1 //===-- llvm-objdump.cpp - Object file dumping utility for llvm -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This program is a utility that works like binutils "objdump", that is, it 10 // dumps out a plethora of information about an object file depending on the 11 // flags. 12 // 13 // The flags and output of this program should be near identical to those of 14 // binutils objdump. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm-objdump.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SetOperations.h" 22 #include "llvm/ADT/StringExtras.h" 23 #include "llvm/ADT/StringSet.h" 24 #include "llvm/ADT/Triple.h" 25 #include "llvm/CodeGen/FaultMaps.h" 26 #include "llvm/DebugInfo/DWARF/DWARFContext.h" 27 #include "llvm/DebugInfo/Symbolize/Symbolize.h" 28 #include "llvm/Demangle/Demangle.h" 29 #include "llvm/MC/MCAsmInfo.h" 30 #include "llvm/MC/MCContext.h" 31 #include "llvm/MC/MCDisassembler/MCDisassembler.h" 32 #include "llvm/MC/MCDisassembler/MCRelocationInfo.h" 33 #include "llvm/MC/MCInst.h" 34 #include "llvm/MC/MCInstPrinter.h" 35 #include "llvm/MC/MCInstrAnalysis.h" 36 #include "llvm/MC/MCInstrInfo.h" 37 #include "llvm/MC/MCObjectFileInfo.h" 38 #include "llvm/MC/MCRegisterInfo.h" 39 #include "llvm/MC/MCSubtargetInfo.h" 40 #include "llvm/Object/Archive.h" 41 #include "llvm/Object/COFF.h" 42 #include "llvm/Object/COFFImportFile.h" 43 #include "llvm/Object/ELFObjectFile.h" 44 #include "llvm/Object/MachO.h" 45 #include "llvm/Object/MachOUniversal.h" 46 #include "llvm/Object/ObjectFile.h" 47 #include "llvm/Object/Wasm.h" 48 #include "llvm/Support/Casting.h" 49 #include "llvm/Support/CommandLine.h" 50 #include "llvm/Support/Debug.h" 51 #include "llvm/Support/Errc.h" 52 #include "llvm/Support/FileSystem.h" 53 #include "llvm/Support/Format.h" 54 #include "llvm/Support/FormatVariadic.h" 55 #include "llvm/Support/GraphWriter.h" 56 #include "llvm/Support/Host.h" 57 #include "llvm/Support/InitLLVM.h" 58 #include "llvm/Support/MemoryBuffer.h" 59 #include "llvm/Support/SourceMgr.h" 60 #include "llvm/Support/StringSaver.h" 61 #include "llvm/Support/TargetRegistry.h" 62 #include "llvm/Support/TargetSelect.h" 63 #include "llvm/Support/WithColor.h" 64 #include "llvm/Support/raw_ostream.h" 65 #include <algorithm> 66 #include <cctype> 67 #include <cstring> 68 #include <system_error> 69 #include <unordered_map> 70 #include <utility> 71 72 using namespace llvm::object; 73 74 namespace llvm { 75 76 cl::OptionCategory ObjdumpCat("llvm-objdump Options"); 77 78 // MachO specific 79 extern cl::OptionCategory MachOCat; 80 extern cl::opt<bool> Bind; 81 extern cl::opt<bool> DataInCode; 82 extern cl::opt<bool> DylibsUsed; 83 extern cl::opt<bool> DylibId; 84 extern cl::opt<bool> ExportsTrie; 85 extern cl::opt<bool> FirstPrivateHeader; 86 extern cl::opt<bool> IndirectSymbols; 87 extern cl::opt<bool> InfoPlist; 88 extern cl::opt<bool> LazyBind; 89 extern cl::opt<bool> LinkOptHints; 90 extern cl::opt<bool> ObjcMetaData; 91 extern cl::opt<bool> Rebase; 92 extern cl::opt<bool> UniversalHeaders; 93 extern cl::opt<bool> WeakBind; 94 95 static cl::opt<uint64_t> AdjustVMA( 96 "adjust-vma", 97 cl::desc("Increase the displayed address by the specified offset"), 98 cl::value_desc("offset"), cl::init(0), cl::cat(ObjdumpCat)); 99 100 static cl::opt<bool> 101 AllHeaders("all-headers", 102 cl::desc("Display all available header information"), 103 cl::cat(ObjdumpCat)); 104 static cl::alias AllHeadersShort("x", cl::desc("Alias for --all-headers"), 105 cl::NotHidden, cl::Grouping, 106 cl::aliasopt(AllHeaders)); 107 108 static cl::opt<std::string> 109 ArchName("arch-name", 110 cl::desc("Target arch to disassemble for, " 111 "see -version for available targets"), 112 cl::cat(ObjdumpCat)); 113 114 cl::opt<bool> ArchiveHeaders("archive-headers", 115 cl::desc("Display archive header information"), 116 cl::cat(ObjdumpCat)); 117 static cl::alias ArchiveHeadersShort("a", 118 cl::desc("Alias for --archive-headers"), 119 cl::NotHidden, cl::Grouping, 120 cl::aliasopt(ArchiveHeaders)); 121 122 cl::opt<bool> Demangle("demangle", cl::desc("Demangle symbols names"), 123 cl::init(false), cl::cat(ObjdumpCat)); 124 static cl::alias DemangleShort("C", cl::desc("Alias for --demangle"), 125 cl::NotHidden, cl::Grouping, 126 cl::aliasopt(Demangle)); 127 128 cl::opt<bool> Disassemble( 129 "disassemble", 130 cl::desc("Display assembler mnemonics for the machine instructions"), 131 cl::cat(ObjdumpCat)); 132 static cl::alias DisassembleShort("d", cl::desc("Alias for --disassemble"), 133 cl::NotHidden, cl::Grouping, 134 cl::aliasopt(Disassemble)); 135 136 cl::opt<bool> DisassembleAll( 137 "disassemble-all", 138 cl::desc("Display assembler mnemonics for the machine instructions"), 139 cl::cat(ObjdumpCat)); 140 static cl::alias DisassembleAllShort("D", 141 cl::desc("Alias for --disassemble-all"), 142 cl::NotHidden, cl::Grouping, 143 cl::aliasopt(DisassembleAll)); 144 145 static cl::list<std::string> 146 DisassembleFunctions("disassemble-functions", cl::CommaSeparated, 147 cl::desc("List of functions to disassemble. " 148 "Accept demangled names when --demangle is " 149 "specified, otherwise accept mangled names"), 150 cl::cat(ObjdumpCat)); 151 152 static cl::opt<bool> DisassembleZeroes( 153 "disassemble-zeroes", 154 cl::desc("Do not skip blocks of zeroes when disassembling"), 155 cl::cat(ObjdumpCat)); 156 static cl::alias 157 DisassembleZeroesShort("z", cl::desc("Alias for --disassemble-zeroes"), 158 cl::NotHidden, cl::Grouping, 159 cl::aliasopt(DisassembleZeroes)); 160 161 static cl::list<std::string> 162 DisassemblerOptions("disassembler-options", 163 cl::desc("Pass target specific disassembler options"), 164 cl::value_desc("options"), cl::CommaSeparated, 165 cl::cat(ObjdumpCat)); 166 static cl::alias 167 DisassemblerOptionsShort("M", cl::desc("Alias for --disassembler-options"), 168 cl::NotHidden, cl::Grouping, cl::Prefix, 169 cl::CommaSeparated, 170 cl::aliasopt(DisassemblerOptions)); 171 172 cl::opt<DIDumpType> DwarfDumpType( 173 "dwarf", cl::init(DIDT_Null), cl::desc("Dump of dwarf debug sections:"), 174 cl::values(clEnumValN(DIDT_DebugFrame, "frames", ".debug_frame")), 175 cl::cat(ObjdumpCat)); 176 177 static cl::opt<bool> DynamicRelocations( 178 "dynamic-reloc", 179 cl::desc("Display the dynamic relocation entries in the file"), 180 cl::cat(ObjdumpCat)); 181 static cl::alias DynamicRelocationShort("R", 182 cl::desc("Alias for --dynamic-reloc"), 183 cl::NotHidden, cl::Grouping, 184 cl::aliasopt(DynamicRelocations)); 185 186 static cl::opt<bool> 187 FaultMapSection("fault-map-section", 188 cl::desc("Display contents of faultmap section"), 189 cl::cat(ObjdumpCat)); 190 191 static cl::opt<bool> 192 FileHeaders("file-headers", 193 cl::desc("Display the contents of the overall file header"), 194 cl::cat(ObjdumpCat)); 195 static cl::alias FileHeadersShort("f", cl::desc("Alias for --file-headers"), 196 cl::NotHidden, cl::Grouping, 197 cl::aliasopt(FileHeaders)); 198 199 cl::opt<bool> SectionContents("full-contents", 200 cl::desc("Display the content of each section"), 201 cl::cat(ObjdumpCat)); 202 static cl::alias SectionContentsShort("s", 203 cl::desc("Alias for --full-contents"), 204 cl::NotHidden, cl::Grouping, 205 cl::aliasopt(SectionContents)); 206 207 static cl::list<std::string> InputFilenames(cl::Positional, 208 cl::desc("<input object files>"), 209 cl::ZeroOrMore, 210 cl::cat(ObjdumpCat)); 211 212 static cl::opt<bool> 213 PrintLines("line-numbers", 214 cl::desc("Display source line numbers with " 215 "disassembly. Implies disassemble object"), 216 cl::cat(ObjdumpCat)); 217 static cl::alias PrintLinesShort("l", cl::desc("Alias for --line-numbers"), 218 cl::NotHidden, cl::Grouping, 219 cl::aliasopt(PrintLines)); 220 221 static cl::opt<bool> MachOOpt("macho", 222 cl::desc("Use MachO specific object file parser"), 223 cl::cat(ObjdumpCat)); 224 static cl::alias MachOm("m", cl::desc("Alias for --macho"), cl::NotHidden, 225 cl::Grouping, cl::aliasopt(MachOOpt)); 226 227 cl::opt<std::string> 228 MCPU("mcpu", 229 cl::desc("Target a specific cpu type (-mcpu=help for details)"), 230 cl::value_desc("cpu-name"), cl::init(""), cl::cat(ObjdumpCat)); 231 232 cl::list<std::string> MAttrs("mattr", cl::CommaSeparated, 233 cl::desc("Target specific attributes"), 234 cl::value_desc("a1,+a2,-a3,..."), 235 cl::cat(ObjdumpCat)); 236 237 cl::opt<bool> NoShowRawInsn("no-show-raw-insn", 238 cl::desc("When disassembling " 239 "instructions, do not print " 240 "the instruction bytes."), 241 cl::cat(ObjdumpCat)); 242 cl::opt<bool> NoLeadingAddr("no-leading-addr", 243 cl::desc("Print no leading address"), 244 cl::cat(ObjdumpCat)); 245 246 static cl::opt<bool> RawClangAST( 247 "raw-clang-ast", 248 cl::desc("Dump the raw binary contents of the clang AST section"), 249 cl::cat(ObjdumpCat)); 250 251 cl::opt<bool> 252 Relocations("reloc", cl::desc("Display the relocation entries in the file"), 253 cl::cat(ObjdumpCat)); 254 static cl::alias RelocationsShort("r", cl::desc("Alias for --reloc"), 255 cl::NotHidden, cl::Grouping, 256 cl::aliasopt(Relocations)); 257 258 cl::opt<bool> PrintImmHex("print-imm-hex", 259 cl::desc("Use hex format for immediate values"), 260 cl::cat(ObjdumpCat)); 261 262 cl::opt<bool> PrivateHeaders("private-headers", 263 cl::desc("Display format specific file headers"), 264 cl::cat(ObjdumpCat)); 265 static cl::alias PrivateHeadersShort("p", 266 cl::desc("Alias for --private-headers"), 267 cl::NotHidden, cl::Grouping, 268 cl::aliasopt(PrivateHeaders)); 269 270 cl::list<std::string> 271 FilterSections("section", 272 cl::desc("Operate on the specified sections only. " 273 "With -macho dump segment,section"), 274 cl::cat(ObjdumpCat)); 275 static cl::alias FilterSectionsj("j", cl::desc("Alias for --section"), 276 cl::NotHidden, cl::Grouping, cl::Prefix, 277 cl::aliasopt(FilterSections)); 278 279 cl::opt<bool> SectionHeaders("section-headers", 280 cl::desc("Display summaries of the " 281 "headers for each section."), 282 cl::cat(ObjdumpCat)); 283 static cl::alias SectionHeadersShort("headers", 284 cl::desc("Alias for --section-headers"), 285 cl::NotHidden, 286 cl::aliasopt(SectionHeaders)); 287 static cl::alias SectionHeadersShorter("h", 288 cl::desc("Alias for --section-headers"), 289 cl::NotHidden, cl::Grouping, 290 cl::aliasopt(SectionHeaders)); 291 292 static cl::opt<bool> 293 ShowLMA("show-lma", 294 cl::desc("Display LMA column when dumping ELF section headers"), 295 cl::cat(ObjdumpCat)); 296 297 static cl::opt<bool> PrintSource( 298 "source", 299 cl::desc( 300 "Display source inlined with disassembly. Implies disassemble object"), 301 cl::cat(ObjdumpCat)); 302 static cl::alias PrintSourceShort("S", cl::desc("Alias for -source"), 303 cl::NotHidden, cl::Grouping, 304 cl::aliasopt(PrintSource)); 305 306 static cl::opt<uint64_t> 307 StartAddress("start-address", cl::desc("Disassemble beginning at address"), 308 cl::value_desc("address"), cl::init(0), cl::cat(ObjdumpCat)); 309 static cl::opt<uint64_t> StopAddress("stop-address", 310 cl::desc("Stop disassembly at address"), 311 cl::value_desc("address"), 312 cl::init(UINT64_MAX), cl::cat(ObjdumpCat)); 313 314 cl::opt<bool> SymbolTable("syms", cl::desc("Display the symbol table"), 315 cl::cat(ObjdumpCat)); 316 static cl::alias SymbolTableShort("t", cl::desc("Alias for --syms"), 317 cl::NotHidden, cl::Grouping, 318 cl::aliasopt(SymbolTable)); 319 320 cl::opt<std::string> TripleName("triple", 321 cl::desc("Target triple to disassemble for, " 322 "see -version for available targets"), 323 cl::cat(ObjdumpCat)); 324 325 cl::opt<bool> UnwindInfo("unwind-info", cl::desc("Display unwind information"), 326 cl::cat(ObjdumpCat)); 327 static cl::alias UnwindInfoShort("u", cl::desc("Alias for --unwind-info"), 328 cl::NotHidden, cl::Grouping, 329 cl::aliasopt(UnwindInfo)); 330 331 static cl::opt<bool> 332 Wide("wide", cl::desc("Ignored for compatibility with GNU objdump"), 333 cl::cat(ObjdumpCat)); 334 static cl::alias WideShort("w", cl::Grouping, cl::aliasopt(Wide)); 335 336 static cl::extrahelp 337 HelpResponse("\nPass @FILE as argument to read options from FILE.\n"); 338 339 static StringSet<> DisasmFuncsSet; 340 static StringSet<> FoundSectionSet; 341 static StringRef ToolName; 342 343 typedef std::vector<std::tuple<uint64_t, StringRef, uint8_t>> SectionSymbolsTy; 344 345 namespace { 346 struct FilterResult { 347 // True if the section should not be skipped. 348 bool Keep; 349 350 // True if the index counter should be incremented, even if the section should 351 // be skipped. For example, sections may be skipped if they are not included 352 // in the --section flag, but we still want those to count toward the section 353 // count. 354 bool IncrementIndex; 355 }; 356 } // namespace 357 358 static FilterResult checkSectionFilter(object::SectionRef S) { 359 if (FilterSections.empty()) 360 return {/*Keep=*/true, /*IncrementIndex=*/true}; 361 362 Expected<StringRef> SecNameOrErr = S.getName(); 363 if (!SecNameOrErr) { 364 consumeError(SecNameOrErr.takeError()); 365 return {/*Keep=*/false, /*IncrementIndex=*/false}; 366 } 367 StringRef SecName = *SecNameOrErr; 368 369 // StringSet does not allow empty key so avoid adding sections with 370 // no name (such as the section with index 0) here. 371 if (!SecName.empty()) 372 FoundSectionSet.insert(SecName); 373 374 // Only show the section if it's in the FilterSections list, but always 375 // increment so the indexing is stable. 376 return {/*Keep=*/is_contained(FilterSections, SecName), 377 /*IncrementIndex=*/true}; 378 } 379 380 SectionFilter ToolSectionFilter(object::ObjectFile const &O, uint64_t *Idx) { 381 // Start at UINT64_MAX so that the first index returned after an increment is 382 // zero (after the unsigned wrap). 383 if (Idx) 384 *Idx = UINT64_MAX; 385 return SectionFilter( 386 [Idx](object::SectionRef S) { 387 FilterResult Result = checkSectionFilter(S); 388 if (Idx != nullptr && Result.IncrementIndex) 389 *Idx += 1; 390 return Result.Keep; 391 }, 392 O); 393 } 394 395 std::string getFileNameForError(const object::Archive::Child &C, 396 unsigned Index) { 397 Expected<StringRef> NameOrErr = C.getName(); 398 if (NameOrErr) 399 return NameOrErr.get(); 400 // If we have an error getting the name then we print the index of the archive 401 // member. Since we are already in an error state, we just ignore this error. 402 consumeError(NameOrErr.takeError()); 403 return "<file index: " + std::to_string(Index) + ">"; 404 } 405 406 void reportWarning(Twine Message, StringRef File) { 407 // Output order between errs() and outs() matters especially for archive 408 // files where the output is per member object. 409 outs().flush(); 410 WithColor::warning(errs(), ToolName) 411 << "'" << File << "': " << Message << "\n"; 412 errs().flush(); 413 } 414 415 LLVM_ATTRIBUTE_NORETURN void reportError(StringRef File, Twine Message) { 416 WithColor::error(errs(), ToolName) << "'" << File << "': " << Message << "\n"; 417 exit(1); 418 } 419 420 LLVM_ATTRIBUTE_NORETURN void reportError(Error E, StringRef FileName, 421 StringRef ArchiveName, 422 StringRef ArchitectureName) { 423 assert(E); 424 WithColor::error(errs(), ToolName); 425 if (ArchiveName != "") 426 errs() << ArchiveName << "(" << FileName << ")"; 427 else 428 errs() << "'" << FileName << "'"; 429 if (!ArchitectureName.empty()) 430 errs() << " (for architecture " << ArchitectureName << ")"; 431 std::string Buf; 432 raw_string_ostream OS(Buf); 433 logAllUnhandledErrors(std::move(E), OS); 434 OS.flush(); 435 errs() << ": " << Buf; 436 exit(1); 437 } 438 439 static void reportCmdLineWarning(Twine Message) { 440 WithColor::warning(errs(), ToolName) << Message << "\n"; 441 } 442 443 LLVM_ATTRIBUTE_NORETURN static void reportCmdLineError(Twine Message) { 444 WithColor::error(errs(), ToolName) << Message << "\n"; 445 exit(1); 446 } 447 448 static void warnOnNoMatchForSections() { 449 SetVector<StringRef> MissingSections; 450 for (StringRef S : FilterSections) { 451 if (FoundSectionSet.count(S)) 452 return; 453 // User may specify a unnamed section. Don't warn for it. 454 if (!S.empty()) 455 MissingSections.insert(S); 456 } 457 458 // Warn only if no section in FilterSections is matched. 459 for (StringRef S : MissingSections) 460 reportCmdLineWarning("section '" + S + 461 "' mentioned in a -j/--section option, but not " 462 "found in any input file"); 463 } 464 465 static const Target *getTarget(const ObjectFile *Obj) { 466 // Figure out the target triple. 467 Triple TheTriple("unknown-unknown-unknown"); 468 if (TripleName.empty()) { 469 TheTriple = Obj->makeTriple(); 470 } else { 471 TheTriple.setTriple(Triple::normalize(TripleName)); 472 auto Arch = Obj->getArch(); 473 if (Arch == Triple::arm || Arch == Triple::armeb) 474 Obj->setARMSubArch(TheTriple); 475 } 476 477 // Get the target specific parser. 478 std::string Error; 479 const Target *TheTarget = TargetRegistry::lookupTarget(ArchName, TheTriple, 480 Error); 481 if (!TheTarget) 482 reportError(Obj->getFileName(), "can't find target: " + Error); 483 484 // Update the triple name and return the found target. 485 TripleName = TheTriple.getTriple(); 486 return TheTarget; 487 } 488 489 bool isRelocAddressLess(RelocationRef A, RelocationRef B) { 490 return A.getOffset() < B.getOffset(); 491 } 492 493 static Error getRelocationValueString(const RelocationRef &Rel, 494 SmallVectorImpl<char> &Result) { 495 const ObjectFile *Obj = Rel.getObject(); 496 if (auto *ELF = dyn_cast<ELFObjectFileBase>(Obj)) 497 return getELFRelocationValueString(ELF, Rel, Result); 498 if (auto *COFF = dyn_cast<COFFObjectFile>(Obj)) 499 return getCOFFRelocationValueString(COFF, Rel, Result); 500 if (auto *Wasm = dyn_cast<WasmObjectFile>(Obj)) 501 return getWasmRelocationValueString(Wasm, Rel, Result); 502 if (auto *MachO = dyn_cast<MachOObjectFile>(Obj)) 503 return getMachORelocationValueString(MachO, Rel, Result); 504 llvm_unreachable("unknown object file format"); 505 } 506 507 /// Indicates whether this relocation should hidden when listing 508 /// relocations, usually because it is the trailing part of a multipart 509 /// relocation that will be printed as part of the leading relocation. 510 static bool getHidden(RelocationRef RelRef) { 511 auto *MachO = dyn_cast<MachOObjectFile>(RelRef.getObject()); 512 if (!MachO) 513 return false; 514 515 unsigned Arch = MachO->getArch(); 516 DataRefImpl Rel = RelRef.getRawDataRefImpl(); 517 uint64_t Type = MachO->getRelocationType(Rel); 518 519 // On arches that use the generic relocations, GENERIC_RELOC_PAIR 520 // is always hidden. 521 if (Arch == Triple::x86 || Arch == Triple::arm || Arch == Triple::ppc) 522 return Type == MachO::GENERIC_RELOC_PAIR; 523 524 if (Arch == Triple::x86_64) { 525 // On x86_64, X86_64_RELOC_UNSIGNED is hidden only when it follows 526 // an X86_64_RELOC_SUBTRACTOR. 527 if (Type == MachO::X86_64_RELOC_UNSIGNED && Rel.d.a > 0) { 528 DataRefImpl RelPrev = Rel; 529 RelPrev.d.a--; 530 uint64_t PrevType = MachO->getRelocationType(RelPrev); 531 if (PrevType == MachO::X86_64_RELOC_SUBTRACTOR) 532 return true; 533 } 534 } 535 536 return false; 537 } 538 539 namespace { 540 class SourcePrinter { 541 protected: 542 DILineInfo OldLineInfo; 543 const ObjectFile *Obj = nullptr; 544 std::unique_ptr<symbolize::LLVMSymbolizer> Symbolizer; 545 // File name to file contents of source. 546 std::unordered_map<std::string, std::unique_ptr<MemoryBuffer>> SourceCache; 547 // Mark the line endings of the cached source. 548 std::unordered_map<std::string, std::vector<StringRef>> LineCache; 549 // Keep track of missing sources. 550 StringSet<> MissingSources; 551 // Only emit 'no debug info' warning once. 552 bool WarnedNoDebugInfo; 553 554 private: 555 bool cacheSource(const DILineInfo& LineInfoFile); 556 557 public: 558 SourcePrinter() = default; 559 SourcePrinter(const ObjectFile *Obj, StringRef DefaultArch) 560 : Obj(Obj), WarnedNoDebugInfo(false) { 561 symbolize::LLVMSymbolizer::Options SymbolizerOpts; 562 SymbolizerOpts.PrintFunctions = DILineInfoSpecifier::FunctionNameKind::None; 563 SymbolizerOpts.Demangle = false; 564 SymbolizerOpts.DefaultArch = DefaultArch; 565 Symbolizer.reset(new symbolize::LLVMSymbolizer(SymbolizerOpts)); 566 } 567 virtual ~SourcePrinter() = default; 568 virtual void printSourceLine(raw_ostream &OS, 569 object::SectionedAddress Address, 570 StringRef ObjectFilename, 571 StringRef Delimiter = "; "); 572 }; 573 574 bool SourcePrinter::cacheSource(const DILineInfo &LineInfo) { 575 std::unique_ptr<MemoryBuffer> Buffer; 576 if (LineInfo.Source) { 577 Buffer = MemoryBuffer::getMemBuffer(*LineInfo.Source); 578 } else { 579 auto BufferOrError = MemoryBuffer::getFile(LineInfo.FileName); 580 if (!BufferOrError) { 581 if (MissingSources.insert(LineInfo.FileName).second) 582 reportWarning("failed to find source " + LineInfo.FileName, 583 Obj->getFileName()); 584 return false; 585 } 586 Buffer = std::move(*BufferOrError); 587 } 588 // Chomp the file to get lines 589 const char *BufferStart = Buffer->getBufferStart(), 590 *BufferEnd = Buffer->getBufferEnd(); 591 std::vector<StringRef> &Lines = LineCache[LineInfo.FileName]; 592 const char *Start = BufferStart; 593 for (const char *I = BufferStart; I != BufferEnd; ++I) 594 if (*I == '\n') { 595 Lines.emplace_back(Start, I - Start - (BufferStart < I && I[-1] == '\r')); 596 Start = I + 1; 597 } 598 if (Start < BufferEnd) 599 Lines.emplace_back(Start, BufferEnd - Start); 600 SourceCache[LineInfo.FileName] = std::move(Buffer); 601 return true; 602 } 603 604 void SourcePrinter::printSourceLine(raw_ostream &OS, 605 object::SectionedAddress Address, 606 StringRef ObjectFilename, 607 StringRef Delimiter) { 608 if (!Symbolizer) 609 return; 610 611 DILineInfo LineInfo = DILineInfo(); 612 auto ExpectedLineInfo = Symbolizer->symbolizeCode(*Obj, Address); 613 std::string ErrorMessage; 614 if (!ExpectedLineInfo) 615 ErrorMessage = toString(ExpectedLineInfo.takeError()); 616 else 617 LineInfo = *ExpectedLineInfo; 618 619 if (LineInfo.FileName == DILineInfo::BadString) { 620 if (!WarnedNoDebugInfo) { 621 std::string Warning = 622 "failed to parse debug information for " + ObjectFilename.str(); 623 if (!ErrorMessage.empty()) 624 Warning += ": " + ErrorMessage; 625 reportWarning(Warning, ObjectFilename); 626 WarnedNoDebugInfo = true; 627 } 628 return; 629 } 630 631 if (LineInfo.Line == 0 || ((OldLineInfo.Line == LineInfo.Line) && 632 (OldLineInfo.FileName == LineInfo.FileName))) 633 return; 634 635 if (PrintLines) 636 OS << Delimiter << LineInfo.FileName << ":" << LineInfo.Line << "\n"; 637 if (PrintSource) { 638 if (SourceCache.find(LineInfo.FileName) == SourceCache.end()) 639 if (!cacheSource(LineInfo)) 640 return; 641 auto LineBuffer = LineCache.find(LineInfo.FileName); 642 if (LineBuffer != LineCache.end()) { 643 if (LineInfo.Line > LineBuffer->second.size()) { 644 reportWarning( 645 formatv( 646 "debug info line number {0} exceeds the number of lines in {1}", 647 LineInfo.Line, LineInfo.FileName), 648 ObjectFilename); 649 return; 650 } 651 // Vector begins at 0, line numbers are non-zero 652 OS << Delimiter << LineBuffer->second[LineInfo.Line - 1] << '\n'; 653 } 654 } 655 OldLineInfo = LineInfo; 656 } 657 658 static bool isAArch64Elf(const ObjectFile *Obj) { 659 const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj); 660 return Elf && Elf->getEMachine() == ELF::EM_AARCH64; 661 } 662 663 static bool isArmElf(const ObjectFile *Obj) { 664 const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj); 665 return Elf && Elf->getEMachine() == ELF::EM_ARM; 666 } 667 668 static bool hasMappingSymbols(const ObjectFile *Obj) { 669 return isArmElf(Obj) || isAArch64Elf(Obj); 670 } 671 672 static void printRelocation(StringRef FileName, const RelocationRef &Rel, 673 uint64_t Address, bool Is64Bits) { 674 StringRef Fmt = Is64Bits ? "\t\t%016" PRIx64 ": " : "\t\t\t%08" PRIx64 ": "; 675 SmallString<16> Name; 676 SmallString<32> Val; 677 Rel.getTypeName(Name); 678 if (Error E = getRelocationValueString(Rel, Val)) 679 reportError(std::move(E), FileName); 680 outs() << format(Fmt.data(), Address) << Name << "\t" << Val << "\n"; 681 } 682 683 class PrettyPrinter { 684 public: 685 virtual ~PrettyPrinter() = default; 686 virtual void printInst(MCInstPrinter &IP, const MCInst *MI, 687 ArrayRef<uint8_t> Bytes, 688 object::SectionedAddress Address, raw_ostream &OS, 689 StringRef Annot, MCSubtargetInfo const &STI, 690 SourcePrinter *SP, StringRef ObjectFilename, 691 std::vector<RelocationRef> *Rels = nullptr) { 692 if (SP && (PrintSource || PrintLines)) 693 SP->printSourceLine(OS, Address, ObjectFilename); 694 695 size_t Start = OS.tell(); 696 if (!NoLeadingAddr) 697 OS << format("%8" PRIx64 ":", Address.Address); 698 if (!NoShowRawInsn) { 699 OS << ' '; 700 dumpBytes(Bytes, OS); 701 } 702 703 // The output of printInst starts with a tab. Print some spaces so that 704 // the tab has 1 column and advances to the target tab stop. 705 unsigned TabStop = NoShowRawInsn ? 16 : 40; 706 unsigned Column = OS.tell() - Start; 707 OS.indent(Column < TabStop - 1 ? TabStop - 1 - Column : 7 - Column % 8); 708 709 if (MI) 710 IP.printInst(MI, OS, "", STI); 711 else 712 OS << "\t<unknown>"; 713 } 714 }; 715 PrettyPrinter PrettyPrinterInst; 716 717 class HexagonPrettyPrinter : public PrettyPrinter { 718 public: 719 void printLead(ArrayRef<uint8_t> Bytes, uint64_t Address, 720 raw_ostream &OS) { 721 uint32_t opcode = 722 (Bytes[3] << 24) | (Bytes[2] << 16) | (Bytes[1] << 8) | Bytes[0]; 723 if (!NoLeadingAddr) 724 OS << format("%8" PRIx64 ":", Address); 725 if (!NoShowRawInsn) { 726 OS << "\t"; 727 dumpBytes(Bytes.slice(0, 4), OS); 728 OS << format("\t%08" PRIx32, opcode); 729 } 730 } 731 void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes, 732 object::SectionedAddress Address, raw_ostream &OS, 733 StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP, 734 StringRef ObjectFilename, 735 std::vector<RelocationRef> *Rels) override { 736 if (SP && (PrintSource || PrintLines)) 737 SP->printSourceLine(OS, Address, ObjectFilename, ""); 738 if (!MI) { 739 printLead(Bytes, Address.Address, OS); 740 OS << " <unknown>"; 741 return; 742 } 743 std::string Buffer; 744 { 745 raw_string_ostream TempStream(Buffer); 746 IP.printInst(MI, TempStream, "", STI); 747 } 748 StringRef Contents(Buffer); 749 // Split off bundle attributes 750 auto PacketBundle = Contents.rsplit('\n'); 751 // Split off first instruction from the rest 752 auto HeadTail = PacketBundle.first.split('\n'); 753 auto Preamble = " { "; 754 auto Separator = ""; 755 756 // Hexagon's packets require relocations to be inline rather than 757 // clustered at the end of the packet. 758 std::vector<RelocationRef>::const_iterator RelCur = Rels->begin(); 759 std::vector<RelocationRef>::const_iterator RelEnd = Rels->end(); 760 auto PrintReloc = [&]() -> void { 761 while ((RelCur != RelEnd) && (RelCur->getOffset() <= Address.Address)) { 762 if (RelCur->getOffset() == Address.Address) { 763 printRelocation(ObjectFilename, *RelCur, Address.Address, false); 764 return; 765 } 766 ++RelCur; 767 } 768 }; 769 770 while (!HeadTail.first.empty()) { 771 OS << Separator; 772 Separator = "\n"; 773 if (SP && (PrintSource || PrintLines)) 774 SP->printSourceLine(OS, Address, ObjectFilename, ""); 775 printLead(Bytes, Address.Address, OS); 776 OS << Preamble; 777 Preamble = " "; 778 StringRef Inst; 779 auto Duplex = HeadTail.first.split('\v'); 780 if (!Duplex.second.empty()) { 781 OS << Duplex.first; 782 OS << "; "; 783 Inst = Duplex.second; 784 } 785 else 786 Inst = HeadTail.first; 787 OS << Inst; 788 HeadTail = HeadTail.second.split('\n'); 789 if (HeadTail.first.empty()) 790 OS << " } " << PacketBundle.second; 791 PrintReloc(); 792 Bytes = Bytes.slice(4); 793 Address.Address += 4; 794 } 795 } 796 }; 797 HexagonPrettyPrinter HexagonPrettyPrinterInst; 798 799 class AMDGCNPrettyPrinter : public PrettyPrinter { 800 public: 801 void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes, 802 object::SectionedAddress Address, raw_ostream &OS, 803 StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP, 804 StringRef ObjectFilename, 805 std::vector<RelocationRef> *Rels) override { 806 if (SP && (PrintSource || PrintLines)) 807 SP->printSourceLine(OS, Address, ObjectFilename); 808 809 if (MI) { 810 SmallString<40> InstStr; 811 raw_svector_ostream IS(InstStr); 812 813 IP.printInst(MI, IS, "", STI); 814 815 OS << left_justify(IS.str(), 60); 816 } else { 817 // an unrecognized encoding - this is probably data so represent it 818 // using the .long directive, or .byte directive if fewer than 4 bytes 819 // remaining 820 if (Bytes.size() >= 4) { 821 OS << format("\t.long 0x%08" PRIx32 " ", 822 support::endian::read32<support::little>(Bytes.data())); 823 OS.indent(42); 824 } else { 825 OS << format("\t.byte 0x%02" PRIx8, Bytes[0]); 826 for (unsigned int i = 1; i < Bytes.size(); i++) 827 OS << format(", 0x%02" PRIx8, Bytes[i]); 828 OS.indent(55 - (6 * Bytes.size())); 829 } 830 } 831 832 OS << format("// %012" PRIX64 ":", Address.Address); 833 if (Bytes.size() >= 4) { 834 // D should be casted to uint32_t here as it is passed by format to 835 // snprintf as vararg. 836 for (uint32_t D : makeArrayRef( 837 reinterpret_cast<const support::little32_t *>(Bytes.data()), 838 Bytes.size() / 4)) 839 OS << format(" %08" PRIX32, D); 840 } else { 841 for (unsigned char B : Bytes) 842 OS << format(" %02" PRIX8, B); 843 } 844 845 if (!Annot.empty()) 846 OS << " // " << Annot; 847 } 848 }; 849 AMDGCNPrettyPrinter AMDGCNPrettyPrinterInst; 850 851 class BPFPrettyPrinter : public PrettyPrinter { 852 public: 853 void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes, 854 object::SectionedAddress Address, raw_ostream &OS, 855 StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP, 856 StringRef ObjectFilename, 857 std::vector<RelocationRef> *Rels) override { 858 if (SP && (PrintSource || PrintLines)) 859 SP->printSourceLine(OS, Address, ObjectFilename); 860 if (!NoLeadingAddr) 861 OS << format("%8" PRId64 ":", Address.Address / 8); 862 if (!NoShowRawInsn) { 863 OS << "\t"; 864 dumpBytes(Bytes, OS); 865 } 866 if (MI) 867 IP.printInst(MI, OS, "", STI); 868 else 869 OS << "\t<unknown>"; 870 } 871 }; 872 BPFPrettyPrinter BPFPrettyPrinterInst; 873 874 PrettyPrinter &selectPrettyPrinter(Triple const &Triple) { 875 switch(Triple.getArch()) { 876 default: 877 return PrettyPrinterInst; 878 case Triple::hexagon: 879 return HexagonPrettyPrinterInst; 880 case Triple::amdgcn: 881 return AMDGCNPrettyPrinterInst; 882 case Triple::bpfel: 883 case Triple::bpfeb: 884 return BPFPrettyPrinterInst; 885 } 886 } 887 } 888 889 static uint8_t getElfSymbolType(const ObjectFile *Obj, const SymbolRef &Sym) { 890 assert(Obj->isELF()); 891 if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(Obj)) 892 return Elf32LEObj->getSymbol(Sym.getRawDataRefImpl())->getType(); 893 if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(Obj)) 894 return Elf64LEObj->getSymbol(Sym.getRawDataRefImpl())->getType(); 895 if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(Obj)) 896 return Elf32BEObj->getSymbol(Sym.getRawDataRefImpl())->getType(); 897 if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(Obj)) 898 return Elf64BEObj->getSymbol(Sym.getRawDataRefImpl())->getType(); 899 llvm_unreachable("Unsupported binary format"); 900 } 901 902 template <class ELFT> static void 903 addDynamicElfSymbols(const ELFObjectFile<ELFT> *Obj, 904 std::map<SectionRef, SectionSymbolsTy> &AllSymbols) { 905 for (auto Symbol : Obj->getDynamicSymbolIterators()) { 906 uint8_t SymbolType = Symbol.getELFType(); 907 if (SymbolType == ELF::STT_SECTION) 908 continue; 909 910 uint64_t Address = unwrapOrError(Symbol.getAddress(), Obj->getFileName()); 911 // ELFSymbolRef::getAddress() returns size instead of value for common 912 // symbols which is not desirable for disassembly output. Overriding. 913 if (SymbolType == ELF::STT_COMMON) 914 Address = Obj->getSymbol(Symbol.getRawDataRefImpl())->st_value; 915 916 StringRef Name = unwrapOrError(Symbol.getName(), Obj->getFileName()); 917 if (Name.empty()) 918 continue; 919 920 section_iterator SecI = 921 unwrapOrError(Symbol.getSection(), Obj->getFileName()); 922 if (SecI == Obj->section_end()) 923 continue; 924 925 AllSymbols[*SecI].emplace_back(Address, Name, SymbolType); 926 } 927 } 928 929 static void 930 addDynamicElfSymbols(const ObjectFile *Obj, 931 std::map<SectionRef, SectionSymbolsTy> &AllSymbols) { 932 assert(Obj->isELF()); 933 if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(Obj)) 934 addDynamicElfSymbols(Elf32LEObj, AllSymbols); 935 else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(Obj)) 936 addDynamicElfSymbols(Elf64LEObj, AllSymbols); 937 else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(Obj)) 938 addDynamicElfSymbols(Elf32BEObj, AllSymbols); 939 else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(Obj)) 940 addDynamicElfSymbols(Elf64BEObj, AllSymbols); 941 else 942 llvm_unreachable("Unsupported binary format"); 943 } 944 945 static void addPltEntries(const ObjectFile *Obj, 946 std::map<SectionRef, SectionSymbolsTy> &AllSymbols, 947 StringSaver &Saver) { 948 Optional<SectionRef> Plt = None; 949 for (const SectionRef &Section : Obj->sections()) { 950 Expected<StringRef> SecNameOrErr = Section.getName(); 951 if (!SecNameOrErr) { 952 consumeError(SecNameOrErr.takeError()); 953 continue; 954 } 955 if (*SecNameOrErr == ".plt") 956 Plt = Section; 957 } 958 if (!Plt) 959 return; 960 if (auto *ElfObj = dyn_cast<ELFObjectFileBase>(Obj)) { 961 for (auto PltEntry : ElfObj->getPltAddresses()) { 962 SymbolRef Symbol(PltEntry.first, ElfObj); 963 uint8_t SymbolType = getElfSymbolType(Obj, Symbol); 964 965 StringRef Name = unwrapOrError(Symbol.getName(), Obj->getFileName()); 966 if (!Name.empty()) 967 AllSymbols[*Plt].emplace_back( 968 PltEntry.second, Saver.save((Name + "@plt").str()), SymbolType); 969 } 970 } 971 } 972 973 // Normally the disassembly output will skip blocks of zeroes. This function 974 // returns the number of zero bytes that can be skipped when dumping the 975 // disassembly of the instructions in Buf. 976 static size_t countSkippableZeroBytes(ArrayRef<uint8_t> Buf) { 977 // Find the number of leading zeroes. 978 size_t N = 0; 979 while (N < Buf.size() && !Buf[N]) 980 ++N; 981 982 // We may want to skip blocks of zero bytes, but unless we see 983 // at least 8 of them in a row. 984 if (N < 8) 985 return 0; 986 987 // We skip zeroes in multiples of 4 because do not want to truncate an 988 // instruction if it starts with a zero byte. 989 return N & ~0x3; 990 } 991 992 // Returns a map from sections to their relocations. 993 static std::map<SectionRef, std::vector<RelocationRef>> 994 getRelocsMap(object::ObjectFile const &Obj) { 995 std::map<SectionRef, std::vector<RelocationRef>> Ret; 996 uint64_t I = (uint64_t)-1; 997 for (SectionRef Sec : Obj.sections()) { 998 ++I; 999 Expected<section_iterator> RelocatedOrErr = Sec.getRelocatedSection(); 1000 if (!RelocatedOrErr) 1001 reportError(Obj.getFileName(), 1002 "section (" + Twine(I) + 1003 "): failed to get a relocated section: " + 1004 toString(RelocatedOrErr.takeError())); 1005 1006 section_iterator Relocated = *RelocatedOrErr; 1007 if (Relocated == Obj.section_end() || !checkSectionFilter(*Relocated).Keep) 1008 continue; 1009 std::vector<RelocationRef> &V = Ret[*Relocated]; 1010 for (const RelocationRef &R : Sec.relocations()) 1011 V.push_back(R); 1012 // Sort relocations by address. 1013 llvm::stable_sort(V, isRelocAddressLess); 1014 } 1015 return Ret; 1016 } 1017 1018 // Used for --adjust-vma to check if address should be adjusted by the 1019 // specified value for a given section. 1020 // For ELF we do not adjust non-allocatable sections like debug ones, 1021 // because they are not loadable. 1022 // TODO: implement for other file formats. 1023 static bool shouldAdjustVA(const SectionRef &Section) { 1024 const ObjectFile *Obj = Section.getObject(); 1025 if (isa<object::ELFObjectFileBase>(Obj)) 1026 return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC; 1027 return false; 1028 } 1029 1030 1031 typedef std::pair<uint64_t, char> MappingSymbolPair; 1032 static char getMappingSymbolKind(ArrayRef<MappingSymbolPair> MappingSymbols, 1033 uint64_t Address) { 1034 auto It = 1035 partition_point(MappingSymbols, [Address](const MappingSymbolPair &Val) { 1036 return Val.first <= Address; 1037 }); 1038 // Return zero for any address before the first mapping symbol; this means 1039 // we should use the default disassembly mode, depending on the target. 1040 if (It == MappingSymbols.begin()) 1041 return '\x00'; 1042 return (It - 1)->second; 1043 } 1044 1045 static uint64_t 1046 dumpARMELFData(uint64_t SectionAddr, uint64_t Index, uint64_t End, 1047 const ObjectFile *Obj, ArrayRef<uint8_t> Bytes, 1048 ArrayRef<MappingSymbolPair> MappingSymbols) { 1049 support::endianness Endian = 1050 Obj->isLittleEndian() ? support::little : support::big; 1051 while (Index < End) { 1052 outs() << format("%8" PRIx64 ":", SectionAddr + Index); 1053 outs() << "\t"; 1054 if (Index + 4 <= End) { 1055 dumpBytes(Bytes.slice(Index, 4), outs()); 1056 outs() << "\t.word\t" 1057 << format_hex( 1058 support::endian::read32(Bytes.data() + Index, Endian), 10); 1059 Index += 4; 1060 } else if (Index + 2 <= End) { 1061 dumpBytes(Bytes.slice(Index, 2), outs()); 1062 outs() << "\t\t.short\t" 1063 << format_hex( 1064 support::endian::read16(Bytes.data() + Index, Endian), 6); 1065 Index += 2; 1066 } else { 1067 dumpBytes(Bytes.slice(Index, 1), outs()); 1068 outs() << "\t\t.byte\t" << format_hex(Bytes[0], 4); 1069 ++Index; 1070 } 1071 outs() << "\n"; 1072 if (getMappingSymbolKind(MappingSymbols, Index) != 'd') 1073 break; 1074 } 1075 return Index; 1076 } 1077 1078 static void dumpELFData(uint64_t SectionAddr, uint64_t Index, uint64_t End, 1079 ArrayRef<uint8_t> Bytes) { 1080 // print out data up to 8 bytes at a time in hex and ascii 1081 uint8_t AsciiData[9] = {'\0'}; 1082 uint8_t Byte; 1083 int NumBytes = 0; 1084 1085 for (; Index < End; ++Index) { 1086 if (NumBytes == 0) 1087 outs() << format("%8" PRIx64 ":", SectionAddr + Index); 1088 Byte = Bytes.slice(Index)[0]; 1089 outs() << format(" %02x", Byte); 1090 AsciiData[NumBytes] = isPrint(Byte) ? Byte : '.'; 1091 1092 uint8_t IndentOffset = 0; 1093 NumBytes++; 1094 if (Index == End - 1 || NumBytes > 8) { 1095 // Indent the space for less than 8 bytes data. 1096 // 2 spaces for byte and one for space between bytes 1097 IndentOffset = 3 * (8 - NumBytes); 1098 for (int Excess = NumBytes; Excess < 8; Excess++) 1099 AsciiData[Excess] = '\0'; 1100 NumBytes = 8; 1101 } 1102 if (NumBytes == 8) { 1103 AsciiData[8] = '\0'; 1104 outs() << std::string(IndentOffset, ' ') << " "; 1105 outs() << reinterpret_cast<char *>(AsciiData); 1106 outs() << '\n'; 1107 NumBytes = 0; 1108 } 1109 } 1110 } 1111 1112 static void disassembleObject(const Target *TheTarget, const ObjectFile *Obj, 1113 MCContext &Ctx, MCDisassembler *PrimaryDisAsm, 1114 MCDisassembler *SecondaryDisAsm, 1115 const MCInstrAnalysis *MIA, MCInstPrinter *IP, 1116 const MCSubtargetInfo *PrimarySTI, 1117 const MCSubtargetInfo *SecondarySTI, 1118 PrettyPrinter &PIP, 1119 SourcePrinter &SP, bool InlineRelocs) { 1120 const MCSubtargetInfo *STI = PrimarySTI; 1121 MCDisassembler *DisAsm = PrimaryDisAsm; 1122 bool PrimaryIsThumb = false; 1123 if (isArmElf(Obj)) 1124 PrimaryIsThumb = STI->checkFeatures("+thumb-mode"); 1125 1126 std::map<SectionRef, std::vector<RelocationRef>> RelocMap; 1127 if (InlineRelocs) 1128 RelocMap = getRelocsMap(*Obj); 1129 bool Is64Bits = Obj->getBytesInAddress() > 4; 1130 1131 // Create a mapping from virtual address to symbol name. This is used to 1132 // pretty print the symbols while disassembling. 1133 std::map<SectionRef, SectionSymbolsTy> AllSymbols; 1134 SectionSymbolsTy AbsoluteSymbols; 1135 const StringRef FileName = Obj->getFileName(); 1136 for (const SymbolRef &Symbol : Obj->symbols()) { 1137 uint64_t Address = unwrapOrError(Symbol.getAddress(), FileName); 1138 1139 StringRef Name = unwrapOrError(Symbol.getName(), FileName); 1140 if (Name.empty()) 1141 continue; 1142 1143 uint8_t SymbolType = ELF::STT_NOTYPE; 1144 if (Obj->isELF()) { 1145 SymbolType = getElfSymbolType(Obj, Symbol); 1146 if (SymbolType == ELF::STT_SECTION) 1147 continue; 1148 } 1149 1150 section_iterator SecI = unwrapOrError(Symbol.getSection(), FileName); 1151 if (SecI != Obj->section_end()) 1152 AllSymbols[*SecI].emplace_back(Address, Name, SymbolType); 1153 else 1154 AbsoluteSymbols.emplace_back(Address, Name, SymbolType); 1155 } 1156 if (AllSymbols.empty() && Obj->isELF()) 1157 addDynamicElfSymbols(Obj, AllSymbols); 1158 1159 BumpPtrAllocator A; 1160 StringSaver Saver(A); 1161 addPltEntries(Obj, AllSymbols, Saver); 1162 1163 // Create a mapping from virtual address to section. 1164 std::vector<std::pair<uint64_t, SectionRef>> SectionAddresses; 1165 for (SectionRef Sec : Obj->sections()) 1166 SectionAddresses.emplace_back(Sec.getAddress(), Sec); 1167 array_pod_sort(SectionAddresses.begin(), SectionAddresses.end()); 1168 1169 // Linked executables (.exe and .dll files) typically don't include a real 1170 // symbol table but they might contain an export table. 1171 if (const auto *COFFObj = dyn_cast<COFFObjectFile>(Obj)) { 1172 for (const auto &ExportEntry : COFFObj->export_directories()) { 1173 StringRef Name; 1174 if (std::error_code EC = ExportEntry.getSymbolName(Name)) 1175 reportError(errorCodeToError(EC), Obj->getFileName()); 1176 if (Name.empty()) 1177 continue; 1178 1179 uint32_t RVA; 1180 if (std::error_code EC = ExportEntry.getExportRVA(RVA)) 1181 reportError(errorCodeToError(EC), Obj->getFileName()); 1182 1183 uint64_t VA = COFFObj->getImageBase() + RVA; 1184 auto Sec = partition_point( 1185 SectionAddresses, [VA](const std::pair<uint64_t, SectionRef> &O) { 1186 return O.first <= VA; 1187 }); 1188 if (Sec != SectionAddresses.begin()) { 1189 --Sec; 1190 AllSymbols[Sec->second].emplace_back(VA, Name, ELF::STT_NOTYPE); 1191 } else 1192 AbsoluteSymbols.emplace_back(VA, Name, ELF::STT_NOTYPE); 1193 } 1194 } 1195 1196 // Sort all the symbols, this allows us to use a simple binary search to find 1197 // a symbol near an address. 1198 StringSet<> FoundDisasmFuncsSet; 1199 for (std::pair<const SectionRef, SectionSymbolsTy> &SecSyms : AllSymbols) 1200 array_pod_sort(SecSyms.second.begin(), SecSyms.second.end()); 1201 array_pod_sort(AbsoluteSymbols.begin(), AbsoluteSymbols.end()); 1202 1203 for (const SectionRef &Section : ToolSectionFilter(*Obj)) { 1204 if (FilterSections.empty() && !DisassembleAll && 1205 (!Section.isText() || Section.isVirtual())) 1206 continue; 1207 1208 uint64_t SectionAddr = Section.getAddress(); 1209 uint64_t SectSize = Section.getSize(); 1210 if (!SectSize) 1211 continue; 1212 1213 // Get the list of all the symbols in this section. 1214 SectionSymbolsTy &Symbols = AllSymbols[Section]; 1215 std::vector<MappingSymbolPair> MappingSymbols; 1216 if (hasMappingSymbols(Obj)) { 1217 for (const auto &Symb : Symbols) { 1218 uint64_t Address = std::get<0>(Symb); 1219 StringRef Name = std::get<1>(Symb); 1220 if (Name.startswith("$d")) 1221 MappingSymbols.emplace_back(Address - SectionAddr, 'd'); 1222 if (Name.startswith("$x")) 1223 MappingSymbols.emplace_back(Address - SectionAddr, 'x'); 1224 if (Name.startswith("$a")) 1225 MappingSymbols.emplace_back(Address - SectionAddr, 'a'); 1226 if (Name.startswith("$t")) 1227 MappingSymbols.emplace_back(Address - SectionAddr, 't'); 1228 } 1229 } 1230 1231 llvm::sort(MappingSymbols); 1232 1233 if (Obj->isELF() && Obj->getArch() == Triple::amdgcn) { 1234 // AMDGPU disassembler uses symbolizer for printing labels 1235 std::unique_ptr<MCRelocationInfo> RelInfo( 1236 TheTarget->createMCRelocationInfo(TripleName, Ctx)); 1237 if (RelInfo) { 1238 std::unique_ptr<MCSymbolizer> Symbolizer( 1239 TheTarget->createMCSymbolizer( 1240 TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo))); 1241 DisAsm->setSymbolizer(std::move(Symbolizer)); 1242 } 1243 } 1244 1245 StringRef SegmentName = ""; 1246 if (const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(Obj)) { 1247 DataRefImpl DR = Section.getRawDataRefImpl(); 1248 SegmentName = MachO->getSectionFinalSegmentName(DR); 1249 } 1250 1251 StringRef SectionName = unwrapOrError(Section.getName(), Obj->getFileName()); 1252 // If the section has no symbol at the start, just insert a dummy one. 1253 if (Symbols.empty() || std::get<0>(Symbols[0]) != 0) { 1254 Symbols.insert( 1255 Symbols.begin(), 1256 std::make_tuple(SectionAddr, SectionName, 1257 Section.isText() ? ELF::STT_FUNC : ELF::STT_OBJECT)); 1258 } 1259 1260 SmallString<40> Comments; 1261 raw_svector_ostream CommentStream(Comments); 1262 1263 ArrayRef<uint8_t> Bytes = arrayRefFromStringRef( 1264 unwrapOrError(Section.getContents(), Obj->getFileName())); 1265 1266 uint64_t VMAAdjustment = 0; 1267 if (shouldAdjustVA(Section)) 1268 VMAAdjustment = AdjustVMA; 1269 1270 uint64_t Size; 1271 uint64_t Index; 1272 bool PrintedSection = false; 1273 std::vector<RelocationRef> Rels = RelocMap[Section]; 1274 std::vector<RelocationRef>::const_iterator RelCur = Rels.begin(); 1275 std::vector<RelocationRef>::const_iterator RelEnd = Rels.end(); 1276 // Disassemble symbol by symbol. 1277 for (unsigned SI = 0, SE = Symbols.size(); SI != SE; ++SI) { 1278 std::string SymbolName = std::get<1>(Symbols[SI]).str(); 1279 if (Demangle) 1280 SymbolName = demangle(SymbolName); 1281 1282 // Skip if --disassemble-functions is not empty and the symbol is not in 1283 // the list. 1284 if (!DisasmFuncsSet.empty() && !DisasmFuncsSet.count(SymbolName)) 1285 continue; 1286 1287 uint64_t Start = std::get<0>(Symbols[SI]); 1288 if (Start < SectionAddr || StopAddress <= Start) 1289 continue; 1290 else 1291 FoundDisasmFuncsSet.insert(SymbolName); 1292 1293 // The end is the section end, the beginning of the next symbol, or 1294 // --stop-address. 1295 uint64_t End = std::min<uint64_t>(SectionAddr + SectSize, StopAddress); 1296 if (SI + 1 < SE) 1297 End = std::min(End, std::get<0>(Symbols[SI + 1])); 1298 if (Start >= End || End <= StartAddress) 1299 continue; 1300 Start -= SectionAddr; 1301 End -= SectionAddr; 1302 1303 if (!PrintedSection) { 1304 PrintedSection = true; 1305 outs() << "\nDisassembly of section "; 1306 if (!SegmentName.empty()) 1307 outs() << SegmentName << ","; 1308 outs() << SectionName << ":\n"; 1309 } 1310 1311 if (Obj->isELF() && Obj->getArch() == Triple::amdgcn) { 1312 if (std::get<2>(Symbols[SI]) == ELF::STT_AMDGPU_HSA_KERNEL) { 1313 // skip amd_kernel_code_t at the begining of kernel symbol (256 bytes) 1314 Start += 256; 1315 } 1316 if (SI == SE - 1 || 1317 std::get<2>(Symbols[SI + 1]) == ELF::STT_AMDGPU_HSA_KERNEL) { 1318 // cut trailing zeroes at the end of kernel 1319 // cut up to 256 bytes 1320 const uint64_t EndAlign = 256; 1321 const auto Limit = End - (std::min)(EndAlign, End - Start); 1322 while (End > Limit && 1323 *reinterpret_cast<const support::ulittle32_t*>(&Bytes[End - 4]) == 0) 1324 End -= 4; 1325 } 1326 } 1327 1328 outs() << '\n'; 1329 if (!NoLeadingAddr) 1330 outs() << format(Is64Bits ? "%016" PRIx64 " " : "%08" PRIx64 " ", 1331 SectionAddr + Start + VMAAdjustment); 1332 1333 outs() << SymbolName << ":\n"; 1334 1335 // Don't print raw contents of a virtual section. A virtual section 1336 // doesn't have any contents in the file. 1337 if (Section.isVirtual()) { 1338 outs() << "...\n"; 1339 continue; 1340 } 1341 1342 #ifndef NDEBUG 1343 raw_ostream &DebugOut = DebugFlag ? dbgs() : nulls(); 1344 #else 1345 raw_ostream &DebugOut = nulls(); 1346 #endif 1347 1348 // Some targets (like WebAssembly) have a special prelude at the start 1349 // of each symbol. 1350 DisAsm->onSymbolStart(SymbolName, Size, Bytes.slice(Start, End - Start), 1351 SectionAddr + Start, DebugOut, CommentStream); 1352 Start += Size; 1353 1354 Index = Start; 1355 if (SectionAddr < StartAddress) 1356 Index = std::max<uint64_t>(Index, StartAddress - SectionAddr); 1357 1358 // If there is a data/common symbol inside an ELF text section and we are 1359 // only disassembling text (applicable all architectures), we are in a 1360 // situation where we must print the data and not disassemble it. 1361 if (Obj->isELF() && !DisassembleAll && Section.isText()) { 1362 uint8_t SymTy = std::get<2>(Symbols[SI]); 1363 if (SymTy == ELF::STT_OBJECT || SymTy == ELF::STT_COMMON) { 1364 dumpELFData(SectionAddr, Index, End, Bytes); 1365 Index = End; 1366 } 1367 } 1368 1369 bool CheckARMELFData = hasMappingSymbols(Obj) && 1370 std::get<2>(Symbols[SI]) != ELF::STT_OBJECT && 1371 !DisassembleAll; 1372 while (Index < End) { 1373 // ARM and AArch64 ELF binaries can interleave data and text in the 1374 // same section. We rely on the markers introduced to understand what 1375 // we need to dump. If the data marker is within a function, it is 1376 // denoted as a word/short etc. 1377 if (CheckARMELFData && 1378 getMappingSymbolKind(MappingSymbols, Index) == 'd') { 1379 Index = dumpARMELFData(SectionAddr, Index, End, Obj, Bytes, 1380 MappingSymbols); 1381 continue; 1382 } 1383 1384 // When -z or --disassemble-zeroes are given we always dissasemble 1385 // them. Otherwise we might want to skip zero bytes we see. 1386 if (!DisassembleZeroes) { 1387 uint64_t MaxOffset = End - Index; 1388 // For -reloc: print zero blocks patched by relocations, so that 1389 // relocations can be shown in the dump. 1390 if (RelCur != RelEnd) 1391 MaxOffset = RelCur->getOffset() - Index; 1392 1393 if (size_t N = 1394 countSkippableZeroBytes(Bytes.slice(Index, MaxOffset))) { 1395 outs() << "\t\t..." << '\n'; 1396 Index += N; 1397 continue; 1398 } 1399 } 1400 1401 if (SecondarySTI) { 1402 if (getMappingSymbolKind(MappingSymbols, Index) == 'a') { 1403 STI = PrimaryIsThumb ? SecondarySTI : PrimarySTI; 1404 DisAsm = PrimaryIsThumb ? SecondaryDisAsm : PrimaryDisAsm; 1405 } else if (getMappingSymbolKind(MappingSymbols, Index) == 't') { 1406 STI = PrimaryIsThumb ? PrimarySTI : SecondarySTI; 1407 DisAsm = PrimaryIsThumb ? PrimaryDisAsm : SecondaryDisAsm; 1408 } 1409 } 1410 1411 // Disassemble a real instruction or a data when disassemble all is 1412 // provided 1413 MCInst Inst; 1414 bool Disassembled = DisAsm->getInstruction( 1415 Inst, Size, Bytes.slice(Index), SectionAddr + Index, DebugOut, 1416 CommentStream); 1417 if (Size == 0) 1418 Size = 1; 1419 1420 PIP.printInst(*IP, Disassembled ? &Inst : nullptr, 1421 Bytes.slice(Index, Size), 1422 {SectionAddr + Index + VMAAdjustment, Section.getIndex()}, 1423 outs(), "", *STI, &SP, Obj->getFileName(), &Rels); 1424 outs() << CommentStream.str(); 1425 Comments.clear(); 1426 1427 // Try to resolve the target of a call, tail call, etc. to a specific 1428 // symbol. 1429 if (MIA && (MIA->isCall(Inst) || MIA->isUnconditionalBranch(Inst) || 1430 MIA->isConditionalBranch(Inst))) { 1431 uint64_t Target; 1432 if (MIA->evaluateBranch(Inst, SectionAddr + Index, Size, Target)) { 1433 // In a relocatable object, the target's section must reside in 1434 // the same section as the call instruction or it is accessed 1435 // through a relocation. 1436 // 1437 // In a non-relocatable object, the target may be in any section. 1438 // 1439 // N.B. We don't walk the relocations in the relocatable case yet. 1440 auto *TargetSectionSymbols = &Symbols; 1441 if (!Obj->isRelocatableObject()) { 1442 auto It = partition_point( 1443 SectionAddresses, 1444 [=](const std::pair<uint64_t, SectionRef> &O) { 1445 return O.first <= Target; 1446 }); 1447 if (It != SectionAddresses.begin()) { 1448 --It; 1449 TargetSectionSymbols = &AllSymbols[It->second]; 1450 } else { 1451 TargetSectionSymbols = &AbsoluteSymbols; 1452 } 1453 } 1454 1455 // Find the last symbol in the section whose offset is less than 1456 // or equal to the target. If there isn't a section that contains 1457 // the target, find the nearest preceding absolute symbol. 1458 auto TargetSym = partition_point( 1459 *TargetSectionSymbols, 1460 [=](const std::tuple<uint64_t, StringRef, uint8_t> &O) { 1461 return std::get<0>(O) <= Target; 1462 }); 1463 if (TargetSym == TargetSectionSymbols->begin()) { 1464 TargetSectionSymbols = &AbsoluteSymbols; 1465 TargetSym = partition_point( 1466 AbsoluteSymbols, 1467 [=](const std::tuple<uint64_t, StringRef, uint8_t> &O) { 1468 return std::get<0>(O) <= Target; 1469 }); 1470 } 1471 if (TargetSym != TargetSectionSymbols->begin()) { 1472 --TargetSym; 1473 uint64_t TargetAddress = std::get<0>(*TargetSym); 1474 StringRef TargetName = std::get<1>(*TargetSym); 1475 outs() << " <" << TargetName; 1476 uint64_t Disp = Target - TargetAddress; 1477 if (Disp) 1478 outs() << "+0x" << Twine::utohexstr(Disp); 1479 outs() << '>'; 1480 } 1481 } 1482 } 1483 outs() << "\n"; 1484 1485 // Hexagon does this in pretty printer 1486 if (Obj->getArch() != Triple::hexagon) { 1487 // Print relocation for instruction. 1488 while (RelCur != RelEnd) { 1489 uint64_t Offset = RelCur->getOffset(); 1490 // If this relocation is hidden, skip it. 1491 if (getHidden(*RelCur) || SectionAddr + Offset < StartAddress) { 1492 ++RelCur; 1493 continue; 1494 } 1495 1496 // Stop when RelCur's offset is past the current instruction. 1497 if (Offset >= Index + Size) 1498 break; 1499 1500 // When --adjust-vma is used, update the address printed. 1501 if (RelCur->getSymbol() != Obj->symbol_end()) { 1502 Expected<section_iterator> SymSI = 1503 RelCur->getSymbol()->getSection(); 1504 if (SymSI && *SymSI != Obj->section_end() && 1505 shouldAdjustVA(**SymSI)) 1506 Offset += AdjustVMA; 1507 } 1508 1509 printRelocation(Obj->getFileName(), *RelCur, SectionAddr + Offset, 1510 Is64Bits); 1511 ++RelCur; 1512 } 1513 } 1514 1515 Index += Size; 1516 } 1517 } 1518 } 1519 StringSet<> MissingDisasmFuncsSet = 1520 set_difference(DisasmFuncsSet, FoundDisasmFuncsSet); 1521 for (StringRef MissingDisasmFunc : MissingDisasmFuncsSet.keys()) 1522 reportWarning("failed to disassemble missing function " + MissingDisasmFunc, 1523 FileName); 1524 } 1525 1526 static void disassembleObject(const ObjectFile *Obj, bool InlineRelocs) { 1527 const Target *TheTarget = getTarget(Obj); 1528 1529 // Package up features to be passed to target/subtarget 1530 SubtargetFeatures Features = Obj->getFeatures(); 1531 if (!MAttrs.empty()) 1532 for (unsigned I = 0; I != MAttrs.size(); ++I) 1533 Features.AddFeature(MAttrs[I]); 1534 1535 std::unique_ptr<const MCRegisterInfo> MRI( 1536 TheTarget->createMCRegInfo(TripleName)); 1537 if (!MRI) 1538 reportError(Obj->getFileName(), 1539 "no register info for target " + TripleName); 1540 1541 // Set up disassembler. 1542 std::unique_ptr<const MCAsmInfo> AsmInfo( 1543 TheTarget->createMCAsmInfo(*MRI, TripleName)); 1544 if (!AsmInfo) 1545 reportError(Obj->getFileName(), 1546 "no assembly info for target " + TripleName); 1547 std::unique_ptr<const MCSubtargetInfo> STI( 1548 TheTarget->createMCSubtargetInfo(TripleName, MCPU, Features.getString())); 1549 if (!STI) 1550 reportError(Obj->getFileName(), 1551 "no subtarget info for target " + TripleName); 1552 std::unique_ptr<const MCInstrInfo> MII(TheTarget->createMCInstrInfo()); 1553 if (!MII) 1554 reportError(Obj->getFileName(), 1555 "no instruction info for target " + TripleName); 1556 MCObjectFileInfo MOFI; 1557 MCContext Ctx(AsmInfo.get(), MRI.get(), &MOFI); 1558 // FIXME: for now initialize MCObjectFileInfo with default values 1559 MOFI.InitMCObjectFileInfo(Triple(TripleName), false, Ctx); 1560 1561 std::unique_ptr<MCDisassembler> DisAsm( 1562 TheTarget->createMCDisassembler(*STI, Ctx)); 1563 if (!DisAsm) 1564 reportError(Obj->getFileName(), "no disassembler for target " + TripleName); 1565 1566 // If we have an ARM object file, we need a second disassembler, because 1567 // ARM CPUs have two different instruction sets: ARM mode, and Thumb mode. 1568 // We use mapping symbols to switch between the two assemblers, where 1569 // appropriate. 1570 std::unique_ptr<MCDisassembler> SecondaryDisAsm; 1571 std::unique_ptr<const MCSubtargetInfo> SecondarySTI; 1572 if (isArmElf(Obj) && !STI->checkFeatures("+mclass")) { 1573 if (STI->checkFeatures("+thumb-mode")) 1574 Features.AddFeature("-thumb-mode"); 1575 else 1576 Features.AddFeature("+thumb-mode"); 1577 SecondarySTI.reset(TheTarget->createMCSubtargetInfo(TripleName, MCPU, 1578 Features.getString())); 1579 SecondaryDisAsm.reset(TheTarget->createMCDisassembler(*SecondarySTI, Ctx)); 1580 } 1581 1582 std::unique_ptr<const MCInstrAnalysis> MIA( 1583 TheTarget->createMCInstrAnalysis(MII.get())); 1584 1585 int AsmPrinterVariant = AsmInfo->getAssemblerDialect(); 1586 std::unique_ptr<MCInstPrinter> IP(TheTarget->createMCInstPrinter( 1587 Triple(TripleName), AsmPrinterVariant, *AsmInfo, *MII, *MRI)); 1588 if (!IP) 1589 reportError(Obj->getFileName(), 1590 "no instruction printer for target " + TripleName); 1591 IP->setPrintImmHex(PrintImmHex); 1592 1593 PrettyPrinter &PIP = selectPrettyPrinter(Triple(TripleName)); 1594 SourcePrinter SP(Obj, TheTarget->getName()); 1595 1596 for (StringRef Opt : DisassemblerOptions) 1597 if (!IP->applyTargetSpecificCLOption(Opt)) 1598 reportError(Obj->getFileName(), 1599 "Unrecognized disassembler option: " + Opt); 1600 1601 disassembleObject(TheTarget, Obj, Ctx, DisAsm.get(), SecondaryDisAsm.get(), 1602 MIA.get(), IP.get(), STI.get(), SecondarySTI.get(), PIP, 1603 SP, InlineRelocs); 1604 } 1605 1606 void printRelocations(const ObjectFile *Obj) { 1607 StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 : 1608 "%08" PRIx64; 1609 // Regular objdump doesn't print relocations in non-relocatable object 1610 // files. 1611 if (!Obj->isRelocatableObject()) 1612 return; 1613 1614 // Build a mapping from relocation target to a vector of relocation 1615 // sections. Usually, there is an only one relocation section for 1616 // each relocated section. 1617 MapVector<SectionRef, std::vector<SectionRef>> SecToRelSec; 1618 uint64_t Ndx; 1619 for (const SectionRef &Section : ToolSectionFilter(*Obj, &Ndx)) { 1620 if (Section.relocation_begin() == Section.relocation_end()) 1621 continue; 1622 Expected<section_iterator> SecOrErr = Section.getRelocatedSection(); 1623 if (!SecOrErr) 1624 reportError(Obj->getFileName(), 1625 "section (" + Twine(Ndx) + 1626 "): unable to get a relocation target: " + 1627 toString(SecOrErr.takeError())); 1628 SecToRelSec[**SecOrErr].push_back(Section); 1629 } 1630 1631 for (std::pair<SectionRef, std::vector<SectionRef>> &P : SecToRelSec) { 1632 StringRef SecName = unwrapOrError(P.first.getName(), Obj->getFileName()); 1633 outs() << "RELOCATION RECORDS FOR [" << SecName << "]:\n"; 1634 1635 for (SectionRef Section : P.second) { 1636 for (const RelocationRef &Reloc : Section.relocations()) { 1637 uint64_t Address = Reloc.getOffset(); 1638 SmallString<32> RelocName; 1639 SmallString<32> ValueStr; 1640 if (Address < StartAddress || Address > StopAddress || getHidden(Reloc)) 1641 continue; 1642 Reloc.getTypeName(RelocName); 1643 if (Error E = getRelocationValueString(Reloc, ValueStr)) 1644 reportError(std::move(E), Obj->getFileName()); 1645 1646 outs() << format(Fmt.data(), Address) << " " << RelocName << " " 1647 << ValueStr << "\n"; 1648 } 1649 } 1650 outs() << "\n"; 1651 } 1652 } 1653 1654 void printDynamicRelocations(const ObjectFile *Obj) { 1655 // For the moment, this option is for ELF only 1656 if (!Obj->isELF()) 1657 return; 1658 1659 const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj); 1660 if (!Elf || Elf->getEType() != ELF::ET_DYN) { 1661 reportError(Obj->getFileName(), "not a dynamic object"); 1662 return; 1663 } 1664 1665 std::vector<SectionRef> DynRelSec = Obj->dynamic_relocation_sections(); 1666 if (DynRelSec.empty()) 1667 return; 1668 1669 outs() << "DYNAMIC RELOCATION RECORDS\n"; 1670 StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64; 1671 for (const SectionRef &Section : DynRelSec) 1672 for (const RelocationRef &Reloc : Section.relocations()) { 1673 uint64_t Address = Reloc.getOffset(); 1674 SmallString<32> RelocName; 1675 SmallString<32> ValueStr; 1676 Reloc.getTypeName(RelocName); 1677 if (Error E = getRelocationValueString(Reloc, ValueStr)) 1678 reportError(std::move(E), Obj->getFileName()); 1679 outs() << format(Fmt.data(), Address) << " " << RelocName << " " 1680 << ValueStr << "\n"; 1681 } 1682 } 1683 1684 // Returns true if we need to show LMA column when dumping section headers. We 1685 // show it only when the platform is ELF and either we have at least one section 1686 // whose VMA and LMA are different and/or when --show-lma flag is used. 1687 static bool shouldDisplayLMA(const ObjectFile *Obj) { 1688 if (!Obj->isELF()) 1689 return false; 1690 for (const SectionRef &S : ToolSectionFilter(*Obj)) 1691 if (S.getAddress() != getELFSectionLMA(S)) 1692 return true; 1693 return ShowLMA; 1694 } 1695 1696 static size_t getMaxSectionNameWidth(const ObjectFile *Obj) { 1697 // Default column width for names is 13 even if no names are that long. 1698 size_t MaxWidth = 13; 1699 for (const SectionRef &Section : ToolSectionFilter(*Obj)) { 1700 StringRef Name = unwrapOrError(Section.getName(), Obj->getFileName()); 1701 MaxWidth = std::max(MaxWidth, Name.size()); 1702 } 1703 return MaxWidth; 1704 } 1705 1706 void printSectionHeaders(const ObjectFile *Obj) { 1707 size_t NameWidth = getMaxSectionNameWidth(Obj); 1708 size_t AddressWidth = 2 * Obj->getBytesInAddress(); 1709 bool HasLMAColumn = shouldDisplayLMA(Obj); 1710 if (HasLMAColumn) 1711 outs() << "Sections:\n" 1712 "Idx " 1713 << left_justify("Name", NameWidth) << " Size " 1714 << left_justify("VMA", AddressWidth) << " " 1715 << left_justify("LMA", AddressWidth) << " Type\n"; 1716 else 1717 outs() << "Sections:\n" 1718 "Idx " 1719 << left_justify("Name", NameWidth) << " Size " 1720 << left_justify("VMA", AddressWidth) << " Type\n"; 1721 1722 uint64_t Idx; 1723 for (const SectionRef &Section : ToolSectionFilter(*Obj, &Idx)) { 1724 StringRef Name = unwrapOrError(Section.getName(), Obj->getFileName()); 1725 uint64_t VMA = Section.getAddress(); 1726 if (shouldAdjustVA(Section)) 1727 VMA += AdjustVMA; 1728 1729 uint64_t Size = Section.getSize(); 1730 1731 std::string Type = Section.isText() ? "TEXT" : ""; 1732 if (Section.isData()) 1733 Type += Type.empty() ? "DATA" : " DATA"; 1734 if (Section.isBSS()) 1735 Type += Type.empty() ? "BSS" : " BSS"; 1736 1737 if (HasLMAColumn) 1738 outs() << format("%3" PRIu64 " %-*s %08" PRIx64 " ", Idx, NameWidth, 1739 Name.str().c_str(), Size) 1740 << format_hex_no_prefix(VMA, AddressWidth) << " " 1741 << format_hex_no_prefix(getELFSectionLMA(Section), AddressWidth) 1742 << " " << Type << "\n"; 1743 else 1744 outs() << format("%3" PRIu64 " %-*s %08" PRIx64 " ", Idx, NameWidth, 1745 Name.str().c_str(), Size) 1746 << format_hex_no_prefix(VMA, AddressWidth) << " " << Type << "\n"; 1747 } 1748 outs() << "\n"; 1749 } 1750 1751 void printSectionContents(const ObjectFile *Obj) { 1752 for (const SectionRef &Section : ToolSectionFilter(*Obj)) { 1753 StringRef Name = unwrapOrError(Section.getName(), Obj->getFileName()); 1754 uint64_t BaseAddr = Section.getAddress(); 1755 uint64_t Size = Section.getSize(); 1756 if (!Size) 1757 continue; 1758 1759 outs() << "Contents of section " << Name << ":\n"; 1760 if (Section.isBSS()) { 1761 outs() << format("<skipping contents of bss section at [%04" PRIx64 1762 ", %04" PRIx64 ")>\n", 1763 BaseAddr, BaseAddr + Size); 1764 continue; 1765 } 1766 1767 StringRef Contents = unwrapOrError(Section.getContents(), Obj->getFileName()); 1768 1769 // Dump out the content as hex and printable ascii characters. 1770 for (std::size_t Addr = 0, End = Contents.size(); Addr < End; Addr += 16) { 1771 outs() << format(" %04" PRIx64 " ", BaseAddr + Addr); 1772 // Dump line of hex. 1773 for (std::size_t I = 0; I < 16; ++I) { 1774 if (I != 0 && I % 4 == 0) 1775 outs() << ' '; 1776 if (Addr + I < End) 1777 outs() << hexdigit((Contents[Addr + I] >> 4) & 0xF, true) 1778 << hexdigit(Contents[Addr + I] & 0xF, true); 1779 else 1780 outs() << " "; 1781 } 1782 // Print ascii. 1783 outs() << " "; 1784 for (std::size_t I = 0; I < 16 && Addr + I < End; ++I) { 1785 if (isPrint(static_cast<unsigned char>(Contents[Addr + I]) & 0xFF)) 1786 outs() << Contents[Addr + I]; 1787 else 1788 outs() << "."; 1789 } 1790 outs() << "\n"; 1791 } 1792 } 1793 } 1794 1795 void printSymbolTable(const ObjectFile *O, StringRef ArchiveName, 1796 StringRef ArchitectureName) { 1797 outs() << "SYMBOL TABLE:\n"; 1798 1799 if (const COFFObjectFile *Coff = dyn_cast<const COFFObjectFile>(O)) { 1800 printCOFFSymbolTable(Coff); 1801 return; 1802 } 1803 1804 const StringRef FileName = O->getFileName(); 1805 for (auto I = O->symbol_begin(), E = O->symbol_end(); I != E; ++I) { 1806 const SymbolRef &Symbol = *I; 1807 uint64_t Address = unwrapOrError(Symbol.getAddress(), FileName, ArchiveName, 1808 ArchitectureName); 1809 if ((Address < StartAddress) || (Address > StopAddress)) 1810 continue; 1811 SymbolRef::Type Type = unwrapOrError(Symbol.getType(), FileName, 1812 ArchiveName, ArchitectureName); 1813 uint32_t Flags = Symbol.getFlags(); 1814 section_iterator Section = unwrapOrError(Symbol.getSection(), FileName, 1815 ArchiveName, ArchitectureName); 1816 StringRef Name; 1817 if (Type == SymbolRef::ST_Debug && Section != O->section_end()) { 1818 if (Expected<StringRef> NameOrErr = Section->getName()) 1819 Name = *NameOrErr; 1820 else 1821 consumeError(NameOrErr.takeError()); 1822 1823 } else { 1824 Name = unwrapOrError(Symbol.getName(), FileName, ArchiveName, 1825 ArchitectureName); 1826 } 1827 1828 bool Global = Flags & SymbolRef::SF_Global; 1829 bool Weak = Flags & SymbolRef::SF_Weak; 1830 bool Absolute = Flags & SymbolRef::SF_Absolute; 1831 bool Common = Flags & SymbolRef::SF_Common; 1832 bool Hidden = Flags & SymbolRef::SF_Hidden; 1833 1834 char GlobLoc = ' '; 1835 if (Type != SymbolRef::ST_Unknown) 1836 GlobLoc = Global ? 'g' : 'l'; 1837 char Debug = (Type == SymbolRef::ST_Debug || Type == SymbolRef::ST_File) 1838 ? 'd' : ' '; 1839 char FileFunc = ' '; 1840 if (Type == SymbolRef::ST_File) 1841 FileFunc = 'f'; 1842 else if (Type == SymbolRef::ST_Function) 1843 FileFunc = 'F'; 1844 else if (Type == SymbolRef::ST_Data) 1845 FileFunc = 'O'; 1846 1847 const char *Fmt = O->getBytesInAddress() > 4 ? "%016" PRIx64 : 1848 "%08" PRIx64; 1849 1850 outs() << format(Fmt, Address) << " " 1851 << GlobLoc // Local -> 'l', Global -> 'g', Neither -> ' ' 1852 << (Weak ? 'w' : ' ') // Weak? 1853 << ' ' // Constructor. Not supported yet. 1854 << ' ' // Warning. Not supported yet. 1855 << ' ' // Indirect reference to another symbol. 1856 << Debug // Debugging (d) or dynamic (D) symbol. 1857 << FileFunc // Name of function (F), file (f) or object (O). 1858 << ' '; 1859 if (Absolute) { 1860 outs() << "*ABS*"; 1861 } else if (Common) { 1862 outs() << "*COM*"; 1863 } else if (Section == O->section_end()) { 1864 outs() << "*UND*"; 1865 } else { 1866 if (const MachOObjectFile *MachO = 1867 dyn_cast<const MachOObjectFile>(O)) { 1868 DataRefImpl DR = Section->getRawDataRefImpl(); 1869 StringRef SegmentName = MachO->getSectionFinalSegmentName(DR); 1870 outs() << SegmentName << ","; 1871 } 1872 StringRef SectionName = 1873 unwrapOrError(Section->getName(), O->getFileName()); 1874 outs() << SectionName; 1875 } 1876 1877 if (Common || isa<ELFObjectFileBase>(O)) { 1878 uint64_t Val = 1879 Common ? Symbol.getAlignment() : ELFSymbolRef(Symbol).getSize(); 1880 outs() << format("\t%08" PRIx64, Val); 1881 } 1882 1883 if (isa<ELFObjectFileBase>(O)) { 1884 uint8_t Other = ELFSymbolRef(Symbol).getOther(); 1885 switch (Other) { 1886 case ELF::STV_DEFAULT: 1887 break; 1888 case ELF::STV_INTERNAL: 1889 outs() << " .internal"; 1890 break; 1891 case ELF::STV_HIDDEN: 1892 outs() << " .hidden"; 1893 break; 1894 case ELF::STV_PROTECTED: 1895 outs() << " .protected"; 1896 break; 1897 default: 1898 outs() << format(" 0x%02x", Other); 1899 break; 1900 } 1901 } else if (Hidden) { 1902 outs() << " .hidden"; 1903 } 1904 1905 if (Demangle) 1906 outs() << ' ' << demangle(Name) << '\n'; 1907 else 1908 outs() << ' ' << Name << '\n'; 1909 } 1910 } 1911 1912 static void printUnwindInfo(const ObjectFile *O) { 1913 outs() << "Unwind info:\n\n"; 1914 1915 if (const COFFObjectFile *Coff = dyn_cast<COFFObjectFile>(O)) 1916 printCOFFUnwindInfo(Coff); 1917 else if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(O)) 1918 printMachOUnwindInfo(MachO); 1919 else 1920 // TODO: Extract DWARF dump tool to objdump. 1921 WithColor::error(errs(), ToolName) 1922 << "This operation is only currently supported " 1923 "for COFF and MachO object files.\n"; 1924 } 1925 1926 /// Dump the raw contents of the __clangast section so the output can be piped 1927 /// into llvm-bcanalyzer. 1928 void printRawClangAST(const ObjectFile *Obj) { 1929 if (outs().is_displayed()) { 1930 WithColor::error(errs(), ToolName) 1931 << "The -raw-clang-ast option will dump the raw binary contents of " 1932 "the clang ast section.\n" 1933 "Please redirect the output to a file or another program such as " 1934 "llvm-bcanalyzer.\n"; 1935 return; 1936 } 1937 1938 StringRef ClangASTSectionName("__clangast"); 1939 if (isa<COFFObjectFile>(Obj)) { 1940 ClangASTSectionName = "clangast"; 1941 } 1942 1943 Optional<object::SectionRef> ClangASTSection; 1944 for (auto Sec : ToolSectionFilter(*Obj)) { 1945 StringRef Name; 1946 if (Expected<StringRef> NameOrErr = Sec.getName()) 1947 Name = *NameOrErr; 1948 else 1949 consumeError(NameOrErr.takeError()); 1950 1951 if (Name == ClangASTSectionName) { 1952 ClangASTSection = Sec; 1953 break; 1954 } 1955 } 1956 if (!ClangASTSection) 1957 return; 1958 1959 StringRef ClangASTContents = unwrapOrError( 1960 ClangASTSection.getValue().getContents(), Obj->getFileName()); 1961 outs().write(ClangASTContents.data(), ClangASTContents.size()); 1962 } 1963 1964 static void printFaultMaps(const ObjectFile *Obj) { 1965 StringRef FaultMapSectionName; 1966 1967 if (isa<ELFObjectFileBase>(Obj)) { 1968 FaultMapSectionName = ".llvm_faultmaps"; 1969 } else if (isa<MachOObjectFile>(Obj)) { 1970 FaultMapSectionName = "__llvm_faultmaps"; 1971 } else { 1972 WithColor::error(errs(), ToolName) 1973 << "This operation is only currently supported " 1974 "for ELF and Mach-O executable files.\n"; 1975 return; 1976 } 1977 1978 Optional<object::SectionRef> FaultMapSection; 1979 1980 for (auto Sec : ToolSectionFilter(*Obj)) { 1981 StringRef Name; 1982 if (Expected<StringRef> NameOrErr = Sec.getName()) 1983 Name = *NameOrErr; 1984 else 1985 consumeError(NameOrErr.takeError()); 1986 1987 if (Name == FaultMapSectionName) { 1988 FaultMapSection = Sec; 1989 break; 1990 } 1991 } 1992 1993 outs() << "FaultMap table:\n"; 1994 1995 if (!FaultMapSection.hasValue()) { 1996 outs() << "<not found>\n"; 1997 return; 1998 } 1999 2000 StringRef FaultMapContents = 2001 unwrapOrError(FaultMapSection.getValue().getContents(), Obj->getFileName()); 2002 FaultMapParser FMP(FaultMapContents.bytes_begin(), 2003 FaultMapContents.bytes_end()); 2004 2005 outs() << FMP; 2006 } 2007 2008 static void printPrivateFileHeaders(const ObjectFile *O, bool OnlyFirst) { 2009 if (O->isELF()) { 2010 printELFFileHeader(O); 2011 printELFDynamicSection(O); 2012 printELFSymbolVersionInfo(O); 2013 return; 2014 } 2015 if (O->isCOFF()) 2016 return printCOFFFileHeader(O); 2017 if (O->isWasm()) 2018 return printWasmFileHeader(O); 2019 if (O->isMachO()) { 2020 printMachOFileHeader(O); 2021 if (!OnlyFirst) 2022 printMachOLoadCommands(O); 2023 return; 2024 } 2025 reportError(O->getFileName(), "Invalid/Unsupported object file format"); 2026 } 2027 2028 static void printFileHeaders(const ObjectFile *O) { 2029 if (!O->isELF() && !O->isCOFF()) 2030 reportError(O->getFileName(), "Invalid/Unsupported object file format"); 2031 2032 Triple::ArchType AT = O->getArch(); 2033 outs() << "architecture: " << Triple::getArchTypeName(AT) << "\n"; 2034 uint64_t Address = unwrapOrError(O->getStartAddress(), O->getFileName()); 2035 2036 StringRef Fmt = O->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64; 2037 outs() << "start address: " 2038 << "0x" << format(Fmt.data(), Address) << "\n\n"; 2039 } 2040 2041 static void printArchiveChild(StringRef Filename, const Archive::Child &C) { 2042 Expected<sys::fs::perms> ModeOrErr = C.getAccessMode(); 2043 if (!ModeOrErr) { 2044 WithColor::error(errs(), ToolName) << "ill-formed archive entry.\n"; 2045 consumeError(ModeOrErr.takeError()); 2046 return; 2047 } 2048 sys::fs::perms Mode = ModeOrErr.get(); 2049 outs() << ((Mode & sys::fs::owner_read) ? "r" : "-"); 2050 outs() << ((Mode & sys::fs::owner_write) ? "w" : "-"); 2051 outs() << ((Mode & sys::fs::owner_exe) ? "x" : "-"); 2052 outs() << ((Mode & sys::fs::group_read) ? "r" : "-"); 2053 outs() << ((Mode & sys::fs::group_write) ? "w" : "-"); 2054 outs() << ((Mode & sys::fs::group_exe) ? "x" : "-"); 2055 outs() << ((Mode & sys::fs::others_read) ? "r" : "-"); 2056 outs() << ((Mode & sys::fs::others_write) ? "w" : "-"); 2057 outs() << ((Mode & sys::fs::others_exe) ? "x" : "-"); 2058 2059 outs() << " "; 2060 2061 outs() << format("%d/%d %6" PRId64 " ", unwrapOrError(C.getUID(), Filename), 2062 unwrapOrError(C.getGID(), Filename), 2063 unwrapOrError(C.getRawSize(), Filename)); 2064 2065 StringRef RawLastModified = C.getRawLastModified(); 2066 unsigned Seconds; 2067 if (RawLastModified.getAsInteger(10, Seconds)) 2068 outs() << "(date: \"" << RawLastModified 2069 << "\" contains non-decimal chars) "; 2070 else { 2071 // Since ctime(3) returns a 26 character string of the form: 2072 // "Sun Sep 16 01:03:52 1973\n\0" 2073 // just print 24 characters. 2074 time_t t = Seconds; 2075 outs() << format("%.24s ", ctime(&t)); 2076 } 2077 2078 StringRef Name = ""; 2079 Expected<StringRef> NameOrErr = C.getName(); 2080 if (!NameOrErr) { 2081 consumeError(NameOrErr.takeError()); 2082 Name = unwrapOrError(C.getRawName(), Filename); 2083 } else { 2084 Name = NameOrErr.get(); 2085 } 2086 outs() << Name << "\n"; 2087 } 2088 2089 // For ELF only now. 2090 static bool shouldWarnForInvalidStartStopAddress(ObjectFile *Obj) { 2091 if (const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj)) { 2092 if (Elf->getEType() != ELF::ET_REL) 2093 return true; 2094 } 2095 return false; 2096 } 2097 2098 static void checkForInvalidStartStopAddress(ObjectFile *Obj, 2099 uint64_t Start, uint64_t Stop) { 2100 if (!shouldWarnForInvalidStartStopAddress(Obj)) 2101 return; 2102 2103 for (const SectionRef &Section : Obj->sections()) 2104 if (ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC) { 2105 uint64_t BaseAddr = Section.getAddress(); 2106 uint64_t Size = Section.getSize(); 2107 if ((Start < BaseAddr + Size) && Stop > BaseAddr) 2108 return; 2109 } 2110 2111 if (StartAddress.getNumOccurrences() == 0) 2112 reportWarning("no section has address less than 0x" + 2113 Twine::utohexstr(Stop) + " specified by --stop-address", 2114 Obj->getFileName()); 2115 else if (StopAddress.getNumOccurrences() == 0) 2116 reportWarning("no section has address greater than or equal to 0x" + 2117 Twine::utohexstr(Start) + " specified by --start-address", 2118 Obj->getFileName()); 2119 else 2120 reportWarning("no section overlaps the range [0x" + 2121 Twine::utohexstr(Start) + ",0x" + Twine::utohexstr(Stop) + 2122 ") specified by --start-address/--stop-address", 2123 Obj->getFileName()); 2124 } 2125 2126 static void dumpObject(ObjectFile *O, const Archive *A = nullptr, 2127 const Archive::Child *C = nullptr) { 2128 // Avoid other output when using a raw option. 2129 if (!RawClangAST) { 2130 outs() << '\n'; 2131 if (A) 2132 outs() << A->getFileName() << "(" << O->getFileName() << ")"; 2133 else 2134 outs() << O->getFileName(); 2135 outs() << ":\tfile format " << O->getFileFormatName() << "\n\n"; 2136 } 2137 2138 if (StartAddress.getNumOccurrences() || StopAddress.getNumOccurrences()) 2139 checkForInvalidStartStopAddress(O, StartAddress, StopAddress); 2140 2141 // Note: the order here matches GNU objdump for compatability. 2142 StringRef ArchiveName = A ? A->getFileName() : ""; 2143 if (ArchiveHeaders && !MachOOpt && C) 2144 printArchiveChild(ArchiveName, *C); 2145 if (FileHeaders) 2146 printFileHeaders(O); 2147 if (PrivateHeaders || FirstPrivateHeader) 2148 printPrivateFileHeaders(O, FirstPrivateHeader); 2149 if (SectionHeaders) 2150 printSectionHeaders(O); 2151 if (SymbolTable) 2152 printSymbolTable(O, ArchiveName); 2153 if (DwarfDumpType != DIDT_Null) { 2154 std::unique_ptr<DIContext> DICtx = DWARFContext::create(*O); 2155 // Dump the complete DWARF structure. 2156 DIDumpOptions DumpOpts; 2157 DumpOpts.DumpType = DwarfDumpType; 2158 DICtx->dump(outs(), DumpOpts); 2159 } 2160 if (Relocations && !Disassemble) 2161 printRelocations(O); 2162 if (DynamicRelocations) 2163 printDynamicRelocations(O); 2164 if (SectionContents) 2165 printSectionContents(O); 2166 if (Disassemble) 2167 disassembleObject(O, Relocations); 2168 if (UnwindInfo) 2169 printUnwindInfo(O); 2170 2171 // Mach-O specific options: 2172 if (ExportsTrie) 2173 printExportsTrie(O); 2174 if (Rebase) 2175 printRebaseTable(O); 2176 if (Bind) 2177 printBindTable(O); 2178 if (LazyBind) 2179 printLazyBindTable(O); 2180 if (WeakBind) 2181 printWeakBindTable(O); 2182 2183 // Other special sections: 2184 if (RawClangAST) 2185 printRawClangAST(O); 2186 if (FaultMapSection) 2187 printFaultMaps(O); 2188 } 2189 2190 static void dumpObject(const COFFImportFile *I, const Archive *A, 2191 const Archive::Child *C = nullptr) { 2192 StringRef ArchiveName = A ? A->getFileName() : ""; 2193 2194 // Avoid other output when using a raw option. 2195 if (!RawClangAST) 2196 outs() << '\n' 2197 << ArchiveName << "(" << I->getFileName() << ")" 2198 << ":\tfile format COFF-import-file" 2199 << "\n\n"; 2200 2201 if (ArchiveHeaders && !MachOOpt && C) 2202 printArchiveChild(ArchiveName, *C); 2203 if (SymbolTable) 2204 printCOFFSymbolTable(I); 2205 } 2206 2207 /// Dump each object file in \a a; 2208 static void dumpArchive(const Archive *A) { 2209 Error Err = Error::success(); 2210 unsigned I = -1; 2211 for (auto &C : A->children(Err)) { 2212 ++I; 2213 Expected<std::unique_ptr<Binary>> ChildOrErr = C.getAsBinary(); 2214 if (!ChildOrErr) { 2215 if (auto E = isNotObjectErrorInvalidFileType(ChildOrErr.takeError())) 2216 reportError(std::move(E), getFileNameForError(C, I), A->getFileName()); 2217 continue; 2218 } 2219 if (ObjectFile *O = dyn_cast<ObjectFile>(&*ChildOrErr.get())) 2220 dumpObject(O, A, &C); 2221 else if (COFFImportFile *I = dyn_cast<COFFImportFile>(&*ChildOrErr.get())) 2222 dumpObject(I, A, &C); 2223 else 2224 reportError(errorCodeToError(object_error::invalid_file_type), 2225 A->getFileName()); 2226 } 2227 if (Err) 2228 reportError(std::move(Err), A->getFileName()); 2229 } 2230 2231 /// Open file and figure out how to dump it. 2232 static void dumpInput(StringRef file) { 2233 // If we are using the Mach-O specific object file parser, then let it parse 2234 // the file and process the command line options. So the -arch flags can 2235 // be used to select specific slices, etc. 2236 if (MachOOpt) { 2237 parseInputMachO(file); 2238 return; 2239 } 2240 2241 // Attempt to open the binary. 2242 OwningBinary<Binary> OBinary = unwrapOrError(createBinary(file), file); 2243 Binary &Binary = *OBinary.getBinary(); 2244 2245 if (Archive *A = dyn_cast<Archive>(&Binary)) 2246 dumpArchive(A); 2247 else if (ObjectFile *O = dyn_cast<ObjectFile>(&Binary)) 2248 dumpObject(O); 2249 else if (MachOUniversalBinary *UB = dyn_cast<MachOUniversalBinary>(&Binary)) 2250 parseInputMachO(UB); 2251 else 2252 reportError(errorCodeToError(object_error::invalid_file_type), file); 2253 } 2254 } // namespace llvm 2255 2256 int main(int argc, char **argv) { 2257 using namespace llvm; 2258 InitLLVM X(argc, argv); 2259 const cl::OptionCategory *OptionFilters[] = {&ObjdumpCat, &MachOCat}; 2260 cl::HideUnrelatedOptions(OptionFilters); 2261 2262 // Initialize targets and assembly printers/parsers. 2263 InitializeAllTargetInfos(); 2264 InitializeAllTargetMCs(); 2265 InitializeAllDisassemblers(); 2266 2267 // Register the target printer for --version. 2268 cl::AddExtraVersionPrinter(TargetRegistry::printRegisteredTargetsForVersion); 2269 2270 cl::ParseCommandLineOptions(argc, argv, "llvm object file dumper\n"); 2271 2272 if (StartAddress >= StopAddress) 2273 reportCmdLineError("start address should be less than stop address"); 2274 2275 ToolName = argv[0]; 2276 2277 // Defaults to a.out if no filenames specified. 2278 if (InputFilenames.empty()) 2279 InputFilenames.push_back("a.out"); 2280 2281 if (AllHeaders) 2282 ArchiveHeaders = FileHeaders = PrivateHeaders = Relocations = 2283 SectionHeaders = SymbolTable = true; 2284 2285 if (DisassembleAll || PrintSource || PrintLines || 2286 (!DisassembleFunctions.empty())) 2287 Disassemble = true; 2288 2289 if (!ArchiveHeaders && !Disassemble && DwarfDumpType == DIDT_Null && 2290 !DynamicRelocations && !FileHeaders && !PrivateHeaders && !RawClangAST && 2291 !Relocations && !SectionHeaders && !SectionContents && !SymbolTable && 2292 !UnwindInfo && !FaultMapSection && 2293 !(MachOOpt && 2294 (Bind || DataInCode || DylibId || DylibsUsed || ExportsTrie || 2295 FirstPrivateHeader || IndirectSymbols || InfoPlist || LazyBind || 2296 LinkOptHints || ObjcMetaData || Rebase || UniversalHeaders || 2297 WeakBind || !FilterSections.empty()))) { 2298 cl::PrintHelpMessage(); 2299 return 2; 2300 } 2301 2302 DisasmFuncsSet.insert(DisassembleFunctions.begin(), 2303 DisassembleFunctions.end()); 2304 2305 llvm::for_each(InputFilenames, dumpInput); 2306 2307 warnOnNoMatchForSections(); 2308 2309 return EXIT_SUCCESS; 2310 } 2311