12b15cb3dSCy Schubert /*
22b15cb3dSCy Schubert * ntp_calendar.c - calendar and helper functions
32b15cb3dSCy Schubert *
42b15cb3dSCy Schubert * Written by Juergen Perlinger (perlinger@ntp.org) for the NTP project.
52b15cb3dSCy Schubert * The contents of 'html/copyright.html' apply.
69034852cSGleb Smirnoff *
79034852cSGleb Smirnoff * --------------------------------------------------------------------
89034852cSGleb Smirnoff * Some notes on the implementation:
99034852cSGleb Smirnoff *
109034852cSGleb Smirnoff * Calendar algorithms thrive on the division operation, which is one of
119034852cSGleb Smirnoff * the slowest numerical operations in any CPU. What saves us here from
129034852cSGleb Smirnoff * abysmal performance is the fact that all divisions are divisions by
139034852cSGleb Smirnoff * constant numbers, and most compilers can do this by a multiplication
149034852cSGleb Smirnoff * operation. But this might not work when using the div/ldiv/lldiv
159034852cSGleb Smirnoff * function family, because many compilers are not able to do inline
169034852cSGleb Smirnoff * expansion of the code with following optimisation for the
179034852cSGleb Smirnoff * constant-divider case.
189034852cSGleb Smirnoff *
199034852cSGleb Smirnoff * Also div/ldiv/lldiv are defined in terms of int/long/longlong, which
209034852cSGleb Smirnoff * are inherently target dependent. Nothing that could not be cured with
219034852cSGleb Smirnoff * autoconf, but still a mess...
229034852cSGleb Smirnoff *
239034852cSGleb Smirnoff * Furthermore, we need floor division in many places. C either leaves
249034852cSGleb Smirnoff * the division behaviour undefined (< C99) or demands truncation to
259034852cSGleb Smirnoff * zero (>= C99), so additional steps are required to make sure the
269034852cSGleb Smirnoff * algorithms work. The {l,ll}div function family is requested to
279034852cSGleb Smirnoff * truncate towards zero, which is also the wrong direction for our
289034852cSGleb Smirnoff * purpose.
299034852cSGleb Smirnoff *
309034852cSGleb Smirnoff * For all this, all divisions by constant are coded manually, even when
319034852cSGleb Smirnoff * there is a joined div/mod operation: The optimiser should sort that
329034852cSGleb Smirnoff * out, if possible. Most of the calculations are done with unsigned
339034852cSGleb Smirnoff * types, explicitely using two's complement arithmetics where
349034852cSGleb Smirnoff * necessary. This minimises the dependecies to compiler and target,
359034852cSGleb Smirnoff * while still giving reasonable to good performance.
369034852cSGleb Smirnoff *
379034852cSGleb Smirnoff * The implementation uses a few tricks that exploit properties of the
389034852cSGleb Smirnoff * two's complement: Floor division on negative dividents can be
399034852cSGleb Smirnoff * executed by using the one's complement of the divident. One's
409034852cSGleb Smirnoff * complement can be easily created using XOR and a mask.
419034852cSGleb Smirnoff *
429034852cSGleb Smirnoff * Finally, check for overflow conditions is minimal. There are only two
43*2d4e511cSCy Schubert * calculation steps in the whole calendar that potentially suffer from
44*2d4e511cSCy Schubert * an internal overflow, and these are coded in a way that avoids
45*2d4e511cSCy Schubert * it. All other functions do not suffer from internal overflow and
46*2d4e511cSCy Schubert * simply return the result truncated to 32 bits.
472b15cb3dSCy Schubert */
489034852cSGleb Smirnoff
492b15cb3dSCy Schubert #include <config.h>
502b15cb3dSCy Schubert #include <sys/types.h>
512b15cb3dSCy Schubert
522b15cb3dSCy Schubert #include "ntp_types.h"
532b15cb3dSCy Schubert #include "ntp_calendar.h"
542b15cb3dSCy Schubert #include "ntp_stdlib.h"
552b15cb3dSCy Schubert #include "ntp_fp.h"
562b15cb3dSCy Schubert #include "ntp_unixtime.h"
572b15cb3dSCy Schubert
58*2d4e511cSCy Schubert #include "ntpd.h"
59*2d4e511cSCy Schubert
609034852cSGleb Smirnoff /* For now, let's take the conservative approach: if the target property
619034852cSGleb Smirnoff * macros are not defined, check a few well-known compiler/architecture
629034852cSGleb Smirnoff * settings. Default is to assume that the representation of signed
639034852cSGleb Smirnoff * integers is unknown and shift-arithmetic-right is not available.
649034852cSGleb Smirnoff */
659034852cSGleb Smirnoff #ifndef TARGET_HAS_2CPL
669034852cSGleb Smirnoff # if defined(__GNUC__)
679034852cSGleb Smirnoff # if defined(__i386__) || defined(__x86_64__) || defined(__arm__)
689034852cSGleb Smirnoff # define TARGET_HAS_2CPL 1
699034852cSGleb Smirnoff # else
709034852cSGleb Smirnoff # define TARGET_HAS_2CPL 0
719034852cSGleb Smirnoff # endif
729034852cSGleb Smirnoff # elif defined(_MSC_VER)
739034852cSGleb Smirnoff # if defined(_M_IX86) || defined(_M_X64) || defined(_M_ARM)
749034852cSGleb Smirnoff # define TARGET_HAS_2CPL 1
759034852cSGleb Smirnoff # else
769034852cSGleb Smirnoff # define TARGET_HAS_2CPL 0
779034852cSGleb Smirnoff # endif
789034852cSGleb Smirnoff # else
799034852cSGleb Smirnoff # define TARGET_HAS_2CPL 0
809034852cSGleb Smirnoff # endif
819034852cSGleb Smirnoff #endif
829034852cSGleb Smirnoff
839034852cSGleb Smirnoff #ifndef TARGET_HAS_SAR
849034852cSGleb Smirnoff # define TARGET_HAS_SAR 0
859034852cSGleb Smirnoff #endif
869034852cSGleb Smirnoff
87*2d4e511cSCy Schubert #if !defined(HAVE_64BITREGS) && defined(UINT64_MAX) && (SIZE_MAX >= UINT64_MAX)
88*2d4e511cSCy Schubert # define HAVE_64BITREGS
89*2d4e511cSCy Schubert #endif
90*2d4e511cSCy Schubert
912b15cb3dSCy Schubert /*
922b15cb3dSCy Schubert *---------------------------------------------------------------------
932b15cb3dSCy Schubert * replacing the 'time()' function
94f391d6bcSXin LI *---------------------------------------------------------------------
952b15cb3dSCy Schubert */
962b15cb3dSCy Schubert
972b15cb3dSCy Schubert static systime_func_ptr systime_func = &time;
982b15cb3dSCy Schubert static inline time_t now(void);
992b15cb3dSCy Schubert
1002b15cb3dSCy Schubert
1012b15cb3dSCy Schubert systime_func_ptr
ntpcal_set_timefunc(systime_func_ptr nfunc)1022b15cb3dSCy Schubert ntpcal_set_timefunc(
1032b15cb3dSCy Schubert systime_func_ptr nfunc
1042b15cb3dSCy Schubert )
1052b15cb3dSCy Schubert {
1062b15cb3dSCy Schubert systime_func_ptr res;
1072b15cb3dSCy Schubert
1082b15cb3dSCy Schubert res = systime_func;
1092b15cb3dSCy Schubert if (NULL == nfunc)
1102b15cb3dSCy Schubert nfunc = &time;
1112b15cb3dSCy Schubert systime_func = nfunc;
1122b15cb3dSCy Schubert
1132b15cb3dSCy Schubert return res;
1142b15cb3dSCy Schubert }
1152b15cb3dSCy Schubert
1162b15cb3dSCy Schubert
1172b15cb3dSCy Schubert static inline time_t
now(void)1182b15cb3dSCy Schubert now(void)
1192b15cb3dSCy Schubert {
1202b15cb3dSCy Schubert return (*systime_func)(NULL);
1212b15cb3dSCy Schubert }
1222b15cb3dSCy Schubert
1232b15cb3dSCy Schubert /*
1242b15cb3dSCy Schubert *---------------------------------------------------------------------
1259034852cSGleb Smirnoff * Get sign extension mask and unsigned 2cpl rep for a signed integer
1269034852cSGleb Smirnoff *---------------------------------------------------------------------
1279034852cSGleb Smirnoff */
1289034852cSGleb Smirnoff
1299034852cSGleb Smirnoff static inline uint32_t
int32_sflag(const int32_t v)1309034852cSGleb Smirnoff int32_sflag(
1319034852cSGleb Smirnoff const int32_t v)
1329034852cSGleb Smirnoff {
1339034852cSGleb Smirnoff # if TARGET_HAS_2CPL && TARGET_HAS_SAR && SIZEOF_INT >= 4
1349034852cSGleb Smirnoff
1359034852cSGleb Smirnoff /* Let's assume that shift is the fastest way to get the sign
1369034852cSGleb Smirnoff * extension of of a signed integer. This might not always be
1379034852cSGleb Smirnoff * true, though -- On 8bit CPUs or machines without barrel
1389034852cSGleb Smirnoff * shifter this will kill the performance. So we make sure
1399034852cSGleb Smirnoff * we do this only if 'int' has at least 4 bytes.
1409034852cSGleb Smirnoff */
1419034852cSGleb Smirnoff return (uint32_t)(v >> 31);
1429034852cSGleb Smirnoff
1439034852cSGleb Smirnoff # else
1449034852cSGleb Smirnoff
1459034852cSGleb Smirnoff /* This should be a rather generic approach for getting a sign
1469034852cSGleb Smirnoff * extension mask...
1479034852cSGleb Smirnoff */
1489034852cSGleb Smirnoff return UINT32_C(0) - (uint32_t)(v < 0);
1499034852cSGleb Smirnoff
1509034852cSGleb Smirnoff # endif
1519034852cSGleb Smirnoff }
1529034852cSGleb Smirnoff
1539034852cSGleb Smirnoff static inline int32_t
uint32_2cpl_to_int32(const uint32_t vu)1549034852cSGleb Smirnoff uint32_2cpl_to_int32(
1559034852cSGleb Smirnoff const uint32_t vu)
1569034852cSGleb Smirnoff {
1579034852cSGleb Smirnoff int32_t v;
1589034852cSGleb Smirnoff
1599034852cSGleb Smirnoff # if TARGET_HAS_2CPL
1609034852cSGleb Smirnoff
1619034852cSGleb Smirnoff /* Just copy through the 32 bits from the unsigned value if
1629034852cSGleb Smirnoff * we're on a two's complement target.
1639034852cSGleb Smirnoff */
1649034852cSGleb Smirnoff v = (int32_t)vu;
1659034852cSGleb Smirnoff
1669034852cSGleb Smirnoff # else
1679034852cSGleb Smirnoff
1689034852cSGleb Smirnoff /* Convert to signed integer, making sure signed integer
1699034852cSGleb Smirnoff * overflow cannot happen. Again, the optimiser might or might
1709034852cSGleb Smirnoff * not find out that this is just a copy of 32 bits on a target
1719034852cSGleb Smirnoff * with two's complement representation for signed integers.
1729034852cSGleb Smirnoff */
1739034852cSGleb Smirnoff if (vu > INT32_MAX)
1749034852cSGleb Smirnoff v = -(int32_t)(~vu) - 1;
1759034852cSGleb Smirnoff else
1769034852cSGleb Smirnoff v = (int32_t)vu;
1779034852cSGleb Smirnoff
1789034852cSGleb Smirnoff # endif
1799034852cSGleb Smirnoff
1809034852cSGleb Smirnoff return v;
1819034852cSGleb Smirnoff }
1829034852cSGleb Smirnoff
1839034852cSGleb Smirnoff /*
1849034852cSGleb Smirnoff *---------------------------------------------------------------------
1852b15cb3dSCy Schubert * Convert between 'time_t' and 'vint64'
1862b15cb3dSCy Schubert *---------------------------------------------------------------------
1872b15cb3dSCy Schubert */
1882b15cb3dSCy Schubert vint64
time_to_vint64(const time_t * ptt)1892b15cb3dSCy Schubert time_to_vint64(
1902b15cb3dSCy Schubert const time_t * ptt
1912b15cb3dSCy Schubert )
1922b15cb3dSCy Schubert {
1932b15cb3dSCy Schubert vint64 res;
1942b15cb3dSCy Schubert time_t tt;
1952b15cb3dSCy Schubert
1962b15cb3dSCy Schubert tt = *ptt;
1972b15cb3dSCy Schubert
1982b15cb3dSCy Schubert # if SIZEOF_TIME_T <= 4
1992b15cb3dSCy Schubert
2002b15cb3dSCy Schubert res.D_s.hi = 0;
2012b15cb3dSCy Schubert if (tt < 0) {
2022b15cb3dSCy Schubert res.D_s.lo = (uint32_t)-tt;
2032b15cb3dSCy Schubert M_NEG(res.D_s.hi, res.D_s.lo);
2042b15cb3dSCy Schubert } else {
2052b15cb3dSCy Schubert res.D_s.lo = (uint32_t)tt;
2062b15cb3dSCy Schubert }
2072b15cb3dSCy Schubert
2082b15cb3dSCy Schubert # elif defined(HAVE_INT64)
2092b15cb3dSCy Schubert
2102b15cb3dSCy Schubert res.q_s = tt;
2112b15cb3dSCy Schubert
2122b15cb3dSCy Schubert # else
2132b15cb3dSCy Schubert /*
2142b15cb3dSCy Schubert * shifting negative signed quantities is compiler-dependent, so
2152b15cb3dSCy Schubert * we better avoid it and do it all manually. And shifting more
2162b15cb3dSCy Schubert * than the width of a quantity is undefined. Also a don't do!
2172b15cb3dSCy Schubert */
2182b15cb3dSCy Schubert if (tt < 0) {
2192b15cb3dSCy Schubert tt = -tt;
2202b15cb3dSCy Schubert res.D_s.lo = (uint32_t)tt;
2212b15cb3dSCy Schubert res.D_s.hi = (uint32_t)(tt >> 32);
2222b15cb3dSCy Schubert M_NEG(res.D_s.hi, res.D_s.lo);
2232b15cb3dSCy Schubert } else {
2242b15cb3dSCy Schubert res.D_s.lo = (uint32_t)tt;
2252b15cb3dSCy Schubert res.D_s.hi = (uint32_t)(tt >> 32);
2262b15cb3dSCy Schubert }
2272b15cb3dSCy Schubert
2282b15cb3dSCy Schubert # endif
2292b15cb3dSCy Schubert
2302b15cb3dSCy Schubert return res;
2312b15cb3dSCy Schubert }
2322b15cb3dSCy Schubert
2332b15cb3dSCy Schubert
2342b15cb3dSCy Schubert time_t
vint64_to_time(const vint64 * tv)2352b15cb3dSCy Schubert vint64_to_time(
2362b15cb3dSCy Schubert const vint64 *tv
2372b15cb3dSCy Schubert )
2382b15cb3dSCy Schubert {
2392b15cb3dSCy Schubert time_t res;
2402b15cb3dSCy Schubert
2412b15cb3dSCy Schubert # if SIZEOF_TIME_T <= 4
2422b15cb3dSCy Schubert
2432b15cb3dSCy Schubert res = (time_t)tv->D_s.lo;
2442b15cb3dSCy Schubert
2452b15cb3dSCy Schubert # elif defined(HAVE_INT64)
2462b15cb3dSCy Schubert
2472b15cb3dSCy Schubert res = (time_t)tv->q_s;
2482b15cb3dSCy Schubert
2492b15cb3dSCy Schubert # else
2502b15cb3dSCy Schubert
2512b15cb3dSCy Schubert res = ((time_t)tv->d_s.hi << 32) | tv->D_s.lo;
2522b15cb3dSCy Schubert
2532b15cb3dSCy Schubert # endif
2542b15cb3dSCy Schubert
2552b15cb3dSCy Schubert return res;
2562b15cb3dSCy Schubert }
2572b15cb3dSCy Schubert
2582b15cb3dSCy Schubert /*
2592b15cb3dSCy Schubert *---------------------------------------------------------------------
2602b15cb3dSCy Schubert * Get the build date & time
2612b15cb3dSCy Schubert *---------------------------------------------------------------------
2622b15cb3dSCy Schubert */
2632b15cb3dSCy Schubert int
ntpcal_get_build_date(struct calendar * jd)2642b15cb3dSCy Schubert ntpcal_get_build_date(
2652b15cb3dSCy Schubert struct calendar * jd
2662b15cb3dSCy Schubert )
2672b15cb3dSCy Schubert {
2682b15cb3dSCy Schubert /* The C standard tells us the format of '__DATE__':
2692b15cb3dSCy Schubert *
2702b15cb3dSCy Schubert * __DATE__ The date of translation of the preprocessing
2712b15cb3dSCy Schubert * translation unit: a character string literal of the form "Mmm
2722b15cb3dSCy Schubert * dd yyyy", where the names of the months are the same as those
2732b15cb3dSCy Schubert * generated by the asctime function, and the first character of
2742b15cb3dSCy Schubert * dd is a space character if the value is less than 10. If the
2752b15cb3dSCy Schubert * date of translation is not available, an
2762b15cb3dSCy Schubert * implementation-defined valid date shall be supplied.
2772b15cb3dSCy Schubert *
2782b15cb3dSCy Schubert * __TIME__ The time of translation of the preprocessing
2792b15cb3dSCy Schubert * translation unit: a character string literal of the form
2802b15cb3dSCy Schubert * "hh:mm:ss" as in the time generated by the asctime
2812b15cb3dSCy Schubert * function. If the time of translation is not available, an
2822b15cb3dSCy Schubert * implementation-defined valid time shall be supplied.
2832b15cb3dSCy Schubert *
2842b15cb3dSCy Schubert * Note that MSVC declares DATE and TIME to be in the local time
2852b15cb3dSCy Schubert * zone, while neither the C standard nor the GCC docs make any
2862b15cb3dSCy Schubert * statement about this. As a result, we may be +/-12hrs off
2872b15cb3dSCy Schubert * UTC. But for practical purposes, this should not be a
2882b15cb3dSCy Schubert * problem.
2892b15cb3dSCy Schubert *
2902b15cb3dSCy Schubert */
2912b15cb3dSCy Schubert # ifdef MKREPRO_DATE
2922b15cb3dSCy Schubert static const char build[] = MKREPRO_TIME "/" MKREPRO_DATE;
2932b15cb3dSCy Schubert # else
2942b15cb3dSCy Schubert static const char build[] = __TIME__ "/" __DATE__;
2952b15cb3dSCy Schubert # endif
2962b15cb3dSCy Schubert static const char mlist[] = "JanFebMarAprMayJunJulAugSepOctNovDec";
2972b15cb3dSCy Schubert
2982b15cb3dSCy Schubert char monstr[4];
2992b15cb3dSCy Schubert const char * cp;
3002b15cb3dSCy Schubert unsigned short hour, minute, second, day, year;
3012b15cb3dSCy Schubert /* Note: The above quantities are used for sscanf 'hu' format,
3022b15cb3dSCy Schubert * so using 'uint16_t' is contra-indicated!
3032b15cb3dSCy Schubert */
3042b15cb3dSCy Schubert
3052b15cb3dSCy Schubert # ifdef DEBUG
3062b15cb3dSCy Schubert static int ignore = 0;
3072b15cb3dSCy Schubert # endif
3082b15cb3dSCy Schubert
3092b15cb3dSCy Schubert ZERO(*jd);
3102b15cb3dSCy Schubert jd->year = 1970;
3112b15cb3dSCy Schubert jd->month = 1;
3122b15cb3dSCy Schubert jd->monthday = 1;
3132b15cb3dSCy Schubert
3142b15cb3dSCy Schubert # ifdef DEBUG
3152b15cb3dSCy Schubert /* check environment if build date should be ignored */
3162b15cb3dSCy Schubert if (0 == ignore) {
3172b15cb3dSCy Schubert const char * envstr;
3182b15cb3dSCy Schubert envstr = getenv("NTPD_IGNORE_BUILD_DATE");
3192b15cb3dSCy Schubert ignore = 1 + (envstr && (!*envstr || !strcasecmp(envstr, "yes")));
3202b15cb3dSCy Schubert }
3212b15cb3dSCy Schubert if (ignore > 1)
3222b15cb3dSCy Schubert return FALSE;
3232b15cb3dSCy Schubert # endif
3242b15cb3dSCy Schubert
3252b15cb3dSCy Schubert if (6 == sscanf(build, "%hu:%hu:%hu/%3s %hu %hu",
3262b15cb3dSCy Schubert &hour, &minute, &second, monstr, &day, &year)) {
3272b15cb3dSCy Schubert cp = strstr(mlist, monstr);
3282b15cb3dSCy Schubert if (NULL != cp) {
3292b15cb3dSCy Schubert jd->year = year;
3302b15cb3dSCy Schubert jd->month = (uint8_t)((cp - mlist) / 3 + 1);
3312b15cb3dSCy Schubert jd->monthday = (uint8_t)day;
3322b15cb3dSCy Schubert jd->hour = (uint8_t)hour;
3332b15cb3dSCy Schubert jd->minute = (uint8_t)minute;
3342b15cb3dSCy Schubert jd->second = (uint8_t)second;
3352b15cb3dSCy Schubert
3362b15cb3dSCy Schubert return TRUE;
3372b15cb3dSCy Schubert }
3382b15cb3dSCy Schubert }
3392b15cb3dSCy Schubert
3402b15cb3dSCy Schubert return FALSE;
3412b15cb3dSCy Schubert }
3422b15cb3dSCy Schubert
3432b15cb3dSCy Schubert
3442b15cb3dSCy Schubert /*
3452b15cb3dSCy Schubert *---------------------------------------------------------------------
3462b15cb3dSCy Schubert * basic calendar stuff
347f391d6bcSXin LI *---------------------------------------------------------------------
3482b15cb3dSCy Schubert */
3492b15cb3dSCy Schubert
3502b15cb3dSCy Schubert /*
3512b15cb3dSCy Schubert * Some notes on the terminology:
3522b15cb3dSCy Schubert *
3532b15cb3dSCy Schubert * We use the proleptic Gregorian calendar, which is the Gregorian
3542b15cb3dSCy Schubert * calendar extended in both directions ad infinitum. This totally
3552b15cb3dSCy Schubert * disregards the fact that this calendar was invented in 1582, and
3562b15cb3dSCy Schubert * was adopted at various dates over the world; sometimes even after
3572b15cb3dSCy Schubert * the start of the NTP epoch.
3582b15cb3dSCy Schubert *
3592b15cb3dSCy Schubert * Normally date parts are given as current cycles, while time parts
3602b15cb3dSCy Schubert * are given as elapsed cycles:
3612b15cb3dSCy Schubert *
3622b15cb3dSCy Schubert * 1970-01-01/03:04:05 means 'IN the 1970st. year, IN the first month,
3632b15cb3dSCy Schubert * ON the first day, with 3hrs, 4minutes and 5 seconds elapsed.
3642b15cb3dSCy Schubert *
3652b15cb3dSCy Schubert * The basic calculations for this calendar implementation deal with
3662b15cb3dSCy Schubert * ELAPSED date units, which is the number of full years, full months
3672b15cb3dSCy Schubert * and full days before a date: 1970-01-01 would be (1969, 0, 0) in
3682b15cb3dSCy Schubert * that notation.
3692b15cb3dSCy Schubert *
3702b15cb3dSCy Schubert * To ease the numeric computations, month and day values outside the
3712b15cb3dSCy Schubert * normal range are acceptable: 2001-03-00 will be treated as the day
3722b15cb3dSCy Schubert * before 2001-03-01, 2000-13-32 will give the same result as
3732b15cb3dSCy Schubert * 2001-02-01 and so on.
3742b15cb3dSCy Schubert *
3752b15cb3dSCy Schubert * 'rd' or 'RD' is used as an abbreviation for the latin 'rata die'
3762b15cb3dSCy Schubert * (day number). This is the number of days elapsed since 0000-12-31
3772b15cb3dSCy Schubert * in the proleptic Gregorian calendar. The begin of the Christian Era
3782b15cb3dSCy Schubert * (0001-01-01) is RD(1).
3792b15cb3dSCy Schubert */
3802b15cb3dSCy Schubert
3812b15cb3dSCy Schubert /*
382f391d6bcSXin LI * ====================================================================
3832b15cb3dSCy Schubert *
3842b15cb3dSCy Schubert * General algorithmic stuff
3852b15cb3dSCy Schubert *
386f391d6bcSXin LI * ====================================================================
3872b15cb3dSCy Schubert */
3882b15cb3dSCy Schubert
3892b15cb3dSCy Schubert /*
3902b15cb3dSCy Schubert *---------------------------------------------------------------------
391*2d4e511cSCy Schubert * fast modulo 7 operations (floor/mathematical convention)
392*2d4e511cSCy Schubert *---------------------------------------------------------------------
393*2d4e511cSCy Schubert */
394*2d4e511cSCy Schubert int
u32mod7(uint32_t x)395*2d4e511cSCy Schubert u32mod7(
396*2d4e511cSCy Schubert uint32_t x
397*2d4e511cSCy Schubert )
398*2d4e511cSCy Schubert {
399*2d4e511cSCy Schubert /* This is a combination of tricks from "Hacker's Delight" with
400*2d4e511cSCy Schubert * some modifications, like a multiplication that rounds up to
401*2d4e511cSCy Schubert * drop the final adjustment stage.
402*2d4e511cSCy Schubert *
403*2d4e511cSCy Schubert * Do a partial reduction by digit sum to keep the value in the
404*2d4e511cSCy Schubert * range permitted for the mul/shift stage. There are several
405*2d4e511cSCy Schubert * possible and absolutely equivalent shift/mask combinations;
406*2d4e511cSCy Schubert * this one is ARM-friendly because of a mask that fits into 16
407*2d4e511cSCy Schubert * bit.
408*2d4e511cSCy Schubert */
409*2d4e511cSCy Schubert x = (x >> 15) + (x & UINT32_C(0x7FFF));
410*2d4e511cSCy Schubert /* Take reminder as (mod 8) by mul/shift. Since the multiplier
411*2d4e511cSCy Schubert * was calculated using ceil() instead of floor(), it skips the
412*2d4e511cSCy Schubert * value '7' properly.
413*2d4e511cSCy Schubert * M <- ceil(ldexp(8/7, 29))
414*2d4e511cSCy Schubert */
415*2d4e511cSCy Schubert return (int)((x * UINT32_C(0x24924925)) >> 29);
416*2d4e511cSCy Schubert }
417*2d4e511cSCy Schubert
418*2d4e511cSCy Schubert int
i32mod7(int32_t x)419*2d4e511cSCy Schubert i32mod7(
420*2d4e511cSCy Schubert int32_t x
421*2d4e511cSCy Schubert )
422*2d4e511cSCy Schubert {
423*2d4e511cSCy Schubert /* We add (2**32 - 2**32 % 7), which is (2**32 - 4), to negative
424*2d4e511cSCy Schubert * numbers to map them into the postive range. Only the term '-4'
425*2d4e511cSCy Schubert * survives, obviously.
426*2d4e511cSCy Schubert */
427*2d4e511cSCy Schubert uint32_t ux = (uint32_t)x;
428*2d4e511cSCy Schubert return u32mod7((x < 0) ? (ux - 4u) : ux);
429*2d4e511cSCy Schubert }
430*2d4e511cSCy Schubert
431*2d4e511cSCy Schubert uint32_t
i32fmod(int32_t x,uint32_t d)432*2d4e511cSCy Schubert i32fmod(
433*2d4e511cSCy Schubert int32_t x,
434*2d4e511cSCy Schubert uint32_t d
435*2d4e511cSCy Schubert )
436*2d4e511cSCy Schubert {
437*2d4e511cSCy Schubert uint32_t ux = (uint32_t)x;
438*2d4e511cSCy Schubert uint32_t sf = UINT32_C(0) - (x < 0);
439*2d4e511cSCy Schubert ux = (sf ^ ux ) % d;
440*2d4e511cSCy Schubert return (d & sf) + (sf ^ ux);
441*2d4e511cSCy Schubert }
442*2d4e511cSCy Schubert
443*2d4e511cSCy Schubert /*
444*2d4e511cSCy Schubert *---------------------------------------------------------------------
4452b15cb3dSCy Schubert * Do a periodic extension of 'value' around 'pivot' with a period of
4462b15cb3dSCy Schubert * 'cycle'.
4472b15cb3dSCy Schubert *
4482b15cb3dSCy Schubert * The result 'res' is a number that holds to the following properties:
4492b15cb3dSCy Schubert *
4502b15cb3dSCy Schubert * 1) res MOD cycle == value MOD cycle
4512b15cb3dSCy Schubert * 2) pivot <= res < pivot + cycle
4522b15cb3dSCy Schubert * (replace </<= with >/>= for negative cycles)
4532b15cb3dSCy Schubert *
4542b15cb3dSCy Schubert * where 'MOD' denotes the modulo operator for FLOOR DIVISION, which
4552b15cb3dSCy Schubert * is not the same as the '%' operator in C: C requires division to be
4562b15cb3dSCy Schubert * a truncated division, where remainder and dividend have the same
4572b15cb3dSCy Schubert * sign if the remainder is not zero, whereas floor division requires
4582b15cb3dSCy Schubert * divider and modulus to have the same sign for a non-zero modulus.
4592b15cb3dSCy Schubert *
4602b15cb3dSCy Schubert * This function has some useful applications:
4612b15cb3dSCy Schubert *
4622b15cb3dSCy Schubert * + let Y be a calendar year and V a truncated 2-digit year: then
4632b15cb3dSCy Schubert * periodic_extend(Y-50, V, 100)
4642b15cb3dSCy Schubert * is the closest expansion of the truncated year with respect to
4652b15cb3dSCy Schubert * the full year, that is a 4-digit year with a difference of less
4662b15cb3dSCy Schubert * than 50 years to the year Y. ("century unfolding")
4672b15cb3dSCy Schubert *
4682b15cb3dSCy Schubert * + let T be a UN*X time stamp and V be seconds-of-day: then
4692b15cb3dSCy Schubert * perodic_extend(T-43200, V, 86400)
4702b15cb3dSCy Schubert * is a time stamp that has the same seconds-of-day as the input
4712b15cb3dSCy Schubert * value, with an absolute difference to T of <= 12hrs. ("day
4722b15cb3dSCy Schubert * unfolding")
4732b15cb3dSCy Schubert *
4742b15cb3dSCy Schubert * + Wherever you have a truncated periodic value and a non-truncated
4752b15cb3dSCy Schubert * base value and you want to match them somehow...
4762b15cb3dSCy Schubert *
4772b15cb3dSCy Schubert * Basically, the function delivers 'pivot + (value - pivot) % cycle',
4782b15cb3dSCy Schubert * but the implementation takes some pains to avoid internal signed
4792b15cb3dSCy Schubert * integer overflows in the '(value - pivot) % cycle' part and adheres
4802b15cb3dSCy Schubert * to the floor division convention.
4812b15cb3dSCy Schubert *
4822b15cb3dSCy Schubert * If 64bit scalars where available on all intended platforms, writing a
4832b15cb3dSCy Schubert * version that uses 64 bit ops would be easy; writing a general
4842b15cb3dSCy Schubert * division routine for 64bit ops on a platform that can only do
4852b15cb3dSCy Schubert * 32/16bit divisions and is still performant is a bit more
4862b15cb3dSCy Schubert * difficult. Since most usecases can be coded in a way that does only
487*2d4e511cSCy Schubert * require the 32bit version a 64bit version is NOT provided here.
4882b15cb3dSCy Schubert *---------------------------------------------------------------------
4892b15cb3dSCy Schubert */
4902b15cb3dSCy Schubert int32_t
ntpcal_periodic_extend(int32_t pivot,int32_t value,int32_t cycle)4912b15cb3dSCy Schubert ntpcal_periodic_extend(
4922b15cb3dSCy Schubert int32_t pivot,
4932b15cb3dSCy Schubert int32_t value,
4942b15cb3dSCy Schubert int32_t cycle
4952b15cb3dSCy Schubert )
4962b15cb3dSCy Schubert {
497*2d4e511cSCy Schubert /* Implement a 4-quadrant modulus calculation by 2 2-quadrant
498*2d4e511cSCy Schubert * branches, one for positive and one for negative dividers.
499*2d4e511cSCy Schubert * Everything else can be handled by bit level logic and
500*2d4e511cSCy Schubert * conditional one's complement arithmetic. By convention, we
501*2d4e511cSCy Schubert * assume
502*2d4e511cSCy Schubert *
503*2d4e511cSCy Schubert * x % b == 0 if |b| < 2
504*2d4e511cSCy Schubert *
505*2d4e511cSCy Schubert * that is, we don't actually divide for cycles of -1,0,1 and
506*2d4e511cSCy Schubert * return the pivot value in that case.
5072b15cb3dSCy Schubert */
508*2d4e511cSCy Schubert uint32_t uv = (uint32_t)value;
509*2d4e511cSCy Schubert uint32_t up = (uint32_t)pivot;
510*2d4e511cSCy Schubert uint32_t uc, sf;
511*2d4e511cSCy Schubert
512*2d4e511cSCy Schubert if (cycle > 1)
513*2d4e511cSCy Schubert {
514*2d4e511cSCy Schubert uc = (uint32_t)cycle;
515*2d4e511cSCy Schubert sf = UINT32_C(0) - (value < pivot);
516*2d4e511cSCy Schubert
517*2d4e511cSCy Schubert uv = sf ^ (uv - up);
518*2d4e511cSCy Schubert uv %= uc;
519*2d4e511cSCy Schubert pivot += (uc & sf) + (sf ^ uv);
5202b15cb3dSCy Schubert }
521*2d4e511cSCy Schubert else if (cycle < -1)
522*2d4e511cSCy Schubert {
523*2d4e511cSCy Schubert uc = ~(uint32_t)cycle + 1;
524*2d4e511cSCy Schubert sf = UINT32_C(0) - (value > pivot);
525*2d4e511cSCy Schubert
526*2d4e511cSCy Schubert uv = sf ^ (up - uv);
527*2d4e511cSCy Schubert uv %= uc;
528*2d4e511cSCy Schubert pivot -= (uc & sf) + (sf ^ uv);
5292b15cb3dSCy Schubert }
5302b15cb3dSCy Schubert return pivot;
5312b15cb3dSCy Schubert }
5322b15cb3dSCy Schubert
533f391d6bcSXin LI /*---------------------------------------------------------------------
534f391d6bcSXin LI * Note to the casual reader
535f391d6bcSXin LI *
536f391d6bcSXin LI * In the next two functions you will find (or would have found...)
537f391d6bcSXin LI * the expression
538f391d6bcSXin LI *
539f391d6bcSXin LI * res.Q_s -= 0x80000000;
540f391d6bcSXin LI *
541f391d6bcSXin LI * There was some ruckus about a possible programming error due to
542f391d6bcSXin LI * integer overflow and sign propagation.
543f391d6bcSXin LI *
544f391d6bcSXin LI * This assumption is based on a lack of understanding of the C
545f391d6bcSXin LI * standard. (Though this is admittedly not one of the most 'natural'
546f391d6bcSXin LI * aspects of the 'C' language and easily to get wrong.)
547f391d6bcSXin LI *
548f391d6bcSXin LI * see
549f391d6bcSXin LI * http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1570.pdf
550f391d6bcSXin LI * "ISO/IEC 9899:201x Committee Draft — April 12, 2011"
551f391d6bcSXin LI * 6.4.4.1 Integer constants, clause 5
552f391d6bcSXin LI *
553f391d6bcSXin LI * why there is no sign extension/overflow problem here.
554f391d6bcSXin LI *
555f391d6bcSXin LI * But to ease the minds of the doubtful, I added back the 'u' qualifiers
556f391d6bcSXin LI * that somehow got lost over the last years.
557f391d6bcSXin LI */
558f391d6bcSXin LI
559f391d6bcSXin LI
5602b15cb3dSCy Schubert /*
561f391d6bcSXin LI *---------------------------------------------------------------------
5622b15cb3dSCy Schubert * Convert a timestamp in NTP scale to a 64bit seconds value in the UN*X
5632b15cb3dSCy Schubert * scale with proper epoch unfolding around a given pivot or the current
5642b15cb3dSCy Schubert * system time. This function happily accepts negative pivot values as
565*2d4e511cSCy Schubert * timestamps before 1970-01-01, so be aware of possible trouble on
5662b15cb3dSCy Schubert * platforms with 32bit 'time_t'!
5672b15cb3dSCy Schubert *
5682b15cb3dSCy Schubert * This is also a periodic extension, but since the cycle is 2^32 and
5692b15cb3dSCy Schubert * the shift is 2^31, we can do some *very* fast math without explicit
5702b15cb3dSCy Schubert * divisions.
571f391d6bcSXin LI *---------------------------------------------------------------------
5722b15cb3dSCy Schubert */
5732b15cb3dSCy Schubert vint64
ntpcal_ntp_to_time(uint32_t ntp,const time_t * pivot)5742b15cb3dSCy Schubert ntpcal_ntp_to_time(
5752b15cb3dSCy Schubert uint32_t ntp,
5762b15cb3dSCy Schubert const time_t * pivot
5772b15cb3dSCy Schubert )
5782b15cb3dSCy Schubert {
5792b15cb3dSCy Schubert vint64 res;
5802b15cb3dSCy Schubert
5819034852cSGleb Smirnoff # if defined(HAVE_INT64)
5822b15cb3dSCy Schubert
5832b15cb3dSCy Schubert res.q_s = (pivot != NULL)
5842b15cb3dSCy Schubert ? *pivot
5852b15cb3dSCy Schubert : now();
586f391d6bcSXin LI res.Q_s -= 0x80000000u; /* unshift of half range */
5872b15cb3dSCy Schubert ntp -= (uint32_t)JAN_1970; /* warp into UN*X domain */
5882b15cb3dSCy Schubert ntp -= res.D_s.lo; /* cycle difference */
5892b15cb3dSCy Schubert res.Q_s += (uint64_t)ntp; /* get expanded time */
5902b15cb3dSCy Schubert
5912b15cb3dSCy Schubert # else /* no 64bit scalars */
5922b15cb3dSCy Schubert
5932b15cb3dSCy Schubert time_t tmp;
5942b15cb3dSCy Schubert
5952b15cb3dSCy Schubert tmp = (pivot != NULL)
5962b15cb3dSCy Schubert ? *pivot
5972b15cb3dSCy Schubert : now();
5982b15cb3dSCy Schubert res = time_to_vint64(&tmp);
599f391d6bcSXin LI M_SUB(res.D_s.hi, res.D_s.lo, 0, 0x80000000u);
6002b15cb3dSCy Schubert ntp -= (uint32_t)JAN_1970; /* warp into UN*X domain */
6012b15cb3dSCy Schubert ntp -= res.D_s.lo; /* cycle difference */
6022b15cb3dSCy Schubert M_ADD(res.D_s.hi, res.D_s.lo, 0, ntp);
6032b15cb3dSCy Schubert
6042b15cb3dSCy Schubert # endif /* no 64bit scalars */
6052b15cb3dSCy Schubert
6062b15cb3dSCy Schubert return res;
6072b15cb3dSCy Schubert }
6082b15cb3dSCy Schubert
6092b15cb3dSCy Schubert /*
610f391d6bcSXin LI *---------------------------------------------------------------------
6112b15cb3dSCy Schubert * Convert a timestamp in NTP scale to a 64bit seconds value in the NTP
6122b15cb3dSCy Schubert * scale with proper epoch unfolding around a given pivot or the current
6132b15cb3dSCy Schubert * system time.
6142b15cb3dSCy Schubert *
6152b15cb3dSCy Schubert * Note: The pivot must be given in the UN*X time domain!
6162b15cb3dSCy Schubert *
6172b15cb3dSCy Schubert * This is also a periodic extension, but since the cycle is 2^32 and
6182b15cb3dSCy Schubert * the shift is 2^31, we can do some *very* fast math without explicit
6192b15cb3dSCy Schubert * divisions.
620f391d6bcSXin LI *---------------------------------------------------------------------
6212b15cb3dSCy Schubert */
6222b15cb3dSCy Schubert vint64
ntpcal_ntp_to_ntp(uint32_t ntp,const time_t * pivot)6232b15cb3dSCy Schubert ntpcal_ntp_to_ntp(
6242b15cb3dSCy Schubert uint32_t ntp,
6252b15cb3dSCy Schubert const time_t *pivot
6262b15cb3dSCy Schubert )
6272b15cb3dSCy Schubert {
6282b15cb3dSCy Schubert vint64 res;
6292b15cb3dSCy Schubert
6309034852cSGleb Smirnoff # if defined(HAVE_INT64)
6312b15cb3dSCy Schubert
6322b15cb3dSCy Schubert res.q_s = (pivot)
6332b15cb3dSCy Schubert ? *pivot
6342b15cb3dSCy Schubert : now();
635f391d6bcSXin LI res.Q_s -= 0x80000000u; /* unshift of half range */
6362b15cb3dSCy Schubert res.Q_s += (uint32_t)JAN_1970; /* warp into NTP domain */
6372b15cb3dSCy Schubert ntp -= res.D_s.lo; /* cycle difference */
6382b15cb3dSCy Schubert res.Q_s += (uint64_t)ntp; /* get expanded time */
6392b15cb3dSCy Schubert
6402b15cb3dSCy Schubert # else /* no 64bit scalars */
6412b15cb3dSCy Schubert
6422b15cb3dSCy Schubert time_t tmp;
6432b15cb3dSCy Schubert
6442b15cb3dSCy Schubert tmp = (pivot)
6452b15cb3dSCy Schubert ? *pivot
6462b15cb3dSCy Schubert : now();
6472b15cb3dSCy Schubert res = time_to_vint64(&tmp);
6482b15cb3dSCy Schubert M_SUB(res.D_s.hi, res.D_s.lo, 0, 0x80000000u);
6492b15cb3dSCy Schubert M_ADD(res.D_s.hi, res.D_s.lo, 0, (uint32_t)JAN_1970);/*into NTP */
6502b15cb3dSCy Schubert ntp -= res.D_s.lo; /* cycle difference */
6512b15cb3dSCy Schubert M_ADD(res.D_s.hi, res.D_s.lo, 0, ntp);
6522b15cb3dSCy Schubert
6532b15cb3dSCy Schubert # endif /* no 64bit scalars */
6542b15cb3dSCy Schubert
6552b15cb3dSCy Schubert return res;
6562b15cb3dSCy Schubert }
6572b15cb3dSCy Schubert
6582b15cb3dSCy Schubert
6592b15cb3dSCy Schubert /*
660f391d6bcSXin LI * ====================================================================
6612b15cb3dSCy Schubert *
6622b15cb3dSCy Schubert * Splitting values to composite entities
6632b15cb3dSCy Schubert *
664f391d6bcSXin LI * ====================================================================
6652b15cb3dSCy Schubert */
6662b15cb3dSCy Schubert
6672b15cb3dSCy Schubert /*
668f391d6bcSXin LI *---------------------------------------------------------------------
6692b15cb3dSCy Schubert * Split a 64bit seconds value into elapsed days in 'res.hi' and
6702b15cb3dSCy Schubert * elapsed seconds since midnight in 'res.lo' using explicit floor
6712b15cb3dSCy Schubert * division. This function happily accepts negative time values as
6722b15cb3dSCy Schubert * timestamps before the respective epoch start.
673f391d6bcSXin LI *---------------------------------------------------------------------
6742b15cb3dSCy Schubert */
6752b15cb3dSCy Schubert ntpcal_split
ntpcal_daysplit(const vint64 * ts)6762b15cb3dSCy Schubert ntpcal_daysplit(
6772b15cb3dSCy Schubert const vint64 *ts
6782b15cb3dSCy Schubert )
6792b15cb3dSCy Schubert {
6802b15cb3dSCy Schubert ntpcal_split res;
681*2d4e511cSCy Schubert uint32_t Q, R;
6822b15cb3dSCy Schubert
683*2d4e511cSCy Schubert # if defined(HAVE_64BITREGS)
6842b15cb3dSCy Schubert
685*2d4e511cSCy Schubert /* Assume we have 64bit registers an can do a divison by
686*2d4e511cSCy Schubert * constant reasonably fast using the one's complement trick..
687*2d4e511cSCy Schubert */
688*2d4e511cSCy Schubert uint64_t sf64 = (uint64_t)-(ts->q_s < 0);
689*2d4e511cSCy Schubert Q = (uint32_t)(sf64 ^ ((sf64 ^ ts->Q_s) / SECSPERDAY));
690*2d4e511cSCy Schubert R = (uint32_t)(ts->Q_s - Q * SECSPERDAY);
691*2d4e511cSCy Schubert
692*2d4e511cSCy Schubert # elif defined(UINT64_MAX) && !defined(__arm__)
693*2d4e511cSCy Schubert
694*2d4e511cSCy Schubert /* We rely on the compiler to do efficient 64bit divisions as
695*2d4e511cSCy Schubert * good as possible. Which might or might not be true. At least
696*2d4e511cSCy Schubert * for ARM CPUs, the sum-by-digit code in the next section is
697*2d4e511cSCy Schubert * faster for many compilers. (This might change over time, but
698*2d4e511cSCy Schubert * the 64bit-by-32bit division will never outperform the exact
699*2d4e511cSCy Schubert * division by a substantial factor....)
7009034852cSGleb Smirnoff */
7019034852cSGleb Smirnoff if (ts->q_s < 0)
7029034852cSGleb Smirnoff Q = ~(uint32_t)(~ts->Q_s / SECSPERDAY);
7039034852cSGleb Smirnoff else
7049034852cSGleb Smirnoff Q = (uint32_t)( ts->Q_s / SECSPERDAY);
705*2d4e511cSCy Schubert R = ts->D_s.lo - Q * SECSPERDAY;
7062b15cb3dSCy Schubert
7072b15cb3dSCy Schubert # else
7082b15cb3dSCy Schubert
709*2d4e511cSCy Schubert /* We don't have 64bit regs. That hurts a bit.
7109034852cSGleb Smirnoff *
711*2d4e511cSCy Schubert * Here we use a mean trick to get away with just one explicit
712*2d4e511cSCy Schubert * modulo operation and pure 32bit ops.
713*2d4e511cSCy Schubert *
714*2d4e511cSCy Schubert * Remember: 86400 <--> 128 * 675
715*2d4e511cSCy Schubert *
716*2d4e511cSCy Schubert * So we discard the lowest 7 bit and do an exact division by
717*2d4e511cSCy Schubert * 675, modulo 2**32.
718*2d4e511cSCy Schubert *
719*2d4e511cSCy Schubert * First we shift out the lower 7 bits.
720*2d4e511cSCy Schubert *
721*2d4e511cSCy Schubert * Then we use a digit-wise pseudo-reduction, where a 'digit' is
722*2d4e511cSCy Schubert * actually a 16-bit group. This is followed by a full reduction
723*2d4e511cSCy Schubert * with a 'true' division step. This yields the modulus of the
724*2d4e511cSCy Schubert * full 64bit value. The sign bit gets some extra treatment.
725*2d4e511cSCy Schubert *
726*2d4e511cSCy Schubert * Then we decrement the lower limb by that modulus, so it is
727*2d4e511cSCy Schubert * exactly divisible by 675. [*]
728*2d4e511cSCy Schubert *
729*2d4e511cSCy Schubert * Then we multiply with the modular inverse of 675 (mod 2**32)
730*2d4e511cSCy Schubert * and voila, we have the result.
731*2d4e511cSCy Schubert *
732*2d4e511cSCy Schubert * Special Thanks to Henry S. Warren and his "Hacker's delight"
733*2d4e511cSCy Schubert * for giving that idea.
734*2d4e511cSCy Schubert *
735*2d4e511cSCy Schubert * (Note[*]: that's not the full truth. We would have to
736*2d4e511cSCy Schubert * subtract the modulus from the full 64 bit number to get a
737*2d4e511cSCy Schubert * number that is divisible by 675. But since we use the
738*2d4e511cSCy Schubert * multiplicative inverse (mod 2**32) there's no reason to carry
739*2d4e511cSCy Schubert * the subtraction into the upper bits!)
7402b15cb3dSCy Schubert */
741*2d4e511cSCy Schubert uint32_t al = ts->D_s.lo;
742*2d4e511cSCy Schubert uint32_t ah = ts->D_s.hi;
7432b15cb3dSCy Schubert
744*2d4e511cSCy Schubert /* shift out the lower 7 bits, smash sign bit */
745*2d4e511cSCy Schubert al = (al >> 7) | (ah << 25);
746*2d4e511cSCy Schubert ah = (ah >> 7) & 0x00FFFFFFu;
7472b15cb3dSCy Schubert
748*2d4e511cSCy Schubert R = (ts->d_s.hi < 0) ? 239 : 0;/* sign bit value */
749*2d4e511cSCy Schubert R += (al & 0xFFFF);
750*2d4e511cSCy Schubert R += (al >> 16 ) * 61u; /* 2**16 % 675 */
751*2d4e511cSCy Schubert R += (ah & 0xFFFF) * 346u; /* 2**32 % 675 */
752*2d4e511cSCy Schubert R += (ah >> 16 ) * 181u; /* 2**48 % 675 */
753*2d4e511cSCy Schubert R %= 675u; /* final reduction */
754*2d4e511cSCy Schubert Q = (al - R) * 0x2D21C10Bu; /* modinv(675, 2**32) */
755*2d4e511cSCy Schubert R = (R << 7) | (ts->d_s.lo & 0x07F);
7562b15cb3dSCy Schubert
7572b15cb3dSCy Schubert # endif
7589034852cSGleb Smirnoff
7599034852cSGleb Smirnoff res.hi = uint32_2cpl_to_int32(Q);
760*2d4e511cSCy Schubert res.lo = R;
761*2d4e511cSCy Schubert
762*2d4e511cSCy Schubert return res;
763*2d4e511cSCy Schubert }
764*2d4e511cSCy Schubert
765*2d4e511cSCy Schubert /*
766*2d4e511cSCy Schubert *---------------------------------------------------------------------
767*2d4e511cSCy Schubert * Split a 64bit seconds value into elapsed weeks in 'res.hi' and
768*2d4e511cSCy Schubert * elapsed seconds since week start in 'res.lo' using explicit floor
769*2d4e511cSCy Schubert * division. This function happily accepts negative time values as
770*2d4e511cSCy Schubert * timestamps before the respective epoch start.
771*2d4e511cSCy Schubert *---------------------------------------------------------------------
772*2d4e511cSCy Schubert */
773*2d4e511cSCy Schubert ntpcal_split
ntpcal_weeksplit(const vint64 * ts)774*2d4e511cSCy Schubert ntpcal_weeksplit(
775*2d4e511cSCy Schubert const vint64 *ts
776*2d4e511cSCy Schubert )
777*2d4e511cSCy Schubert {
778*2d4e511cSCy Schubert ntpcal_split res;
779*2d4e511cSCy Schubert uint32_t Q, R;
780*2d4e511cSCy Schubert
781*2d4e511cSCy Schubert /* This is a very close relative to the day split function; for
782*2d4e511cSCy Schubert * details, see there!
783*2d4e511cSCy Schubert */
784*2d4e511cSCy Schubert
785*2d4e511cSCy Schubert # if defined(HAVE_64BITREGS)
786*2d4e511cSCy Schubert
787*2d4e511cSCy Schubert uint64_t sf64 = (uint64_t)-(ts->q_s < 0);
788*2d4e511cSCy Schubert Q = (uint32_t)(sf64 ^ ((sf64 ^ ts->Q_s) / SECSPERWEEK));
789*2d4e511cSCy Schubert R = (uint32_t)(ts->Q_s - Q * SECSPERWEEK);
790*2d4e511cSCy Schubert
791*2d4e511cSCy Schubert # elif defined(UINT64_MAX) && !defined(__arm__)
792*2d4e511cSCy Schubert
793*2d4e511cSCy Schubert if (ts->q_s < 0)
794*2d4e511cSCy Schubert Q = ~(uint32_t)(~ts->Q_s / SECSPERWEEK);
795*2d4e511cSCy Schubert else
796*2d4e511cSCy Schubert Q = (uint32_t)( ts->Q_s / SECSPERWEEK);
797*2d4e511cSCy Schubert R = ts->D_s.lo - Q * SECSPERWEEK;
798*2d4e511cSCy Schubert
799*2d4e511cSCy Schubert # else
800*2d4e511cSCy Schubert
801*2d4e511cSCy Schubert /* Remember: 7*86400 <--> 604800 <--> 128 * 4725 */
802*2d4e511cSCy Schubert uint32_t al = ts->D_s.lo;
803*2d4e511cSCy Schubert uint32_t ah = ts->D_s.hi;
804*2d4e511cSCy Schubert
805*2d4e511cSCy Schubert al = (al >> 7) | (ah << 25);
806*2d4e511cSCy Schubert ah = (ah >> 7) & 0x00FFFFFF;
807*2d4e511cSCy Schubert
808*2d4e511cSCy Schubert R = (ts->d_s.hi < 0) ? 2264 : 0;/* sign bit value */
809*2d4e511cSCy Schubert R += (al & 0xFFFF);
810*2d4e511cSCy Schubert R += (al >> 16 ) * 4111u; /* 2**16 % 4725 */
811*2d4e511cSCy Schubert R += (ah & 0xFFFF) * 3721u; /* 2**32 % 4725 */
812*2d4e511cSCy Schubert R += (ah >> 16 ) * 2206u; /* 2**48 % 4725 */
813*2d4e511cSCy Schubert R %= 4725u; /* final reduction */
814*2d4e511cSCy Schubert Q = (al - R) * 0x98BBADDDu; /* modinv(4725, 2**32) */
815*2d4e511cSCy Schubert R = (R << 7) | (ts->d_s.lo & 0x07F);
816*2d4e511cSCy Schubert
817*2d4e511cSCy Schubert # endif
818*2d4e511cSCy Schubert
819*2d4e511cSCy Schubert res.hi = uint32_2cpl_to_int32(Q);
820*2d4e511cSCy Schubert res.lo = R;
8219034852cSGleb Smirnoff
8222b15cb3dSCy Schubert return res;
8232b15cb3dSCy Schubert }
8242b15cb3dSCy Schubert
8252b15cb3dSCy Schubert /*
826f391d6bcSXin LI *---------------------------------------------------------------------
8272b15cb3dSCy Schubert * Split a 32bit seconds value into h/m/s and excessive days. This
8282b15cb3dSCy Schubert * function happily accepts negative time values as timestamps before
8292b15cb3dSCy Schubert * midnight.
830f391d6bcSXin LI *---------------------------------------------------------------------
8312b15cb3dSCy Schubert */
8322b15cb3dSCy Schubert static int32_t
priv_timesplit(int32_t split[3],int32_t ts)8332b15cb3dSCy Schubert priv_timesplit(
8342b15cb3dSCy Schubert int32_t split[3],
8352b15cb3dSCy Schubert int32_t ts
8362b15cb3dSCy Schubert )
8372b15cb3dSCy Schubert {
8389034852cSGleb Smirnoff /* Do 3 chained floor divisions by positive constants, using the
8399034852cSGleb Smirnoff * one's complement trick and factoring out the intermediate XOR
8409034852cSGleb Smirnoff * ops to reduce the number of operations.
8419034852cSGleb Smirnoff */
842*2d4e511cSCy Schubert uint32_t us, um, uh, ud, sf32;
8432b15cb3dSCy Schubert
844*2d4e511cSCy Schubert sf32 = int32_sflag(ts);
8452b15cb3dSCy Schubert
846*2d4e511cSCy Schubert us = (uint32_t)ts;
847*2d4e511cSCy Schubert um = (sf32 ^ us) / SECSPERMIN;
8489034852cSGleb Smirnoff uh = um / MINSPERHR;
8499034852cSGleb Smirnoff ud = uh / HRSPERDAY;
8502b15cb3dSCy Schubert
851*2d4e511cSCy Schubert um ^= sf32;
852*2d4e511cSCy Schubert uh ^= sf32;
853*2d4e511cSCy Schubert ud ^= sf32;
8549034852cSGleb Smirnoff
8559034852cSGleb Smirnoff split[0] = (int32_t)(uh - ud * HRSPERDAY );
8569034852cSGleb Smirnoff split[1] = (int32_t)(um - uh * MINSPERHR );
8579034852cSGleb Smirnoff split[2] = (int32_t)(us - um * SECSPERMIN);
8589034852cSGleb Smirnoff
8599034852cSGleb Smirnoff return uint32_2cpl_to_int32(ud);
8602b15cb3dSCy Schubert }
8612b15cb3dSCy Schubert
8622b15cb3dSCy Schubert /*
8632b15cb3dSCy Schubert *---------------------------------------------------------------------
8642b15cb3dSCy Schubert * Given the number of elapsed days in the calendar era, split this
8652b15cb3dSCy Schubert * number into the number of elapsed years in 'res.hi' and the number
8662b15cb3dSCy Schubert * of elapsed days of that year in 'res.lo'.
8672b15cb3dSCy Schubert *
8682b15cb3dSCy Schubert * if 'isleapyear' is not NULL, it will receive an integer that is 0 for
8692b15cb3dSCy Schubert * regular years and a non-zero value for leap years.
8702b15cb3dSCy Schubert *---------------------------------------------------------------------
8712b15cb3dSCy Schubert */
8722b15cb3dSCy Schubert ntpcal_split
ntpcal_split_eradays(int32_t days,int * isleapyear)8732b15cb3dSCy Schubert ntpcal_split_eradays(
8742b15cb3dSCy Schubert int32_t days,
8752b15cb3dSCy Schubert int *isleapyear
8762b15cb3dSCy Schubert )
8772b15cb3dSCy Schubert {
8789034852cSGleb Smirnoff /* Use the fast cycle split algorithm here, to calculate the
8799034852cSGleb Smirnoff * centuries and years in a century with one division each. This
8809034852cSGleb Smirnoff * reduces the number of division operations to two, but is
881*2d4e511cSCy Schubert * susceptible to internal range overflow. We take some extra
882*2d4e511cSCy Schubert * steps to avoid the gap.
8839034852cSGleb Smirnoff */
8842b15cb3dSCy Schubert ntpcal_split res;
8859034852cSGleb Smirnoff int32_t n100, n001; /* calendar year cycles */
886*2d4e511cSCy Schubert uint32_t uday, Q;
8872b15cb3dSCy Schubert
888*2d4e511cSCy Schubert /* split off centuries first
889*2d4e511cSCy Schubert *
890*2d4e511cSCy Schubert * We want to execute '(days * 4 + 3) /% 146097' under floor
891*2d4e511cSCy Schubert * division rules in the first step. Well, actually we want to
892*2d4e511cSCy Schubert * calculate 'floor((days + 0.75) / 36524.25)', but we want to
893*2d4e511cSCy Schubert * do it in scaled integer calculation.
894*2d4e511cSCy Schubert */
895*2d4e511cSCy Schubert # if defined(HAVE_64BITREGS)
896*2d4e511cSCy Schubert
897*2d4e511cSCy Schubert /* not too complicated with an intermediate 64bit value */
898*2d4e511cSCy Schubert uint64_t ud64, sf64;
899*2d4e511cSCy Schubert ud64 = ((uint64_t)days << 2) | 3u;
900*2d4e511cSCy Schubert sf64 = (uint64_t)-(days < 0);
901*2d4e511cSCy Schubert Q = (uint32_t)(sf64 ^ ((sf64 ^ ud64) / GREGORIAN_CYCLE_DAYS));
902*2d4e511cSCy Schubert uday = (uint32_t)(ud64 - Q * GREGORIAN_CYCLE_DAYS);
9039034852cSGleb Smirnoff n100 = uint32_2cpl_to_int32(Q);
9042b15cb3dSCy Schubert
905*2d4e511cSCy Schubert # else
906*2d4e511cSCy Schubert
907*2d4e511cSCy Schubert /* '4*days+3' suffers from range overflow when going to the
908*2d4e511cSCy Schubert * limits. We solve this by doing an exact division (mod 2^32)
909*2d4e511cSCy Schubert * after caclulating the remainder first.
910*2d4e511cSCy Schubert *
911*2d4e511cSCy Schubert * We start with a partial reduction by digit sums, extracting
912*2d4e511cSCy Schubert * the upper bits from the original value before they get lost
913*2d4e511cSCy Schubert * by scaling, and do one full division step to get the true
914*2d4e511cSCy Schubert * remainder. Then a final multiplication with the
915*2d4e511cSCy Schubert * multiplicative inverse of 146097 (mod 2^32) gives us the full
916*2d4e511cSCy Schubert * quotient.
917*2d4e511cSCy Schubert *
918*2d4e511cSCy Schubert * (-2^33) % 146097 --> 130717 : the sign bit value
919*2d4e511cSCy Schubert * ( 2^20) % 146097 --> 25897 : the upper digit value
920*2d4e511cSCy Schubert * modinv(146097, 2^32) --> 660721233 : the inverse
921*2d4e511cSCy Schubert */
922*2d4e511cSCy Schubert uint32_t ux = ((uint32_t)days << 2) | 3;
923*2d4e511cSCy Schubert uday = (days < 0) ? 130717u : 0u; /* sign dgt */
924*2d4e511cSCy Schubert uday += ((days >> 18) & 0x01FFFu) * 25897u; /* hi dgt (src!) */
925*2d4e511cSCy Schubert uday += (ux & 0xFFFFFu); /* lo dgt */
926*2d4e511cSCy Schubert uday %= GREGORIAN_CYCLE_DAYS; /* full reduction */
927*2d4e511cSCy Schubert Q = (ux - uday) * 660721233u; /* exact div */
928*2d4e511cSCy Schubert n100 = uint32_2cpl_to_int32(Q);
929*2d4e511cSCy Schubert
930*2d4e511cSCy Schubert # endif
931*2d4e511cSCy Schubert
9329034852cSGleb Smirnoff /* Split off years in century -- days >= 0 here, and we're far
9339034852cSGleb Smirnoff * away from integer overflow trouble now. */
9349034852cSGleb Smirnoff uday |= 3;
9359034852cSGleb Smirnoff n001 = uday / GREGORIAN_NORMAL_LEAP_CYCLE_DAYS;
936*2d4e511cSCy Schubert uday -= n001 * GREGORIAN_NORMAL_LEAP_CYCLE_DAYS;
9379034852cSGleb Smirnoff
9389034852cSGleb Smirnoff /* Assemble the year and day in year */
9399034852cSGleb Smirnoff res.hi = n100 * 100 + n001;
9409034852cSGleb Smirnoff res.lo = uday / 4u;
9419034852cSGleb Smirnoff
942*2d4e511cSCy Schubert /* Possibly set the leap year flag */
943*2d4e511cSCy Schubert if (isleapyear) {
944*2d4e511cSCy Schubert uint32_t tc = (uint32_t)n100 + 1;
945*2d4e511cSCy Schubert uint32_t ty = (uint32_t)n001 + 1;
946*2d4e511cSCy Schubert *isleapyear = !(ty & 3)
947*2d4e511cSCy Schubert && ((ty != 100) || !(tc & 3));
948*2d4e511cSCy Schubert }
9492b15cb3dSCy Schubert return res;
9502b15cb3dSCy Schubert }
9512b15cb3dSCy Schubert
9522b15cb3dSCy Schubert /*
9532b15cb3dSCy Schubert *---------------------------------------------------------------------
9542b15cb3dSCy Schubert * Given a number of elapsed days in a year and a leap year indicator,
9552b15cb3dSCy Schubert * split the number of elapsed days into the number of elapsed months in
9562b15cb3dSCy Schubert * 'res.hi' and the number of elapsed days of that month in 'res.lo'.
9572b15cb3dSCy Schubert *
9582b15cb3dSCy Schubert * This function will fail and return {-1,-1} if the number of elapsed
9592b15cb3dSCy Schubert * days is not in the valid range!
9602b15cb3dSCy Schubert *---------------------------------------------------------------------
9612b15cb3dSCy Schubert */
9622b15cb3dSCy Schubert ntpcal_split
ntpcal_split_yeardays(int32_t eyd,int isleap)9632b15cb3dSCy Schubert ntpcal_split_yeardays(
9642b15cb3dSCy Schubert int32_t eyd,
965*2d4e511cSCy Schubert int isleap
9662b15cb3dSCy Schubert )
9672b15cb3dSCy Schubert {
968*2d4e511cSCy Schubert /* Use the unshifted-year, February-with-30-days approach here.
969*2d4e511cSCy Schubert * Fractional interpolations are used in both directions, with
970*2d4e511cSCy Schubert * the smallest power-of-two divider to avoid any true division.
971*2d4e511cSCy Schubert */
972*2d4e511cSCy Schubert ntpcal_split res = {-1, -1};
9732b15cb3dSCy Schubert
974*2d4e511cSCy Schubert /* convert 'isleap' to number of defective days */
975*2d4e511cSCy Schubert isleap = 1 + !isleap;
976*2d4e511cSCy Schubert /* adjust for February of 30 nominal days */
977*2d4e511cSCy Schubert if (eyd >= 61 - isleap)
978*2d4e511cSCy Schubert eyd += isleap;
979*2d4e511cSCy Schubert /* if in range, convert to months and days in month */
980*2d4e511cSCy Schubert if (eyd >= 0 && eyd < 367) {
981*2d4e511cSCy Schubert res.hi = (eyd * 67 + 32) >> 11;
982*2d4e511cSCy Schubert res.lo = eyd - ((489 * res.hi + 8) >> 4);
9832b15cb3dSCy Schubert }
9842b15cb3dSCy Schubert
9852b15cb3dSCy Schubert return res;
9862b15cb3dSCy Schubert }
9872b15cb3dSCy Schubert
9882b15cb3dSCy Schubert /*
9892b15cb3dSCy Schubert *---------------------------------------------------------------------
9902b15cb3dSCy Schubert * Convert a RD into the date part of a 'struct calendar'.
9912b15cb3dSCy Schubert *---------------------------------------------------------------------
9922b15cb3dSCy Schubert */
9932b15cb3dSCy Schubert int
ntpcal_rd_to_date(struct calendar * jd,int32_t rd)9942b15cb3dSCy Schubert ntpcal_rd_to_date(
9952b15cb3dSCy Schubert struct calendar *jd,
9962b15cb3dSCy Schubert int32_t rd
9972b15cb3dSCy Schubert )
9982b15cb3dSCy Schubert {
9992b15cb3dSCy Schubert ntpcal_split split;
10009034852cSGleb Smirnoff int leapy;
10019034852cSGleb Smirnoff u_int ymask;
10022b15cb3dSCy Schubert
1003*2d4e511cSCy Schubert /* Get day-of-week first. It's simply the RD (mod 7)... */
1004*2d4e511cSCy Schubert jd->weekday = i32mod7(rd);
10052b15cb3dSCy Schubert
10069034852cSGleb Smirnoff split = ntpcal_split_eradays(rd - 1, &leapy);
10079034852cSGleb Smirnoff /* Get year and day-of-year, with overflow check. If any of the
10089034852cSGleb Smirnoff * upper 16 bits is set after shifting to unity-based years, we
10099034852cSGleb Smirnoff * will have an overflow when converting to an unsigned 16bit
10109034852cSGleb Smirnoff * year. Shifting to the right is OK here, since it does not
10119034852cSGleb Smirnoff * matter if the shift is logic or arithmetic.
10129034852cSGleb Smirnoff */
10139034852cSGleb Smirnoff split.hi += 1;
10149034852cSGleb Smirnoff ymask = 0u - ((split.hi >> 16) == 0);
10159034852cSGleb Smirnoff jd->year = (uint16_t)(split.hi & ymask);
10162b15cb3dSCy Schubert jd->yearday = (uint16_t)split.lo + 1;
10172b15cb3dSCy Schubert
10182b15cb3dSCy Schubert /* convert to month and mday */
10199034852cSGleb Smirnoff split = ntpcal_split_yeardays(split.lo, leapy);
10202b15cb3dSCy Schubert jd->month = (uint8_t)split.hi + 1;
10212b15cb3dSCy Schubert jd->monthday = (uint8_t)split.lo + 1;
10222b15cb3dSCy Schubert
10239034852cSGleb Smirnoff return ymask ? leapy : -1;
10242b15cb3dSCy Schubert }
10252b15cb3dSCy Schubert
10262b15cb3dSCy Schubert /*
10272b15cb3dSCy Schubert *---------------------------------------------------------------------
10282b15cb3dSCy Schubert * Convert a RD into the date part of a 'struct tm'.
10292b15cb3dSCy Schubert *---------------------------------------------------------------------
10302b15cb3dSCy Schubert */
10312b15cb3dSCy Schubert int
ntpcal_rd_to_tm(struct tm * utm,int32_t rd)10322b15cb3dSCy Schubert ntpcal_rd_to_tm(
10332b15cb3dSCy Schubert struct tm *utm,
10342b15cb3dSCy Schubert int32_t rd
10352b15cb3dSCy Schubert )
10362b15cb3dSCy Schubert {
10372b15cb3dSCy Schubert ntpcal_split split;
10389034852cSGleb Smirnoff int leapy;
10392b15cb3dSCy Schubert
10402b15cb3dSCy Schubert /* get day-of-week first */
1041*2d4e511cSCy Schubert utm->tm_wday = i32mod7(rd);
10422b15cb3dSCy Schubert
10432b15cb3dSCy Schubert /* get year and day-of-year */
10449034852cSGleb Smirnoff split = ntpcal_split_eradays(rd - 1, &leapy);
10452b15cb3dSCy Schubert utm->tm_year = split.hi - 1899;
10462b15cb3dSCy Schubert utm->tm_yday = split.lo; /* 0-based */
10472b15cb3dSCy Schubert
10482b15cb3dSCy Schubert /* convert to month and mday */
10499034852cSGleb Smirnoff split = ntpcal_split_yeardays(split.lo, leapy);
10502b15cb3dSCy Schubert utm->tm_mon = split.hi; /* 0-based */
10512b15cb3dSCy Schubert utm->tm_mday = split.lo + 1; /* 1-based */
10522b15cb3dSCy Schubert
10539034852cSGleb Smirnoff return leapy;
10542b15cb3dSCy Schubert }
10552b15cb3dSCy Schubert
10562b15cb3dSCy Schubert /*
10572b15cb3dSCy Schubert *---------------------------------------------------------------------
10582b15cb3dSCy Schubert * Take a value of seconds since midnight and split it into hhmmss in a
10592b15cb3dSCy Schubert * 'struct calendar'.
10602b15cb3dSCy Schubert *---------------------------------------------------------------------
10612b15cb3dSCy Schubert */
10622b15cb3dSCy Schubert int32_t
ntpcal_daysec_to_date(struct calendar * jd,int32_t sec)10632b15cb3dSCy Schubert ntpcal_daysec_to_date(
10642b15cb3dSCy Schubert struct calendar *jd,
10652b15cb3dSCy Schubert int32_t sec
10662b15cb3dSCy Schubert )
10672b15cb3dSCy Schubert {
10682b15cb3dSCy Schubert int32_t days;
10692b15cb3dSCy Schubert int ts[3];
10702b15cb3dSCy Schubert
10712b15cb3dSCy Schubert days = priv_timesplit(ts, sec);
10722b15cb3dSCy Schubert jd->hour = (uint8_t)ts[0];
10732b15cb3dSCy Schubert jd->minute = (uint8_t)ts[1];
10742b15cb3dSCy Schubert jd->second = (uint8_t)ts[2];
10752b15cb3dSCy Schubert
10762b15cb3dSCy Schubert return days;
10772b15cb3dSCy Schubert }
10782b15cb3dSCy Schubert
10792b15cb3dSCy Schubert /*
10802b15cb3dSCy Schubert *---------------------------------------------------------------------
10812b15cb3dSCy Schubert * Take a value of seconds since midnight and split it into hhmmss in a
10822b15cb3dSCy Schubert * 'struct tm'.
10832b15cb3dSCy Schubert *---------------------------------------------------------------------
10842b15cb3dSCy Schubert */
10852b15cb3dSCy Schubert int32_t
ntpcal_daysec_to_tm(struct tm * utm,int32_t sec)10862b15cb3dSCy Schubert ntpcal_daysec_to_tm(
10872b15cb3dSCy Schubert struct tm *utm,
10882b15cb3dSCy Schubert int32_t sec
10892b15cb3dSCy Schubert )
10902b15cb3dSCy Schubert {
10912b15cb3dSCy Schubert int32_t days;
10922b15cb3dSCy Schubert int32_t ts[3];
10932b15cb3dSCy Schubert
10942b15cb3dSCy Schubert days = priv_timesplit(ts, sec);
10952b15cb3dSCy Schubert utm->tm_hour = ts[0];
10962b15cb3dSCy Schubert utm->tm_min = ts[1];
10972b15cb3dSCy Schubert utm->tm_sec = ts[2];
10982b15cb3dSCy Schubert
10992b15cb3dSCy Schubert return days;
11002b15cb3dSCy Schubert }
11012b15cb3dSCy Schubert
11022b15cb3dSCy Schubert /*
11032b15cb3dSCy Schubert *---------------------------------------------------------------------
11042b15cb3dSCy Schubert * take a split representation for day/second-of-day and day offset
11052b15cb3dSCy Schubert * and convert it to a 'struct calendar'. The seconds will be normalised
11062b15cb3dSCy Schubert * into the range of a day, and the day will be adjusted accordingly.
11072b15cb3dSCy Schubert *
11082b15cb3dSCy Schubert * returns >0 if the result is in a leap year, 0 if in a regular
11092b15cb3dSCy Schubert * year and <0 if the result did not fit into the calendar struct.
11102b15cb3dSCy Schubert *---------------------------------------------------------------------
11112b15cb3dSCy Schubert */
11122b15cb3dSCy Schubert int
ntpcal_daysplit_to_date(struct calendar * jd,const ntpcal_split * ds,int32_t dof)11132b15cb3dSCy Schubert ntpcal_daysplit_to_date(
11142b15cb3dSCy Schubert struct calendar *jd,
11152b15cb3dSCy Schubert const ntpcal_split *ds,
11162b15cb3dSCy Schubert int32_t dof
11172b15cb3dSCy Schubert )
11182b15cb3dSCy Schubert {
11192b15cb3dSCy Schubert dof += ntpcal_daysec_to_date(jd, ds->lo);
11202b15cb3dSCy Schubert return ntpcal_rd_to_date(jd, ds->hi + dof);
11212b15cb3dSCy Schubert }
11222b15cb3dSCy Schubert
11232b15cb3dSCy Schubert /*
11242b15cb3dSCy Schubert *---------------------------------------------------------------------
11252b15cb3dSCy Schubert * take a split representation for day/second-of-day and day offset
11262b15cb3dSCy Schubert * and convert it to a 'struct tm'. The seconds will be normalised
11272b15cb3dSCy Schubert * into the range of a day, and the day will be adjusted accordingly.
11282b15cb3dSCy Schubert *
11292b15cb3dSCy Schubert * returns 1 if the result is in a leap year and zero if in a regular
11302b15cb3dSCy Schubert * year.
11312b15cb3dSCy Schubert *---------------------------------------------------------------------
11322b15cb3dSCy Schubert */
11332b15cb3dSCy Schubert int
ntpcal_daysplit_to_tm(struct tm * utm,const ntpcal_split * ds,int32_t dof)11342b15cb3dSCy Schubert ntpcal_daysplit_to_tm(
11352b15cb3dSCy Schubert struct tm *utm,
11362b15cb3dSCy Schubert const ntpcal_split *ds ,
11372b15cb3dSCy Schubert int32_t dof
11382b15cb3dSCy Schubert )
11392b15cb3dSCy Schubert {
11402b15cb3dSCy Schubert dof += ntpcal_daysec_to_tm(utm, ds->lo);
11412b15cb3dSCy Schubert
11422b15cb3dSCy Schubert return ntpcal_rd_to_tm(utm, ds->hi + dof);
11432b15cb3dSCy Schubert }
11442b15cb3dSCy Schubert
11452b15cb3dSCy Schubert /*
11462b15cb3dSCy Schubert *---------------------------------------------------------------------
11472b15cb3dSCy Schubert * Take a UN*X time and convert to a calendar structure.
11482b15cb3dSCy Schubert *---------------------------------------------------------------------
11492b15cb3dSCy Schubert */
11502b15cb3dSCy Schubert int
ntpcal_time_to_date(struct calendar * jd,const vint64 * ts)11512b15cb3dSCy Schubert ntpcal_time_to_date(
11522b15cb3dSCy Schubert struct calendar *jd,
11532b15cb3dSCy Schubert const vint64 *ts
11542b15cb3dSCy Schubert )
11552b15cb3dSCy Schubert {
11562b15cb3dSCy Schubert ntpcal_split ds;
11572b15cb3dSCy Schubert
11582b15cb3dSCy Schubert ds = ntpcal_daysplit(ts);
11592b15cb3dSCy Schubert ds.hi += ntpcal_daysec_to_date(jd, ds.lo);
11602b15cb3dSCy Schubert ds.hi += DAY_UNIX_STARTS;
11612b15cb3dSCy Schubert
11622b15cb3dSCy Schubert return ntpcal_rd_to_date(jd, ds.hi);
11632b15cb3dSCy Schubert }
11642b15cb3dSCy Schubert
11652b15cb3dSCy Schubert
11662b15cb3dSCy Schubert /*
1167f391d6bcSXin LI * ====================================================================
11682b15cb3dSCy Schubert *
11692b15cb3dSCy Schubert * merging composite entities
11702b15cb3dSCy Schubert *
1171f391d6bcSXin LI * ====================================================================
11722b15cb3dSCy Schubert */
11732b15cb3dSCy Schubert
1174*2d4e511cSCy Schubert #if !defined(HAVE_INT64)
1175*2d4e511cSCy Schubert /* multiplication helper. Seconds in days and weeks are multiples of 128,
1176*2d4e511cSCy Schubert * and without that factor fit well into 16 bit. So a multiplication
1177*2d4e511cSCy Schubert * of 32bit by 16bit and some shifting can be used on pure 32bit machines
1178*2d4e511cSCy Schubert * with compilers that do not support 64bit integers.
1179*2d4e511cSCy Schubert *
1180*2d4e511cSCy Schubert * Calculate ( hi * mul * 128 ) + lo
1181*2d4e511cSCy Schubert */
1182*2d4e511cSCy Schubert static vint64
_dwjoin(uint16_t mul,int32_t hi,int32_t lo)1183*2d4e511cSCy Schubert _dwjoin(
1184*2d4e511cSCy Schubert uint16_t mul,
1185*2d4e511cSCy Schubert int32_t hi,
1186*2d4e511cSCy Schubert int32_t lo
1187*2d4e511cSCy Schubert )
1188*2d4e511cSCy Schubert {
1189*2d4e511cSCy Schubert vint64 res;
1190*2d4e511cSCy Schubert uint32_t p1, p2, sf;
1191*2d4e511cSCy Schubert
1192*2d4e511cSCy Schubert /* get sign flag and absolute value of 'hi' in p1 */
1193*2d4e511cSCy Schubert sf = (uint32_t)-(hi < 0);
1194*2d4e511cSCy Schubert p1 = ((uint32_t)hi + sf) ^ sf;
1195*2d4e511cSCy Schubert
1196*2d4e511cSCy Schubert /* assemble major units: res <- |hi| * mul */
1197*2d4e511cSCy Schubert res.D_s.lo = (p1 & 0xFFFF) * mul;
1198*2d4e511cSCy Schubert res.D_s.hi = 0;
1199*2d4e511cSCy Schubert p1 = (p1 >> 16) * mul;
1200*2d4e511cSCy Schubert p2 = p1 >> 16;
1201*2d4e511cSCy Schubert p1 = p1 << 16;
1202*2d4e511cSCy Schubert M_ADD(res.D_s.hi, res.D_s.lo, p2, p1);
1203*2d4e511cSCy Schubert
1204*2d4e511cSCy Schubert /* mul by 128, using shift: res <-- res << 7 */
1205*2d4e511cSCy Schubert res.D_s.hi = (res.D_s.hi << 7) | (res.D_s.lo >> 25);
1206*2d4e511cSCy Schubert res.D_s.lo = (res.D_s.lo << 7);
1207*2d4e511cSCy Schubert
1208*2d4e511cSCy Schubert /* fix up sign: res <-- (res + [sf|sf]) ^ [sf|sf] */
1209*2d4e511cSCy Schubert M_ADD(res.D_s.hi, res.D_s.lo, sf, sf);
1210*2d4e511cSCy Schubert res.D_s.lo ^= sf;
1211*2d4e511cSCy Schubert res.D_s.hi ^= sf;
1212*2d4e511cSCy Schubert
1213*2d4e511cSCy Schubert /* properly add seconds: res <-- res + [sx(lo)|lo] */
1214*2d4e511cSCy Schubert p2 = (uint32_t)-(lo < 0);
1215*2d4e511cSCy Schubert p1 = (uint32_t)lo;
1216*2d4e511cSCy Schubert M_ADD(res.D_s.hi, res.D_s.lo, p2, p1);
1217*2d4e511cSCy Schubert return res;
1218*2d4e511cSCy Schubert }
1219*2d4e511cSCy Schubert #endif
1220*2d4e511cSCy Schubert
12212b15cb3dSCy Schubert /*
12222b15cb3dSCy Schubert *---------------------------------------------------------------------
12232b15cb3dSCy Schubert * Merge a number of days and a number of seconds into seconds,
12242b15cb3dSCy Schubert * expressed in 64 bits to avoid overflow.
12252b15cb3dSCy Schubert *---------------------------------------------------------------------
12262b15cb3dSCy Schubert */
12272b15cb3dSCy Schubert vint64
ntpcal_dayjoin(int32_t days,int32_t secs)12282b15cb3dSCy Schubert ntpcal_dayjoin(
12292b15cb3dSCy Schubert int32_t days,
12302b15cb3dSCy Schubert int32_t secs
12312b15cb3dSCy Schubert )
12322b15cb3dSCy Schubert {
12332b15cb3dSCy Schubert vint64 res;
12342b15cb3dSCy Schubert
12359034852cSGleb Smirnoff # if defined(HAVE_INT64)
12362b15cb3dSCy Schubert
12372b15cb3dSCy Schubert res.q_s = days;
12382b15cb3dSCy Schubert res.q_s *= SECSPERDAY;
12392b15cb3dSCy Schubert res.q_s += secs;
12402b15cb3dSCy Schubert
12412b15cb3dSCy Schubert # else
12422b15cb3dSCy Schubert
1243*2d4e511cSCy Schubert res = _dwjoin(675, days, secs);
1244*2d4e511cSCy Schubert
1245*2d4e511cSCy Schubert # endif
1246*2d4e511cSCy Schubert
1247*2d4e511cSCy Schubert return res;
1248*2d4e511cSCy Schubert }
12492b15cb3dSCy Schubert
12502b15cb3dSCy Schubert /*
1251*2d4e511cSCy Schubert *---------------------------------------------------------------------
1252*2d4e511cSCy Schubert * Merge a number of weeks and a number of seconds into seconds,
1253*2d4e511cSCy Schubert * expressed in 64 bits to avoid overflow.
1254*2d4e511cSCy Schubert *---------------------------------------------------------------------
12552b15cb3dSCy Schubert */
1256*2d4e511cSCy Schubert vint64
ntpcal_weekjoin(int32_t week,int32_t secs)1257*2d4e511cSCy Schubert ntpcal_weekjoin(
1258*2d4e511cSCy Schubert int32_t week,
1259*2d4e511cSCy Schubert int32_t secs
1260*2d4e511cSCy Schubert )
1261*2d4e511cSCy Schubert {
1262*2d4e511cSCy Schubert vint64 res;
12632b15cb3dSCy Schubert
1264*2d4e511cSCy Schubert # if defined(HAVE_INT64)
12652b15cb3dSCy Schubert
1266*2d4e511cSCy Schubert res.q_s = week;
1267*2d4e511cSCy Schubert res.q_s *= SECSPERWEEK;
1268*2d4e511cSCy Schubert res.q_s += secs;
12692b15cb3dSCy Schubert
1270*2d4e511cSCy Schubert # else
12712b15cb3dSCy Schubert
1272*2d4e511cSCy Schubert res = _dwjoin(4725, week, secs);
12732b15cb3dSCy Schubert
12742b15cb3dSCy Schubert # endif
12752b15cb3dSCy Schubert
12762b15cb3dSCy Schubert return res;
12772b15cb3dSCy Schubert }
12782b15cb3dSCy Schubert
12792b15cb3dSCy Schubert /*
12802b15cb3dSCy Schubert *---------------------------------------------------------------------
12819034852cSGleb Smirnoff * get leap years since epoch in elapsed years
12829034852cSGleb Smirnoff *---------------------------------------------------------------------
12839034852cSGleb Smirnoff */
12849034852cSGleb Smirnoff int32_t
ntpcal_leapyears_in_years(int32_t years)12859034852cSGleb Smirnoff ntpcal_leapyears_in_years(
12869034852cSGleb Smirnoff int32_t years
12879034852cSGleb Smirnoff )
12889034852cSGleb Smirnoff {
12899034852cSGleb Smirnoff /* We use the in-out-in algorithm here, using the one's
12909034852cSGleb Smirnoff * complement division trick for negative numbers. The chained
12919034852cSGleb Smirnoff * division sequence by 4/25/4 gives the compiler the chance to
12929034852cSGleb Smirnoff * get away with only one true division and doing shifts otherwise.
12939034852cSGleb Smirnoff */
12949034852cSGleb Smirnoff
1295*2d4e511cSCy Schubert uint32_t sf32, sum, uyear;
12969034852cSGleb Smirnoff
1297*2d4e511cSCy Schubert sf32 = int32_sflag(years);
1298*2d4e511cSCy Schubert uyear = (uint32_t)years;
1299*2d4e511cSCy Schubert uyear ^= sf32;
13009034852cSGleb Smirnoff
13019034852cSGleb Smirnoff sum = (uyear /= 4u); /* 4yr rule --> IN */
13029034852cSGleb Smirnoff sum -= (uyear /= 25u); /* 100yr rule --> OUT */
13039034852cSGleb Smirnoff sum += (uyear /= 4u); /* 400yr rule --> IN */
13049034852cSGleb Smirnoff
13059034852cSGleb Smirnoff /* Thanks to the alternation of IN/OUT/IN we can do the sum
13069034852cSGleb Smirnoff * directly and have a single one's complement operation
13079034852cSGleb Smirnoff * here. (Only if the years are negative, of course.) Otherwise
13089034852cSGleb Smirnoff * the one's complement would have to be done when
13099034852cSGleb Smirnoff * adding/subtracting the terms.
13109034852cSGleb Smirnoff */
1311*2d4e511cSCy Schubert return uint32_2cpl_to_int32(sf32 ^ sum);
13129034852cSGleb Smirnoff }
13139034852cSGleb Smirnoff
13149034852cSGleb Smirnoff /*
13159034852cSGleb Smirnoff *---------------------------------------------------------------------
13162b15cb3dSCy Schubert * Convert elapsed years in Era into elapsed days in Era.
13172b15cb3dSCy Schubert *---------------------------------------------------------------------
13182b15cb3dSCy Schubert */
13192b15cb3dSCy Schubert int32_t
ntpcal_days_in_years(int32_t years)13202b15cb3dSCy Schubert ntpcal_days_in_years(
13212b15cb3dSCy Schubert int32_t years
13222b15cb3dSCy Schubert )
13232b15cb3dSCy Schubert {
13249034852cSGleb Smirnoff return years * DAYSPERYEAR + ntpcal_leapyears_in_years(years);
13252b15cb3dSCy Schubert }
13262b15cb3dSCy Schubert
13272b15cb3dSCy Schubert /*
13282b15cb3dSCy Schubert *---------------------------------------------------------------------
13292b15cb3dSCy Schubert * Convert a number of elapsed month in a year into elapsed days in year.
13302b15cb3dSCy Schubert *
13312b15cb3dSCy Schubert * The month will be normalized, and 'res.hi' will contain the
13322b15cb3dSCy Schubert * excessive years that must be considered when converting the years,
13332b15cb3dSCy Schubert * while 'res.lo' will contain the number of elapsed days since start
13342b15cb3dSCy Schubert * of the year.
13352b15cb3dSCy Schubert *
13362b15cb3dSCy Schubert * This code uses the shifted-month-approach to convert month to days,
13372b15cb3dSCy Schubert * because then there is no need to have explicit leap year
13382b15cb3dSCy Schubert * information. The slight disadvantage is that for most month values
13392b15cb3dSCy Schubert * the result is a negative value, and the year excess is one; the
13402b15cb3dSCy Schubert * conversion is then simply based on the start of the following year.
13412b15cb3dSCy Schubert *---------------------------------------------------------------------
13422b15cb3dSCy Schubert */
13432b15cb3dSCy Schubert ntpcal_split
ntpcal_days_in_months(int32_t m)13442b15cb3dSCy Schubert ntpcal_days_in_months(
13452b15cb3dSCy Schubert int32_t m
13462b15cb3dSCy Schubert )
13472b15cb3dSCy Schubert {
13482b15cb3dSCy Schubert ntpcal_split res;
13492b15cb3dSCy Schubert
1350*2d4e511cSCy Schubert /* Add ten months with proper year adjustment. */
1351*2d4e511cSCy Schubert if (m < 2) {
13529034852cSGleb Smirnoff res.lo = m + 10;
1353*2d4e511cSCy Schubert res.hi = 0;
1354*2d4e511cSCy Schubert } else {
1355*2d4e511cSCy Schubert res.lo = m - 2;
1356*2d4e511cSCy Schubert res.hi = 1;
1357*2d4e511cSCy Schubert }
13582b15cb3dSCy Schubert
1359*2d4e511cSCy Schubert /* Possibly normalise by floor division. This does not hapen for
1360*2d4e511cSCy Schubert * input in normal range. */
13619034852cSGleb Smirnoff if (res.lo < 0 || res.lo >= 12) {
1362*2d4e511cSCy Schubert uint32_t mu, Q, sf32;
1363*2d4e511cSCy Schubert sf32 = int32_sflag(res.lo);
1364*2d4e511cSCy Schubert mu = (uint32_t)res.lo;
1365*2d4e511cSCy Schubert Q = sf32 ^ ((sf32 ^ mu) / 12u);
1366*2d4e511cSCy Schubert
13679034852cSGleb Smirnoff res.hi += uint32_2cpl_to_int32(Q);
13689034852cSGleb Smirnoff res.lo = mu - Q * 12u;
13692b15cb3dSCy Schubert }
13702b15cb3dSCy Schubert
1371*2d4e511cSCy Schubert /* Get cummulated days in year with unshift. Use the fractional
1372*2d4e511cSCy Schubert * interpolation with smallest possible power of two in the
1373*2d4e511cSCy Schubert * divider.
1374*2d4e511cSCy Schubert */
1375*2d4e511cSCy Schubert res.lo = ((res.lo * 979 + 16) >> 5) - 306;
13762b15cb3dSCy Schubert
13772b15cb3dSCy Schubert return res;
13782b15cb3dSCy Schubert }
13792b15cb3dSCy Schubert
13802b15cb3dSCy Schubert /*
13812b15cb3dSCy Schubert *---------------------------------------------------------------------
13822b15cb3dSCy Schubert * Convert ELAPSED years/months/days of gregorian calendar to elapsed
13832b15cb3dSCy Schubert * days in Gregorian epoch.
13842b15cb3dSCy Schubert *
13852b15cb3dSCy Schubert * If you want to convert years and days-of-year, just give a month of
13862b15cb3dSCy Schubert * zero.
13872b15cb3dSCy Schubert *---------------------------------------------------------------------
13882b15cb3dSCy Schubert */
13892b15cb3dSCy Schubert int32_t
ntpcal_edate_to_eradays(int32_t years,int32_t mons,int32_t mdays)13902b15cb3dSCy Schubert ntpcal_edate_to_eradays(
13912b15cb3dSCy Schubert int32_t years,
13922b15cb3dSCy Schubert int32_t mons,
13932b15cb3dSCy Schubert int32_t mdays
13942b15cb3dSCy Schubert )
13952b15cb3dSCy Schubert {
13962b15cb3dSCy Schubert ntpcal_split tmp;
13972b15cb3dSCy Schubert int32_t res;
13982b15cb3dSCy Schubert
13992b15cb3dSCy Schubert if (mons) {
14002b15cb3dSCy Schubert tmp = ntpcal_days_in_months(mons);
14012b15cb3dSCy Schubert res = ntpcal_days_in_years(years + tmp.hi) + tmp.lo;
14022b15cb3dSCy Schubert } else
14032b15cb3dSCy Schubert res = ntpcal_days_in_years(years);
14042b15cb3dSCy Schubert res += mdays;
14052b15cb3dSCy Schubert
14062b15cb3dSCy Schubert return res;
14072b15cb3dSCy Schubert }
14082b15cb3dSCy Schubert
14092b15cb3dSCy Schubert /*
14102b15cb3dSCy Schubert *---------------------------------------------------------------------
14112b15cb3dSCy Schubert * Convert ELAPSED years/months/days of gregorian calendar to elapsed
14122b15cb3dSCy Schubert * days in year.
14132b15cb3dSCy Schubert *
1414f391d6bcSXin LI * Note: This will give the true difference to the start of the given
1415f391d6bcSXin LI * year, even if months & days are off-scale.
14162b15cb3dSCy Schubert *---------------------------------------------------------------------
14172b15cb3dSCy Schubert */
14182b15cb3dSCy Schubert int32_t
ntpcal_edate_to_yeardays(int32_t years,int32_t mons,int32_t mdays)14192b15cb3dSCy Schubert ntpcal_edate_to_yeardays(
14202b15cb3dSCy Schubert int32_t years,
14212b15cb3dSCy Schubert int32_t mons,
14222b15cb3dSCy Schubert int32_t mdays
14232b15cb3dSCy Schubert )
14242b15cb3dSCy Schubert {
14252b15cb3dSCy Schubert ntpcal_split tmp;
14262b15cb3dSCy Schubert
14272b15cb3dSCy Schubert if (0 <= mons && mons < 12) {
1428*2d4e511cSCy Schubert if (mons >= 2)
1429*2d4e511cSCy Schubert mdays -= 2 - is_leapyear(years+1);
1430*2d4e511cSCy Schubert mdays += (489 * mons + 8) >> 4;
14312b15cb3dSCy Schubert } else {
14322b15cb3dSCy Schubert tmp = ntpcal_days_in_months(mons);
14332b15cb3dSCy Schubert mdays += tmp.lo
14342b15cb3dSCy Schubert + ntpcal_days_in_years(years + tmp.hi)
14352b15cb3dSCy Schubert - ntpcal_days_in_years(years);
14362b15cb3dSCy Schubert }
14372b15cb3dSCy Schubert
14382b15cb3dSCy Schubert return mdays;
14392b15cb3dSCy Schubert }
14402b15cb3dSCy Schubert
14412b15cb3dSCy Schubert /*
14422b15cb3dSCy Schubert *---------------------------------------------------------------------
14432b15cb3dSCy Schubert * Convert elapsed days and the hour/minute/second information into
14442b15cb3dSCy Schubert * total seconds.
14452b15cb3dSCy Schubert *
14462b15cb3dSCy Schubert * If 'isvalid' is not NULL, do a range check on the time specification
14472b15cb3dSCy Schubert * and tell if the time input is in the normal range, permitting for a
14482b15cb3dSCy Schubert * single leapsecond.
14492b15cb3dSCy Schubert *---------------------------------------------------------------------
14502b15cb3dSCy Schubert */
14512b15cb3dSCy Schubert int32_t
ntpcal_etime_to_seconds(int32_t hours,int32_t minutes,int32_t seconds)14522b15cb3dSCy Schubert ntpcal_etime_to_seconds(
14532b15cb3dSCy Schubert int32_t hours,
14542b15cb3dSCy Schubert int32_t minutes,
14552b15cb3dSCy Schubert int32_t seconds
14562b15cb3dSCy Schubert )
14572b15cb3dSCy Schubert {
14582b15cb3dSCy Schubert int32_t res;
14592b15cb3dSCy Schubert
14602b15cb3dSCy Schubert res = (hours * MINSPERHR + minutes) * SECSPERMIN + seconds;
14612b15cb3dSCy Schubert
14622b15cb3dSCy Schubert return res;
14632b15cb3dSCy Schubert }
14642b15cb3dSCy Schubert
14652b15cb3dSCy Schubert /*
14662b15cb3dSCy Schubert *---------------------------------------------------------------------
14672b15cb3dSCy Schubert * Convert the date part of a 'struct tm' (that is, year, month,
14682b15cb3dSCy Schubert * day-of-month) into the RD of that day.
14692b15cb3dSCy Schubert *---------------------------------------------------------------------
14702b15cb3dSCy Schubert */
14712b15cb3dSCy Schubert int32_t
ntpcal_tm_to_rd(const struct tm * utm)14722b15cb3dSCy Schubert ntpcal_tm_to_rd(
14732b15cb3dSCy Schubert const struct tm *utm
14742b15cb3dSCy Schubert )
14752b15cb3dSCy Schubert {
14762b15cb3dSCy Schubert return ntpcal_edate_to_eradays(utm->tm_year + 1899,
14772b15cb3dSCy Schubert utm->tm_mon,
14782b15cb3dSCy Schubert utm->tm_mday - 1) + 1;
14792b15cb3dSCy Schubert }
14802b15cb3dSCy Schubert
14812b15cb3dSCy Schubert /*
14822b15cb3dSCy Schubert *---------------------------------------------------------------------
14832b15cb3dSCy Schubert * Convert the date part of a 'struct calendar' (that is, year, month,
14842b15cb3dSCy Schubert * day-of-month) into the RD of that day.
14852b15cb3dSCy Schubert *---------------------------------------------------------------------
14862b15cb3dSCy Schubert */
14872b15cb3dSCy Schubert int32_t
ntpcal_date_to_rd(const struct calendar * jd)14882b15cb3dSCy Schubert ntpcal_date_to_rd(
14892b15cb3dSCy Schubert const struct calendar *jd
14902b15cb3dSCy Schubert )
14912b15cb3dSCy Schubert {
14922b15cb3dSCy Schubert return ntpcal_edate_to_eradays((int32_t)jd->year - 1,
14932b15cb3dSCy Schubert (int32_t)jd->month - 1,
14942b15cb3dSCy Schubert (int32_t)jd->monthday - 1) + 1;
14952b15cb3dSCy Schubert }
14962b15cb3dSCy Schubert
14972b15cb3dSCy Schubert /*
14982b15cb3dSCy Schubert *---------------------------------------------------------------------
14992b15cb3dSCy Schubert * convert a year number to rata die of year start
15002b15cb3dSCy Schubert *---------------------------------------------------------------------
15012b15cb3dSCy Schubert */
15022b15cb3dSCy Schubert int32_t
ntpcal_year_to_ystart(int32_t year)15032b15cb3dSCy Schubert ntpcal_year_to_ystart(
15042b15cb3dSCy Schubert int32_t year
15052b15cb3dSCy Schubert )
15062b15cb3dSCy Schubert {
15072b15cb3dSCy Schubert return ntpcal_days_in_years(year - 1) + 1;
15082b15cb3dSCy Schubert }
15092b15cb3dSCy Schubert
15102b15cb3dSCy Schubert /*
15112b15cb3dSCy Schubert *---------------------------------------------------------------------
15122b15cb3dSCy Schubert * For a given RD, get the RD of the associated year start,
15132b15cb3dSCy Schubert * that is, the RD of the last January,1st on or before that day.
15142b15cb3dSCy Schubert *---------------------------------------------------------------------
15152b15cb3dSCy Schubert */
15162b15cb3dSCy Schubert int32_t
ntpcal_rd_to_ystart(int32_t rd)15172b15cb3dSCy Schubert ntpcal_rd_to_ystart(
15182b15cb3dSCy Schubert int32_t rd
15192b15cb3dSCy Schubert )
15202b15cb3dSCy Schubert {
15212b15cb3dSCy Schubert /*
15222b15cb3dSCy Schubert * Rather simple exercise: split the day number into elapsed
15232b15cb3dSCy Schubert * years and elapsed days, then remove the elapsed days from the
15242b15cb3dSCy Schubert * input value. Nice'n sweet...
15252b15cb3dSCy Schubert */
15262b15cb3dSCy Schubert return rd - ntpcal_split_eradays(rd - 1, NULL).lo;
15272b15cb3dSCy Schubert }
15282b15cb3dSCy Schubert
15292b15cb3dSCy Schubert /*
15302b15cb3dSCy Schubert *---------------------------------------------------------------------
15312b15cb3dSCy Schubert * For a given RD, get the RD of the associated month start.
15322b15cb3dSCy Schubert *---------------------------------------------------------------------
15332b15cb3dSCy Schubert */
15342b15cb3dSCy Schubert int32_t
ntpcal_rd_to_mstart(int32_t rd)15352b15cb3dSCy Schubert ntpcal_rd_to_mstart(
15362b15cb3dSCy Schubert int32_t rd
15372b15cb3dSCy Schubert )
15382b15cb3dSCy Schubert {
15392b15cb3dSCy Schubert ntpcal_split split;
15402b15cb3dSCy Schubert int leaps;
15412b15cb3dSCy Schubert
15422b15cb3dSCy Schubert split = ntpcal_split_eradays(rd - 1, &leaps);
15432b15cb3dSCy Schubert split = ntpcal_split_yeardays(split.lo, leaps);
15442b15cb3dSCy Schubert
15452b15cb3dSCy Schubert return rd - split.lo;
15462b15cb3dSCy Schubert }
15472b15cb3dSCy Schubert
15482b15cb3dSCy Schubert /*
15492b15cb3dSCy Schubert *---------------------------------------------------------------------
15502b15cb3dSCy Schubert * take a 'struct calendar' and get the seconds-of-day from it.
15512b15cb3dSCy Schubert *---------------------------------------------------------------------
15522b15cb3dSCy Schubert */
15532b15cb3dSCy Schubert int32_t
ntpcal_date_to_daysec(const struct calendar * jd)15542b15cb3dSCy Schubert ntpcal_date_to_daysec(
15552b15cb3dSCy Schubert const struct calendar *jd
15562b15cb3dSCy Schubert )
15572b15cb3dSCy Schubert {
15582b15cb3dSCy Schubert return ntpcal_etime_to_seconds(jd->hour, jd->minute,
15592b15cb3dSCy Schubert jd->second);
15602b15cb3dSCy Schubert }
15612b15cb3dSCy Schubert
15622b15cb3dSCy Schubert /*
15632b15cb3dSCy Schubert *---------------------------------------------------------------------
15642b15cb3dSCy Schubert * take a 'struct tm' and get the seconds-of-day from it.
15652b15cb3dSCy Schubert *---------------------------------------------------------------------
15662b15cb3dSCy Schubert */
15672b15cb3dSCy Schubert int32_t
ntpcal_tm_to_daysec(const struct tm * utm)15682b15cb3dSCy Schubert ntpcal_tm_to_daysec(
15692b15cb3dSCy Schubert const struct tm *utm
15702b15cb3dSCy Schubert )
15712b15cb3dSCy Schubert {
15722b15cb3dSCy Schubert return ntpcal_etime_to_seconds(utm->tm_hour, utm->tm_min,
15732b15cb3dSCy Schubert utm->tm_sec);
15742b15cb3dSCy Schubert }
15752b15cb3dSCy Schubert
15762b15cb3dSCy Schubert /*
15772b15cb3dSCy Schubert *---------------------------------------------------------------------
15782b15cb3dSCy Schubert * take a 'struct calendar' and convert it to a 'time_t'
15792b15cb3dSCy Schubert *---------------------------------------------------------------------
15802b15cb3dSCy Schubert */
15812b15cb3dSCy Schubert time_t
ntpcal_date_to_time(const struct calendar * jd)15822b15cb3dSCy Schubert ntpcal_date_to_time(
15832b15cb3dSCy Schubert const struct calendar *jd
15842b15cb3dSCy Schubert )
15852b15cb3dSCy Schubert {
15862b15cb3dSCy Schubert vint64 join;
15872b15cb3dSCy Schubert int32_t days, secs;
15882b15cb3dSCy Schubert
15892b15cb3dSCy Schubert days = ntpcal_date_to_rd(jd) - DAY_UNIX_STARTS;
15902b15cb3dSCy Schubert secs = ntpcal_date_to_daysec(jd);
15912b15cb3dSCy Schubert join = ntpcal_dayjoin(days, secs);
15922b15cb3dSCy Schubert
15932b15cb3dSCy Schubert return vint64_to_time(&join);
15942b15cb3dSCy Schubert }
15952b15cb3dSCy Schubert
15962b15cb3dSCy Schubert
15972b15cb3dSCy Schubert /*
1598f391d6bcSXin LI * ====================================================================
15992b15cb3dSCy Schubert *
16002b15cb3dSCy Schubert * extended and unchecked variants of caljulian/caltontp
16012b15cb3dSCy Schubert *
1602f391d6bcSXin LI * ====================================================================
16032b15cb3dSCy Schubert */
16042b15cb3dSCy Schubert int
ntpcal_ntp64_to_date(struct calendar * jd,const vint64 * ntp)16052b15cb3dSCy Schubert ntpcal_ntp64_to_date(
16062b15cb3dSCy Schubert struct calendar *jd,
16072b15cb3dSCy Schubert const vint64 *ntp
16082b15cb3dSCy Schubert )
16092b15cb3dSCy Schubert {
16102b15cb3dSCy Schubert ntpcal_split ds;
16112b15cb3dSCy Schubert
16122b15cb3dSCy Schubert ds = ntpcal_daysplit(ntp);
16132b15cb3dSCy Schubert ds.hi += ntpcal_daysec_to_date(jd, ds.lo);
16142b15cb3dSCy Schubert
16152b15cb3dSCy Schubert return ntpcal_rd_to_date(jd, ds.hi + DAY_NTP_STARTS);
16162b15cb3dSCy Schubert }
16172b15cb3dSCy Schubert
16182b15cb3dSCy Schubert int
ntpcal_ntp_to_date(struct calendar * jd,uint32_t ntp,const time_t * piv)16192b15cb3dSCy Schubert ntpcal_ntp_to_date(
16202b15cb3dSCy Schubert struct calendar *jd,
16212b15cb3dSCy Schubert uint32_t ntp,
16222b15cb3dSCy Schubert const time_t *piv
16232b15cb3dSCy Schubert )
16242b15cb3dSCy Schubert {
16252b15cb3dSCy Schubert vint64 ntp64;
16262b15cb3dSCy Schubert
16272b15cb3dSCy Schubert /*
16282b15cb3dSCy Schubert * Unfold ntp time around current time into NTP domain. Split
16292b15cb3dSCy Schubert * into days and seconds, shift days into CE domain and
16302b15cb3dSCy Schubert * process the parts.
16312b15cb3dSCy Schubert */
16322b15cb3dSCy Schubert ntp64 = ntpcal_ntp_to_ntp(ntp, piv);
16332b15cb3dSCy Schubert return ntpcal_ntp64_to_date(jd, &ntp64);
16342b15cb3dSCy Schubert }
16352b15cb3dSCy Schubert
16362b15cb3dSCy Schubert
16372b15cb3dSCy Schubert vint64
ntpcal_date_to_ntp64(const struct calendar * jd)16382b15cb3dSCy Schubert ntpcal_date_to_ntp64(
16392b15cb3dSCy Schubert const struct calendar *jd
16402b15cb3dSCy Schubert )
16412b15cb3dSCy Schubert {
16422b15cb3dSCy Schubert /*
16432b15cb3dSCy Schubert * Convert date to NTP. Ignore yearday, use d/m/y only.
16442b15cb3dSCy Schubert */
16452b15cb3dSCy Schubert return ntpcal_dayjoin(ntpcal_date_to_rd(jd) - DAY_NTP_STARTS,
16462b15cb3dSCy Schubert ntpcal_date_to_daysec(jd));
16472b15cb3dSCy Schubert }
16482b15cb3dSCy Schubert
16492b15cb3dSCy Schubert
16502b15cb3dSCy Schubert uint32_t
ntpcal_date_to_ntp(const struct calendar * jd)16512b15cb3dSCy Schubert ntpcal_date_to_ntp(
16522b15cb3dSCy Schubert const struct calendar *jd
16532b15cb3dSCy Schubert )
16542b15cb3dSCy Schubert {
16552b15cb3dSCy Schubert /*
1656*2d4e511cSCy Schubert * Get lower half of 64bit NTP timestamp from date/time.
16572b15cb3dSCy Schubert */
16582b15cb3dSCy Schubert return ntpcal_date_to_ntp64(jd).d_s.lo;
16592b15cb3dSCy Schubert }
16602b15cb3dSCy Schubert
16612b15cb3dSCy Schubert
16622b15cb3dSCy Schubert
16632b15cb3dSCy Schubert /*
1664f391d6bcSXin LI * ====================================================================
16652b15cb3dSCy Schubert *
16662b15cb3dSCy Schubert * day-of-week calculations
16672b15cb3dSCy Schubert *
1668f391d6bcSXin LI * ====================================================================
16692b15cb3dSCy Schubert */
16702b15cb3dSCy Schubert /*
16712b15cb3dSCy Schubert * Given a RataDie and a day-of-week, calculate a RDN that is reater-than,
16722b15cb3dSCy Schubert * greater-or equal, closest, less-or-equal or less-than the given RDN
16732b15cb3dSCy Schubert * and denotes the given day-of-week
16742b15cb3dSCy Schubert */
16752b15cb3dSCy Schubert int32_t
ntpcal_weekday_gt(int32_t rdn,int32_t dow)16762b15cb3dSCy Schubert ntpcal_weekday_gt(
16772b15cb3dSCy Schubert int32_t rdn,
16782b15cb3dSCy Schubert int32_t dow
16792b15cb3dSCy Schubert )
16802b15cb3dSCy Schubert {
16812b15cb3dSCy Schubert return ntpcal_periodic_extend(rdn+1, dow, 7);
16822b15cb3dSCy Schubert }
16832b15cb3dSCy Schubert
16842b15cb3dSCy Schubert int32_t
ntpcal_weekday_ge(int32_t rdn,int32_t dow)16852b15cb3dSCy Schubert ntpcal_weekday_ge(
16862b15cb3dSCy Schubert int32_t rdn,
16872b15cb3dSCy Schubert int32_t dow
16882b15cb3dSCy Schubert )
16892b15cb3dSCy Schubert {
16902b15cb3dSCy Schubert return ntpcal_periodic_extend(rdn, dow, 7);
16912b15cb3dSCy Schubert }
16922b15cb3dSCy Schubert
16932b15cb3dSCy Schubert int32_t
ntpcal_weekday_close(int32_t rdn,int32_t dow)16942b15cb3dSCy Schubert ntpcal_weekday_close(
16952b15cb3dSCy Schubert int32_t rdn,
16962b15cb3dSCy Schubert int32_t dow
16972b15cb3dSCy Schubert )
16982b15cb3dSCy Schubert {
16992b15cb3dSCy Schubert return ntpcal_periodic_extend(rdn-3, dow, 7);
17002b15cb3dSCy Schubert }
17012b15cb3dSCy Schubert
17022b15cb3dSCy Schubert int32_t
ntpcal_weekday_le(int32_t rdn,int32_t dow)17032b15cb3dSCy Schubert ntpcal_weekday_le(
17042b15cb3dSCy Schubert int32_t rdn,
17052b15cb3dSCy Schubert int32_t dow
17062b15cb3dSCy Schubert )
17072b15cb3dSCy Schubert {
17082b15cb3dSCy Schubert return ntpcal_periodic_extend(rdn, dow, -7);
17092b15cb3dSCy Schubert }
17102b15cb3dSCy Schubert
17112b15cb3dSCy Schubert int32_t
ntpcal_weekday_lt(int32_t rdn,int32_t dow)17122b15cb3dSCy Schubert ntpcal_weekday_lt(
17132b15cb3dSCy Schubert int32_t rdn,
17142b15cb3dSCy Schubert int32_t dow
17152b15cb3dSCy Schubert )
17162b15cb3dSCy Schubert {
17172b15cb3dSCy Schubert return ntpcal_periodic_extend(rdn-1, dow, -7);
17182b15cb3dSCy Schubert }
17192b15cb3dSCy Schubert
17202b15cb3dSCy Schubert /*
1721f391d6bcSXin LI * ====================================================================
17222b15cb3dSCy Schubert *
17232b15cb3dSCy Schubert * ISO week-calendar conversions
17242b15cb3dSCy Schubert *
17252b15cb3dSCy Schubert * The ISO8601 calendar defines a calendar of years, weeks and weekdays.
17262b15cb3dSCy Schubert * It is related to the Gregorian calendar, and a ISO year starts at the
17272b15cb3dSCy Schubert * Monday closest to Jan,1st of the corresponding Gregorian year. A ISO
17282b15cb3dSCy Schubert * calendar year has always 52 or 53 weeks, and like the Grogrian
17292b15cb3dSCy Schubert * calendar the ISO8601 calendar repeats itself every 400 years, or
17302b15cb3dSCy Schubert * 146097 days, or 20871 weeks.
17312b15cb3dSCy Schubert *
17322b15cb3dSCy Schubert * While it is possible to write ISO calendar functions based on the
17332b15cb3dSCy Schubert * Gregorian calendar functions, the following implementation takes a
17342b15cb3dSCy Schubert * different approach, based directly on years and weeks.
17352b15cb3dSCy Schubert *
17362b15cb3dSCy Schubert * Analysis of the tabulated data shows that it is not possible to
17372b15cb3dSCy Schubert * interpolate from years to weeks over a full 400 year range; cyclic
17382b15cb3dSCy Schubert * shifts over 400 years do not provide a solution here. But it *is*
17392b15cb3dSCy Schubert * possible to interpolate over every single century of the 400-year
17402b15cb3dSCy Schubert * cycle. (The centennial leap year rule seems to be the culprit here.)
17412b15cb3dSCy Schubert *
17422b15cb3dSCy Schubert * It can be shown that a conversion from years to weeks can be done
17432b15cb3dSCy Schubert * using a linear transformation of the form
17442b15cb3dSCy Schubert *
17452b15cb3dSCy Schubert * w = floor( y * a + b )
17462b15cb3dSCy Schubert *
17472b15cb3dSCy Schubert * where the slope a must hold to
17482b15cb3dSCy Schubert *
17492b15cb3dSCy Schubert * 52.1780821918 <= a < 52.1791044776
17502b15cb3dSCy Schubert *
17512b15cb3dSCy Schubert * and b must be chosen according to the selected slope and the number
17522b15cb3dSCy Schubert * of the century in a 400-year period.
17532b15cb3dSCy Schubert *
17542b15cb3dSCy Schubert * The inverse calculation can also be done in this way. Careful scaling
17552b15cb3dSCy Schubert * provides an unlimited set of integer coefficients a,k,b that enable
17562b15cb3dSCy Schubert * us to write the calulation in the form
17572b15cb3dSCy Schubert *
17582b15cb3dSCy Schubert * w = (y * a + b ) / k
17592b15cb3dSCy Schubert * y = (w * a' + b') / k'
17602b15cb3dSCy Schubert *
1761*2d4e511cSCy Schubert * In this implementation the values of k and k' are chosen to be the
17622b15cb3dSCy Schubert * smallest possible powers of two, so the division can be implemented
17632b15cb3dSCy Schubert * as shifts if the optimiser chooses to do so.
17642b15cb3dSCy Schubert *
1765f391d6bcSXin LI * ====================================================================
17662b15cb3dSCy Schubert */
17672b15cb3dSCy Schubert
17682b15cb3dSCy Schubert /*
17692b15cb3dSCy Schubert * Given a number of elapsed (ISO-)years since the begin of the
17702b15cb3dSCy Schubert * christian era, return the number of elapsed weeks corresponding to
17712b15cb3dSCy Schubert * the number of years.
17722b15cb3dSCy Schubert */
17732b15cb3dSCy Schubert int32_t
isocal_weeks_in_years(int32_t years)17742b15cb3dSCy Schubert isocal_weeks_in_years(
17752b15cb3dSCy Schubert int32_t years
17762b15cb3dSCy Schubert )
17772b15cb3dSCy Schubert {
17782b15cb3dSCy Schubert /*
17792b15cb3dSCy Schubert * use: w = (y * 53431 + b[c]) / 1024 as interpolation
17802b15cb3dSCy Schubert */
17819034852cSGleb Smirnoff static const uint16_t bctab[4] = { 157, 449, 597, 889 };
17822b15cb3dSCy Schubert
17839034852cSGleb Smirnoff int32_t cs, cw;
1784*2d4e511cSCy Schubert uint32_t cc, ci, yu, sf32;
17852b15cb3dSCy Schubert
1786*2d4e511cSCy Schubert sf32 = int32_sflag(years);
1787*2d4e511cSCy Schubert yu = (uint32_t)years;
17882b15cb3dSCy Schubert
17899034852cSGleb Smirnoff /* split off centuries, using floor division */
1790*2d4e511cSCy Schubert cc = sf32 ^ ((sf32 ^ yu) / 100u);
17919034852cSGleb Smirnoff yu -= cc * 100u;
17929034852cSGleb Smirnoff
17939034852cSGleb Smirnoff /* calculate century cycles shift and cycle index:
17949034852cSGleb Smirnoff * Assuming a century is 5217 weeks, we have to add a cycle
17959034852cSGleb Smirnoff * shift that is 3 for every 4 centuries, because 3 of the four
17969034852cSGleb Smirnoff * centuries have 5218 weeks. So '(cc*3 + 1) / 4' is the actual
17979034852cSGleb Smirnoff * correction, and the second century is the defective one.
17989034852cSGleb Smirnoff *
17999034852cSGleb Smirnoff * Needs floor division by 4, which is done with masking and
18009034852cSGleb Smirnoff * shifting.
18012b15cb3dSCy Schubert */
18029034852cSGleb Smirnoff ci = cc * 3u + 1;
1803*2d4e511cSCy Schubert cs = uint32_2cpl_to_int32(sf32 ^ ((sf32 ^ ci) >> 2));
1804*2d4e511cSCy Schubert ci = ci & 3u;
18052b15cb3dSCy Schubert
18069034852cSGleb Smirnoff /* Get weeks in century. Can use plain division here as all ops
18079034852cSGleb Smirnoff * are >= 0, and let the compiler sort out the possible
18089034852cSGleb Smirnoff * optimisations.
18099034852cSGleb Smirnoff */
18109034852cSGleb Smirnoff cw = (yu * 53431u + bctab[ci]) / 1024u;
18119034852cSGleb Smirnoff
18129034852cSGleb Smirnoff return uint32_2cpl_to_int32(cc) * 5217 + cs + cw;
18132b15cb3dSCy Schubert }
18142b15cb3dSCy Schubert
18152b15cb3dSCy Schubert /*
18162b15cb3dSCy Schubert * Given a number of elapsed weeks since the begin of the christian
18172b15cb3dSCy Schubert * era, split this number into the number of elapsed years in res.hi
18182b15cb3dSCy Schubert * and the excessive number of weeks in res.lo. (That is, res.lo is
18192b15cb3dSCy Schubert * the number of elapsed weeks in the remaining partial year.)
18202b15cb3dSCy Schubert */
18212b15cb3dSCy Schubert ntpcal_split
isocal_split_eraweeks(int32_t weeks)18222b15cb3dSCy Schubert isocal_split_eraweeks(
18232b15cb3dSCy Schubert int32_t weeks
18242b15cb3dSCy Schubert )
18252b15cb3dSCy Schubert {
18262b15cb3dSCy Schubert /*
18272b15cb3dSCy Schubert * use: y = (w * 157 + b[c]) / 8192 as interpolation
18282b15cb3dSCy Schubert */
18299034852cSGleb Smirnoff
18309034852cSGleb Smirnoff static const uint16_t bctab[4] = { 85, 130, 17, 62 };
18319034852cSGleb Smirnoff
18322b15cb3dSCy Schubert ntpcal_split res;
18339034852cSGleb Smirnoff int32_t cc, ci;
1834*2d4e511cSCy Schubert uint32_t sw, cy, Q;
18352b15cb3dSCy Schubert
1836*2d4e511cSCy Schubert /* Use two fast cycle-split divisions again. Herew e want to
1837*2d4e511cSCy Schubert * execute '(weeks * 4 + 2) /% 20871' under floor division rules
1838*2d4e511cSCy Schubert * in the first step.
18399034852cSGleb Smirnoff *
1840*2d4e511cSCy Schubert * This is of course (again) susceptible to internal overflow if
1841*2d4e511cSCy Schubert * coded directly in 32bit. And again we use 64bit division on
1842*2d4e511cSCy Schubert * a 64bit target and exact division after calculating the
1843*2d4e511cSCy Schubert * remainder first on a 32bit target. With the smaller divider,
1844*2d4e511cSCy Schubert * that's even a bit neater.
18452b15cb3dSCy Schubert */
1846*2d4e511cSCy Schubert # if defined(HAVE_64BITREGS)
1847*2d4e511cSCy Schubert
1848*2d4e511cSCy Schubert /* Full floor division with 64bit values. */
1849*2d4e511cSCy Schubert uint64_t sf64, sw64;
1850*2d4e511cSCy Schubert sf64 = (uint64_t)-(weeks < 0);
1851*2d4e511cSCy Schubert sw64 = ((uint64_t)weeks << 2) | 2u;
1852*2d4e511cSCy Schubert Q = (uint32_t)(sf64 ^ ((sf64 ^ sw64) / GREGORIAN_CYCLE_WEEKS));
1853*2d4e511cSCy Schubert sw = (uint32_t)(sw64 - Q * GREGORIAN_CYCLE_WEEKS);
1854*2d4e511cSCy Schubert
1855*2d4e511cSCy Schubert # else
1856*2d4e511cSCy Schubert
1857*2d4e511cSCy Schubert /* Exact division after calculating the remainder via partial
1858*2d4e511cSCy Schubert * reduction by digit sum.
1859*2d4e511cSCy Schubert * (-2^33) % 20871 --> 5491 : the sign bit value
1860*2d4e511cSCy Schubert * ( 2^20) % 20871 --> 5026 : the upper digit value
1861*2d4e511cSCy Schubert * modinv(20871, 2^32) --> 330081335 : the inverse
1862*2d4e511cSCy Schubert */
1863*2d4e511cSCy Schubert uint32_t ux = ((uint32_t)weeks << 2) | 2;
1864*2d4e511cSCy Schubert sw = (weeks < 0) ? 5491u : 0u; /* sign dgt */
1865*2d4e511cSCy Schubert sw += ((weeks >> 18) & 0x01FFFu) * 5026u; /* hi dgt (src!) */
1866*2d4e511cSCy Schubert sw += (ux & 0xFFFFFu); /* lo dgt */
1867*2d4e511cSCy Schubert sw %= GREGORIAN_CYCLE_WEEKS; /* full reduction */
1868*2d4e511cSCy Schubert Q = (ux - sw) * 330081335u; /* exact div */
1869*2d4e511cSCy Schubert
1870*2d4e511cSCy Schubert # endif
1871*2d4e511cSCy Schubert
1872*2d4e511cSCy Schubert ci = Q & 3u;
18739034852cSGleb Smirnoff cc = uint32_2cpl_to_int32(Q);
18742b15cb3dSCy Schubert
18759034852cSGleb Smirnoff /* Split off years; sw >= 0 here! The scaled weeks in the years
18769034852cSGleb Smirnoff * are scaled up by 157 afterwards.
18772b15cb3dSCy Schubert */
18789034852cSGleb Smirnoff sw = (sw / 4u) * 157u + bctab[ci];
1879*2d4e511cSCy Schubert cy = sw / 8192u; /* sw >> 13 , let the compiler sort it out */
1880*2d4e511cSCy Schubert sw = sw % 8192u; /* sw & 8191, let the compiler sort it out */
18812b15cb3dSCy Schubert
18829034852cSGleb Smirnoff /* assemble elapsed years and downscale the elapsed weeks in
18839034852cSGleb Smirnoff * the year.
18849034852cSGleb Smirnoff */
18859034852cSGleb Smirnoff res.hi = 100*cc + cy;
18869034852cSGleb Smirnoff res.lo = sw / 157u;
18872b15cb3dSCy Schubert
18882b15cb3dSCy Schubert return res;
18892b15cb3dSCy Schubert }
18902b15cb3dSCy Schubert
18912b15cb3dSCy Schubert /*
18922b15cb3dSCy Schubert * Given a second in the NTP time scale and a pivot, expand the NTP
18932b15cb3dSCy Schubert * time stamp around the pivot and convert into an ISO calendar time
18942b15cb3dSCy Schubert * stamp.
18952b15cb3dSCy Schubert */
18962b15cb3dSCy Schubert int
isocal_ntp64_to_date(struct isodate * id,const vint64 * ntp)18972b15cb3dSCy Schubert isocal_ntp64_to_date(
18982b15cb3dSCy Schubert struct isodate *id,
18992b15cb3dSCy Schubert const vint64 *ntp
19002b15cb3dSCy Schubert )
19012b15cb3dSCy Schubert {
19022b15cb3dSCy Schubert ntpcal_split ds;
19032b15cb3dSCy Schubert int32_t ts[3];
1904*2d4e511cSCy Schubert uint32_t uw, ud, sf32;
19052b15cb3dSCy Schubert
19062b15cb3dSCy Schubert /*
19072b15cb3dSCy Schubert * Split NTP time into days and seconds, shift days into CE
19082b15cb3dSCy Schubert * domain and process the parts.
19092b15cb3dSCy Schubert */
19102b15cb3dSCy Schubert ds = ntpcal_daysplit(ntp);
19112b15cb3dSCy Schubert
19122b15cb3dSCy Schubert /* split time part */
19132b15cb3dSCy Schubert ds.hi += priv_timesplit(ts, ds.lo);
19142b15cb3dSCy Schubert id->hour = (uint8_t)ts[0];
19152b15cb3dSCy Schubert id->minute = (uint8_t)ts[1];
19162b15cb3dSCy Schubert id->second = (uint8_t)ts[2];
19172b15cb3dSCy Schubert
19189034852cSGleb Smirnoff /* split days into days and weeks, using floor division in unsigned */
19199034852cSGleb Smirnoff ds.hi += DAY_NTP_STARTS - 1; /* shift from NTP to RDN */
1920*2d4e511cSCy Schubert sf32 = int32_sflag(ds.hi);
1921*2d4e511cSCy Schubert ud = (uint32_t)ds.hi;
1922*2d4e511cSCy Schubert uw = sf32 ^ ((sf32 ^ ud) / DAYSPERWEEK);
19239034852cSGleb Smirnoff ud -= uw * DAYSPERWEEK;
1924*2d4e511cSCy Schubert
19259034852cSGleb Smirnoff ds.hi = uint32_2cpl_to_int32(uw);
19269034852cSGleb Smirnoff ds.lo = ud;
19279034852cSGleb Smirnoff
19282b15cb3dSCy Schubert id->weekday = (uint8_t)ds.lo + 1; /* weekday result */
19292b15cb3dSCy Schubert
19309034852cSGleb Smirnoff /* get year and week in year */
19312b15cb3dSCy Schubert ds = isocal_split_eraweeks(ds.hi); /* elapsed years&week*/
19322b15cb3dSCy Schubert id->year = (uint16_t)ds.hi + 1; /* shift to current */
19332b15cb3dSCy Schubert id->week = (uint8_t )ds.lo + 1;
19342b15cb3dSCy Schubert
19352b15cb3dSCy Schubert return (ds.hi >= 0 && ds.hi < 0x0000FFFF);
19362b15cb3dSCy Schubert }
19372b15cb3dSCy Schubert
19382b15cb3dSCy Schubert int
isocal_ntp_to_date(struct isodate * id,uint32_t ntp,const time_t * piv)19392b15cb3dSCy Schubert isocal_ntp_to_date(
19402b15cb3dSCy Schubert struct isodate *id,
19412b15cb3dSCy Schubert uint32_t ntp,
19422b15cb3dSCy Schubert const time_t *piv
19432b15cb3dSCy Schubert )
19442b15cb3dSCy Schubert {
19452b15cb3dSCy Schubert vint64 ntp64;
19462b15cb3dSCy Schubert
19472b15cb3dSCy Schubert /*
19482b15cb3dSCy Schubert * Unfold ntp time around current time into NTP domain, then
19492b15cb3dSCy Schubert * convert the full time stamp.
19502b15cb3dSCy Schubert */
19512b15cb3dSCy Schubert ntp64 = ntpcal_ntp_to_ntp(ntp, piv);
19522b15cb3dSCy Schubert return isocal_ntp64_to_date(id, &ntp64);
19532b15cb3dSCy Schubert }
19542b15cb3dSCy Schubert
19552b15cb3dSCy Schubert /*
19562b15cb3dSCy Schubert * Convert a ISO date spec into a second in the NTP time scale,
19572b15cb3dSCy Schubert * properly truncated to 32 bit.
19582b15cb3dSCy Schubert */
19592b15cb3dSCy Schubert vint64
isocal_date_to_ntp64(const struct isodate * id)19602b15cb3dSCy Schubert isocal_date_to_ntp64(
19612b15cb3dSCy Schubert const struct isodate *id
19622b15cb3dSCy Schubert )
19632b15cb3dSCy Schubert {
19642b15cb3dSCy Schubert int32_t weeks, days, secs;
19652b15cb3dSCy Schubert
19662b15cb3dSCy Schubert weeks = isocal_weeks_in_years((int32_t)id->year - 1)
19672b15cb3dSCy Schubert + (int32_t)id->week - 1;
19682b15cb3dSCy Schubert days = weeks * 7 + (int32_t)id->weekday;
19692b15cb3dSCy Schubert /* days is RDN of ISO date now */
19702b15cb3dSCy Schubert secs = ntpcal_etime_to_seconds(id->hour, id->minute, id->second);
19712b15cb3dSCy Schubert
19722b15cb3dSCy Schubert return ntpcal_dayjoin(days - DAY_NTP_STARTS, secs);
19732b15cb3dSCy Schubert }
19742b15cb3dSCy Schubert
19752b15cb3dSCy Schubert uint32_t
isocal_date_to_ntp(const struct isodate * id)19762b15cb3dSCy Schubert isocal_date_to_ntp(
19772b15cb3dSCy Schubert const struct isodate *id
19782b15cb3dSCy Schubert )
19792b15cb3dSCy Schubert {
19802b15cb3dSCy Schubert /*
1981*2d4e511cSCy Schubert * Get lower half of 64bit NTP timestamp from date/time.
19822b15cb3dSCy Schubert */
19832b15cb3dSCy Schubert return isocal_date_to_ntp64(id).d_s.lo;
19842b15cb3dSCy Schubert }
19852b15cb3dSCy Schubert
198609100258SXin LI /*
198709100258SXin LI * ====================================================================
198809100258SXin LI * 'basedate' support functions
198909100258SXin LI * ====================================================================
199009100258SXin LI */
199109100258SXin LI
199209100258SXin LI static int32_t s_baseday = NTP_TO_UNIX_DAYS;
1993052d159aSCy Schubert static int32_t s_gpsweek = 0;
199409100258SXin LI
199509100258SXin LI int32_t
basedate_eval_buildstamp(void)199609100258SXin LI basedate_eval_buildstamp(void)
199709100258SXin LI {
199809100258SXin LI struct calendar jd;
199909100258SXin LI int32_t ed;
200009100258SXin LI
200109100258SXin LI if (!ntpcal_get_build_date(&jd))
200209100258SXin LI return NTP_TO_UNIX_DAYS;
200309100258SXin LI
200409100258SXin LI /* The time zone of the build stamp is unspecified; we remove
200509100258SXin LI * one day to provide a certain slack. And in case somebody
200609100258SXin LI * fiddled with the system clock, we make sure we do not go
200709100258SXin LI * before the UNIX epoch (1970-01-01). It's probably not possible
200809100258SXin LI * to do this to the clock on most systems, but there are other
200909100258SXin LI * ways to tweak the build stamp.
201009100258SXin LI */
201109100258SXin LI jd.monthday -= 1;
201209100258SXin LI ed = ntpcal_date_to_rd(&jd) - DAY_NTP_STARTS;
201309100258SXin LI return (ed < NTP_TO_UNIX_DAYS) ? NTP_TO_UNIX_DAYS : ed;
201409100258SXin LI }
201509100258SXin LI
201609100258SXin LI int32_t
basedate_eval_string(const char * str)201709100258SXin LI basedate_eval_string(
201809100258SXin LI const char * str
201909100258SXin LI )
202009100258SXin LI {
202109100258SXin LI u_short y,m,d;
202209100258SXin LI u_long ned;
202309100258SXin LI int rc, nc;
202409100258SXin LI size_t sl;
202509100258SXin LI
202609100258SXin LI sl = strlen(str);
202709100258SXin LI rc = sscanf(str, "%4hu-%2hu-%2hu%n", &y, &m, &d, &nc);
202809100258SXin LI if (rc == 3 && (size_t)nc == sl) {
202909100258SXin LI if (m >= 1 && m <= 12 && d >= 1 && d <= 31)
203009100258SXin LI return ntpcal_edate_to_eradays(y-1, m-1, d)
203109100258SXin LI - DAY_NTP_STARTS;
203209100258SXin LI goto buildstamp;
203309100258SXin LI }
203409100258SXin LI
20354e1ef62aSXin LI rc = sscanf(str, "%lu%n", &ned, &nc);
203609100258SXin LI if (rc == 1 && (size_t)nc == sl) {
203709100258SXin LI if (ned <= INT32_MAX)
203809100258SXin LI return (int32_t)ned;
203909100258SXin LI goto buildstamp;
204009100258SXin LI }
204109100258SXin LI
204209100258SXin LI buildstamp:
204309100258SXin LI msyslog(LOG_WARNING,
204409100258SXin LI "basedate string \"%s\" invalid, build date substituted!",
204509100258SXin LI str);
204609100258SXin LI return basedate_eval_buildstamp();
204709100258SXin LI }
204809100258SXin LI
204909100258SXin LI uint32_t
basedate_get_day(void)205009100258SXin LI basedate_get_day(void)
205109100258SXin LI {
205209100258SXin LI return s_baseday;
205309100258SXin LI }
205409100258SXin LI
205509100258SXin LI int32_t
basedate_set_day(int32_t day)205609100258SXin LI basedate_set_day(
205709100258SXin LI int32_t day
205809100258SXin LI )
205909100258SXin LI {
206009100258SXin LI struct calendar jd;
206109100258SXin LI int32_t retv;
206209100258SXin LI
2063052d159aSCy Schubert /* set NTP base date for NTP era unfolding */
206409100258SXin LI if (day < NTP_TO_UNIX_DAYS) {
206509100258SXin LI msyslog(LOG_WARNING,
206609100258SXin LI "baseday_set_day: invalid day (%lu), UNIX epoch substituted",
206709100258SXin LI (unsigned long)day);
206809100258SXin LI day = NTP_TO_UNIX_DAYS;
206909100258SXin LI }
207009100258SXin LI retv = s_baseday;
207109100258SXin LI s_baseday = day;
207209100258SXin LI ntpcal_rd_to_date(&jd, day + DAY_NTP_STARTS);
207309100258SXin LI msyslog(LOG_INFO, "basedate set to %04hu-%02hu-%02hu",
207409100258SXin LI jd.year, (u_short)jd.month, (u_short)jd.monthday);
2075052d159aSCy Schubert
2076052d159aSCy Schubert /* set GPS base week for GPS week unfolding */
2077052d159aSCy Schubert day = ntpcal_weekday_ge(day + DAY_NTP_STARTS, CAL_SUNDAY)
2078052d159aSCy Schubert - DAY_NTP_STARTS;
2079052d159aSCy Schubert if (day < NTP_TO_GPS_DAYS)
2080052d159aSCy Schubert day = NTP_TO_GPS_DAYS;
2081052d159aSCy Schubert s_gpsweek = (day - NTP_TO_GPS_DAYS) / DAYSPERWEEK;
2082052d159aSCy Schubert ntpcal_rd_to_date(&jd, day + DAY_NTP_STARTS);
2083052d159aSCy Schubert msyslog(LOG_INFO, "gps base set to %04hu-%02hu-%02hu (week %d)",
2084052d159aSCy Schubert jd.year, (u_short)jd.month, (u_short)jd.monthday, s_gpsweek);
2085052d159aSCy Schubert
208609100258SXin LI return retv;
208709100258SXin LI }
208809100258SXin LI
208909100258SXin LI time_t
basedate_get_eracenter(void)209009100258SXin LI basedate_get_eracenter(void)
209109100258SXin LI {
209209100258SXin LI time_t retv;
209309100258SXin LI retv = (time_t)(s_baseday - NTP_TO_UNIX_DAYS);
209409100258SXin LI retv *= SECSPERDAY;
209509100258SXin LI retv += (UINT32_C(1) << 31);
209609100258SXin LI return retv;
209709100258SXin LI }
209809100258SXin LI
209909100258SXin LI time_t
basedate_get_erabase(void)210009100258SXin LI basedate_get_erabase(void)
210109100258SXin LI {
210209100258SXin LI time_t retv;
210309100258SXin LI retv = (time_t)(s_baseday - NTP_TO_UNIX_DAYS);
210409100258SXin LI retv *= SECSPERDAY;
210509100258SXin LI return retv;
210609100258SXin LI }
210709100258SXin LI
2108052d159aSCy Schubert uint32_t
basedate_get_gpsweek(void)2109052d159aSCy Schubert basedate_get_gpsweek(void)
2110052d159aSCy Schubert {
2111052d159aSCy Schubert return s_gpsweek;
2112052d159aSCy Schubert }
2113052d159aSCy Schubert
2114052d159aSCy Schubert uint32_t
basedate_expand_gpsweek(unsigned short weekno)2115052d159aSCy Schubert basedate_expand_gpsweek(
2116052d159aSCy Schubert unsigned short weekno
2117052d159aSCy Schubert )
2118052d159aSCy Schubert {
2119052d159aSCy Schubert /* We do a fast modulus expansion here. Since all quantities are
2120052d159aSCy Schubert * unsigned and we cannot go before the start of the GPS epoch
2121052d159aSCy Schubert * anyway, and since the truncated GPS week number is 10 bit, the
2122052d159aSCy Schubert * expansion becomes a simple sub/and/add sequence.
2123052d159aSCy Schubert */
2124052d159aSCy Schubert #if GPSWEEKS != 1024
2125052d159aSCy Schubert # error GPSWEEKS defined wrong -- should be 1024!
2126052d159aSCy Schubert #endif
2127052d159aSCy Schubert
2128052d159aSCy Schubert uint32_t diff;
2129052d159aSCy Schubert diff = ((uint32_t)weekno - s_gpsweek) & (GPSWEEKS - 1);
2130052d159aSCy Schubert return s_gpsweek + diff;
2131052d159aSCy Schubert }
2132052d159aSCy Schubert
2133*2d4e511cSCy Schubert /*
2134*2d4e511cSCy Schubert * ====================================================================
2135*2d4e511cSCy Schubert * misc. helpers
2136*2d4e511cSCy Schubert * ====================================================================
2137*2d4e511cSCy Schubert */
2138*2d4e511cSCy Schubert
2139*2d4e511cSCy Schubert /* --------------------------------------------------------------------
2140*2d4e511cSCy Schubert * reconstruct the centrury from a truncated date and a day-of-week
2141*2d4e511cSCy Schubert *
2142*2d4e511cSCy Schubert * Given a date with truncated year (2-digit, 0..99) and a day-of-week
2143*2d4e511cSCy Schubert * from 1(Mon) to 7(Sun), recover the full year between 1900AD and 2300AD.
2144*2d4e511cSCy Schubert */
2145*2d4e511cSCy Schubert int32_t
ntpcal_expand_century(uint32_t y,uint32_t m,uint32_t d,uint32_t wd)2146*2d4e511cSCy Schubert ntpcal_expand_century(
2147*2d4e511cSCy Schubert uint32_t y,
2148*2d4e511cSCy Schubert uint32_t m,
2149*2d4e511cSCy Schubert uint32_t d,
2150*2d4e511cSCy Schubert uint32_t wd)
2151*2d4e511cSCy Schubert {
2152*2d4e511cSCy Schubert /* This algorithm is short but tricky... It's related to
2153*2d4e511cSCy Schubert * Zeller's congruence, partially done backwards.
2154*2d4e511cSCy Schubert *
2155*2d4e511cSCy Schubert * A few facts to remember:
2156*2d4e511cSCy Schubert * 1) The Gregorian calendar has a cycle of 400 years.
2157*2d4e511cSCy Schubert * 2) The weekday of the 1st day of a century shifts by 5 days
2158*2d4e511cSCy Schubert * during a great cycle.
2159*2d4e511cSCy Schubert * 3) For calendar math, a century starts with the 1st year,
2160*2d4e511cSCy Schubert * which is year 1, !not! zero.
2161*2d4e511cSCy Schubert *
2162*2d4e511cSCy Schubert * So we start with taking the weekday difference (mod 7)
2163*2d4e511cSCy Schubert * between the truncated date (which is taken as an absolute
2164*2d4e511cSCy Schubert * date in the 1st century in the proleptic calendar) and the
2165*2d4e511cSCy Schubert * weekday given.
2166*2d4e511cSCy Schubert *
2167*2d4e511cSCy Schubert * When dividing this residual by 5, we obtain the number of
2168*2d4e511cSCy Schubert * centuries to add to the base. But since the residual is (mod
2169*2d4e511cSCy Schubert * 7), we have to make this an exact division by multiplication
2170*2d4e511cSCy Schubert * with the modular inverse of 5 (mod 7), which is 3:
2171*2d4e511cSCy Schubert * 3*5 === 1 (mod 7).
2172*2d4e511cSCy Schubert *
2173*2d4e511cSCy Schubert * If this yields a result of 4/5/6, the given date/day-of-week
2174*2d4e511cSCy Schubert * combination is impossible, and we return zero as resulting
2175*2d4e511cSCy Schubert * year to indicate failure.
2176*2d4e511cSCy Schubert *
2177*2d4e511cSCy Schubert * Then we remap the century to the range starting with year
2178*2d4e511cSCy Schubert * 1900.
2179*2d4e511cSCy Schubert */
2180*2d4e511cSCy Schubert
2181*2d4e511cSCy Schubert uint32_t c;
2182*2d4e511cSCy Schubert
2183*2d4e511cSCy Schubert /* check basic constraints */
2184*2d4e511cSCy Schubert if ((y >= 100u) || (--m >= 12u) || (--d >= 31u))
2185*2d4e511cSCy Schubert return 0;
2186*2d4e511cSCy Schubert
2187*2d4e511cSCy Schubert if ((m += 10u) >= 12u) /* shift base to prev. March,1st */
2188*2d4e511cSCy Schubert m -= 12u;
2189*2d4e511cSCy Schubert else if (--y >= 100u)
2190*2d4e511cSCy Schubert y += 100u;
2191*2d4e511cSCy Schubert d += y + (y >> 2) + 2u; /* year share */
2192*2d4e511cSCy Schubert d += (m * 83u + 16u) >> 5; /* month share */
2193*2d4e511cSCy Schubert
2194*2d4e511cSCy Schubert /* get (wd - d), shifted to positive value, and multiply with
2195*2d4e511cSCy Schubert * 3(mod 7). (Exact division, see to comment)
2196*2d4e511cSCy Schubert * Note: 1) d <= 184 at this point.
2197*2d4e511cSCy Schubert * 2) 252 % 7 == 0, but 'wd' is off by one since we did
2198*2d4e511cSCy Schubert * '--d' above, so we add just 251 here!
2199*2d4e511cSCy Schubert */
2200*2d4e511cSCy Schubert c = u32mod7(3 * (251u + wd - d));
2201*2d4e511cSCy Schubert if (c > 3u)
2202*2d4e511cSCy Schubert return 0;
2203*2d4e511cSCy Schubert
2204*2d4e511cSCy Schubert if ((m > 9u) && (++y >= 100u)) {/* undo base shift */
2205*2d4e511cSCy Schubert y -= 100u;
2206*2d4e511cSCy Schubert c = (c + 1) & 3u;
2207*2d4e511cSCy Schubert }
2208*2d4e511cSCy Schubert y += (c * 100u); /* combine into 1st cycle */
2209*2d4e511cSCy Schubert y += (y < 300u) ? 2000 : 1600; /* map to destination era */
2210*2d4e511cSCy Schubert return (int)y;
2211*2d4e511cSCy Schubert }
2212*2d4e511cSCy Schubert
2213*2d4e511cSCy Schubert char *
ntpcal_iso8601std(char * buf,size_t len,TcCivilDate * cdp)2214*2d4e511cSCy Schubert ntpcal_iso8601std(
2215*2d4e511cSCy Schubert char * buf,
2216*2d4e511cSCy Schubert size_t len,
2217*2d4e511cSCy Schubert TcCivilDate * cdp
2218*2d4e511cSCy Schubert )
2219*2d4e511cSCy Schubert {
2220*2d4e511cSCy Schubert if (!buf) {
2221*2d4e511cSCy Schubert LIB_GETBUF(buf);
2222*2d4e511cSCy Schubert len = LIB_BUFLENGTH;
2223*2d4e511cSCy Schubert }
2224*2d4e511cSCy Schubert if (len) {
2225*2d4e511cSCy Schubert len = snprintf(buf, len, "%04u-%02u-%02uT%02u:%02u:%02u",
2226*2d4e511cSCy Schubert cdp->year, cdp->month, cdp->monthday,
2227*2d4e511cSCy Schubert cdp->hour, cdp->minute, cdp->second);
2228*2d4e511cSCy Schubert if (len < 0)
2229*2d4e511cSCy Schubert *buf = '\0';
2230*2d4e511cSCy Schubert }
2231*2d4e511cSCy Schubert return buf;
2232*2d4e511cSCy Schubert }
2233*2d4e511cSCy Schubert
22342b15cb3dSCy Schubert /* -*-EOF-*- */
2235