "failed to get %s (%hu) value for DW_AT_upper_bound: %s\n",
1686 	    formstr, form, dwarf_errmsg(derr));
1687 	ret = ECTF_CONVBKERR;
1688 
1689 done:
1690 	DWARF_UNLOCK(cup);
1691 	ctf_dwarf_dealloc(cup, attr, DW_DLA_ATTR);
1692 	return (ret);
1693 }
1694 
1695 static int
1696 ctf_dwarf_create_array_range(ctf_cu_t *cup, Dwarf_Die range, ctf_id_t *idp,
1697     ctf_id_t base, int isroot)
1698 {
1699 	int ret;
1700 	Dwarf_Die sib;
1701 	ctf_arinfo_t ar;
1702 
1703 	ctf_dprintf("creating array range\n");
1704 
1705 	if ((ret = ctf_dwarf_sib(cup, range, &sib)) != 0)
1706 		return (ret);
1707 	if (sib != NULL) {
1708 		ctf_id_t id;
1709 		if ((ret = ctf_dwarf_create_array_range(cup, sib, &id,
1710 		    base, CTF_ADD_NONROOT)) != 0)
1711 			return (ret);
1712 		ar.ctr_contents = id;
1713 	} else {
1714 		ar.ctr_contents = base;
1715 	}
1716 
1717 	if ((ar.ctr_index = ctf_dwarf_long(cup)) == CTF_ERR)
1718 		return (ctf_errno(cup->cu_ctfp));
1719 
1720 	if ((ret = ctf_dwarf_array_upper_bound(cup, range, &ar)) != 0)
1721 		return (ret);
1722 
1723 	if ((*idp = ctf_add_array(cup->cu_ctfp, isroot, &ar)) == CTF_ERR)
1724 		return (ctf_errno(cup->cu_ctfp));
1725 
1726 	return (0);
1727 }
1728 
1729 /*
1730  * Try and create an array type. First, the kind of the array is specified in
1731  * the DW_AT_type entry. Next, the number of entries is stored in a more
1732  * complicated form, we should have a child that has the DW_TAG_subrange type.
1733  */
1734 static int
1735 ctf_dwarf_create_array(ctf_cu_t *cup, Dwarf_Die die, ctf_id_t *idp, int isroot)
1736 {
1737 	int ret;
1738 	Dwarf_Die tdie, rdie;
1739 	ctf_id_t tid;
1740 	Dwarf_Half rtag;
1741 
1742 	if ((ret = ctf_dwarf_refdie(cup, die, DW_AT_type, &tdie)) != 0)
1743 		return (ret);
1744 	if ((ret = ctf_dwarf_convert_type(cup, tdie, &tid,
1745 	    CTF_ADD_NONROOT)) != 0)
1746 		return (ret);
1747 
1748 	if ((ret = ctf_dwarf_child(cup, die, &rdie)) != 0)
1749 		return (ret);
1750 	if ((ret = ctf_dwarf_tag(cup, rdie, &rtag)) != 0)
1751 		return (ret);
1752 	if (rtag != DW_TAG_subrange_type) {
1753 		(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
1754 		    "encountered array without DW_TAG_subrange_type child\n");
1755 		return (ECTF_CONVBKERR);
1756 	}
1757 
1758 	/*
1759 	 * The compiler may opt to describe a multi-dimensional array as one
1760 	 * giant array or it may opt to instead encode it as a series of
1761 	 * subranges. If it's the latter, then for each subrange we introduce a
1762 	 * type. We can always use the base type.
1763 	 */
1764 	if ((ret = ctf_dwarf_create_array_range(cup, rdie, idp, tid,
1765 	    isroot)) != 0)
1766 		return (ret);
1767 	ctf_dprintf("Got back id %d\n", *idp);
1768 	return (ctf_dwmap_add(cup, *idp, die, B_FALSE));
1769 }
1770 
1771 /*
1772  * Given "const int const_array3[11]", GCC7 at least will create a DIE tree of
1773  * DW_TAG_const_type:DW_TAG_array_type:DW_Tag_const_type:<member_type>.
1774  *
1775  * Given C's syntax, this renders out as "const const int const_array3[11]".  To
1776  * get closer to round-tripping (and make the unit tests work), we'll peek for
1777  * this case, and avoid adding the extraneous qualifier if we see that the
1778  * underlying array referent already has the same qualifier.
1779  *
1780  * This is unfortunately less trivial than it could be: this issue applies to
1781  * qualifier sets like "const volatile", as well as multi-dimensional arrays, so
1782  * we need to descend down those.
1783  *
1784  * Returns CTF_ERR on error, or a boolean value otherwise.
1785  */
1786 static int
1787 needed_array_qualifier(ctf_cu_t *cup, int kind, ctf_id_t ref_id)
1788 {
1789 	const ctf_type_t *t;
1790 	ctf_arinfo_t arinfo;
1791 	int akind;
1792 
1793 	if (kind != CTF_K_CONST && kind != CTF_K_VOLATILE &&
1794 	    kind != CTF_K_RESTRICT)
1795 		return (1);
1796 
1797 	if ((t = ctf_dyn_lookup_by_id(cup->cu_ctfp, ref_id)) == NULL)
1798 		return (CTF_ERR);
1799 
1800 	if (LCTF_INFO_KIND(cup->cu_ctfp, t->ctt_info) != CTF_K_ARRAY)
1801 		return (1);
1802 
1803 	if (ctf_dyn_array_info(cup->cu_ctfp, ref_id, &arinfo) != 0)
1804 		return (CTF_ERR);
1805 
1806 	ctf_id_t id = arinfo.ctr_contents;
1807 
1808 	for (;;) {
1809 		if ((t = ctf_dyn_lookup_by_id(cup->cu_ctfp, id)) == NULL)
1810 			return (CTF_ERR);
1811 
1812 		akind = LCTF_INFO_KIND(cup->cu_ctfp, t->ctt_info);
1813 
1814 		if (akind == kind)
1815 			break;
1816 
1817 		if (akind == CTF_K_ARRAY) {
1818 			if (ctf_dyn_array_info(cup->cu_ctfp,
1819 			    id, &arinfo) != 0)
1820 				return (CTF_ERR);
1821 			id = arinfo.ctr_contents;
1822 			continue;
1823 		}
1824 
1825 		if (akind != CTF_K_CONST && akind != CTF_K_VOLATILE &&
1826 		    akind != CTF_K_RESTRICT)
1827 			break;
1828 
1829 		id = t->ctt_type;
1830 	}
1831 
1832 	if (kind == akind) {
1833 		ctf_dprintf("ignoring extraneous %s qualifier for array %d\n",
1834 		    ctf_kind_name(cup->cu_ctfp, kind), ref_id);
1835 	}
1836 
1837 	return (kind != akind);
1838 }
1839 
1840 static int
1841 ctf_dwarf_create_reference(ctf_cu_t *cup, Dwarf_Die die, ctf_id_t *idp,
1842     int kind, int isroot)
1843 {
1844 	int ret;
1845 	ctf_id_t id;
1846 	Dwarf_Die tdie;
1847 	char *name;
1848 	size_t namelen;
1849 
1850 	if ((ret = ctf_dwarf_string(cup, die, DW_AT_name, &name)) != 0 &&
1851 	    ret != ENOENT)
1852 		return (ret);
1853 	if (ret == ENOENT) {
1854 		name = NULL;
1855 		namelen = 0;
1856 	} else {
1857 		namelen = strlen(name);
1858 	}
1859 
1860 	ctf_dprintf("reference kind %d %s\n", kind, name != NULL ? name : "<>");
1861 
1862 	if ((ret = ctf_dwarf_refdie(cup, die, DW_AT_type, &tdie)) != 0) {
1863 		if (ret != ENOENT) {
1864 			ctf_free(name, namelen);
1865 			return (ret);
1866 		}
1867 		if ((id = ctf_dwarf_void(cup)) == CTF_ERR) {
1868 			ctf_free(name, namelen);
1869 			return (ctf_errno(cup->cu_ctfp));
1870 		}
1871 	} else {
1872 		if ((ret = ctf_dwarf_convert_type(cup, tdie, &id,
1873 		    CTF_ADD_NONROOT)) != 0) {
1874 			ctf_free(name, namelen);
1875 			return (ret);
1876 		}
1877 	}
1878 
1879 	if ((ret = needed_array_qualifier(cup, kind, id)) <= 0) {
1880 		if (ret != 0) {
1881 			ret = (ctf_errno(cup->cu_ctfp));
1882 		} else {
1883 			*idp = id;
1884 		}
1885 
1886 		ctf_free(name, namelen);
1887 		return (ret);
1888 	}
1889 
1890 	if ((*idp = ctf_add_reftype(cup->cu_ctfp, isroot, name, id, kind)) ==
1891 	    CTF_ERR) {
1892 		ctf_free(name, namelen);
1893 		return (ctf_errno(cup->cu_ctfp));
1894 	}
1895 
1896 	ctf_free(name, namelen);
1897 	return (ctf_dwmap_add(cup, *idp, die, B_FALSE));
1898 }
1899 
1900 static int
1901 ctf_dwarf_create_enum(ctf_cu_t *cup, Dwarf_Die die, ctf_id_t *idp, int isroot)
1902 {
1903 	size_t size = 0;
1904 	Dwarf_Die child;
1905 	Dwarf_Unsigned dw;
1906 	ctf_id_t id;
1907 	char *enumname;
1908 	int ret;
1909 
1910 	ret = ctf_dwarf_string(cup, die, DW_AT_name, &enumname);
1911 	if (ret != 0 && ret != ENOENT)
1912 		return (ret);
1913 	if (ret == ENOENT)
1914 		enumname = NULL;
1915 
1916 	/*
1917 	 * Enumerations may have a size associated with them, particularly if
1918 	 * they're packed. Note, a Dwarf_Unsigned is larger than a size_t on an
1919 	 * ILP32 system.
1920 	 */
1921 	if (ctf_dwarf_unsigned(cup, die, DW_AT_byte_size, &dw) == 0 &&
1922 	    dw < SIZE_MAX) {
1923 		size = (size_t)dw;
1924 	}
1925 
1926 	id = ctf_add_enum(cup->cu_ctfp, isroot, enumname, size);
1927 	ctf_dprintf("added enum %s (%d)\n",
1928 	    enumname == NULL ? "<anon>" : enumname, id);
1929 	if (id == CTF_ERR) {
1930 		ret = ctf_errno(cup->cu_ctfp);
1931 		goto out;
1932 	}
1933 	*idp = id;
1934 	if ((ret = ctf_dwmap_add(cup, id, die, B_FALSE)) != 0)
1935 		goto out;
1936 
1937 	if ((ret = ctf_dwarf_child(cup, die, &child)) != 0) {
1938 		if (ret == ENOENT)
1939 			ret = 0;
1940 		goto out;
1941 	}
1942 
1943 	while (child != NULL) {
1944 		Dwarf_Half tag;
1945 		Dwarf_Signed sval;
1946 		Dwarf_Unsigned uval;
1947 		Dwarf_Die arg = child;
1948 		char *name;
1949 		int eval;
1950 
1951 		if ((ret = ctf_dwarf_sib(cup, arg, &child)) != 0)
1952 			break;
1953 
1954 		if ((ret = ctf_dwarf_tag(cup, arg, &tag)) != 0)
1955 			break;
1956 
1957 		if (tag != DW_TAG_enumerator) {
1958 			if ((ret = ctf_dwarf_convert_type(cup, arg, NULL,
1959 			    CTF_ADD_NONROOT)) != 0) {
1960 				break;
1961 			}
1962 			continue;
1963 		}
1964 
1965 		/*
1966 		 * DWARF v4 section 5.7 tells us we'll always have names.
1967 		 */
1968 		if ((ret = ctf_dwarf_string(cup, arg, DW_AT_name, &name)) != 0)
1969 			break;
1970 
1971 		/*
1972 		 * We have to be careful here: newer GCCs generate DWARF where
1973 		 * an unsigned value will happily pass ctf_dwarf_signed().
1974 		 * Since negative values will fail ctf_dwarf_unsigned(), we try
1975 		 * that first to make sure we get the right value.
1976 		 */
1977 		if ((ret = ctf_dwarf_unsigned(cup, arg, DW_AT_const_value,
1978 		    &uval)) == 0) {
1979 			eval = (int)uval;
1980 		} else {
1981 			/*
1982 			 * ctf_dwarf_unsigned will have left an error in the
1983 			 * buffer
1984 			 */
1985 			*cup->cu_errbuf = '\0';
1986 
1987 			if ((ret = ctf_dwarf_signed(cup, arg, DW_AT_const_value,
1988 			    &sval)) == 0) {
1989 				eval = sval;
1990 			}
1991 		}
1992 
1993 		if (ret != 0) {
1994 			if (ret == ENOENT) {
1995 				(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
1996 				    "encountered enumeration without constant "
1997 				    "value\n");
1998 				ret = ECTF_CONVBKERR;
1999 			}
2000 			ctf_free(name, strlen(name) + 1);
2001 			break;
2002 		}
2003 
2004 		ret = ctf_add_enumerator(cup->cu_ctfp, id, name, eval);
2005 		if (ret == CTF_ERR) {
2006 			ret = ctf_errno(cup->cu_ctfp);
2007 
2008 			if (ret == ECTF_DTFULL && (cup->cu_handle->cch_flags &
2009 			    CTF_ALLOW_TRUNCATION)) {
2010 				if (cup->cu_handle->cch_warncb != NULL) {
2011 					cup->cu_handle->cch_warncb(
2012 					    cup->cu_handle->cch_warncb_arg,
2013 					    "truncating enumeration %s at %s\n",
2014 					    name, enumname == NULL ? "<anon>" :
2015 					    enumname);
2016 				}
2017 				ret = 0;
2018 			} else {
2019 				(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
2020 				    "failed to add enumerator %s (%d) "
2021 				    "to %s (%d)\n", name, eval,
2022 				    enumname == NULL ? "<anon>" : enumname, id);
2023 			}
2024 			ctf_free(name, strlen(name) + 1);
2025 			break;
2026 		}
2027 		ctf_free(name, strlen(name) + 1);
2028 	}
2029 
2030 out:
2031 
2032 	if (enumname != NULL)
2033 		ctf_free(enumname, strlen(enumname) + 1);
2034 
2035 	return (ret);
2036 }
2037 
2038 /*
2039  * For a function pointer, walk over and process all of its children, unless we
2040  * encounter one that's just a declaration. In which case, we error on it.
2041  */
2042 static int
2043 ctf_dwarf_create_fptr(ctf_cu_t *cup, Dwarf_Die die, ctf_id_t *idp, int isroot)
2044 {
2045 	int ret;
2046 	Dwarf_Bool b;
2047 	ctf_funcinfo_t fi;
2048 	Dwarf_Die retdie;
2049 	ctf_id_t *argv = NULL;
2050 
2051 	bzero(&fi, sizeof (ctf_funcinfo_t));
2052 
2053 	if ((ret = ctf_dwarf_boolean(cup, die, DW_AT_declaration, &b)) != 0) {
2054 		if (ret != ENOENT)
2055 			return (ret);
2056 	} else {
2057 		if (b != 0)
2058 			return (EPROTOTYPE);
2059 	}
2060 
2061 	/*
2062 	 * Return type is in DW_AT_type, if none, it returns void.
2063 	 */
2064 	if ((ret = ctf_dwarf_refdie(cup, die, DW_AT_type, &retdie)) != 0) {
2065 		if (ret != ENOENT)
2066 			return (ret);
2067 		if ((fi.ctc_return = ctf_dwarf_void(cup)) == CTF_ERR)
2068 			return (ctf_errno(cup->cu_ctfp));
2069 	} else {
2070 		if ((ret = ctf_dwarf_convert_type(cup, retdie, &fi.ctc_return,
2071 		    CTF_ADD_NONROOT)) != 0)
2072 			return (ret);
2073 	}
2074 
2075 	if ((ret = ctf_dwarf_function_count(cup, die, &fi, B_TRUE)) != 0) {
2076 		return (ret);
2077 	}
2078 
2079 	if (fi.ctc_argc != 0) {
2080 		argv = ctf_alloc(sizeof (ctf_id_t) * fi.ctc_argc);
2081 		if (argv == NULL)
2082 			return (ENOMEM);
2083 
2084 		if ((ret = ctf_dwarf_convert_fargs(cup, die, &fi, argv)) != 0) {
2085 			ctf_free(argv, sizeof (ctf_id_t) * fi.ctc_argc);
2086 			return (ret);
2087 		}
2088 	}
2089 
2090 	if ((*idp = ctf_add_funcptr(cup->cu_ctfp, isroot, &fi, argv)) ==
2091 	    CTF_ERR) {
2092 		ctf_free(argv, sizeof (ctf_id_t) * fi.ctc_argc);
2093 		return (ctf_errno(cup->cu_ctfp));
2094 	}
2095 
2096 	ctf_free(argv, sizeof (ctf_id_t) * fi.ctc_argc);
2097 	return (ctf_dwmap_add(cup, *idp, die, B_FALSE));
2098 }
2099 
2100 static int
2101 ctf_dwarf_convert_type(ctf_cu_t *cup, Dwarf_Die die, ctf_id_t *idp,
2102     int isroot)
2103 {
2104 	int ret;
2105 	Dwarf_Off offset;
2106 	Dwarf_Half tag;
2107 	ctf_dwmap_t lookup, *map;
2108 	ctf_id_t id;
2109 
2110 	if (idp == NULL)
2111 		idp = &id;
2112 
2113 	if ((ret = ctf_dwarf_offset(cup, die, &offset)) != 0)
2114 		return (ret);
2115 
2116 	if (offset > cup->cu_maxoff) {
2117 		(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
2118 		    "die offset %llu beyond maximum for header %llu\n",
2119 		    offset, cup->cu_maxoff);
2120 		return (ECTF_CONVBKERR);
2121 	}
2122 
2123 	/*
2124 	 * If we've already added an entry for this offset, then we're done.
2125 	 */
2126 	lookup.cdm_off = offset;
2127 	if ((map = avl_find(&cup->cu_map, &lookup, NULL)) != NULL) {
2128 		*idp = map->cdm_id;
2129 		return (0);
2130 	}
2131 
2132 	if ((ret = ctf_dwarf_tag(cup, die, &tag)) != 0)
2133 		return (ret);
2134 
2135 	ret = ENOTSUP;
2136 	switch (tag) {
2137 	case DW_TAG_base_type:
2138 		ctf_dprintf("base\n");
2139 		ret = ctf_dwarf_create_base(cup, die, idp, isroot, offset);
2140 		break;
2141 	case DW_TAG_array_type:
2142 		ctf_dprintf("array\n");
2143 		ret = ctf_dwarf_create_array(cup, die, idp, isroot);
2144 		break;
2145 	case DW_TAG_enumeration_type:
2146 		ctf_dprintf("enum\n");
2147 		ret = ctf_dwarf_create_enum(cup, die, idp, isroot);
2148 		break;
2149 	case DW_TAG_pointer_type:
2150 		ctf_dprintf("pointer\n");
2151 		ret = ctf_dwarf_create_reference(cup, die, idp, CTF_K_POINTER,
2152 		    isroot);
2153 		break;
2154 	case DW_TAG_structure_type:
2155 		ctf_dprintf("struct\n");
2156 		ret = ctf_dwarf_create_sou(cup, die, idp, CTF_K_STRUCT,
2157 		    isroot);
2158 		break;
2159 	case DW_TAG_subroutine_type:
2160 		ctf_dprintf("fptr\n");
2161 		ret = ctf_dwarf_create_fptr(cup, die, idp, isroot);
2162 		break;
2163 	case DW_TAG_typedef:
2164 		ctf_dprintf("typedef\n");
2165 		ret = ctf_dwarf_create_reference(cup, die, idp, CTF_K_TYPEDEF,
2166 		    isroot);
2167 		break;
2168 	case DW_TAG_union_type:
2169 		ctf_dprintf("union\n");
2170 		ret = ctf_dwarf_create_sou(cup, die, idp, CTF_K_UNION,
2171 		    isroot);
2172 		break;
2173 	case DW_TAG_const_type:
2174 		ctf_dprintf("const\n");
2175 		ret = ctf_dwarf_create_reference(cup, die, idp, CTF_K_CONST,
2176 		    isroot);
2177 		break;
2178 	case DW_TAG_volatile_type:
2179 		ctf_dprintf("volatile\n");
2180 		ret = ctf_dwarf_create_reference(cup, die, idp, CTF_K_VOLATILE,
2181 		    isroot);
2182 		break;
2183 	case DW_TAG_restrict_type:
2184 		ctf_dprintf("restrict\n");
2185 		ret = ctf_dwarf_create_reference(cup, die, idp, CTF_K_RESTRICT,
2186 		    isroot);
2187 		break;
2188 	default:
2189 		ctf_dprintf("ignoring tag type %x\n", tag);
2190 		*idp = CTF_ERR;
2191 		ret = 0;
2192 		break;
2193 	}
2194 	ctf_dprintf("ctf_dwarf_convert_type tag specific handler returned %d\n",
2195 	    ret);
2196 
2197 	return (ret);
2198 }
2199 
2200 static int
2201 ctf_dwarf_walk_lexical(ctf_cu_t *cup, Dwarf_Die die)
2202 {
2203 	int ret;
2204 	Dwarf_Die child;
2205 
2206 	if ((ret = ctf_dwarf_child(cup, die, &child)) != 0)
2207 		return (ret);
2208 
2209 	if (child == NULL)
2210 		return (0);
2211 
2212 	return (ctf_dwarf_convert_die(cup, die));
2213 }
2214 
2215 static int
2216 ctf_dwarf_function_count(ctf_cu_t *cup, Dwarf_Die die, ctf_funcinfo_t *fip,
2217     boolean_t fptr)
2218 {
2219 	int ret;
2220 	Dwarf_Die child, sib, arg;
2221 
2222 	if ((ret = ctf_dwarf_child(cup, die, &child)) != 0)
2223 		return (ret);
2224 
2225 	arg = child;
2226 	while (arg != NULL) {
2227 		Dwarf_Half tag;
2228 
2229 		if ((ret = ctf_dwarf_tag(cup, arg, &tag)) != 0)
2230 			return (ret);
2231 
2232 		/*
2233 		 * We have to check for a varargs type declaration. This will
2234 		 * happen in one of two ways. If we have a function pointer
2235 		 * type, then it'll be done with a tag of type
2236 		 * DW_TAG_unspecified_parameters. However, it only means we have
2237 		 * a variable number of arguments, if we have more than one
2238 		 * argument found so far. Otherwise, when we have a function
2239 		 * type, it instead uses a formal parameter whose name is '...'
2240 		 * to indicate a variable arguments member.
2241 		 *
2242 		 * Also, if we have a function pointer, then we have to expect
2243 		 * that we might not get a name at all.
2244 		 */
2245 		if (tag == DW_TAG_formal_parameter && fptr == B_FALSE) {
2246 			char *name;
2247 			if ((ret = ctf_dwarf_string(cup, die, DW_AT_name,
2248 			    &name)) != 0)
2249 				return (ret);
2250 			if (strcmp(name, DWARF_VARARGS_NAME) == 0)
2251 				fip->ctc_flags |= CTF_FUNC_VARARG;
2252 			else
2253 				fip->ctc_argc++;
2254 			ctf_free(name, strlen(name) + 1);
2255 		} else if (tag == DW_TAG_formal_parameter) {
2256 			fip->ctc_argc++;
2257 		} else if (tag == DW_TAG_unspecified_parameters &&
2258 		    fip->ctc_argc > 0) {
2259 			fip->ctc_flags |= CTF_FUNC_VARARG;
2260 		}
2261 		if ((ret = ctf_dwarf_sib(cup, arg, &sib)) != 0)
2262 			return (ret);
2263 		arg = sib;
2264 	}
2265 
2266 	return (0);
2267 }
2268 
2269 static int
2270 ctf_dwarf_convert_fargs(ctf_cu_t *cup, Dwarf_Die die, ctf_funcinfo_t *fip,
2271     ctf_id_t *argv)
2272 {
2273 	int ret;
2274 	int i = 0;
2275 	Dwarf_Die child, sib, arg;
2276 
2277 	if ((ret = ctf_dwarf_child(cup, die, &child)) != 0)
2278 		return (ret);
2279 
2280 	arg = child;
2281 	while (arg != NULL) {
2282 		Dwarf_Half tag;
2283 
2284 		if ((ret = ctf_dwarf_tag(cup, arg, &tag)) != 0)
2285 			return (ret);
2286 		if (tag == DW_TAG_formal_parameter) {
2287 			Dwarf_Die tdie;
2288 
2289 			if ((ret = ctf_dwarf_refdie(cup, arg, DW_AT_type,
2290 			    &tdie)) != 0)
2291 				return (ret);
2292 
2293 			if ((ret = ctf_dwarf_convert_type(cup, tdie, &argv[i],
2294 			    CTF_ADD_ROOT)) != 0)
2295 				return (ret);
2296 			i++;
2297 
2298 			/*
2299 			 * Once we hit argc entries, we're done. This ensures we
2300 			 * don't accidentally hit a varargs which should be the
2301 			 * last entry.
2302 			 */
2303 			if (i == fip->ctc_argc)
2304 				break;
2305 		}
2306 
2307 		if ((ret = ctf_dwarf_sib(cup, arg, &sib)) != 0)
2308 			return (ret);
2309 		arg = sib;
2310 	}
2311 
2312 	return (0);
2313 }
2314 
2315 static int
2316 ctf_dwarf_convert_function(ctf_cu_t *cup, Dwarf_Die die)
2317 {
2318 	ctf_dwfunc_t *cdf;
2319 	Dwarf_Die tdie;
2320 	Dwarf_Bool b;
2321 	char *name;
2322 	int ret;
2323 
2324 	/*
2325 	 * Functions that don't have a name are generally functions that have
2326 	 * been inlined and thus most information about them has been lost. If
2327 	 * we can't get a name, then instead of returning ENOENT, we silently
2328 	 * swallow the error.
2329 	 */
2330 	if ((ret = ctf_dwarf_string(cup, die, DW_AT_name, &name)) != 0) {
2331 		if (ret == ENOENT)
2332 			return (0);
2333 		return (ret);
2334 	}
2335 
2336 	ctf_dprintf("beginning work on function %s (die %llx)\n",
2337 	    name, ctf_die_offset(cup, die));
2338 
2339 	if ((ret = ctf_dwarf_boolean(cup, die, DW_AT_declaration, &b)) != 0) {
2340 		if (ret != ENOENT) {
2341 			ctf_free(name, strlen(name) + 1);
2342 			return (ret);
2343 		}
2344 	} else if (b != 0) {
2345 		/*
2346 		 * GCC7 at least creates empty DW_AT_declarations for functions
2347 		 * defined in headers.  As they lack details on the function
2348 		 * prototype, we need to ignore them.  If we later actually
2349 		 * see the relevant function's definition, we will see another
2350 		 * DW_TAG_subprogram that is more complete.
2351 		 */
2352 		ctf_dprintf("ignoring declaration of function %s (die %llx)\n",
2353 		    name, ctf_die_offset(cup, die));
2354 		ctf_free(name, strlen(name) + 1);
2355 		return (0);
2356 	}
2357 
2358 	if ((cdf = ctf_alloc(sizeof (ctf_dwfunc_t))) == NULL) {
2359 		ctf_free(name, strlen(name) + 1);
2360 		return (ENOMEM);
2361 	}
2362 	bzero(cdf, sizeof (ctf_dwfunc_t));
2363 	cdf->cdf_name = name;
2364 
2365 	if ((ret = ctf_dwarf_refdie(cup, die, DW_AT_type, &tdie)) == 0) {
2366 		if ((ret = ctf_dwarf_convert_type(cup, tdie,
2367 		    &(cdf->cdf_fip.ctc_return), CTF_ADD_ROOT)) != 0) {
2368 			ctf_free(name, strlen(name) + 1);
2369 			ctf_free(cdf, sizeof (ctf_dwfunc_t));
2370 			return (ret);
2371 		}
2372 	} else if (ret != ENOENT) {
2373 		ctf_free(name, strlen(name) + 1);
2374 		ctf_free(cdf, sizeof (ctf_dwfunc_t));
2375 		return (ret);
2376 	} else {
2377 		if ((cdf->cdf_fip.ctc_return = ctf_dwarf_void(cup)) ==
2378 		    CTF_ERR) {
2379 			ctf_free(name, strlen(name) + 1);
2380 			ctf_free(cdf, sizeof (ctf_dwfunc_t));
2381 			return (ctf_errno(cup->cu_ctfp));
2382 		}
2383 	}
2384 
2385 	/*
2386 	 * A function has a number of children, some of which may not be ones we
2387 	 * care about. Children that we care about have a type of
2388 	 * DW_TAG_formal_parameter. We're going to do two passes, the first to
2389 	 * count the arguments, the second to process them. Afterwards, we
2390 	 * should be good to go ahead and add this function.
2391 	 *
2392 	 * Note, we already got the return type by going in and grabbing it out
2393 	 * of the DW_AT_type.
2394 	 */
2395 	if ((ret = ctf_dwarf_function_count(cup, die, &cdf->cdf_fip,
2396 	    B_FALSE)) != 0) {
2397 		ctf_free(name, strlen(name) + 1);
2398 		ctf_free(cdf, sizeof (ctf_dwfunc_t));
2399 		return (ret);
2400 	}
2401 
2402 	ctf_dprintf("beginning to convert function arguments %s\n", name);
2403 	if (cdf->cdf_fip.ctc_argc != 0) {
2404 		uint_t argc = cdf->cdf_fip.ctc_argc;
2405 		cdf->cdf_argv = ctf_alloc(sizeof (ctf_id_t) * argc);
2406 		if (cdf->cdf_argv == NULL) {
2407 			ctf_free(name, strlen(name) + 1);
2408 			ctf_free(cdf, sizeof (ctf_dwfunc_t));
2409 			return (ENOMEM);
2410 		}
2411 		if ((ret = ctf_dwarf_convert_fargs(cup, die,
2412 		    &cdf->cdf_fip, cdf->cdf_argv)) != 0) {
2413 			ctf_free(cdf->cdf_argv, sizeof (ctf_id_t) * argc);
2414 			ctf_free(name, strlen(name) + 1);
2415 			ctf_free(cdf, sizeof (ctf_dwfunc_t));
2416 			return (ret);
2417 		}
2418 	} else {
2419 		cdf->cdf_argv = NULL;
2420 	}
2421 
2422 	if ((ret = ctf_dwarf_isglobal(cup, die, &cdf->cdf_global)) != 0) {
2423 		ctf_free(cdf->cdf_argv, sizeof (ctf_id_t) *
2424 		    cdf->cdf_fip.ctc_argc);
2425 		ctf_free(name, strlen(name) + 1);
2426 		ctf_free(cdf, sizeof (ctf_dwfunc_t));
2427 		return (ret);
2428 	}
2429 
2430 	ctf_list_append(&cup->cu_funcs, cdf);
2431 	return (ret);
2432 }
2433 
2434 /*
2435  * Convert variables, but only if they're not prototypes and have names.
2436  */
2437 static int
2438 ctf_dwarf_convert_variable(ctf_cu_t *cup, Dwarf_Die die)
2439 {
2440 	int ret;
2441 	char *name;
2442 	Dwarf_Bool b;
2443 	Dwarf_Die tdie;
2444 	ctf_id_t id;
2445 	ctf_dwvar_t *cdv;
2446 
2447 	/* Skip "Non-Defining Declarations" */
2448 	if ((ret = ctf_dwarf_boolean(cup, die, DW_AT_declaration, &b)) == 0) {
2449 		if (b != 0)
2450 			return (0);
2451 	} else if (ret != ENOENT) {
2452 		return (ret);
2453 	}
2454 
2455 	/*
2456 	 * If we find a DIE of "Declarations Completing Non-Defining
2457 	 * Declarations", we will use the referenced type's DIE.  This isn't
2458 	 * quite correct, e.g. DW_AT_decl_line will be the forward declaration
2459 	 * not this site.  It's sufficient for what we need, however: in
2460 	 * particular, we should find DW_AT_external as needed there.
2461 	 */
2462 	if ((ret = ctf_dwarf_refdie(cup, die, DW_AT_specification,
2463 	    &tdie)) == 0) {
2464 		Dwarf_Off offset;
2465 		if ((ret = ctf_dwarf_offset(cup, tdie, &offset)) != 0)
2466 			return (ret);
2467 		ctf_dprintf("die 0x%llx DW_AT_specification -> die 0x%llx\n",
2468 		    ctf_die_offset(cup, die), ctf_die_offset(cup, tdie));
2469 		die = tdie;
2470 	} else if (ret != ENOENT) {
2471 		return (ret);
2472 	}
2473 
2474 	if ((ret = ctf_dwarf_string(cup, die, DW_AT_name, &name)) != 0 &&
2475 	    ret != ENOENT)
2476 		return (ret);
2477 	if (ret == ENOENT)
2478 		return (0);
2479 
2480 	if ((ret = ctf_dwarf_refdie(cup, die, DW_AT_type, &tdie)) != 0) {
2481 		ctf_free(name, strlen(name) + 1);
2482 		return (ret);
2483 	}
2484 
2485 	if ((ret = ctf_dwarf_convert_type(cup, tdie, &id,
2486 	    CTF_ADD_ROOT)) != 0)
2487 		return (ret);
2488 
2489 	if ((cdv = ctf_alloc(sizeof (ctf_dwvar_t))) == NULL) {
2490 		ctf_free(name, strlen(name) + 1);
2491 		return (ENOMEM);
2492 	}
2493 
2494 	cdv->cdv_name = name;
2495 	cdv->cdv_type = id;
2496 
2497 	if ((ret = ctf_dwarf_isglobal(cup, die, &cdv->cdv_global)) != 0) {
2498 		ctf_free(cdv, sizeof (ctf_dwvar_t));
2499 		ctf_free(name, strlen(name) + 1);
2500 		return (ret);
2501 	}
2502 
2503 	ctf_list_append(&cup->cu_vars, cdv);
2504 	return (0);
2505 }
2506 
2507 /*
2508  * Walk through our set of top-level types and process them.
2509  */
2510 static int
2511 ctf_dwarf_walk_toplevel(ctf_cu_t *cup, Dwarf_Die die)
2512 {
2513 	int ret;
2514 	Dwarf_Off offset;
2515 	Dwarf_Half tag;
2516 
2517 	if ((ret = ctf_dwarf_offset(cup, die, &offset)) != 0)
2518 		return (ret);
2519 
2520 	if (offset > cup->cu_maxoff) {
2521 		(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
2522 		    "die offset %llu beyond maximum for header %llu\n",
2523 		    offset, cup->cu_maxoff);
2524 		return (ECTF_CONVBKERR);
2525 	}
2526 
2527 	if ((ret = ctf_dwarf_tag(cup, die, &tag)) != 0)
2528 		return (ret);
2529 
2530 	ret = 0;
2531 	switch (tag) {
2532 	case DW_TAG_subprogram:
2533 		ctf_dprintf("top level func\n");
2534 		ret = ctf_dwarf_convert_function(cup, die);
2535 		break;
2536 	case DW_TAG_variable:
2537 		ctf_dprintf("top level var\n");
2538 		ret = ctf_dwarf_convert_variable(cup, die);
2539 		break;
2540 	case DW_TAG_lexical_block:
2541 		ctf_dprintf("top level block\n");
2542 		ret = ctf_dwarf_walk_lexical(cup, die);
2543 		break;
2544 	case DW_TAG_enumeration_type:
2545 	case DW_TAG_structure_type:
2546 	case DW_TAG_typedef:
2547 	case DW_TAG_union_type:
2548 		ctf_dprintf("top level type\n");
2549 		ret = ctf_dwarf_convert_type(cup, die, NULL, B_TRUE);
2550 		break;
2551 	default:
2552 		break;
2553 	}
2554 
2555 	return (ret);
2556 }
2557 
2558 
2559 /*
2560  * We're given a node. At this node we need to convert it and then proceed to
2561  * convert any siblings that are associaed with this die.
2562  */
2563 static int
2564 ctf_dwarf_convert_die(ctf_cu_t *cup, Dwarf_Die die)
2565 {
2566 	while (die != NULL) {
2567 		int ret;
2568 		Dwarf_Die sib;
2569 
2570 		if ((ret = ctf_dwarf_walk_toplevel(cup, die)) != 0)
2571 			return (ret);
2572 
2573 		if ((ret = ctf_dwarf_sib(cup, die, &sib)) != 0)
2574 			return (ret);
2575 		die = sib;
2576 	}
2577 	return (0);
2578 }
2579 
2580 static int
2581 ctf_dwarf_fixup_die(ctf_cu_t *cup, boolean_t addpass)
2582 {
2583 	ctf_dwmap_t *map;
2584 
2585 	for (map = avl_first(&cup->cu_map); map != NULL;
2586 	    map = AVL_NEXT(&cup->cu_map, map)) {
2587 		int ret;
2588 		if (map->cdm_fix == B_FALSE)
2589 			continue;
2590 		if ((ret = ctf_dwarf_fixup_sou(cup, map->cdm_die, map->cdm_id,
2591 		    addpass)) != 0)
2592 			return (ret);
2593 	}
2594 
2595 	return (0);
2596 }
2597 
2598 /*
2599  * The DWARF information about a symbol and the information in the symbol table
2600  * may not be the same due to symbol reduction that is performed by ld due to a
2601  * mapfile or other such directive. We process weak symbols at a later time.
2602  *
2603  * The following are the rules that we employ:
2604  *
2605  * 1. A DWARF function that is considered exported matches STB_GLOBAL entries
2606  * with the same name.
2607  *
2608  * 2. A DWARF function that is considered exported matches STB_LOCAL entries
2609  * with the same name and the same file. This case may happen due to mapfile
2610  * reduction.
2611  *
2612  * 3. A DWARF function that is not considered exported matches STB_LOCAL entries
2613  * with the same name and the same file.
2614  *
2615  * 4. A DWARF function that has the same name as the symbol table entry, but the
2616  * files do not match. This is considered a 'fuzzy' match. This may also happen
2617  * due to a mapfile reduction. Fuzzy matching is only used when we know that the
2618  * file in question refers to the primary object. This is because when a symbol
2619  * is reduced in a mapfile, it's always going to be tagged as a local value in
2620  * the generated output and it is considered as to belong to the primary file
2621  * which is the first STT_FILE symbol we see.
2622  */
2623 static boolean_t
2624 ctf_dwarf_symbol_match(const char *symtab_file, const char *symtab_name,
2625     uint_t symtab_bind, const char *dwarf_file, const char *dwarf_name,
2626     boolean_t dwarf_global, boolean_t *is_fuzzy)
2627 {
2628 	*is_fuzzy = B_FALSE;
2629 
2630 	if (symtab_bind != STB_LOCAL && symtab_bind != STB_GLOBAL) {
2631 		return (B_FALSE);
2632 	}
2633 
2634 	if (strcmp(symtab_name, dwarf_name) != 0) {
2635 		return (B_FALSE);
2636 	}
2637 
2638 	if (symtab_bind == STB_GLOBAL) {
2639 		return (dwarf_global);
2640 	}
2641 
2642 	if (strcmp(symtab_file, dwarf_file) == 0) {
2643 		return (B_TRUE);
2644 	}
2645 
2646 	if (dwarf_global) {
2647 		*is_fuzzy = B_TRUE;
2648 		return (B_TRUE);
2649 	}
2650 
2651 	return (B_FALSE);
2652 }
2653 
2654 static ctf_dwfunc_t *
2655 ctf_dwarf_match_func(ctf_cu_t *cup, const char *file, const char *name,
2656     uint_t bind, boolean_t primary)
2657 {
2658 	ctf_dwfunc_t *cdf, *fuzzy = NULL;
2659 
2660 	if (bind == STB_WEAK)
2661 		return (NULL);
2662 
2663 	if (bind == STB_LOCAL && (file == NULL || cup->cu_name == NULL))
2664 		return (NULL);
2665 
2666 	for (cdf = ctf_list_next(&cup->cu_funcs); cdf != NULL;
2667 	    cdf = ctf_list_next(cdf)) {
2668 		boolean_t is_fuzzy = B_FALSE;
2669 
2670 		if (ctf_dwarf_symbol_match(file, name, bind, cup->cu_name,
2671 		    cdf->cdf_name, cdf->cdf_global, &is_fuzzy)) {
2672 			if (is_fuzzy) {
2673 				if (primary) {
2674 					fuzzy = cdf;
2675 				}
2676 				continue;
2677 			} else {
2678 				return (cdf);
2679 			}
2680 		}
2681 	}
2682 
2683 	return (fuzzy);
2684 }
2685 
2686 static ctf_dwvar_t *
2687 ctf_dwarf_match_var(ctf_cu_t *cup, const char *file, const char *name,
2688     uint_t bind, boolean_t primary)
2689 {
2690 	ctf_dwvar_t *cdv, *fuzzy = NULL;
2691 
2692 	if (bind == STB_WEAK)
2693 		return (NULL);
2694 
2695 	if (bind == STB_LOCAL && (file == NULL || cup->cu_name == NULL))
2696 		return (NULL);
2697 
2698 	for (cdv = ctf_list_next(&cup->cu_vars); cdv != NULL;
2699 	    cdv = ctf_list_next(cdv)) {
2700 		boolean_t is_fuzzy = B_FALSE;
2701 
2702 		if (ctf_dwarf_symbol_match(file, name, bind, cup->cu_name,
2703 		    cdv->cdv_name, cdv->cdv_global, &is_fuzzy)) {
2704 			if (is_fuzzy) {
2705 				if (primary) {
2706 					fuzzy = cdv;
2707 				}
2708 			} else {
2709 				return (cdv);
2710 			}
2711 		}
2712 	}
2713 
2714 	return (fuzzy);
2715 }
2716 
2717 static int
2718 ctf_dwarf_conv_funcvars_cb(const Elf64_Sym *symp, ulong_t idx,
2719     const char *file, const char *name, boolean_t primary, void *arg)
2720 {
2721 	int ret;
2722 	uint_t bind, type;
2723 	ctf_cu_t *cup = arg;
2724 
2725 	bind = GELF_ST_BIND(symp->st_info);
2726 	type = GELF_ST_TYPE(symp->st_info);
2727 
2728 	/*
2729 	 * Come back to weak symbols in another pass
2730 	 */
2731 	if (bind == STB_WEAK)
2732 		return (0);
2733 
2734 	if (type == STT_OBJECT) {
2735 		ctf_dwvar_t *cdv = ctf_dwarf_match_var(cup, file, name,
2736 		    bind, primary);
2737 		if (cdv == NULL)
2738 			return (0);
2739 		ret = ctf_add_object(cup->cu_ctfp, idx, cdv->cdv_type);
2740 		ctf_dprintf("added object %s->%ld\n", name, cdv->cdv_type);
2741 	} else {
2742 		ctf_dwfunc_t *cdf = ctf_dwarf_match_func(cup, file, name,
2743 		    bind, primary);
2744 		if (cdf == NULL)
2745 			return (0);
2746 		ret = ctf_add_function(cup->cu_ctfp, idx, &cdf->cdf_fip,
2747 		    cdf->cdf_argv);
2748 		ctf_dprintf("added function %s\n", name);
2749 	}
2750 
2751 	if (ret == CTF_ERR) {
2752 		return (ctf_errno(cup->cu_ctfp));
2753 	}
2754 
2755 	return (0);
2756 }
2757 
2758 static int
2759 ctf_dwarf_conv_funcvars(ctf_cu_t *cup)
2760 {
2761 	return (ctf_symtab_iter(cup->cu_ctfp, ctf_dwarf_conv_funcvars_cb, cup));
2762 }
2763 
2764 /*
2765  * If we have a weak symbol, attempt to find the strong symbol it will resolve
2766  * to.  Note: the code where this actually happens is in sym_process() in
2767  * cmd/sgs/libld/common/syms.c
2768  *
2769  * Finding the matching symbol is unfortunately not trivial.  For a symbol to be
2770  * a candidate, it must:
2771  *
2772  * - have the same type (function, object)
2773  * - have the same value (address)
2774  * - have the same size
2775  * - not be another weak symbol
2776  * - belong to the same section (checked via section index)
2777  *
2778  * To perform this check, we first iterate over the symbol table. For each weak
2779  * symbol that we encounter, we then do a second walk over the symbol table,
2780  * calling ctf_dwarf_conv_check_weak(). If a symbol matches the above, then it's
2781  * either a local or global symbol. If we find a global symbol then we go with
2782  * it and stop searching for additional matches.
2783  *
2784  * If instead, we find a local symbol, things are more complicated. The first
2785  * thing we do is to try and see if we have file information about both symbols
2786  * (STT_FILE). If they both have file information and it matches, then we treat
2787  * that as a good match and stop searching for additional matches.
2788  *
2789  * Otherwise, this means we have a non-matching file and a local symbol. We
2790  * treat this as a candidate and if we find a better match (one of the two cases
2791  * above), use that instead. There are two different ways this can happen.
2792  * Either this is a completely different symbol, or it's a once-global symbol
2793  * that was scoped to local via a mapfile.  In the former case, curfile is
2794  * likely inaccurate since the linker does not preserve the needed curfile in
2795  * the order of the symbol table (see the comments about locally scoped symbols
2796  * in libld's update_osym()).  As we can't tell this case from the former one,
2797  * we use this symbol iff no other matching symbol is found.
2798  *
2799  * What we really need here is a SUNW section containing weak<->strong mappings
2800  * that we can consume.
2801  */
2802 typedef struct ctf_dwarf_weak_arg {
2803 	const Elf64_Sym *cweak_symp;
2804 	const char *cweak_file;
2805 	boolean_t cweak_candidate;
2806 	ulong_t cweak_idx;
2807 } ctf_dwarf_weak_arg_t;
2808 
2809 static int
2810 ctf_dwarf_conv_check_weak(const Elf64_Sym *symp, ulong_t idx, const char *file,
2811     const char *name, boolean_t primary, void *arg)
2812 {
2813 	ctf_dwarf_weak_arg_t *cweak = arg;
2814 
2815 	const Elf64_Sym *wsymp = cweak->cweak_symp;
2816 
2817 	ctf_dprintf("comparing weak to %s\n", name);
2818 
2819 	if (GELF_ST_BIND(symp->st_info) == STB_WEAK) {
2820 		return (0);
2821 	}
2822 
2823 	if (GELF_ST_TYPE(wsymp->st_info) != GELF_ST_TYPE(symp->st_info)) {
2824 		return (0);
2825 	}
2826 
2827 	if (wsymp->st_value != symp->st_value) {
2828 		return (0);
2829 	}
2830 
2831 	if (wsymp->st_size != symp->st_size) {
2832 		return (0);
2833 	}
2834 
2835 	if (wsymp->st_shndx != symp->st_shndx) {
2836 		return (0);
2837 	}
2838 
2839 	/*
2840 	 * Check if it's a weak candidate.
2841 	 */
2842 	if (GELF_ST_BIND(symp->st_info) == STB_LOCAL &&
2843 	    (file == NULL || cweak->cweak_file == NULL ||
2844 	    strcmp(file, cweak->cweak_file) != 0)) {
2845 		cweak->cweak_candidate = B_TRUE;
2846 		cweak->cweak_idx = idx;
2847 		return (0);
2848 	}
2849 
2850 	/*
2851 	 * Found a match, break.
2852 	 */
2853 	cweak->cweak_idx = idx;
2854 	return (1);
2855 }
2856 
2857 static int
2858 ctf_dwarf_duplicate_sym(ctf_cu_t *cup, ulong_t idx, ulong_t matchidx)
2859 {
2860 	ctf_id_t id = ctf_lookup_by_symbol(cup->cu_ctfp, matchidx);
2861 
2862 	/*
2863 	 * If we matched something that for some reason didn't have type data,
2864 	 * we don't consider that a fatal error and silently swallow it.
2865 	 */
2866 	if (id == CTF_ERR) {
2867 		if (ctf_errno(cup->cu_ctfp) == ECTF_NOTYPEDAT)
2868 			return (0);
2869 		else
2870 			return (ctf_errno(cup->cu_ctfp));
2871 	}
2872 
2873 	if (ctf_add_object(cup->cu_ctfp, idx, id) == CTF_ERR)
2874 		return (ctf_errno(cup->cu_ctfp));
2875 
2876 	return (0);
2877 }
2878 
2879 static int
2880 ctf_dwarf_duplicate_func(ctf_cu_t *cup, ulong_t idx, ulong_t matchidx)
2881 {
2882 	int ret;
2883 	ctf_funcinfo_t fip;
2884 	ctf_id_t *args = NULL;
2885 
2886 	if (ctf_func_info(cup->cu_ctfp, matchidx, &fip) == CTF_ERR) {
2887 		if (ctf_errno(cup->cu_ctfp) == ECTF_NOFUNCDAT)
2888 			return (0);
2889 		else
2890 			return (ctf_errno(cup->cu_ctfp));
2891 	}
2892 
2893 	if (fip.ctc_argc != 0) {
2894 		args = ctf_alloc(sizeof (ctf_id_t) * fip.ctc_argc);
2895 		if (args == NULL)
2896 			return (ENOMEM);
2897 
2898 		if (ctf_func_args(cup->cu_ctfp, matchidx, fip.ctc_argc, args) ==
2899 		    CTF_ERR) {
2900 			ctf_free(args, sizeof (ctf_id_t) * fip.ctc_argc);
2901 			return (ctf_errno(cup->cu_ctfp));
2902 		}
2903 	}
2904 
2905 	ret = ctf_add_function(cup->cu_ctfp, idx, &fip, args);
2906 	if (args != NULL)
2907 		ctf_free(args, sizeof (ctf_id_t) * fip.ctc_argc);
2908 	if (ret == CTF_ERR)
2909 		return (ctf_errno(cup->cu_ctfp));
2910 
2911 	return (0);
2912 }
2913 
2914 static int
2915 ctf_dwarf_conv_weaks_cb(const Elf64_Sym *symp, ulong_t idx, const char *file,
2916     const char *name, boolean_t primary, void *arg)
2917 {
2918 	int ret, type;
2919 	ctf_dwarf_weak_arg_t cweak;
2920 	ctf_cu_t *cup = arg;
2921 
2922 	/*
2923 	 * We only care about weak symbols.
2924 	 */
2925 	if (GELF_ST_BIND(symp->st_info) != STB_WEAK)
2926 		return (0);
2927 
2928 	type = GELF_ST_TYPE(symp->st_info);
2929 	ASSERT(type == STT_OBJECT || type == STT_FUNC);
2930 
2931 	/*
2932 	 * For each weak symbol we encounter, we need to do a second iteration
2933 	 * to try and find a match. We should probably think about other
2934 	 * techniques to try and save us time in the future.
2935 	 */
2936 	cweak.cweak_symp = symp;
2937 	cweak.cweak_file = file;
2938 	cweak.cweak_candidate = B_FALSE;
2939 	cweak.cweak_idx = 0;
2940 
2941 	ctf_dprintf("Trying to find weak equiv for %s\n", name);
2942 
2943 	ret = ctf_symtab_iter(cup->cu_ctfp, ctf_dwarf_conv_check_weak, &cweak);
2944 	VERIFY(ret == 0 || ret == 1);
2945 
2946 	/*
2947 	 * Nothing was ever found, we're not going to add anything for this
2948 	 * entry.
2949 	 */
2950 	if (ret == 0 && cweak.cweak_candidate == B_FALSE) {
2951 		ctf_dprintf("found no weak match for %s\n", name);
2952 		return (0);
2953 	}
2954 
2955 	/*
2956 	 * Now, finally go and add the type based on the match.
2957 	 */
2958 	ctf_dprintf("matched weak symbol %lu to %lu\n", idx, cweak.cweak_idx);
2959 	if (type == STT_OBJECT) {
2960 		ret = ctf_dwarf_duplicate_sym(cup, idx, cweak.cweak_idx);
2961 	} else {
2962 		ret = ctf_dwarf_duplicate_func(cup, idx, cweak.cweak_idx);
2963 	}
2964 
2965 	return (ret);
2966 }
2967 
2968 static int
2969 ctf_dwarf_conv_weaks(ctf_cu_t *cup)
2970 {
2971 	return (ctf_symtab_iter(cup->cu_ctfp, ctf_dwarf_conv_weaks_cb, cup));
2972 }
2973 
2974 static int
2975 ctf_dwarf_convert_one(void *arg, void *unused)
2976 {
2977 	int ret;
2978 	ctf_file_t *dedup;
2979 	ctf_cu_t *cup = arg;
2980 	const char *name = cup->cu_name != NULL ? cup->cu_name : "NULL";
2981 
2982 	VERIFY(cup != NULL);
2983 
2984 	if ((ret = ctf_dwarf_init_die(cup)) != 0)
2985 		return (ret);
2986 
2987 	ctf_dprintf("converting die: %s - max offset: %x\n", name,
2988 	    cup->cu_maxoff);
2989 
2990 	ret = ctf_dwarf_convert_die(cup, cup->cu_cu);
2991 	ctf_dprintf("ctf_dwarf_convert_die (%s) returned %d\n", name,
2992 	    ret);
2993 	if (ret != 0)
2994 		return (ret);
2995 
2996 	if (ctf_update(cup->cu_ctfp) != 0) {
2997 		return (ctf_dwarf_error(cup, cup->cu_ctfp, 0,
2998 		    "failed to update output ctf container"));
2999 	}
3000 
3001 	ret = ctf_dwarf_fixup_die(cup, B_FALSE);
3002 	ctf_dprintf("ctf_dwarf_fixup_die (%s, FALSE) returned %d\n", name,
3003 	    ret);
3004 	if (ret != 0)
3005 		return (ret);
3006 
3007 	if (ctf_update(cup->cu_ctfp) != 0) {
3008 		return (ctf_dwarf_error(cup, cup->cu_ctfp, 0,
3009 		    "failed to update output ctf container"));
3010 	}
3011 
3012 	ret = ctf_dwarf_fixup_die(cup, B_TRUE);
3013 	ctf_dprintf("ctf_dwarf_fixup_die (%s, TRUE) returned %d\n", name,
3014 	    ret);
3015 	if (ret != 0)
3016 		return (ret);
3017 
3018 	if (ctf_update(cup->cu_ctfp) != 0) {
3019 		return (ctf_dwarf_error(cup, cup->cu_ctfp, 0,
3020 		    "failed to update output ctf container"));
3021 	}
3022 
3023 	if ((ret = ctf_dwarf_conv_funcvars(cup)) != 0) {
3024 		ctf_dprintf("ctf_dwarf_conv_funcvars (%s) returned %d\n",
3025 		    name, ret);
3026 		return (ctf_dwarf_error(cup, NULL, ret,
3027 		    "failed to convert strong functions and variables"));
3028 	}
3029 
3030 	if (ctf_update(cup->cu_ctfp) != 0) {
3031 		return (ctf_dwarf_error(cup, cup->cu_ctfp, 0,
3032 		    "failed to update output ctf container"));
3033 	}
3034 
3035 	if (cup->cu_doweaks == B_TRUE) {
3036 		if ((ret = ctf_dwarf_conv_weaks(cup)) != 0) {
3037 			ctf_dprintf("ctf_dwarf_conv_weaks (%s) returned %d\n",
3038 			    name, ret);
3039 			return (ctf_dwarf_error(cup, NULL, ret,
3040 			    "failed to convert weak functions and variables"));
3041 		}
3042 
3043 		if (ctf_update(cup->cu_ctfp) != 0) {
3044 			return (ctf_dwarf_error(cup, cup->cu_ctfp, 0,
3045 			    "failed to update output ctf container"));
3046 		}
3047 	}
3048 
3049 	ctf_phase_dump(cup->cu_ctfp, "pre-dwarf-dedup", name);
3050 	ctf_dprintf("adding inputs for dedup\n");
3051 	if ((ret = ctf_merge_add(cup->cu_cmh, cup->cu_ctfp)) != 0) {
3052 		return (ctf_dwarf_error(cup, NULL, ret,
3053 		    "failed to add inputs for merge"));
3054 	}
3055 
3056 	ctf_dprintf("starting dedup of %s\n", name);
3057 	if ((ret = ctf_merge_dedup(cup->cu_cmh, &dedup)) != 0) {
3058 		return (ctf_dwarf_error(cup, NULL, ret,
3059 		    "failed to deduplicate die"));
3060 	}
3061 
3062 	ctf_close(cup->cu_ctfp);
3063 	cup->cu_ctfp = dedup;
3064 	ctf_phase_dump(cup->cu_ctfp, "post-dwarf-dedup", name);
3065 
3066 	return (0);
3067 }
3068 
3069 static void
3070 ctf_dwarf_free_die(ctf_cu_t *cup)
3071 {
3072 	ctf_dwfunc_t *cdf, *ndf;
3073 	ctf_dwvar_t *cdv, *ndv;
3074 	ctf_dwbitf_t *cdb, *ndb;
3075 	ctf_dwmap_t *map;
3076 	void *cookie;
3077 
3078 	ctf_dprintf("Beginning to free die: %p\n", cup);
3079 
3080 	VERIFY3P(cup->cu_elf, !=, NULL);
3081 	cup->cu_elf = NULL;
3082 
3083 	ctf_dprintf("Trying to free name: %p\n", cup->cu_name);
3084 	if (cup->cu_name != NULL) {
3085 		ctf_free(cup->cu_name, strlen(cup->cu_name) + 1);
3086 		cup->cu_name = NULL;
3087 	}
3088 
3089 	ctf_dprintf("Trying to free merge handle: %p\n", cup->cu_cmh);
3090 	if (cup->cu_cmh != NULL) {
3091 		ctf_merge_fini(cup->cu_cmh);
3092 		cup->cu_cmh = NULL;
3093 	}
3094 
3095 	ctf_dprintf("Trying to free functions\n");
3096 	for (cdf = ctf_list_next(&cup->cu_funcs); cdf != NULL; cdf = ndf) {
3097 		ndf = ctf_list_next(cdf);
3098 		ctf_free(cdf->cdf_name, strlen(cdf->cdf_name) + 1);
3099 		if (cdf->cdf_fip.ctc_argc != 0) {
3100 			ctf_free(cdf->cdf_argv,
3101 			    sizeof (ctf_id_t) * cdf->cdf_fip.ctc_argc);
3102 		}
3103 		ctf_free(cdf, sizeof (ctf_dwfunc_t));
3104 	}
3105 
3106 	ctf_dprintf("Trying to free variables\n");
3107 	for (cdv = ctf_list_next(&cup->cu_vars); cdv != NULL; cdv = ndv) {
3108 		ndv = ctf_list_next(cdv);
3109 		ctf_free(cdv->cdv_name, strlen(cdv->cdv_name) + 1);
3110 		ctf_free(cdv, sizeof (ctf_dwvar_t));
3111 	}
3112 
3113 	ctf_dprintf("Trying to free bitfields\n");
3114 	for (cdb = ctf_list_next(&cup->cu_bitfields); cdb != NULL; cdb = ndb) {
3115 		ndb = ctf_list_next(cdb);
3116 		ctf_free(cdb, sizeof (ctf_dwbitf_t));
3117 	}
3118 
3119 	if (cup->cu_ctfp != NULL) {
3120 		ctf_close(cup->cu_ctfp);
3121 		cup->cu_ctfp = NULL;
3122 	}
3123 
3124 	cookie = NULL;
3125 	while ((map = avl_destroy_nodes(&cup->cu_map, &cookie)) != NULL)
3126 		ctf_free(map, sizeof (ctf_dwmap_t));
3127 	avl_destroy(&cup->cu_map);
3128 	cup->cu_errbuf = NULL;
3129 
3130 	if (cup->cu_cu != NULL) {
3131 		ctf_dwarf_dealloc(cup, cup->cu_cu, DW_DLA_DIE);
3132 		cup->cu_cu = NULL;
3133 	}
3134 }
3135 
3136 static int
3137 ctf_dwarf_count_dies(Dwarf_Debug dw, Dwarf_Error *derr, uint_t *ndies,
3138     char *errbuf, size_t errlen)
3139 {
3140 	int ret;
3141 	Dwarf_Half vers;
3142 	Dwarf_Unsigned nexthdr;
3143 
3144 	while ((ret = dwarf_next_cu_header(dw, NULL, &vers, NULL, NULL,
3145 	    &nexthdr, derr)) != DW_DLV_NO_ENTRY) {
3146 		if (ret != DW_DLV_OK) {
3147 			(void) snprintf(errbuf, errlen,
3148 			    "file does not contain valid DWARF data: %s\n",
3149 			    dwarf_errmsg(*derr));
3150 			return (ECTF_CONVBKERR);
3151 		}
3152 
3153 		switch (vers) {
3154 		case DWARF_VERSION_TWO:
3155 		case DWARF_VERSION_FOUR:
3156 			break;
3157 		default:
3158 			(void) snprintf(errbuf, errlen,
3159 			    "unsupported DWARF version: %d\n", vers);
3160 			return (ECTF_CONVBKERR);
3161 		}
3162 		*ndies = *ndies + 1;
3163 	}
3164 
3165 	return (0);
3166 }
3167 
3168 /*
3169  * Fill out just enough of each ctf_cu_t for the conversion process to
3170  * be able to finish the rest in a (potentially) multithreaded context.
3171  */
3172 static int
3173 ctf_dwarf_preinit_dies(ctf_convert_t *cch, int fd, Elf *elf, Dwarf_Debug dw,
3174     mutex_t *dwlock, Dwarf_Error *derr, uint_t ndies, ctf_cu_t *cdies,
3175     char *errbuf, size_t errlen)
3176 {
3177 	Dwarf_Unsigned hdrlen, abboff, nexthdr;
3178 	Dwarf_Half addrsz, vers;
3179 	Dwarf_Unsigned offset = 0;
3180 	uint_t added = 0;
3181 	int ret, i = 0;
3182 
3183 	while ((ret = dwarf_next_cu_header(dw, &hdrlen, &vers, &abboff,
3184 	    &addrsz, &nexthdr, derr)) != DW_DLV_NO_ENTRY) {
3185 		Dwarf_Die cu;
3186 		ctf_cu_t *cup;
3187 		char *name;
3188 
3189 		VERIFY3U(i, <, ndies);
3190 
3191 		cup = &cdies[i++];
3192 
3193 		cup->cu_handle = cch;
3194 		cup->cu_fd = fd;
3195 		cup->cu_elf = elf;
3196 		cup->cu_dwarf = dw;
3197 		cup->cu_errbuf = errbuf;
3198 		cup->cu_errlen = errlen;
3199 		cup->cu_dwarf = dw;
3200 		if (ndies > 1) {
3201 			/*
3202 			 * Only need to lock calls into libdwarf if there are
3203 			 * multiple CUs.
3204 			 */
3205 			cup->cu_dwlock = dwlock;
3206 			cup->cu_doweaks = B_FALSE;
3207 		} else {
3208 			cup->cu_doweaks = B_TRUE;
3209 		}
3210 
3211 		cup->cu_voidtid = CTF_ERR;
3212 		cup->cu_longtid = CTF_ERR;
3213 		cup->cu_cuoff = offset;
3214 		cup->cu_maxoff = nexthdr - 1;
3215 		cup->cu_vers = vers;
3216 		cup->cu_addrsz = addrsz;
3217 
3218 		if ((ret = ctf_dwarf_sib(cup, NULL, &cu)) != 0) {
3219 			ctf_dprintf("cu %d - no cu %d\n", i, ret);
3220 			return (ret);
3221 		}
3222 
3223 		if (cu == NULL) {
3224 			ctf_dprintf("cu %d - no cu data\n", i);
3225 			(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
3226 			    "file does not contain DWARF data\n");
3227 			return (ECTF_CONVNODEBUG);
3228 		}
3229 
3230 		if (ctf_dwarf_string(cup, cu, DW_AT_name, &name) == 0) {
3231 			size_t len = strlen(name) + 1;
3232 			char *b = basename(name);
3233 
3234 			cup->cu_name = strdup(b);
3235 			ctf_free(name, len);
3236 			if (cup->cu_name == NULL)
3237 				return (ENOMEM);
3238 		}
3239 
3240 		ret = ctf_dwarf_child(cup, cu, &cup->cu_cu);
3241 		dwarf_dealloc(cup->cu_dwarf, cu, DW_DLA_DIE);
3242 		if (ret != 0) {
3243 			ctf_dprintf("cu %d - no child '%s' %d\n",
3244 			    i, cup->cu_name != NULL ? cup->cu_name : "NULL",
3245 			    ret);
3246 			return (ret);
3247 		}
3248 
3249 		if (cup->cu_cu == NULL) {
3250 			size_t len;
3251 
3252 			ctf_dprintf("cu %d - no child data '%s' %d\n",
3253 			    i, cup->cu_name != NULL ? cup->cu_name : "NULL",
3254 			    ret);
3255 			if (cup->cu_name != NULL &&
3256 			    (len = strlen(cup->cu_name)) > 2 &&
3257 			    strncmp(".c", &cup->cu_name[len - 2], 2) == 0) {
3258 				/*
3259 				 * Missing DEBUG data for a .c file, return an
3260 				 * error unless this is permitted.
3261 				 */
3262 				if (!(cch->cch_flags &
3263 				    CTF_ALLOW_MISSING_DEBUG)) {
3264 					(void) snprintf(
3265 					    cup->cu_errbuf, cup->cu_errlen,
3266 					    "missing debug information "
3267 					    "(first seen in %s)\n",
3268 					    cup->cu_name);
3269 					return (ECTF_CONVNODEBUG);
3270 				}
3271 				if (cch->cch_warncb != NULL) {
3272 					cch->cch_warncb(cch->cch_warncb_arg,
3273 					    "file %s is missing debug "
3274 					    "information\n", cup->cu_name);
3275 				}
3276 			}
3277 		} else {
3278 			added++;
3279 		}
3280 
3281 		ctf_dprintf("Pre-initialised cu %d - '%s'\n", i,
3282 		    cup->cu_name != NULL ? cup->cu_name : "NULL");
3283 
3284 		offset = nexthdr;
3285 	}
3286 
3287 	/*
3288 	 * If none of the CUs had debug data, return an error.
3289 	 */
3290 	if (added == 0)
3291 		return (ECTF_CONVNODEBUG);
3292 
3293 	return (0);
3294 }
3295 
3296 static int
3297 ctf_dwarf_init_die(ctf_cu_t *cup)
3298 {
3299 	int ret;
3300 
3301 	cup->cu_ctfp = ctf_fdcreate(cup->cu_fd, &ret);
3302 	if (cup->cu_ctfp == NULL)
3303 		return (ret);
3304 
3305 	avl_create(&cup->cu_map, ctf_dwmap_comp, sizeof (ctf_dwmap_t),
3306 	    offsetof(ctf_dwmap_t, cdm_avl));
3307 
3308 	if ((ret = ctf_dwarf_die_elfenc(cup->cu_elf, cup,
3309 	    cup->cu_errbuf, cup->cu_errlen)) != 0) {
3310 		return (ret);
3311 	}
3312 
3313 	if ((cup->cu_cmh = ctf_merge_init(cup->cu_fd, &ret)) == NULL)
3314 		return (ret);
3315 
3316 	return (0);
3317 }
3318 
3319 /*
3320  * This is our only recourse to identify a C source file that is missing debug
3321  * info: it will be mentioned as an STT_FILE, but not have a compile unit entry.
3322  * (A traditional ctfmerge works on individual files, so can identify missing
3323  * DWARF more directly, via ctf_has_c_source() on the .o file.)
3324  *
3325  * As we operate on basenames, this can of course miss some cases, but it's
3326  * better than not checking at all.
3327  *
3328  * We explicitly whitelist some CRT components.  Failing that, there's always
3329  * the -m option.
3330  */
3331 static boolean_t
3332 c_source_has_debug(const char *file, ctf_cu_t *cus, size_t nr_cus)
3333 {
3334 	const char *basename = strrchr(file, '/');
3335 
3336 	if (basename == NULL)
3337 		basename = file;
3338 	else
3339 		basename++;
3340 
3341 	if (strcmp(basename, "common-crt.c") == 0 ||
3342 	    strcmp(basename, "gmon.c") == 0 ||
3343 	    strcmp(basename, "dlink_init.c") == 0 ||
3344 	    strcmp(basename, "dlink_common.c") == 0 ||
3345 	    strcmp(basename, "ssp_ns.c") == 0 ||
3346 	    strncmp(basename, "crt", strlen("crt")) == 0 ||
3347 	    strncmp(basename, "values-", strlen("values-")) == 0)
3348 		return (B_TRUE);
3349 
3350 	for (size_t i = 0; i < nr_cus; i++) {
3351 		if (cus[i].cu_name != NULL &&
3352 		    strcmp(basename, cus[i].cu_name) == 0) {
3353 			return (B_TRUE);
3354 		}
3355 	}
3356 
3357 	return (B_FALSE);
3358 }
3359 
3360 static int
3361 ctf_dwarf_check_missing(ctf_convert_t *cch, ctf_cu_t *cus, size_t nr_cus,
3362     Elf *elf, char *errmsg, size_t errlen)
3363 {
3364 	Elf_Scn *scn, *strscn;
3365 	Elf_Data *data, *strdata;
3366 	GElf_Shdr shdr;
3367 	ulong_t i;
3368 	int ret = 0;
3369 
3370 	scn = NULL;
3371 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
3372 		if (gelf_getshdr(scn, &shdr) == NULL) {
3373 			(void) snprintf(errmsg, errlen,
3374 			    "failed to get section header: %s\n",
3375 			    elf_errmsg(elf_errno()));
3376 			return (EINVAL);
3377 		}
3378 
3379 		if (shdr.sh_type == SHT_SYMTAB)
3380 			break;
3381 	}
3382 
3383 	if (scn == NULL)
3384 		return (0);
3385 
3386 	if ((strscn = elf_getscn(elf, shdr.sh_link)) == NULL) {
3387 		(void) snprintf(errmsg, errlen,
3388 		    "failed to get str section: %s\n",
3389 		    elf_errmsg(elf_errno()));
3390 		return (EINVAL);
3391 	}
3392 
3393 	if ((data = elf_getdata(scn, NULL)) == NULL) {
3394 		(void) snprintf(errmsg, errlen, "failed to read section: %s\n",
3395 		    elf_errmsg(elf_errno()));
3396 		return (EINVAL);
3397 	}
3398 
3399 	if ((strdata = elf_getdata(strscn, NULL)) == NULL) {
3400 		(void) snprintf(errmsg, errlen,
3401 		    "failed to read string table: %s\n",
3402 		    elf_errmsg(elf_errno()));
3403 		return (EINVAL);
3404 	}
3405 
3406 	for (i = 0; i < shdr.sh_size / shdr.sh_entsize; i++) {
3407 		GElf_Sym sym;
3408 		const char *file;
3409 		size_t len;
3410 
3411 		if (gelf_getsym(data, i, &sym) == NULL) {
3412 			(void) snprintf(errmsg, errlen,
3413 			    "failed to read sym %lu: %s\n",
3414 			    i, elf_errmsg(elf_errno()));
3415 			return (EINVAL);
3416 		}
3417 
3418 		if (GELF_ST_TYPE(sym.st_info) != STT_FILE)
3419 			continue;
3420 
3421 		file = (const char *)((uintptr_t)strdata->d_buf + sym.st_name);
3422 		len = strlen(file);
3423 		if (len < 2 || strncmp(".c", &file[len - 2], 2) != 0)
3424 			continue;
3425 
3426 		if (!c_source_has_debug(file, cus, nr_cus)) {
3427 			if (cch->cch_warncb != NULL) {
3428 				cch->cch_warncb(
3429 				    cch->cch_warncb_arg,
3430 				    "file %s is missing debug information\n",
3431 				    file);
3432 			}
3433 			if (ret != ECTF_CONVNODEBUG) {
3434 				(void) snprintf(errmsg, errlen,
3435 				    "missing debug information "
3436 				    "(first seen in %s)\n", file);
3437 				ret = ECTF_CONVNODEBUG;
3438 			}
3439 		}
3440 	}
3441 
3442 	return (ret);
3443 }
3444 
3445 static int
3446 ctf_dwarf_convert_batch(uint_t start, uint_t end, int fd, uint_t nthrs,
3447     workq_t *wqp, ctf_cu_t *cdies, ctf_file_t **fpp)
3448 {
3449 	ctf_file_t *fpprev = NULL;
3450 	uint_t i, added;
3451 	ctf_cu_t *cup;
3452 	int ret, err;
3453 
3454 	ctf_dprintf("Processing CU batch %u - %u\n", start, end - 1);
3455 
3456 	added = 0;
3457 	for (i = start; i < end; i++) {
3458 		cup = &cdies[i];
3459 		if (cup->cu_cu == NULL)
3460 			continue;
3461 		ctf_dprintf("adding cu %s: %p, %x %x\n",
3462 		    cup->cu_name != NULL ? cup->cu_name : "NULL",
3463 		    cup->cu_cu, cup->cu_cuoff, cup->cu_maxoff);
3464 		if (workq_add(wqp, cup) == -1) {
3465 			err = errno;
3466 			goto out;
3467 		}
3468 		added++;
3469 	}
3470 
3471 	/*
3472 	 * No debug data found in this batch, move on to the next.
3473 	 * NB:	ctf_dwarf_preinit_dies() has already checked that there is at
3474 	 *	least one CU with debug data present.
3475 	 */
3476 	if (added == 0) {
3477 		err = 0;
3478 		goto out;
3479 	}
3480 
3481 	ctf_dprintf("Running conversion phase\n");
3482 
3483 	/* Run the conversions */
3484 	ret = workq_work(wqp, ctf_dwarf_convert_one, NULL, &err);
3485 	if (ret == WORKQ_ERROR) {
3486 		err = errno;
3487 		goto out;
3488 	} else if (ret == WORKQ_UERROR) {
3489 		ctf_dprintf("internal convert failed: %s\n",
3490 		    ctf_errmsg(err));
3491 		goto out;
3492 	}
3493 
3494 	ctf_dprintf("starting merge phase\n");
3495 
3496 	ctf_merge_t *cmp = ctf_merge_init(fd, &err);
3497 	if (cmp == NULL)
3498 		goto out;
3499 
3500 	if ((err = ctf_merge_set_nthreads(cmp, nthrs)) != 0) {
3501 		ctf_merge_fini(cmp);
3502 		goto out;
3503 	}
3504 
3505 	/*
3506 	 * If we have the result of a previous merge then add it as an input to
3507 	 * the next one.
3508 	 */
3509 	if (*fpp != NULL) {
3510 		ctf_dprintf("adding previous merge CU\n");
3511 		fpprev = *fpp;
3512 		*fpp = NULL;
3513 		if ((err = ctf_merge_add(cmp, fpprev)) != 0) {
3514 			ctf_merge_fini(cmp);
3515 			goto out;
3516 		}
3517 	}
3518 
3519 	ctf_dprintf("adding CUs to merge\n");
3520 	for (i = start; i < end; i++) {
3521 		cup = &cdies[i];
3522 		if (cup->cu_cu == NULL)
3523 			continue;
3524 		if ((err = ctf_merge_add(cmp, cup->cu_ctfp)) != 0) {
3525 			ctf_merge_fini(cmp);
3526 			*fpp = NULL;
3527 			goto out;
3528 		}
3529 	}
3530 
3531 	ctf_dprintf("performing merge\n");
3532 	err = ctf_merge_merge(cmp, fpp);
3533 	if (err != 0) {
3534 		ctf_dprintf("failed merge!\n");
3535 		*fpp = NULL;
3536 		ctf_merge_fini(cmp);
3537 		goto out;
3538 	}
3539 
3540 	ctf_merge_fini(cmp);
3541 
3542 	ctf_dprintf("freeing CUs\n");
3543 	for (i = start; i < end; i++) {
3544 		cup = &cdies[i];
3545 		ctf_dprintf("freeing cu %d\n", i);
3546 		ctf_dwarf_free_die(cup);
3547 	}
3548 
3549 out:
3550 	ctf_close(fpprev);
3551 	return (err);
3552 }
3553 
3554 int
3555 ctf_dwarf_convert(ctf_convert_t *cch, int fd, Elf *elf, ctf_file_t **fpp,
3556     char *errbuf, size_t errlen)
3557 {
3558 	int err, ret;
3559 	uint_t ndies, i, bsize, nthrs;
3560 	Dwarf_Debug dw;
3561 	Dwarf_Error derr;
3562 	ctf_cu_t *cdies = NULL, *cup;
3563 	workq_t *wqp = NULL;
3564 	mutex_t dwlock = ERRORCHECKMUTEX;
3565 
3566 	*fpp = NULL;
3567 
3568 	ret = dwarf_elf_init(elf, DW_DLC_READ, NULL, NULL, &dw, &derr);
3569 	if (ret != DW_DLV_OK) {
3570 		if (ret == DW_DLV_NO_ENTRY ||
3571 		    dwarf_errno(derr) == DW_DLE_DEBUG_INFO_NULL) {
3572 			(void) snprintf(errbuf, errlen,
3573 			    "file does not contain DWARF data\n");
3574 			return (ECTF_CONVNODEBUG);
3575 		}
3576 
3577 		(void) snprintf(errbuf, errlen,
3578 		    "dwarf_elf_init() failed: %s\n", dwarf_errmsg(derr));
3579 		return (ECTF_CONVBKERR);
3580 	}
3581 
3582 	/*
3583 	 * Iterate over all of the compilation units and create a ctf_cu_t for
3584 	 * each of them.  This is used to determine if we have zero, one, or
3585 	 * multiple dies to convert. If we have zero, that's an error. If
3586 	 * there's only one die, that's the simple case.  No merge needed and
3587 	 * only a single Dwarf_Debug as well.
3588 	 */
3589 	ndies = 0;
3590 	err = ctf_dwarf_count_dies(dw, &derr, &ndies, errbuf, errlen);
3591 
3592 	ctf_dprintf("found %d DWARF CUs\n", ndies);
3593 
3594 	if (ndies == 0) {
3595 		(void) snprintf(errbuf, errlen,
3596 		    "file does not contain DWARF data\n");
3597 		(void) dwarf_finish(dw, &derr);
3598 		return (ECTF_CONVNODEBUG);
3599 	}
3600 
3601 	cdies = ctf_alloc(sizeof (ctf_cu_t) * ndies);
3602 	if (cdies == NULL) {
3603 		(void) dwarf_finish(dw, &derr);
3604 		return (ENOMEM);
3605 	}
3606 
3607 	bzero(cdies, sizeof (ctf_cu_t) * ndies);
3608 
3609 	if ((err = ctf_dwarf_preinit_dies(cch, fd, elf, dw, &dwlock, &derr,
3610 	    ndies, cdies, errbuf, errlen)) != 0) {
3611 		goto out;
3612 	}
3613 
3614 	if ((err = ctf_dwarf_check_missing(cch, cdies, ndies, elf,
3615 	    errbuf, errlen)) != 0) {
3616 		if (!(cch->cch_flags & CTF_ALLOW_MISSING_DEBUG)) {
3617 			goto out;
3618 		}
3619 		if (err != ECTF_CONVNODEBUG && *errbuf != '\0' &&
3620 		    cch->cch_warncb != NULL) {
3621 			cch->cch_warncb(cch->cch_warncb_arg, "%s", errbuf);
3622 			*errbuf = '\0';
3623 		}
3624 	}
3625 
3626 	/* Only one cu, no merge required */
3627 	if (ndies == 1) {
3628 		cup = cdies;
3629 
3630 		if ((err = ctf_dwarf_convert_one(cup, NULL)) != 0)
3631 			goto out;
3632 
3633 		*fpp = cup->cu_ctfp;
3634 		cup->cu_ctfp = NULL;
3635 		ctf_dwarf_free_die(cup);
3636 		goto success;
3637 	}
3638 
3639 	/*
3640 	 * There's no need to have either more threads or a batch size larger
3641 	 * than the total number of dies, even if the user requested them.
3642 	 */
3643 	nthrs = min(ndies, cch->cch_nthreads);
3644 	bsize = min(ndies, cch->cch_batchsize);
3645 
3646 	if (workq_init(&wqp, nthrs) == -1) {
3647 		err = errno;
3648 		goto out;
3649 	}
3650 
3651 	/*
3652 	 * In order to avoid exhausting memory limits when converting files
3653 	 * with a large number of dies, we process them in batches.
3654 	 */
3655 	for (i = 0; i < ndies; i += bsize) {
3656 		err = ctf_dwarf_convert_batch(i, min(i + bsize, ndies),
3657 		    fd, nthrs, wqp, cdies, fpp);
3658 		if (err != 0) {
3659 			*fpp = NULL;
3660 			goto out;
3661 		}
3662 	}
3663 
3664 success:
3665 	err = 0;
3666 	ctf_dprintf("successfully converted!\n");
3667 
3668 out:
3669 	(void) dwarf_finish(dw, &derr);
3670 	workq_fini(wqp);
3671 	ctf_free(cdies, sizeof (ctf_cu_t) * ndies);
3672 	return (err);
3673 }
3674