xref: /freebsd-src/contrib/llvm-project/llvm/tools/llvm-objdump/llvm-objdump.cpp (revision a7dea1671b87c07d2d266f836bfa8b58efc7c134)
1 //===-- llvm-objdump.cpp - Object file dumping utility for llvm -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This program is a utility that works like binutils "objdump", that is, it
10 // dumps out a plethora of information about an object file depending on the
11 // flags.
12 //
13 // The flags and output of this program should be near identical to those of
14 // binutils objdump.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm-objdump.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SetOperations.h"
22 #include "llvm/ADT/StringExtras.h"
23 #include "llvm/ADT/StringSet.h"
24 #include "llvm/ADT/Triple.h"
25 #include "llvm/CodeGen/FaultMaps.h"
26 #include "llvm/DebugInfo/DWARF/DWARFContext.h"
27 #include "llvm/DebugInfo/Symbolize/Symbolize.h"
28 #include "llvm/Demangle/Demangle.h"
29 #include "llvm/MC/MCAsmInfo.h"
30 #include "llvm/MC/MCContext.h"
31 #include "llvm/MC/MCDisassembler/MCDisassembler.h"
32 #include "llvm/MC/MCDisassembler/MCRelocationInfo.h"
33 #include "llvm/MC/MCInst.h"
34 #include "llvm/MC/MCInstPrinter.h"
35 #include "llvm/MC/MCInstrAnalysis.h"
36 #include "llvm/MC/MCInstrInfo.h"
37 #include "llvm/MC/MCObjectFileInfo.h"
38 #include "llvm/MC/MCRegisterInfo.h"
39 #include "llvm/MC/MCSubtargetInfo.h"
40 #include "llvm/Object/Archive.h"
41 #include "llvm/Object/COFF.h"
42 #include "llvm/Object/COFFImportFile.h"
43 #include "llvm/Object/ELFObjectFile.h"
44 #include "llvm/Object/MachO.h"
45 #include "llvm/Object/MachOUniversal.h"
46 #include "llvm/Object/ObjectFile.h"
47 #include "llvm/Object/Wasm.h"
48 #include "llvm/Support/Casting.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Support/Debug.h"
51 #include "llvm/Support/Errc.h"
52 #include "llvm/Support/FileSystem.h"
53 #include "llvm/Support/Format.h"
54 #include "llvm/Support/FormatVariadic.h"
55 #include "llvm/Support/GraphWriter.h"
56 #include "llvm/Support/Host.h"
57 #include "llvm/Support/InitLLVM.h"
58 #include "llvm/Support/MemoryBuffer.h"
59 #include "llvm/Support/SourceMgr.h"
60 #include "llvm/Support/StringSaver.h"
61 #include "llvm/Support/TargetRegistry.h"
62 #include "llvm/Support/TargetSelect.h"
63 #include "llvm/Support/WithColor.h"
64 #include "llvm/Support/raw_ostream.h"
65 #include <algorithm>
66 #include <cctype>
67 #include <cstring>
68 #include <system_error>
69 #include <unordered_map>
70 #include <utility>
71 
72 using namespace llvm::object;
73 
74 namespace llvm {
75 
76 cl::OptionCategory ObjdumpCat("llvm-objdump Options");
77 
78 // MachO specific
79 extern cl::OptionCategory MachOCat;
80 extern cl::opt<bool> Bind;
81 extern cl::opt<bool> DataInCode;
82 extern cl::opt<bool> DylibsUsed;
83 extern cl::opt<bool> DylibId;
84 extern cl::opt<bool> ExportsTrie;
85 extern cl::opt<bool> FirstPrivateHeader;
86 extern cl::opt<bool> IndirectSymbols;
87 extern cl::opt<bool> InfoPlist;
88 extern cl::opt<bool> LazyBind;
89 extern cl::opt<bool> LinkOptHints;
90 extern cl::opt<bool> ObjcMetaData;
91 extern cl::opt<bool> Rebase;
92 extern cl::opt<bool> UniversalHeaders;
93 extern cl::opt<bool> WeakBind;
94 
95 static cl::opt<uint64_t> AdjustVMA(
96     "adjust-vma",
97     cl::desc("Increase the displayed address by the specified offset"),
98     cl::value_desc("offset"), cl::init(0), cl::cat(ObjdumpCat));
99 
100 static cl::opt<bool>
101     AllHeaders("all-headers",
102                cl::desc("Display all available header information"),
103                cl::cat(ObjdumpCat));
104 static cl::alias AllHeadersShort("x", cl::desc("Alias for --all-headers"),
105                                  cl::NotHidden, cl::Grouping,
106                                  cl::aliasopt(AllHeaders));
107 
108 static cl::opt<std::string>
109     ArchName("arch-name",
110              cl::desc("Target arch to disassemble for, "
111                       "see -version for available targets"),
112              cl::cat(ObjdumpCat));
113 
114 cl::opt<bool> ArchiveHeaders("archive-headers",
115                              cl::desc("Display archive header information"),
116                              cl::cat(ObjdumpCat));
117 static cl::alias ArchiveHeadersShort("a",
118                                      cl::desc("Alias for --archive-headers"),
119                                      cl::NotHidden, cl::Grouping,
120                                      cl::aliasopt(ArchiveHeaders));
121 
122 cl::opt<bool> Demangle("demangle", cl::desc("Demangle symbols names"),
123                        cl::init(false), cl::cat(ObjdumpCat));
124 static cl::alias DemangleShort("C", cl::desc("Alias for --demangle"),
125                                cl::NotHidden, cl::Grouping,
126                                cl::aliasopt(Demangle));
127 
128 cl::opt<bool> Disassemble(
129     "disassemble",
130     cl::desc("Display assembler mnemonics for the machine instructions"),
131     cl::cat(ObjdumpCat));
132 static cl::alias DisassembleShort("d", cl::desc("Alias for --disassemble"),
133                                   cl::NotHidden, cl::Grouping,
134                                   cl::aliasopt(Disassemble));
135 
136 cl::opt<bool> DisassembleAll(
137     "disassemble-all",
138     cl::desc("Display assembler mnemonics for the machine instructions"),
139     cl::cat(ObjdumpCat));
140 static cl::alias DisassembleAllShort("D",
141                                      cl::desc("Alias for --disassemble-all"),
142                                      cl::NotHidden, cl::Grouping,
143                                      cl::aliasopt(DisassembleAll));
144 
145 static cl::list<std::string>
146     DisassembleFunctions("disassemble-functions", cl::CommaSeparated,
147                          cl::desc("List of functions to disassemble. "
148                                   "Accept demangled names when --demangle is "
149                                   "specified, otherwise accept mangled names"),
150                          cl::cat(ObjdumpCat));
151 
152 static cl::opt<bool> DisassembleZeroes(
153     "disassemble-zeroes",
154     cl::desc("Do not skip blocks of zeroes when disassembling"),
155     cl::cat(ObjdumpCat));
156 static cl::alias
157     DisassembleZeroesShort("z", cl::desc("Alias for --disassemble-zeroes"),
158                            cl::NotHidden, cl::Grouping,
159                            cl::aliasopt(DisassembleZeroes));
160 
161 static cl::list<std::string>
162     DisassemblerOptions("disassembler-options",
163                         cl::desc("Pass target specific disassembler options"),
164                         cl::value_desc("options"), cl::CommaSeparated,
165                         cl::cat(ObjdumpCat));
166 static cl::alias
167     DisassemblerOptionsShort("M", cl::desc("Alias for --disassembler-options"),
168                              cl::NotHidden, cl::Grouping, cl::Prefix,
169                              cl::CommaSeparated,
170                              cl::aliasopt(DisassemblerOptions));
171 
172 cl::opt<DIDumpType> DwarfDumpType(
173     "dwarf", cl::init(DIDT_Null), cl::desc("Dump of dwarf debug sections:"),
174     cl::values(clEnumValN(DIDT_DebugFrame, "frames", ".debug_frame")),
175     cl::cat(ObjdumpCat));
176 
177 static cl::opt<bool> DynamicRelocations(
178     "dynamic-reloc",
179     cl::desc("Display the dynamic relocation entries in the file"),
180     cl::cat(ObjdumpCat));
181 static cl::alias DynamicRelocationShort("R",
182                                         cl::desc("Alias for --dynamic-reloc"),
183                                         cl::NotHidden, cl::Grouping,
184                                         cl::aliasopt(DynamicRelocations));
185 
186 static cl::opt<bool>
187     FaultMapSection("fault-map-section",
188                     cl::desc("Display contents of faultmap section"),
189                     cl::cat(ObjdumpCat));
190 
191 static cl::opt<bool>
192     FileHeaders("file-headers",
193                 cl::desc("Display the contents of the overall file header"),
194                 cl::cat(ObjdumpCat));
195 static cl::alias FileHeadersShort("f", cl::desc("Alias for --file-headers"),
196                                   cl::NotHidden, cl::Grouping,
197                                   cl::aliasopt(FileHeaders));
198 
199 cl::opt<bool> SectionContents("full-contents",
200                               cl::desc("Display the content of each section"),
201                               cl::cat(ObjdumpCat));
202 static cl::alias SectionContentsShort("s",
203                                       cl::desc("Alias for --full-contents"),
204                                       cl::NotHidden, cl::Grouping,
205                                       cl::aliasopt(SectionContents));
206 
207 static cl::list<std::string> InputFilenames(cl::Positional,
208                                             cl::desc("<input object files>"),
209                                             cl::ZeroOrMore,
210                                             cl::cat(ObjdumpCat));
211 
212 static cl::opt<bool>
213     PrintLines("line-numbers",
214                cl::desc("Display source line numbers with "
215                         "disassembly. Implies disassemble object"),
216                cl::cat(ObjdumpCat));
217 static cl::alias PrintLinesShort("l", cl::desc("Alias for --line-numbers"),
218                                  cl::NotHidden, cl::Grouping,
219                                  cl::aliasopt(PrintLines));
220 
221 static cl::opt<bool> MachOOpt("macho",
222                               cl::desc("Use MachO specific object file parser"),
223                               cl::cat(ObjdumpCat));
224 static cl::alias MachOm("m", cl::desc("Alias for --macho"), cl::NotHidden,
225                         cl::Grouping, cl::aliasopt(MachOOpt));
226 
227 cl::opt<std::string>
228     MCPU("mcpu",
229          cl::desc("Target a specific cpu type (-mcpu=help for details)"),
230          cl::value_desc("cpu-name"), cl::init(""), cl::cat(ObjdumpCat));
231 
232 cl::list<std::string> MAttrs("mattr", cl::CommaSeparated,
233                              cl::desc("Target specific attributes"),
234                              cl::value_desc("a1,+a2,-a3,..."),
235                              cl::cat(ObjdumpCat));
236 
237 cl::opt<bool> NoShowRawInsn("no-show-raw-insn",
238                             cl::desc("When disassembling "
239                                      "instructions, do not print "
240                                      "the instruction bytes."),
241                             cl::cat(ObjdumpCat));
242 cl::opt<bool> NoLeadingAddr("no-leading-addr",
243                             cl::desc("Print no leading address"),
244                             cl::cat(ObjdumpCat));
245 
246 static cl::opt<bool> RawClangAST(
247     "raw-clang-ast",
248     cl::desc("Dump the raw binary contents of the clang AST section"),
249     cl::cat(ObjdumpCat));
250 
251 cl::opt<bool>
252     Relocations("reloc", cl::desc("Display the relocation entries in the file"),
253                 cl::cat(ObjdumpCat));
254 static cl::alias RelocationsShort("r", cl::desc("Alias for --reloc"),
255                                   cl::NotHidden, cl::Grouping,
256                                   cl::aliasopt(Relocations));
257 
258 cl::opt<bool> PrintImmHex("print-imm-hex",
259                           cl::desc("Use hex format for immediate values"),
260                           cl::cat(ObjdumpCat));
261 
262 cl::opt<bool> PrivateHeaders("private-headers",
263                              cl::desc("Display format specific file headers"),
264                              cl::cat(ObjdumpCat));
265 static cl::alias PrivateHeadersShort("p",
266                                      cl::desc("Alias for --private-headers"),
267                                      cl::NotHidden, cl::Grouping,
268                                      cl::aliasopt(PrivateHeaders));
269 
270 cl::list<std::string>
271     FilterSections("section",
272                    cl::desc("Operate on the specified sections only. "
273                             "With -macho dump segment,section"),
274                    cl::cat(ObjdumpCat));
275 static cl::alias FilterSectionsj("j", cl::desc("Alias for --section"),
276                                  cl::NotHidden, cl::Grouping, cl::Prefix,
277                                  cl::aliasopt(FilterSections));
278 
279 cl::opt<bool> SectionHeaders("section-headers",
280                              cl::desc("Display summaries of the "
281                                       "headers for each section."),
282                              cl::cat(ObjdumpCat));
283 static cl::alias SectionHeadersShort("headers",
284                                      cl::desc("Alias for --section-headers"),
285                                      cl::NotHidden,
286                                      cl::aliasopt(SectionHeaders));
287 static cl::alias SectionHeadersShorter("h",
288                                        cl::desc("Alias for --section-headers"),
289                                        cl::NotHidden, cl::Grouping,
290                                        cl::aliasopt(SectionHeaders));
291 
292 static cl::opt<bool>
293     ShowLMA("show-lma",
294             cl::desc("Display LMA column when dumping ELF section headers"),
295             cl::cat(ObjdumpCat));
296 
297 static cl::opt<bool> PrintSource(
298     "source",
299     cl::desc(
300         "Display source inlined with disassembly. Implies disassemble object"),
301     cl::cat(ObjdumpCat));
302 static cl::alias PrintSourceShort("S", cl::desc("Alias for -source"),
303                                   cl::NotHidden, cl::Grouping,
304                                   cl::aliasopt(PrintSource));
305 
306 static cl::opt<uint64_t>
307     StartAddress("start-address", cl::desc("Disassemble beginning at address"),
308                  cl::value_desc("address"), cl::init(0), cl::cat(ObjdumpCat));
309 static cl::opt<uint64_t> StopAddress("stop-address",
310                                      cl::desc("Stop disassembly at address"),
311                                      cl::value_desc("address"),
312                                      cl::init(UINT64_MAX), cl::cat(ObjdumpCat));
313 
314 cl::opt<bool> SymbolTable("syms", cl::desc("Display the symbol table"),
315                           cl::cat(ObjdumpCat));
316 static cl::alias SymbolTableShort("t", cl::desc("Alias for --syms"),
317                                   cl::NotHidden, cl::Grouping,
318                                   cl::aliasopt(SymbolTable));
319 
320 cl::opt<std::string> TripleName("triple",
321                                 cl::desc("Target triple to disassemble for, "
322                                          "see -version for available targets"),
323                                 cl::cat(ObjdumpCat));
324 
325 cl::opt<bool> UnwindInfo("unwind-info", cl::desc("Display unwind information"),
326                          cl::cat(ObjdumpCat));
327 static cl::alias UnwindInfoShort("u", cl::desc("Alias for --unwind-info"),
328                                  cl::NotHidden, cl::Grouping,
329                                  cl::aliasopt(UnwindInfo));
330 
331 static cl::opt<bool>
332     Wide("wide", cl::desc("Ignored for compatibility with GNU objdump"),
333          cl::cat(ObjdumpCat));
334 static cl::alias WideShort("w", cl::Grouping, cl::aliasopt(Wide));
335 
336 static cl::extrahelp
337     HelpResponse("\nPass @FILE as argument to read options from FILE.\n");
338 
339 static StringSet<> DisasmFuncsSet;
340 static StringSet<> FoundSectionSet;
341 static StringRef ToolName;
342 
343 typedef std::vector<std::tuple<uint64_t, StringRef, uint8_t>> SectionSymbolsTy;
344 
345 namespace {
346 struct FilterResult {
347   // True if the section should not be skipped.
348   bool Keep;
349 
350   // True if the index counter should be incremented, even if the section should
351   // be skipped. For example, sections may be skipped if they are not included
352   // in the --section flag, but we still want those to count toward the section
353   // count.
354   bool IncrementIndex;
355 };
356 } // namespace
357 
358 static FilterResult checkSectionFilter(object::SectionRef S) {
359   if (FilterSections.empty())
360     return {/*Keep=*/true, /*IncrementIndex=*/true};
361 
362   Expected<StringRef> SecNameOrErr = S.getName();
363   if (!SecNameOrErr) {
364     consumeError(SecNameOrErr.takeError());
365     return {/*Keep=*/false, /*IncrementIndex=*/false};
366   }
367   StringRef SecName = *SecNameOrErr;
368 
369   // StringSet does not allow empty key so avoid adding sections with
370   // no name (such as the section with index 0) here.
371   if (!SecName.empty())
372     FoundSectionSet.insert(SecName);
373 
374   // Only show the section if it's in the FilterSections list, but always
375   // increment so the indexing is stable.
376   return {/*Keep=*/is_contained(FilterSections, SecName),
377           /*IncrementIndex=*/true};
378 }
379 
380 SectionFilter ToolSectionFilter(object::ObjectFile const &O, uint64_t *Idx) {
381   // Start at UINT64_MAX so that the first index returned after an increment is
382   // zero (after the unsigned wrap).
383   if (Idx)
384     *Idx = UINT64_MAX;
385   return SectionFilter(
386       [Idx](object::SectionRef S) {
387         FilterResult Result = checkSectionFilter(S);
388         if (Idx != nullptr && Result.IncrementIndex)
389           *Idx += 1;
390         return Result.Keep;
391       },
392       O);
393 }
394 
395 std::string getFileNameForError(const object::Archive::Child &C,
396                                 unsigned Index) {
397   Expected<StringRef> NameOrErr = C.getName();
398   if (NameOrErr)
399     return NameOrErr.get();
400   // If we have an error getting the name then we print the index of the archive
401   // member. Since we are already in an error state, we just ignore this error.
402   consumeError(NameOrErr.takeError());
403   return "<file index: " + std::to_string(Index) + ">";
404 }
405 
406 void reportWarning(Twine Message, StringRef File) {
407   // Output order between errs() and outs() matters especially for archive
408   // files where the output is per member object.
409   outs().flush();
410   WithColor::warning(errs(), ToolName)
411       << "'" << File << "': " << Message << "\n";
412   errs().flush();
413 }
414 
415 LLVM_ATTRIBUTE_NORETURN void reportError(StringRef File, Twine Message) {
416   WithColor::error(errs(), ToolName) << "'" << File << "': " << Message << "\n";
417   exit(1);
418 }
419 
420 LLVM_ATTRIBUTE_NORETURN void reportError(Error E, StringRef FileName,
421                                          StringRef ArchiveName,
422                                          StringRef ArchitectureName) {
423   assert(E);
424   WithColor::error(errs(), ToolName);
425   if (ArchiveName != "")
426     errs() << ArchiveName << "(" << FileName << ")";
427   else
428     errs() << "'" << FileName << "'";
429   if (!ArchitectureName.empty())
430     errs() << " (for architecture " << ArchitectureName << ")";
431   std::string Buf;
432   raw_string_ostream OS(Buf);
433   logAllUnhandledErrors(std::move(E), OS);
434   OS.flush();
435   errs() << ": " << Buf;
436   exit(1);
437 }
438 
439 static void reportCmdLineWarning(Twine Message) {
440   WithColor::warning(errs(), ToolName) << Message << "\n";
441 }
442 
443 LLVM_ATTRIBUTE_NORETURN static void reportCmdLineError(Twine Message) {
444   WithColor::error(errs(), ToolName) << Message << "\n";
445   exit(1);
446 }
447 
448 static void warnOnNoMatchForSections() {
449   SetVector<StringRef> MissingSections;
450   for (StringRef S : FilterSections) {
451     if (FoundSectionSet.count(S))
452       return;
453     // User may specify a unnamed section. Don't warn for it.
454     if (!S.empty())
455       MissingSections.insert(S);
456   }
457 
458   // Warn only if no section in FilterSections is matched.
459   for (StringRef S : MissingSections)
460     reportCmdLineWarning("section '" + S +
461                          "' mentioned in a -j/--section option, but not "
462                          "found in any input file");
463 }
464 
465 static const Target *getTarget(const ObjectFile *Obj) {
466   // Figure out the target triple.
467   Triple TheTriple("unknown-unknown-unknown");
468   if (TripleName.empty()) {
469     TheTriple = Obj->makeTriple();
470   } else {
471     TheTriple.setTriple(Triple::normalize(TripleName));
472     auto Arch = Obj->getArch();
473     if (Arch == Triple::arm || Arch == Triple::armeb)
474       Obj->setARMSubArch(TheTriple);
475   }
476 
477   // Get the target specific parser.
478   std::string Error;
479   const Target *TheTarget = TargetRegistry::lookupTarget(ArchName, TheTriple,
480                                                          Error);
481   if (!TheTarget)
482     reportError(Obj->getFileName(), "can't find target: " + Error);
483 
484   // Update the triple name and return the found target.
485   TripleName = TheTriple.getTriple();
486   return TheTarget;
487 }
488 
489 bool isRelocAddressLess(RelocationRef A, RelocationRef B) {
490   return A.getOffset() < B.getOffset();
491 }
492 
493 static Error getRelocationValueString(const RelocationRef &Rel,
494                                       SmallVectorImpl<char> &Result) {
495   const ObjectFile *Obj = Rel.getObject();
496   if (auto *ELF = dyn_cast<ELFObjectFileBase>(Obj))
497     return getELFRelocationValueString(ELF, Rel, Result);
498   if (auto *COFF = dyn_cast<COFFObjectFile>(Obj))
499     return getCOFFRelocationValueString(COFF, Rel, Result);
500   if (auto *Wasm = dyn_cast<WasmObjectFile>(Obj))
501     return getWasmRelocationValueString(Wasm, Rel, Result);
502   if (auto *MachO = dyn_cast<MachOObjectFile>(Obj))
503     return getMachORelocationValueString(MachO, Rel, Result);
504   llvm_unreachable("unknown object file format");
505 }
506 
507 /// Indicates whether this relocation should hidden when listing
508 /// relocations, usually because it is the trailing part of a multipart
509 /// relocation that will be printed as part of the leading relocation.
510 static bool getHidden(RelocationRef RelRef) {
511   auto *MachO = dyn_cast<MachOObjectFile>(RelRef.getObject());
512   if (!MachO)
513     return false;
514 
515   unsigned Arch = MachO->getArch();
516   DataRefImpl Rel = RelRef.getRawDataRefImpl();
517   uint64_t Type = MachO->getRelocationType(Rel);
518 
519   // On arches that use the generic relocations, GENERIC_RELOC_PAIR
520   // is always hidden.
521   if (Arch == Triple::x86 || Arch == Triple::arm || Arch == Triple::ppc)
522     return Type == MachO::GENERIC_RELOC_PAIR;
523 
524   if (Arch == Triple::x86_64) {
525     // On x86_64, X86_64_RELOC_UNSIGNED is hidden only when it follows
526     // an X86_64_RELOC_SUBTRACTOR.
527     if (Type == MachO::X86_64_RELOC_UNSIGNED && Rel.d.a > 0) {
528       DataRefImpl RelPrev = Rel;
529       RelPrev.d.a--;
530       uint64_t PrevType = MachO->getRelocationType(RelPrev);
531       if (PrevType == MachO::X86_64_RELOC_SUBTRACTOR)
532         return true;
533     }
534   }
535 
536   return false;
537 }
538 
539 namespace {
540 class SourcePrinter {
541 protected:
542   DILineInfo OldLineInfo;
543   const ObjectFile *Obj = nullptr;
544   std::unique_ptr<symbolize::LLVMSymbolizer> Symbolizer;
545   // File name to file contents of source.
546   std::unordered_map<std::string, std::unique_ptr<MemoryBuffer>> SourceCache;
547   // Mark the line endings of the cached source.
548   std::unordered_map<std::string, std::vector<StringRef>> LineCache;
549   // Keep track of missing sources.
550   StringSet<> MissingSources;
551   // Only emit 'no debug info' warning once.
552   bool WarnedNoDebugInfo;
553 
554 private:
555   bool cacheSource(const DILineInfo& LineInfoFile);
556 
557 public:
558   SourcePrinter() = default;
559   SourcePrinter(const ObjectFile *Obj, StringRef DefaultArch)
560       : Obj(Obj), WarnedNoDebugInfo(false) {
561     symbolize::LLVMSymbolizer::Options SymbolizerOpts;
562     SymbolizerOpts.PrintFunctions = DILineInfoSpecifier::FunctionNameKind::None;
563     SymbolizerOpts.Demangle = false;
564     SymbolizerOpts.DefaultArch = DefaultArch;
565     Symbolizer.reset(new symbolize::LLVMSymbolizer(SymbolizerOpts));
566   }
567   virtual ~SourcePrinter() = default;
568   virtual void printSourceLine(raw_ostream &OS,
569                                object::SectionedAddress Address,
570                                StringRef ObjectFilename,
571                                StringRef Delimiter = "; ");
572 };
573 
574 bool SourcePrinter::cacheSource(const DILineInfo &LineInfo) {
575   std::unique_ptr<MemoryBuffer> Buffer;
576   if (LineInfo.Source) {
577     Buffer = MemoryBuffer::getMemBuffer(*LineInfo.Source);
578   } else {
579     auto BufferOrError = MemoryBuffer::getFile(LineInfo.FileName);
580     if (!BufferOrError) {
581       if (MissingSources.insert(LineInfo.FileName).second)
582         reportWarning("failed to find source " + LineInfo.FileName,
583                       Obj->getFileName());
584       return false;
585     }
586     Buffer = std::move(*BufferOrError);
587   }
588   // Chomp the file to get lines
589   const char *BufferStart = Buffer->getBufferStart(),
590              *BufferEnd = Buffer->getBufferEnd();
591   std::vector<StringRef> &Lines = LineCache[LineInfo.FileName];
592   const char *Start = BufferStart;
593   for (const char *I = BufferStart; I != BufferEnd; ++I)
594     if (*I == '\n') {
595       Lines.emplace_back(Start, I - Start - (BufferStart < I && I[-1] == '\r'));
596       Start = I + 1;
597     }
598   if (Start < BufferEnd)
599     Lines.emplace_back(Start, BufferEnd - Start);
600   SourceCache[LineInfo.FileName] = std::move(Buffer);
601   return true;
602 }
603 
604 void SourcePrinter::printSourceLine(raw_ostream &OS,
605                                     object::SectionedAddress Address,
606                                     StringRef ObjectFilename,
607                                     StringRef Delimiter) {
608   if (!Symbolizer)
609     return;
610 
611   DILineInfo LineInfo = DILineInfo();
612   auto ExpectedLineInfo = Symbolizer->symbolizeCode(*Obj, Address);
613   std::string ErrorMessage;
614   if (!ExpectedLineInfo)
615     ErrorMessage = toString(ExpectedLineInfo.takeError());
616   else
617     LineInfo = *ExpectedLineInfo;
618 
619   if (LineInfo.FileName == DILineInfo::BadString) {
620     if (!WarnedNoDebugInfo) {
621       std::string Warning =
622           "failed to parse debug information for " + ObjectFilename.str();
623       if (!ErrorMessage.empty())
624         Warning += ": " + ErrorMessage;
625       reportWarning(Warning, ObjectFilename);
626       WarnedNoDebugInfo = true;
627     }
628     return;
629   }
630 
631   if (LineInfo.Line == 0 || ((OldLineInfo.Line == LineInfo.Line) &&
632                              (OldLineInfo.FileName == LineInfo.FileName)))
633     return;
634 
635   if (PrintLines)
636     OS << Delimiter << LineInfo.FileName << ":" << LineInfo.Line << "\n";
637   if (PrintSource) {
638     if (SourceCache.find(LineInfo.FileName) == SourceCache.end())
639       if (!cacheSource(LineInfo))
640         return;
641     auto LineBuffer = LineCache.find(LineInfo.FileName);
642     if (LineBuffer != LineCache.end()) {
643       if (LineInfo.Line > LineBuffer->second.size()) {
644         reportWarning(
645             formatv(
646                 "debug info line number {0} exceeds the number of lines in {1}",
647                 LineInfo.Line, LineInfo.FileName),
648             ObjectFilename);
649         return;
650       }
651       // Vector begins at 0, line numbers are non-zero
652       OS << Delimiter << LineBuffer->second[LineInfo.Line - 1] << '\n';
653     }
654   }
655   OldLineInfo = LineInfo;
656 }
657 
658 static bool isAArch64Elf(const ObjectFile *Obj) {
659   const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj);
660   return Elf && Elf->getEMachine() == ELF::EM_AARCH64;
661 }
662 
663 static bool isArmElf(const ObjectFile *Obj) {
664   const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj);
665   return Elf && Elf->getEMachine() == ELF::EM_ARM;
666 }
667 
668 static bool hasMappingSymbols(const ObjectFile *Obj) {
669   return isArmElf(Obj) || isAArch64Elf(Obj);
670 }
671 
672 static void printRelocation(StringRef FileName, const RelocationRef &Rel,
673                             uint64_t Address, bool Is64Bits) {
674   StringRef Fmt = Is64Bits ? "\t\t%016" PRIx64 ":  " : "\t\t\t%08" PRIx64 ":  ";
675   SmallString<16> Name;
676   SmallString<32> Val;
677   Rel.getTypeName(Name);
678   if (Error E = getRelocationValueString(Rel, Val))
679     reportError(std::move(E), FileName);
680   outs() << format(Fmt.data(), Address) << Name << "\t" << Val << "\n";
681 }
682 
683 class PrettyPrinter {
684 public:
685   virtual ~PrettyPrinter() = default;
686   virtual void printInst(MCInstPrinter &IP, const MCInst *MI,
687                          ArrayRef<uint8_t> Bytes,
688                          object::SectionedAddress Address, raw_ostream &OS,
689                          StringRef Annot, MCSubtargetInfo const &STI,
690                          SourcePrinter *SP, StringRef ObjectFilename,
691                          std::vector<RelocationRef> *Rels = nullptr) {
692     if (SP && (PrintSource || PrintLines))
693       SP->printSourceLine(OS, Address, ObjectFilename);
694 
695     size_t Start = OS.tell();
696     if (!NoLeadingAddr)
697       OS << format("%8" PRIx64 ":", Address.Address);
698     if (!NoShowRawInsn) {
699       OS << ' ';
700       dumpBytes(Bytes, OS);
701     }
702 
703     // The output of printInst starts with a tab. Print some spaces so that
704     // the tab has 1 column and advances to the target tab stop.
705     unsigned TabStop = NoShowRawInsn ? 16 : 40;
706     unsigned Column = OS.tell() - Start;
707     OS.indent(Column < TabStop - 1 ? TabStop - 1 - Column : 7 - Column % 8);
708 
709     if (MI)
710       IP.printInst(MI, OS, "", STI);
711     else
712       OS << "\t<unknown>";
713   }
714 };
715 PrettyPrinter PrettyPrinterInst;
716 
717 class HexagonPrettyPrinter : public PrettyPrinter {
718 public:
719   void printLead(ArrayRef<uint8_t> Bytes, uint64_t Address,
720                  raw_ostream &OS) {
721     uint32_t opcode =
722       (Bytes[3] << 24) | (Bytes[2] << 16) | (Bytes[1] << 8) | Bytes[0];
723     if (!NoLeadingAddr)
724       OS << format("%8" PRIx64 ":", Address);
725     if (!NoShowRawInsn) {
726       OS << "\t";
727       dumpBytes(Bytes.slice(0, 4), OS);
728       OS << format("\t%08" PRIx32, opcode);
729     }
730   }
731   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
732                  object::SectionedAddress Address, raw_ostream &OS,
733                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
734                  StringRef ObjectFilename,
735                  std::vector<RelocationRef> *Rels) override {
736     if (SP && (PrintSource || PrintLines))
737       SP->printSourceLine(OS, Address, ObjectFilename, "");
738     if (!MI) {
739       printLead(Bytes, Address.Address, OS);
740       OS << " <unknown>";
741       return;
742     }
743     std::string Buffer;
744     {
745       raw_string_ostream TempStream(Buffer);
746       IP.printInst(MI, TempStream, "", STI);
747     }
748     StringRef Contents(Buffer);
749     // Split off bundle attributes
750     auto PacketBundle = Contents.rsplit('\n');
751     // Split off first instruction from the rest
752     auto HeadTail = PacketBundle.first.split('\n');
753     auto Preamble = " { ";
754     auto Separator = "";
755 
756     // Hexagon's packets require relocations to be inline rather than
757     // clustered at the end of the packet.
758     std::vector<RelocationRef>::const_iterator RelCur = Rels->begin();
759     std::vector<RelocationRef>::const_iterator RelEnd = Rels->end();
760     auto PrintReloc = [&]() -> void {
761       while ((RelCur != RelEnd) && (RelCur->getOffset() <= Address.Address)) {
762         if (RelCur->getOffset() == Address.Address) {
763           printRelocation(ObjectFilename, *RelCur, Address.Address, false);
764           return;
765         }
766         ++RelCur;
767       }
768     };
769 
770     while (!HeadTail.first.empty()) {
771       OS << Separator;
772       Separator = "\n";
773       if (SP && (PrintSource || PrintLines))
774         SP->printSourceLine(OS, Address, ObjectFilename, "");
775       printLead(Bytes, Address.Address, OS);
776       OS << Preamble;
777       Preamble = "   ";
778       StringRef Inst;
779       auto Duplex = HeadTail.first.split('\v');
780       if (!Duplex.second.empty()) {
781         OS << Duplex.first;
782         OS << "; ";
783         Inst = Duplex.second;
784       }
785       else
786         Inst = HeadTail.first;
787       OS << Inst;
788       HeadTail = HeadTail.second.split('\n');
789       if (HeadTail.first.empty())
790         OS << " } " << PacketBundle.second;
791       PrintReloc();
792       Bytes = Bytes.slice(4);
793       Address.Address += 4;
794     }
795   }
796 };
797 HexagonPrettyPrinter HexagonPrettyPrinterInst;
798 
799 class AMDGCNPrettyPrinter : public PrettyPrinter {
800 public:
801   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
802                  object::SectionedAddress Address, raw_ostream &OS,
803                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
804                  StringRef ObjectFilename,
805                  std::vector<RelocationRef> *Rels) override {
806     if (SP && (PrintSource || PrintLines))
807       SP->printSourceLine(OS, Address, ObjectFilename);
808 
809     if (MI) {
810       SmallString<40> InstStr;
811       raw_svector_ostream IS(InstStr);
812 
813       IP.printInst(MI, IS, "", STI);
814 
815       OS << left_justify(IS.str(), 60);
816     } else {
817       // an unrecognized encoding - this is probably data so represent it
818       // using the .long directive, or .byte directive if fewer than 4 bytes
819       // remaining
820       if (Bytes.size() >= 4) {
821         OS << format("\t.long 0x%08" PRIx32 " ",
822                      support::endian::read32<support::little>(Bytes.data()));
823         OS.indent(42);
824       } else {
825           OS << format("\t.byte 0x%02" PRIx8, Bytes[0]);
826           for (unsigned int i = 1; i < Bytes.size(); i++)
827             OS << format(", 0x%02" PRIx8, Bytes[i]);
828           OS.indent(55 - (6 * Bytes.size()));
829       }
830     }
831 
832     OS << format("// %012" PRIX64 ":", Address.Address);
833     if (Bytes.size() >= 4) {
834       // D should be casted to uint32_t here as it is passed by format to
835       // snprintf as vararg.
836       for (uint32_t D : makeArrayRef(
837                reinterpret_cast<const support::little32_t *>(Bytes.data()),
838                Bytes.size() / 4))
839         OS << format(" %08" PRIX32, D);
840     } else {
841       for (unsigned char B : Bytes)
842         OS << format(" %02" PRIX8, B);
843     }
844 
845     if (!Annot.empty())
846       OS << " // " << Annot;
847   }
848 };
849 AMDGCNPrettyPrinter AMDGCNPrettyPrinterInst;
850 
851 class BPFPrettyPrinter : public PrettyPrinter {
852 public:
853   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
854                  object::SectionedAddress Address, raw_ostream &OS,
855                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
856                  StringRef ObjectFilename,
857                  std::vector<RelocationRef> *Rels) override {
858     if (SP && (PrintSource || PrintLines))
859       SP->printSourceLine(OS, Address, ObjectFilename);
860     if (!NoLeadingAddr)
861       OS << format("%8" PRId64 ":", Address.Address / 8);
862     if (!NoShowRawInsn) {
863       OS << "\t";
864       dumpBytes(Bytes, OS);
865     }
866     if (MI)
867       IP.printInst(MI, OS, "", STI);
868     else
869       OS << "\t<unknown>";
870   }
871 };
872 BPFPrettyPrinter BPFPrettyPrinterInst;
873 
874 PrettyPrinter &selectPrettyPrinter(Triple const &Triple) {
875   switch(Triple.getArch()) {
876   default:
877     return PrettyPrinterInst;
878   case Triple::hexagon:
879     return HexagonPrettyPrinterInst;
880   case Triple::amdgcn:
881     return AMDGCNPrettyPrinterInst;
882   case Triple::bpfel:
883   case Triple::bpfeb:
884     return BPFPrettyPrinterInst;
885   }
886 }
887 }
888 
889 static uint8_t getElfSymbolType(const ObjectFile *Obj, const SymbolRef &Sym) {
890   assert(Obj->isELF());
891   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(Obj))
892     return Elf32LEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
893   if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(Obj))
894     return Elf64LEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
895   if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(Obj))
896     return Elf32BEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
897   if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(Obj))
898     return Elf64BEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
899   llvm_unreachable("Unsupported binary format");
900 }
901 
902 template <class ELFT> static void
903 addDynamicElfSymbols(const ELFObjectFile<ELFT> *Obj,
904                      std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
905   for (auto Symbol : Obj->getDynamicSymbolIterators()) {
906     uint8_t SymbolType = Symbol.getELFType();
907     if (SymbolType == ELF::STT_SECTION)
908       continue;
909 
910     uint64_t Address = unwrapOrError(Symbol.getAddress(), Obj->getFileName());
911     // ELFSymbolRef::getAddress() returns size instead of value for common
912     // symbols which is not desirable for disassembly output. Overriding.
913     if (SymbolType == ELF::STT_COMMON)
914       Address = Obj->getSymbol(Symbol.getRawDataRefImpl())->st_value;
915 
916     StringRef Name = unwrapOrError(Symbol.getName(), Obj->getFileName());
917     if (Name.empty())
918       continue;
919 
920     section_iterator SecI =
921         unwrapOrError(Symbol.getSection(), Obj->getFileName());
922     if (SecI == Obj->section_end())
923       continue;
924 
925     AllSymbols[*SecI].emplace_back(Address, Name, SymbolType);
926   }
927 }
928 
929 static void
930 addDynamicElfSymbols(const ObjectFile *Obj,
931                      std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
932   assert(Obj->isELF());
933   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(Obj))
934     addDynamicElfSymbols(Elf32LEObj, AllSymbols);
935   else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(Obj))
936     addDynamicElfSymbols(Elf64LEObj, AllSymbols);
937   else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(Obj))
938     addDynamicElfSymbols(Elf32BEObj, AllSymbols);
939   else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(Obj))
940     addDynamicElfSymbols(Elf64BEObj, AllSymbols);
941   else
942     llvm_unreachable("Unsupported binary format");
943 }
944 
945 static void addPltEntries(const ObjectFile *Obj,
946                           std::map<SectionRef, SectionSymbolsTy> &AllSymbols,
947                           StringSaver &Saver) {
948   Optional<SectionRef> Plt = None;
949   for (const SectionRef &Section : Obj->sections()) {
950     Expected<StringRef> SecNameOrErr = Section.getName();
951     if (!SecNameOrErr) {
952       consumeError(SecNameOrErr.takeError());
953       continue;
954     }
955     if (*SecNameOrErr == ".plt")
956       Plt = Section;
957   }
958   if (!Plt)
959     return;
960   if (auto *ElfObj = dyn_cast<ELFObjectFileBase>(Obj)) {
961     for (auto PltEntry : ElfObj->getPltAddresses()) {
962       SymbolRef Symbol(PltEntry.first, ElfObj);
963       uint8_t SymbolType = getElfSymbolType(Obj, Symbol);
964 
965       StringRef Name = unwrapOrError(Symbol.getName(), Obj->getFileName());
966       if (!Name.empty())
967         AllSymbols[*Plt].emplace_back(
968             PltEntry.second, Saver.save((Name + "@plt").str()), SymbolType);
969     }
970   }
971 }
972 
973 // Normally the disassembly output will skip blocks of zeroes. This function
974 // returns the number of zero bytes that can be skipped when dumping the
975 // disassembly of the instructions in Buf.
976 static size_t countSkippableZeroBytes(ArrayRef<uint8_t> Buf) {
977   // Find the number of leading zeroes.
978   size_t N = 0;
979   while (N < Buf.size() && !Buf[N])
980     ++N;
981 
982   // We may want to skip blocks of zero bytes, but unless we see
983   // at least 8 of them in a row.
984   if (N < 8)
985     return 0;
986 
987   // We skip zeroes in multiples of 4 because do not want to truncate an
988   // instruction if it starts with a zero byte.
989   return N & ~0x3;
990 }
991 
992 // Returns a map from sections to their relocations.
993 static std::map<SectionRef, std::vector<RelocationRef>>
994 getRelocsMap(object::ObjectFile const &Obj) {
995   std::map<SectionRef, std::vector<RelocationRef>> Ret;
996   uint64_t I = (uint64_t)-1;
997   for (SectionRef Sec : Obj.sections()) {
998     ++I;
999     Expected<section_iterator> RelocatedOrErr = Sec.getRelocatedSection();
1000     if (!RelocatedOrErr)
1001       reportError(Obj.getFileName(),
1002                   "section (" + Twine(I) +
1003                       "): failed to get a relocated section: " +
1004                       toString(RelocatedOrErr.takeError()));
1005 
1006     section_iterator Relocated = *RelocatedOrErr;
1007     if (Relocated == Obj.section_end() || !checkSectionFilter(*Relocated).Keep)
1008       continue;
1009     std::vector<RelocationRef> &V = Ret[*Relocated];
1010     for (const RelocationRef &R : Sec.relocations())
1011       V.push_back(R);
1012     // Sort relocations by address.
1013     llvm::stable_sort(V, isRelocAddressLess);
1014   }
1015   return Ret;
1016 }
1017 
1018 // Used for --adjust-vma to check if address should be adjusted by the
1019 // specified value for a given section.
1020 // For ELF we do not adjust non-allocatable sections like debug ones,
1021 // because they are not loadable.
1022 // TODO: implement for other file formats.
1023 static bool shouldAdjustVA(const SectionRef &Section) {
1024   const ObjectFile *Obj = Section.getObject();
1025   if (isa<object::ELFObjectFileBase>(Obj))
1026     return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC;
1027   return false;
1028 }
1029 
1030 
1031 typedef std::pair<uint64_t, char> MappingSymbolPair;
1032 static char getMappingSymbolKind(ArrayRef<MappingSymbolPair> MappingSymbols,
1033                                  uint64_t Address) {
1034   auto It =
1035       partition_point(MappingSymbols, [Address](const MappingSymbolPair &Val) {
1036         return Val.first <= Address;
1037       });
1038   // Return zero for any address before the first mapping symbol; this means
1039   // we should use the default disassembly mode, depending on the target.
1040   if (It == MappingSymbols.begin())
1041     return '\x00';
1042   return (It - 1)->second;
1043 }
1044 
1045 static uint64_t
1046 dumpARMELFData(uint64_t SectionAddr, uint64_t Index, uint64_t End,
1047                const ObjectFile *Obj, ArrayRef<uint8_t> Bytes,
1048                ArrayRef<MappingSymbolPair> MappingSymbols) {
1049   support::endianness Endian =
1050       Obj->isLittleEndian() ? support::little : support::big;
1051   while (Index < End) {
1052     outs() << format("%8" PRIx64 ":", SectionAddr + Index);
1053     outs() << "\t";
1054     if (Index + 4 <= End) {
1055       dumpBytes(Bytes.slice(Index, 4), outs());
1056       outs() << "\t.word\t"
1057              << format_hex(
1058                     support::endian::read32(Bytes.data() + Index, Endian), 10);
1059       Index += 4;
1060     } else if (Index + 2 <= End) {
1061       dumpBytes(Bytes.slice(Index, 2), outs());
1062       outs() << "\t\t.short\t"
1063              << format_hex(
1064                     support::endian::read16(Bytes.data() + Index, Endian), 6);
1065       Index += 2;
1066     } else {
1067       dumpBytes(Bytes.slice(Index, 1), outs());
1068       outs() << "\t\t.byte\t" << format_hex(Bytes[0], 4);
1069       ++Index;
1070     }
1071     outs() << "\n";
1072     if (getMappingSymbolKind(MappingSymbols, Index) != 'd')
1073       break;
1074   }
1075   return Index;
1076 }
1077 
1078 static void dumpELFData(uint64_t SectionAddr, uint64_t Index, uint64_t End,
1079                         ArrayRef<uint8_t> Bytes) {
1080   // print out data up to 8 bytes at a time in hex and ascii
1081   uint8_t AsciiData[9] = {'\0'};
1082   uint8_t Byte;
1083   int NumBytes = 0;
1084 
1085   for (; Index < End; ++Index) {
1086     if (NumBytes == 0)
1087       outs() << format("%8" PRIx64 ":", SectionAddr + Index);
1088     Byte = Bytes.slice(Index)[0];
1089     outs() << format(" %02x", Byte);
1090     AsciiData[NumBytes] = isPrint(Byte) ? Byte : '.';
1091 
1092     uint8_t IndentOffset = 0;
1093     NumBytes++;
1094     if (Index == End - 1 || NumBytes > 8) {
1095       // Indent the space for less than 8 bytes data.
1096       // 2 spaces for byte and one for space between bytes
1097       IndentOffset = 3 * (8 - NumBytes);
1098       for (int Excess = NumBytes; Excess < 8; Excess++)
1099         AsciiData[Excess] = '\0';
1100       NumBytes = 8;
1101     }
1102     if (NumBytes == 8) {
1103       AsciiData[8] = '\0';
1104       outs() << std::string(IndentOffset, ' ') << "         ";
1105       outs() << reinterpret_cast<char *>(AsciiData);
1106       outs() << '\n';
1107       NumBytes = 0;
1108     }
1109   }
1110 }
1111 
1112 static void disassembleObject(const Target *TheTarget, const ObjectFile *Obj,
1113                               MCContext &Ctx, MCDisassembler *PrimaryDisAsm,
1114                               MCDisassembler *SecondaryDisAsm,
1115                               const MCInstrAnalysis *MIA, MCInstPrinter *IP,
1116                               const MCSubtargetInfo *PrimarySTI,
1117                               const MCSubtargetInfo *SecondarySTI,
1118                               PrettyPrinter &PIP,
1119                               SourcePrinter &SP, bool InlineRelocs) {
1120   const MCSubtargetInfo *STI = PrimarySTI;
1121   MCDisassembler *DisAsm = PrimaryDisAsm;
1122   bool PrimaryIsThumb = false;
1123   if (isArmElf(Obj))
1124     PrimaryIsThumb = STI->checkFeatures("+thumb-mode");
1125 
1126   std::map<SectionRef, std::vector<RelocationRef>> RelocMap;
1127   if (InlineRelocs)
1128     RelocMap = getRelocsMap(*Obj);
1129   bool Is64Bits = Obj->getBytesInAddress() > 4;
1130 
1131   // Create a mapping from virtual address to symbol name.  This is used to
1132   // pretty print the symbols while disassembling.
1133   std::map<SectionRef, SectionSymbolsTy> AllSymbols;
1134   SectionSymbolsTy AbsoluteSymbols;
1135   const StringRef FileName = Obj->getFileName();
1136   for (const SymbolRef &Symbol : Obj->symbols()) {
1137     uint64_t Address = unwrapOrError(Symbol.getAddress(), FileName);
1138 
1139     StringRef Name = unwrapOrError(Symbol.getName(), FileName);
1140     if (Name.empty())
1141       continue;
1142 
1143     uint8_t SymbolType = ELF::STT_NOTYPE;
1144     if (Obj->isELF()) {
1145       SymbolType = getElfSymbolType(Obj, Symbol);
1146       if (SymbolType == ELF::STT_SECTION)
1147         continue;
1148     }
1149 
1150     section_iterator SecI = unwrapOrError(Symbol.getSection(), FileName);
1151     if (SecI != Obj->section_end())
1152       AllSymbols[*SecI].emplace_back(Address, Name, SymbolType);
1153     else
1154       AbsoluteSymbols.emplace_back(Address, Name, SymbolType);
1155   }
1156   if (AllSymbols.empty() && Obj->isELF())
1157     addDynamicElfSymbols(Obj, AllSymbols);
1158 
1159   BumpPtrAllocator A;
1160   StringSaver Saver(A);
1161   addPltEntries(Obj, AllSymbols, Saver);
1162 
1163   // Create a mapping from virtual address to section.
1164   std::vector<std::pair<uint64_t, SectionRef>> SectionAddresses;
1165   for (SectionRef Sec : Obj->sections())
1166     SectionAddresses.emplace_back(Sec.getAddress(), Sec);
1167   array_pod_sort(SectionAddresses.begin(), SectionAddresses.end());
1168 
1169   // Linked executables (.exe and .dll files) typically don't include a real
1170   // symbol table but they might contain an export table.
1171   if (const auto *COFFObj = dyn_cast<COFFObjectFile>(Obj)) {
1172     for (const auto &ExportEntry : COFFObj->export_directories()) {
1173       StringRef Name;
1174       if (std::error_code EC = ExportEntry.getSymbolName(Name))
1175         reportError(errorCodeToError(EC), Obj->getFileName());
1176       if (Name.empty())
1177         continue;
1178 
1179       uint32_t RVA;
1180       if (std::error_code EC = ExportEntry.getExportRVA(RVA))
1181         reportError(errorCodeToError(EC), Obj->getFileName());
1182 
1183       uint64_t VA = COFFObj->getImageBase() + RVA;
1184       auto Sec = partition_point(
1185           SectionAddresses, [VA](const std::pair<uint64_t, SectionRef> &O) {
1186             return O.first <= VA;
1187           });
1188       if (Sec != SectionAddresses.begin()) {
1189         --Sec;
1190         AllSymbols[Sec->second].emplace_back(VA, Name, ELF::STT_NOTYPE);
1191       } else
1192         AbsoluteSymbols.emplace_back(VA, Name, ELF::STT_NOTYPE);
1193     }
1194   }
1195 
1196   // Sort all the symbols, this allows us to use a simple binary search to find
1197   // a symbol near an address.
1198   StringSet<> FoundDisasmFuncsSet;
1199   for (std::pair<const SectionRef, SectionSymbolsTy> &SecSyms : AllSymbols)
1200     array_pod_sort(SecSyms.second.begin(), SecSyms.second.end());
1201   array_pod_sort(AbsoluteSymbols.begin(), AbsoluteSymbols.end());
1202 
1203   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1204     if (FilterSections.empty() && !DisassembleAll &&
1205         (!Section.isText() || Section.isVirtual()))
1206       continue;
1207 
1208     uint64_t SectionAddr = Section.getAddress();
1209     uint64_t SectSize = Section.getSize();
1210     if (!SectSize)
1211       continue;
1212 
1213     // Get the list of all the symbols in this section.
1214     SectionSymbolsTy &Symbols = AllSymbols[Section];
1215     std::vector<MappingSymbolPair> MappingSymbols;
1216     if (hasMappingSymbols(Obj)) {
1217       for (const auto &Symb : Symbols) {
1218         uint64_t Address = std::get<0>(Symb);
1219         StringRef Name = std::get<1>(Symb);
1220         if (Name.startswith("$d"))
1221           MappingSymbols.emplace_back(Address - SectionAddr, 'd');
1222         if (Name.startswith("$x"))
1223           MappingSymbols.emplace_back(Address - SectionAddr, 'x');
1224         if (Name.startswith("$a"))
1225           MappingSymbols.emplace_back(Address - SectionAddr, 'a');
1226         if (Name.startswith("$t"))
1227           MappingSymbols.emplace_back(Address - SectionAddr, 't');
1228       }
1229     }
1230 
1231     llvm::sort(MappingSymbols);
1232 
1233     if (Obj->isELF() && Obj->getArch() == Triple::amdgcn) {
1234       // AMDGPU disassembler uses symbolizer for printing labels
1235       std::unique_ptr<MCRelocationInfo> RelInfo(
1236         TheTarget->createMCRelocationInfo(TripleName, Ctx));
1237       if (RelInfo) {
1238         std::unique_ptr<MCSymbolizer> Symbolizer(
1239           TheTarget->createMCSymbolizer(
1240             TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo)));
1241         DisAsm->setSymbolizer(std::move(Symbolizer));
1242       }
1243     }
1244 
1245     StringRef SegmentName = "";
1246     if (const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(Obj)) {
1247       DataRefImpl DR = Section.getRawDataRefImpl();
1248       SegmentName = MachO->getSectionFinalSegmentName(DR);
1249     }
1250 
1251     StringRef SectionName = unwrapOrError(Section.getName(), Obj->getFileName());
1252     // If the section has no symbol at the start, just insert a dummy one.
1253     if (Symbols.empty() || std::get<0>(Symbols[0]) != 0) {
1254       Symbols.insert(
1255           Symbols.begin(),
1256           std::make_tuple(SectionAddr, SectionName,
1257                           Section.isText() ? ELF::STT_FUNC : ELF::STT_OBJECT));
1258     }
1259 
1260     SmallString<40> Comments;
1261     raw_svector_ostream CommentStream(Comments);
1262 
1263     ArrayRef<uint8_t> Bytes = arrayRefFromStringRef(
1264         unwrapOrError(Section.getContents(), Obj->getFileName()));
1265 
1266     uint64_t VMAAdjustment = 0;
1267     if (shouldAdjustVA(Section))
1268       VMAAdjustment = AdjustVMA;
1269 
1270     uint64_t Size;
1271     uint64_t Index;
1272     bool PrintedSection = false;
1273     std::vector<RelocationRef> Rels = RelocMap[Section];
1274     std::vector<RelocationRef>::const_iterator RelCur = Rels.begin();
1275     std::vector<RelocationRef>::const_iterator RelEnd = Rels.end();
1276     // Disassemble symbol by symbol.
1277     for (unsigned SI = 0, SE = Symbols.size(); SI != SE; ++SI) {
1278       std::string SymbolName = std::get<1>(Symbols[SI]).str();
1279       if (Demangle)
1280         SymbolName = demangle(SymbolName);
1281 
1282       // Skip if --disassemble-functions is not empty and the symbol is not in
1283       // the list.
1284       if (!DisasmFuncsSet.empty() && !DisasmFuncsSet.count(SymbolName))
1285         continue;
1286 
1287       uint64_t Start = std::get<0>(Symbols[SI]);
1288       if (Start < SectionAddr || StopAddress <= Start)
1289         continue;
1290       else
1291         FoundDisasmFuncsSet.insert(SymbolName);
1292 
1293       // The end is the section end, the beginning of the next symbol, or
1294       // --stop-address.
1295       uint64_t End = std::min<uint64_t>(SectionAddr + SectSize, StopAddress);
1296       if (SI + 1 < SE)
1297         End = std::min(End, std::get<0>(Symbols[SI + 1]));
1298       if (Start >= End || End <= StartAddress)
1299         continue;
1300       Start -= SectionAddr;
1301       End -= SectionAddr;
1302 
1303       if (!PrintedSection) {
1304         PrintedSection = true;
1305         outs() << "\nDisassembly of section ";
1306         if (!SegmentName.empty())
1307           outs() << SegmentName << ",";
1308         outs() << SectionName << ":\n";
1309       }
1310 
1311       if (Obj->isELF() && Obj->getArch() == Triple::amdgcn) {
1312         if (std::get<2>(Symbols[SI]) == ELF::STT_AMDGPU_HSA_KERNEL) {
1313           // skip amd_kernel_code_t at the begining of kernel symbol (256 bytes)
1314           Start += 256;
1315         }
1316         if (SI == SE - 1 ||
1317             std::get<2>(Symbols[SI + 1]) == ELF::STT_AMDGPU_HSA_KERNEL) {
1318           // cut trailing zeroes at the end of kernel
1319           // cut up to 256 bytes
1320           const uint64_t EndAlign = 256;
1321           const auto Limit = End - (std::min)(EndAlign, End - Start);
1322           while (End > Limit &&
1323             *reinterpret_cast<const support::ulittle32_t*>(&Bytes[End - 4]) == 0)
1324             End -= 4;
1325         }
1326       }
1327 
1328       outs() << '\n';
1329       if (!NoLeadingAddr)
1330         outs() << format(Is64Bits ? "%016" PRIx64 " " : "%08" PRIx64 " ",
1331                          SectionAddr + Start + VMAAdjustment);
1332 
1333       outs() << SymbolName << ":\n";
1334 
1335       // Don't print raw contents of a virtual section. A virtual section
1336       // doesn't have any contents in the file.
1337       if (Section.isVirtual()) {
1338         outs() << "...\n";
1339         continue;
1340       }
1341 
1342 #ifndef NDEBUG
1343       raw_ostream &DebugOut = DebugFlag ? dbgs() : nulls();
1344 #else
1345       raw_ostream &DebugOut = nulls();
1346 #endif
1347 
1348       // Some targets (like WebAssembly) have a special prelude at the start
1349       // of each symbol.
1350       DisAsm->onSymbolStart(SymbolName, Size, Bytes.slice(Start, End - Start),
1351                             SectionAddr + Start, DebugOut, CommentStream);
1352       Start += Size;
1353 
1354       Index = Start;
1355       if (SectionAddr < StartAddress)
1356         Index = std::max<uint64_t>(Index, StartAddress - SectionAddr);
1357 
1358       // If there is a data/common symbol inside an ELF text section and we are
1359       // only disassembling text (applicable all architectures), we are in a
1360       // situation where we must print the data and not disassemble it.
1361       if (Obj->isELF() && !DisassembleAll && Section.isText()) {
1362         uint8_t SymTy = std::get<2>(Symbols[SI]);
1363         if (SymTy == ELF::STT_OBJECT || SymTy == ELF::STT_COMMON) {
1364           dumpELFData(SectionAddr, Index, End, Bytes);
1365           Index = End;
1366         }
1367       }
1368 
1369       bool CheckARMELFData = hasMappingSymbols(Obj) &&
1370                              std::get<2>(Symbols[SI]) != ELF::STT_OBJECT &&
1371                              !DisassembleAll;
1372       while (Index < End) {
1373         // ARM and AArch64 ELF binaries can interleave data and text in the
1374         // same section. We rely on the markers introduced to understand what
1375         // we need to dump. If the data marker is within a function, it is
1376         // denoted as a word/short etc.
1377         if (CheckARMELFData &&
1378             getMappingSymbolKind(MappingSymbols, Index) == 'd') {
1379           Index = dumpARMELFData(SectionAddr, Index, End, Obj, Bytes,
1380                                  MappingSymbols);
1381           continue;
1382         }
1383 
1384         // When -z or --disassemble-zeroes are given we always dissasemble
1385         // them. Otherwise we might want to skip zero bytes we see.
1386         if (!DisassembleZeroes) {
1387           uint64_t MaxOffset = End - Index;
1388           // For -reloc: print zero blocks patched by relocations, so that
1389           // relocations can be shown in the dump.
1390           if (RelCur != RelEnd)
1391             MaxOffset = RelCur->getOffset() - Index;
1392 
1393           if (size_t N =
1394                   countSkippableZeroBytes(Bytes.slice(Index, MaxOffset))) {
1395             outs() << "\t\t..." << '\n';
1396             Index += N;
1397             continue;
1398           }
1399         }
1400 
1401         if (SecondarySTI) {
1402           if (getMappingSymbolKind(MappingSymbols, Index) == 'a') {
1403             STI = PrimaryIsThumb ? SecondarySTI : PrimarySTI;
1404             DisAsm = PrimaryIsThumb ? SecondaryDisAsm : PrimaryDisAsm;
1405           } else if (getMappingSymbolKind(MappingSymbols, Index) == 't') {
1406             STI = PrimaryIsThumb ? PrimarySTI : SecondarySTI;
1407             DisAsm = PrimaryIsThumb ? PrimaryDisAsm : SecondaryDisAsm;
1408           }
1409         }
1410 
1411         // Disassemble a real instruction or a data when disassemble all is
1412         // provided
1413         MCInst Inst;
1414         bool Disassembled = DisAsm->getInstruction(
1415             Inst, Size, Bytes.slice(Index), SectionAddr + Index, DebugOut,
1416             CommentStream);
1417         if (Size == 0)
1418           Size = 1;
1419 
1420         PIP.printInst(*IP, Disassembled ? &Inst : nullptr,
1421                       Bytes.slice(Index, Size),
1422                       {SectionAddr + Index + VMAAdjustment, Section.getIndex()},
1423                       outs(), "", *STI, &SP, Obj->getFileName(), &Rels);
1424         outs() << CommentStream.str();
1425         Comments.clear();
1426 
1427         // Try to resolve the target of a call, tail call, etc. to a specific
1428         // symbol.
1429         if (MIA && (MIA->isCall(Inst) || MIA->isUnconditionalBranch(Inst) ||
1430                     MIA->isConditionalBranch(Inst))) {
1431           uint64_t Target;
1432           if (MIA->evaluateBranch(Inst, SectionAddr + Index, Size, Target)) {
1433             // In a relocatable object, the target's section must reside in
1434             // the same section as the call instruction or it is accessed
1435             // through a relocation.
1436             //
1437             // In a non-relocatable object, the target may be in any section.
1438             //
1439             // N.B. We don't walk the relocations in the relocatable case yet.
1440             auto *TargetSectionSymbols = &Symbols;
1441             if (!Obj->isRelocatableObject()) {
1442               auto It = partition_point(
1443                   SectionAddresses,
1444                   [=](const std::pair<uint64_t, SectionRef> &O) {
1445                     return O.first <= Target;
1446                   });
1447               if (It != SectionAddresses.begin()) {
1448                 --It;
1449                 TargetSectionSymbols = &AllSymbols[It->second];
1450               } else {
1451                 TargetSectionSymbols = &AbsoluteSymbols;
1452               }
1453             }
1454 
1455             // Find the last symbol in the section whose offset is less than
1456             // or equal to the target. If there isn't a section that contains
1457             // the target, find the nearest preceding absolute symbol.
1458             auto TargetSym = partition_point(
1459                 *TargetSectionSymbols,
1460                 [=](const std::tuple<uint64_t, StringRef, uint8_t> &O) {
1461                   return std::get<0>(O) <= Target;
1462                 });
1463             if (TargetSym == TargetSectionSymbols->begin()) {
1464               TargetSectionSymbols = &AbsoluteSymbols;
1465               TargetSym = partition_point(
1466                   AbsoluteSymbols,
1467                   [=](const std::tuple<uint64_t, StringRef, uint8_t> &O) {
1468                     return std::get<0>(O) <= Target;
1469                   });
1470             }
1471             if (TargetSym != TargetSectionSymbols->begin()) {
1472               --TargetSym;
1473               uint64_t TargetAddress = std::get<0>(*TargetSym);
1474               StringRef TargetName = std::get<1>(*TargetSym);
1475               outs() << " <" << TargetName;
1476               uint64_t Disp = Target - TargetAddress;
1477               if (Disp)
1478                 outs() << "+0x" << Twine::utohexstr(Disp);
1479               outs() << '>';
1480             }
1481           }
1482         }
1483         outs() << "\n";
1484 
1485         // Hexagon does this in pretty printer
1486         if (Obj->getArch() != Triple::hexagon) {
1487           // Print relocation for instruction.
1488           while (RelCur != RelEnd) {
1489             uint64_t Offset = RelCur->getOffset();
1490             // If this relocation is hidden, skip it.
1491             if (getHidden(*RelCur) || SectionAddr + Offset < StartAddress) {
1492               ++RelCur;
1493               continue;
1494             }
1495 
1496             // Stop when RelCur's offset is past the current instruction.
1497             if (Offset >= Index + Size)
1498               break;
1499 
1500             // When --adjust-vma is used, update the address printed.
1501             if (RelCur->getSymbol() != Obj->symbol_end()) {
1502               Expected<section_iterator> SymSI =
1503                   RelCur->getSymbol()->getSection();
1504               if (SymSI && *SymSI != Obj->section_end() &&
1505                   shouldAdjustVA(**SymSI))
1506                 Offset += AdjustVMA;
1507             }
1508 
1509             printRelocation(Obj->getFileName(), *RelCur, SectionAddr + Offset,
1510                             Is64Bits);
1511             ++RelCur;
1512           }
1513         }
1514 
1515         Index += Size;
1516       }
1517     }
1518   }
1519   StringSet<> MissingDisasmFuncsSet =
1520       set_difference(DisasmFuncsSet, FoundDisasmFuncsSet);
1521   for (StringRef MissingDisasmFunc : MissingDisasmFuncsSet.keys())
1522     reportWarning("failed to disassemble missing function " + MissingDisasmFunc,
1523                   FileName);
1524 }
1525 
1526 static void disassembleObject(const ObjectFile *Obj, bool InlineRelocs) {
1527   const Target *TheTarget = getTarget(Obj);
1528 
1529   // Package up features to be passed to target/subtarget
1530   SubtargetFeatures Features = Obj->getFeatures();
1531   if (!MAttrs.empty())
1532     for (unsigned I = 0; I != MAttrs.size(); ++I)
1533       Features.AddFeature(MAttrs[I]);
1534 
1535   std::unique_ptr<const MCRegisterInfo> MRI(
1536       TheTarget->createMCRegInfo(TripleName));
1537   if (!MRI)
1538     reportError(Obj->getFileName(),
1539                 "no register info for target " + TripleName);
1540 
1541   // Set up disassembler.
1542   std::unique_ptr<const MCAsmInfo> AsmInfo(
1543       TheTarget->createMCAsmInfo(*MRI, TripleName));
1544   if (!AsmInfo)
1545     reportError(Obj->getFileName(),
1546                 "no assembly info for target " + TripleName);
1547   std::unique_ptr<const MCSubtargetInfo> STI(
1548       TheTarget->createMCSubtargetInfo(TripleName, MCPU, Features.getString()));
1549   if (!STI)
1550     reportError(Obj->getFileName(),
1551                 "no subtarget info for target " + TripleName);
1552   std::unique_ptr<const MCInstrInfo> MII(TheTarget->createMCInstrInfo());
1553   if (!MII)
1554     reportError(Obj->getFileName(),
1555                 "no instruction info for target " + TripleName);
1556   MCObjectFileInfo MOFI;
1557   MCContext Ctx(AsmInfo.get(), MRI.get(), &MOFI);
1558   // FIXME: for now initialize MCObjectFileInfo with default values
1559   MOFI.InitMCObjectFileInfo(Triple(TripleName), false, Ctx);
1560 
1561   std::unique_ptr<MCDisassembler> DisAsm(
1562       TheTarget->createMCDisassembler(*STI, Ctx));
1563   if (!DisAsm)
1564     reportError(Obj->getFileName(), "no disassembler for target " + TripleName);
1565 
1566   // If we have an ARM object file, we need a second disassembler, because
1567   // ARM CPUs have two different instruction sets: ARM mode, and Thumb mode.
1568   // We use mapping symbols to switch between the two assemblers, where
1569   // appropriate.
1570   std::unique_ptr<MCDisassembler> SecondaryDisAsm;
1571   std::unique_ptr<const MCSubtargetInfo> SecondarySTI;
1572   if (isArmElf(Obj) && !STI->checkFeatures("+mclass")) {
1573     if (STI->checkFeatures("+thumb-mode"))
1574       Features.AddFeature("-thumb-mode");
1575     else
1576       Features.AddFeature("+thumb-mode");
1577     SecondarySTI.reset(TheTarget->createMCSubtargetInfo(TripleName, MCPU,
1578                                                         Features.getString()));
1579     SecondaryDisAsm.reset(TheTarget->createMCDisassembler(*SecondarySTI, Ctx));
1580   }
1581 
1582   std::unique_ptr<const MCInstrAnalysis> MIA(
1583       TheTarget->createMCInstrAnalysis(MII.get()));
1584 
1585   int AsmPrinterVariant = AsmInfo->getAssemblerDialect();
1586   std::unique_ptr<MCInstPrinter> IP(TheTarget->createMCInstPrinter(
1587       Triple(TripleName), AsmPrinterVariant, *AsmInfo, *MII, *MRI));
1588   if (!IP)
1589     reportError(Obj->getFileName(),
1590                 "no instruction printer for target " + TripleName);
1591   IP->setPrintImmHex(PrintImmHex);
1592 
1593   PrettyPrinter &PIP = selectPrettyPrinter(Triple(TripleName));
1594   SourcePrinter SP(Obj, TheTarget->getName());
1595 
1596   for (StringRef Opt : DisassemblerOptions)
1597     if (!IP->applyTargetSpecificCLOption(Opt))
1598       reportError(Obj->getFileName(),
1599                   "Unrecognized disassembler option: " + Opt);
1600 
1601   disassembleObject(TheTarget, Obj, Ctx, DisAsm.get(), SecondaryDisAsm.get(),
1602                     MIA.get(), IP.get(), STI.get(), SecondarySTI.get(), PIP,
1603                     SP, InlineRelocs);
1604 }
1605 
1606 void printRelocations(const ObjectFile *Obj) {
1607   StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 :
1608                                                  "%08" PRIx64;
1609   // Regular objdump doesn't print relocations in non-relocatable object
1610   // files.
1611   if (!Obj->isRelocatableObject())
1612     return;
1613 
1614   // Build a mapping from relocation target to a vector of relocation
1615   // sections. Usually, there is an only one relocation section for
1616   // each relocated section.
1617   MapVector<SectionRef, std::vector<SectionRef>> SecToRelSec;
1618   uint64_t Ndx;
1619   for (const SectionRef &Section : ToolSectionFilter(*Obj, &Ndx)) {
1620     if (Section.relocation_begin() == Section.relocation_end())
1621       continue;
1622     Expected<section_iterator> SecOrErr = Section.getRelocatedSection();
1623     if (!SecOrErr)
1624       reportError(Obj->getFileName(),
1625                   "section (" + Twine(Ndx) +
1626                       "): unable to get a relocation target: " +
1627                       toString(SecOrErr.takeError()));
1628     SecToRelSec[**SecOrErr].push_back(Section);
1629   }
1630 
1631   for (std::pair<SectionRef, std::vector<SectionRef>> &P : SecToRelSec) {
1632     StringRef SecName = unwrapOrError(P.first.getName(), Obj->getFileName());
1633     outs() << "RELOCATION RECORDS FOR [" << SecName << "]:\n";
1634 
1635     for (SectionRef Section : P.second) {
1636       for (const RelocationRef &Reloc : Section.relocations()) {
1637         uint64_t Address = Reloc.getOffset();
1638         SmallString<32> RelocName;
1639         SmallString<32> ValueStr;
1640         if (Address < StartAddress || Address > StopAddress || getHidden(Reloc))
1641           continue;
1642         Reloc.getTypeName(RelocName);
1643         if (Error E = getRelocationValueString(Reloc, ValueStr))
1644           reportError(std::move(E), Obj->getFileName());
1645 
1646         outs() << format(Fmt.data(), Address) << " " << RelocName << " "
1647                << ValueStr << "\n";
1648       }
1649     }
1650     outs() << "\n";
1651   }
1652 }
1653 
1654 void printDynamicRelocations(const ObjectFile *Obj) {
1655   // For the moment, this option is for ELF only
1656   if (!Obj->isELF())
1657     return;
1658 
1659   const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj);
1660   if (!Elf || Elf->getEType() != ELF::ET_DYN) {
1661     reportError(Obj->getFileName(), "not a dynamic object");
1662     return;
1663   }
1664 
1665   std::vector<SectionRef> DynRelSec = Obj->dynamic_relocation_sections();
1666   if (DynRelSec.empty())
1667     return;
1668 
1669   outs() << "DYNAMIC RELOCATION RECORDS\n";
1670   StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
1671   for (const SectionRef &Section : DynRelSec)
1672     for (const RelocationRef &Reloc : Section.relocations()) {
1673       uint64_t Address = Reloc.getOffset();
1674       SmallString<32> RelocName;
1675       SmallString<32> ValueStr;
1676       Reloc.getTypeName(RelocName);
1677       if (Error E = getRelocationValueString(Reloc, ValueStr))
1678         reportError(std::move(E), Obj->getFileName());
1679       outs() << format(Fmt.data(), Address) << " " << RelocName << " "
1680              << ValueStr << "\n";
1681     }
1682 }
1683 
1684 // Returns true if we need to show LMA column when dumping section headers. We
1685 // show it only when the platform is ELF and either we have at least one section
1686 // whose VMA and LMA are different and/or when --show-lma flag is used.
1687 static bool shouldDisplayLMA(const ObjectFile *Obj) {
1688   if (!Obj->isELF())
1689     return false;
1690   for (const SectionRef &S : ToolSectionFilter(*Obj))
1691     if (S.getAddress() != getELFSectionLMA(S))
1692       return true;
1693   return ShowLMA;
1694 }
1695 
1696 static size_t getMaxSectionNameWidth(const ObjectFile *Obj) {
1697   // Default column width for names is 13 even if no names are that long.
1698   size_t MaxWidth = 13;
1699   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1700     StringRef Name = unwrapOrError(Section.getName(), Obj->getFileName());
1701     MaxWidth = std::max(MaxWidth, Name.size());
1702   }
1703   return MaxWidth;
1704 }
1705 
1706 void printSectionHeaders(const ObjectFile *Obj) {
1707   size_t NameWidth = getMaxSectionNameWidth(Obj);
1708   size_t AddressWidth = 2 * Obj->getBytesInAddress();
1709   bool HasLMAColumn = shouldDisplayLMA(Obj);
1710   if (HasLMAColumn)
1711     outs() << "Sections:\n"
1712               "Idx "
1713            << left_justify("Name", NameWidth) << " Size     "
1714            << left_justify("VMA", AddressWidth) << " "
1715            << left_justify("LMA", AddressWidth) << " Type\n";
1716   else
1717     outs() << "Sections:\n"
1718               "Idx "
1719            << left_justify("Name", NameWidth) << " Size     "
1720            << left_justify("VMA", AddressWidth) << " Type\n";
1721 
1722   uint64_t Idx;
1723   for (const SectionRef &Section : ToolSectionFilter(*Obj, &Idx)) {
1724     StringRef Name = unwrapOrError(Section.getName(), Obj->getFileName());
1725     uint64_t VMA = Section.getAddress();
1726     if (shouldAdjustVA(Section))
1727       VMA += AdjustVMA;
1728 
1729     uint64_t Size = Section.getSize();
1730 
1731     std::string Type = Section.isText() ? "TEXT" : "";
1732     if (Section.isData())
1733       Type += Type.empty() ? "DATA" : " DATA";
1734     if (Section.isBSS())
1735       Type += Type.empty() ? "BSS" : " BSS";
1736 
1737     if (HasLMAColumn)
1738       outs() << format("%3" PRIu64 " %-*s %08" PRIx64 " ", Idx, NameWidth,
1739                        Name.str().c_str(), Size)
1740              << format_hex_no_prefix(VMA, AddressWidth) << " "
1741              << format_hex_no_prefix(getELFSectionLMA(Section), AddressWidth)
1742              << " " << Type << "\n";
1743     else
1744       outs() << format("%3" PRIu64 " %-*s %08" PRIx64 " ", Idx, NameWidth,
1745                        Name.str().c_str(), Size)
1746              << format_hex_no_prefix(VMA, AddressWidth) << " " << Type << "\n";
1747   }
1748   outs() << "\n";
1749 }
1750 
1751 void printSectionContents(const ObjectFile *Obj) {
1752   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1753     StringRef Name = unwrapOrError(Section.getName(), Obj->getFileName());
1754     uint64_t BaseAddr = Section.getAddress();
1755     uint64_t Size = Section.getSize();
1756     if (!Size)
1757       continue;
1758 
1759     outs() << "Contents of section " << Name << ":\n";
1760     if (Section.isBSS()) {
1761       outs() << format("<skipping contents of bss section at [%04" PRIx64
1762                        ", %04" PRIx64 ")>\n",
1763                        BaseAddr, BaseAddr + Size);
1764       continue;
1765     }
1766 
1767     StringRef Contents = unwrapOrError(Section.getContents(), Obj->getFileName());
1768 
1769     // Dump out the content as hex and printable ascii characters.
1770     for (std::size_t Addr = 0, End = Contents.size(); Addr < End; Addr += 16) {
1771       outs() << format(" %04" PRIx64 " ", BaseAddr + Addr);
1772       // Dump line of hex.
1773       for (std::size_t I = 0; I < 16; ++I) {
1774         if (I != 0 && I % 4 == 0)
1775           outs() << ' ';
1776         if (Addr + I < End)
1777           outs() << hexdigit((Contents[Addr + I] >> 4) & 0xF, true)
1778                  << hexdigit(Contents[Addr + I] & 0xF, true);
1779         else
1780           outs() << "  ";
1781       }
1782       // Print ascii.
1783       outs() << "  ";
1784       for (std::size_t I = 0; I < 16 && Addr + I < End; ++I) {
1785         if (isPrint(static_cast<unsigned char>(Contents[Addr + I]) & 0xFF))
1786           outs() << Contents[Addr + I];
1787         else
1788           outs() << ".";
1789       }
1790       outs() << "\n";
1791     }
1792   }
1793 }
1794 
1795 void printSymbolTable(const ObjectFile *O, StringRef ArchiveName,
1796                       StringRef ArchitectureName) {
1797   outs() << "SYMBOL TABLE:\n";
1798 
1799   if (const COFFObjectFile *Coff = dyn_cast<const COFFObjectFile>(O)) {
1800     printCOFFSymbolTable(Coff);
1801     return;
1802   }
1803 
1804   const StringRef FileName = O->getFileName();
1805   for (auto I = O->symbol_begin(), E = O->symbol_end(); I != E; ++I) {
1806     const SymbolRef &Symbol = *I;
1807     uint64_t Address = unwrapOrError(Symbol.getAddress(), FileName, ArchiveName,
1808                                      ArchitectureName);
1809     if ((Address < StartAddress) || (Address > StopAddress))
1810       continue;
1811     SymbolRef::Type Type = unwrapOrError(Symbol.getType(), FileName,
1812                                          ArchiveName, ArchitectureName);
1813     uint32_t Flags = Symbol.getFlags();
1814     section_iterator Section = unwrapOrError(Symbol.getSection(), FileName,
1815                                              ArchiveName, ArchitectureName);
1816     StringRef Name;
1817     if (Type == SymbolRef::ST_Debug && Section != O->section_end()) {
1818       if (Expected<StringRef> NameOrErr = Section->getName())
1819         Name = *NameOrErr;
1820       else
1821         consumeError(NameOrErr.takeError());
1822 
1823     } else {
1824       Name = unwrapOrError(Symbol.getName(), FileName, ArchiveName,
1825                            ArchitectureName);
1826     }
1827 
1828     bool Global = Flags & SymbolRef::SF_Global;
1829     bool Weak = Flags & SymbolRef::SF_Weak;
1830     bool Absolute = Flags & SymbolRef::SF_Absolute;
1831     bool Common = Flags & SymbolRef::SF_Common;
1832     bool Hidden = Flags & SymbolRef::SF_Hidden;
1833 
1834     char GlobLoc = ' ';
1835     if (Type != SymbolRef::ST_Unknown)
1836       GlobLoc = Global ? 'g' : 'l';
1837     char Debug = (Type == SymbolRef::ST_Debug || Type == SymbolRef::ST_File)
1838                  ? 'd' : ' ';
1839     char FileFunc = ' ';
1840     if (Type == SymbolRef::ST_File)
1841       FileFunc = 'f';
1842     else if (Type == SymbolRef::ST_Function)
1843       FileFunc = 'F';
1844     else if (Type == SymbolRef::ST_Data)
1845       FileFunc = 'O';
1846 
1847     const char *Fmt = O->getBytesInAddress() > 4 ? "%016" PRIx64 :
1848                                                    "%08" PRIx64;
1849 
1850     outs() << format(Fmt, Address) << " "
1851            << GlobLoc // Local -> 'l', Global -> 'g', Neither -> ' '
1852            << (Weak ? 'w' : ' ') // Weak?
1853            << ' ' // Constructor. Not supported yet.
1854            << ' ' // Warning. Not supported yet.
1855            << ' ' // Indirect reference to another symbol.
1856            << Debug // Debugging (d) or dynamic (D) symbol.
1857            << FileFunc // Name of function (F), file (f) or object (O).
1858            << ' ';
1859     if (Absolute) {
1860       outs() << "*ABS*";
1861     } else if (Common) {
1862       outs() << "*COM*";
1863     } else if (Section == O->section_end()) {
1864       outs() << "*UND*";
1865     } else {
1866       if (const MachOObjectFile *MachO =
1867           dyn_cast<const MachOObjectFile>(O)) {
1868         DataRefImpl DR = Section->getRawDataRefImpl();
1869         StringRef SegmentName = MachO->getSectionFinalSegmentName(DR);
1870         outs() << SegmentName << ",";
1871       }
1872       StringRef SectionName =
1873           unwrapOrError(Section->getName(), O->getFileName());
1874       outs() << SectionName;
1875     }
1876 
1877     if (Common || isa<ELFObjectFileBase>(O)) {
1878       uint64_t Val =
1879           Common ? Symbol.getAlignment() : ELFSymbolRef(Symbol).getSize();
1880       outs() << format("\t%08" PRIx64, Val);
1881     }
1882 
1883     if (isa<ELFObjectFileBase>(O)) {
1884       uint8_t Other = ELFSymbolRef(Symbol).getOther();
1885       switch (Other) {
1886       case ELF::STV_DEFAULT:
1887         break;
1888       case ELF::STV_INTERNAL:
1889         outs() << " .internal";
1890         break;
1891       case ELF::STV_HIDDEN:
1892         outs() << " .hidden";
1893         break;
1894       case ELF::STV_PROTECTED:
1895         outs() << " .protected";
1896         break;
1897       default:
1898         outs() << format(" 0x%02x", Other);
1899         break;
1900       }
1901     } else if (Hidden) {
1902       outs() << " .hidden";
1903     }
1904 
1905     if (Demangle)
1906       outs() << ' ' << demangle(Name) << '\n';
1907     else
1908       outs() << ' ' << Name << '\n';
1909   }
1910 }
1911 
1912 static void printUnwindInfo(const ObjectFile *O) {
1913   outs() << "Unwind info:\n\n";
1914 
1915   if (const COFFObjectFile *Coff = dyn_cast<COFFObjectFile>(O))
1916     printCOFFUnwindInfo(Coff);
1917   else if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(O))
1918     printMachOUnwindInfo(MachO);
1919   else
1920     // TODO: Extract DWARF dump tool to objdump.
1921     WithColor::error(errs(), ToolName)
1922         << "This operation is only currently supported "
1923            "for COFF and MachO object files.\n";
1924 }
1925 
1926 /// Dump the raw contents of the __clangast section so the output can be piped
1927 /// into llvm-bcanalyzer.
1928 void printRawClangAST(const ObjectFile *Obj) {
1929   if (outs().is_displayed()) {
1930     WithColor::error(errs(), ToolName)
1931         << "The -raw-clang-ast option will dump the raw binary contents of "
1932            "the clang ast section.\n"
1933            "Please redirect the output to a file or another program such as "
1934            "llvm-bcanalyzer.\n";
1935     return;
1936   }
1937 
1938   StringRef ClangASTSectionName("__clangast");
1939   if (isa<COFFObjectFile>(Obj)) {
1940     ClangASTSectionName = "clangast";
1941   }
1942 
1943   Optional<object::SectionRef> ClangASTSection;
1944   for (auto Sec : ToolSectionFilter(*Obj)) {
1945     StringRef Name;
1946     if (Expected<StringRef> NameOrErr = Sec.getName())
1947       Name = *NameOrErr;
1948     else
1949       consumeError(NameOrErr.takeError());
1950 
1951     if (Name == ClangASTSectionName) {
1952       ClangASTSection = Sec;
1953       break;
1954     }
1955   }
1956   if (!ClangASTSection)
1957     return;
1958 
1959   StringRef ClangASTContents = unwrapOrError(
1960       ClangASTSection.getValue().getContents(), Obj->getFileName());
1961   outs().write(ClangASTContents.data(), ClangASTContents.size());
1962 }
1963 
1964 static void printFaultMaps(const ObjectFile *Obj) {
1965   StringRef FaultMapSectionName;
1966 
1967   if (isa<ELFObjectFileBase>(Obj)) {
1968     FaultMapSectionName = ".llvm_faultmaps";
1969   } else if (isa<MachOObjectFile>(Obj)) {
1970     FaultMapSectionName = "__llvm_faultmaps";
1971   } else {
1972     WithColor::error(errs(), ToolName)
1973         << "This operation is only currently supported "
1974            "for ELF and Mach-O executable files.\n";
1975     return;
1976   }
1977 
1978   Optional<object::SectionRef> FaultMapSection;
1979 
1980   for (auto Sec : ToolSectionFilter(*Obj)) {
1981     StringRef Name;
1982     if (Expected<StringRef> NameOrErr = Sec.getName())
1983       Name = *NameOrErr;
1984     else
1985       consumeError(NameOrErr.takeError());
1986 
1987     if (Name == FaultMapSectionName) {
1988       FaultMapSection = Sec;
1989       break;
1990     }
1991   }
1992 
1993   outs() << "FaultMap table:\n";
1994 
1995   if (!FaultMapSection.hasValue()) {
1996     outs() << "<not found>\n";
1997     return;
1998   }
1999 
2000   StringRef FaultMapContents =
2001       unwrapOrError(FaultMapSection.getValue().getContents(), Obj->getFileName());
2002   FaultMapParser FMP(FaultMapContents.bytes_begin(),
2003                      FaultMapContents.bytes_end());
2004 
2005   outs() << FMP;
2006 }
2007 
2008 static void printPrivateFileHeaders(const ObjectFile *O, bool OnlyFirst) {
2009   if (O->isELF()) {
2010     printELFFileHeader(O);
2011     printELFDynamicSection(O);
2012     printELFSymbolVersionInfo(O);
2013     return;
2014   }
2015   if (O->isCOFF())
2016     return printCOFFFileHeader(O);
2017   if (O->isWasm())
2018     return printWasmFileHeader(O);
2019   if (O->isMachO()) {
2020     printMachOFileHeader(O);
2021     if (!OnlyFirst)
2022       printMachOLoadCommands(O);
2023     return;
2024   }
2025   reportError(O->getFileName(), "Invalid/Unsupported object file format");
2026 }
2027 
2028 static void printFileHeaders(const ObjectFile *O) {
2029   if (!O->isELF() && !O->isCOFF())
2030     reportError(O->getFileName(), "Invalid/Unsupported object file format");
2031 
2032   Triple::ArchType AT = O->getArch();
2033   outs() << "architecture: " << Triple::getArchTypeName(AT) << "\n";
2034   uint64_t Address = unwrapOrError(O->getStartAddress(), O->getFileName());
2035 
2036   StringRef Fmt = O->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
2037   outs() << "start address: "
2038          << "0x" << format(Fmt.data(), Address) << "\n\n";
2039 }
2040 
2041 static void printArchiveChild(StringRef Filename, const Archive::Child &C) {
2042   Expected<sys::fs::perms> ModeOrErr = C.getAccessMode();
2043   if (!ModeOrErr) {
2044     WithColor::error(errs(), ToolName) << "ill-formed archive entry.\n";
2045     consumeError(ModeOrErr.takeError());
2046     return;
2047   }
2048   sys::fs::perms Mode = ModeOrErr.get();
2049   outs() << ((Mode & sys::fs::owner_read) ? "r" : "-");
2050   outs() << ((Mode & sys::fs::owner_write) ? "w" : "-");
2051   outs() << ((Mode & sys::fs::owner_exe) ? "x" : "-");
2052   outs() << ((Mode & sys::fs::group_read) ? "r" : "-");
2053   outs() << ((Mode & sys::fs::group_write) ? "w" : "-");
2054   outs() << ((Mode & sys::fs::group_exe) ? "x" : "-");
2055   outs() << ((Mode & sys::fs::others_read) ? "r" : "-");
2056   outs() << ((Mode & sys::fs::others_write) ? "w" : "-");
2057   outs() << ((Mode & sys::fs::others_exe) ? "x" : "-");
2058 
2059   outs() << " ";
2060 
2061   outs() << format("%d/%d %6" PRId64 " ", unwrapOrError(C.getUID(), Filename),
2062                    unwrapOrError(C.getGID(), Filename),
2063                    unwrapOrError(C.getRawSize(), Filename));
2064 
2065   StringRef RawLastModified = C.getRawLastModified();
2066   unsigned Seconds;
2067   if (RawLastModified.getAsInteger(10, Seconds))
2068     outs() << "(date: \"" << RawLastModified
2069            << "\" contains non-decimal chars) ";
2070   else {
2071     // Since ctime(3) returns a 26 character string of the form:
2072     // "Sun Sep 16 01:03:52 1973\n\0"
2073     // just print 24 characters.
2074     time_t t = Seconds;
2075     outs() << format("%.24s ", ctime(&t));
2076   }
2077 
2078   StringRef Name = "";
2079   Expected<StringRef> NameOrErr = C.getName();
2080   if (!NameOrErr) {
2081     consumeError(NameOrErr.takeError());
2082     Name = unwrapOrError(C.getRawName(), Filename);
2083   } else {
2084     Name = NameOrErr.get();
2085   }
2086   outs() << Name << "\n";
2087 }
2088 
2089 // For ELF only now.
2090 static bool shouldWarnForInvalidStartStopAddress(ObjectFile *Obj) {
2091   if (const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj)) {
2092     if (Elf->getEType() != ELF::ET_REL)
2093       return true;
2094   }
2095   return false;
2096 }
2097 
2098 static void checkForInvalidStartStopAddress(ObjectFile *Obj,
2099                                             uint64_t Start, uint64_t Stop) {
2100   if (!shouldWarnForInvalidStartStopAddress(Obj))
2101     return;
2102 
2103   for (const SectionRef &Section : Obj->sections())
2104     if (ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC) {
2105       uint64_t BaseAddr = Section.getAddress();
2106       uint64_t Size = Section.getSize();
2107       if ((Start < BaseAddr + Size) && Stop > BaseAddr)
2108         return;
2109     }
2110 
2111   if (StartAddress.getNumOccurrences() == 0)
2112     reportWarning("no section has address less than 0x" +
2113                       Twine::utohexstr(Stop) + " specified by --stop-address",
2114                   Obj->getFileName());
2115   else if (StopAddress.getNumOccurrences() == 0)
2116     reportWarning("no section has address greater than or equal to 0x" +
2117                       Twine::utohexstr(Start) + " specified by --start-address",
2118                   Obj->getFileName());
2119   else
2120     reportWarning("no section overlaps the range [0x" +
2121                       Twine::utohexstr(Start) + ",0x" + Twine::utohexstr(Stop) +
2122                       ") specified by --start-address/--stop-address",
2123                   Obj->getFileName());
2124 }
2125 
2126 static void dumpObject(ObjectFile *O, const Archive *A = nullptr,
2127                        const Archive::Child *C = nullptr) {
2128   // Avoid other output when using a raw option.
2129   if (!RawClangAST) {
2130     outs() << '\n';
2131     if (A)
2132       outs() << A->getFileName() << "(" << O->getFileName() << ")";
2133     else
2134       outs() << O->getFileName();
2135     outs() << ":\tfile format " << O->getFileFormatName() << "\n\n";
2136   }
2137 
2138   if (StartAddress.getNumOccurrences() || StopAddress.getNumOccurrences())
2139     checkForInvalidStartStopAddress(O, StartAddress, StopAddress);
2140 
2141   // Note: the order here matches GNU objdump for compatability.
2142   StringRef ArchiveName = A ? A->getFileName() : "";
2143   if (ArchiveHeaders && !MachOOpt && C)
2144     printArchiveChild(ArchiveName, *C);
2145   if (FileHeaders)
2146     printFileHeaders(O);
2147   if (PrivateHeaders || FirstPrivateHeader)
2148     printPrivateFileHeaders(O, FirstPrivateHeader);
2149   if (SectionHeaders)
2150     printSectionHeaders(O);
2151   if (SymbolTable)
2152     printSymbolTable(O, ArchiveName);
2153   if (DwarfDumpType != DIDT_Null) {
2154     std::unique_ptr<DIContext> DICtx = DWARFContext::create(*O);
2155     // Dump the complete DWARF structure.
2156     DIDumpOptions DumpOpts;
2157     DumpOpts.DumpType = DwarfDumpType;
2158     DICtx->dump(outs(), DumpOpts);
2159   }
2160   if (Relocations && !Disassemble)
2161     printRelocations(O);
2162   if (DynamicRelocations)
2163     printDynamicRelocations(O);
2164   if (SectionContents)
2165     printSectionContents(O);
2166   if (Disassemble)
2167     disassembleObject(O, Relocations);
2168   if (UnwindInfo)
2169     printUnwindInfo(O);
2170 
2171   // Mach-O specific options:
2172   if (ExportsTrie)
2173     printExportsTrie(O);
2174   if (Rebase)
2175     printRebaseTable(O);
2176   if (Bind)
2177     printBindTable(O);
2178   if (LazyBind)
2179     printLazyBindTable(O);
2180   if (WeakBind)
2181     printWeakBindTable(O);
2182 
2183   // Other special sections:
2184   if (RawClangAST)
2185     printRawClangAST(O);
2186   if (FaultMapSection)
2187     printFaultMaps(O);
2188 }
2189 
2190 static void dumpObject(const COFFImportFile *I, const Archive *A,
2191                        const Archive::Child *C = nullptr) {
2192   StringRef ArchiveName = A ? A->getFileName() : "";
2193 
2194   // Avoid other output when using a raw option.
2195   if (!RawClangAST)
2196     outs() << '\n'
2197            << ArchiveName << "(" << I->getFileName() << ")"
2198            << ":\tfile format COFF-import-file"
2199            << "\n\n";
2200 
2201   if (ArchiveHeaders && !MachOOpt && C)
2202     printArchiveChild(ArchiveName, *C);
2203   if (SymbolTable)
2204     printCOFFSymbolTable(I);
2205 }
2206 
2207 /// Dump each object file in \a a;
2208 static void dumpArchive(const Archive *A) {
2209   Error Err = Error::success();
2210   unsigned I = -1;
2211   for (auto &C : A->children(Err)) {
2212     ++I;
2213     Expected<std::unique_ptr<Binary>> ChildOrErr = C.getAsBinary();
2214     if (!ChildOrErr) {
2215       if (auto E = isNotObjectErrorInvalidFileType(ChildOrErr.takeError()))
2216         reportError(std::move(E), getFileNameForError(C, I), A->getFileName());
2217       continue;
2218     }
2219     if (ObjectFile *O = dyn_cast<ObjectFile>(&*ChildOrErr.get()))
2220       dumpObject(O, A, &C);
2221     else if (COFFImportFile *I = dyn_cast<COFFImportFile>(&*ChildOrErr.get()))
2222       dumpObject(I, A, &C);
2223     else
2224       reportError(errorCodeToError(object_error::invalid_file_type),
2225                   A->getFileName());
2226   }
2227   if (Err)
2228     reportError(std::move(Err), A->getFileName());
2229 }
2230 
2231 /// Open file and figure out how to dump it.
2232 static void dumpInput(StringRef file) {
2233   // If we are using the Mach-O specific object file parser, then let it parse
2234   // the file and process the command line options.  So the -arch flags can
2235   // be used to select specific slices, etc.
2236   if (MachOOpt) {
2237     parseInputMachO(file);
2238     return;
2239   }
2240 
2241   // Attempt to open the binary.
2242   OwningBinary<Binary> OBinary = unwrapOrError(createBinary(file), file);
2243   Binary &Binary = *OBinary.getBinary();
2244 
2245   if (Archive *A = dyn_cast<Archive>(&Binary))
2246     dumpArchive(A);
2247   else if (ObjectFile *O = dyn_cast<ObjectFile>(&Binary))
2248     dumpObject(O);
2249   else if (MachOUniversalBinary *UB = dyn_cast<MachOUniversalBinary>(&Binary))
2250     parseInputMachO(UB);
2251   else
2252     reportError(errorCodeToError(object_error::invalid_file_type), file);
2253 }
2254 } // namespace llvm
2255 
2256 int main(int argc, char **argv) {
2257   using namespace llvm;
2258   InitLLVM X(argc, argv);
2259   const cl::OptionCategory *OptionFilters[] = {&ObjdumpCat, &MachOCat};
2260   cl::HideUnrelatedOptions(OptionFilters);
2261 
2262   // Initialize targets and assembly printers/parsers.
2263   InitializeAllTargetInfos();
2264   InitializeAllTargetMCs();
2265   InitializeAllDisassemblers();
2266 
2267   // Register the target printer for --version.
2268   cl::AddExtraVersionPrinter(TargetRegistry::printRegisteredTargetsForVersion);
2269 
2270   cl::ParseCommandLineOptions(argc, argv, "llvm object file dumper\n");
2271 
2272   if (StartAddress >= StopAddress)
2273     reportCmdLineError("start address should be less than stop address");
2274 
2275   ToolName = argv[0];
2276 
2277   // Defaults to a.out if no filenames specified.
2278   if (InputFilenames.empty())
2279     InputFilenames.push_back("a.out");
2280 
2281   if (AllHeaders)
2282     ArchiveHeaders = FileHeaders = PrivateHeaders = Relocations =
2283         SectionHeaders = SymbolTable = true;
2284 
2285   if (DisassembleAll || PrintSource || PrintLines ||
2286       (!DisassembleFunctions.empty()))
2287     Disassemble = true;
2288 
2289   if (!ArchiveHeaders && !Disassemble && DwarfDumpType == DIDT_Null &&
2290       !DynamicRelocations && !FileHeaders && !PrivateHeaders && !RawClangAST &&
2291       !Relocations && !SectionHeaders && !SectionContents && !SymbolTable &&
2292       !UnwindInfo && !FaultMapSection &&
2293       !(MachOOpt &&
2294         (Bind || DataInCode || DylibId || DylibsUsed || ExportsTrie ||
2295          FirstPrivateHeader || IndirectSymbols || InfoPlist || LazyBind ||
2296          LinkOptHints || ObjcMetaData || Rebase || UniversalHeaders ||
2297          WeakBind || !FilterSections.empty()))) {
2298     cl::PrintHelpMessage();
2299     return 2;
2300   }
2301 
2302   DisasmFuncsSet.insert(DisassembleFunctions.begin(),
2303                         DisassembleFunctions.end());
2304 
2305   llvm::for_each(InputFilenames, dumpInput);
2306 
2307   warnOnNoMatchForSections();
2308 
2309   return EXIT_SUCCESS;
2310 }
2311