xref: /freebsd-src/sys/libkern/x86/crc32_sse42.c (revision 685dc743dc3b5645e34836464128e1c0558b404b)
16be2ff7dSConrad Meyer /*
26be2ff7dSConrad Meyer  * Derived from crc32c.c version 1.1 by Mark Adler.
36be2ff7dSConrad Meyer  *
46be2ff7dSConrad Meyer  * Copyright (C) 2013 Mark Adler
56be2ff7dSConrad Meyer  *
66be2ff7dSConrad Meyer  * This software is provided 'as-is', without any express or implied warranty.
76be2ff7dSConrad Meyer  * In no event will the author be held liable for any damages arising from the
86be2ff7dSConrad Meyer  * use of this software.
96be2ff7dSConrad Meyer  *
106be2ff7dSConrad Meyer  * Permission is granted to anyone to use this software for any purpose,
116be2ff7dSConrad Meyer  * including commercial applications, and to alter it and redistribute it
126be2ff7dSConrad Meyer  * freely, subject to the following restrictions:
136be2ff7dSConrad Meyer  *
146be2ff7dSConrad Meyer  * 1. The origin of this software must not be misrepresented; you must not
156be2ff7dSConrad Meyer  *    claim that you wrote the original software. If you use this software
166be2ff7dSConrad Meyer  *    in a product, an acknowledgment in the product documentation would be
176be2ff7dSConrad Meyer  *    appreciated but is not required.
186be2ff7dSConrad Meyer  * 2. Altered source versions must be plainly marked as such, and must not be
196be2ff7dSConrad Meyer  *    misrepresented as being the original software.
206be2ff7dSConrad Meyer  * 3. This notice may not be removed or altered from any source distribution.
216be2ff7dSConrad Meyer  *
226be2ff7dSConrad Meyer  * Mark Adler
236be2ff7dSConrad Meyer  * madler@alumni.caltech.edu
246be2ff7dSConrad Meyer  */
256be2ff7dSConrad Meyer 
266be2ff7dSConrad Meyer #include <sys/cdefs.h>
276be2ff7dSConrad Meyer /*
286be2ff7dSConrad Meyer  * This file is compiled in userspace in order to run ATF unit tests.
296be2ff7dSConrad Meyer  */
30*f89d2072SXin LI #ifndef _KERNEL
316be2ff7dSConrad Meyer #include <stdint.h>
32864c28cfSBruce Evans #include <stdlib.h>
336be2ff7dSConrad Meyer #else
346be2ff7dSConrad Meyer #include <sys/param.h>
35864c28cfSBruce Evans #include <sys/kernel.h>
366be2ff7dSConrad Meyer #endif
37*f89d2072SXin LI #include <sys/gsb_crc32.h>
386be2ff7dSConrad Meyer 
39864c28cfSBruce Evans static __inline uint32_t
_mm_crc32_u8(uint32_t x,uint8_t y)40864c28cfSBruce Evans _mm_crc32_u8(uint32_t x, uint8_t y)
41864c28cfSBruce Evans {
42864c28cfSBruce Evans 	/*
43864c28cfSBruce Evans 	 * clang (at least 3.9.[0-1]) pessimizes "rm" (y) and "m" (y)
44864c28cfSBruce Evans 	 * significantly and "r" (y) a lot by copying y to a different
45864c28cfSBruce Evans 	 * local variable (on the stack or in a register), so only use
46864c28cfSBruce Evans 	 * the latter.  This costs a register and an instruction but
47864c28cfSBruce Evans 	 * not a uop.
48864c28cfSBruce Evans 	 */
49864c28cfSBruce Evans 	__asm("crc32b %1,%0" : "+r" (x) : "r" (y));
50864c28cfSBruce Evans 	return (x);
51864c28cfSBruce Evans }
52864c28cfSBruce Evans 
539de5f67dSRyan Libby #ifdef __amd64__
54864c28cfSBruce Evans static __inline uint64_t
_mm_crc32_u64(uint64_t x,uint64_t y)55864c28cfSBruce Evans _mm_crc32_u64(uint64_t x, uint64_t y)
56864c28cfSBruce Evans {
57864c28cfSBruce Evans 	__asm("crc32q %1,%0" : "+r" (x) : "r" (y));
58864c28cfSBruce Evans 	return (x);
59864c28cfSBruce Evans }
609de5f67dSRyan Libby #else
619de5f67dSRyan Libby static __inline uint32_t
_mm_crc32_u32(uint32_t x,uint32_t y)629de5f67dSRyan Libby _mm_crc32_u32(uint32_t x, uint32_t y)
639de5f67dSRyan Libby {
649de5f67dSRyan Libby 	__asm("crc32l %1,%0" : "+r" (x) : "r" (y));
659de5f67dSRyan Libby 	return (x);
669de5f67dSRyan Libby }
679de5f67dSRyan Libby #endif
686be2ff7dSConrad Meyer 
696be2ff7dSConrad Meyer /* CRC-32C (iSCSI) polynomial in reversed bit order. */
706be2ff7dSConrad Meyer #define POLY	0x82f63b78
716be2ff7dSConrad Meyer 
726be2ff7dSConrad Meyer /*
736be2ff7dSConrad Meyer  * Block sizes for three-way parallel crc computation.  LONG and SHORT must
746be2ff7dSConrad Meyer  * both be powers of two.
756be2ff7dSConrad Meyer  */
76864c28cfSBruce Evans #define LONG	128
77864c28cfSBruce Evans #define SHORT	64
786be2ff7dSConrad Meyer 
79864c28cfSBruce Evans /*
80864c28cfSBruce Evans  * Tables for updating a crc for LONG, 2 * LONG, SHORT and 2 * SHORT bytes
81864c28cfSBruce Evans  * of value 0 later in the input stream, in the same way that the hardware
82864c28cfSBruce Evans  * would, but in software without calculating intermediate steps.
83864c28cfSBruce Evans  */
846be2ff7dSConrad Meyer static uint32_t crc32c_long[4][256];
85864c28cfSBruce Evans static uint32_t crc32c_2long[4][256];
866be2ff7dSConrad Meyer static uint32_t crc32c_short[4][256];
87864c28cfSBruce Evans static uint32_t crc32c_2short[4][256];
886be2ff7dSConrad Meyer 
896be2ff7dSConrad Meyer /*
906be2ff7dSConrad Meyer  * Multiply a matrix times a vector over the Galois field of two elements,
916be2ff7dSConrad Meyer  * GF(2).  Each element is a bit in an unsigned integer.  mat must have at
926be2ff7dSConrad Meyer  * least as many entries as the power of two for most significant one bit in
936be2ff7dSConrad Meyer  * vec.
946be2ff7dSConrad Meyer  */
956be2ff7dSConrad Meyer static inline uint32_t
gf2_matrix_times(uint32_t * mat,uint32_t vec)966be2ff7dSConrad Meyer gf2_matrix_times(uint32_t *mat, uint32_t vec)
976be2ff7dSConrad Meyer {
986be2ff7dSConrad Meyer 	uint32_t sum;
996be2ff7dSConrad Meyer 
1006be2ff7dSConrad Meyer 	sum = 0;
1016be2ff7dSConrad Meyer 	while (vec) {
1026be2ff7dSConrad Meyer 		if (vec & 1)
1036be2ff7dSConrad Meyer 			sum ^= *mat;
1046be2ff7dSConrad Meyer 		vec >>= 1;
1056be2ff7dSConrad Meyer 		mat++;
1066be2ff7dSConrad Meyer 	}
1076be2ff7dSConrad Meyer 	return (sum);
1086be2ff7dSConrad Meyer }
1096be2ff7dSConrad Meyer 
1106be2ff7dSConrad Meyer /*
1116be2ff7dSConrad Meyer  * Multiply a matrix by itself over GF(2).  Both mat and square must have 32
1126be2ff7dSConrad Meyer  * rows.
1136be2ff7dSConrad Meyer  */
1146be2ff7dSConrad Meyer static inline void
gf2_matrix_square(uint32_t * square,uint32_t * mat)1156be2ff7dSConrad Meyer gf2_matrix_square(uint32_t *square, uint32_t *mat)
1166be2ff7dSConrad Meyer {
1176be2ff7dSConrad Meyer 	int n;
1186be2ff7dSConrad Meyer 
1196be2ff7dSConrad Meyer 	for (n = 0; n < 32; n++)
1206be2ff7dSConrad Meyer 		square[n] = gf2_matrix_times(mat, mat[n]);
1216be2ff7dSConrad Meyer }
1226be2ff7dSConrad Meyer 
1236be2ff7dSConrad Meyer /*
1246be2ff7dSConrad Meyer  * Construct an operator to apply len zeros to a crc.  len must be a power of
1256be2ff7dSConrad Meyer  * two.  If len is not a power of two, then the result is the same as for the
1266be2ff7dSConrad Meyer  * largest power of two less than len.  The result for len == 0 is the same as
1276be2ff7dSConrad Meyer  * for len == 1.  A version of this routine could be easily written for any
1286be2ff7dSConrad Meyer  * len, but that is not needed for this application.
1296be2ff7dSConrad Meyer  */
1306be2ff7dSConrad Meyer static void
crc32c_zeros_op(uint32_t * even,size_t len)1316be2ff7dSConrad Meyer crc32c_zeros_op(uint32_t *even, size_t len)
1326be2ff7dSConrad Meyer {
1336be2ff7dSConrad Meyer 	uint32_t odd[32];       /* odd-power-of-two zeros operator */
1346be2ff7dSConrad Meyer 	uint32_t row;
1356be2ff7dSConrad Meyer 	int n;
1366be2ff7dSConrad Meyer 
1376be2ff7dSConrad Meyer 	/* put operator for one zero bit in odd */
1386be2ff7dSConrad Meyer 	odd[0] = POLY;              /* CRC-32C polynomial */
1396be2ff7dSConrad Meyer 	row = 1;
1406be2ff7dSConrad Meyer 	for (n = 1; n < 32; n++) {
1416be2ff7dSConrad Meyer 		odd[n] = row;
1426be2ff7dSConrad Meyer 		row <<= 1;
1436be2ff7dSConrad Meyer 	}
1446be2ff7dSConrad Meyer 
1456be2ff7dSConrad Meyer 	/* put operator for two zero bits in even */
1466be2ff7dSConrad Meyer 	gf2_matrix_square(even, odd);
1476be2ff7dSConrad Meyer 
1486be2ff7dSConrad Meyer 	/* put operator for four zero bits in odd */
1496be2ff7dSConrad Meyer 	gf2_matrix_square(odd, even);
1506be2ff7dSConrad Meyer 
1516be2ff7dSConrad Meyer 	/*
1526be2ff7dSConrad Meyer 	 * first square will put the operator for one zero byte (eight zero
1536be2ff7dSConrad Meyer 	 * bits), in even -- next square puts operator for two zero bytes in
1546be2ff7dSConrad Meyer 	 * odd, and so on, until len has been rotated down to zero
1556be2ff7dSConrad Meyer 	 */
1566be2ff7dSConrad Meyer 	do {
1576be2ff7dSConrad Meyer 		gf2_matrix_square(even, odd);
1586be2ff7dSConrad Meyer 		len >>= 1;
1596be2ff7dSConrad Meyer 		if (len == 0)
1606be2ff7dSConrad Meyer 			return;
1616be2ff7dSConrad Meyer 		gf2_matrix_square(odd, even);
1626be2ff7dSConrad Meyer 		len >>= 1;
1636be2ff7dSConrad Meyer 	} while (len);
1646be2ff7dSConrad Meyer 
1656be2ff7dSConrad Meyer 	/* answer ended up in odd -- copy to even */
1666be2ff7dSConrad Meyer 	for (n = 0; n < 32; n++)
1676be2ff7dSConrad Meyer 		even[n] = odd[n];
1686be2ff7dSConrad Meyer }
1696be2ff7dSConrad Meyer 
1706be2ff7dSConrad Meyer /*
1716be2ff7dSConrad Meyer  * Take a length and build four lookup tables for applying the zeros operator
1726be2ff7dSConrad Meyer  * for that length, byte-by-byte on the operand.
1736be2ff7dSConrad Meyer  */
1746be2ff7dSConrad Meyer static void
crc32c_zeros(uint32_t zeros[][256],size_t len)1756be2ff7dSConrad Meyer crc32c_zeros(uint32_t zeros[][256], size_t len)
1766be2ff7dSConrad Meyer {
1776be2ff7dSConrad Meyer 	uint32_t op[32];
1786be2ff7dSConrad Meyer 	uint32_t n;
1796be2ff7dSConrad Meyer 
1806be2ff7dSConrad Meyer 	crc32c_zeros_op(op, len);
1816be2ff7dSConrad Meyer 	for (n = 0; n < 256; n++) {
1826be2ff7dSConrad Meyer 		zeros[0][n] = gf2_matrix_times(op, n);
1836be2ff7dSConrad Meyer 		zeros[1][n] = gf2_matrix_times(op, n << 8);
1846be2ff7dSConrad Meyer 		zeros[2][n] = gf2_matrix_times(op, n << 16);
1856be2ff7dSConrad Meyer 		zeros[3][n] = gf2_matrix_times(op, n << 24);
1866be2ff7dSConrad Meyer 	}
1876be2ff7dSConrad Meyer }
1886be2ff7dSConrad Meyer 
1896be2ff7dSConrad Meyer /* Apply the zeros operator table to crc. */
1906be2ff7dSConrad Meyer static inline uint32_t
crc32c_shift(uint32_t zeros[][256],uint32_t crc)1916be2ff7dSConrad Meyer crc32c_shift(uint32_t zeros[][256], uint32_t crc)
1926be2ff7dSConrad Meyer {
1936be2ff7dSConrad Meyer 
1946be2ff7dSConrad Meyer 	return (zeros[0][crc & 0xff] ^ zeros[1][(crc >> 8) & 0xff] ^
1956be2ff7dSConrad Meyer 	    zeros[2][(crc >> 16) & 0xff] ^ zeros[3][crc >> 24]);
1966be2ff7dSConrad Meyer }
1976be2ff7dSConrad Meyer 
1986be2ff7dSConrad Meyer /* Initialize tables for shifting crcs. */
1996be2ff7dSConrad Meyer static void
200*f89d2072SXin LI #ifndef _KERNEL
2016be2ff7dSConrad Meyer __attribute__((__constructor__))
2026be2ff7dSConrad Meyer #endif
crc32c_init_hw(void)2036be2ff7dSConrad Meyer crc32c_init_hw(void)
2046be2ff7dSConrad Meyer {
2056be2ff7dSConrad Meyer 	crc32c_zeros(crc32c_long, LONG);
206864c28cfSBruce Evans 	crc32c_zeros(crc32c_2long, 2 * LONG);
2076be2ff7dSConrad Meyer 	crc32c_zeros(crc32c_short, SHORT);
208864c28cfSBruce Evans 	crc32c_zeros(crc32c_2short, 2 * SHORT);
2096be2ff7dSConrad Meyer }
2106be2ff7dSConrad Meyer #ifdef _KERNEL
2116be2ff7dSConrad Meyer SYSINIT(crc32c_sse42, SI_SUB_LOCK, SI_ORDER_ANY, crc32c_init_hw, NULL);
2126be2ff7dSConrad Meyer #endif
2136be2ff7dSConrad Meyer 
2146be2ff7dSConrad Meyer /* Compute CRC-32C using the Intel hardware instruction. */
2156be2ff7dSConrad Meyer uint32_t
sse42_crc32c(uint32_t crc,const unsigned char * buf,unsigned len)2166be2ff7dSConrad Meyer sse42_crc32c(uint32_t crc, const unsigned char *buf, unsigned len)
2176be2ff7dSConrad Meyer {
2186be2ff7dSConrad Meyer #ifdef __amd64__
2196be2ff7dSConrad Meyer 	const size_t align = 8;
2206be2ff7dSConrad Meyer #else
2216be2ff7dSConrad Meyer 	const size_t align = 4;
2226be2ff7dSConrad Meyer #endif
2236be2ff7dSConrad Meyer 	const unsigned char *next, *end;
224864c28cfSBruce Evans #ifdef __amd64__
225864c28cfSBruce Evans 	uint64_t crc0, crc1, crc2;
226864c28cfSBruce Evans #else
227864c28cfSBruce Evans 	uint32_t crc0, crc1, crc2;
228864c28cfSBruce Evans #endif
2296be2ff7dSConrad Meyer 
2306be2ff7dSConrad Meyer 	next = buf;
2316be2ff7dSConrad Meyer 	crc0 = crc;
2326be2ff7dSConrad Meyer 
2336be2ff7dSConrad Meyer 	/* Compute the crc to bring the data pointer to an aligned boundary. */
2346be2ff7dSConrad Meyer 	while (len && ((uintptr_t)next & (align - 1)) != 0) {
2356be2ff7dSConrad Meyer 		crc0 = _mm_crc32_u8(crc0, *next);
2366be2ff7dSConrad Meyer 		next++;
2376be2ff7dSConrad Meyer 		len--;
2386be2ff7dSConrad Meyer 	}
2396be2ff7dSConrad Meyer 
240864c28cfSBruce Evans #if LONG > SHORT
2416be2ff7dSConrad Meyer 	/*
2426be2ff7dSConrad Meyer 	 * Compute the crc on sets of LONG*3 bytes, executing three independent
2436be2ff7dSConrad Meyer 	 * crc instructions, each on LONG bytes -- this is optimized for the
2446be2ff7dSConrad Meyer 	 * Nehalem, Westmere, Sandy Bridge, and Ivy Bridge architectures, which
2456be2ff7dSConrad Meyer 	 * have a throughput of one crc per cycle, but a latency of three
2466be2ff7dSConrad Meyer 	 * cycles.
2476be2ff7dSConrad Meyer 	 */
248864c28cfSBruce Evans 	crc = 0;
2496be2ff7dSConrad Meyer 	while (len >= LONG * 3) {
2506be2ff7dSConrad Meyer 		crc1 = 0;
2516be2ff7dSConrad Meyer 		crc2 = 0;
2526be2ff7dSConrad Meyer 		end = next + LONG;
2536be2ff7dSConrad Meyer 		do {
2546be2ff7dSConrad Meyer #ifdef __amd64__
2556be2ff7dSConrad Meyer 			crc0 = _mm_crc32_u64(crc0, *(const uint64_t *)next);
2566be2ff7dSConrad Meyer 			crc1 = _mm_crc32_u64(crc1,
2576be2ff7dSConrad Meyer 			    *(const uint64_t *)(next + LONG));
2586be2ff7dSConrad Meyer 			crc2 = _mm_crc32_u64(crc2,
2596be2ff7dSConrad Meyer 			    *(const uint64_t *)(next + (LONG * 2)));
2606be2ff7dSConrad Meyer #else
2616be2ff7dSConrad Meyer 			crc0 = _mm_crc32_u32(crc0, *(const uint32_t *)next);
2626be2ff7dSConrad Meyer 			crc1 = _mm_crc32_u32(crc1,
2636be2ff7dSConrad Meyer 			    *(const uint32_t *)(next + LONG));
2646be2ff7dSConrad Meyer 			crc2 = _mm_crc32_u32(crc2,
2656be2ff7dSConrad Meyer 			    *(const uint32_t *)(next + (LONG * 2)));
2666be2ff7dSConrad Meyer #endif
2676be2ff7dSConrad Meyer 			next += align;
2686be2ff7dSConrad Meyer 		} while (next < end);
269864c28cfSBruce Evans 		/*-
270864c28cfSBruce Evans 		 * Update the crc.  Try to do it in parallel with the inner
271864c28cfSBruce Evans 		 * loop.  'crc' is used to accumulate crc0 and crc1
272864c28cfSBruce Evans 		 * produced by the inner loop so that the next iteration
273864c28cfSBruce Evans 		 * of the loop doesn't depend on anything except crc2.
274864c28cfSBruce Evans 		 *
275864c28cfSBruce Evans 		 * The full expression for the update is:
276864c28cfSBruce Evans 		 *     crc = S*S*S*crc + S*S*crc0 + S*crc1
277864c28cfSBruce Evans 		 * where the terms are polynomials modulo the CRC polynomial.
278864c28cfSBruce Evans 		 * We regroup this subtly as:
279864c28cfSBruce Evans 		 *     crc = S*S * (S*crc + crc0) + S*crc1.
280864c28cfSBruce Evans 		 * This has an extra dependency which reduces possible
281864c28cfSBruce Evans 		 * parallelism for the expression, but it turns out to be
282864c28cfSBruce Evans 		 * best to intentionally delay evaluation of this expression
283864c28cfSBruce Evans 		 * so that it competes less with the inner loop.
284864c28cfSBruce Evans 		 *
285864c28cfSBruce Evans 		 * We also intentionally reduce parallelism by feedng back
286864c28cfSBruce Evans 		 * crc2 to the inner loop as crc0 instead of accumulating
287864c28cfSBruce Evans 		 * it in crc.  This synchronizes the loop with crc update.
288864c28cfSBruce Evans 		 * CPU and/or compiler schedulers produced bad order without
289864c28cfSBruce Evans 		 * this.
290864c28cfSBruce Evans 		 *
291864c28cfSBruce Evans 		 * Shifts take about 12 cycles each, so 3 here with 2
292864c28cfSBruce Evans 		 * parallelizable take about 24 cycles and the crc update
293864c28cfSBruce Evans 		 * takes slightly longer.  8 dependent crc32 instructions
294864c28cfSBruce Evans 		 * can run in 24 cycles, so the 3-way blocking is worse
295864c28cfSBruce Evans 		 * than useless for sizes less than 8 * <word size> = 64
296864c28cfSBruce Evans 		 * on amd64.  In practice, SHORT = 32 confirms these
297864c28cfSBruce Evans 		 * timing calculations by giving a small improvement
298864c28cfSBruce Evans 		 * starting at size 96.  Then the inner loop takes about
299864c28cfSBruce Evans 		 * 12 cycles and the crc update about 24, but these are
300864c28cfSBruce Evans 		 * partly in parallel so the total time is less than the
301864c28cfSBruce Evans 		 * 36 cycles that 12 dependent crc32 instructions would
302864c28cfSBruce Evans 		 * take.
303864c28cfSBruce Evans 		 *
304864c28cfSBruce Evans 		 * To have a chance of completely hiding the overhead for
305864c28cfSBruce Evans 		 * the crc update, the inner loop must take considerably
306864c28cfSBruce Evans 		 * longer than 24 cycles.  LONG = 64 makes the inner loop
307864c28cfSBruce Evans 		 * take about 24 cycles, so is not quite large enough.
308864c28cfSBruce Evans 		 * LONG = 128 works OK.  Unhideable overheads are about
309864c28cfSBruce Evans 		 * 12 cycles per inner loop.  All assuming timing like
310864c28cfSBruce Evans 		 * Haswell.
311864c28cfSBruce Evans 		 */
312864c28cfSBruce Evans 		crc = crc32c_shift(crc32c_long, crc) ^ crc0;
313864c28cfSBruce Evans 		crc1 = crc32c_shift(crc32c_long, crc1);
314864c28cfSBruce Evans 		crc = crc32c_shift(crc32c_2long, crc) ^ crc1;
315864c28cfSBruce Evans 		crc0 = crc2;
3166be2ff7dSConrad Meyer 		next += LONG * 2;
3176be2ff7dSConrad Meyer 		len -= LONG * 3;
3186be2ff7dSConrad Meyer 	}
319864c28cfSBruce Evans 	crc0 ^= crc;
320864c28cfSBruce Evans #endif /* LONG > SHORT */
3216be2ff7dSConrad Meyer 
3226be2ff7dSConrad Meyer 	/*
3236be2ff7dSConrad Meyer 	 * Do the same thing, but now on SHORT*3 blocks for the remaining data
3246be2ff7dSConrad Meyer 	 * less than a LONG*3 block
3256be2ff7dSConrad Meyer 	 */
326864c28cfSBruce Evans 	crc = 0;
3276be2ff7dSConrad Meyer 	while (len >= SHORT * 3) {
3286be2ff7dSConrad Meyer 		crc1 = 0;
3296be2ff7dSConrad Meyer 		crc2 = 0;
3306be2ff7dSConrad Meyer 		end = next + SHORT;
3316be2ff7dSConrad Meyer 		do {
3326be2ff7dSConrad Meyer #ifdef __amd64__
3336be2ff7dSConrad Meyer 			crc0 = _mm_crc32_u64(crc0, *(const uint64_t *)next);
3346be2ff7dSConrad Meyer 			crc1 = _mm_crc32_u64(crc1,
3356be2ff7dSConrad Meyer 			    *(const uint64_t *)(next + SHORT));
3366be2ff7dSConrad Meyer 			crc2 = _mm_crc32_u64(crc2,
3376be2ff7dSConrad Meyer 			    *(const uint64_t *)(next + (SHORT * 2)));
3386be2ff7dSConrad Meyer #else
3396be2ff7dSConrad Meyer 			crc0 = _mm_crc32_u32(crc0, *(const uint32_t *)next);
3406be2ff7dSConrad Meyer 			crc1 = _mm_crc32_u32(crc1,
3416be2ff7dSConrad Meyer 			    *(const uint32_t *)(next + SHORT));
3426be2ff7dSConrad Meyer 			crc2 = _mm_crc32_u32(crc2,
3436be2ff7dSConrad Meyer 			    *(const uint32_t *)(next + (SHORT * 2)));
3446be2ff7dSConrad Meyer #endif
3456be2ff7dSConrad Meyer 			next += align;
3466be2ff7dSConrad Meyer 		} while (next < end);
347864c28cfSBruce Evans 		crc = crc32c_shift(crc32c_short, crc) ^ crc0;
348864c28cfSBruce Evans 		crc1 = crc32c_shift(crc32c_short, crc1);
349864c28cfSBruce Evans 		crc = crc32c_shift(crc32c_2short, crc) ^ crc1;
350864c28cfSBruce Evans 		crc0 = crc2;
3516be2ff7dSConrad Meyer 		next += SHORT * 2;
3526be2ff7dSConrad Meyer 		len -= SHORT * 3;
3536be2ff7dSConrad Meyer 	}
354864c28cfSBruce Evans 	crc0 ^= crc;
3556be2ff7dSConrad Meyer 
3566be2ff7dSConrad Meyer 	/* Compute the crc on the remaining bytes at native word size. */
3576be2ff7dSConrad Meyer 	end = next + (len - (len & (align - 1)));
3586be2ff7dSConrad Meyer 	while (next < end) {
3596be2ff7dSConrad Meyer #ifdef __amd64__
3606be2ff7dSConrad Meyer 		crc0 = _mm_crc32_u64(crc0, *(const uint64_t *)next);
3616be2ff7dSConrad Meyer #else
3626be2ff7dSConrad Meyer 		crc0 = _mm_crc32_u32(crc0, *(const uint32_t *)next);
3636be2ff7dSConrad Meyer #endif
3646be2ff7dSConrad Meyer 		next += align;
3656be2ff7dSConrad Meyer 	}
3666be2ff7dSConrad Meyer 	len &= (align - 1);
3676be2ff7dSConrad Meyer 
3686be2ff7dSConrad Meyer 	/* Compute the crc for any trailing bytes. */
3696be2ff7dSConrad Meyer 	while (len) {
3706be2ff7dSConrad Meyer 		crc0 = _mm_crc32_u8(crc0, *next);
3716be2ff7dSConrad Meyer 		next++;
3726be2ff7dSConrad Meyer 		len--;
3736be2ff7dSConrad Meyer 	}
3746be2ff7dSConrad Meyer 
3756be2ff7dSConrad Meyer 	return ((uint32_t)crc0);
3766be2ff7dSConrad Meyer }
377