xref: /freebsd-src/sys/compat/linuxkpi/common/src/linux_compat.c (revision ea825d02749f382c3f7e17f28247f20a48733eab)
1 /*-
2  * Copyright (c) 2010 Isilon Systems, Inc.
3  * Copyright (c) 2010 iX Systems, Inc.
4  * Copyright (c) 2010 Panasas, Inc.
5  * Copyright (c) 2013-2017 Mellanox Technologies, Ltd.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice unmodified, this list of conditions, and the following
13  *    disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
23  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
27  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/malloc.h>
36 #include <sys/kernel.h>
37 #include <sys/sysctl.h>
38 #include <sys/proc.h>
39 #include <sys/sglist.h>
40 #include <sys/sleepqueue.h>
41 #include <sys/lock.h>
42 #include <sys/mutex.h>
43 #include <sys/bus.h>
44 #include <sys/fcntl.h>
45 #include <sys/file.h>
46 #include <sys/filio.h>
47 #include <sys/rwlock.h>
48 
49 #include <vm/vm.h>
50 #include <vm/pmap.h>
51 #include <vm/vm_object.h>
52 #include <vm/vm_page.h>
53 #include <vm/vm_pager.h>
54 
55 #include <machine/stdarg.h>
56 
57 #if defined(__i386__) || defined(__amd64__)
58 #include <machine/md_var.h>
59 #endif
60 
61 #include <linux/kobject.h>
62 #include <linux/device.h>
63 #include <linux/slab.h>
64 #include <linux/module.h>
65 #include <linux/moduleparam.h>
66 #include <linux/cdev.h>
67 #include <linux/file.h>
68 #include <linux/sysfs.h>
69 #include <linux/mm.h>
70 #include <linux/io.h>
71 #include <linux/vmalloc.h>
72 #include <linux/netdevice.h>
73 #include <linux/timer.h>
74 #include <linux/interrupt.h>
75 #include <linux/uaccess.h>
76 #include <linux/list.h>
77 #include <linux/kthread.h>
78 #include <linux/kernel.h>
79 #include <linux/compat.h>
80 #include <linux/poll.h>
81 #include <linux/smp.h>
82 
83 #if defined(__i386__) || defined(__amd64__)
84 #include <asm/smp.h>
85 #endif
86 
87 SYSCTL_NODE(_compat, OID_AUTO, linuxkpi, CTLFLAG_RW, 0, "LinuxKPI parameters");
88 
89 MALLOC_DEFINE(M_KMALLOC, "linux", "Linux kmalloc compat");
90 
91 #include <linux/rbtree.h>
92 /* Undo Linux compat changes. */
93 #undef RB_ROOT
94 #undef file
95 #undef cdev
96 #define	RB_ROOT(head)	(head)->rbh_root
97 
98 static struct vm_area_struct *linux_cdev_handle_find(void *handle);
99 
100 struct kobject linux_class_root;
101 struct device linux_root_device;
102 struct class linux_class_misc;
103 struct list_head pci_drivers;
104 struct list_head pci_devices;
105 spinlock_t pci_lock;
106 
107 unsigned long linux_timer_hz_mask;
108 
109 int
110 panic_cmp(struct rb_node *one, struct rb_node *two)
111 {
112 	panic("no cmp");
113 }
114 
115 RB_GENERATE(linux_root, rb_node, __entry, panic_cmp);
116 
117 int
118 kobject_set_name_vargs(struct kobject *kobj, const char *fmt, va_list args)
119 {
120 	va_list tmp_va;
121 	int len;
122 	char *old;
123 	char *name;
124 	char dummy;
125 
126 	old = kobj->name;
127 
128 	if (old && fmt == NULL)
129 		return (0);
130 
131 	/* compute length of string */
132 	va_copy(tmp_va, args);
133 	len = vsnprintf(&dummy, 0, fmt, tmp_va);
134 	va_end(tmp_va);
135 
136 	/* account for zero termination */
137 	len++;
138 
139 	/* check for error */
140 	if (len < 1)
141 		return (-EINVAL);
142 
143 	/* allocate memory for string */
144 	name = kzalloc(len, GFP_KERNEL);
145 	if (name == NULL)
146 		return (-ENOMEM);
147 	vsnprintf(name, len, fmt, args);
148 	kobj->name = name;
149 
150 	/* free old string */
151 	kfree(old);
152 
153 	/* filter new string */
154 	for (; *name != '\0'; name++)
155 		if (*name == '/')
156 			*name = '!';
157 	return (0);
158 }
159 
160 int
161 kobject_set_name(struct kobject *kobj, const char *fmt, ...)
162 {
163 	va_list args;
164 	int error;
165 
166 	va_start(args, fmt);
167 	error = kobject_set_name_vargs(kobj, fmt, args);
168 	va_end(args);
169 
170 	return (error);
171 }
172 
173 static int
174 kobject_add_complete(struct kobject *kobj, struct kobject *parent)
175 {
176 	const struct kobj_type *t;
177 	int error;
178 
179 	kobj->parent = parent;
180 	error = sysfs_create_dir(kobj);
181 	if (error == 0 && kobj->ktype && kobj->ktype->default_attrs) {
182 		struct attribute **attr;
183 		t = kobj->ktype;
184 
185 		for (attr = t->default_attrs; *attr != NULL; attr++) {
186 			error = sysfs_create_file(kobj, *attr);
187 			if (error)
188 				break;
189 		}
190 		if (error)
191 			sysfs_remove_dir(kobj);
192 
193 	}
194 	return (error);
195 }
196 
197 int
198 kobject_add(struct kobject *kobj, struct kobject *parent, const char *fmt, ...)
199 {
200 	va_list args;
201 	int error;
202 
203 	va_start(args, fmt);
204 	error = kobject_set_name_vargs(kobj, fmt, args);
205 	va_end(args);
206 	if (error)
207 		return (error);
208 
209 	return kobject_add_complete(kobj, parent);
210 }
211 
212 void
213 linux_kobject_release(struct kref *kref)
214 {
215 	struct kobject *kobj;
216 	char *name;
217 
218 	kobj = container_of(kref, struct kobject, kref);
219 	sysfs_remove_dir(kobj);
220 	name = kobj->name;
221 	if (kobj->ktype && kobj->ktype->release)
222 		kobj->ktype->release(kobj);
223 	kfree(name);
224 }
225 
226 static void
227 linux_kobject_kfree(struct kobject *kobj)
228 {
229 	kfree(kobj);
230 }
231 
232 static void
233 linux_kobject_kfree_name(struct kobject *kobj)
234 {
235 	if (kobj) {
236 		kfree(kobj->name);
237 	}
238 }
239 
240 const struct kobj_type linux_kfree_type = {
241 	.release = linux_kobject_kfree
242 };
243 
244 static void
245 linux_device_release(struct device *dev)
246 {
247 	pr_debug("linux_device_release: %s\n", dev_name(dev));
248 	kfree(dev);
249 }
250 
251 static ssize_t
252 linux_class_show(struct kobject *kobj, struct attribute *attr, char *buf)
253 {
254 	struct class_attribute *dattr;
255 	ssize_t error;
256 
257 	dattr = container_of(attr, struct class_attribute, attr);
258 	error = -EIO;
259 	if (dattr->show)
260 		error = dattr->show(container_of(kobj, struct class, kobj),
261 		    dattr, buf);
262 	return (error);
263 }
264 
265 static ssize_t
266 linux_class_store(struct kobject *kobj, struct attribute *attr, const char *buf,
267     size_t count)
268 {
269 	struct class_attribute *dattr;
270 	ssize_t error;
271 
272 	dattr = container_of(attr, struct class_attribute, attr);
273 	error = -EIO;
274 	if (dattr->store)
275 		error = dattr->store(container_of(kobj, struct class, kobj),
276 		    dattr, buf, count);
277 	return (error);
278 }
279 
280 static void
281 linux_class_release(struct kobject *kobj)
282 {
283 	struct class *class;
284 
285 	class = container_of(kobj, struct class, kobj);
286 	if (class->class_release)
287 		class->class_release(class);
288 }
289 
290 static const struct sysfs_ops linux_class_sysfs = {
291 	.show  = linux_class_show,
292 	.store = linux_class_store,
293 };
294 
295 const struct kobj_type linux_class_ktype = {
296 	.release = linux_class_release,
297 	.sysfs_ops = &linux_class_sysfs
298 };
299 
300 static void
301 linux_dev_release(struct kobject *kobj)
302 {
303 	struct device *dev;
304 
305 	dev = container_of(kobj, struct device, kobj);
306 	/* This is the precedence defined by linux. */
307 	if (dev->release)
308 		dev->release(dev);
309 	else if (dev->class && dev->class->dev_release)
310 		dev->class->dev_release(dev);
311 }
312 
313 static ssize_t
314 linux_dev_show(struct kobject *kobj, struct attribute *attr, char *buf)
315 {
316 	struct device_attribute *dattr;
317 	ssize_t error;
318 
319 	dattr = container_of(attr, struct device_attribute, attr);
320 	error = -EIO;
321 	if (dattr->show)
322 		error = dattr->show(container_of(kobj, struct device, kobj),
323 		    dattr, buf);
324 	return (error);
325 }
326 
327 static ssize_t
328 linux_dev_store(struct kobject *kobj, struct attribute *attr, const char *buf,
329     size_t count)
330 {
331 	struct device_attribute *dattr;
332 	ssize_t error;
333 
334 	dattr = container_of(attr, struct device_attribute, attr);
335 	error = -EIO;
336 	if (dattr->store)
337 		error = dattr->store(container_of(kobj, struct device, kobj),
338 		    dattr, buf, count);
339 	return (error);
340 }
341 
342 static const struct sysfs_ops linux_dev_sysfs = {
343 	.show  = linux_dev_show,
344 	.store = linux_dev_store,
345 };
346 
347 const struct kobj_type linux_dev_ktype = {
348 	.release = linux_dev_release,
349 	.sysfs_ops = &linux_dev_sysfs
350 };
351 
352 struct device *
353 device_create(struct class *class, struct device *parent, dev_t devt,
354     void *drvdata, const char *fmt, ...)
355 {
356 	struct device *dev;
357 	va_list args;
358 
359 	dev = kzalloc(sizeof(*dev), M_WAITOK);
360 	dev->parent = parent;
361 	dev->class = class;
362 	dev->devt = devt;
363 	dev->driver_data = drvdata;
364 	dev->release = linux_device_release;
365 	va_start(args, fmt);
366 	kobject_set_name_vargs(&dev->kobj, fmt, args);
367 	va_end(args);
368 	device_register(dev);
369 
370 	return (dev);
371 }
372 
373 int
374 kobject_init_and_add(struct kobject *kobj, const struct kobj_type *ktype,
375     struct kobject *parent, const char *fmt, ...)
376 {
377 	va_list args;
378 	int error;
379 
380 	kobject_init(kobj, ktype);
381 	kobj->ktype = ktype;
382 	kobj->parent = parent;
383 	kobj->name = NULL;
384 
385 	va_start(args, fmt);
386 	error = kobject_set_name_vargs(kobj, fmt, args);
387 	va_end(args);
388 	if (error)
389 		return (error);
390 	return kobject_add_complete(kobj, parent);
391 }
392 
393 static void
394 linux_file_dtor(void *cdp)
395 {
396 	struct linux_file *filp;
397 
398 	linux_set_current(curthread);
399 	filp = cdp;
400 	filp->f_op->release(filp->f_vnode, filp);
401 	vdrop(filp->f_vnode);
402 	kfree(filp);
403 }
404 
405 static void
406 linux_kq_lock(void *arg)
407 {
408 	spinlock_t *s = arg;
409 
410 	spin_lock(s);
411 }
412 static void
413 linux_kq_unlock(void *arg)
414 {
415 	spinlock_t *s = arg;
416 
417 	spin_unlock(s);
418 }
419 
420 static void
421 linux_kq_lock_owned(void *arg)
422 {
423 #ifdef INVARIANTS
424 	spinlock_t *s = arg;
425 
426 	mtx_assert(&s->m, MA_OWNED);
427 #endif
428 }
429 
430 static void
431 linux_kq_lock_unowned(void *arg)
432 {
433 #ifdef INVARIANTS
434 	spinlock_t *s = arg;
435 
436 	mtx_assert(&s->m, MA_NOTOWNED);
437 #endif
438 }
439 
440 static void
441 linux_dev_kqfilter_poll(struct linux_file *, int);
442 
443 struct linux_file *
444 linux_file_alloc(void)
445 {
446 	struct linux_file *filp;
447 
448 	filp = kzalloc(sizeof(*filp), GFP_KERNEL);
449 
450 	/* set initial refcount */
451 	filp->f_count = 1;
452 
453 	/* setup fields needed by kqueue support */
454 	spin_lock_init(&filp->f_kqlock);
455 	knlist_init(&filp->f_selinfo.si_note, &filp->f_kqlock,
456 	    linux_kq_lock, linux_kq_unlock,
457 	    linux_kq_lock_owned, linux_kq_lock_unowned);
458 
459 	return (filp);
460 }
461 
462 void
463 linux_file_free(struct linux_file *filp)
464 {
465 	if (filp->_file == NULL) {
466 		if (filp->f_shmem != NULL)
467 			vm_object_deallocate(filp->f_shmem);
468 		kfree(filp);
469 	} else {
470 		/*
471 		 * The close method of the character device or file
472 		 * will free the linux_file structure:
473 		 */
474 		_fdrop(filp->_file, curthread);
475 	}
476 }
477 
478 static int
479 linux_cdev_pager_fault(vm_object_t vm_obj, vm_ooffset_t offset, int prot,
480     vm_page_t *mres)
481 {
482 	struct vm_area_struct *vmap;
483 
484 	vmap = linux_cdev_handle_find(vm_obj->handle);
485 
486 	MPASS(vmap != NULL);
487 	MPASS(vmap->vm_private_data == vm_obj->handle);
488 
489 	if (likely(vmap->vm_ops != NULL && offset < vmap->vm_len)) {
490 		vm_paddr_t paddr = IDX_TO_OFF(vmap->vm_pfn) + offset;
491 		vm_page_t page;
492 
493 		if (((*mres)->flags & PG_FICTITIOUS) != 0) {
494 			/*
495 			 * If the passed in result page is a fake
496 			 * page, update it with the new physical
497 			 * address.
498 			 */
499 			page = *mres;
500 			vm_page_updatefake(page, paddr, vm_obj->memattr);
501 		} else {
502 			/*
503 			 * Replace the passed in "mres" page with our
504 			 * own fake page and free up the all of the
505 			 * original pages.
506 			 */
507 			VM_OBJECT_WUNLOCK(vm_obj);
508 			page = vm_page_getfake(paddr, vm_obj->memattr);
509 			VM_OBJECT_WLOCK(vm_obj);
510 
511 			vm_page_replace_checked(page, vm_obj,
512 			    (*mres)->pindex, *mres);
513 
514 			vm_page_lock(*mres);
515 			vm_page_free(*mres);
516 			vm_page_unlock(*mres);
517 			*mres = page;
518 		}
519 		page->valid = VM_PAGE_BITS_ALL;
520 		return (VM_PAGER_OK);
521 	}
522 	return (VM_PAGER_FAIL);
523 }
524 
525 static int
526 linux_cdev_pager_populate(vm_object_t vm_obj, vm_pindex_t pidx, int fault_type,
527     vm_prot_t max_prot, vm_pindex_t *first, vm_pindex_t *last)
528 {
529 	struct vm_area_struct *vmap;
530 	int err;
531 
532 	linux_set_current(curthread);
533 
534 	/* get VM area structure */
535 	vmap = linux_cdev_handle_find(vm_obj->handle);
536 	MPASS(vmap != NULL);
537 	MPASS(vmap->vm_private_data == vm_obj->handle);
538 
539 	VM_OBJECT_WUNLOCK(vm_obj);
540 
541 	down_write(&vmap->vm_mm->mmap_sem);
542 	if (unlikely(vmap->vm_ops == NULL)) {
543 		err = VM_FAULT_SIGBUS;
544 	} else {
545 		struct vm_fault vmf;
546 
547 		/* fill out VM fault structure */
548 		vmf.virtual_address = (void *)((uintptr_t)pidx << PAGE_SHIFT);
549 		vmf.flags = (fault_type & VM_PROT_WRITE) ? FAULT_FLAG_WRITE : 0;
550 		vmf.pgoff = 0;
551 		vmf.page = NULL;
552 
553 		vmap->vm_pfn_count = 0;
554 		vmap->vm_pfn_pcount = &vmap->vm_pfn_count;
555 		vmap->vm_obj = vm_obj;
556 
557 		err = vmap->vm_ops->fault(vmap, &vmf);
558 
559 		while (vmap->vm_pfn_count == 0 && err == VM_FAULT_NOPAGE) {
560 			kern_yield(PRI_USER);
561 			err = vmap->vm_ops->fault(vmap, &vmf);
562 		}
563 	}
564 
565 	/* translate return code */
566 	switch (err) {
567 	case VM_FAULT_OOM:
568 		err = VM_PAGER_AGAIN;
569 		break;
570 	case VM_FAULT_SIGBUS:
571 		err = VM_PAGER_BAD;
572 		break;
573 	case VM_FAULT_NOPAGE:
574 		/*
575 		 * By contract the fault handler will return having
576 		 * busied all the pages itself. If pidx is already
577 		 * found in the object, it will simply xbusy the first
578 		 * page and return with vm_pfn_count set to 1.
579 		 */
580 		*first = vmap->vm_pfn_first;
581 		*last = *first + vmap->vm_pfn_count - 1;
582 		err = VM_PAGER_OK;
583 		break;
584 	default:
585 		err = VM_PAGER_ERROR;
586 		break;
587 	}
588 	up_write(&vmap->vm_mm->mmap_sem);
589 	VM_OBJECT_WLOCK(vm_obj);
590 	return (err);
591 }
592 
593 static struct rwlock linux_vma_lock;
594 static TAILQ_HEAD(, vm_area_struct) linux_vma_head =
595     TAILQ_HEAD_INITIALIZER(linux_vma_head);
596 
597 static void
598 linux_cdev_handle_free(struct vm_area_struct *vmap)
599 {
600 	/* Drop reference on vm_file */
601 	if (vmap->vm_file != NULL)
602 		fput(vmap->vm_file);
603 
604 	/* Drop reference on mm_struct */
605 	mmput(vmap->vm_mm);
606 
607 	kfree(vmap);
608 }
609 
610 static struct vm_area_struct *
611 linux_cdev_handle_insert(void *handle, struct vm_area_struct *vmap)
612 {
613 	struct vm_area_struct *ptr;
614 
615 	rw_wlock(&linux_vma_lock);
616 	TAILQ_FOREACH(ptr, &linux_vma_head, vm_entry) {
617 		if (ptr->vm_private_data == handle) {
618 			rw_wunlock(&linux_vma_lock);
619 			linux_cdev_handle_free(vmap);
620 			return (NULL);
621 		}
622 	}
623 	TAILQ_INSERT_TAIL(&linux_vma_head, vmap, vm_entry);
624 	rw_wunlock(&linux_vma_lock);
625 	return (vmap);
626 }
627 
628 static void
629 linux_cdev_handle_remove(struct vm_area_struct *vmap)
630 {
631 	rw_wlock(&linux_vma_lock);
632 	TAILQ_REMOVE(&linux_vma_head, vmap, vm_entry);
633 	rw_wunlock(&linux_vma_lock);
634 }
635 
636 static struct vm_area_struct *
637 linux_cdev_handle_find(void *handle)
638 {
639 	struct vm_area_struct *vmap;
640 
641 	rw_rlock(&linux_vma_lock);
642 	TAILQ_FOREACH(vmap, &linux_vma_head, vm_entry) {
643 		if (vmap->vm_private_data == handle)
644 			break;
645 	}
646 	rw_runlock(&linux_vma_lock);
647 	return (vmap);
648 }
649 
650 static int
651 linux_cdev_pager_ctor(void *handle, vm_ooffset_t size, vm_prot_t prot,
652 		      vm_ooffset_t foff, struct ucred *cred, u_short *color)
653 {
654 
655 	MPASS(linux_cdev_handle_find(handle) != NULL);
656 	*color = 0;
657 	return (0);
658 }
659 
660 static void
661 linux_cdev_pager_dtor(void *handle)
662 {
663 	const struct vm_operations_struct *vm_ops;
664 	struct vm_area_struct *vmap;
665 
666 	vmap = linux_cdev_handle_find(handle);
667 	MPASS(vmap != NULL);
668 
669 	/*
670 	 * Remove handle before calling close operation to prevent
671 	 * other threads from reusing the handle pointer.
672 	 */
673 	linux_cdev_handle_remove(vmap);
674 
675 	down_write(&vmap->vm_mm->mmap_sem);
676 	vm_ops = vmap->vm_ops;
677 	if (likely(vm_ops != NULL))
678 		vm_ops->close(vmap);
679 	up_write(&vmap->vm_mm->mmap_sem);
680 
681 	linux_cdev_handle_free(vmap);
682 }
683 
684 static struct cdev_pager_ops linux_cdev_pager_ops[2] = {
685   {
686 	/* OBJT_MGTDEVICE */
687 	.cdev_pg_populate	= linux_cdev_pager_populate,
688 	.cdev_pg_ctor	= linux_cdev_pager_ctor,
689 	.cdev_pg_dtor	= linux_cdev_pager_dtor
690   },
691   {
692 	/* OBJT_DEVICE */
693 	.cdev_pg_fault	= linux_cdev_pager_fault,
694 	.cdev_pg_ctor	= linux_cdev_pager_ctor,
695 	.cdev_pg_dtor	= linux_cdev_pager_dtor
696   },
697 };
698 
699 static int
700 linux_dev_open(struct cdev *dev, int oflags, int devtype, struct thread *td)
701 {
702 	struct linux_cdev *ldev;
703 	struct linux_file *filp;
704 	struct file *file;
705 	int error;
706 
707 	file = td->td_fpop;
708 	ldev = dev->si_drv1;
709 	if (ldev == NULL)
710 		return (ENODEV);
711 
712 	filp = linux_file_alloc();
713 	filp->f_dentry = &filp->f_dentry_store;
714 	filp->f_op = ldev->ops;
715 	filp->f_flags = file->f_flag;
716 	vhold(file->f_vnode);
717 	filp->f_vnode = file->f_vnode;
718 	filp->_file = file;
719 
720 	linux_set_current(td);
721 
722 	if (filp->f_op->open) {
723 		error = -filp->f_op->open(file->f_vnode, filp);
724 		if (error) {
725 			vdrop(filp->f_vnode);
726 			kfree(filp);
727 			goto done;
728 		}
729 	}
730 	error = devfs_set_cdevpriv(filp, linux_file_dtor);
731 	if (error) {
732 		filp->f_op->release(file->f_vnode, filp);
733 		vdrop(filp->f_vnode);
734 		kfree(filp);
735 	}
736 done:
737 	return (error);
738 }
739 
740 static int
741 linux_dev_close(struct cdev *dev, int fflag, int devtype, struct thread *td)
742 {
743 	struct linux_file *filp;
744 	struct file *file;
745 	int error;
746 
747 	file = td->td_fpop;
748 	if (dev->si_drv1 == NULL)
749 		return (0);
750 	if ((error = devfs_get_cdevpriv((void **)&filp)) != 0)
751 		return (error);
752 	filp->f_flags = file->f_flag;
753 	devfs_clear_cdevpriv();
754 
755 	return (0);
756 }
757 
758 #define	LINUX_IOCTL_MIN_PTR 0x10000UL
759 #define	LINUX_IOCTL_MAX_PTR (LINUX_IOCTL_MIN_PTR + IOCPARM_MAX)
760 
761 static inline int
762 linux_remap_address(void **uaddr, size_t len)
763 {
764 	uintptr_t uaddr_val = (uintptr_t)(*uaddr);
765 
766 	if (unlikely(uaddr_val >= LINUX_IOCTL_MIN_PTR &&
767 	    uaddr_val < LINUX_IOCTL_MAX_PTR)) {
768 		struct task_struct *pts = current;
769 		if (pts == NULL) {
770 			*uaddr = NULL;
771 			return (1);
772 		}
773 
774 		/* compute data offset */
775 		uaddr_val -= LINUX_IOCTL_MIN_PTR;
776 
777 		/* check that length is within bounds */
778 		if ((len > IOCPARM_MAX) ||
779 		    (uaddr_val + len) > pts->bsd_ioctl_len) {
780 			*uaddr = NULL;
781 			return (1);
782 		}
783 
784 		/* re-add kernel buffer address */
785 		uaddr_val += (uintptr_t)pts->bsd_ioctl_data;
786 
787 		/* update address location */
788 		*uaddr = (void *)uaddr_val;
789 		return (1);
790 	}
791 	return (0);
792 }
793 
794 int
795 linux_copyin(const void *uaddr, void *kaddr, size_t len)
796 {
797 	if (linux_remap_address(__DECONST(void **, &uaddr), len)) {
798 		if (uaddr == NULL)
799 			return (-EFAULT);
800 		memcpy(kaddr, uaddr, len);
801 		return (0);
802 	}
803 	return (-copyin(uaddr, kaddr, len));
804 }
805 
806 int
807 linux_copyout(const void *kaddr, void *uaddr, size_t len)
808 {
809 	if (linux_remap_address(&uaddr, len)) {
810 		if (uaddr == NULL)
811 			return (-EFAULT);
812 		memcpy(uaddr, kaddr, len);
813 		return (0);
814 	}
815 	return (-copyout(kaddr, uaddr, len));
816 }
817 
818 size_t
819 linux_clear_user(void *_uaddr, size_t _len)
820 {
821 	uint8_t *uaddr = _uaddr;
822 	size_t len = _len;
823 
824 	/* make sure uaddr is aligned before going into the fast loop */
825 	while (((uintptr_t)uaddr & 7) != 0 && len > 7) {
826 		if (subyte(uaddr, 0))
827 			return (_len);
828 		uaddr++;
829 		len--;
830 	}
831 
832 	/* zero 8 bytes at a time */
833 	while (len > 7) {
834 #ifdef __LP64__
835 		if (suword64(uaddr, 0))
836 			return (_len);
837 #else
838 		if (suword32(uaddr, 0))
839 			return (_len);
840 		if (suword32(uaddr + 4, 0))
841 			return (_len);
842 #endif
843 		uaddr += 8;
844 		len -= 8;
845 	}
846 
847 	/* zero fill end, if any */
848 	while (len > 0) {
849 		if (subyte(uaddr, 0))
850 			return (_len);
851 		uaddr++;
852 		len--;
853 	}
854 	return (0);
855 }
856 
857 int
858 linux_access_ok(int rw, const void *uaddr, size_t len)
859 {
860 	uintptr_t saddr;
861 	uintptr_t eaddr;
862 
863 	/* get start and end address */
864 	saddr = (uintptr_t)uaddr;
865 	eaddr = (uintptr_t)uaddr + len;
866 
867 	/* verify addresses are valid for userspace */
868 	return ((saddr == eaddr) ||
869 	    (eaddr > saddr && eaddr <= VM_MAXUSER_ADDRESS));
870 }
871 
872 static int
873 linux_dev_ioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag,
874     struct thread *td)
875 {
876 	struct linux_file *filp;
877 	struct file *file;
878 	unsigned size;
879 	int error;
880 
881 	file = td->td_fpop;
882 	if (dev->si_drv1 == NULL)
883 		return (ENXIO);
884 	if ((error = devfs_get_cdevpriv((void **)&filp)) != 0)
885 		return (error);
886 	filp->f_flags = file->f_flag;
887 
888 	/* the LinuxKPI supports blocking and non-blocking I/O */
889 	if (cmd == FIONBIO || cmd == FIOASYNC)
890 		return (0);
891 
892 	linux_set_current(td);
893 	size = IOCPARM_LEN(cmd);
894 	/* refer to logic in sys_ioctl() */
895 	if (size > 0) {
896 		/*
897 		 * Setup hint for linux_copyin() and linux_copyout().
898 		 *
899 		 * Background: Linux code expects a user-space address
900 		 * while FreeBSD supplies a kernel-space address.
901 		 */
902 		current->bsd_ioctl_data = data;
903 		current->bsd_ioctl_len = size;
904 		data = (void *)LINUX_IOCTL_MIN_PTR;
905 	} else {
906 		/* fetch user-space pointer */
907 		data = *(void **)data;
908 	}
909 #if defined(__amd64__)
910 	if (td->td_proc->p_elf_machine == EM_386) {
911 		/* try the compat IOCTL handler first */
912 		if (filp->f_op->compat_ioctl != NULL)
913 			error = -filp->f_op->compat_ioctl(filp, cmd, (u_long)data);
914 		else
915 			error = ENOTTY;
916 
917 		/* fallback to the regular IOCTL handler, if any */
918 		if (error == ENOTTY && filp->f_op->unlocked_ioctl != NULL)
919 			error = -filp->f_op->unlocked_ioctl(filp, cmd, (u_long)data);
920 	} else
921 #endif
922 	if (filp->f_op->unlocked_ioctl != NULL)
923 		error = -filp->f_op->unlocked_ioctl(filp, cmd, (u_long)data);
924 	else
925 		error = ENOTTY;
926 	if (size > 0) {
927 		current->bsd_ioctl_data = NULL;
928 		current->bsd_ioctl_len = 0;
929 	}
930 
931 	if (error == EWOULDBLOCK) {
932 		/* update kqfilter status, if any */
933 		linux_dev_kqfilter_poll(filp,
934 		    LINUX_KQ_FLAG_HAS_READ | LINUX_KQ_FLAG_HAS_WRITE);
935 	} else if (error == ERESTARTSYS)
936 		error = ERESTART;
937 	return (error);
938 }
939 
940 static int
941 linux_dev_read(struct cdev *dev, struct uio *uio, int ioflag)
942 {
943 	struct linux_file *filp;
944 	struct thread *td;
945 	struct file *file;
946 	ssize_t bytes;
947 	int error;
948 
949 	td = curthread;
950 	file = td->td_fpop;
951 	if (dev->si_drv1 == NULL)
952 		return (ENXIO);
953 	if ((error = devfs_get_cdevpriv((void **)&filp)) != 0)
954 		return (error);
955 	filp->f_flags = file->f_flag;
956 	/* XXX no support for I/O vectors currently */
957 	if (uio->uio_iovcnt != 1)
958 		return (EOPNOTSUPP);
959 	linux_set_current(td);
960 	if (filp->f_op->read) {
961 		bytes = filp->f_op->read(filp, uio->uio_iov->iov_base,
962 		    uio->uio_iov->iov_len, &uio->uio_offset);
963 		if (bytes >= 0) {
964 			uio->uio_iov->iov_base =
965 			    ((uint8_t *)uio->uio_iov->iov_base) + bytes;
966 			uio->uio_iov->iov_len -= bytes;
967 			uio->uio_resid -= bytes;
968 		} else {
969 			error = -bytes;
970 			if (error == ERESTARTSYS)
971 				error = ERESTART;
972 		}
973 	} else
974 		error = ENXIO;
975 
976 	/* update kqfilter status, if any */
977 	linux_dev_kqfilter_poll(filp, LINUX_KQ_FLAG_HAS_READ);
978 
979 	return (error);
980 }
981 
982 static int
983 linux_dev_write(struct cdev *dev, struct uio *uio, int ioflag)
984 {
985 	struct linux_file *filp;
986 	struct thread *td;
987 	struct file *file;
988 	ssize_t bytes;
989 	int error;
990 
991 	td = curthread;
992 	file = td->td_fpop;
993 	if (dev->si_drv1 == NULL)
994 		return (ENXIO);
995 	if ((error = devfs_get_cdevpriv((void **)&filp)) != 0)
996 		return (error);
997 	filp->f_flags = file->f_flag;
998 	/* XXX no support for I/O vectors currently */
999 	if (uio->uio_iovcnt != 1)
1000 		return (EOPNOTSUPP);
1001 	linux_set_current(td);
1002 	if (filp->f_op->write) {
1003 		bytes = filp->f_op->write(filp, uio->uio_iov->iov_base,
1004 		    uio->uio_iov->iov_len, &uio->uio_offset);
1005 		if (bytes >= 0) {
1006 			uio->uio_iov->iov_base =
1007 			    ((uint8_t *)uio->uio_iov->iov_base) + bytes;
1008 			uio->uio_iov->iov_len -= bytes;
1009 			uio->uio_resid -= bytes;
1010 		} else {
1011 			error = -bytes;
1012 			if (error == ERESTARTSYS)
1013 				error = ERESTART;
1014 		}
1015 	} else
1016 		error = ENXIO;
1017 
1018 	/* update kqfilter status, if any */
1019 	linux_dev_kqfilter_poll(filp, LINUX_KQ_FLAG_HAS_WRITE);
1020 
1021 	return (error);
1022 }
1023 
1024 #define	LINUX_POLL_TABLE_NORMAL ((poll_table *)1)
1025 
1026 static int
1027 linux_dev_poll(struct cdev *dev, int events, struct thread *td)
1028 {
1029 	struct linux_file *filp;
1030 	struct file *file;
1031 	int revents;
1032 
1033 	if (dev->si_drv1 == NULL)
1034 		goto error;
1035 	if (devfs_get_cdevpriv((void **)&filp) != 0)
1036 		goto error;
1037 
1038 	file = td->td_fpop;
1039 	filp->f_flags = file->f_flag;
1040 	linux_set_current(td);
1041 	if (filp->f_op->poll != NULL)
1042 		revents = filp->f_op->poll(filp, LINUX_POLL_TABLE_NORMAL) & events;
1043 	else
1044 		revents = 0;
1045 
1046 	return (revents);
1047 error:
1048 	return (events & (POLLHUP|POLLIN|POLLRDNORM|POLLOUT|POLLWRNORM));
1049 }
1050 
1051 /*
1052  * This function atomically updates the poll wakeup state and returns
1053  * the previous state at the time of update.
1054  */
1055 static uint8_t
1056 linux_poll_wakeup_state(atomic_t *v, const uint8_t *pstate)
1057 {
1058 	int c, old;
1059 
1060 	c = v->counter;
1061 
1062 	while ((old = atomic_cmpxchg(v, c, pstate[c])) != c)
1063 		c = old;
1064 
1065 	return (c);
1066 }
1067 
1068 
1069 static int
1070 linux_poll_wakeup_callback(wait_queue_t *wq, unsigned int wq_state, int flags, void *key)
1071 {
1072 	static const uint8_t state[LINUX_FWQ_STATE_MAX] = {
1073 		[LINUX_FWQ_STATE_INIT] = LINUX_FWQ_STATE_INIT, /* NOP */
1074 		[LINUX_FWQ_STATE_NOT_READY] = LINUX_FWQ_STATE_NOT_READY, /* NOP */
1075 		[LINUX_FWQ_STATE_QUEUED] = LINUX_FWQ_STATE_READY,
1076 		[LINUX_FWQ_STATE_READY] = LINUX_FWQ_STATE_READY, /* NOP */
1077 	};
1078 	struct linux_file *filp = container_of(wq, struct linux_file, f_wait_queue.wq);
1079 
1080 	switch (linux_poll_wakeup_state(&filp->f_wait_queue.state, state)) {
1081 	case LINUX_FWQ_STATE_QUEUED:
1082 		linux_poll_wakeup(filp);
1083 		return (1);
1084 	default:
1085 		return (0);
1086 	}
1087 }
1088 
1089 void
1090 linux_poll_wait(struct linux_file *filp, wait_queue_head_t *wqh, poll_table *p)
1091 {
1092 	static const uint8_t state[LINUX_FWQ_STATE_MAX] = {
1093 		[LINUX_FWQ_STATE_INIT] = LINUX_FWQ_STATE_NOT_READY,
1094 		[LINUX_FWQ_STATE_NOT_READY] = LINUX_FWQ_STATE_NOT_READY, /* NOP */
1095 		[LINUX_FWQ_STATE_QUEUED] = LINUX_FWQ_STATE_QUEUED, /* NOP */
1096 		[LINUX_FWQ_STATE_READY] = LINUX_FWQ_STATE_QUEUED,
1097 	};
1098 
1099 	/* check if we are called inside the select system call */
1100 	if (p == LINUX_POLL_TABLE_NORMAL)
1101 		selrecord(curthread, &filp->f_selinfo);
1102 
1103 	switch (linux_poll_wakeup_state(&filp->f_wait_queue.state, state)) {
1104 	case LINUX_FWQ_STATE_INIT:
1105 		/* NOTE: file handles can only belong to one wait-queue */
1106 		filp->f_wait_queue.wqh = wqh;
1107 		filp->f_wait_queue.wq.func = &linux_poll_wakeup_callback;
1108 		add_wait_queue(wqh, &filp->f_wait_queue.wq);
1109 		atomic_set(&filp->f_wait_queue.state, LINUX_FWQ_STATE_QUEUED);
1110 		break;
1111 	default:
1112 		break;
1113 	}
1114 }
1115 
1116 static void
1117 linux_poll_wait_dequeue(struct linux_file *filp)
1118 {
1119 	static const uint8_t state[LINUX_FWQ_STATE_MAX] = {
1120 		[LINUX_FWQ_STATE_INIT] = LINUX_FWQ_STATE_INIT,	/* NOP */
1121 		[LINUX_FWQ_STATE_NOT_READY] = LINUX_FWQ_STATE_INIT,
1122 		[LINUX_FWQ_STATE_QUEUED] = LINUX_FWQ_STATE_INIT,
1123 		[LINUX_FWQ_STATE_READY] = LINUX_FWQ_STATE_INIT,
1124 	};
1125 
1126 	seldrain(&filp->f_selinfo);
1127 
1128 	switch (linux_poll_wakeup_state(&filp->f_wait_queue.state, state)) {
1129 	case LINUX_FWQ_STATE_NOT_READY:
1130 	case LINUX_FWQ_STATE_QUEUED:
1131 	case LINUX_FWQ_STATE_READY:
1132 		remove_wait_queue(filp->f_wait_queue.wqh, &filp->f_wait_queue.wq);
1133 		break;
1134 	default:
1135 		break;
1136 	}
1137 }
1138 
1139 void
1140 linux_poll_wakeup(struct linux_file *filp)
1141 {
1142 	/* this function should be NULL-safe */
1143 	if (filp == NULL)
1144 		return;
1145 
1146 	selwakeup(&filp->f_selinfo);
1147 
1148 	spin_lock(&filp->f_kqlock);
1149 	filp->f_kqflags |= LINUX_KQ_FLAG_NEED_READ |
1150 	    LINUX_KQ_FLAG_NEED_WRITE;
1151 
1152 	/* make sure the "knote" gets woken up */
1153 	KNOTE_LOCKED(&filp->f_selinfo.si_note, 1);
1154 	spin_unlock(&filp->f_kqlock);
1155 }
1156 
1157 static void
1158 linux_dev_kqfilter_detach(struct knote *kn)
1159 {
1160 	struct linux_file *filp = kn->kn_hook;
1161 
1162 	spin_lock(&filp->f_kqlock);
1163 	knlist_remove(&filp->f_selinfo.si_note, kn, 1);
1164 	spin_unlock(&filp->f_kqlock);
1165 }
1166 
1167 static int
1168 linux_dev_kqfilter_read_event(struct knote *kn, long hint)
1169 {
1170 	struct linux_file *filp = kn->kn_hook;
1171 
1172 	mtx_assert(&filp->f_kqlock.m, MA_OWNED);
1173 
1174 	return ((filp->f_kqflags & LINUX_KQ_FLAG_NEED_READ) ? 1 : 0);
1175 }
1176 
1177 static int
1178 linux_dev_kqfilter_write_event(struct knote *kn, long hint)
1179 {
1180 	struct linux_file *filp = kn->kn_hook;
1181 
1182 	mtx_assert(&filp->f_kqlock.m, MA_OWNED);
1183 
1184 	return ((filp->f_kqflags & LINUX_KQ_FLAG_NEED_WRITE) ? 1 : 0);
1185 }
1186 
1187 static struct filterops linux_dev_kqfiltops_read = {
1188 	.f_isfd = 1,
1189 	.f_detach = linux_dev_kqfilter_detach,
1190 	.f_event = linux_dev_kqfilter_read_event,
1191 };
1192 
1193 static struct filterops linux_dev_kqfiltops_write = {
1194 	.f_isfd = 1,
1195 	.f_detach = linux_dev_kqfilter_detach,
1196 	.f_event = linux_dev_kqfilter_write_event,
1197 };
1198 
1199 static void
1200 linux_dev_kqfilter_poll(struct linux_file *filp, int kqflags)
1201 {
1202 	int temp;
1203 
1204 	if (filp->f_kqflags & kqflags) {
1205 		/* get the latest polling state */
1206 		temp = filp->f_op->poll(filp, NULL);
1207 
1208 		spin_lock(&filp->f_kqlock);
1209 		/* clear kqflags */
1210 		filp->f_kqflags &= ~(LINUX_KQ_FLAG_NEED_READ |
1211 		    LINUX_KQ_FLAG_NEED_WRITE);
1212 		/* update kqflags */
1213 		if (temp & (POLLIN | POLLOUT)) {
1214 			if (temp & POLLIN)
1215 				filp->f_kqflags |= LINUX_KQ_FLAG_NEED_READ;
1216 			if (temp & POLLOUT)
1217 				filp->f_kqflags |= LINUX_KQ_FLAG_NEED_WRITE;
1218 
1219 			/* make sure the "knote" gets woken up */
1220 			KNOTE_LOCKED(&filp->f_selinfo.si_note, 0);
1221 		}
1222 		spin_unlock(&filp->f_kqlock);
1223 	}
1224 }
1225 
1226 static int
1227 linux_dev_kqfilter(struct cdev *dev, struct knote *kn)
1228 {
1229 	struct linux_file *filp;
1230 	struct file *file;
1231 	struct thread *td;
1232 	int error;
1233 
1234 	td = curthread;
1235 	file = td->td_fpop;
1236 	if (dev->si_drv1 == NULL)
1237 		return (ENXIO);
1238 	if ((error = devfs_get_cdevpriv((void **)&filp)) != 0)
1239 		return (error);
1240 	filp->f_flags = file->f_flag;
1241 	if (filp->f_op->poll == NULL)
1242 		return (EINVAL);
1243 
1244 	spin_lock(&filp->f_kqlock);
1245 	switch (kn->kn_filter) {
1246 	case EVFILT_READ:
1247 		filp->f_kqflags |= LINUX_KQ_FLAG_HAS_READ;
1248 		kn->kn_fop = &linux_dev_kqfiltops_read;
1249 		kn->kn_hook = filp;
1250 		knlist_add(&filp->f_selinfo.si_note, kn, 1);
1251 		break;
1252 	case EVFILT_WRITE:
1253 		filp->f_kqflags |= LINUX_KQ_FLAG_HAS_WRITE;
1254 		kn->kn_fop = &linux_dev_kqfiltops_write;
1255 		kn->kn_hook = filp;
1256 		knlist_add(&filp->f_selinfo.si_note, kn, 1);
1257 		break;
1258 	default:
1259 		error = EINVAL;
1260 		break;
1261 	}
1262 	spin_unlock(&filp->f_kqlock);
1263 
1264 	if (error == 0) {
1265 		linux_set_current(td);
1266 
1267 		/* update kqfilter status, if any */
1268 		linux_dev_kqfilter_poll(filp,
1269 		    LINUX_KQ_FLAG_HAS_READ | LINUX_KQ_FLAG_HAS_WRITE);
1270 	}
1271 	return (error);
1272 }
1273 
1274 static int
1275 linux_dev_mmap_single(struct cdev *dev, vm_ooffset_t *offset,
1276     vm_size_t size, struct vm_object **object, int nprot)
1277 {
1278 	struct vm_area_struct *vmap;
1279 	struct mm_struct *mm;
1280 	struct linux_file *filp;
1281 	struct thread *td;
1282 	struct file *file;
1283 	vm_memattr_t attr;
1284 	int error;
1285 
1286 	td = curthread;
1287 	file = td->td_fpop;
1288 	if (dev->si_drv1 == NULL)
1289 		return (ENODEV);
1290 	if ((error = devfs_get_cdevpriv((void **)&filp)) != 0)
1291 		return (error);
1292 	filp->f_flags = file->f_flag;
1293 
1294 	if (filp->f_op->mmap == NULL)
1295 		return (ENODEV);
1296 
1297 	linux_set_current(td);
1298 
1299 	/*
1300 	 * The same VM object might be shared by multiple processes
1301 	 * and the mm_struct is usually freed when a process exits.
1302 	 *
1303 	 * The atomic reference below makes sure the mm_struct is
1304 	 * available as long as the vmap is in the linux_vma_head.
1305 	 */
1306 	mm = current->mm;
1307 	if (atomic_inc_not_zero(&mm->mm_users) == 0)
1308 		return (EINVAL);
1309 
1310 	vmap = kzalloc(sizeof(*vmap), GFP_KERNEL);
1311 	vmap->vm_start = 0;
1312 	vmap->vm_end = size;
1313 	vmap->vm_pgoff = *offset / PAGE_SIZE;
1314 	vmap->vm_pfn = 0;
1315 	vmap->vm_flags = vmap->vm_page_prot = (nprot & VM_PROT_ALL);
1316 	vmap->vm_ops = NULL;
1317 	vmap->vm_file = get_file(filp);
1318 	vmap->vm_mm = mm;
1319 
1320 	if (unlikely(down_write_killable(&vmap->vm_mm->mmap_sem))) {
1321 		error = EINTR;
1322 	} else {
1323 		error = -filp->f_op->mmap(filp, vmap);
1324 		up_write(&vmap->vm_mm->mmap_sem);
1325 	}
1326 
1327 	if (error != 0) {
1328 		linux_cdev_handle_free(vmap);
1329 		return (error);
1330 	}
1331 
1332 	attr = pgprot2cachemode(vmap->vm_page_prot);
1333 
1334 	if (vmap->vm_ops != NULL) {
1335 		void *vm_private_data;
1336 
1337 		if (vmap->vm_ops->open == NULL ||
1338 		    vmap->vm_ops->close == NULL ||
1339 		    vmap->vm_private_data == NULL) {
1340 			linux_cdev_handle_free(vmap);
1341 			return (EINVAL);
1342 		}
1343 
1344 		vm_private_data = vmap->vm_private_data;
1345 
1346 		vmap = linux_cdev_handle_insert(vm_private_data, vmap);
1347 
1348 		if (vmap->vm_ops->fault == NULL) {
1349 			*object = cdev_pager_allocate(vm_private_data, OBJT_DEVICE,
1350 			    &linux_cdev_pager_ops[1], size, nprot, *offset,
1351 			    curthread->td_ucred);
1352 		} else {
1353 			*object = cdev_pager_allocate(vm_private_data, OBJT_MGTDEVICE,
1354 			    &linux_cdev_pager_ops[0], size, nprot, *offset,
1355 			    curthread->td_ucred);
1356 		}
1357 
1358 		if (*object == NULL) {
1359 			linux_cdev_handle_remove(vmap);
1360 			linux_cdev_handle_free(vmap);
1361 			return (EINVAL);
1362 		}
1363 	} else {
1364 		struct sglist *sg;
1365 
1366 		sg = sglist_alloc(1, M_WAITOK);
1367 		sglist_append_phys(sg,
1368 		    (vm_paddr_t)vmap->vm_pfn << PAGE_SHIFT, vmap->vm_len);
1369 
1370 		*object = vm_pager_allocate(OBJT_SG, sg, vmap->vm_len,
1371 		    nprot, 0, curthread->td_ucred);
1372 
1373 		linux_cdev_handle_free(vmap);
1374 
1375 		if (*object == NULL) {
1376 			sglist_free(sg);
1377 			return (EINVAL);
1378 		}
1379 	}
1380 
1381 	if (attr != VM_MEMATTR_DEFAULT) {
1382 		VM_OBJECT_WLOCK(*object);
1383 		vm_object_set_memattr(*object, attr);
1384 		VM_OBJECT_WUNLOCK(*object);
1385 	}
1386 	*offset = 0;
1387 	return (0);
1388 }
1389 
1390 struct cdevsw linuxcdevsw = {
1391 	.d_version = D_VERSION,
1392 	.d_flags = D_TRACKCLOSE,
1393 	.d_open = linux_dev_open,
1394 	.d_close = linux_dev_close,
1395 	.d_read = linux_dev_read,
1396 	.d_write = linux_dev_write,
1397 	.d_ioctl = linux_dev_ioctl,
1398 	.d_mmap_single = linux_dev_mmap_single,
1399 	.d_poll = linux_dev_poll,
1400 	.d_kqfilter = linux_dev_kqfilter,
1401 	.d_name = "lkpidev",
1402 };
1403 
1404 static int
1405 linux_file_read(struct file *file, struct uio *uio, struct ucred *active_cred,
1406     int flags, struct thread *td)
1407 {
1408 	struct linux_file *filp;
1409 	ssize_t bytes;
1410 	int error;
1411 
1412 	error = 0;
1413 	filp = (struct linux_file *)file->f_data;
1414 	filp->f_flags = file->f_flag;
1415 	/* XXX no support for I/O vectors currently */
1416 	if (uio->uio_iovcnt != 1)
1417 		return (EOPNOTSUPP);
1418 	linux_set_current(td);
1419 	if (filp->f_op->read) {
1420 		bytes = filp->f_op->read(filp, uio->uio_iov->iov_base,
1421 		    uio->uio_iov->iov_len, &uio->uio_offset);
1422 		if (bytes >= 0) {
1423 			uio->uio_iov->iov_base =
1424 			    ((uint8_t *)uio->uio_iov->iov_base) + bytes;
1425 			uio->uio_iov->iov_len -= bytes;
1426 			uio->uio_resid -= bytes;
1427 		} else
1428 			error = -bytes;
1429 	} else
1430 		error = ENXIO;
1431 
1432 	return (error);
1433 }
1434 
1435 static int
1436 linux_file_poll(struct file *file, int events, struct ucred *active_cred,
1437     struct thread *td)
1438 {
1439 	struct linux_file *filp;
1440 	int revents;
1441 
1442 	filp = (struct linux_file *)file->f_data;
1443 	filp->f_flags = file->f_flag;
1444 	linux_set_current(td);
1445 	if (filp->f_op->poll != NULL)
1446 		revents = filp->f_op->poll(filp, LINUX_POLL_TABLE_NORMAL) & events;
1447 	else
1448 		revents = 0;
1449 
1450 	return (revents);
1451 }
1452 
1453 static int
1454 linux_file_close(struct file *file, struct thread *td)
1455 {
1456 	struct linux_file *filp;
1457 	int error;
1458 
1459 	filp = (struct linux_file *)file->f_data;
1460 	filp->f_flags = file->f_flag;
1461 	linux_set_current(td);
1462 	linux_poll_wait_dequeue(filp);
1463 	error = -filp->f_op->release(NULL, filp);
1464 	funsetown(&filp->f_sigio);
1465 	kfree(filp);
1466 
1467 	return (error);
1468 }
1469 
1470 static int
1471 linux_file_ioctl(struct file *fp, u_long cmd, void *data, struct ucred *cred,
1472     struct thread *td)
1473 {
1474 	struct linux_file *filp;
1475 	int error;
1476 
1477 	filp = (struct linux_file *)fp->f_data;
1478 	filp->f_flags = fp->f_flag;
1479 	error = 0;
1480 
1481 	linux_set_current(td);
1482 	switch (cmd) {
1483 	case FIONBIO:
1484 		break;
1485 	case FIOASYNC:
1486 		if (filp->f_op->fasync == NULL)
1487 			break;
1488 		error = filp->f_op->fasync(0, filp, fp->f_flag & FASYNC);
1489 		break;
1490 	case FIOSETOWN:
1491 		error = fsetown(*(int *)data, &filp->f_sigio);
1492 		if (error == 0)
1493 			error = filp->f_op->fasync(0, filp,
1494 			    fp->f_flag & FASYNC);
1495 		break;
1496 	case FIOGETOWN:
1497 		*(int *)data = fgetown(&filp->f_sigio);
1498 		break;
1499 	default:
1500 		error = ENOTTY;
1501 		break;
1502 	}
1503 	return (error);
1504 }
1505 
1506 static int
1507 linux_file_stat(struct file *fp, struct stat *sb, struct ucred *active_cred,
1508     struct thread *td)
1509 {
1510 
1511 	return (EOPNOTSUPP);
1512 }
1513 
1514 static int
1515 linux_file_fill_kinfo(struct file *fp, struct kinfo_file *kif,
1516     struct filedesc *fdp)
1517 {
1518 
1519 	return (0);
1520 }
1521 
1522 unsigned int
1523 linux_iminor(struct inode *inode)
1524 {
1525 	struct linux_cdev *ldev;
1526 
1527 	if (inode == NULL || inode->v_rdev == NULL ||
1528 	    inode->v_rdev->si_devsw != &linuxcdevsw)
1529 		return (-1U);
1530 	ldev = inode->v_rdev->si_drv1;
1531 	if (ldev == NULL)
1532 		return (-1U);
1533 
1534 	return (minor(ldev->dev));
1535 }
1536 
1537 struct fileops linuxfileops = {
1538 	.fo_read = linux_file_read,
1539 	.fo_write = invfo_rdwr,
1540 	.fo_truncate = invfo_truncate,
1541 	.fo_kqfilter = invfo_kqfilter,
1542 	.fo_stat = linux_file_stat,
1543 	.fo_fill_kinfo = linux_file_fill_kinfo,
1544 	.fo_poll = linux_file_poll,
1545 	.fo_close = linux_file_close,
1546 	.fo_ioctl = linux_file_ioctl,
1547 	.fo_chmod = invfo_chmod,
1548 	.fo_chown = invfo_chown,
1549 	.fo_sendfile = invfo_sendfile,
1550 };
1551 
1552 /*
1553  * Hash of vmmap addresses.  This is infrequently accessed and does not
1554  * need to be particularly large.  This is done because we must store the
1555  * caller's idea of the map size to properly unmap.
1556  */
1557 struct vmmap {
1558 	LIST_ENTRY(vmmap)	vm_next;
1559 	void 			*vm_addr;
1560 	unsigned long		vm_size;
1561 };
1562 
1563 struct vmmaphd {
1564 	struct vmmap *lh_first;
1565 };
1566 #define	VMMAP_HASH_SIZE	64
1567 #define	VMMAP_HASH_MASK	(VMMAP_HASH_SIZE - 1)
1568 #define	VM_HASH(addr)	((uintptr_t)(addr) >> PAGE_SHIFT) & VMMAP_HASH_MASK
1569 static struct vmmaphd vmmaphead[VMMAP_HASH_SIZE];
1570 static struct mtx vmmaplock;
1571 
1572 static void
1573 vmmap_add(void *addr, unsigned long size)
1574 {
1575 	struct vmmap *vmmap;
1576 
1577 	vmmap = kmalloc(sizeof(*vmmap), GFP_KERNEL);
1578 	mtx_lock(&vmmaplock);
1579 	vmmap->vm_size = size;
1580 	vmmap->vm_addr = addr;
1581 	LIST_INSERT_HEAD(&vmmaphead[VM_HASH(addr)], vmmap, vm_next);
1582 	mtx_unlock(&vmmaplock);
1583 }
1584 
1585 static struct vmmap *
1586 vmmap_remove(void *addr)
1587 {
1588 	struct vmmap *vmmap;
1589 
1590 	mtx_lock(&vmmaplock);
1591 	LIST_FOREACH(vmmap, &vmmaphead[VM_HASH(addr)], vm_next)
1592 		if (vmmap->vm_addr == addr)
1593 			break;
1594 	if (vmmap)
1595 		LIST_REMOVE(vmmap, vm_next);
1596 	mtx_unlock(&vmmaplock);
1597 
1598 	return (vmmap);
1599 }
1600 
1601 #if defined(__i386__) || defined(__amd64__) || defined(__powerpc__)
1602 void *
1603 _ioremap_attr(vm_paddr_t phys_addr, unsigned long size, int attr)
1604 {
1605 	void *addr;
1606 
1607 	addr = pmap_mapdev_attr(phys_addr, size, attr);
1608 	if (addr == NULL)
1609 		return (NULL);
1610 	vmmap_add(addr, size);
1611 
1612 	return (addr);
1613 }
1614 #endif
1615 
1616 void
1617 iounmap(void *addr)
1618 {
1619 	struct vmmap *vmmap;
1620 
1621 	vmmap = vmmap_remove(addr);
1622 	if (vmmap == NULL)
1623 		return;
1624 #if defined(__i386__) || defined(__amd64__) || defined(__powerpc__)
1625 	pmap_unmapdev((vm_offset_t)addr, vmmap->vm_size);
1626 #endif
1627 	kfree(vmmap);
1628 }
1629 
1630 
1631 void *
1632 vmap(struct page **pages, unsigned int count, unsigned long flags, int prot)
1633 {
1634 	vm_offset_t off;
1635 	size_t size;
1636 
1637 	size = count * PAGE_SIZE;
1638 	off = kva_alloc(size);
1639 	if (off == 0)
1640 		return (NULL);
1641 	vmmap_add((void *)off, size);
1642 	pmap_qenter(off, pages, count);
1643 
1644 	return ((void *)off);
1645 }
1646 
1647 void
1648 vunmap(void *addr)
1649 {
1650 	struct vmmap *vmmap;
1651 
1652 	vmmap = vmmap_remove(addr);
1653 	if (vmmap == NULL)
1654 		return;
1655 	pmap_qremove((vm_offset_t)addr, vmmap->vm_size / PAGE_SIZE);
1656 	kva_free((vm_offset_t)addr, vmmap->vm_size);
1657 	kfree(vmmap);
1658 }
1659 
1660 char *
1661 kvasprintf(gfp_t gfp, const char *fmt, va_list ap)
1662 {
1663 	unsigned int len;
1664 	char *p;
1665 	va_list aq;
1666 
1667 	va_copy(aq, ap);
1668 	len = vsnprintf(NULL, 0, fmt, aq);
1669 	va_end(aq);
1670 
1671 	p = kmalloc(len + 1, gfp);
1672 	if (p != NULL)
1673 		vsnprintf(p, len + 1, fmt, ap);
1674 
1675 	return (p);
1676 }
1677 
1678 char *
1679 kasprintf(gfp_t gfp, const char *fmt, ...)
1680 {
1681 	va_list ap;
1682 	char *p;
1683 
1684 	va_start(ap, fmt);
1685 	p = kvasprintf(gfp, fmt, ap);
1686 	va_end(ap);
1687 
1688 	return (p);
1689 }
1690 
1691 static void
1692 linux_timer_callback_wrapper(void *context)
1693 {
1694 	struct timer_list *timer;
1695 
1696 	linux_set_current(curthread);
1697 
1698 	timer = context;
1699 	timer->function(timer->data);
1700 }
1701 
1702 void
1703 mod_timer(struct timer_list *timer, int expires)
1704 {
1705 
1706 	timer->expires = expires;
1707 	callout_reset(&timer->timer_callout,
1708 	    linux_timer_jiffies_until(expires),
1709 	    &linux_timer_callback_wrapper, timer);
1710 }
1711 
1712 void
1713 add_timer(struct timer_list *timer)
1714 {
1715 
1716 	callout_reset(&timer->timer_callout,
1717 	    linux_timer_jiffies_until(timer->expires),
1718 	    &linux_timer_callback_wrapper, timer);
1719 }
1720 
1721 void
1722 add_timer_on(struct timer_list *timer, int cpu)
1723 {
1724 
1725 	callout_reset_on(&timer->timer_callout,
1726 	    linux_timer_jiffies_until(timer->expires),
1727 	    &linux_timer_callback_wrapper, timer, cpu);
1728 }
1729 
1730 static void
1731 linux_timer_init(void *arg)
1732 {
1733 
1734 	/*
1735 	 * Compute an internal HZ value which can divide 2**32 to
1736 	 * avoid timer rounding problems when the tick value wraps
1737 	 * around 2**32:
1738 	 */
1739 	linux_timer_hz_mask = 1;
1740 	while (linux_timer_hz_mask < (unsigned long)hz)
1741 		linux_timer_hz_mask *= 2;
1742 	linux_timer_hz_mask--;
1743 }
1744 SYSINIT(linux_timer, SI_SUB_DRIVERS, SI_ORDER_FIRST, linux_timer_init, NULL);
1745 
1746 void
1747 linux_complete_common(struct completion *c, int all)
1748 {
1749 	int wakeup_swapper;
1750 
1751 	sleepq_lock(c);
1752 	c->done++;
1753 	if (all)
1754 		wakeup_swapper = sleepq_broadcast(c, SLEEPQ_SLEEP, 0, 0);
1755 	else
1756 		wakeup_swapper = sleepq_signal(c, SLEEPQ_SLEEP, 0, 0);
1757 	sleepq_release(c);
1758 	if (wakeup_swapper)
1759 		kick_proc0();
1760 }
1761 
1762 /*
1763  * Indefinite wait for done != 0 with or without signals.
1764  */
1765 int
1766 linux_wait_for_common(struct completion *c, int flags)
1767 {
1768 	int error;
1769 
1770 	if (SCHEDULER_STOPPED())
1771 		return (0);
1772 
1773 	DROP_GIANT();
1774 
1775 	if (flags != 0)
1776 		flags = SLEEPQ_INTERRUPTIBLE | SLEEPQ_SLEEP;
1777 	else
1778 		flags = SLEEPQ_SLEEP;
1779 	error = 0;
1780 	for (;;) {
1781 		sleepq_lock(c);
1782 		if (c->done)
1783 			break;
1784 		sleepq_add(c, NULL, "completion", flags, 0);
1785 		if (flags & SLEEPQ_INTERRUPTIBLE) {
1786 			if (sleepq_wait_sig(c, 0) != 0) {
1787 				error = -ERESTARTSYS;
1788 				goto intr;
1789 			}
1790 		} else
1791 			sleepq_wait(c, 0);
1792 	}
1793 	c->done--;
1794 	sleepq_release(c);
1795 
1796 intr:
1797 	PICKUP_GIANT();
1798 
1799 	return (error);
1800 }
1801 
1802 /*
1803  * Time limited wait for done != 0 with or without signals.
1804  */
1805 int
1806 linux_wait_for_timeout_common(struct completion *c, int timeout, int flags)
1807 {
1808 	int end = jiffies + timeout;
1809 	int error;
1810 	int ret;
1811 
1812 	if (SCHEDULER_STOPPED())
1813 		return (0);
1814 
1815 	DROP_GIANT();
1816 
1817 	if (flags != 0)
1818 		flags = SLEEPQ_INTERRUPTIBLE | SLEEPQ_SLEEP;
1819 	else
1820 		flags = SLEEPQ_SLEEP;
1821 
1822 	error = 0;
1823 	ret = 0;
1824 	for (;;) {
1825 		sleepq_lock(c);
1826 		if (c->done)
1827 			break;
1828 		sleepq_add(c, NULL, "completion", flags, 0);
1829 		sleepq_set_timeout(c, linux_timer_jiffies_until(end));
1830 		if (flags & SLEEPQ_INTERRUPTIBLE)
1831 			ret = sleepq_timedwait_sig(c, 0);
1832 		else
1833 			ret = sleepq_timedwait(c, 0);
1834 		if (ret != 0) {
1835 			/* check for timeout or signal */
1836 			if (ret == EWOULDBLOCK)
1837 				error = 0;
1838 			else
1839 				error = -ERESTARTSYS;
1840 			goto intr;
1841 		}
1842 	}
1843 	c->done--;
1844 	sleepq_release(c);
1845 
1846 intr:
1847 	PICKUP_GIANT();
1848 
1849 	/* return how many jiffies are left */
1850 	return (ret != 0 ? error : linux_timer_jiffies_until(end));
1851 }
1852 
1853 int
1854 linux_try_wait_for_completion(struct completion *c)
1855 {
1856 	int isdone;
1857 
1858 	isdone = 1;
1859 	sleepq_lock(c);
1860 	if (c->done)
1861 		c->done--;
1862 	else
1863 		isdone = 0;
1864 	sleepq_release(c);
1865 	return (isdone);
1866 }
1867 
1868 int
1869 linux_completion_done(struct completion *c)
1870 {
1871 	int isdone;
1872 
1873 	isdone = 1;
1874 	sleepq_lock(c);
1875 	if (c->done == 0)
1876 		isdone = 0;
1877 	sleepq_release(c);
1878 	return (isdone);
1879 }
1880 
1881 static void
1882 linux_cdev_release(struct kobject *kobj)
1883 {
1884 	struct linux_cdev *cdev;
1885 	struct kobject *parent;
1886 
1887 	cdev = container_of(kobj, struct linux_cdev, kobj);
1888 	parent = kobj->parent;
1889 	if (cdev->cdev)
1890 		destroy_dev(cdev->cdev);
1891 	kfree(cdev);
1892 	kobject_put(parent);
1893 }
1894 
1895 static void
1896 linux_cdev_static_release(struct kobject *kobj)
1897 {
1898 	struct linux_cdev *cdev;
1899 	struct kobject *parent;
1900 
1901 	cdev = container_of(kobj, struct linux_cdev, kobj);
1902 	parent = kobj->parent;
1903 	if (cdev->cdev)
1904 		destroy_dev(cdev->cdev);
1905 	kobject_put(parent);
1906 }
1907 
1908 const struct kobj_type linux_cdev_ktype = {
1909 	.release = linux_cdev_release,
1910 };
1911 
1912 const struct kobj_type linux_cdev_static_ktype = {
1913 	.release = linux_cdev_static_release,
1914 };
1915 
1916 static void
1917 linux_handle_ifnet_link_event(void *arg, struct ifnet *ifp, int linkstate)
1918 {
1919 	struct notifier_block *nb;
1920 
1921 	nb = arg;
1922 	if (linkstate == LINK_STATE_UP)
1923 		nb->notifier_call(nb, NETDEV_UP, ifp);
1924 	else
1925 		nb->notifier_call(nb, NETDEV_DOWN, ifp);
1926 }
1927 
1928 static void
1929 linux_handle_ifnet_arrival_event(void *arg, struct ifnet *ifp)
1930 {
1931 	struct notifier_block *nb;
1932 
1933 	nb = arg;
1934 	nb->notifier_call(nb, NETDEV_REGISTER, ifp);
1935 }
1936 
1937 static void
1938 linux_handle_ifnet_departure_event(void *arg, struct ifnet *ifp)
1939 {
1940 	struct notifier_block *nb;
1941 
1942 	nb = arg;
1943 	nb->notifier_call(nb, NETDEV_UNREGISTER, ifp);
1944 }
1945 
1946 static void
1947 linux_handle_iflladdr_event(void *arg, struct ifnet *ifp)
1948 {
1949 	struct notifier_block *nb;
1950 
1951 	nb = arg;
1952 	nb->notifier_call(nb, NETDEV_CHANGEADDR, ifp);
1953 }
1954 
1955 static void
1956 linux_handle_ifaddr_event(void *arg, struct ifnet *ifp)
1957 {
1958 	struct notifier_block *nb;
1959 
1960 	nb = arg;
1961 	nb->notifier_call(nb, NETDEV_CHANGEIFADDR, ifp);
1962 }
1963 
1964 int
1965 register_netdevice_notifier(struct notifier_block *nb)
1966 {
1967 
1968 	nb->tags[NETDEV_UP] = EVENTHANDLER_REGISTER(
1969 	    ifnet_link_event, linux_handle_ifnet_link_event, nb, 0);
1970 	nb->tags[NETDEV_REGISTER] = EVENTHANDLER_REGISTER(
1971 	    ifnet_arrival_event, linux_handle_ifnet_arrival_event, nb, 0);
1972 	nb->tags[NETDEV_UNREGISTER] = EVENTHANDLER_REGISTER(
1973 	    ifnet_departure_event, linux_handle_ifnet_departure_event, nb, 0);
1974 	nb->tags[NETDEV_CHANGEADDR] = EVENTHANDLER_REGISTER(
1975 	    iflladdr_event, linux_handle_iflladdr_event, nb, 0);
1976 
1977 	return (0);
1978 }
1979 
1980 int
1981 register_inetaddr_notifier(struct notifier_block *nb)
1982 {
1983 
1984         nb->tags[NETDEV_CHANGEIFADDR] = EVENTHANDLER_REGISTER(
1985             ifaddr_event, linux_handle_ifaddr_event, nb, 0);
1986         return (0);
1987 }
1988 
1989 int
1990 unregister_netdevice_notifier(struct notifier_block *nb)
1991 {
1992 
1993         EVENTHANDLER_DEREGISTER(ifnet_link_event,
1994 	    nb->tags[NETDEV_UP]);
1995         EVENTHANDLER_DEREGISTER(ifnet_arrival_event,
1996 	    nb->tags[NETDEV_REGISTER]);
1997         EVENTHANDLER_DEREGISTER(ifnet_departure_event,
1998 	    nb->tags[NETDEV_UNREGISTER]);
1999         EVENTHANDLER_DEREGISTER(iflladdr_event,
2000 	    nb->tags[NETDEV_CHANGEADDR]);
2001 
2002 	return (0);
2003 }
2004 
2005 int
2006 unregister_inetaddr_notifier(struct notifier_block *nb)
2007 {
2008 
2009         EVENTHANDLER_DEREGISTER(ifaddr_event,
2010             nb->tags[NETDEV_CHANGEIFADDR]);
2011 
2012         return (0);
2013 }
2014 
2015 struct list_sort_thunk {
2016 	int (*cmp)(void *, struct list_head *, struct list_head *);
2017 	void *priv;
2018 };
2019 
2020 static inline int
2021 linux_le_cmp(void *priv, const void *d1, const void *d2)
2022 {
2023 	struct list_head *le1, *le2;
2024 	struct list_sort_thunk *thunk;
2025 
2026 	thunk = priv;
2027 	le1 = *(__DECONST(struct list_head **, d1));
2028 	le2 = *(__DECONST(struct list_head **, d2));
2029 	return ((thunk->cmp)(thunk->priv, le1, le2));
2030 }
2031 
2032 void
2033 list_sort(void *priv, struct list_head *head, int (*cmp)(void *priv,
2034     struct list_head *a, struct list_head *b))
2035 {
2036 	struct list_sort_thunk thunk;
2037 	struct list_head **ar, *le;
2038 	size_t count, i;
2039 
2040 	count = 0;
2041 	list_for_each(le, head)
2042 		count++;
2043 	ar = malloc(sizeof(struct list_head *) * count, M_KMALLOC, M_WAITOK);
2044 	i = 0;
2045 	list_for_each(le, head)
2046 		ar[i++] = le;
2047 	thunk.cmp = cmp;
2048 	thunk.priv = priv;
2049 	qsort_r(ar, count, sizeof(struct list_head *), &thunk, linux_le_cmp);
2050 	INIT_LIST_HEAD(head);
2051 	for (i = 0; i < count; i++)
2052 		list_add_tail(ar[i], head);
2053 	free(ar, M_KMALLOC);
2054 }
2055 
2056 void
2057 linux_irq_handler(void *ent)
2058 {
2059 	struct irq_ent *irqe;
2060 
2061 	linux_set_current(curthread);
2062 
2063 	irqe = ent;
2064 	irqe->handler(irqe->irq, irqe->arg);
2065 }
2066 
2067 #if defined(__i386__) || defined(__amd64__)
2068 int
2069 linux_wbinvd_on_all_cpus(void)
2070 {
2071 
2072 	pmap_invalidate_cache();
2073 	return (0);
2074 }
2075 #endif
2076 
2077 int
2078 linux_on_each_cpu(void callback(void *), void *data)
2079 {
2080 
2081 	smp_rendezvous(smp_no_rendezvous_barrier, callback,
2082 	    smp_no_rendezvous_barrier, data);
2083 	return (0);
2084 }
2085 
2086 int
2087 linux_in_atomic(void)
2088 {
2089 
2090 	return ((curthread->td_pflags & TDP_NOFAULTING) != 0);
2091 }
2092 
2093 struct linux_cdev *
2094 linux_find_cdev(const char *name, unsigned major, unsigned minor)
2095 {
2096 	dev_t dev = MKDEV(major, minor);
2097 	struct cdev *cdev;
2098 
2099 	dev_lock();
2100 	LIST_FOREACH(cdev, &linuxcdevsw.d_devs, si_list) {
2101 		struct linux_cdev *ldev = cdev->si_drv1;
2102 		if (ldev->dev == dev &&
2103 		    strcmp(kobject_name(&ldev->kobj), name) == 0) {
2104 			break;
2105 		}
2106 	}
2107 	dev_unlock();
2108 
2109 	return (cdev != NULL ? cdev->si_drv1 : NULL);
2110 }
2111 
2112 int
2113 __register_chrdev(unsigned int major, unsigned int baseminor,
2114     unsigned int count, const char *name,
2115     const struct file_operations *fops)
2116 {
2117 	struct linux_cdev *cdev;
2118 	int ret = 0;
2119 	int i;
2120 
2121 	for (i = baseminor; i < baseminor + count; i++) {
2122 		cdev = cdev_alloc();
2123 		cdev_init(cdev, fops);
2124 		kobject_set_name(&cdev->kobj, name);
2125 
2126 		ret = cdev_add(cdev, makedev(major, i), 1);
2127 		if (ret != 0)
2128 			break;
2129 	}
2130 	return (ret);
2131 }
2132 
2133 int
2134 __register_chrdev_p(unsigned int major, unsigned int baseminor,
2135     unsigned int count, const char *name,
2136     const struct file_operations *fops, uid_t uid,
2137     gid_t gid, int mode)
2138 {
2139 	struct linux_cdev *cdev;
2140 	int ret = 0;
2141 	int i;
2142 
2143 	for (i = baseminor; i < baseminor + count; i++) {
2144 		cdev = cdev_alloc();
2145 		cdev_init(cdev, fops);
2146 		kobject_set_name(&cdev->kobj, name);
2147 
2148 		ret = cdev_add_ext(cdev, makedev(major, i), uid, gid, mode);
2149 		if (ret != 0)
2150 			break;
2151 	}
2152 	return (ret);
2153 }
2154 
2155 void
2156 __unregister_chrdev(unsigned int major, unsigned int baseminor,
2157     unsigned int count, const char *name)
2158 {
2159 	struct linux_cdev *cdevp;
2160 	int i;
2161 
2162 	for (i = baseminor; i < baseminor + count; i++) {
2163 		cdevp = linux_find_cdev(name, major, i);
2164 		if (cdevp != NULL)
2165 			cdev_del(cdevp);
2166 	}
2167 }
2168 
2169 #if defined(__i386__) || defined(__amd64__)
2170 bool linux_cpu_has_clflush;
2171 #endif
2172 
2173 static void
2174 linux_compat_init(void *arg)
2175 {
2176 	struct sysctl_oid *rootoid;
2177 	int i;
2178 
2179 #if defined(__i386__) || defined(__amd64__)
2180 	linux_cpu_has_clflush = (cpu_feature & CPUID_CLFSH);
2181 #endif
2182 	rw_init(&linux_vma_lock, "lkpi-vma-lock");
2183 
2184 	rootoid = SYSCTL_ADD_ROOT_NODE(NULL,
2185 	    OID_AUTO, "sys", CTLFLAG_RD|CTLFLAG_MPSAFE, NULL, "sys");
2186 	kobject_init(&linux_class_root, &linux_class_ktype);
2187 	kobject_set_name(&linux_class_root, "class");
2188 	linux_class_root.oidp = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(rootoid),
2189 	    OID_AUTO, "class", CTLFLAG_RD|CTLFLAG_MPSAFE, NULL, "class");
2190 	kobject_init(&linux_root_device.kobj, &linux_dev_ktype);
2191 	kobject_set_name(&linux_root_device.kobj, "device");
2192 	linux_root_device.kobj.oidp = SYSCTL_ADD_NODE(NULL,
2193 	    SYSCTL_CHILDREN(rootoid), OID_AUTO, "device", CTLFLAG_RD, NULL,
2194 	    "device");
2195 	linux_root_device.bsddev = root_bus;
2196 	linux_class_misc.name = "misc";
2197 	class_register(&linux_class_misc);
2198 	INIT_LIST_HEAD(&pci_drivers);
2199 	INIT_LIST_HEAD(&pci_devices);
2200 	spin_lock_init(&pci_lock);
2201 	mtx_init(&vmmaplock, "IO Map lock", NULL, MTX_DEF);
2202 	for (i = 0; i < VMMAP_HASH_SIZE; i++)
2203 		LIST_INIT(&vmmaphead[i]);
2204 }
2205 SYSINIT(linux_compat, SI_SUB_DRIVERS, SI_ORDER_SECOND, linux_compat_init, NULL);
2206 
2207 static void
2208 linux_compat_uninit(void *arg)
2209 {
2210 	linux_kobject_kfree_name(&linux_class_root);
2211 	linux_kobject_kfree_name(&linux_root_device.kobj);
2212 	linux_kobject_kfree_name(&linux_class_misc.kobj);
2213 
2214 	mtx_destroy(&vmmaplock);
2215 	spin_lock_destroy(&pci_lock);
2216 	rw_destroy(&linux_vma_lock);
2217 }
2218 SYSUNINIT(linux_compat, SI_SUB_DRIVERS, SI_ORDER_SECOND, linux_compat_uninit, NULL);
2219 
2220 /*
2221  * NOTE: Linux frequently uses "unsigned long" for pointer to integer
2222  * conversion and vice versa, where in FreeBSD "uintptr_t" would be
2223  * used. Assert these types have the same size, else some parts of the
2224  * LinuxKPI may not work like expected:
2225  */
2226 CTASSERT(sizeof(unsigned long) == sizeof(uintptr_t));
2227